WO2022181182A1 - Inductor component - Google Patents

Inductor component Download PDF

Info

Publication number
WO2022181182A1
WO2022181182A1 PCT/JP2022/003068 JP2022003068W WO2022181182A1 WO 2022181182 A1 WO2022181182 A1 WO 2022181182A1 JP 2022003068 W JP2022003068 W JP 2022003068W WO 2022181182 A1 WO2022181182 A1 WO 2022181182A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
axis
inductor
direction along
ribbon
Prior art date
Application number
PCT/JP2022/003068
Other languages
French (fr)
Japanese (ja)
Inventor
敢 三宅
博美 辻
充 小田原
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022181182A1 publication Critical patent/WO2022181182A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present disclosure relates to inductor components.
  • the inductor component described in Patent Document 1 includes an element body and inductor wiring extending inside the element body.
  • the base body is made of a composite body containing inorganic filler and resin.
  • a magnetic composite body among composite bodies contains a magnetic material as a material of an inorganic filler.
  • An inductor component for solving the above problems includes a plurality of flat magnetic ribbons made of a magnetic material, and the plurality of magnetic ribbons are laminated in a direction orthogonal to a main surface of the magnetic ribbons. and an inductor wiring extending along the main surface inside the element.
  • the element has a magnetic portion arranged at the same position as the inductor wiring in the direction along the second axis.
  • the magnetic portion contains a plurality of magnetic bodies made of a magnetic material.
  • the area of the maximum cross section of the plurality of magnetic bodies is , smaller than the area of the main surface.
  • a plurality of magnetic bodies having the maximum cross-sectional area smaller than the area of the main surface of the magnetic ribbon are arranged in the relevant portion of the element. Therefore, the generated eddy current is less likely to increase in this portion. Therefore, the eddy current loss of the inductor component can be reduced as compared with the case where the magnetic ribbon is arranged in the relevant portion of the element.
  • first axis means not only those that are in direct contact with the first axis and along the first axis, but also those that are not in direct contact with the first axis and are along the first axis at a distance. Also includes Also, “along” means that they are substantially in parallel, and includes those that are slightly inclined due to manufacturing errors or the like.
  • FIG. 2 is an exploded perspective view of the inductor component in the first embodiment; FIG. The top view which shows the 1st part of the same inductor component.
  • FIG. 3 is a cross-sectional view of the inductor component taken along line 3-3 in FIG. 2; FIG. 3 is a cross-sectional view of the inductor component taken along line 4-4 in FIG. 2; Explanatory drawing of the manufacturing method of the same inductor component. Explanatory drawing of the same manufacturing method. Explanatory drawing of the same manufacturing method. Explanatory drawing of the same manufacturing method. Explanatory drawing of the same manufacturing method. Explanatory drawing of the same manufacturing method. Explanatory drawing of the same manufacturing method. Explanatory drawing of the same manufacturing method. Explanatory drawing of the same manufacturing method. Explanatory drawing of the same manufacturing method. Explanatory drawing of the same manufacturing method. Explanatory drawing of the same manufacturing method. Explanatory drawing of the same manufacturing method. Explanatory drawing of the same manufacturing method. Explanatory drawing of the same manufacturing method. Explan
  • inductor component 10 includes element body 20 and inductor wiring 30 .
  • the element body 20 has a plurality of magnetic ribbons 40 .
  • the magnetic ribbon 40 is flat.
  • a plurality of magnetic ribbons 40 are laminated in a direction orthogonal to the main surface MF of the magnetic ribbons 40 .
  • the flat plate shape means a thin shape having a main surface, but it is not limited to a rectangular parallelepiped with a thin thickness. There may be holes inside.
  • the inductor wiring 30 extends linearly along the main surface MF inside the element body 20 .
  • the axis along which inductor wiring 30 extends is defined as central axis CA.
  • the direction of the central axis CA coincides with the direction in which the current flows when the current flows through the inductor wiring 30 .
  • the direction in which the central axis CA extends matches the direction in which one of the sides of the quadrangular main surface MF extends.
  • the axis along the main surface MF is defined as a first axis X
  • the axis perpendicular to the main surface MF is defined as a second axis Z.
  • One of the two directions along the first axis X is defined as a first positive direction X1
  • the direction opposite to the first positive direction X1 is defined as a first negative direction X2.
  • one of the two directions along the second axis Z is defined as a second positive direction Z1, and the direction opposite to the second positive direction Z1 is defined as a second negative direction Z2.
  • one of the two directions along the central axis CA is defined as the positive direction Y1, and the opposite direction of the positive direction Y1 is defined as the negative direction Y2.
  • the inductor component 10 is composed of a first portion P1, a second portion P2, and a third portion P3, which are sequentially laminated along the second axis Z.
  • the three parts P1-P3 are aligned along the second axis Z.
  • the second part P2 is located in the center.
  • the first portion P1 is positioned further in the second negative direction Z2 than the second portion P2.
  • the third portion P3 is located in the second positive direction Z1 relative to the second portion P2.
  • the first portion P1 has a square shape when viewed from the direction along the second axis Z.
  • the first portion P1 has a plurality of magnetic strips 40, a plurality of interlayer non-magnetic portions 50, a plurality of non-magnetic portions 60, and a plurality of non-magnetic films .
  • each magnetic ribbon 40 of the first portion P1 is laminated in the direction along the second axis Z in a cross-sectional view perpendicular to the central axis CA.
  • each magnetic ribbon 40 of the first portion P1 has a square shape when viewed from the direction along the second axis Z.
  • each side of each magnetic ribbon 40 is parallel to the first axis X or the central axis CA. All the dimensions in the direction along the second axis Z of the plurality of magnetic strips 40 are the same.
  • two magnetic ribbons 40 are arranged side by side at the same position along the second axis Z in the direction along the third axis orthogonal to the second axis Z with a gap therebetween.
  • two magnetic strips 40 are arranged at the same position along the second axis Z with a gap in the direction along the fourth axis perpendicular to the second axis Z and the third axis.
  • the third axis is coaxial with the central axis CA, and the fourth axis coincides with the first axis X. Therefore, in this embodiment, the magnetic strips 40 are arranged not only in the direction along the second axis Z, but also in the directions along the first axis X and the central axis CA.
  • the magnetic ribbon 40 is made of a magnetic material.
  • the magnetic material is, for example, a metallic magnetic material including Fe, Ni, Co, Cr, Cu, Al, Si, B, P, and the like.
  • the magnetic material is a metallic magnetic material containing Fe and Si.
  • the interlayer non-magnetic portion 50 is located between the magnetic strips 40 adjacent to each other in the direction along the second axis Z. As shown in FIGS. The interlayer non-magnetic portion 50 fills the entire space between the magnetic ribbons 40 adjacent to each other in the direction along the second axis Z. As shown in FIG. The interlayer nonmagnetic portion 50 is made of a nonmagnetic material. Non-magnetic materials are, for example, acrylic resins, epoxy resins, and silicone resins. In this embodiment, a non-magnetic material is interposed between the magnetic strips 40 adjacent to each other in the direction along the second axis Z. As shown in FIG. 3 and 4, the interlayer non-magnetic portion 50 is illustrated by lines.
  • each interlayer nonmagnetic portion 50 is smaller than the dimension along the second axis Z of each magnetic ribbon 40 .
  • the non-magnetic portion 60 is located between the magnetic strips 40 aligned at the same position along the second axis Z.
  • the non-magnetic portion 60 fills all the spaces between the magnetic strips 40 arranged at the same position in the direction along the second axis Z.
  • the non-magnetic portion 60 is made of a non-magnetic material. That is, the non-magnetic material is interposed between the magnetic ribbons 40 adjacent to each other in the direction orthogonal to the second axis Z. As shown in FIG. In this embodiment, the non-magnetic portion 60 is made of the same material as the interlayer non-magnetic portion 50 .
  • the non-magnetic film 70 is positioned at each of the ends of the first positive direction X1 and the first negative direction X2 in the first portion P1.
  • the non-magnetic film 70 covers the entire end surfaces of the magnetic ribbon 40 in the direction along the first axis X. As shown in FIG.
  • the non-magnetic film 70 covers the entire area of both end faces in the direction along the first axis X of the interlayer non-magnetic portion 50 .
  • the non-magnetic film 70 covers the entire end surfaces of the non-magnetic portion 60 in the direction along the first axis X. As shown in FIG.
  • the end faces of the first portion P1 in the first positive direction X1 along the first axis X are all composed of the non-magnetic film 70 .
  • the end face of the first portion P1 along the first axis X in the first negative direction X2 is entirely composed of the non-magnetic film 70 .
  • the non-magnetic film 70 is made of a non-magnetic material. In this embodiment, the nonmagnetic film 70 is made of the same material as the interlayer nonmagnetic portion 50 .
  • the second portion P2 is located in the second positive direction Z1 when viewed from the first portion P1.
  • the second portion P2 is composed of an inductor wiring 30, a magnetic portion 80, and a plurality of non-magnetic films 70.
  • the magnetic part 80 is arranged at the same position as the inductor wiring 30 in the direction along the second axis Z. As shown in FIG.
  • the inductor wiring 30 has a rectangular shape when viewed from the direction along the second axis Z, and extends linearly along the central axis CA.
  • the end face of the inductor wiring 30 in the positive direction Y1 constitutes part of the outer surface of the second portion P2 and is exposed from the element body 20 .
  • the end face of the inductor wiring 30 in the negative direction Y2 constitutes part of the outer surface of the second portion P2 and is exposed from the element body 20 .
  • the end face of the inductor wiring 30 in the positive direction Y1 and the end face in the negative direction Y2 are parallel to the first axis X.
  • the central axis CA of the inductor wiring 30 is positioned at the center of the second portion P2 in the direction along the first axis X. As shown in FIG. Therefore, the central axis CA, which is the axis along which the inductor wiring 30 extends, passes through the center of the second portion P2 in the direction along the first axis X.
  • the dimension along the first axis X of the inductor wiring 30 is half the dimension along the first axis X of the second portion P2.
  • the material of the inductor wiring 30 is a conductive material.
  • Conductive materials are, for example, Cu, Ag, Au, Al, or alloys thereof.
  • the material of the inductor wiring 30 is Cu.
  • the inductor wiring 30 has a rectangular shape in a cross section perpendicular to the central axis CA.
  • a virtual rectangle VR with a minimum area is drawn that circumscribes the inductor wiring 30 and has a first side along the first axis X and a second side along the second axis Z.
  • the inductor wiring 30 is rectangular in the cross section perpendicular to the central axis CA.
  • the long side of the outer shape of the inductor wiring 30 is along the first axis X in the cross section perpendicular to the central axis CA.
  • the short side of the inductor wiring 30 is along the second axis Z in the cross section orthogonal to the central axis CA. Therefore, the virtual rectangle VR matches the contour of the inductor wiring 30 .
  • a first side of the virtual rectangle VR is longer than a second side of the virtual rectangle VR.
  • the portion other than the inductor wiring 30 is composed of the magnetic portion 80 and the plurality of nonmagnetic films 70 .
  • the magnetic portion 80 is arranged in the first positive direction X1 of the inductor wiring 30 in a cross-sectional view perpendicular to the central axis CA.
  • the magnetic portion 80 is arranged in the first negative direction X2 of the inductor wiring 30 . That is, each magnetic part 80 is arranged at the same position as the inductor wiring 30 in the direction along the second axis Z. As shown in FIG.
  • Each magnetic part 80 contains a plurality of magnetic bodies 80a made of a magnetic material.
  • a cross section of the magnetic body 80a when the magnetic body 80a is cut in a direction orthogonal to the second axis Z is referred to as a "magnetic body cross section.”
  • the cross section of the magnetic body at the position where the area of the cross section of the magnetic body becomes maximum is referred to as the "maximum cross section”.
  • the area of the maximum cross-section of the plurality of magnetic bodies 80 a is smaller than the area of the main surface MF of the magnetic ribbon 40 .
  • a small amount of magnetic bodies 80a having a maximum cross-sectional area larger than the area of the main surface MF of the magnetic ribbon 40 may be mixed.
  • the magnetic body 80a having a maximum cross-sectional area larger than the main surface MF may be present in order to reduce the generation of eddy current.
  • the volume of the magnetic material 80a By the way, it is more preferable to make the volume of the magnetic material 80a smaller than the volume of the magnetic ribbon 40 . This makes it easy to make the area of the maximum cross section of the magnetic material 80 a smaller than the area of the main surface MF of the magnetic ribbon 40 .
  • the volume of the magnetic body 80a need not be smaller than the volume of the magnetic ribbon 40 as long as the area of the maximum cross section of the magnetic body 80a can be made smaller than the area of the main surface MF.
  • the magnetic material 80a which is the magnetic material contained in the magnetic portion 80, is magnetic powder.
  • the average particle size of the magnetic powder referred to here is preferably 30 ⁇ m or less.
  • the average particle diameter is, for example, the median diameter "D50".
  • Examples of methods for measuring the average particle size include the following methods.
  • images of the cross section of the magnetic part 80 containing 30 or more magnetic powders are acquired at three positions different from each other.
  • a cross-sectional image is acquired by an SEM (Scanning Electron Microscope) whose magnification is adjusted to an appropriate size.
  • the "appropriate magnitude of magnification” referred to here is a magnitude between 1000 times and 10000 times.
  • the particle size of the magnetic powder is calculated as a value converted from the area.
  • the central value cumulative 50% value
  • when arranged in ascending order is taken as the average particle size.
  • the magnetic material 80a is, for example, metal magnetic powder, which is an example of magnetic powder.
  • metal magnetic powder which is an example of magnetic powder.
  • at least one of iron and an alloy containing iron can be used as the metal magnetic powder.
  • the magnetic portion 80 may contain metal magnetic powder other than iron-based metals, such as iron and alloys containing iron.
  • Metal magnetic powders other than iron-based metals are, for example, nickel, chromium, copper, aluminum, and alloys thereof.
  • Each magnetic part 80 is made of a non-magnetic material and has a non-magnetic binder 80b containing magnetic powder, that is, a magnetic substance 80a.
  • the magnetic portion 80 is not a laminated structure of the magnetic ribbons 40 such as the first portion P1 and the third portion P3, but an integral molded body.
  • the non-magnetic binder 80b is made of resin, for example.
  • a resin is, for example, a resin material such as an epoxy resin. That is, the magnetic portion 80 can be said to be a resin composite portion in which the non-magnetic binder 80b is made of resin.
  • polyimide resin, acrylic resin, or phenol resin as the resin.
  • non-magnetic as used herein means that the relative magnetic permeability is "1".
  • the term “insulating” means that the specific resistance is “1 M ⁇ cm” or more.
  • the non-magnetic film 70 is located at the end of the first positive direction X1 and the end of the first negative direction X2 in the second portion P2.
  • the non-magnetic film 70 of the second portion P2 is continuous with the non-magnetic film 70 of the first portion P1.
  • the third portion P3 is located in the second positive direction Z1 of the second portion P2. When viewed from the second axis Z, the third portion P3 has the same square shape as the first portion P1.
  • the third portion P3 is composed of a plurality of magnetic strips 40, a plurality of interlayer non-magnetic portions 50, a plurality of non-magnetic portions 60, and a plurality of non-magnetic films .
  • the third portion P3 has a structure symmetrical with the first portion P1 with the second portion P2 interposed therebetween, and thus detailed description thereof will be omitted.
  • the end of the inductor wiring 30 in the first positive direction X1 is defined as the first wiring end IP1
  • the first negative The end in the direction X2 is defined as a second wiring end IP2.
  • the magnetic ribbon 40 having the shortest distance along the second axis Z from the first wiring end IP1 is selected as the first magnetic ribbon.
  • a ribbon 41 is used.
  • the end in the first positive direction X1 is called a first end MP11
  • the end in the first negative direction X2 is called a second end MP12.
  • the magnetic ribbon 40 having the shortest distance along the second axis Z from the second wiring end IP2 is selected as the first magnetic ribbon 40.
  • 2 magnetic ribbon 42 .
  • the end in the first positive direction X1 is called a first end MP21
  • the end in the first negative direction X2 is called a second end MP22.
  • the magnetic ribbon 40 which at least partially overlaps the inductor wiring 30 when viewed from the direction along the second axis Z, is the magnetic ribbon 40 laminated in the direction along the second axis Z with respect to the inductor wiring 30. be. Therefore, in the present embodiment, the magnetic ribbon 40 in the first portion P1 and the magnetic ribbon 40 in the third portion P3 are laminated in the direction along the second axis Z with respect to the inductor wiring 30. be.
  • the magnetic ribbon 40 located closest to the first wiring end IP1 and the first magnetic ribbon 40 of the plurality of magnetic ribbons 40 of the third portion P3 are located closest to the first wiring end IP1.
  • Each of the magnetic ribbons 40 positioned closest to the wiring end IP1 is the first magnetic ribbon 41 .
  • the magnetic ribbon 40 located closest to the second wiring end IP2 and of the plurality of magnetic ribbons 40 of the third portion P3, the second Each of the magnetic ribbons 40 positioned closest to the wiring end IP2 is the second magnetic ribbon 42 .
  • the end in the first positive direction X1 is the first end, and the end in the first negative direction X2 is the second end.
  • the range excluding both ends of one magnetic strip 40 in the direction along the first axis X is defined as a predetermined range AR11.
  • the first virtual straight line VL1 When the first virtual straight line VL1 extending in the direction along the second axis Z is drawn through the first wiring end IP1 of the inductor wiring 30, the first virtual straight line VL1 passes through the predetermined range AR11 of the first magnetic ribbon 41. ing. Specifically, the first imaginary straight line VL1 passes through the center of the first magnetic ribbon 41 in the direction along the first axis X or near the center thereof.
  • the second virtual straight line VL2 extending in the direction along the second axis Z is drawn through the second end MP12 of the first magnetic ribbon 41, the second virtual straight line VL2 passes through the inductor wiring 30. Specifically, the second virtual straight line VL2 passes through approximately the center of the inductor wiring 30 in the direction along the first axis X. As shown in FIG.
  • the third virtual straight line VL3 extending in the direction along the second axis Z is drawn through the second wiring end IP2 of the inductor wiring 30, the third virtual straight line VL3 passes through the predetermined range AR11 of the second magnetic ribbon 42. ing. Specifically, the third imaginary straight line VL3 passes through the center of the second magnetic ribbon 42 in the direction along the first axis X or near the center thereof.
  • the fourth virtual straight line VL4 extending in the direction along the second axis Z is drawn through the first end MP21 of the second magnetic ribbon 42, the fourth virtual straight line VL4 passes through the inductor wiring 30. Specifically, the fourth virtual straight line VL4 passes through approximately the center of the inductor wiring 30 in the direction along the first axis X. As shown in FIG.
  • a method for manufacturing inductor component 10 Next, a method for manufacturing inductor component 10 will be described. As shown in FIG. 5, first, a copper foil preparation step for preparing a copper foil 81 is performed. Since the copper foil 81 constitutes the inductor wiring 30 , the thickness of the copper foil 81 is prepared to have a thickness necessary for the inductor wiring 30 . In the following description, it is assumed that the copper foil 81 is arranged such that the two main surfaces of the copper foil 81 are orthogonal to the second axis Z, and a cross section orthogonal to the central axis CA is shown. do.
  • the magnetic portion 80 in the second portion P2 occupies A first covering step is performed to cover areas other than the range. Specifically, first, of the surface of the copper foil 81 facing the second negative direction Z2, the first covering portion 82 is formed to cover the area other than the area occupied by the magnetic portion 80 in the second portion P2. In forming the first covering portion 82, the entire surface of the copper foil 81 facing the second negative direction Z2 is coated with a photosensitive dry film resist. Next, the dry film resist is cured by exposing the portion where the first covering portion 82 is to be formed.
  • the dry film resist is similarly applied to the surface of the copper foil 81 facing the second positive direction Z1, and the portion forming the first covering portion 82 is exposed to light to cure the dry film resist. .
  • the uncured portion of the applied dry film resist is peeled off with a chemical solution.
  • the hardened portion of the applied dry film resist is formed as the first covering portion 82 .
  • a copper foil etching step is performed to etch the copper foil 81 exposed from the first covering portion 82 .
  • the exposed copper foil 81 is removed.
  • a first covering portion removing step for removing the first covering portion 82 is performed. Specifically, the first covering portion 82 is peeled off by wet etching the first covering portion 82 with a chemical.
  • a second covering step is performed to cover the range occupied by the magnetic portion 80 when viewed from the direction along the second axis Z of both surfaces of the copper foil 81 orthogonal to the second axis Z.
  • a dry film resist R is applied to the entire surface of the copper foil 81 facing the second positive direction Z1.
  • the magnetic ribbon 40 and the non-magnetic interlayer are formed by photolithography when viewed from the direction along the second axis Z among the surfaces of the copper foil 81 facing the second positive direction Z1.
  • a second covering portion 83 is formed to cover the area other than the area occupied by the portion 50 .
  • a layered body preparation step of preparing a layered body 841 in which the magnetic ribbon 40 and the interlayer non-magnetic portion 50 are layered is performed.
  • a laminated body 841 in which the magnetic ribbon 40 and the interlayer non-magnetic portion 50 are laminated is prepared.
  • a ribbon is prepared as the magnetic ribbon 40 .
  • the ribbon is made of, for example, NANOMET (registered trademark) manufactured by Tohoku Magnet Institute, Metglas (registered trademark) or FINEMET (registered trademark) manufactured by Hitachi Metals, FeSiB, FeSiBCr, or the like. This ribbon is cut into 10 mm squares. A non-magnetic material is applied to the cut ribbon by spin coating.
  • the non-magnetic material is, for example, epoxy resin varnish.
  • the cut strip is laminated on the coated non-magnetic material. After alternately laminating the thin strips and the non-magnetic material in this manner, the thin strips and the non-magnetic material are hardened and adhered by a vacuum heating and pressurizing device. Then, by dicing into a desired size, a laminated body 841 in which a plurality of magnetic strips 40 and interlayer non-magnetic portions 50 are laminated can be prepared.
  • the laminate 841 constitutes the magnetic ribbon 40 and the interlayer non-magnetic portion 50 in the first portion P1 and the third portion P3.
  • thermoplastic adhesive 85 is indicated by thick lines in FIGS. 11 to 16.
  • the whole is inverted in the direction along the second axis Z.
  • the portion not in contact with the copper foil 81 is coated with varnish containing magnetic powder.
  • the varnish contains thermoplastic resins such as acrylic resins, epoxy resins, and silicon resins. Then, the shape of the cured product 842 of the varnish is adjusted. This cured product 842 becomes the magnetic portion 80 .
  • the laminated body 841 constituting the magnetic ribbon 40 and the interlayer non-magnetic portion 50 in the first portion P1 is separated from the surface of the copper foil 81 facing the second negative direction Z2 and the hardened material 842.
  • a pressing process is performed. Pressing is performed in a state in which the whole is covered with a resin material 86 that is a non-magnetic material. Thereby, each layer in the direction along the second axis Z is crimped.
  • a singulation process is performed. Specifically, for example, it is separated into pieces by dicing along the break lines DL.
  • the portion between the magnetic strips 40 aligned in the direction along the first axis X in the second covering portion 83 described above becomes the non-magnetic portion 60 .
  • a portion of the second covering portion 83 between the magnetic ribbons 40 aligned in the direction along the central axis CA becomes the non-magnetic portion 60 .
  • the thermoplastic adhesive 85 remains on both surfaces of the inductor wiring 30 in the direction along the second axis Z as part of the interlayer non-magnetic portion 50 .
  • the intermediate product 84 is cut along the end face in the first positive direction X1 and the end face in the first negative direction X2.
  • the non-magnetic film 70 made of a non-magnetic material is applied to the end faces of the laminate 841 in the first positive direction X1 and the end faces in the first negative direction X2.
  • the thermoplastic adhesive 85 also wraps around the side surfaces of the inductor wiring 30 facing the first positive direction X1 and the side surfaces facing the first negative direction X2. Insulation is ensured without direct contact with the wiring 30 .
  • the software used is Femtet 2019 manufactured by Murata Software.
  • the solver is static magnetic field analysis.
  • the model is three dimensional.
  • a standard mesh size is 0.25 mm.
  • the dimension along the second axis Z is 0.1 mm, and the dimension along the central axis CA is 2.4 mm.
  • the dimension along the first axis X is 0.5 mm or 1.00 mm.
  • the material of the inductor wiring 30 is Cu.
  • the magnetic thin ribbon 40 is an amorphous metal magnetic thin film made of Fe, Si, Cr, and B.
  • the relative magnetic permeability ⁇ r is 7000 and the saturation magnetic flux density Bs is 1.3T. Also, the electrical conductivity is 0.568181818MS/m.
  • the dimension along the first axis X is 0.99 mm
  • the dimension along the second axis Z is 0.02 mm
  • the dimension along the central axis CA is 0.99 mm.
  • the dimension between the magnetic strips 40 adjacent to each other in the direction along the first axis X is 0.02 mm.
  • the dimension between the magnetic ribbons 40 adjacent to each other in the direction along the second axis Z is 0.002 mm.
  • the dimension between the magnetic ribbons 40 adjacent to each other in the direction along the central axis CA is 0.02 mm.
  • a non-magnetic layer having a thickness of 0.01 mm was provided on both end surfaces of the base body 20 in the direction along the central axis CA.
  • two magnetic ribbons 40 are aligned in the direction along the first axis X, and two magnetic ribbons 40 are aligned in the direction along the central axis CA. In the direction along the second axis Z, 41 magnetic strips 40 are arranged.
  • a non-magnetic gap for electrical insulation is provided between the inductor wiring 30 and the magnetic ribbon 40 adjacent to the inductor wiring 30 .
  • the dimension of the base body 20 along the central axis CA is 2.0 mm. That is, the dimension of the element body 20 along the central axis CA is smaller than the dimension of the inductor wiring 30 along the central axis CA by 0.38 mm. Therefore, the simulation is performed with the inductor wiring 30 projecting 0.19 mm from the end face of the element body 20 in the positive direction Y1 and the inductor wiring 30 projecting 0.19 mm from the end face of the element body 20 in the negative direction Y2.
  • the shape of the magnetic powder contained in the resin is assumed to be a magnetic sphere with a diameter of 30 ⁇ m. That is, the magnetic sphere corresponds to the magnetic body 80a.
  • the conductivity of the magnetic spheres is 0.568181818 MS/m.
  • Bs ⁇ tanh ⁇ 0 ⁇ r ⁇ H/Bs
  • FIG. 18 shows simulation results of Example 1, Example 2, Example 3, Comparative Example 1, and Comparative Example 2.
  • FIG. 1 and 2 the magnetic spheres are regularly arranged in the magnetic portion 80 . Specifically, the distance between the magnetic spheres adjacent to each other in the direction along the first axis X, the distance between the magnetic spheres adjacent to each other in the direction along the second axis Z, and the distance between the magnetic spheres adjacent to each other in the direction along the central axis CA The spacing between each mating magnetic sphere is 32.5 ⁇ m.
  • Example 1 and Example 2 a plurality of magnetic spheres are arranged in a direction perpendicular to the second axis Z in the magnetic portion 80 .
  • a non-magnetic portion made of a non-magnetic material is interposed between the magnetic spheres adjacent to each other in the direction orthogonal to the second axis Z.
  • a plurality of magnetic spheres are arranged in a direction along the second axis Z.
  • a non-magnetic portion made of a non-magnetic material is interposed between the magnetic spheres adjacent to each other in the direction along the second Z axis.
  • Example 3 the magnetic spheres are arranged irregularly within the magnetic portion 80 .
  • the dimension of the inductor wiring 30 in the direction along the first axis X is 1.00 mm.
  • Example 2 the dimension of the inductor wiring 30 in the direction along the first axis X is 0.5 mm.
  • the dimension of the inductor wiring 30 in the direction along the first axis X is described as "wiring width”.
  • FIG. 17 shows a cross section of an inductor component 10A of a comparative example.
  • the first portion P1 and the third portion P3 of the inductor component 10A of the comparative example have the same configuration as the first portion P1 and the third portion P3 of the inductor component 10 of the example.
  • the configuration of second portion P2 of inductor component 10A of the comparative example is different from the configuration of second portion P2 of inductor component 10 of the example. That is, in the second portion P2 of the inductor component 10A, a plurality of magnetic ribbons 40 are laminated in the direction along the second axis Z in the first positive direction X1 of the inductor wiring 30A. Similarly, a plurality of magnetic ribbons 40 are laminated in the direction along the second axis Z in the first negative direction X2 of the inductor wiring 30A.
  • the dimension of the inductor wiring 30 in the direction along the first axis X is 0.5 mm.
  • the dimension of the inductor wiring 30 in the direction along the first axis X is 1.00 mm.
  • each of the eddy current losses in Example 1, Example 2, and Example 3 is smaller than the eddy current loss in Comparative Examples 1 and 2.
  • the eddy current loss in Example 1 is 16.5 mW
  • the eddy current loss in Example 2 is 11.9 mW
  • the eddy current loss in Example 3 is 11.2 mW.
  • the eddy current loss in Comparative Example 1 is 48.4 mW
  • the eddy current loss in Example 2 is 44.0 mW.
  • the magnetic portion 80 is arranged in the portion adjacent to the inductor wiring 30 in the direction along the first axis X.
  • the magnetic portion 80 has a plurality of magnetic spheres.
  • a magnetic sphere corresponds to the magnetic body 80a.
  • the maximum cross-sectional area of the magnetic sphere is smaller than the maximum cross-sectional area of the magnetic ribbon 40 . Therefore, in each of Examples 1 to 3, the eddy current loss can be made smaller than in each of Comparative Examples 1 and 2.
  • a magnetic portion 80 is arranged in the same position as the inductor wiring 30 in the direction along the second axis Z in the element body 20 .
  • the area of the maximum cross section of the magnetic body 80 a contained in the magnetic portion 80 is smaller than the area of the main surface MF of the magnetic ribbon 40 .
  • the magnetic portion 80 contains magnetic powder as the magnetic material 80a. Accordingly, it is possible to suppress an increase in the area of the maximum cross section of the magnetic body 80a.
  • the magnetic portion 80 has a non-magnetic binder 80b. This makes it difficult for adjacent magnetic particles to come into contact with each other in the magnetic portion 80 . As a result, it is possible to suppress an increase in the area of the maximum cross section of the magnetic body 80a.
  • a plurality of magnetic ribbons 40 are arranged in the direction along the third axis.
  • a plurality of magnetic strips 40 are also arranged in the direction along the fourth axis. Therefore, an increase in the area of the main surface MF of one magnetic ribbon 40 can be suppressed. As a result, it is possible to suppress an increase in the eddy current generated in each magnetic ribbon 40 . Therefore, an increase in eddy current loss of inductor component 10 can be suppressed.
  • a magnetic ribbon made of a magnetic material in an amorphous state is called an amorphous magnetic ribbon
  • a magnetic ribbon made of a crystallized magnetic material such as nanocrystals is called a crystallized magnetic ribbon.
  • the electrical resistance of the amorphous magnetic ribbon is greater than that of the crystallized magnetic ribbon.
  • all the magnetic ribbons 40 forming the first portion P1 are amorphous magnetic ribbons.
  • the eddy current generated in the magnetic ribbon 40 forming the first portion P1 can be reduced compared to the case where the magnetic ribbon 40 forming the first portion P1 is a crystallized magnetic ribbon. Therefore, an increase in eddy current loss of inductor component 10 can be suppressed.
  • all the magnetic ribbons 40 forming the third portion P3 are amorphous magnetic ribbons.
  • the eddy current generated in the magnetic ribbon 40 forming the first portion P1 can be reduced compared to the case where the magnetic ribbon 40 forming the third portion P3 is a crystallized magnetic ribbon. Therefore, an increase in eddy current loss of inductor component 10 can be suppressed.
  • the first virtual straight line VL1 passes through the predetermined range AR11 of the first magnetic ribbon 41. Therefore, of the magnetic flux generated when a current flows through the inductor wiring 30, most of the magnetic flux in the direction along the first imaginary straight line VL1 in the vicinity of the first wiring end IP1 of the inductor wiring 30 is the first magnetic ribbon 41 except for the end in the direction along the first axis X. That is, of the magnetic flux generated when the current flows through the inductor wiring 30, the magnetic flux passing through the ends in the direction along the first magnetic ribbon 41 is reduced. Therefore, it is possible to suppress the disturbance of the magnetic flux and the local concentration of the magnetic flux. According to such a positional relationship between the first magnetic ribbon 41 and the inductor wiring 30, the characteristic index can be increased regardless of the filling rate of the magnetic material.
  • the characteristic index here is, for example, (L ⁇ Isat) ⁇ (L/Rdc).
  • L is the inductance of inductor component 10 .
  • Isat is the current value when the inductance L is reduced by 20% from the initial inductance L at 0.001 A, and is also called DC superposition characteristic.
  • Rdc is the electrical resistance of the inductor wiring 30 to the DC current, that is, the DC wiring resistance.
  • the third imaginary straight line VL3 passes through the predetermined range AR11 of the second magnetic ribbon . Therefore, of the magnetic flux generated when a current flows through the inductor wiring 30, most of the magnetic flux in the direction along the second virtual straight line VL2 near the second wiring end IP2 of the inductor wiring 30 is generated by the second magnetic ribbon. 42 except for the end in the direction along the first axis X. That is, of the magnetic flux generated when the current flows through the inductor wiring 30, the magnetic flux passing through the ends in the direction along the second magnetic ribbon 42 is reduced. Therefore, it is possible to suppress the disturbance of the magnetic flux and the local concentration of the magnetic flux. According to such a positional relationship between the second magnetic ribbon 42 and the inductor wiring 30, the characteristic index is increased regardless of the filling rate of the magnetic material.
  • the first side of the virtual rectangle VR drawn in the cross section orthogonal to the central axis CA is along the first axis X
  • the second side of the virtual rectangle VR is along the second axis Z.
  • the first side is longer than the second side.
  • the magnetic flux is more likely to concentrate on the first wiring end IP1 and the second wiring end IP2, which are ends in the direction in which the first long side extends. Therefore, depending on the positional relationship between the first magnetic ribbon 41 and the inductor wiring 30, the characteristic index can be increased.
  • the second imaginary straight line VL2 passes through the inductor wiring 30 in a cross-sectional view perpendicular to the central axis CA. Since the first magnetic ribbon 41 is not excessively large in the direction along the first axis X, the eddy current generated in the first magnetic ribbon 41 is reduced.
  • the fourth imaginary straight line VL4 passes through the inductor wiring 30 in a cross-sectional view perpendicular to the central axis CA. Since the second magnetic ribbon 42 is not excessively large in the direction along the first axis X, the eddy current generated in the second magnetic ribbon 42 is reduced.
  • the dimensions of the plurality of magnetic strips 40 in the direction along the second axis Z are all equal.
  • the magnetic flux density in each magnetic strip 40 is made uniform, and the magnetic flux is hard to concentrate and saturate at a specific location.
  • the magnetic flux density of the entire element body 20 is improved.
  • the dimensions in the direction along the second axis Z of the plurality of interlayer nonmagnetic portions 50 are all equal. Therefore, the disturbance of the magnetic flux generated at the interface between the interlayer non-magnetic portion 50 and the magnetic ribbon 40 can be made uniform.
  • FIG. 19 and 20 show cross sections of the inductor component 10B.
  • FIG. 19 is a cross section of the inductor component 10B perpendicular to the central axis CA of the inductor wiring 30.
  • FIG. 20 is a cross section of inductor component 10B perpendicular to first axis X.
  • the inductor component 10B is composed of a first portion P1, a second portion P2, and a third portion P3.
  • the configuration of the first portion P1 is the same as that of the first portion P1 in the inductor component 10 of the first embodiment.
  • the configuration of the third portion P3 is the same as that of the third portion P3 in the inductor component 10 of the first embodiment.
  • the second portion P2 is composed of the inductor wiring 30, the magnetic portion 80B, and the plurality of non-magnetic films 70.
  • the configuration of the inductor wiring 30 is the same as the configuration of the inductor wiring 30 in the inductor component 10 of the first embodiment. That is, the inductor wiring 30 extends in a direction orthogonal to both the first axis X and the second axis Z. As shown in FIG. In other words, the central axis CA of the inductor wiring 30 is orthogonal to both the first axis X and the second axis Z.
  • the portion other than the inductor wiring 30 is composed of the magnetic portion 80B and the plurality of nonmagnetic films 70. As shown in FIG.
  • the configuration of the nonmagnetic film 70 is the same as the configuration of the nonmagnetic film 70 in the inductor component 10 of the first embodiment.
  • the magnetic portion 80B is arranged in the first positive direction X1 of the inductor wiring 30 in a cross-sectional view orthogonal to the central axis CA.
  • a magnetic portion 80B is arranged in the first negative direction X2 of the inductor wiring 30 . That is, each magnetic part 80B is arranged at the same position as the inductor wiring 30 in the direction along the second axis Z. As shown in FIG.
  • Each magnetic portion 80B has a plurality of magnetic bodies.
  • a magnetic body consists of a magnetic material.
  • the area of the maximum cross section of each magnetic material is smaller than the area of the main surface MF of the magnetic ribbon 40 .
  • the magnetic material is the minute magnetic ribbon 81B.
  • the fine magnetic ribbon 81B is flat.
  • the term "flat plate” as used herein refers to a thin shape having a main surface, but is not limited to a rectangular parallelepiped with a thin thickness. , there may be holes inside.
  • the area of the maximum cross section of the minute magnetic ribbon 81B is smaller than the area of the main surface MF of the magnetic ribbon 40.
  • the volume of the minute magnetic ribbon 81B is smaller than the volume of the magnetic ribbon 40 .
  • the dimension along the first axis X of the minute magnetic ribbon 81B is smaller than the dimension along the first axis X of the magnetic ribbon 40 .
  • the dimension in the direction along the central axis CA of the minute magnetic ribbon 81B is smaller than the dimension in the direction along the central axis CA of the magnetic ribbon 40 .
  • the dimension of the minute magnetic ribbon 81B in the direction along the second axis Z may be the same as the dimension in the direction along the second axis Z of the magnetic ribbon 40, or may be different.
  • the volume of the minute magnetic ribbon 81B is not smaller than the volume of the magnetic ribbon 40.
  • a non-magnetic material is filled between the micromagnetic ribbons 81B adjacent to each other.
  • a non-magnetic portion 81Ba made of a non-magnetic material is interposed between the micromagnetic ribbons 81B adjacent to each other.
  • each fine magnetic ribbon 81B is laminated in the direction along the second axis Z.
  • a plurality of minute magnetic strips 81B are arranged at intervals in the direction along the third axis orthogonal to the second axis Z.
  • a plurality of minute magnetic ribbons 81B are arranged at intervals in a direction along a fourth axis orthogonal to the second axis Z and the third axis.
  • the third axis is the same axis as the central axis CA, and the fourth axis coincides with the first axis X in this embodiment as well.
  • the fine magnetic ribbon 81B is made of a magnetic material.
  • the magnetic material is, for example, a metallic magnetic material including Fe, Ni, Co, Cr, Cu, Al, Si, B and P and the like.
  • the magnetic material forming the minute magnetic ribbon 81B is the same as the magnetic material forming the magnetic ribbon 40 .
  • the software used is Femtet 2019 manufactured by Murata Software.
  • the solver is static magnetic field analysis.
  • the model is three dimensional.
  • a standard mesh size is 0.25 mm.
  • the dimension along the second axis Z is 0.1 mm, and the dimension along the central axis CA is 2.4 mm.
  • the dimension along the first axis X is 0.5 mm or 1.00 mm.
  • the material of the inductor wiring 30 is Cu.
  • the magnetic ribbon 40 is made of permalloy magnetic powder made of Ni and Fe.
  • the relative magnetic permeability ⁇ r is 7000 and the saturation magnetic flux density Bs is 1.3T. Also, the electrical conductivity is 0.568181818MS/m.
  • the dimension along the first axis X is 0.99 mm
  • the dimension along the second axis Z is 0.02 mm
  • the dimension along the central axis CA is 0.99 mm.
  • the dimension between the magnetic strips 40 adjacent to each other in the direction along the first axis X is 0.02 mm.
  • the dimension between the magnetic ribbons 40 adjacent to each other in the direction along the second axis Z is 0.002 mm.
  • the dimension between the magnetic ribbons 40 adjacent to each other in the direction along the central axis CA is 0.02 mm.
  • two magnetic ribbons 40 are aligned in the direction along the first axis X, and two magnetic ribbons 40 are aligned in the direction along the central axis CA. In the direction along the second axis Z, 41 magnetic strips 40 are arranged.
  • a non-magnetic gap for electrical insulation is provided between the inductor wiring 30 and the magnetic ribbon 40 adjacent to the inductor wiring 30 .
  • the dimension of the base body 20 along the central axis CA is 2.0 mm. That is, the dimension of the element body 20 along the central axis CA is smaller than the dimension of the inductor wiring 30 along the central axis CA by 0.4 mm. Therefore, the simulation is performed with the inductor wiring 30 projecting 0.2 mm from the end face of the element body 20 in the positive direction Y1 and the inductor wiring 30 projecting 0.2 mm from the end face of the element body 20 in the negative direction Y2.
  • the shape of the fine magnetic ribbon 81B is a cube.
  • the fine magnetic ribbon 81B is made of permalloy magnetic powder made of Ni and Fe.
  • the relative magnetic permeability ⁇ r is 7000 and the saturation magnetic flux density Bs is 1.3T.
  • the electrical conductivity is 0.568181818MS/m.
  • FIG. 21 shows simulation results of Examples 4, 5, Comparative Examples 1 and 2. In FIG. Comparative Examples 1 and 2 are the same as those of the first embodiment.
  • each of the dimensions in the direction along the first axis X, the dimension in the direction along the second axis Z, and the dimension in the direction along the central axis CA of the minute magnetic ribbon 81B is 29 ⁇ m.
  • the interval between the minute magnetic ribbons 81B adjacent to each other in the direction along the first axis X is 32.25 ⁇ m
  • the interval between the minute magnetic ribbons 81B adjacent to each other in the direction along the second axis Z is 32.25 ⁇ m. 25 ⁇ m.
  • the interval between the magnetic micro ribbons 81B adjacent to each other in the direction along the central axis CA is 32.25 ⁇ m.
  • each of the dimensions in the direction along the first axis X, the dimension in the direction along the second axis Z, and the dimension in the direction along the central axis CA of the minute magnetic ribbon 81B is 28 ⁇ m.
  • the interval between the minute magnetic ribbons 81B adjacent to each other in the direction along the first axis X is 32.0 ⁇ m
  • the interval between the minute magnetic ribbons 81B adjacent to each other in the direction along the second axis Z is 32.0 ⁇ m. 0 ⁇ m.
  • the interval between the magnetic micro ribbons 81B adjacent to each other in the direction along the central axis CA is 32.0 ⁇ m.
  • each of the eddy current losses in Examples 4 and 5 is smaller than the eddy current loss in Comparative Examples 1 and 2.
  • the eddy current loss in Example 4 is 18.7 mW
  • the eddy current loss in Example 2 is 17.0 mW.
  • the eddy current loss in Comparative Example 1 is 48.4 mW
  • the eddy current loss in Example 2 is 44.0 mW.
  • the magnetic portion 80B is arranged in the portion adjacent to the inductor wiring 30 in the direction along the first axis X.
  • the area of the maximum cross section of the minute magnetic ribbon 81B included in the magnetic portion 80B is smaller than the area of the main surface MF of the magnetic ribbon 40 . Therefore, in Examples 4 and 5, the eddy current loss can be made smaller than in Comparative Examples 1 and 2, respectively.
  • Example 4 when Example 4 and Example 5 are compared, the eddy current loss in Example 5 is smaller than the eddy current loss in Example 4, although slightly. This is probably because the maximum cross-sectional area of the minute magnetic ribbon 81B in Example 5 is smaller than the maximum cross-sectional area of the minute magnetic ribbon 81B in Example 4.
  • the magnetic portion 80B has a plurality of fine magnetic ribbons 81B.
  • the eddy current generated in the fine magnetic ribbon 81B does not increase.
  • the eddy current loss of inductor component 10B can be reduced by providing second portion P2 of inductor component 10 with magnetic portion 80B instead of magnetic ribbon 40.
  • the third embodiment differs from the first embodiment in the method of manufacturing inductor component 10 . Therefore, here, a method for manufacturing the inductor component 10 will be described.
  • the method for manufacturing the inductor component 10 includes a first sheet preparation step S11, a second sheet preparation step S12, a stacking step S13, a crimping step S14, a singulation step S15, and sintering.
  • a step S16 and a coating treatment step S17 are provided.
  • the first sheet preparation step S11 is performed.
  • the first sheet 210 has a nonmagnetic layer 211 and a magnetic layer 212 .
  • the magnetic layer 212 contains metal magnetic powder 212M, which is a magnetic material.
  • a film made of PET is prepared as the first base material 91 .
  • the first base material 91 may be a substrate such as PET, alumina, or ferrite which is removed when the component is completed, or may be left as the non-magnetic layer 211 of glass.
  • two main surfaces of the first base member 91 are arranged so as to be orthogonal to the second axis Z, and a cross section orthogonal to the central axis CA is shown. Also, in FIGS. 23 to 30, the dimensional ratios are greatly changed from those in FIG. 3 for ease of understanding.
  • a non-magnetic paste made of a non-magnetic and insulating non-magnetic material is applied to the main surface of the first base material 91 facing the second positive direction Z1 and formed into a sheet.
  • the non-magnetic layer 211 is formed.
  • the non-magnetic layer 211 is made of a non-magnetic material including, for example, alumina, silica, crystallized glass, amorphous glass, and the like.
  • a metal magnetic paste containing metal magnetic powder 212M which is a magnetic material, is applied to the surface of the non-magnetic layer 211 along the second axis Z and facing the second positive direction Z1.
  • the magnetic layer 212 is formed.
  • the magnetic layer 212 is made of metal magnetic paste in which the resin 92 contains a magnetic material.
  • part of the magnetic layer 212 shown in FIG. 24 constitutes the magnetic ribbon 40 . Therefore, the metal magnetic paste contains a magnetic material that forms the magnetic ribbon 40 . That is, the metal magnetic paste contains Fe, Ni, Co, Cr, Cu, Al, Si, B, P, and the like as metal magnetic materials.
  • grooves 212H are formed in the magnetic layer 212 by laser processing.
  • the groove 212H penetrates the magnetic layer 212 .
  • a portion of the non-magnetic layer 211 is exposed in the second positive direction Z1 along the second axis Z from the groove 212H when viewed from the direction along the second axis Z.
  • the grooves 212H formed in the magnetic layer 212 are filled with a non-magnetic paste made of a non-magnetic and insulating material by printing or the like.
  • the in-groove non-magnetic portion 213 is formed.
  • a plurality of divided magnetic layers 212D obtained by dividing the magnetic layer 212 are formed.
  • the first sheet 210 is prepared by forming the split magnetic layer 212D into a sheet. The first sheets 210 are prepared in the same number as the laminated number of the magnetic strips 40 of the inductor component 10 to be manufactured.
  • the second sheet 220 has wiring patterns 221 and negative patterns 222 .
  • a second base material 93 is prepared as shown in FIG.
  • the second base material 93 may be a substrate such as PET, alumina, or ferrite which is removed when the component is completed, or may be left as the non-magnetic layer 211 of glass.
  • the two main surfaces of the second base material 93 are arranged so as to be orthogonal to the second axis Z. As shown in FIG.
  • a non-magnetic paste made of a non-magnetic and insulating non-magnetic material is applied to the main surface of the second base material 93 facing the second positive direction Z1 and formed into a sheet.
  • the non-magnetic layer 211 is formed.
  • the wiring pattern 221 is made of a conductive material.
  • the wiring pattern 221 is made of Ag or Cu conductor paste.
  • the wiring pattern 221 may be formed by a method other than printing such as a screen printing method, a photolithography method using a photosensitive material, a plating method such as semi-additive, or transferring a wiring pattern formed on a separate sheet.
  • a transfer method or the like may also be used.
  • a metal film containing no resin may be used as the material of the wiring pattern 221 instead of the conductive paste.
  • the non-magnetic layer 211 serves as a sheet-like base material for forming the wiring pattern 221 and the negative pattern 222 .
  • the non-magnetic material contained in the magnetic portion 80 is a sinterable non-magnetic material such as alumina or glass.
  • a lamination step S13 of laminating the prepared first sheet 210 and second sheet 220 is performed.
  • the first base material 91 is peeled off from the first sheet 210, and the sheet is placed on a predetermined jig table (not shown) while maintaining the vertical direction of the sheet.
  • the magnetic layer 212 of the non-magnetic layer 211 of the first sheet 210 is applied to the surface of the wiring pattern 221 and the negative pattern 222 of the second sheet 220 facing in the opposite direction to the surface on which the non-magnetic layer 211 is applied. Glue the side facing away from the side facing inward.
  • the first sheet 210 is laminated in the second positive direction Z1 along the second axis Z of the second sheet 220 .
  • the first base material 91 is peeled off from another first sheet 210 .
  • the magnetic layer 212 of the non-magnetic layer 211 in another first sheet 210 is placed on the surface of the first sheet 210 laminated on the second sheet 220 facing in the opposite direction to the surface bonded to the second sheet 220.
  • the surface facing the opposite direction to the coated surface is faced and adhered.
  • the first sheets 210 are laminated by the number of the magnetic ribbons 40 laminated on the third portion P3 of the inductor component 10 .
  • the second base material 93 is peeled off from the second sheet 220 .
  • the surface of the first sheet 210 on which the non-magnetic layer 211 of the magnetic layer 212 is applied and the surface of the second sheet 220 facing in the opposite direction to the surface on which the wiring pattern 221 of the non-magnetic layer 211 is applied. are glued together with opposite sides facing each other. Then, the first base material 91 is peeled off from the first sheet 210 .
  • the magnetic layer 212 of another first sheet 210 is attached to the surface of the non-magnetic layer 211 of the first sheet 210 laminated on the second sheet 220 facing in the opposite direction to the surface on which the magnetic layer 212 is applied.
  • the surfaces facing the opposite direction to the surface coated with the non-magnetic layer 211 are made to face each other and adhered.
  • the same number of first sheets 210 as the number of magnetic ribbons 40 to be laminated on the first portion P1 of the inductor component 10 are laminated. In this manner, the first sheet 210 is repeatedly laminated on both main surfaces of the second sheet 220 . That is, when forming the laminate 200, a plurality of divided magnetic layers 212D are laminated.
  • the crimping step S14 is performed.
  • the first sheet 210 and the second sheet 220 laminated in the lamination step S13 are press-bonded by pressing such as WIP.
  • a laminate 200 is formed.
  • singulation step S15 is performed.
  • the laminated body 200 is singulated by dicing along predetermined breaking lines DL.
  • individual pieces 201 obtained by separating the laminate 200 into pieces are formed.
  • the individual piece portion 201 is composed of a wiring pattern 221 and a divided magnetic layer 212D.
  • a plurality of individual pieces 201 are arranged in a matrix in the laminate 200 .
  • the individual piece portion 201 has one wiring pattern 221 .
  • the sintering step S16 is performed.
  • the individual pieces 201 of the laminate 200 that have been singulated in the singulation step S15 are sintered by firing for a predetermined time.
  • the wiring pattern 221 becomes the inductor wiring 30 of the sintered body.
  • the negative pattern 222 becomes the magnetic portion 80 of the sintered body.
  • the nonmagnetic layer 211 becomes the interlayer nonmagnetic portion 50 of the sintered body.
  • the in-groove non-magnetic portion 213 becomes the non-magnetic portion 60 of the sintered body.
  • the resin volatilizes from the magnetic layer 212 by firing, only the magnetic material remains in the magnetic layer 212 .
  • a sintered magnetic ribbon 40 made of a magnetic material is formed.
  • a non-magnetic film 70 which is a non-magnetic insulator, covers the surface including the breaking line DL diced in the singulation step S15.
  • the piece portion 201 becomes the inductor component 10 .
  • the volume of the inductor component 10 becomes smaller than the volume of the individual piece portion 201 by the sintering step S16.
  • the shape of the base body 20 is not limited to the example of the above embodiment.
  • it when viewed from the direction along the second axis Z, it may have a rectangular shape, or may have a polygonal shape other than a quadrangle.
  • the shape of the element body 20 may be circular or elliptical when viewed from the direction along the second axis Z. As shown in FIG. Moreover, the shape of the element body 20 may be a cube.
  • the shape of the base body 20 may be a rectangular parallelepiped having different dimensions in the direction along the third axis and the dimension in the direction along the fourth axis, or may be a polygonal column, a cylinder, or the like. may
  • the shape of the inductor wiring 30 can be appropriately changed as long as the inductor wiring 30 can give inductance L to the inductor component 10 by generating a magnetic flux in the magnetic ribbon 40 when a current flows.
  • the inductor wiring 130 has an elliptical shape in the cross section perpendicular to the central axis CA. Then, a hypothetical rectangle VR2 with a minimum area, which circumscribes the inductor wiring 130 and has a first side along the first axis X and a second side along the second axis Z, is drawn. At this time, the first side of the virtual rectangle VR2 is longer than the second side of the virtual rectangle VR2.
  • the diamagnetic field of the first magnetic ribbon 41 is generated at the end of the wiring cross section in the direction along the first axis X where the magnetic flux is more concentrated. is more preferable because it corresponds to a region with a small .
  • the shape of the inductor wiring 30 in the cross section perpendicular to the central axis CA may be such that the second side along the second axis Z is longer than the first side along the first axis X. Even in this case, the magnetic flux concentrates on the first wiring end IP1, which is the end of the inductor wiring 30 in the first positive direction X1. Therefore, the region of the first magnetic ribbon 41 having a small demagnetizing field corresponds to the first wiring end IP1 of the wiring cross section where the magnetic flux is more concentrated, which is more preferable.
  • the shape of the inductor wiring 30 may be a shape that does not have symmetry such as linear symmetry or rotational symmetry, such as when it includes one or more projecting portions. In this way, if the symmetry is broken in the cross section perpendicular to the central axis CA, there will be a place where the magnetic flux concentrates more than others. Then, it is preferable to determine the positional relationship of the first magnetic ribbon 41 so that the first wiring end IP1 is a portion such as a projecting portion where the magnetic flux concentrates more than others.
  • the shape of the inductor wiring 30 may be square or circular.
  • the virtual rectangle VR drawn in the cross section perpendicular to the central axis CA is a square, and the first side of the virtual rectangle VR does not have to be longer than the second side of the virtual rectangle VR.
  • the position of the inductor wiring 30 in the direction along the first axis X is not limited to the example of the above embodiment. It is sufficient that the position of the first wiring end IP1 of the inductor wiring 30 in the direction along the first axis X is within the predetermined range AR11 of the first magnetic ribbon 41 .
  • the first wiring end IP1 may be separated from the center of the first magnetic ribbon 41 in the direction along the first axis X.
  • the first virtual straight line VL1 passes through the predetermined range AR11 of the magnetic ribbon 40 different from the first magnetic ribbon 41, the first virtual straight line VL1 passes through the predetermined range AR11 of the first magnetic ribbon 41. VL1 may not pass through.
  • the first imaginary straight line VL1 does not have to pass through the predetermined range AR11 in any of the plurality of magnetic strips 40 forming the element body 20 .
  • the position of the second wiring end IP2 of the inductor wiring 30 in the direction along the first axis X should be within the predetermined range AR11 of the second magnetic ribbon 42 .
  • the second wiring end IP2 may be separated from the center of the second magnetic ribbon 42 in the direction along the first axis X.
  • the second virtual straight line VL2 passes through the predetermined range AR11 of the magnetic ribbon 40 different from the second magnetic ribbon 42, the second virtual straight line VL2 passes through the predetermined range AR11 of the second magnetic ribbon 42. VL2 may not pass.
  • the second imaginary straight line VL2 does not have to pass through the predetermined range AR11 in any of the plurality of magnetic ribbons 40 forming the element body 20 .
  • the shape of the inductor wiring 30 is not limited to a linear shape. It only needs to extend along the main surface MF of the magnetic thin strip 40, and may have, for example, a curved shape as a whole or a meandering shape. When the inductor wiring 30 extends on the same plane, it is easy to adjust the arrangement of the first wiring end IP1 of the inductor wiring 30 and the first magnetic ribbon 41 . In this case, the direction along the first axis X may change depending on the position at which the element body 20 is cut.
  • the inductor wiring 30 may be connected to a lead wiring extending in a direction intersecting the main surface MF, a via wiring extending in a direction along the second axis Z, or the like. Furthermore, a plurality of inductor wirings 30 may be connected to via wirings extending in the direction along the second axis Z, and may have a three-dimensional spiral shape such as a spiral shape or a helical shape as a whole. In this case, the inductor wiring 30 is the portion extending along the main surface MF of the magnetic ribbon 40 .
  • the material of the inductor wiring 30 is not limited to the example of the above embodiment as long as it is a conductive material.
  • the material of the inductor wiring 30 may be a conductive resin.
  • the central axis CA and the third axis may not coincide.
  • the fourth axis does not have to coincide with the first axis X.
  • the central axis CA extends in a meandering shape.
  • the third axis should be orthogonal to the second axis Z
  • the fourth axis should be orthogonal to the second axis Z and intersect the third axis.
  • the magnetic ribbons 40 are aligned along the second axis Z.
  • the area of the magnetic ribbon 40 when viewed from the direction along the second axis Z is smaller than when there is one at the same position along the second axis Z. Therefore, the eddy current generated in one magnetic strip 40 is reduced.
  • the positional relationship between the first imaginary straight line VL1 passing through the first wiring end IP1 and the predetermined range AR11 of the first magnetic ribbon 41 described in each of the above embodiments is , any one cross section.
  • the positional relationship between the first virtual straight line VL1 and the predetermined range AR11 of the first magnetic ribbon 41 does not have to be satisfied in all areas of the inductor wiring 30 . If the above positional relationship is satisfied in at least one cross section, the effects of the above embodiments can be obtained at that cross section.
  • the positional relationship between the second virtual straight line VL2 passing through the second wiring end IP2 and the predetermined range AR11 of the second magnetic ribbon 42 described in each of the above embodiments is , any one cross section.
  • the positional relationship between the second virtual straight line VL2 and the predetermined range AR11 of the second magnetic strip 42 does not have to be satisfied in the entire region of the inductor wiring 30 . If the above positional relationship is satisfied in at least one cross section, the effects of the above embodiments can be obtained at that cross section.
  • An external electrode may be connected to the portion where the inductor wiring 30 is exposed from the element body 20 .
  • external electrodes may be formed on both end surfaces of the inductor wiring 30 in the direction along the central axis CA and both end surfaces of the element body 20 in the direction along the central axis CA by coating, printing, plating, or the like.
  • the direction in which the magnetic ribbon 40 and the interlayer non-magnetic portion 50 are laminated may not be orthogonal to the central axis CA and the first axis X due to manufacturing errors or the like.
  • the fact that the magnetic ribbons 40 and the like are "laminated in the direction along the second axis Z" allows for such manufacturing errors.
  • the number of magnetic strips 40 stacked in the direction along the second axis Z should be two or more.
  • the inductor wiring 30 and the interlayer non-magnetic portion 50 may be arranged between the two magnetic strips 40 .
  • the material of the interlayer non-magnetic portion 50 is not limited to the example of the above embodiment as long as it is a non-magnetic material.
  • the interlayer non-magnetic portion 50 may be made of resin other than acrylic resin, epoxy resin, or silicon resin, or may be made of non-magnetic ceramics such as alumina, silica, or glass, or non-magnetic inorganic materials containing these. It may be a void or a mixture thereof. In this regard, the same applies to the nonmagnetic portion 60 and the nonmagnetic film 70 .
  • the materials of the interlayer nonmagnetic portion 50, the nonmagnetic portion 60, and the nonmagnetic film 70 may be different from each other, or may be partially different, as long as they are nonmagnetic materials.
  • the interlayer nonmagnetic portion 50, the nonmagnetic portion 60, and the nonmagnetic film 70 may be integrated or may be separate members.
  • the interlayer non-magnetic portion 50 may be hollow, or may be composed of an insulating oxide film obtained by oxidizing the surface of the magnetic ribbon 40 .
  • the interlayer non-magnetic portion 50 may be omitted.
  • the magnetic ribbons 40 adjacent to each other in the direction along the second axis Z may be in direct contact with each other.
  • the non-magnetic portion 60 may be omitted.
  • the magnetic ribbons 40 aligned in the direction along the third axis or the fourth axis may be in direct contact with each other.
  • the nonmagnetic portion 60 may exist between the inductor wiring 30 and the magnetic ribbon 40 . In this case, the nonmagnetic portion 60 can ensure insulation between the inductor wiring 30 and the magnetic ribbon 40 .
  • a plurality of magnetic ribbons 40 are laminated and "a plurality of magnetic ribbons 40 are lined up” specifically mean that the adjacent magnetic ribbons 40 are completely or partially insulated from each other. It refers to the case where there is a physical boundary on a microscopic scale. For example, it does not include a state in which the magnetic strips 40 are sintered and completely integrated.
  • the first magnetic ribbon 41 does not have to exist in the third portion P3. Conversely, if the first magnetic ribbon 41 exists in the third portion P3, the first magnetic ribbon 41 may not exist in the first portion P1. Depending on the position of the first wiring end IP1 in the direction along the second axis Z, the first magnetic ribbon 41 may exist only on either the first portion P1 or the third portion P3.
  • the second magnetic ribbon 42 does not have to exist in the third portion P3. Conversely, if the second magnetic ribbon 42 exists in the third portion P3, the second magnetic ribbon 42 may not exist in the first portion P1. Depending on the position of the second wiring end IP2 in the direction along the second axis Z, the second magnetic ribbon 42 may exist only on either the first portion P1 or the third portion P3.
  • two magnetic strips 40 are arranged in the direction along the first axis X at the same position along the second axis Z, and the direction along the central axis CA, that is, the third axis. 2 are lined up in the . That is, when “M” and “N” are positive integers, "M” magnetic ribbons 40 are arranged in the same position along the second axis Z in the direction along the third axis. "N" pieces are arranged in the direction along the first axis X, that is, the fourth axis, and both "M" and “N” are two.
  • M which is the number of first magnetic ribbons 41 arranged in the direction along the fourth axis
  • N which is the number of magnetic ribbons 40 arranged in the direction along the central axis CA
  • M and N are 2 or more, the area of each magnetic ribbon 40 as viewed from the second axis Z can be reduced, so loss due to eddy currents can be reduced. Easy to make small.
  • the magnetic ribbon 40 does not have to be made of an amorphous magnetic material. That is, the magnetic ribbon 40 may be a magnetic ribbon made of a crystallized magnetic material such as nanocrystals.
  • the magnetic ribbon 40 may be a magnetic layer made of FeSiBPCu as a magnetic material. According to this configuration, the saturation magnetic flux density Bs of inductor components 10 and 10B can be increased.
  • the magnetic powder contained in the magnetic portion 80 does not have to be an amorphous magnetic material. That is, the magnetic portion 80 may be configured to include a crystallized magnetic material such as nanocrystals.
  • the fine magnetic ribbon 81B does not have to be made of an amorphous magnetic material. That is, the fine magnetic ribbon 81B may be a ribbon made of a crystallized magnetic material such as nanocrystals.
  • the non-magnetic binder 80b may be made of glass. That is, the magnetic portions 80 and 80B may be glass composite portions in which the non-magnetic binder 80b is made of glass.
  • the magnetic portions 80 and 80B should not be arranged in the first negative direction X2 of the inductor wiring 30.
  • a laminate in which the magnetic ribbons 40 and the interlayer non-magnetic portions 50 are alternately laminated in the direction along the second axis Z may be arranged.
  • the distance between a pair of magnetic ribbons 40 adjacent to each other in the direction along the second axis Z may be different.
  • a manufacturing error of about 20% may occur depending on the manufacturing method.
  • part of the interlayer non-magnetic portion 50 may be hollow, so that the gap between a pair of magnetic ribbons 40 adjacent to each other in the direction along the second axis Z may vary. obtain.
  • a gap may also exist between the interlayer non-magnetic portion 50 and the magnetic ribbon 40 .
  • the distance between a pair of magnetic ribbons 40 adjacent to each other in the direction along the second axis Z is the sum of the lengths of the interlayer nonmagnetic portion 50 and the gap. Therefore, the interval between one pair of magnetic ribbons 40 adjacent in the direction along the second axis Z is , 80% or more and 120% or less, they can be regarded as substantially equal.
  • the interval between a pair of magnetic ribbons 40 adjacent in the direction along the second axis Z is the second Let it be the smallest dimension in the direction along the Z axis.
  • the average value of the spacing between multiple sets of magnetic ribbons 40 adjacent in the direction along the second axis Z is 5 sets measured from one image in which six or more magnetic ribbons 40 are fitted with an electron microscope. is the average value of the spacing between the magnetic strips 40 of .
  • the dimensions of the plurality of magnetic strips 40 in the direction along the second axis Z may not be the same, and may vary by more than 20% from the average value.
  • the dimensions of the plurality of interlayer non-magnetic portions 50 in the direction along the second axis Z may be different. If the dimension of the interlayer nonmagnetic portion 50 in the direction along the second axis Z is small, a manufacturing error of about 20% may occur depending on the manufacturing method. Therefore, the dimension of the interlayer nonmagnetic portion 50 in the direction along the second axis Z is 80% or more and 120% or less of the average value of the dimension of the plurality of interlayer nonmagnetic portions 50 in the direction along the second axis Z. If so, they can be considered almost equal.
  • the dimension of one interlayer nonmagnetic portion 50 in the direction along the second axis Z is the average value of three points in one image magnified between 1,000 and 10,000 times with an electron microscope. and
  • the dimension of the plurality of interlayer nonmagnetic portions 50 in the direction along the second axis Z is one interlayer nonmagnetic portion 50 measured by an electron microscope using a single image containing three or more interlayer nonmagnetic portions 50. is the average value of the dimensions in the direction along the second axis Z of .
  • the dimensions of the plurality of interlayer non-magnetic portions 50 in the direction along the second axis Z may not be the same, and may vary by more than 20% from the average value.
  • the number and positions of the non-magnetic portions 60 are not limited to those in the above embodiment.
  • the number and positions of the non-magnetic portions 60 may be changed according to the number and positions of the magnetic strips 40 in the direction along the first axis X and in the direction along the central axis CA.
  • the size of the non-magnetic portion 60 may be appropriately changed according to the interval between the magnetic ribbons 40 at the same position in the direction along the second axis Z.

Abstract

The present disclosure provides an inductor component (10) that suppresses eddy current loss when a current flows through an inductor wire (30). The inductor component (10) is provided with an element (20) including a plurality of thin magnetic ribbons (40), and an inductor wire (30). In the element (20), a plurality of thin magnetic ribbons (40) are laminated in a direction orthogonal to a main surface (MF) of a thin magnetic ribbon (40). The element (20) has a magnetic part (80) arranged in the same position as the inductor wire (30) along a direction following a second axis (Z). The magnetic part (80) contains a plurality of magnetic bodies (80a) comprising a magnetic material. With the cross-section of the magnetic body (80a) having the largest area among the cross-sections of the magnetic bodies (80a) when divided in a direction orthogonal to the second axis (Z) set as the maximum cross-section, the area of the maximum cross-section of the plurality of magnetic bodies (80a) is smaller than the area of the main surface (MF) of the thin magnetic ribbon (40).

Description

インダクタ部品inductor components
 本開示は、インダクタ部品に関する。 The present disclosure relates to inductor components.
 特許文献1に記載のインダクタ部品は、素体と、素体の内部で延びているインダクタ配線と、を備えている。素体は、無機フィラー及び樹脂を含むコンポジット体からなっている。例えば、コンポジット体のうちの磁性コンポジット体は、無機フィラーの材質として磁性材を含んでいる。 The inductor component described in Patent Document 1 includes an element body and inductor wiring extending inside the element body. The base body is made of a composite body containing inorganic filler and resin. For example, a magnetic composite body among composite bodies contains a magnetic material as a material of an inorganic filler.
特開2019-192920号公報JP 2019-192920 A
 インダクタ部品においては、そのインダクタ配線に電流を流した際の渦電流損失が大きくなるのは好ましくない。 For inductor parts, it is not desirable for eddy current loss to increase when current flows through the inductor wiring.
 上記課題を解決するためのインダクタ部品は、磁性材料からなる平板状の複数の磁性薄帯を含み、複数の前記磁性薄帯が、前記磁性薄帯の主面に対して直交する方向に積層された素体と、前記素体の内部で、前記主面に沿って延びているインダクタ配線と、を備えている。前記インダクタ配線の延びる軸を中心軸とし、前記中心軸に直交する断面視で前記主面に沿う軸を第1軸とし、前記断面視で前記主面に直交する軸を第2軸としたとき、前記素体は、前記第2軸に沿う方向における前記インダクタ配線と同一の位置に配置されている磁性部を有している。前記磁性部は、磁性材料からなる複数の磁性体を含有している。前記磁性体を前記第2軸に直交する方向で切断した場合の断面のうち、面積が最大となる前記磁性体の断面を最大断面としたとき、複数の前記磁性体の前記最大断面の面積は、前記主面の面積よりも小さい。 An inductor component for solving the above problems includes a plurality of flat magnetic ribbons made of a magnetic material, and the plurality of magnetic ribbons are laminated in a direction orthogonal to a main surface of the magnetic ribbons. and an inductor wiring extending along the main surface inside the element. When the axis along which the inductor wiring extends is taken as a central axis, the axis along the main surface in a cross-sectional view perpendicular to the central axis is taken as a first axis, and the axis perpendicular to the main surface in a cross-sectional view is taken as a second axis , the element has a magnetic portion arranged at the same position as the inductor wiring in the direction along the second axis. The magnetic portion contains a plurality of magnetic bodies made of a magnetic material. When the cross section of the magnetic body having the maximum area among the cross sections of the magnetic body cut in the direction orthogonal to the second axis is defined as the maximum cross section, the area of the maximum cross section of the plurality of magnetic bodies is , smaller than the area of the main surface.
 インダクタ配線に電流が流れた際には、素体内で磁界が発生するため、磁束が磁性薄帯を通過することに起因して各磁性薄帯で渦電流が発生する。各磁性薄帯で発生する渦電流が大きいと、インダクタ部品の渦電流損失が大きくなる。 When a current flows through the inductor wiring, a magnetic field is generated inside the element, and eddy currents are generated in each magnetic ribbon due to the magnetic flux passing through the magnetic ribbon. If the eddy current generated in each magnetic ribbon is large, the eddy current loss of the inductor component becomes large.
 ここで、インダクタ配線への通電によって磁界が発生している場合、素体のうち、第2軸に沿う方向におけるインダクタ配線と同一の位置に配置されている部分であって、且つインダクタ配線と隣り合う部分を、磁束がほぼ直交する方向に通る。 Here, when a magnetic field is generated by energization of the inductor wiring, a portion of the element that is arranged at the same position as the inductor wiring in the direction along the second axis and is adjacent to the inductor wiring Through the mating parts the magnetic flux passes in substantially orthogonal directions.
 上記構成によれば、素体のうちの当該部分には、磁性薄帯の主面の面積よりも上記最大断面の面積が小さい複数の磁性体が配置されている。そのため、当該部分では、発生する渦電流が大きくなりにくい。したがって、素体の当該部分に磁性薄帯を配置する場合と比較し、インダクタ部品の渦電流損失を小さくできる。 According to the above configuration, a plurality of magnetic bodies having the maximum cross-sectional area smaller than the area of the main surface of the magnetic ribbon are arranged in the relevant portion of the element. Therefore, the generated eddy current is less likely to increase in this portion. Therefore, the eddy current loss of the inductor component can be reduced as compared with the case where the magnetic ribbon is arranged in the relevant portion of the element.
 なお、「沿う」とは、直接接触しておらず、離れた位置にある場合も含む。例えば、「第1軸に沿う」とは、第1軸に直接接触して第1軸に沿うものだけでなく、第1軸に直接接触しておらず離れた位置で第1軸に沿うものも含む。また、「沿う」とは、実質的に平行関係にあればよく、製造誤差などによって、僅かに傾いているものも含む。 It should be noted that "along" includes cases in which there is no direct contact, but at a distance. For example, "along the first axis" means not only those that are in direct contact with the first axis and along the first axis, but also those that are not in direct contact with the first axis and are along the first axis at a distance. Also includes Also, "along" means that they are substantially in parallel, and includes those that are slightly inclined due to manufacturing errors or the like.
 上記構成によれば、インダクタ配線に電流を流した際における渦電流損失が大きくなることを抑制できる。 According to the above configuration, it is possible to suppress an increase in eddy current loss when a current is passed through the inductor wiring.
第1実施形態におけるインダクタ部品の分解斜視図。2 is an exploded perspective view of the inductor component in the first embodiment; FIG. 同インダクタ部品の第1部分を示す平面図。The top view which shows the 1st part of the same inductor component. 図2における3-3線に沿うインダクタ部品の断面図。FIG. 3 is a cross-sectional view of the inductor component taken along line 3-3 in FIG. 2; 図2における4-4線に沿うインダクタ部品の断面図。FIG. 3 is a cross-sectional view of the inductor component taken along line 4-4 in FIG. 2; 同インダクタ部品の製造方法の説明図。Explanatory drawing of the manufacturing method of the same inductor component. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 比較例のインダクタ部品の断面図。Sectional drawing of the inductor component of a comparative example. 実施例のインダクタ部品と比較例のインダクタ部品とにおける各パラメータを示す表。4 is a table showing each parameter in the inductor component of the example and the inductor component of the comparative example; 第2実施形態におけるインダクタ部品の断面図。Sectional drawing of the inductor component in 2nd Embodiment. 同インダクタ部品の断面図。Sectional drawing of the same inductor component. 実施例のインダクタ部品と比較例のインダクタ部品とにおける各パラメータを示す表。4 is a table showing each parameter in the inductor component of the example and the inductor component of the comparative example; 第3実施形態におけるインダクタ部品の製造方法の流れを説明するフローチャート。10 is a flowchart for explaining the flow of a method for manufacturing an inductor component according to the third embodiment; 同インダクタ部品の製造方法の説明図。Explanatory drawing of the manufacturing method of the same inductor component. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 同製造方法の説明図。Explanatory drawing of the same manufacturing method. 変更例のインダクタ部品の断面図。Sectional drawing of the inductor component of a modification.
 <第1実施形態>
 以下、インダクタ部品の一実施形態について説明する。なお、図面は理解を容易にするため構成要素を拡大して示している場合がある。構成要素の寸法比率は実際のものと、又は別の図中のものと異なる場合がある。また、断面図ではハッチングを付しているが、理解を容易にするために一部の構成要素のハッチングを省略している場合がある。さらに、複数の部材のうち、一部の部材のみに符号を付している場合がある。
<First Embodiment>
An embodiment of the inductor component will be described below. In addition, in order to facilitate understanding, the drawings may show constituent elements in an enlarged manner. The dimensional ratios of components may differ from those in reality or in other figures. In addition, although cross-sectional views are hatched, there are cases where the hatching of some components is omitted to facilitate understanding. Furthermore, there are cases where only some members among the plurality of members are given reference numerals.
 (全体構成)
 図1に示すように、インダクタ部品10は、素体20と、インダクタ配線30と、を備えている。素体20は、複数の磁性薄帯40を有している。磁性薄帯40は、平板状である。複数の磁性薄帯40は、磁性薄帯40の主面MFと直交する方向に積層されている。なお、平板状とは、主面を有する薄い形状のことであるが、厚みの薄い直方体に限られず、稜線や角が曲面状であってもよく、主面MFに微小な凹凸があったり、内部に空孔があったりしてもよい。
(overall structure)
As shown in FIG. 1 , inductor component 10 includes element body 20 and inductor wiring 30 . The element body 20 has a plurality of magnetic ribbons 40 . The magnetic ribbon 40 is flat. A plurality of magnetic ribbons 40 are laminated in a direction orthogonal to the main surface MF of the magnetic ribbons 40 . The flat plate shape means a thin shape having a main surface, but it is not limited to a rectangular parallelepiped with a thin thickness. There may be holes inside.
 インダクタ配線30は、素体20の内部で主面MFに沿って直線状に延びている。なお、インダクタ配線30の延びる軸を中心軸CAとする。中心軸CAの向きは、インダクタ配線30に電流を流した際に、その電流が流れる方向と一致する。本実施形態では、中心軸CAの延びる向きは、四角形状の主面MFのいずれかの辺の延びる向きと一致する。 The inductor wiring 30 extends linearly along the main surface MF inside the element body 20 . The axis along which inductor wiring 30 extends is defined as central axis CA. The direction of the central axis CA coincides with the direction in which the current flows when the current flows through the inductor wiring 30 . In this embodiment, the direction in which the central axis CA extends matches the direction in which one of the sides of the quadrangular main surface MF extends.
 図3に示すように、中心軸CAに直交する断面視で、主面MFに沿う軸を第1軸Xとし、主面MFに直交する軸を第2軸Zとする。第1軸Xに沿う2つの方向のうち、一つの方向を第1正方向X1とし、第1正方向X1の反対方向を第1負方向X2とする。また、第2軸Zに沿う2つの方向のうち、一つの方向を第2正方向Z1とし、第2正方向Z1の反対方向を第2負方向Z2とする。また、中心軸CAに沿う2つの方向のうち、一つの方向を正方向Y1とし、正方向Y1の反対方向を負方向Y2とする。 As shown in FIG. 3, in a cross-sectional view perpendicular to the central axis CA, the axis along the main surface MF is defined as a first axis X, and the axis perpendicular to the main surface MF is defined as a second axis Z. One of the two directions along the first axis X is defined as a first positive direction X1, and the direction opposite to the first positive direction X1 is defined as a first negative direction X2. Also, one of the two directions along the second axis Z is defined as a second positive direction Z1, and the direction opposite to the second positive direction Z1 is defined as a second negative direction Z2. Also, one of the two directions along the central axis CA is defined as the positive direction Y1, and the opposite direction of the positive direction Y1 is defined as the negative direction Y2.
 図1に示すように、インダクタ部品10は、第2軸Zに沿って順に積層された、第1部分P1と、第2部分P2と、第3部分P3と、で構成されている。3つの部分P1~P3は、第2軸Zに沿って並んでいる。3つの部分P1~P3のうち、第2部分P2は中央に位置する。第1部分P1は、第2部分P2よりも第2負方向Z2に位置する。第3部分P3は、第2部分P2よりも第2正方向Z1に位置する。 As shown in FIG. 1, the inductor component 10 is composed of a first portion P1, a second portion P2, and a third portion P3, which are sequentially laminated along the second axis Z. The three parts P1-P3 are aligned along the second axis Z. As shown in FIG. Of the three parts P1-P3, the second part P2 is located in the center. The first portion P1 is positioned further in the second negative direction Z2 than the second portion P2. The third portion P3 is located in the second positive direction Z1 relative to the second portion P2.
 図2に示すように、第1部分P1は、第2軸Zに沿う方向から視たときに正方形状である。第1部分P1は、複数の磁性薄帯40と、複数の層間非磁性部50と、複数の非磁性部60と、複数の非磁性膜70と、を有している。 As shown in FIG. 2, the first portion P1 has a square shape when viewed from the direction along the second axis Z. The first portion P1 has a plurality of magnetic strips 40, a plurality of interlayer non-magnetic portions 50, a plurality of non-magnetic portions 60, and a plurality of non-magnetic films .
 図3に示すように、中心軸CAに直交する断面視で、第1部分P1の各磁性薄帯40は、第2軸Zに沿う方向に積層されている。図2に示すように、第1部分P1の各磁性薄帯40は、第2軸Zに沿う方向から視たときに正方形状である。第2軸Zに沿う方向から視たときに各磁性薄帯40の各辺は、第1軸X又は中心軸CAと平行である。複数の磁性薄帯40の第2軸Zに沿う方向の寸法は、すべて同一の寸法である。 As shown in FIG. 3, each magnetic ribbon 40 of the first portion P1 is laminated in the direction along the second axis Z in a cross-sectional view perpendicular to the central axis CA. As shown in FIG. 2, each magnetic ribbon 40 of the first portion P1 has a square shape when viewed from the direction along the second axis Z. As shown in FIG. When viewed along the second axis Z, each side of each magnetic ribbon 40 is parallel to the first axis X or the central axis CA. All the dimensions in the direction along the second axis Z of the plurality of magnetic strips 40 are the same.
 図3及び図4に示すように、磁性薄帯40は、第2軸Zに沿う同一の位置において、第2軸Zに直交する第3軸に沿う方向に、間隔をあけて2個並んでいる。また、磁性薄帯40は、第2軸Zに沿う同一の位置において、第2軸Z及び第3軸に直交する第4軸に沿う方向に、間隔をあけて2個並んでいる。なお、第3軸は中心軸CAと同一軸であり、且つ第4軸は第1軸Xと一致している。そのため、本実施形態では、磁性薄帯40は、第2軸Zに沿う方向のみならず、第1軸X及び中心軸CAに沿う方向にも配列している。 As shown in FIGS. 3 and 4, two magnetic ribbons 40 are arranged side by side at the same position along the second axis Z in the direction along the third axis orthogonal to the second axis Z with a gap therebetween. there is Also, two magnetic strips 40 are arranged at the same position along the second axis Z with a gap in the direction along the fourth axis perpendicular to the second axis Z and the third axis. The third axis is coaxial with the central axis CA, and the fourth axis coincides with the first axis X. Therefore, in this embodiment, the magnetic strips 40 are arranged not only in the direction along the second axis Z, but also in the directions along the first axis X and the central axis CA.
 磁性薄帯40は、磁性材料からなっている。磁性材料は、例えば、Fe、Ni、Co、Cr、Cu、Al、Si、B、Pなどを含む金属の磁性材料である。本実施形態では、磁性材料は、Fe及びSiを含んでいる金属の磁性材料である。 The magnetic ribbon 40 is made of a magnetic material. The magnetic material is, for example, a metallic magnetic material including Fe, Ni, Co, Cr, Cu, Al, Si, B, P, and the like. In this embodiment, the magnetic material is a metallic magnetic material containing Fe and Si.
 図3及び図4に示すように、層間非磁性部50は、第2軸Zに沿う方向に隣り合っている磁性薄帯40の間に位置している。層間非磁性部50は、第2軸Zに沿う方向に隣り合っている磁性薄帯40の空間をすべて埋めている。層間非磁性部50は、非磁性材料からなっている。非磁性材料は、例えば、アクリル樹脂や、エポキシ樹脂、シリコン樹脂である。本実施形態では、第2軸Zに沿う方向で互いに隣り合う磁性薄帯40の間には非磁性材料が介在している。なお、図3及び図4では、層間非磁性部50を線で図示している。 As shown in FIGS. 3 and 4, the interlayer non-magnetic portion 50 is located between the magnetic strips 40 adjacent to each other in the direction along the second axis Z. As shown in FIGS. The interlayer non-magnetic portion 50 fills the entire space between the magnetic ribbons 40 adjacent to each other in the direction along the second axis Z. As shown in FIG. The interlayer nonmagnetic portion 50 is made of a nonmagnetic material. Non-magnetic materials are, for example, acrylic resins, epoxy resins, and silicone resins. In this embodiment, a non-magnetic material is interposed between the magnetic strips 40 adjacent to each other in the direction along the second axis Z. As shown in FIG. 3 and 4, the interlayer non-magnetic portion 50 is illustrated by lines.
 各層間非磁性部50の第2軸Zに沿う方向の寸法は、各磁性薄帯40の第2軸Zに沿う方向の寸法よりも小さい。
 図2に示すように、非磁性部60は、第2軸Zに沿う同一の位置において並ぶ磁性薄帯40の間に位置している。非磁性部60は、第2軸Zに沿う方向の同一の位置において並ぶ磁性薄帯40の間の空間をすべて埋めている。上述したとおり、第2軸Zに沿う同一の位置において、磁性薄帯40は、中心軸CAに沿う方向に2つ、第1軸Xに沿う方向に2つ、合計4つ存在するので、非磁性部60は4つ存在している。非磁性部60は、非磁性材料からなっている。すなわち、第2軸Zと直交する方向で互いに隣り合う磁性薄帯40の間には非磁性材料が介在している。本実施形態では、非磁性部60の材質は、層間非磁性部50と同一の材質である。
The dimension along the second axis Z of each interlayer nonmagnetic portion 50 is smaller than the dimension along the second axis Z of each magnetic ribbon 40 .
As shown in FIG. 2, the non-magnetic portion 60 is located between the magnetic strips 40 aligned at the same position along the second axis Z. As shown in FIG. The non-magnetic portion 60 fills all the spaces between the magnetic strips 40 arranged at the same position in the direction along the second axis Z. As shown in FIG. As described above, at the same position along the second axis Z, there are a total of four magnetic ribbons 40, two along the central axis CA and two along the first axis X. There are four magnetic parts 60 . The non-magnetic portion 60 is made of a non-magnetic material. That is, the non-magnetic material is interposed between the magnetic ribbons 40 adjacent to each other in the direction orthogonal to the second axis Z. As shown in FIG. In this embodiment, the non-magnetic portion 60 is made of the same material as the interlayer non-magnetic portion 50 .
 非磁性膜70は、第1部分P1において、第1正方向X1の端及び第1負方向X2の端の各々に位置している。非磁性膜70は、磁性薄帯40における第1軸Xに沿う方向の両端面の全域を覆っている。また、非磁性膜70は、層間非磁性部50における第1軸Xに沿う方向の両端面の全域を覆っている。さらに、非磁性膜70は、非磁性部60における第1軸Xに沿う方向の両端面の全域を覆っている。そのため、第1部分P1における第1軸Xに沿う第1正方向X1の端面は、すべて非磁性膜70で構成されている。同様に、第1部分P1における第1軸Xに沿う第1負方向X2の端面は、すべて非磁性膜70で構成されている。非磁性膜70は、非磁性材料からなっている。本実施形態では、非磁性膜70の材質は、層間非磁性部50と同一の材質である。 The non-magnetic film 70 is positioned at each of the ends of the first positive direction X1 and the first negative direction X2 in the first portion P1. The non-magnetic film 70 covers the entire end surfaces of the magnetic ribbon 40 in the direction along the first axis X. As shown in FIG. In addition, the non-magnetic film 70 covers the entire area of both end faces in the direction along the first axis X of the interlayer non-magnetic portion 50 . Furthermore, the non-magnetic film 70 covers the entire end surfaces of the non-magnetic portion 60 in the direction along the first axis X. As shown in FIG. Therefore, the end faces of the first portion P1 in the first positive direction X1 along the first axis X are all composed of the non-magnetic film 70 . Similarly, the end face of the first portion P1 along the first axis X in the first negative direction X2 is entirely composed of the non-magnetic film 70 . The non-magnetic film 70 is made of a non-magnetic material. In this embodiment, the nonmagnetic film 70 is made of the same material as the interlayer nonmagnetic portion 50 .
 図1に示すように、第1部分P1から視て、第2正方向Z1には、第2部分P2が位置している。第2部分P2は、第2軸Zに沿う方向から視たときに、第1部分P1と同じ正方形状である。 As shown in FIG. 1, the second portion P2 is located in the second positive direction Z1 when viewed from the first portion P1. The second portion P2 has the same square shape as the first portion P1 when viewed from the direction along the second axis Z. As shown in FIG.
 第2部分P2は、インダクタ配線30と、磁性部80と、複数の非磁性膜70と、で構成されている。磁性部80は、第2軸Zに沿う方向におけるインダクタ配線30と同一の位置に配置されている。 The second portion P2 is composed of an inductor wiring 30, a magnetic portion 80, and a plurality of non-magnetic films 70. The magnetic part 80 is arranged at the same position as the inductor wiring 30 in the direction along the second axis Z. As shown in FIG.
 インダクタ配線30は、第2軸Zに沿う方向から視て長方形状であり、中心軸CAに沿って直線状に延びている。インダクタ配線30の正方向Y1の端面は、第2部分P2の外面の一部を構成しており、素体20から露出している。同様に、インダクタ配線30の負方向Y2の端面は、第2部分P2の外面の一部を構成しており、素体20から露出している。 The inductor wiring 30 has a rectangular shape when viewed from the direction along the second axis Z, and extends linearly along the central axis CA. The end face of the inductor wiring 30 in the positive direction Y1 constitutes part of the outer surface of the second portion P2 and is exposed from the element body 20 . Similarly, the end face of the inductor wiring 30 in the negative direction Y2 constitutes part of the outer surface of the second portion P2 and is exposed from the element body 20 .
 第2軸Zから視たときに、インダクタ配線30の正方向Y1の端面及び負方向Y2の端面は、第1軸Xと平行になっている。また、インダクタ配線30の中心軸CAは、第1軸Xに沿う方向において、第2部分P2の中心に位置している。そのため、インダクタ配線30の延びる軸である中心軸CAは、第1軸Xに沿う方向における第2部分P2の中心を通っている。インダクタ配線30の第1軸Xに沿う方向での寸法は、第2部分P2の第1軸Xに沿う方向での寸法の半分である。 When viewed from the second axis Z, the end face of the inductor wiring 30 in the positive direction Y1 and the end face in the negative direction Y2 are parallel to the first axis X. In addition, the central axis CA of the inductor wiring 30 is positioned at the center of the second portion P2 in the direction along the first axis X. As shown in FIG. Therefore, the central axis CA, which is the axis along which the inductor wiring 30 extends, passes through the center of the second portion P2 in the direction along the first axis X. As shown in FIG. The dimension along the first axis X of the inductor wiring 30 is half the dimension along the first axis X of the second portion P2.
 インダクタ配線30の材質は、導電性材料である。導電性材料は、例えば、Cu、Ag、Au、Al、又はこれらの合金である。本実施形態では、インダクタ配線30の材質は、Cuである。 The material of the inductor wiring 30 is a conductive material. Conductive materials are, for example, Cu, Ag, Au, Al, or alloys thereof. In this embodiment, the material of the inductor wiring 30 is Cu.
 図3に示すように、中心軸CAに直交する断面において、インダクタ配線30は、長方形状である。ここで、中心軸CAに直交する断面において、インダクタ配線30に外接するとともに、第1軸Xに沿う第1辺及び第2軸Zに沿う第2辺を有する面積が最小の仮想長方形VRを描く。本実施形態では、中心軸CAに直交する断面において、インダクタ配線30が長方形である。また、中心軸CAに直交する断面において、インダクタ配線30の外形の長辺は第1軸Xに沿っている。さらに、中心軸CAに直交する断面において、インダクタ配線30の外形の短辺は第2軸Zに沿っている。そのため、仮想長方形VRは、インダクタ配線30の外形と一致する。そして、仮想長方形VRの第1辺は、仮想長方形VRの第2辺よりも長い。 As shown in FIG. 3, the inductor wiring 30 has a rectangular shape in a cross section perpendicular to the central axis CA. Here, in a cross section perpendicular to the central axis CA, a virtual rectangle VR with a minimum area is drawn that circumscribes the inductor wiring 30 and has a first side along the first axis X and a second side along the second axis Z. . In this embodiment, the inductor wiring 30 is rectangular in the cross section perpendicular to the central axis CA. Further, the long side of the outer shape of the inductor wiring 30 is along the first axis X in the cross section perpendicular to the central axis CA. Furthermore, the short side of the inductor wiring 30 is along the second axis Z in the cross section orthogonal to the central axis CA. Therefore, the virtual rectangle VR matches the contour of the inductor wiring 30 . A first side of the virtual rectangle VR is longer than a second side of the virtual rectangle VR.
 第2部分P2において、インダクタ配線30でない部分は、磁性部80と、複数の非磁性膜70と、で構成されている。
 図3に示すように、第2部分P2では、中心軸CAに直交する断面視で、インダクタ配線30の第1正方向X1に磁性部80が配置されている。また、インダクタ配線30の第1負方向X2に磁性部80が配置されている。すなわち、第2軸Zに沿う方向におけるインダクタ配線30と同一の位置に、各磁性部80が配置されている。
In the second portion P<b>2 , the portion other than the inductor wiring 30 is composed of the magnetic portion 80 and the plurality of nonmagnetic films 70 .
As shown in FIG. 3, in the second portion P2, the magnetic portion 80 is arranged in the first positive direction X1 of the inductor wiring 30 in a cross-sectional view perpendicular to the central axis CA. Also, the magnetic portion 80 is arranged in the first negative direction X2 of the inductor wiring 30 . That is, each magnetic part 80 is arranged at the same position as the inductor wiring 30 in the direction along the second axis Z. As shown in FIG.
 各磁性部80は、磁性材料からなる複数の磁性体80aを含有している。磁性体80aを第2軸Zに直交する方向で切断した場合の磁性体80aの断面を、「磁性体断面」とする。磁性体80aのうち、磁性体断面の面積が最大となる位置における磁性体断面を、「最大断面」とする。このとき、複数の磁性体80aの最大断面の面積は、磁性薄帯40の主面MFの面積よりも小さい。 Each magnetic part 80 contains a plurality of magnetic bodies 80a made of a magnetic material. A cross section of the magnetic body 80a when the magnetic body 80a is cut in a direction orthogonal to the second axis Z is referred to as a "magnetic body cross section." In the magnetic body 80a, the cross section of the magnetic body at the position where the area of the cross section of the magnetic body becomes maximum is referred to as the "maximum cross section". At this time, the area of the maximum cross-section of the plurality of magnetic bodies 80 a is smaller than the area of the main surface MF of the magnetic ribbon 40 .
 なお、磁性部80が含む複数の磁性体80aの中に、最大断面の面積が磁性薄帯40の主面MFの面積よりも大きい磁性体80aが、わずかに混在していてもよい。特に、インダクタ配線30から離れた位置にある磁性部80では、渦電流の発生が低減するため、最大断面の面積が主面MFよりも大きい磁性体80aが存在していてもよい。 It should be noted that, among the plurality of magnetic bodies 80a included in the magnetic portion 80, a small amount of magnetic bodies 80a having a maximum cross-sectional area larger than the area of the main surface MF of the magnetic ribbon 40 may be mixed. In particular, in the magnetic portion 80 located away from the inductor wiring 30, the magnetic body 80a having a maximum cross-sectional area larger than the main surface MF may be present in order to reduce the generation of eddy current.
 ちなみに、磁性体80aの体積を、磁性薄帯40の体積よりも小さくするとより好ましい。これにより、磁性体80aの最大断面の面積を磁性薄帯40の主面MFの面積よりも小さくしやすい。しかし、磁性体80aの最大断面の面積を主面MFの面積よりも小さくできるのであれば、磁性体80aの体積は磁性薄帯40の体積よりも小さくなくてもよい。 By the way, it is more preferable to make the volume of the magnetic material 80a smaller than the volume of the magnetic ribbon 40 . This makes it easy to make the area of the maximum cross section of the magnetic material 80 a smaller than the area of the main surface MF of the magnetic ribbon 40 . However, the volume of the magnetic body 80a need not be smaller than the volume of the magnetic ribbon 40 as long as the area of the maximum cross section of the magnetic body 80a can be made smaller than the area of the main surface MF.
 本実施形態では、磁性部80が含有する磁性材料である磁性体80aは、磁性粉である。ここでいう磁性粉の平均粒子径は、30μm以下であることが好ましい。なお、平均粒子径とは、例えば、メディアン径「D50」である。 In this embodiment, the magnetic material 80a, which is the magnetic material contained in the magnetic portion 80, is magnetic powder. The average particle size of the magnetic powder referred to here is preferably 30 μm or less. In addition, the average particle diameter is, for example, the median diameter "D50".
 平均粒子径の測定手法としては、例えば以下のような手法を挙げることができる。図3に示すような磁性部80の断面において、互いに位置の異なる3箇所で、30個以上の磁性粉を含む磁性部80の断面の画像が取得される。断面の画像は、倍率が適切な大きさに調整されたSEM(走査型電子顕微鏡)によって取得される。ここでいう「倍率の適切な大きさ」とは、1000倍から10000倍までの間の大きさである。そして、それらの画像から磁性粉の粒子径が、面積からの換算値として算出される。各粒子径のうち、昇順で並べた際に中央に位置する値(累積50%値)が、平均粒子径とされる。 Examples of methods for measuring the average particle size include the following methods. In the cross section of the magnetic part 80 as shown in FIG. 3, images of the cross section of the magnetic part 80 containing 30 or more magnetic powders are acquired at three positions different from each other. A cross-sectional image is acquired by an SEM (Scanning Electron Microscope) whose magnification is adjusted to an appropriate size. The "appropriate magnitude of magnification" referred to here is a magnitude between 1000 times and 10000 times. Then, from those images, the particle size of the magnetic powder is calculated as a value converted from the area. Among the particle sizes, the central value (cumulative 50% value) when arranged in ascending order is taken as the average particle size.
 磁性体80aは、例えば、磁性粉の一例である金属磁性粉である。この場合、金属磁性粉として、例えば、鉄、及び、鉄を含む合金のうちの少なくとも1つを挙げることができる。なお、磁性部80は、鉄及び鉄を含む合金などの鉄系金属以外の金属磁性粉を含有していてもよい。鉄系金属以外の金属磁性粉は、例えば、ニッケル、クロム、銅、アルミニウム、並びにこれらの合金である。 The magnetic material 80a is, for example, metal magnetic powder, which is an example of magnetic powder. In this case, for example, at least one of iron and an alloy containing iron can be used as the metal magnetic powder. The magnetic portion 80 may contain metal magnetic powder other than iron-based metals, such as iron and alloys containing iron. Metal magnetic powders other than iron-based metals are, for example, nickel, chromium, copper, aluminum, and alloys thereof.
 各磁性部80は、非磁性材料からなり、磁性粉、すなわち磁性体80aを含有する非磁性バインダ80bを有している。この場合、磁性部80は、第1部分P1及び第3部分P3のような各磁性薄帯40の積層構造ではなく、一体的な成形体である。 Each magnetic part 80 is made of a non-magnetic material and has a non-magnetic binder 80b containing magnetic powder, that is, a magnetic substance 80a. In this case, the magnetic portion 80 is not a laminated structure of the magnetic ribbons 40 such as the first portion P1 and the third portion P3, but an integral molded body.
 非磁性バインダ80bは、例えば、樹脂からなる。こうした樹脂は、例えば、エポキシ樹脂などの樹脂材料である。すなわち、磁性部80は、非磁性バインダ80bが樹脂からなる樹脂コンポジット部であるといえる。絶縁性や成形性を考慮すると、ポリイミド樹脂、アクリル樹脂又はフェノール樹脂を、当該樹脂として採用することが好ましい。ここでいう非磁性とは、比透磁率が「1」となることである。また、絶縁性とは、比抵抗が「1MΩ・cm」以上となることである。 The non-magnetic binder 80b is made of resin, for example. Such a resin is, for example, a resin material such as an epoxy resin. That is, the magnetic portion 80 can be said to be a resin composite portion in which the non-magnetic binder 80b is made of resin. Considering insulation and moldability, it is preferable to employ polyimide resin, acrylic resin, or phenol resin as the resin. The term "non-magnetic" as used herein means that the relative magnetic permeability is "1". In addition, the term “insulating” means that the specific resistance is “1 MΩ·cm” or more.
 非磁性膜70は、第2部分P2において、第1正方向X1の端及び第1負方向X2の端に位置している。第2部分P2の非磁性膜70は、第1部分P1の非磁性膜70と連続している。 The non-magnetic film 70 is located at the end of the first positive direction X1 and the end of the first negative direction X2 in the second portion P2. The non-magnetic film 70 of the second portion P2 is continuous with the non-magnetic film 70 of the first portion P1.
 第2部分P2の第2正方向Z1には、第3部分P3が位置している。第3部分P3は、第2軸Zから視たときに、第1部分P1と同じ正方形状である。第3部分P3は、複数の磁性薄帯40と、複数の層間非磁性部50と、複数の非磁性部60と、複数の非磁性膜70と、で構成されている。本実施形態では、第3部分P3は、第2部分P2を挟んで第1部分P1と対称的な構造であるため、詳細な説明は省略する。 The third portion P3 is located in the second positive direction Z1 of the second portion P2. When viewed from the second axis Z, the third portion P3 has the same square shape as the first portion P1. The third portion P3 is composed of a plurality of magnetic strips 40, a plurality of interlayer non-magnetic portions 50, a plurality of non-magnetic portions 60, and a plurality of non-magnetic films . In the present embodiment, the third portion P3 has a structure symmetrical with the first portion P1 with the second portion P2 interposed therebetween, and thus detailed description thereof will be omitted.
 (第1磁性薄帯及び第2磁性薄帯について)
 図3に示すように、インダクタ配線30の中心軸CAと直交するインダクタ部品10の断面において、インダクタ配線30の第1正方向X1の端を第1配線端IP1とし、インダクタ配線30の第1負方向X2の端を第2配線端IP2とする。
(Regarding the first magnetic ribbon and the second magnetic ribbon)
As shown in FIG. 3, in the cross section of the inductor component 10 perpendicular to the central axis CA of the inductor wiring 30, the end of the inductor wiring 30 in the first positive direction X1 is defined as the first wiring end IP1, and the first negative The end in the direction X2 is defined as a second wiring end IP2.
 インダクタ配線30に対して、第2軸Zに沿う方向に積層された磁性薄帯40のうち、第1配線端IP1からの第2軸Zに沿う距離が最も短い磁性薄帯40を第1磁性薄帯41とする。なお、第1磁性薄帯41の第1軸Xに沿う方向における両端のうち、第1正方向X1の端を第1端MP11とし、第1負方向X2の端を第2端MP12という。 Among the magnetic ribbons 40 laminated in the direction along the second axis Z with respect to the inductor wiring 30, the magnetic ribbon 40 having the shortest distance along the second axis Z from the first wiring end IP1 is selected as the first magnetic ribbon. A ribbon 41 is used. Of the two ends of the first magnetic ribbon 41 along the first axis X, the end in the first positive direction X1 is called a first end MP11, and the end in the first negative direction X2 is called a second end MP12.
 また、インダクタ配線30に対して、第2軸Zに沿う方向に積層された磁性薄帯40のうち、第2配線端IP2からの第2軸Zに沿う距離が最も短い磁性薄帯40を第2磁性薄帯42とする。なお、第2磁性薄帯42の第1軸Xに沿う方向における両端のうち、第1正方向X1の端を第1端MP21とし、第1負方向X2の端を第2端MP22という。 Among the magnetic ribbons 40 laminated in the direction along the second axis Z with respect to the inductor wiring 30, the magnetic ribbon 40 having the shortest distance along the second axis Z from the second wiring end IP2 is selected as the first magnetic ribbon 40. 2 magnetic ribbon 42 . Of the two ends of the second magnetic ribbon 42 along the first axis X, the end in the first positive direction X1 is called a first end MP21, and the end in the first negative direction X2 is called a second end MP22.
 第2軸Zに沿う方向から視た場合に、少なくとも一部分がインダクタ配線30に重複する磁性薄帯40が、インダクタ配線30に対して第2軸Zに沿う方向に積層された磁性薄帯40である。したがって、本実施形態では、第1部分P1における磁性薄帯40及び第3部分P3における磁性薄帯40が、インダクタ配線30に対して第2軸Zに沿う方向に積層された磁性薄帯40である。 The magnetic ribbon 40, which at least partially overlaps the inductor wiring 30 when viewed from the direction along the second axis Z, is the magnetic ribbon 40 laminated in the direction along the second axis Z with respect to the inductor wiring 30. be. Therefore, in the present embodiment, the magnetic ribbon 40 in the first portion P1 and the magnetic ribbon 40 in the third portion P3 are laminated in the direction along the second axis Z with respect to the inductor wiring 30. be.
 そして、第1部分P1の複数の磁性薄帯40のうち、第1配線端IP1の最も近くに位置する磁性薄帯40、及び、第3部分P3の複数の磁性薄帯40のうち、第1配線端IP1の最も近くに位置する磁性薄帯40の各々が、第1磁性薄帯41である。また、第1部分P1の複数の磁性薄帯40のうち、第2配線端IP2の最も近くに位置する磁性薄帯40、及び、第3部分P3の複数の磁性薄帯40のうち、第2配線端IP2の最も近くに位置する磁性薄帯40の各々が、第2磁性薄帯42である。 Among the plurality of magnetic ribbons 40 of the first portion P1, the magnetic ribbon 40 located closest to the first wiring end IP1 and the first magnetic ribbon 40 of the plurality of magnetic ribbons 40 of the third portion P3 are located closest to the first wiring end IP1. Each of the magnetic ribbons 40 positioned closest to the wiring end IP1 is the first magnetic ribbon 41 . In addition, among the plurality of magnetic ribbons 40 of the first portion P1, the magnetic ribbon 40 located closest to the second wiring end IP2, and of the plurality of magnetic ribbons 40 of the third portion P3, the second Each of the magnetic ribbons 40 positioned closest to the wiring end IP2 is the second magnetic ribbon 42 .
 図3に示す断面において、1つの磁性薄帯40において、第1正方向X1の端を第1端とし、第1負方向X2の端を第2端とする。このとき、1つの磁性薄帯40における第1軸Xに沿う方向の両端を除く範囲を、所定範囲AR11とする。 In the cross section shown in FIG. 3, in one magnetic strip 40, the end in the first positive direction X1 is the first end, and the end in the first negative direction X2 is the second end. At this time, the range excluding both ends of one magnetic strip 40 in the direction along the first axis X is defined as a predetermined range AR11.
 インダクタ配線30の第1配線端IP1を通り第2軸Zに沿う方向に延びる第1仮想直線VL1を引いたとき、第1仮想直線VL1は、第1磁性薄帯41の所定範囲AR11内を通っている。具体的には、第1仮想直線VL1は、第1磁性薄帯41の第1軸Xに沿う方向の中央又はその中央近傍を通っている。 When the first virtual straight line VL1 extending in the direction along the second axis Z is drawn through the first wiring end IP1 of the inductor wiring 30, the first virtual straight line VL1 passes through the predetermined range AR11 of the first magnetic ribbon 41. ing. Specifically, the first imaginary straight line VL1 passes through the center of the first magnetic ribbon 41 in the direction along the first axis X or near the center thereof.
 また、第1磁性薄帯41の第2端MP12を通り第2軸Zに沿う方向に延びる第2仮想直線VL2を引いたとき、第2仮想直線VL2は、インダクタ配線30を通る。具体的には、第2仮想直線VL2は、第1軸Xに沿う方向におけるインダクタ配線30の概ね中央を通る。 Also, when the second virtual straight line VL2 extending in the direction along the second axis Z is drawn through the second end MP12 of the first magnetic ribbon 41, the second virtual straight line VL2 passes through the inductor wiring 30. Specifically, the second virtual straight line VL2 passes through approximately the center of the inductor wiring 30 in the direction along the first axis X. As shown in FIG.
 インダクタ配線30の第2配線端IP2を通り第2軸Zに沿う方向に延びる第3仮想直線VL3を引いたとき、第3仮想直線VL3は、第2磁性薄帯42の所定範囲AR11内を通っている。具体的には、第3仮想直線VL3は、第2磁性薄帯42の第1軸Xに沿う方向の中央又はその中央近傍を通っている。 When the third virtual straight line VL3 extending in the direction along the second axis Z is drawn through the second wiring end IP2 of the inductor wiring 30, the third virtual straight line VL3 passes through the predetermined range AR11 of the second magnetic ribbon 42. ing. Specifically, the third imaginary straight line VL3 passes through the center of the second magnetic ribbon 42 in the direction along the first axis X or near the center thereof.
 また、第2磁性薄帯42の第1端MP21を通り第2軸Zに沿う方向に延びる第4仮想直線VL4を引いたとき、第4仮想直線VL4は、インダクタ配線30を通る。具体的には、第4仮想直線VL4は、第1軸Xに沿う方向におけるインダクタ配線30の概ね中央を通る。 Also, when the fourth virtual straight line VL4 extending in the direction along the second axis Z is drawn through the first end MP21 of the second magnetic ribbon 42, the fourth virtual straight line VL4 passes through the inductor wiring 30. Specifically, the fourth virtual straight line VL4 passes through approximately the center of the inductor wiring 30 in the direction along the first axis X. As shown in FIG.
 (インダクタ部品の製造方法)
 次に、インダクタ部品10の製造方法を説明する。
 図5に示すように、先ず、銅箔81を準備する銅箔準備工程を行う。銅箔81は、インダクタ配線30を構成するため、銅箔81の厚さは、インダクタ配線30として必要な厚さのものを準備する。なお、以下の説明では、銅箔81は、当該銅箔81の2つの主面が第2軸Zに直交するように配置されているものとし、且つ中心軸CAに直交する断面を示して説明する。
(Manufacturing method of inductor component)
Next, a method for manufacturing inductor component 10 will be described.
As shown in FIG. 5, first, a copper foil preparation step for preparing a copper foil 81 is performed. Since the copper foil 81 constitutes the inductor wiring 30 , the thickness of the copper foil 81 is prepared to have a thickness necessary for the inductor wiring 30 . In the following description, it is assumed that the copper foil 81 is arranged such that the two main surfaces of the copper foil 81 are orthogonal to the second axis Z, and a cross section orthogonal to the central axis CA is shown. do.
 次に、図6に示すように、銅箔81の第2軸Zに直交する両主面のうち、第2軸Zに沿う方向から視たときに、第2部分P2における磁性部80が占める範囲以外を被覆する第1被覆工程を行う。具体的には、先ず、銅箔81の第2負方向Z2を向く面のうち、第2部分P2における磁性部80が占める範囲以外を被覆する第1被覆部82を形成する。第1被覆部82を形成するにあたっては、銅箔81の第2負方向Z2を向く面全体に、感光性のドライフィルムレジストを塗布する。次に、第1被覆部82を形成する部分について露光することで、ドライフィルムレジストを硬化させる。次に、同様に、銅箔81の第2正方向Z1を向く面にも、ドライフィルムレジストを塗布するとともに、第1被覆部82を形成する部分について露光することで、ドライフィルムレジストを硬化させる。その後、塗布したドライフィルムレジストのうち硬化していない部分を、薬液により剥離除去させる。これにより、塗布したドライフィルムレジストのうち、硬化している部分が、第1被覆部82として形成される。なお、後述する他の工程におけるフォトリソグラフィも、同様の工程であるので、詳細な説明は省略する。 Next, as shown in FIG. 6, when viewed from the direction along the second axis Z of both principal surfaces of the copper foil 81 orthogonal to the second axis Z, the magnetic portion 80 in the second portion P2 occupies A first covering step is performed to cover areas other than the range. Specifically, first, of the surface of the copper foil 81 facing the second negative direction Z2, the first covering portion 82 is formed to cover the area other than the area occupied by the magnetic portion 80 in the second portion P2. In forming the first covering portion 82, the entire surface of the copper foil 81 facing the second negative direction Z2 is coated with a photosensitive dry film resist. Next, the dry film resist is cured by exposing the portion where the first covering portion 82 is to be formed. Next, the dry film resist is similarly applied to the surface of the copper foil 81 facing the second positive direction Z1, and the portion forming the first covering portion 82 is exposed to light to cure the dry film resist. . After that, the uncured portion of the applied dry film resist is peeled off with a chemical solution. As a result, the hardened portion of the applied dry film resist is formed as the first covering portion 82 . Note that photolithography in other steps described later is also the same step, and detailed description thereof will be omitted.
 次に、図7に示すように、第1被覆部82から露出している銅箔81をエッチングする銅箔エッチング工程を行う。部分的に第1被覆部82に被覆された銅箔81についてエッチングすることで、露出している銅箔81を除去する。 Next, as shown in FIG. 7, a copper foil etching step is performed to etch the copper foil 81 exposed from the first covering portion 82 . By etching the copper foil 81 partially covered with the first covering portion 82, the exposed copper foil 81 is removed.
 次に、図8に示すように、第1被覆部82を取り除く第1被覆部除去工程を行う。具体的には、薬品によって、第1被覆部82をウェットエッチングすることにより、第1被覆部82を剥離する。 Next, as shown in FIG. 8, a first covering portion removing step for removing the first covering portion 82 is performed. Specifically, the first covering portion 82 is peeled off by wet etching the first covering portion 82 with a chemical.
 次に、銅箔81の第2軸Zに直交する両面のうち、第2軸Zに沿う方向から視たときに、磁性部80が占める範囲を被覆する第2被覆工程を行う。具体的には、先ず、図9に示すように、銅箔81の第2正方向Z1を向く面全体に、ドライフィルムレジストRを塗布する。次に、図10に示すように、フォトリソグラフィによって、銅箔81の第2正方向Z1を向く面のうち、第2軸Zに沿う方向から視たときに、磁性薄帯40及び層間非磁性部50が占める範囲以外を被覆する第2被覆部83を形成する。その後、同様に、フォトリソグラフィによって、銅箔81の第2負方向Z2を向く面のうち、第2軸Zに沿う方向から視たときに、磁性薄帯40及び層間非磁性部50が占める範囲以外を被覆する第2被覆部83を形成する。 Next, a second covering step is performed to cover the range occupied by the magnetic portion 80 when viewed from the direction along the second axis Z of both surfaces of the copper foil 81 orthogonal to the second axis Z. Specifically, first, as shown in FIG. 9, a dry film resist R is applied to the entire surface of the copper foil 81 facing the second positive direction Z1. Next, as shown in FIG. 10, by photolithography, the magnetic ribbon 40 and the non-magnetic interlayer are formed by photolithography when viewed from the direction along the second axis Z among the surfaces of the copper foil 81 facing the second positive direction Z1. A second covering portion 83 is formed to cover the area other than the area occupied by the portion 50 . After that, similarly, by photolithography, the area occupied by the magnetic ribbon 40 and the interlayer non-magnetic portion 50 when viewed from the direction along the second axis Z on the surface of the copper foil 81 facing the second negative direction Z2. A second covering portion 83 is formed to cover the rest.
 次に、磁性薄帯40及び層間非磁性部50が積層されている積層体841を準備する積層体準備工程を行う。
 先ず、例えば、磁性薄帯40及び層間非磁性部50が積層されている積層体841を準備する。例えば、磁性薄帯40として、薄帯を準備する。薄帯は、例えば、東北マグネットインスティテュート社製のNANOMET(登録商標)、日立金属社製のMetglas(登録商標)やFINEMET(登録商標)、FeSiB、FeSiBCrなどからなるものである。この薄帯を10mm角に切断する。切断した薄帯に非磁性材料をスピンコートによって塗布する。非磁性材料としては、例えばエポキシ樹脂ワニスである。塗布した非磁性材料に、切断した薄帯を積層する。このように、薄帯と非磁性材料とを交互に積層させた後、真空加熱加圧装置で薄帯と非磁性材料とを硬化接着させる。そして、所望の大きさにダイシングすることにより複数の磁性薄帯40及び層間非磁性部50が積層された積層体841を準備できる。本実施形態では、積層体841は、第1部分P1及び第3部分P3における磁性薄帯40及び層間非磁性部50を構成する。
Next, a layered body preparation step of preparing a layered body 841 in which the magnetic ribbon 40 and the interlayer non-magnetic portion 50 are layered is performed.
First, for example, a laminated body 841 in which the magnetic ribbon 40 and the interlayer non-magnetic portion 50 are laminated is prepared. For example, a ribbon is prepared as the magnetic ribbon 40 . The ribbon is made of, for example, NANOMET (registered trademark) manufactured by Tohoku Magnet Institute, Metglas (registered trademark) or FINEMET (registered trademark) manufactured by Hitachi Metals, FeSiB, FeSiBCr, or the like. This ribbon is cut into 10 mm squares. A non-magnetic material is applied to the cut ribbon by spin coating. The non-magnetic material is, for example, epoxy resin varnish. The cut strip is laminated on the coated non-magnetic material. After alternately laminating the thin strips and the non-magnetic material in this manner, the thin strips and the non-magnetic material are hardened and adhered by a vacuum heating and pressurizing device. Then, by dicing into a desired size, a laminated body 841 in which a plurality of magnetic strips 40 and interlayer non-magnetic portions 50 are laminated can be prepared. In the present embodiment, the laminate 841 constitutes the magnetic ribbon 40 and the interlayer non-magnetic portion 50 in the first portion P1 and the third portion P3.
 次に、積層体841を配置する積層体配置工程を行う。
 図11に示すように、第3部分P3における磁性薄帯40及び層間非磁性部50を構成する積層体841を、銅箔81の第2正方向Z1を向く面に、熱可塑性接着剤85によって仮接着させる。なお、熱可塑性接着剤85は、図11~図16では、太線で示す。
Next, a laminate arrangement step of arranging the laminate 841 is performed.
As shown in FIG. 11, the laminate 841 constituting the magnetic ribbon 40 and the interlayer non-magnetic portion 50 in the third portion P3 is adhered to the surface of the copper foil 81 facing the second positive direction Z1 with a thermoplastic adhesive 85. Temporarily attach. The thermoplastic adhesive 85 is indicated by thick lines in FIGS. 11 to 16. FIG.
 次に、図11及び図12に示すように、第2軸Zに沿う方向に全体を反転させる。図13に示すように、第3部分P3を構成する積層体841の第2負方向Z2を向く面のうち、銅箔81に接していない部分に、磁性粉を含有するワニスを塗布する。例えば、当該ワニスは、アクリル樹脂、エポキシ樹脂、シリコン樹脂などの熱可塑性樹脂を含有している。そして、当該ワニスの硬化物842の形状を整える。この硬化物842が、磁性部80となる。 Next, as shown in FIGS. 11 and 12, the whole is inverted in the direction along the second axis Z. As shown in FIG. 13, of the surface facing the second negative direction Z2 of the laminate 841 constituting the third portion P3, the portion not in contact with the copper foil 81 is coated with varnish containing magnetic powder. For example, the varnish contains thermoplastic resins such as acrylic resins, epoxy resins, and silicon resins. Then, the shape of the cured product 842 of the varnish is adjusted. This cured product 842 becomes the magnetic portion 80 .
 次に、図14に示すように、第1部分P1における磁性薄帯40及び層間非磁性部50を構成する積層体841を、銅箔81の第2負方向Z2を向く面及び硬化物842の第2負方向Z2を向く面に、熱可塑性接着剤85によって仮接着させる。これにより、中間生成物84が形成される。 Next, as shown in FIG. 14, the laminated body 841 constituting the magnetic ribbon 40 and the interlayer non-magnetic portion 50 in the first portion P1 is separated from the surface of the copper foil 81 facing the second negative direction Z2 and the hardened material 842. Next, as shown in FIG. Temporarily adhered with a thermoplastic adhesive 85 to the surface facing the second negative direction Z2. This forms an intermediate product 84 .
 次に、図15に示すように、プレス工程を行う。全体を非磁性材料である樹脂材86で覆った状態で、プレス加工を行う。これにより、第2軸Zに沿う方向の各層が圧着される。 Next, as shown in FIG. 15, a pressing process is performed. Pressing is performed in a state in which the whole is covered with a resin material 86 that is a non-magnetic material. Thereby, each layer in the direction along the second axis Z is crimped.
 次に、図16に示すように、個片化加工工程を行う。具体的には、例えば、破断線DLにてダイシングにより個片化する。上述した第2被覆部83のうち、第1軸Xに沿う方向に並ぶ磁性薄帯40の間の部分は、非磁性部60となる。また、第2被覆部83のうち、中心軸CAに沿う方向に並ぶ磁性薄帯40の間の部分は、非磁性部60となる。さらに、熱可塑性接着剤85は、層間非磁性部50の一部として、インダクタ配線30の第2軸Zに沿う方向の両面に残存している。なお、図16に示す例では、中間生成物84の第1正方向X1における端面及び第1負方向X2における端面に沿って切断している。その後、積層体841の第1正方向X1における端面及び第1負方向X2における端面に、非磁性材料からなる非磁性膜70を塗布する。これにより、インダクタ部品10を形成できる。なお、この方法により熱可塑性接着剤85がインダクタ配線30の第1正方向X1を向く側面側及び第1負方向X2を向く側面側にも回り込むため、磁性部80が含有する磁性体80aとインダクタ配線30とは直接接触せず絶縁性が確保される。 Next, as shown in FIG. 16, a singulation process is performed. Specifically, for example, it is separated into pieces by dicing along the break lines DL. The portion between the magnetic strips 40 aligned in the direction along the first axis X in the second covering portion 83 described above becomes the non-magnetic portion 60 . A portion of the second covering portion 83 between the magnetic ribbons 40 aligned in the direction along the central axis CA becomes the non-magnetic portion 60 . Furthermore, the thermoplastic adhesive 85 remains on both surfaces of the inductor wiring 30 in the direction along the second axis Z as part of the interlayer non-magnetic portion 50 . In the example shown in FIG. 16, the intermediate product 84 is cut along the end face in the first positive direction X1 and the end face in the first negative direction X2. After that, the non-magnetic film 70 made of a non-magnetic material is applied to the end faces of the laminate 841 in the first positive direction X1 and the end faces in the first negative direction X2. Thus, the inductor component 10 can be formed. By this method, the thermoplastic adhesive 85 also wraps around the side surfaces of the inductor wiring 30 facing the first positive direction X1 and the side surfaces facing the first negative direction X2. Insulation is ensured without direct contact with the wiring 30 .
 (シミュレーション結果について)
 次に、インダクタ部品10について得られる特性を、比較例のインダクタ部品と比較したシミュレーション結果について説明する。シミュレーションには、ムラタソフトウェア株式会社のFemtet(登録商標)を用いた。
(About simulation results)
Next, simulation results comparing the characteristics obtained for the inductor component 10 with those of the inductor component of the comparative example will be described. Femtet (registered trademark) of Murata Software Co., Ltd. was used for the simulation.
 先ず、シミュレーションの条件について説明する。
 使用したソフトは、ムラタソフトウェア製のFemtet2019である。ソルバは、静磁場解析である。モデルは、3次元である。標準メッシュサイズは、0.25mmである。
First, the simulation conditions will be described.
The software used is Femtet 2019 manufactured by Murata Software. The solver is static magnetic field analysis. The model is three dimensional. A standard mesh size is 0.25 mm.
 インダクタ配線30に関して、第2軸Zに沿う方向の寸法を0.1mmとし、中心軸CAに沿う方向の寸法を2.4mmとする。第1軸Xに沿う方向の寸法については、0.5mm、又は、1.00mmとする。なお、インダクタ配線30の材質は、Cuである。 Regarding the inductor wiring 30, the dimension along the second axis Z is 0.1 mm, and the dimension along the central axis CA is 2.4 mm. The dimension along the first axis X is 0.5 mm or 1.00 mm. The material of the inductor wiring 30 is Cu.
 磁性薄帯40は、Fe、Si、Cr、Bからなるアモルファス金属磁性薄膜である。比透磁率μrは、7000であり、飽和磁束密度Bsは、1.3Tである。また、導電率は、0.568181818MS/mである。磁性薄帯40のBH曲線は、B=Bs×tanh(μ0×μr×H/Bs)を満たすものを使用した。なお、磁性体BH曲線は、真空の透磁率以下にならないように、比透磁率μrが「1」以上の部分を使用し、さらにFemtet2019の機能を使って、真空の透磁率へ外挿した。 The magnetic thin ribbon 40 is an amorphous metal magnetic thin film made of Fe, Si, Cr, and B. The relative magnetic permeability μr is 7000 and the saturation magnetic flux density Bs is 1.3T. Also, the electrical conductivity is 0.568181818MS/m. The BH curve of the magnetic ribbon 40 used satisfies B=Bs×tanh (μ0×μr×H/Bs). For the BH curve of the magnetic material, a portion where the relative permeability μr is "1" or more was used so as not to fall below the magnetic permeability of the vacuum, and the function of Femtet2019 was used to extrapolate the magnetic permeability of the vacuum.
 また、磁性薄帯40に関して、第1軸Xに沿う方向の寸法を0.99mmとし、第2軸Zに沿う方向の寸法を0.02mmとし、中心軸CAに沿う方向の寸法を0.99mmとする。第1軸Xに沿う方向で互いに隣り合う磁性薄帯40の間の寸法を0.02mmとする。第2軸Zに沿う方向で互いに隣り合う磁性薄帯40の間の寸法を0.002mmとする。中心軸CAに沿う方向で互いに隣り合う磁性薄帯40の間の寸法を0.02mmとする。なお、シミュレーションにおいては、素体20の中心軸CAに沿う方向の両端面に、厚みが0.01mmとなる非磁性の層が設けられている。 Regarding the magnetic strip 40, the dimension along the first axis X is 0.99 mm, the dimension along the second axis Z is 0.02 mm, and the dimension along the central axis CA is 0.99 mm. and The dimension between the magnetic strips 40 adjacent to each other in the direction along the first axis X is 0.02 mm. The dimension between the magnetic ribbons 40 adjacent to each other in the direction along the second axis Z is 0.002 mm. The dimension between the magnetic ribbons 40 adjacent to each other in the direction along the central axis CA is 0.02 mm. In the simulation, a non-magnetic layer having a thickness of 0.01 mm was provided on both end surfaces of the base body 20 in the direction along the central axis CA.
 また、第1軸Xに沿う方向において、2個の磁性薄帯40が並んでいるとともに、中心軸CAに沿う方向において、2個の磁性薄帯40が並んでいる。第2軸Zに沿う方向において、41個の磁性薄帯40が並んでいる。 In addition, two magnetic ribbons 40 are aligned in the direction along the first axis X, and two magnetic ribbons 40 are aligned in the direction along the central axis CA. In the direction along the second axis Z, 41 magnetic strips 40 are arranged.
 また、インダクタ配線30と隣り合う磁性薄帯40と、インダクタ配線30との間には、電気的に絶縁する非磁性のギャップを設ける。
 なお、このシミュレーションにおいて、素体20の中心軸CAに沿う方向の寸法は、2.0mmとなる。すなわち、素体20の中心軸CAに沿う方向の寸法は、インダクタ配線30の中心軸CAに沿う方向の寸法よりも0.38mmだけ小さい。そのため、素体20の正方向Y1の端面からインダクタ配線30が0.19mmだけ突出し、素体20の負方向Y2の端面からインダクタ配線30が0.19mmだけ突出した状態で、シミュレーションが行われる。
A non-magnetic gap for electrical insulation is provided between the inductor wiring 30 and the magnetic ribbon 40 adjacent to the inductor wiring 30 .
In this simulation, the dimension of the base body 20 along the central axis CA is 2.0 mm. That is, the dimension of the element body 20 along the central axis CA is smaller than the dimension of the inductor wiring 30 along the central axis CA by 0.38 mm. Therefore, the simulation is performed with the inductor wiring 30 projecting 0.19 mm from the end face of the element body 20 in the positive direction Y1 and the inductor wiring 30 projecting 0.19 mm from the end face of the element body 20 in the negative direction Y2.
 磁性部80に関して、樹脂に含有される磁性粉の形状を、直径30μmの磁性球体とする。すなわち、磁性球体が、磁性体80aに対応する。磁性球体の導電率は、0.568181818MS/mである。磁性球体のBH曲線は、B=Bs×tanh(μ0×μr×H/Bs)を満たすものを使用した。なお、磁性体BH曲線は、真空の透磁率以下にならないように、比透磁率μrが「1」以上の部分を使用し、さらにFemtet2019の機能を使って、真空の透磁率へ外挿した。 Regarding the magnetic portion 80, the shape of the magnetic powder contained in the resin is assumed to be a magnetic sphere with a diameter of 30 μm. That is, the magnetic sphere corresponds to the magnetic body 80a. The conductivity of the magnetic spheres is 0.568181818 MS/m. The BH curve of the magnetic sphere used satisfies B=Bs×tanh (μ0×μr×H/Bs). For the BH curve of the magnetic material, a portion where the relative permeability μr is "1" or more was used so as not to fall below the magnetic permeability of the vacuum, and the function of Femtet2019 was used to extrapolate the magnetic permeability of the vacuum.
 そして、こうしたインダクタ部品のインダクタ配線30には、正弦波の電気信号を入力する。電気信号の振幅は2.25Aであり、電気信号の周波数は1MHzである。
 図18には、実施例1、実施例2、実施例3、比較例1及び比較例2のシミュレーションの結果が図示されている。実施例1及び実施例2においては、磁性部80内で磁性球体が規則的に配置されている。具体的には、第1軸Xに沿う方向で互いに隣り合う各磁性球体の間隔、第2軸Zに沿う方向で互いに隣り合う各磁性球体の間隔、及び、中心軸CAに沿う方向で互いに隣り合う各磁性球体の間隔が、32.5μmである。すなわち、実施例1及び実施例2において、磁性部80では、第2軸Zと直交する方向に複数の磁性球体が並んでいる。そして、第2軸Zと直交する方向で互いに隣り合う磁性球体の間に非磁性材料からなる非磁性部が介在している。また、磁性部80では、第2軸Zに沿う方向に複数の磁性球体が並んでいる。そして、第2軸Zに沿う方向で隣り合う磁性球体の間に非磁性材料からなる非磁性部が介在している。
A sinusoidal electric signal is input to the inductor wiring 30 of such an inductor component. The amplitude of the electrical signal is 2.25 A and the frequency of the electrical signal is 1 MHz.
FIG. 18 shows simulation results of Example 1, Example 2, Example 3, Comparative Example 1, and Comparative Example 2. FIG. In Examples 1 and 2, the magnetic spheres are regularly arranged in the magnetic portion 80 . Specifically, the distance between the magnetic spheres adjacent to each other in the direction along the first axis X, the distance between the magnetic spheres adjacent to each other in the direction along the second axis Z, and the distance between the magnetic spheres adjacent to each other in the direction along the central axis CA The spacing between each mating magnetic sphere is 32.5 μm. That is, in Example 1 and Example 2, a plurality of magnetic spheres are arranged in a direction perpendicular to the second axis Z in the magnetic portion 80 . A non-magnetic portion made of a non-magnetic material is interposed between the magnetic spheres adjacent to each other in the direction orthogonal to the second axis Z. As shown in FIG. Also, in the magnetic portion 80, a plurality of magnetic spheres are arranged in a direction along the second axis Z. As shown in FIG. A non-magnetic portion made of a non-magnetic material is interposed between the magnetic spheres adjacent to each other in the direction along the second Z axis.
 一方、実施例3においては、磁性部80内で磁性球体が不規則に配置されている。
 また、実施例1及び実施例3においては、インダクタ配線30の第1軸Xに沿う方向の寸法は1.00mmである。実施例2においては、インダクタ配線30の第1軸Xに沿う方向の寸法は0.5mmである。なお、図18では、インダクタ配線30の第1軸Xに沿う方向の寸法を「配線幅」と記載している。
On the other hand, in Example 3, the magnetic spheres are arranged irregularly within the magnetic portion 80 .
In addition, in Examples 1 and 3, the dimension of the inductor wiring 30 in the direction along the first axis X is 1.00 mm. In Example 2, the dimension of the inductor wiring 30 in the direction along the first axis X is 0.5 mm. In addition, in FIG. 18, the dimension of the inductor wiring 30 in the direction along the first axis X is described as "wiring width".
 図17には、比較例のインダクタ部品10Aの断面が図示されている。比較例のインダクタ部品10Aの第1部分P1及び第3部分P3は、実施例のインダクタ部品10の第1部分P1及び第3部分P3と同一の構成である。一方、比較例のインダクタ部品10Aの第2部分P2の構成は、実施例のインダクタ部品10の第2部分P2の構成と異なる。すなわち、インダクタ部品10Aの第2部分P2において、インダクタ配線30Aの第1正方向X1には、第2軸Zに沿う方向に複数の磁性薄帯40が積層されている。同様に、インダクタ配線30Aの第1負方向X2には、第2軸Zに沿う方向に複数の磁性薄帯40が積層されている。 FIG. 17 shows a cross section of an inductor component 10A of a comparative example. The first portion P1 and the third portion P3 of the inductor component 10A of the comparative example have the same configuration as the first portion P1 and the third portion P3 of the inductor component 10 of the example. On the other hand, the configuration of second portion P2 of inductor component 10A of the comparative example is different from the configuration of second portion P2 of inductor component 10 of the example. That is, in the second portion P2 of the inductor component 10A, a plurality of magnetic ribbons 40 are laminated in the direction along the second axis Z in the first positive direction X1 of the inductor wiring 30A. Similarly, a plurality of magnetic ribbons 40 are laminated in the direction along the second axis Z in the first negative direction X2 of the inductor wiring 30A.
 図18に示すように、比較例1においては、インダクタ配線30の第1軸Xに沿う方向の寸法は0.5mmである。比較例2においては、インダクタ配線30の第1軸Xに沿う方向の寸法は1.00mmである。 As shown in FIG. 18, in Comparative Example 1, the dimension of the inductor wiring 30 in the direction along the first axis X is 0.5 mm. In Comparative Example 2, the dimension of the inductor wiring 30 in the direction along the first axis X is 1.00 mm.
 図18に示すように、実施例1、実施例2及び実施例3における渦電流損失の各々は、比較例1及び比較例2における渦電流損失よりも小さい。具体的には、実施例1における渦電流損失が16.5mWであり、実施例2における渦電流損失が11.9mWであり、実施例3における渦電流損失が11.2mWである。一方、比較例1における渦電流損失が48.4mWであり、実施例2における渦電流損失が44.0mWである。 As shown in FIG. 18, each of the eddy current losses in Example 1, Example 2, and Example 3 is smaller than the eddy current loss in Comparative Examples 1 and 2. Specifically, the eddy current loss in Example 1 is 16.5 mW, the eddy current loss in Example 2 is 11.9 mW, and the eddy current loss in Example 3 is 11.2 mW. On the other hand, the eddy current loss in Comparative Example 1 is 48.4 mW, and the eddy current loss in Example 2 is 44.0 mW.
 (考察)
 図17に示したとおり、インダクタ配線30と第1軸Xに沿う方向で隣り合う部分において、上記最大断面の面積の大きい磁性体、すなわち磁性薄帯40が存在していると、インダクタ配線30に電流を流した際の渦電流損失が大きくなる。これは、インダクタ配線30と第1軸Xに沿う方向で隣り合う部分に存在する磁性体において第2軸Zと直交する断面の面積が広いほど、当該磁性体で渦電流が大きくなりやすいためであると推測される。
(Discussion)
As shown in FIG. 17, in a portion adjacent to the inductor wiring 30 in the direction along the first axis X, if the magnetic material having a large maximum cross-sectional area, that is, the magnetic ribbon 40 exists, the inductor wiring 30 Eddy current loss increases when current is passed. This is because the larger the area of the cross section perpendicular to the second axis Z in the magnetic material present in the portion adjacent to the inductor wiring 30 in the direction along the first axis X, the larger the eddy current in the magnetic material. It is assumed that there is.
 この点、上記各実施例1~3では、第1軸Xに沿う方向でインダクタ配線30と隣り合う部分には磁性部80を配置している。磁性部80は、複数の磁性球体を有している。磁性球体が、磁性体80aに対応する。そして、磁性球体の上記最大断面の面積は、磁性薄帯40の最大断面の面積よりも小さい。そのため、各実施例1~3では、各比較例1,2の場合よりも渦電流損失を小さくできる。 In this regard, in each of Examples 1 to 3, the magnetic portion 80 is arranged in the portion adjacent to the inductor wiring 30 in the direction along the first axis X. The magnetic portion 80 has a plurality of magnetic spheres. A magnetic sphere corresponds to the magnetic body 80a. The maximum cross-sectional area of the magnetic sphere is smaller than the maximum cross-sectional area of the magnetic ribbon 40 . Therefore, in each of Examples 1 to 3, the eddy current loss can be made smaller than in each of Comparative Examples 1 and 2.
 (本実施形態における作用及び効果)
 本実施形態では、以下に示す作用及び効果を得ることができる。
 (1-1)素体20のうち、第2軸Zに沿う方向におけるインダクタ配線30と同一の位置には、磁性部80が配置されている。磁性部80が含有する磁性体80aの最大断面の面積は、磁性薄帯40の主面MFの面積よりも小さい。これにより、素体20のうち、第2軸Zに沿う方向におけるインダクタ配線30と同一の位置に磁性薄帯40を配置する場合と比較し、インダクタ部品10の渦電流損失を小さくできる。したがって、インダクタ配線30に電流を流した際における渦電流損失が大きくなることを抑制できる。
(Actions and effects in this embodiment)
The following actions and effects can be obtained in this embodiment.
(1-1) A magnetic portion 80 is arranged in the same position as the inductor wiring 30 in the direction along the second axis Z in the element body 20 . The area of the maximum cross section of the magnetic body 80 a contained in the magnetic portion 80 is smaller than the area of the main surface MF of the magnetic ribbon 40 . As a result, the eddy current loss of the inductor component 10 can be reduced compared to the case where the magnetic ribbon 40 is arranged in the same position as the inductor wiring 30 in the direction along the second axis Z in the element body 20 . Therefore, it is possible to suppress an increase in eddy current loss when a current is passed through the inductor wiring 30 .
 (1-2)本実施形態において、磁性部80は、磁性体80aとして、磁性粉を含有している。これにより、磁性体80aの最大断面の面積が大きくなることを抑制できる。
 (1-3)磁性部80は、非磁性バインダ80bを有している。これにより、磁性部80内において、互いに隣り合う磁性粉同士が接触しにくくできる。その結果、磁性体80aの最大断面の面積が大きくなることを抑制できる。
(1-2) In the present embodiment, the magnetic portion 80 contains magnetic powder as the magnetic material 80a. Accordingly, it is possible to suppress an increase in the area of the maximum cross section of the magnetic body 80a.
(1-3) The magnetic portion 80 has a non-magnetic binder 80b. This makes it difficult for adjacent magnetic particles to come into contact with each other in the magnetic portion 80 . As a result, it is possible to suppress an increase in the area of the maximum cross section of the magnetic body 80a.
 (1-4)第1部分P1及び第3部分P3においては、第3軸に沿う方向に複数の磁性薄帯40が並んでいる。また、第4軸に沿う方向にも複数の磁性薄帯40が並んでいる。そのため、1つの磁性薄帯40の主面MFの面積が大きくなることを抑制できる。その結果、各磁性薄帯40において、発生する渦電流が大きくなることを抑制できる。そのため、インダクタ部品10の渦電流損失が大きくなることを抑制できる。 (1-4) In the first portion P1 and the third portion P3, a plurality of magnetic ribbons 40 are arranged in the direction along the third axis. A plurality of magnetic strips 40 are also arranged in the direction along the fourth axis. Therefore, an increase in the area of the main surface MF of one magnetic ribbon 40 can be suppressed. As a result, it is possible to suppress an increase in the eddy current generated in each magnetic ribbon 40 . Therefore, an increase in eddy current loss of inductor component 10 can be suppressed.
 (1-5)アモルファス状態の磁性材料からなる磁性薄帯をアモルファス磁性薄帯とし、ナノ結晶などのように結晶化した磁性材料からなる磁性薄帯を結晶化磁性薄帯とする。この場合、結晶化磁性薄帯の電気抵抗よりもアモルファス磁性薄帯の電気抵抗のほうが大きい。 (1-5) A magnetic ribbon made of a magnetic material in an amorphous state is called an amorphous magnetic ribbon, and a magnetic ribbon made of a crystallized magnetic material such as nanocrystals is called a crystallized magnetic ribbon. In this case, the electrical resistance of the amorphous magnetic ribbon is greater than that of the crystallized magnetic ribbon.
 本実施形態では、第1部分P1を構成するすべての磁性薄帯40をアモルファス磁性薄帯としている。これにより、第1部分P1を構成する磁性薄帯40を結晶化磁性薄帯とする場合と比較し、第1部分P1を構成する磁性薄帯40で発生する渦電流を小さくできる。そのため、インダクタ部品10の渦電流損失が大きくなることを抑制できる。 In the present embodiment, all the magnetic ribbons 40 forming the first portion P1 are amorphous magnetic ribbons. As a result, the eddy current generated in the magnetic ribbon 40 forming the first portion P1 can be reduced compared to the case where the magnetic ribbon 40 forming the first portion P1 is a crystallized magnetic ribbon. Therefore, an increase in eddy current loss of inductor component 10 can be suppressed.
 また、本実施形態では、第3部分P3を構成するすべての磁性薄帯40をアモルファス磁性薄帯としている。これにより、第3部分P3を構成する磁性薄帯40を結晶化磁性薄帯とする場合と比較し、第1部分P1を構成する磁性薄帯40で発生する渦電流を小さくできる。そのため、インダクタ部品10の渦電流損失が大きくなることを抑制できる。 Further, in this embodiment, all the magnetic ribbons 40 forming the third portion P3 are amorphous magnetic ribbons. As a result, the eddy current generated in the magnetic ribbon 40 forming the first portion P1 can be reduced compared to the case where the magnetic ribbon 40 forming the third portion P3 is a crystallized magnetic ribbon. Therefore, an increase in eddy current loss of inductor component 10 can be suppressed.
 (1-6)本実施形態では、第1仮想直線VL1は、第1磁性薄帯41の所定範囲AR11内を通っている。そのため、インダクタ配線30に電流が流れたときに発生する磁束のうち、インダクタ配線30の第1配線端IP1の近傍において、第1仮想直線VL1に沿う向きの磁束の大半は、第1磁性薄帯41の第1軸Xに沿う方向の端を除く部分を通過する。すなわち、インダクタ配線30に電流が流れたときに発生する磁束のうち、第1磁性薄帯41に沿う方向の端を通過する磁束が少なくなる。そのため、磁束が乱れたり、磁束が局所に集中したりすることを抑制できる。こうした第1磁性薄帯41とインダクタ配線30との位置関係によれば、磁性材料の充填率に拠らずとも、特性指標を大きくできる。 (1-6) In the present embodiment, the first virtual straight line VL1 passes through the predetermined range AR11 of the first magnetic ribbon 41. Therefore, of the magnetic flux generated when a current flows through the inductor wiring 30, most of the magnetic flux in the direction along the first imaginary straight line VL1 in the vicinity of the first wiring end IP1 of the inductor wiring 30 is the first magnetic ribbon 41 except for the end in the direction along the first axis X. That is, of the magnetic flux generated when the current flows through the inductor wiring 30, the magnetic flux passing through the ends in the direction along the first magnetic ribbon 41 is reduced. Therefore, it is possible to suppress the disturbance of the magnetic flux and the local concentration of the magnetic flux. According to such a positional relationship between the first magnetic ribbon 41 and the inductor wiring 30, the characteristic index can be increased regardless of the filling rate of the magnetic material.
 ここでいう特性指標は、例えば、(L×Isat)×(L/Rdc)である。「L」とは、インダクタ部品10のインダクタンスである。「Isat」とは、0.001AにおけるインダクタンスLである初期インダクタンスに対してインダクタンスLが20%低下する時の電流値であり、直流重畳特性ともいう。「Rdc」とは、インダクタ配線30の直流電流に対する電気抵抗、すなわち直流配線抵抗ある。 The characteristic index here is, for example, (L×Isat)×(L/Rdc). “L” is the inductance of inductor component 10 . “Isat” is the current value when the inductance L is reduced by 20% from the initial inductance L at 0.001 A, and is also called DC superposition characteristic. “Rdc” is the electrical resistance of the inductor wiring 30 to the DC current, that is, the DC wiring resistance.
 (1-7)本実施形態では、第3仮想直線VL3は、第2磁性薄帯42の所定範囲AR11内を通っている。そのため、インダクタ配線30に電流が流れたときに発生する磁束のうち、インダクタ配線30の第2配線端IP2の近傍において、第2仮想直線VL2に沿う向きの磁束の大半は、第2磁性薄帯42の第1軸Xに沿う方向の端を除く部分を通過する。すなわち、インダクタ配線30に電流が流れたときに発生する磁束のうち、第2磁性薄帯42に沿う方向の端を通過する磁束が少なくなる。そのため、磁束が乱れたり、磁束が局所に集中したりすることを抑制できる。こうした第2磁性薄帯42とインダクタ配線30との位置関係によれば、磁性材料の充填率に拠らずとも、特性指標が大きくなる。 (1-7) In this embodiment, the third imaginary straight line VL3 passes through the predetermined range AR11 of the second magnetic ribbon . Therefore, of the magnetic flux generated when a current flows through the inductor wiring 30, most of the magnetic flux in the direction along the second virtual straight line VL2 near the second wiring end IP2 of the inductor wiring 30 is generated by the second magnetic ribbon. 42 except for the end in the direction along the first axis X. That is, of the magnetic flux generated when the current flows through the inductor wiring 30, the magnetic flux passing through the ends in the direction along the second magnetic ribbon 42 is reduced. Therefore, it is possible to suppress the disturbance of the magnetic flux and the local concentration of the magnetic flux. According to such a positional relationship between the second magnetic ribbon 42 and the inductor wiring 30, the characteristic index is increased regardless of the filling rate of the magnetic material.
 (1-8)本実施形態では、中心軸CAに直交する断面において描かれる仮想長方形VRの第1辺は第1軸Xに沿っており、仮想長方形VRの第2辺は第2軸Zに沿っている。そして、第1辺は、第2辺よりも長い。この場合、長辺である第1辺が延びる方向の端である第1配線端IP1及び第2配線端IP2には、より磁束が集中しやすくなる。そのため、上述した第1磁性薄帯41とインダクタ配線30との位置関係によって、上記特性指標をより大きくできる。 (1-8) In the present embodiment, the first side of the virtual rectangle VR drawn in the cross section orthogonal to the central axis CA is along the first axis X, and the second side of the virtual rectangle VR is along the second axis Z. Along. And the first side is longer than the second side. In this case, the magnetic flux is more likely to concentrate on the first wiring end IP1 and the second wiring end IP2, which are ends in the direction in which the first long side extends. Therefore, depending on the positional relationship between the first magnetic ribbon 41 and the inductor wiring 30, the characteristic index can be increased.
 (1-9)本実施形態では、中心軸CAに直交する断面視において、第2仮想直線VL2は、インダクタ配線30を通っている。第1磁性薄帯41が第1軸Xに沿う方向に過度に大きくないことで、第1磁性薄帯41で発生する渦電流が小さくなる。 (1-9) In this embodiment, the second imaginary straight line VL2 passes through the inductor wiring 30 in a cross-sectional view perpendicular to the central axis CA. Since the first magnetic ribbon 41 is not excessively large in the direction along the first axis X, the eddy current generated in the first magnetic ribbon 41 is reduced.
 (1-10)本実施形態では、中心軸CAに直交する断面視において、第4仮想直線VL4は、インダクタ配線30を通っている。第2磁性薄帯42が第1軸Xに沿う方向に過度に大きくないことで、第2磁性薄帯42で発生する渦電流が小さくなる。 (1-10) In this embodiment, the fourth imaginary straight line VL4 passes through the inductor wiring 30 in a cross-sectional view perpendicular to the central axis CA. Since the second magnetic ribbon 42 is not excessively large in the direction along the first axis X, the eddy current generated in the second magnetic ribbon 42 is reduced.
 (1-11)本実施形態では、複数の磁性薄帯40の第2軸Zに沿う方向の寸法は、すべて等しい。そのため、各磁性薄帯40内での磁束密度が均一化し、特定の箇所において磁束が集中して飽和しにくい。その結果、素体20全体で見た場合の磁束密度が向上する。 (1-11) In this embodiment, the dimensions of the plurality of magnetic strips 40 in the direction along the second axis Z are all equal. As a result, the magnetic flux density in each magnetic strip 40 is made uniform, and the magnetic flux is hard to concentrate and saturate at a specific location. As a result, the magnetic flux density of the entire element body 20 is improved.
 (1-12)本実施形態では、複数の層間非磁性部50の第2軸Zに沿う方向の寸法は、すべて等しい。そのため、層間非磁性部50と磁性薄帯40との界面で生じる磁束の乱れを均一化できる。 (1-12) In the present embodiment, the dimensions in the direction along the second axis Z of the plurality of interlayer nonmagnetic portions 50 are all equal. Therefore, the disturbance of the magnetic flux generated at the interface between the interlayer non-magnetic portion 50 and the magnetic ribbon 40 can be made uniform.
 <第2実施形態>
 次に、インダクタ部品の第2実施形態を図19~図21に従って説明する。以下の説明においては、第1実施形態と相違している部分について主に説明するものとし、第1実施形態と同一又は相当する部材構成には同一符号を付して重複説明を省略するものとする。
<Second embodiment>
Next, a second embodiment of the inductor component will be described with reference to FIGS. 19 to 21. FIG. In the following description, the parts that are different from the first embodiment will be mainly described, and the same reference numerals will be given to members that are the same as or correspond to those of the first embodiment, and redundant description will be omitted. do.
 図19及び図20には、インダクタ部品10Bの断面が図示されている。図19は、インダクタ配線30の中心軸CAと直交するインダクタ部品10Bの断面である。図20は、第1軸Xと直交するインダクタ部品10Bの断面である。 19 and 20 show cross sections of the inductor component 10B. FIG. 19 is a cross section of the inductor component 10B perpendicular to the central axis CA of the inductor wiring 30. FIG. 20 is a cross section of inductor component 10B perpendicular to first axis X. FIG.
 図19に示すように、インダクタ部品10Bは、第1部分P1と、第2部分P2と、第3部分P3と、で構成されている。第1部分P1の構成は、第1実施形態のインダクタ部品10における第1部分P1と同じ構成である。第3部分P3の構成は、第1実施形態のインダクタ部品10における第3部分P3と同じ構成である。 As shown in FIG. 19, the inductor component 10B is composed of a first portion P1, a second portion P2, and a third portion P3. The configuration of the first portion P1 is the same as that of the first portion P1 in the inductor component 10 of the first embodiment. The configuration of the third portion P3 is the same as that of the third portion P3 in the inductor component 10 of the first embodiment.
 第2部分P2は、インダクタ配線30と、磁性部80Bと、複数の非磁性膜70と、で構成されている。
 インダクタ配線30の構成は、第1実施形態のインダクタ部品10におけるインダクタ配線30の構成と同じである。すなわち、インダクタ配線30は、第1軸X及び第2軸Zの何れにも直交する方向に延びている。言い換えると、インダクタ配線30の中心軸CAは、第1軸X及び第2軸Zの何れにも直交している。
The second portion P2 is composed of the inductor wiring 30, the magnetic portion 80B, and the plurality of non-magnetic films 70. As shown in FIG.
The configuration of the inductor wiring 30 is the same as the configuration of the inductor wiring 30 in the inductor component 10 of the first embodiment. That is, the inductor wiring 30 extends in a direction orthogonal to both the first axis X and the second axis Z. As shown in FIG. In other words, the central axis CA of the inductor wiring 30 is orthogonal to both the first axis X and the second axis Z.
 第2部分P2において、インダクタ配線30でない部分は、磁性部80Bと、複数の非磁性膜70と、で構成されている。非磁性膜70の構成は、第1実施形態のインダクタ部品10における非磁性膜70の構成と同じである。 In the second portion P2, the portion other than the inductor wiring 30 is composed of the magnetic portion 80B and the plurality of nonmagnetic films 70. As shown in FIG. The configuration of the nonmagnetic film 70 is the same as the configuration of the nonmagnetic film 70 in the inductor component 10 of the first embodiment.
 図19及び図20に示すように、中心軸CAに直交する断面視で、インダクタ配線30の第1正方向X1に磁性部80Bが配置されている。また、インダクタ配線30の第1負方向X2に磁性部80Bが配置されている。すなわち、第2軸Zに沿う方向におけるインダクタ配線30と同一の位置に、各磁性部80Bが配置されている。 As shown in FIGS. 19 and 20, the magnetic portion 80B is arranged in the first positive direction X1 of the inductor wiring 30 in a cross-sectional view orthogonal to the central axis CA. A magnetic portion 80B is arranged in the first negative direction X2 of the inductor wiring 30 . That is, each magnetic part 80B is arranged at the same position as the inductor wiring 30 in the direction along the second axis Z. As shown in FIG.
 各磁性部80Bは、複数の磁性体を有している。磁性体は、磁性材料からなる。本実施形態でも、各磁性体の最大断面の面積は、磁性薄帯40の主面MFの面積よりも小さい。
 本実施形態では、磁性体は、微少磁性薄帯81Bである。微少磁性薄帯81Bは、平板状である。ここでいう平板状とは、主面を有する薄い形状のことであるが、厚みの薄い直方体に限られず、稜線や角が曲面状であってもよく、主面MFに微小な凹凸があったり、内部に空孔があったりしてもよい。
Each magnetic portion 80B has a plurality of magnetic bodies. A magnetic body consists of a magnetic material. Also in this embodiment, the area of the maximum cross section of each magnetic material is smaller than the area of the main surface MF of the magnetic ribbon 40 .
In this embodiment, the magnetic material is the minute magnetic ribbon 81B. The fine magnetic ribbon 81B is flat. The term "flat plate" as used herein refers to a thin shape having a main surface, but is not limited to a rectangular parallelepiped with a thin thickness. , there may be holes inside.
 微少磁性薄帯81Bの上記最大断面の面積は、磁性薄帯40の主面MFの面積よりも小さい。本実施形態では、微少磁性薄帯81Bの体積は、磁性薄帯40の体積よりも小さい。具体的には、微少磁性薄帯81Bの第1軸Xに沿う方向における寸法は、磁性薄帯40の第1軸Xに沿う方向における寸法よりも小さい。微少磁性薄帯81Bの中心軸CAに沿う方向における寸法は、磁性薄帯40の中心軸CAに沿う方向における寸法よりも小さい。なお、微少磁性薄帯81Bの第2軸Zに沿う方向における寸法は、磁性薄帯40の第2軸Zに沿う方向における寸法と同じでもよいし、当該寸法と異なっていてもよい。 The area of the maximum cross section of the minute magnetic ribbon 81B is smaller than the area of the main surface MF of the magnetic ribbon 40. In this embodiment, the volume of the minute magnetic ribbon 81B is smaller than the volume of the magnetic ribbon 40 . Specifically, the dimension along the first axis X of the minute magnetic ribbon 81B is smaller than the dimension along the first axis X of the magnetic ribbon 40 . The dimension in the direction along the central axis CA of the minute magnetic ribbon 81B is smaller than the dimension in the direction along the central axis CA of the magnetic ribbon 40 . The dimension of the minute magnetic ribbon 81B in the direction along the second axis Z may be the same as the dimension in the direction along the second axis Z of the magnetic ribbon 40, or may be different.
 なお、微少磁性薄帯81Bの上記最大断面の面積が磁性薄帯40の主面MFの面積よりも小さいのであれば、微少磁性薄帯81Bの体積は、磁性薄帯40の体積よりも小さくなくてもよい。 If the area of the maximum cross section of the minute magnetic ribbon 81B is smaller than the area of the main surface MF of the magnetic ribbon 40, the volume of the minute magnetic ribbon 81B is not smaller than the volume of the magnetic ribbon 40. may
 互いに隣り合う微少磁性薄帯81Bの間は、非磁性材料で埋まっている。すなわち、互いに隣り合う微少磁性薄帯81Bの間には、非磁性材料からなる非磁性部81Baが介在している。 A non-magnetic material is filled between the micromagnetic ribbons 81B adjacent to each other. In other words, a non-magnetic portion 81Ba made of a non-magnetic material is interposed between the micromagnetic ribbons 81B adjacent to each other.
 各磁性部80Bにおいて、第2軸Zに沿う方向に各微少磁性薄帯81Bが積層されている。また、第2軸Zに沿う同一の位置において、第2軸Zに直交する第3軸に沿う方向に、複数の微少磁性薄帯81Bが間隔をあけて並んでいる。また、第2軸Zに沿う同一の位置において、第2軸Z及び第3軸に直交する第4軸に沿う方向に、複数の微少磁性薄帯81Bが間隔をあけて並んでいる。なお、本実施形態においても、第3軸は中心軸CAと同一軸であり、且つ第4軸は第1軸Xと一致している。 In each magnetic portion 80B, each fine magnetic ribbon 81B is laminated in the direction along the second axis Z. In addition, at the same position along the second axis Z, a plurality of minute magnetic strips 81B are arranged at intervals in the direction along the third axis orthogonal to the second axis Z. FIG. In addition, at the same position along the second axis Z, a plurality of minute magnetic ribbons 81B are arranged at intervals in a direction along a fourth axis orthogonal to the second axis Z and the third axis. Note that the third axis is the same axis as the central axis CA, and the fourth axis coincides with the first axis X in this embodiment as well.
 微少磁性薄帯81Bは、磁性材料からなっている。磁性材料は、例えば、Fe、Ni、Co、Cr、Cu、Al、Si、B及びPなどを含む金属の磁性材料である。本実施形態では、微少磁性薄帯81Bを構成する磁性材料は、磁性薄帯40を構成する磁性材料と同じである。 The fine magnetic ribbon 81B is made of a magnetic material. The magnetic material is, for example, a metallic magnetic material including Fe, Ni, Co, Cr, Cu, Al, Si, B and P and the like. In this embodiment, the magnetic material forming the minute magnetic ribbon 81B is the same as the magnetic material forming the magnetic ribbon 40 .
 (シミュレーション結果について)
 次に、インダクタ部品10Bについて得られる特性を、比較例のインダクタ部品と比較したシミュレーション結果について説明する。シミュレーションには、ムラタソフトウェア株式会社のFemtet(登録商標)を用いた。
(About simulation results)
Next, simulation results comparing the characteristics obtained for the inductor component 10B with those of the inductor component of the comparative example will be described. Femtet (registered trademark) of Murata Software Co., Ltd. was used for the simulation.
 先ず、シミュレーションの条件について説明する。
 使用したソフトは、ムラタソフトウェア製のFemtet2019である。ソルバは、静磁場解析である。モデルは、3次元である。標準メッシュサイズは、0.25mmである。
First, the simulation conditions will be described.
The software used is Femtet 2019 manufactured by Murata Software. The solver is static magnetic field analysis. The model is three dimensional. A standard mesh size is 0.25 mm.
 インダクタ配線30に関して、第2軸Zに沿う方向の寸法を0.1mmとし、中心軸CAに沿う方向の寸法を2.4mmとする。第1軸Xに沿う方向の寸法については、0.5mm、又は、1.00mmとする。なお、インダクタ配線30の材質は、Cuである。 Regarding the inductor wiring 30, the dimension along the second axis Z is 0.1 mm, and the dimension along the central axis CA is 2.4 mm. The dimension along the first axis X is 0.5 mm or 1.00 mm. The material of the inductor wiring 30 is Cu.
 磁性薄帯40は、Ni及びFeからなるパーマロイ磁性粉で構成されている。比透磁率μrは、7000であり、飽和磁束密度Bsは、1.3Tである。また、導電率は、0.568181818MS/mである。磁性薄帯40のBH曲線は、B=Bs×tanh(μ0×μr×H/Bs)を満たすものを使用した。なお、磁性体BH曲線は、真空の透磁率以下にならないように、比透磁率μrが「1」以上の部分を使用し、さらにFemtet2019の機能を使って、真空の透磁率へ外挿した。 The magnetic ribbon 40 is made of permalloy magnetic powder made of Ni and Fe. The relative magnetic permeability μr is 7000 and the saturation magnetic flux density Bs is 1.3T. Also, the electrical conductivity is 0.568181818MS/m. The BH curve of the magnetic ribbon 40 used satisfies B=Bs×tanh (μ0×μr×H/Bs). For the BH curve of the magnetic material, a portion where the relative permeability μr is "1" or more was used so as not to fall below the magnetic permeability of the vacuum, and the function of Femtet2019 was used to extrapolate the magnetic permeability of the vacuum.
 また、磁性薄帯40に関して、第1軸Xに沿う方向の寸法を0.99mmとし、第2軸Zに沿う方向の寸法を0.02mmとし、中心軸CAに沿う方向の寸法を0.99mmとする。第1軸Xに沿う方向で互いに隣り合う磁性薄帯40の間の寸法を0.02mmとする。第2軸Zに沿う方向で互いに隣り合う磁性薄帯40の間の寸法を0.002mmとする。中心軸CAに沿う方向で互いに隣り合う磁性薄帯40の間の寸法を0.02mmとする。 Regarding the magnetic strip 40, the dimension along the first axis X is 0.99 mm, the dimension along the second axis Z is 0.02 mm, and the dimension along the central axis CA is 0.99 mm. and The dimension between the magnetic strips 40 adjacent to each other in the direction along the first axis X is 0.02 mm. The dimension between the magnetic ribbons 40 adjacent to each other in the direction along the second axis Z is 0.002 mm. The dimension between the magnetic ribbons 40 adjacent to each other in the direction along the central axis CA is 0.02 mm.
 また、第1軸Xに沿う方向において、2個の磁性薄帯40が並んでいるとともに、中心軸CAに沿う方向において、2個の磁性薄帯40が並んでいる。第2軸Zに沿う方向において、41個の磁性薄帯40が並んでいる。 In addition, two magnetic ribbons 40 are aligned in the direction along the first axis X, and two magnetic ribbons 40 are aligned in the direction along the central axis CA. In the direction along the second axis Z, 41 magnetic strips 40 are arranged.
 また、インダクタ配線30と隣り合う磁性薄帯40と、インダクタ配線30との間には、電気的に絶縁する非磁性のギャップを設ける。
 なお、このシミュレーションにおいて、素体20の中心軸CAに沿う方向の寸法は、2.0mmとなる。すなわち、素体20の中心軸CAに沿う方向の寸法は、インダクタ配線30の中心軸CAに沿う方向の寸法よりも0.4mmだけ小さい。そのため、素体20の正方向Y1の端面からインダクタ配線30が0.2mmだけ突出し、素体20の負方向Y2の端面からインダクタ配線30が0.2mmだけ突出した状態で、シミュレーションが行われる。
A non-magnetic gap for electrical insulation is provided between the inductor wiring 30 and the magnetic ribbon 40 adjacent to the inductor wiring 30 .
In this simulation, the dimension of the base body 20 along the central axis CA is 2.0 mm. That is, the dimension of the element body 20 along the central axis CA is smaller than the dimension of the inductor wiring 30 along the central axis CA by 0.4 mm. Therefore, the simulation is performed with the inductor wiring 30 projecting 0.2 mm from the end face of the element body 20 in the positive direction Y1 and the inductor wiring 30 projecting 0.2 mm from the end face of the element body 20 in the negative direction Y2.
 磁性部80Bに関して、微少磁性薄帯81Bの形状は、立方体である。微少磁性薄帯81Bは、Ni及びFeからなるパーマロイ磁性粉で構成されている。比透磁率μrは、7000であり、飽和磁束密度Bsは、1.3Tである。また、導電率は、0.568181818MS/mである。微少磁性薄帯81BのBH曲線は、B=Bs×tanh(μ0×μr×H/Bs)を満たすものを使用した。なお、磁性体BH曲線は、真空の透磁率以下にならないように、比透磁率μrが「1」以上の部分を使用し、さらにFemtet2019の機能を使って、真空の透磁率へ外挿した。 Regarding the magnetic portion 80B, the shape of the fine magnetic ribbon 81B is a cube. The fine magnetic ribbon 81B is made of permalloy magnetic powder made of Ni and Fe. The relative magnetic permeability μr is 7000 and the saturation magnetic flux density Bs is 1.3T. Also, the electrical conductivity is 0.568181818MS/m. A BH curve satisfying B=Bs×tanh (μ0×μr×H/Bs) was used for the micromagnetic ribbon 81B. For the BH curve of the magnetic material, a portion where the relative permeability μr is "1" or more was used so as not to fall below the magnetic permeability of the vacuum, and the function of Femtet2019 was used to extrapolate the magnetic permeability of the vacuum.
 そして、こうしたインダクタ部品のインダクタ配線30には、正弦波の電気信号を入力する。電気信号の振幅は2.25Aであり、電気信号の周波数は1MHzである。
 図21には、実施例4、実施例5、比較例1及び比較例2のシミュレーションの結果が図示されている。比較例1及び比較例2については、上記第1実施形態のものと同じである。
A sinusoidal electric signal is input to the inductor wiring 30 of such an inductor component. The amplitude of the electrical signal is 2.25 A and the frequency of the electrical signal is 1 MHz.
FIG. 21 shows simulation results of Examples 4, 5, Comparative Examples 1 and 2. In FIG. Comparative Examples 1 and 2 are the same as those of the first embodiment.
 実施例4では、微少磁性薄帯81Bにおける、第1軸Xに沿う方向における寸法、第2軸Zに沿う方向における寸法及び中心軸CAに沿う方向における寸法の各々は、29μmである。そして、第1軸Xに沿う方向で互いに隣り合う各微少磁性薄帯81Bの間隔は32.25μmであり、第2軸Zに沿う方向で互いに隣り合う各微少磁性薄帯81Bの間隔は32.25μmである。中心軸CAに沿う方向で互いに隣り合う各微少磁性薄帯81Bの間隔は32.25μmである。 In Example 4, each of the dimensions in the direction along the first axis X, the dimension in the direction along the second axis Z, and the dimension in the direction along the central axis CA of the minute magnetic ribbon 81B is 29 μm. The interval between the minute magnetic ribbons 81B adjacent to each other in the direction along the first axis X is 32.25 μm, and the interval between the minute magnetic ribbons 81B adjacent to each other in the direction along the second axis Z is 32.25 μm. 25 μm. The interval between the magnetic micro ribbons 81B adjacent to each other in the direction along the central axis CA is 32.25 μm.
 実施例5では、微少磁性薄帯81Bにおける、第1軸Xに沿う方向における寸法、第2軸Zに沿う方向における寸法及び中心軸CAに沿う方向における寸法の各々は、28μmである。そして、第1軸Xに沿う方向で互いに隣り合う各微少磁性薄帯81Bの間隔は32.0μmであり、第2軸Zに沿う方向で互いに隣り合う各微少磁性薄帯81Bの間隔は32.0μmである。中心軸CAに沿う方向で互いに隣り合う各微少磁性薄帯81Bの間隔は32.0μmである。 In Example 5, each of the dimensions in the direction along the first axis X, the dimension in the direction along the second axis Z, and the dimension in the direction along the central axis CA of the minute magnetic ribbon 81B is 28 μm. The interval between the minute magnetic ribbons 81B adjacent to each other in the direction along the first axis X is 32.0 μm, and the interval between the minute magnetic ribbons 81B adjacent to each other in the direction along the second axis Z is 32.0 μm. 0 μm. The interval between the magnetic micro ribbons 81B adjacent to each other in the direction along the central axis CA is 32.0 μm.
 図21に示すように、実施例4及び実施例5における渦電流損失の各々は、比較例1及び比較例2における渦電流損失よりも小さい。具体的には、実施例4における渦電流損失が18.7mWであり、実施例2における渦電流損失が17.0mWである。一方、比較例1における渦電流損失が48.4mWであり、実施例2における渦電流損失が44.0mWである。 As shown in FIG. 21, each of the eddy current losses in Examples 4 and 5 is smaller than the eddy current loss in Comparative Examples 1 and 2. Specifically, the eddy current loss in Example 4 is 18.7 mW, and the eddy current loss in Example 2 is 17.0 mW. On the other hand, the eddy current loss in Comparative Example 1 is 48.4 mW, and the eddy current loss in Example 2 is 44.0 mW.
 (考察)
 図17に示したとおり、インダクタ配線30と第1軸Xに沿う方向で隣り合う部分において、体積の大きい磁性体、例えば磁性薄帯40が存在していると、インダクタ配線30に電流を流した際の渦電流損失が大きくなる。これは、インダクタ配線30と第1軸Xに沿う方向で隣り合う部分に存在する磁性体において第2軸Zと直交する面の面積が広いほど、当該磁性体で渦電流が大きくなりやすいためであると推測される。
(Discussion)
As shown in FIG. 17, when a magnetic material having a large volume, such as a magnetic strip 40, is present in a portion adjacent to the inductor wiring 30 in the direction along the first axis X, the current flows through the inductor wiring 30. eddy current loss increases. This is because the larger the area of the surface perpendicular to the second axis Z in the magnetic material present in the portion adjacent to the inductor wiring 30 in the direction along the first axis X, the larger the eddy current in the magnetic material. It is assumed that there is.
 この点、上記各実施例4,5では、第1軸Xに沿う方向でインダクタ配線30と隣り合う部分には磁性部80Bを配置している。磁性部80Bに含まれる微少磁性薄帯81Bの最大断面の面積は、磁性薄帯40の主面MFの面積よりも小さい。そのため、各実施例4,5では、各比較例1,2の場合よりも渦電流損失を小さくできる。 In this respect, in each of Examples 4 and 5, the magnetic portion 80B is arranged in the portion adjacent to the inductor wiring 30 in the direction along the first axis X. The area of the maximum cross section of the minute magnetic ribbon 81B included in the magnetic portion 80B is smaller than the area of the main surface MF of the magnetic ribbon 40 . Therefore, in Examples 4 and 5, the eddy current loss can be made smaller than in Comparative Examples 1 and 2, respectively.
 なお、実施例4と実施例5とを比較した場合、僅かではあるが、実施例5における渦電流損失が実施例4における渦電流損失よりも小さい。これは、実施例5における微少磁性薄帯81Bの上記最大断面の面積が、実施例4における微少磁性薄帯81Bの最大断面の面積よりも小さいためであると考えられる。 It should be noted that when Example 4 and Example 5 are compared, the eddy current loss in Example 5 is smaller than the eddy current loss in Example 4, although slightly. This is probably because the maximum cross-sectional area of the minute magnetic ribbon 81B in Example 5 is smaller than the maximum cross-sectional area of the minute magnetic ribbon 81B in Example 4.
 (作用及び効果)
 本実施形態では、上記第1実施形態における効果(1-1)、(1-3)~(1-12)に加え、以下に示す効果をさらに得ることができる。
(Action and effect)
In this embodiment, in addition to the effects (1-1), (1-3) to (1-12) of the first embodiment, the following effects can be obtained.
 (2-1)本実施形態において、磁性部80Bは、複数の微少磁性薄帯81Bを有している。この場合、インダクタ配線30に電流が流れる際に、微少磁性薄帯81Bで発生する渦電流は大きくならない。その結果、インダクタ部品10の第2部分P2が、磁性薄帯40ではなく磁性部80Bを備えるようにすることによって、インダクタ部品10Bの渦電流損失を小さくできる。 (2-1) In this embodiment, the magnetic portion 80B has a plurality of fine magnetic ribbons 81B. In this case, when current flows through the inductor wiring 30, the eddy current generated in the fine magnetic ribbon 81B does not increase. As a result, the eddy current loss of inductor component 10B can be reduced by providing second portion P2 of inductor component 10 with magnetic portion 80B instead of magnetic ribbon 40. FIG.
 (2-2)磁性部80Bでは、互いに隣り合う微少磁性薄帯81Bの間に非磁性材料が充填されている。そのため、互いに隣り合う微少磁性薄帯81B同士が接触することを抑制できる。これにより、最大断面の面積が大きい磁性体が磁性部80Bに設けられてしまうことを抑制できる。したがって、インダクタ部品10Bの渦電流損失を小さくできる。 (2-2) In the magnetic portion 80B, a non-magnetic material is filled between the mutually adjacent minute magnetic ribbons 81B. Therefore, it is possible to suppress contact between the adjacent minute magnetic ribbons 81B. Accordingly, it is possible to prevent a magnetic body having a large maximum cross-sectional area from being provided in the magnetic portion 80B. Therefore, the eddy current loss of inductor component 10B can be reduced.
 <第3実施形態>
 第3実施形態では、インダクタ部品10の製造方法が第1実施形態と異なっている。そこで、ここでは、インダクタ部品10の製造方法について説明する。
<Third Embodiment>
The third embodiment differs from the first embodiment in the method of manufacturing inductor component 10 . Therefore, here, a method for manufacturing the inductor component 10 will be described.
 図22に示すように、インダクタ部品10の製造方法は、第1シート準備工程S11と、第2シート準備工程S12と、積層工程S13と、圧着工程S14と、個片化工程S15と、焼結工程S16と、被膜処理工程S17と、を備えている。 As shown in FIG. 22, the method for manufacturing the inductor component 10 includes a first sheet preparation step S11, a second sheet preparation step S12, a stacking step S13, a crimping step S14, a singulation step S15, and sintering. A step S16 and a coating treatment step S17 are provided.
 先ず、第1シート準備工程S11を行う。第1シート210は、非磁性層211と、磁性層212と、を有している。磁性層212は、磁性材料である金属磁性粉212Mを含んでいる。図23に示すように、第1シート210を製造するにあたっては、先ず、第1基材91としてPETからなるフィルムを準備する。第1基材91は、PETやアルミナ、フェライトの基板のように部品の完成時には除去されてしまうものであってもよいし、ガラスの非磁性層211のように残るものであってもよい。なお、以下の説明では、第1基材91の2つの主面が第2軸Zに直交するように配置されているものとし、且つ中心軸CAに直交する断面を示して説明する。また、図23~図30においては、理解しやすさのため、寸法の比率を、図3とは、大きく変更して図示している。 First, the first sheet preparation step S11 is performed. The first sheet 210 has a nonmagnetic layer 211 and a magnetic layer 212 . The magnetic layer 212 contains metal magnetic powder 212M, which is a magnetic material. As shown in FIG. 23 , in manufacturing the first sheet 210 , first, a film made of PET is prepared as the first base material 91 . The first base material 91 may be a substrate such as PET, alumina, or ferrite which is removed when the component is completed, or may be left as the non-magnetic layer 211 of glass. In the following description, two main surfaces of the first base member 91 are arranged so as to be orthogonal to the second axis Z, and a cross section orthogonal to the central axis CA is shown. Also, in FIGS. 23 to 30, the dimensional ratios are greatly changed from those in FIG. 3 for ease of understanding.
 第1基材91の第2正方向Z1を向く主面に、非磁性且つ絶縁性の非磁性材料からなる非磁性ペーストを塗布してシート状に成形する。これにより、非磁性層211を形成する。非磁性層211は、例えば、アルミナ、シリカ、結晶化ガラス、非晶質ガラスなどを含んでいる非磁性材料からなっている。 A non-magnetic paste made of a non-magnetic and insulating non-magnetic material is applied to the main surface of the first base material 91 facing the second positive direction Z1 and formed into a sheet. Thus, the non-magnetic layer 211 is formed. The non-magnetic layer 211 is made of a non-magnetic material including, for example, alumina, silica, crystallized glass, amorphous glass, and the like.
 次に、図24に示すように、非磁性層211の第2軸Zに沿う第2正方向Z1を向く面に、磁性材料である金属磁性粉212Mを含む金属磁性ペーストを塗布する。これにより、磁性層212を形成する。磁性層212は、樹脂92に磁性材料が含まれている金属磁性ペーストからなっている。詳しくは後述するが、図24に示す磁性層212の一部は、磁性薄帯40を構成する。そのため、金属磁性ペーストは、磁性薄帯40を構成する磁性材料を含んでいる。つまり、金属磁性ペーストは、金属の磁性材料として、Fe、Ni、Co、Cr、Cu、Al、Si、B及びPなどを含んでいる。 Next, as shown in FIG. 24, a metal magnetic paste containing metal magnetic powder 212M, which is a magnetic material, is applied to the surface of the non-magnetic layer 211 along the second axis Z and facing the second positive direction Z1. Thus, the magnetic layer 212 is formed. The magnetic layer 212 is made of metal magnetic paste in which the resin 92 contains a magnetic material. Although the details will be described later, part of the magnetic layer 212 shown in FIG. 24 constitutes the magnetic ribbon 40 . Therefore, the metal magnetic paste contains a magnetic material that forms the magnetic ribbon 40 . That is, the metal magnetic paste contains Fe, Ni, Co, Cr, Cu, Al, Si, B, P, and the like as metal magnetic materials.
 次に、図25に示すように、レーザ加工により、磁性層212に溝212Hを形成する。溝212Hは、磁性層212を貫通している。第2軸Zに沿う方向から視たときに、溝212Hからは、非磁性層211の一部が、第2軸Zに沿う第2正方向Z1に露出している。 Next, as shown in FIG. 25, grooves 212H are formed in the magnetic layer 212 by laser processing. The groove 212H penetrates the magnetic layer 212 . A portion of the non-magnetic layer 211 is exposed in the second positive direction Z1 along the second axis Z from the groove 212H when viewed from the direction along the second axis Z. As shown in FIG.
 次に、図26に示すように、印刷などにより、磁性層212に形成された溝212Hを、非磁性且つ絶縁性の材料からなる非磁性ペーストで充填する。これにより、溝内非磁性部213を形成する。また、これと同時に、磁性層212を分割した複数の分割磁性層212Dを形成する。さらに、分割磁性層212Dをシート状に形成することにより、第1シート210が準備される。なお、第1シート210は、製造しようとするインダクタ部品10の磁性薄帯40の積層数と同数準備する。 Next, as shown in FIG. 26, the grooves 212H formed in the magnetic layer 212 are filled with a non-magnetic paste made of a non-magnetic and insulating material by printing or the like. Thus, the in-groove non-magnetic portion 213 is formed. At the same time, a plurality of divided magnetic layers 212D obtained by dividing the magnetic layer 212 are formed. Furthermore, the first sheet 210 is prepared by forming the split magnetic layer 212D into a sheet. The first sheets 210 are prepared in the same number as the laminated number of the magnetic strips 40 of the inductor component 10 to be manufactured.
 次に、第2シート準備工程S12を行う。第2シート220は、配線パターン221と、ネガパターン222と、を有している。先ず、第2シート220を製造するにあたっては、図27に示すように、第2基材93を準備する。第2基材93は、PETやアルミナ、フェライトの基板のように部品の完成時には除去されてしまうものであってもよいし、ガラスの非磁性層211のように残るものであってもよい。なお、以下の説明では、第2基材93の2つの主面が第2軸Zに直交するように配置されているものとする。 Next, a second sheet preparation step S12 is performed. The second sheet 220 has wiring patterns 221 and negative patterns 222 . First, in manufacturing the second sheet 220, a second base material 93 is prepared as shown in FIG. The second base material 93 may be a substrate such as PET, alumina, or ferrite which is removed when the component is completed, or may be left as the non-magnetic layer 211 of glass. In addition, in the following description, it is assumed that the two main surfaces of the second base material 93 are arranged so as to be orthogonal to the second axis Z. As shown in FIG.
 第2基材93の第2正方向Z1を向く主面に、非磁性且つ絶縁性の非磁性材料からなる非磁性ペーストを塗布してシート状に成形する。これにより、非磁性層211を形成する。 A non-magnetic paste made of a non-magnetic and insulating non-magnetic material is applied to the main surface of the second base material 93 facing the second positive direction Z1 and formed into a sheet. Thus, the non-magnetic layer 211 is formed.
 次に、非磁性層211の第2正方向Z1を向く主面に、印刷などにより、部分的に導電ペーストを塗布する。これにより、配線パターン221を形成する。配線パターン221は、導電性材料である。例えば、配線パターン221は、AgやCuの導体ペーストからなっている。 Next, the main surface of the non-magnetic layer 211 facing the second positive direction Z1 is partially coated with a conductive paste by printing or the like. Thereby, the wiring pattern 221 is formed. The wiring pattern 221 is made of a conductive material. For example, the wiring pattern 221 is made of Ag or Cu conductor paste.
 なお、配線パターン221を形成する方法は、スクリーン印刷法などの印刷以外にも、感光性材料を用いたフォトリソグラフィ法、セミアディティブなどのめっき系工法、別シートに形成された配線パターンを転写する転写法などであってもよい。また、めっき系工法や転写法の場合には、導電ペーストではなく、樹脂を含まない金属膜を配線パターン221の材料として用いればよい。 The wiring pattern 221 may be formed by a method other than printing such as a screen printing method, a photolithography method using a photosensitive material, a plating method such as semi-additive, or transferring a wiring pattern formed on a separate sheet. A transfer method or the like may also be used. In the case of the plating method or the transfer method, a metal film containing no resin may be used as the material of the wiring pattern 221 instead of the conductive paste.
 次に、図28に示すように、非磁性層211の第2正方向Z1を向く主面のうち、配線パターン221が塗布されていない部分に、印刷などにより、ネガペーストを充填塗布する。これにより、ネガパターン222を形成する。詳しくは後述するが、ネガパターン222が、磁性部80を構成する。そのため、図示は省略するが、ネガパターン222は、磁性部80を構成する磁性粉及び非磁性材料を含んでいる。これにより、第2シート220を準備する。本実施形態では、非磁性層211が、配線パターン221及びネガパターン222を形成するためのシート状の基材となっている。なお、本実施形態では、磁性部80が含有する非磁性材料は、例えば、アルミナやガラスなどのような焼結が可能な非磁性材料である。 Next, as shown in FIG. 28, of the main surface facing the second positive direction Z1 of the non-magnetic layer 211, portions where the wiring pattern 221 is not applied are filled and coated with a negative paste by printing or the like. Thus, a negative pattern 222 is formed. Although the details will be described later, the negative pattern 222 constitutes the magnetic portion 80 . Therefore, although illustration is omitted, the negative pattern 222 contains magnetic powder and non-magnetic material that constitute the magnetic portion 80 . Thus, the second sheet 220 is prepared. In this embodiment, the non-magnetic layer 211 serves as a sheet-like base material for forming the wiring pattern 221 and the negative pattern 222 . In this embodiment, the non-magnetic material contained in the magnetic portion 80 is a sinterable non-magnetic material such as alumina or glass.
 次に、準備した第1シート210及び第2シート220を積層する積層工程S13を行う。図29に示すように、先ず、第1シート210から、第1基材91を剥離し、シートの上下方向はそのままに、図示を省略する所定の治具台に載置する。そして、第2シート220における配線パターン221及びネガパターン222の非磁性層211が塗布されている面とは反対方向を向く面に、第1シート210における非磁性層211の磁性層212が塗布されている面とは反対方向を向く面を向かい合わせて接着させる。これにより、第2シート220の第2軸Zに沿う第2正方向Z1に、第1シート210が積層される。 Next, a lamination step S13 of laminating the prepared first sheet 210 and second sheet 220 is performed. As shown in FIG. 29, first, the first base material 91 is peeled off from the first sheet 210, and the sheet is placed on a predetermined jig table (not shown) while maintaining the vertical direction of the sheet. The magnetic layer 212 of the non-magnetic layer 211 of the first sheet 210 is applied to the surface of the wiring pattern 221 and the negative pattern 222 of the second sheet 220 facing in the opposite direction to the surface on which the non-magnetic layer 211 is applied. Glue the side facing away from the side facing inward. As a result, the first sheet 210 is laminated in the second positive direction Z1 along the second axis Z of the second sheet 220 .
 同様に、別の第1シート210から第1基材91を剥離する。そして、第2シート220に積層された第1シート210の第2シート220と接着している面とは反対方向を向く面に、別の第1シート210における非磁性層211の磁性層212が塗布されている面とは反対方向を向く面を向かい合わせて接着させる。なお、図示は省略するが、インダクタ部品10の第3部分P3に積層される磁性薄帯40の枚数だけ、第1シート210を積層させる。 Similarly, the first base material 91 is peeled off from another first sheet 210 . Then, the magnetic layer 212 of the non-magnetic layer 211 in another first sheet 210 is placed on the surface of the first sheet 210 laminated on the second sheet 220 facing in the opposite direction to the surface bonded to the second sheet 220. The surface facing the opposite direction to the coated surface is faced and adhered. Although illustration is omitted, the first sheets 210 are laminated by the number of the magnetic ribbons 40 laminated on the third portion P3 of the inductor component 10 .
 次に、第2シート220から、第2基材93を剥離する。そして、第2シート220における非磁性層211の配線パターン221が塗布されている面とは反対方向を向く面に、第1シート210における磁性層212の非磁性層211が塗布されている面とは反対方向を向く面を向かい合わせて接着させる。そして、第1シート210から、第1基材91を剥離する。 Next, the second base material 93 is peeled off from the second sheet 220 . The surface of the first sheet 210 on which the non-magnetic layer 211 of the magnetic layer 212 is applied and the surface of the second sheet 220 facing in the opposite direction to the surface on which the wiring pattern 221 of the non-magnetic layer 211 is applied. are glued together with opposite sides facing each other. Then, the first base material 91 is peeled off from the first sheet 210 .
 同様に、第2シート220に積層された第1シート210における非磁性層211の磁性層212が塗布されている面とは反対方向を向く面に、別の第1シート210における磁性層212の非磁性層211が塗布されている面とは反対方向を向く面を向かい合わせて接着させる。なお、図示は省略するが、インダクタ部品10の第1部分P1に積層される磁性薄帯40の枚数だけ、第1シート210を積層させる。このように、第2シート220の両主面に第1シート210を繰り返し積層させる。すなわち、積層体200を形成する際に、分割磁性層212Dを複数積層させる。 Similarly, the magnetic layer 212 of another first sheet 210 is attached to the surface of the non-magnetic layer 211 of the first sheet 210 laminated on the second sheet 220 facing in the opposite direction to the surface on which the magnetic layer 212 is applied. The surfaces facing the opposite direction to the surface coated with the non-magnetic layer 211 are made to face each other and adhered. Although illustration is omitted, the same number of first sheets 210 as the number of magnetic ribbons 40 to be laminated on the first portion P1 of the inductor component 10 are laminated. In this manner, the first sheet 210 is repeatedly laminated on both main surfaces of the second sheet 220 . That is, when forming the laminate 200, a plurality of divided magnetic layers 212D are laminated.
 次に、圧着工程S14を行う。上記の積層工程S13によって積層された第1シート210及び第2シート220を、WIPなどのプレスを行い圧着する。これによって、積層体200を形成する。 Next, the crimping step S14 is performed. The first sheet 210 and the second sheet 220 laminated in the lamination step S13 are press-bonded by pressing such as WIP. Thus, a laminate 200 is formed.
 次に、個片化工程S15を行う。図30に示すように、例えば、積層体200を、所定の破断線DLにてダイシングすることにより個片化する。これにより、積層体200を個片化した個片部201を形成する。個片部201は、配線パターン221及び分割磁性層212Dによって構成されている。複数個の個片部201が、積層体200において、行列状に配置されている。なお、本実施形態では、個片部201は、1つの配線パターン221を有している。 Next, singulation step S15 is performed. As shown in FIG. 30, for example, the laminated body 200 is singulated by dicing along predetermined breaking lines DL. As a result, individual pieces 201 obtained by separating the laminate 200 into pieces are formed. The individual piece portion 201 is composed of a wiring pattern 221 and a divided magnetic layer 212D. A plurality of individual pieces 201 are arranged in a matrix in the laminate 200 . In addition, in this embodiment, the individual piece portion 201 has one wiring pattern 221 .
 次に、焼結工程S16を行う。図31に示すように、個片化工程S15において個片化された積層体200の個片部201を、所定時間だけ焼成することにより、焼結させる。これにより、配線パターン221は、焼結体のインダクタ配線30になる。ネガパターン222は、焼結体の磁性部80になる。非磁性層211は、焼結体の層間非磁性部50になる。溝内非磁性部213は、焼結体の非磁性部60になる。また、焼成によって磁性層212から樹脂が揮発するため、磁性層212には磁性材料のみが残ることになる。その結果、磁性材料からなる焼結体の磁性薄帯40が構成される。 Next, the sintering step S16 is performed. As shown in FIG. 31, the individual pieces 201 of the laminate 200 that have been singulated in the singulation step S15 are sintered by firing for a predetermined time. As a result, the wiring pattern 221 becomes the inductor wiring 30 of the sintered body. The negative pattern 222 becomes the magnetic portion 80 of the sintered body. The nonmagnetic layer 211 becomes the interlayer nonmagnetic portion 50 of the sintered body. The in-groove non-magnetic portion 213 becomes the non-magnetic portion 60 of the sintered body. Moreover, since the resin volatilizes from the magnetic layer 212 by firing, only the magnetic material remains in the magnetic layer 212 . As a result, a sintered magnetic ribbon 40 made of a magnetic material is formed.
 次に、被膜処理工程S17を行う。個片化工程S15においてダイシングした破断線DLを含む面を、非磁性の絶縁体である非磁性膜70で覆う。その結果、個片部201は、インダクタ部品10となる。なお、焼結工程S16によって、インダクタ部品10の体積は、個片部201の体積と比べて、小さくなる。 Next, the coating treatment step S17 is performed. A non-magnetic film 70, which is a non-magnetic insulator, covers the surface including the breaking line DL diced in the singulation step S15. As a result, the piece portion 201 becomes the inductor component 10 . Note that the volume of the inductor component 10 becomes smaller than the volume of the individual piece portion 201 by the sintering step S16.
 <変更例>
 上記各実施形態は、以下のように変更して実施することができる。上記各実施形態及び以下の変更例は、技術的に矛盾しない範囲で組み合わせて実施することができる。
<Change example>
Each of the above embodiments can be implemented with the following modifications. Each of the above-described embodiments and the following modifications can be implemented in combination within a technically consistent range.
 ・素体20の形状は、上記実施形態の例に限られない。例えば、第2軸Zに沿う方向から視たときに、長方形状であってもよいし、四角形以外の多角形状であってもよい。また、素体20の形状は、第2軸Zに沿う方向から視たときに、円状であってもよいし、楕円形状であってもよい。また、素体20の形状は、立方体であってもよい。また、素体20の形状は、第3軸に沿う方向における寸法と第4軸に沿う方向における寸法とが異なる直方体であってもよいし、多角柱であってもよいし、円柱などであってもよい。 · The shape of the base body 20 is not limited to the example of the above embodiment. For example, when viewed from the direction along the second axis Z, it may have a rectangular shape, or may have a polygonal shape other than a quadrangle. Further, the shape of the element body 20 may be circular or elliptical when viewed from the direction along the second axis Z. As shown in FIG. Moreover, the shape of the element body 20 may be a cube. Further, the shape of the base body 20 may be a rectangular parallelepiped having different dimensions in the direction along the third axis and the dimension in the direction along the fourth axis, or may be a polygonal column, a cylinder, or the like. may
 ・インダクタ配線30とは、電流が流れた場合に磁性薄帯40に磁束を発生させることによって、インダクタ部品10にインダクタンスLを付与できるものであれば、形状は適宜に変更できる。 · The shape of the inductor wiring 30 can be appropriately changed as long as the inductor wiring 30 can give inductance L to the inductor component 10 by generating a magnetic flux in the magnetic ribbon 40 when a current flows.
 例えば、図32に示す変更例のインダクタ部品10Cでは、中心軸CAに直交する断面において、インダクタ配線130は、楕円状である。そして、インダクタ配線130に外接するとともに、第1軸Xに沿う第1辺及び第2軸Zに沿う第2辺を有する面積が最小の仮想長方形VR2を描く。このとき、仮想長方形VR2の第1辺は、仮想長方形VR2の第2辺よりも長い。このように、仮想長方形VR2の長辺が第1軸と平行であると、磁束のより集中する配線断面の第1軸Xに沿う方向の端部には、第1磁性薄帯41の反磁界の小さい領域が対応するため、より好ましい。 For example, in the modified inductor component 10C shown in FIG. 32, the inductor wiring 130 has an elliptical shape in the cross section perpendicular to the central axis CA. Then, a hypothetical rectangle VR2 with a minimum area, which circumscribes the inductor wiring 130 and has a first side along the first axis X and a second side along the second axis Z, is drawn. At this time, the first side of the virtual rectangle VR2 is longer than the second side of the virtual rectangle VR2. In this way, if the long side of the virtual rectangle VR2 is parallel to the first axis, the diamagnetic field of the first magnetic ribbon 41 is generated at the end of the wiring cross section in the direction along the first axis X where the magnetic flux is more concentrated. is more preferable because it corresponds to a region with a small .
 また、上記各実施形態において、中心軸CAに直交する断面におけるインダクタ配線30の形状は、第2軸Zに沿う第2辺が、第1軸Xに沿う第1辺よりも長くてもよい。この場合であっても、インダクタ配線30の第1正方向X1の端である第1配線端IP1には、磁束が集中する。そのため、このように、磁束のより集中する配線断面の第1配線端IP1には、第1磁性薄帯41の反磁界の小さい領域が対応するため、より好ましい。 Further, in each of the above embodiments, the shape of the inductor wiring 30 in the cross section perpendicular to the central axis CA may be such that the second side along the second axis Z is longer than the first side along the first axis X. Even in this case, the magnetic flux concentrates on the first wiring end IP1, which is the end of the inductor wiring 30 in the first positive direction X1. Therefore, the region of the first magnetic ribbon 41 having a small demagnetizing field corresponds to the first wiring end IP1 of the wiring cross section where the magnetic flux is more concentrated, which is more preferable.
 さらに、中心軸CAに直交する断面において、インダクタ配線30の形状は、1つ以上の突出部分を含む場合など、線対称や回転対称などの対称性を有しない形状であってもよい。このように、中心軸CAに直交する断面において、対称性が崩れていると、磁束が他よりも集中する箇所が発生する。そして、突出部分などのように磁束が他よりも集中する箇所が第1配線端IP1となるように、第1磁性薄帯41の位置関係を定めることが好ましい。 Furthermore, in a cross section perpendicular to the central axis CA, the shape of the inductor wiring 30 may be a shape that does not have symmetry such as linear symmetry or rotational symmetry, such as when it includes one or more projecting portions. In this way, if the symmetry is broken in the cross section perpendicular to the central axis CA, there will be a place where the magnetic flux concentrates more than others. Then, it is preferable to determine the positional relationship of the first magnetic ribbon 41 so that the first wiring end IP1 is a portion such as a projecting portion where the magnetic flux concentrates more than others.
 また、中心軸CAに直交する断面において、インダクタ配線30の形状は、正方形状であってもよいし、真円状であってもよい。この場合、中心軸CAに直交する断面において描く仮想長方形VRは正方形となり、仮想長方形VRの第1辺は、仮想長方形VRの第2辺より長くなくてもよい。 In addition, in a cross section orthogonal to the central axis CA, the shape of the inductor wiring 30 may be square or circular. In this case, the virtual rectangle VR drawn in the cross section perpendicular to the central axis CA is a square, and the first side of the virtual rectangle VR does not have to be longer than the second side of the virtual rectangle VR.
 ・インダクタ配線30の第1軸Xに沿う方向の位置は、上記実施形態の例に限られない。インダクタ配線30の第1配線端IP1の第1軸Xに沿う方向の位置が、第1磁性薄帯41の所定範囲AR11内にあればよい。例えば、第1配線端IP1は、第1軸Xに沿う方向において第1磁性薄帯41の中央から乖離していてもよい。 · The position of the inductor wiring 30 in the direction along the first axis X is not limited to the example of the above embodiment. It is sufficient that the position of the first wiring end IP1 of the inductor wiring 30 in the direction along the first axis X is within the predetermined range AR11 of the first magnetic ribbon 41 . For example, the first wiring end IP1 may be separated from the center of the first magnetic ribbon 41 in the direction along the first axis X.
 ・第1磁性薄帯41とは別の磁性薄帯40の所定範囲AR11内を、第1仮想直線VL1が通過するのであれば、第1磁性薄帯41の所定範囲AR11内を第1仮想直線VL1が通過しなくてもよい。 If the first virtual straight line VL1 passes through the predetermined range AR11 of the magnetic ribbon 40 different from the first magnetic ribbon 41, the first virtual straight line VL1 passes through the predetermined range AR11 of the first magnetic ribbon 41. VL1 may not pass through.
 ・素体20を構成する複数の磁性薄帯40の何れにおいても、所定範囲AR11内を第1仮想直線VL1が通過しなくてもよい。
 ・インダクタ配線30の第2配線端IP2の第1軸Xに沿う方向の位置が、第2磁性薄帯42の所定範囲AR11内にあればよい。例えば、第2配線端IP2は、第1軸Xに沿う方向において第2磁性薄帯42の中央から乖離していてもよい。
- The first imaginary straight line VL1 does not have to pass through the predetermined range AR11 in any of the plurality of magnetic strips 40 forming the element body 20 .
The position of the second wiring end IP2 of the inductor wiring 30 in the direction along the first axis X should be within the predetermined range AR11 of the second magnetic ribbon 42 . For example, the second wiring end IP2 may be separated from the center of the second magnetic ribbon 42 in the direction along the first axis X.
 ・第2磁性薄帯42とは別の磁性薄帯40の所定範囲AR11内を、第2仮想直線VL2が通過するのであれば、第2磁性薄帯42の所定範囲AR11内を第2仮想直線VL2が通過しなくてもよい。 If the second virtual straight line VL2 passes through the predetermined range AR11 of the magnetic ribbon 40 different from the second magnetic ribbon 42, the second virtual straight line VL2 passes through the predetermined range AR11 of the second magnetic ribbon 42. VL2 may not pass.
 ・素体20を構成する複数の磁性薄帯40の何れにおいても、所定範囲AR11内を第2仮想直線VL2が通過しなくてもよい。
 ・インダクタ配線30の形状は、直線状に限られない。磁性薄帯40の主面MFに沿って延びていればよく、例えば、全体として湾曲している形状や、ミアンダ形状であってもよい。インダクタ配線30が同一平面上で延びていると、インダクタ配線30の第1配線端IP1と第1磁性薄帯41との配置を調整しやすい。この場合、素体20を切断する位置によっては、第1軸Xに沿う方向が変わることがある。
The second imaginary straight line VL2 does not have to pass through the predetermined range AR11 in any of the plurality of magnetic ribbons 40 forming the element body 20 .
- The shape of the inductor wiring 30 is not limited to a linear shape. It only needs to extend along the main surface MF of the magnetic thin strip 40, and may have, for example, a curved shape as a whole or a meandering shape. When the inductor wiring 30 extends on the same plane, it is easy to adjust the arrangement of the first wiring end IP1 of the inductor wiring 30 and the first magnetic ribbon 41 . In this case, the direction along the first axis X may change depending on the position at which the element body 20 is cut.
 また、インダクタ配線30が、主面MFと交差する方向に延びる引出配線や、第2軸Zに沿う方向に延びるビア配線などに接続されていてもよい。さらに、複数のインダクタ配線30が第2軸Zに沿う方向に延びるビア配線に接続されて、全体として、弦巻形状やヘリカル状の三次元螺旋状であってもよい。この場合には、磁性薄帯40の主面MFに沿って延びている部分が、インダクタ配線30である。 Also, the inductor wiring 30 may be connected to a lead wiring extending in a direction intersecting the main surface MF, a via wiring extending in a direction along the second axis Z, or the like. Furthermore, a plurality of inductor wirings 30 may be connected to via wirings extending in the direction along the second axis Z, and may have a three-dimensional spiral shape such as a spiral shape or a helical shape as a whole. In this case, the inductor wiring 30 is the portion extending along the main surface MF of the magnetic ribbon 40 .
 ・インダクタ配線30の材質は、導電性材料であれば、上記実施形態の例に限られない。例えば、インダクタ配線30の材質は、導電性の樹脂であってもよい。
 ・中心軸CAと、第3軸とは、一致していなくてもよい。また、第4軸は、第1軸Xと一致していなくてもよい。例えば、上述したようにインダクタ配線30の形状がミアンダ形状の場合、中心軸CAはミアンダ状に延びる。この場合、第3軸は第2軸Zに直交し、第4軸は、第2軸Zと直交し、第3軸に交差すればよい。この場合であっても、磁性薄帯40が第3軸に沿う方向に複数個並んでいたり、第4軸に沿う方向に複数個並んでいたりすれば、磁性薄帯40が第2軸Zに沿う同一の位置において1個である場合よりも、第2軸Zに沿う方向から視たときの磁性薄帯40の面積が小さくなる。そのため、1つの磁性薄帯40で発生する渦電流が小さくなる。
- The material of the inductor wiring 30 is not limited to the example of the above embodiment as long as it is a conductive material. For example, the material of the inductor wiring 30 may be a conductive resin.
- The central axis CA and the third axis may not coincide. Also, the fourth axis does not have to coincide with the first axis X. For example, when the inductor wiring 30 has a meandering shape as described above, the central axis CA extends in a meandering shape. In this case, the third axis should be orthogonal to the second axis Z, and the fourth axis should be orthogonal to the second axis Z and intersect the third axis. Even in this case, if a plurality of magnetic ribbons 40 are aligned in the direction along the third axis or in a direction along the fourth axis, the magnetic ribbons 40 are aligned along the second axis Z. The area of the magnetic ribbon 40 when viewed from the direction along the second axis Z is smaller than when there is one at the same position along the second axis Z. Therefore, the eddy current generated in one magnetic strip 40 is reduced.
 ・上記各実施形態で説明した第1配線端IP1を通る第1仮想直線VL1と第1磁性薄帯41の所定範囲AR11との位置関係は、中心軸CAに直交するインダクタ配線30の断面のうち、いずれか1つの断面において満たしていればよい。つまり、インダクタ配線30のすべての領域において、第1仮想直線VL1と第1磁性薄帯41の所定範囲AR11との位置関係が満たされていなくてもよい。少なくとも1つの断面において上記位置関係が満たされていれば、その断面箇所においては上記各実施形態の効果が得られる。 The positional relationship between the first imaginary straight line VL1 passing through the first wiring end IP1 and the predetermined range AR11 of the first magnetic ribbon 41 described in each of the above embodiments is , any one cross section. In other words, the positional relationship between the first virtual straight line VL1 and the predetermined range AR11 of the first magnetic ribbon 41 does not have to be satisfied in all areas of the inductor wiring 30 . If the above positional relationship is satisfied in at least one cross section, the effects of the above embodiments can be obtained at that cross section.
 ・上記各実施形態で説明した第2配線端IP2を通る第2仮想直線VL2と第2磁性薄帯42の所定範囲AR11との位置関係は、中心軸CAに直交するインダクタ配線30の断面のうち、いずれか1つの断面において満たしていればよい。つまり、インダクタ配線30のすべての領域において、第2仮想直線VL2と第2磁性薄帯42の所定範囲AR11との位置関係が満たされていなくてもよい。少なくとも1つの断面において上記位置関係が満たされていれば、その断面箇所においては上記各実施形態の効果が得られる。 The positional relationship between the second virtual straight line VL2 passing through the second wiring end IP2 and the predetermined range AR11 of the second magnetic ribbon 42 described in each of the above embodiments is , any one cross section. In other words, the positional relationship between the second virtual straight line VL2 and the predetermined range AR11 of the second magnetic strip 42 does not have to be satisfied in the entire region of the inductor wiring 30 . If the above positional relationship is satisfied in at least one cross section, the effects of the above embodiments can be obtained at that cross section.
 ・インダクタ配線30が素体20から露出している部分には、外部電極が接続されていてもよい。例えば、インダクタ配線30の中心軸CAに沿う方向の両端面、及び素体20の中心軸CAに沿う方向の両端面に、塗布、印刷又はめっきなどによって、外部電極を形成してもよい。 · An external electrode may be connected to the portion where the inductor wiring 30 is exposed from the element body 20 . For example, external electrodes may be formed on both end surfaces of the inductor wiring 30 in the direction along the central axis CA and both end surfaces of the element body 20 in the direction along the central axis CA by coating, printing, plating, or the like.
 ・磁性薄帯40と層間非磁性部50とが積層される方向は、製造上の誤差などにより、中心軸CA及び第1軸Xに対して直交しないこともある。上記実施形態において、磁性薄帯40などが「第2軸Zに沿う方向に積層されている」というのは、このような製造上の誤差などを許容するものである。 · The direction in which the magnetic ribbon 40 and the interlayer non-magnetic portion 50 are laminated may not be orthogonal to the central axis CA and the first axis X due to manufacturing errors or the like. In the above-described embodiment, the fact that the magnetic ribbons 40 and the like are "laminated in the direction along the second axis Z" allows for such manufacturing errors.
 ・第2軸Zに沿う方向に積層される磁性薄帯40の数は、2個以上であればよい。この場合、2つの磁性薄帯40の間に、インダクタ配線30及び層間非磁性部50が配置されていればよい。 · The number of magnetic strips 40 stacked in the direction along the second axis Z should be two or more. In this case, the inductor wiring 30 and the interlayer non-magnetic portion 50 may be arranged between the two magnetic strips 40 .
 ・層間非磁性部50の材質は、非磁性材料であれば、上記実施形態の例に限られない。層間非磁性部50は、アクリル樹脂や、エポキシ樹脂、シリコン樹脂以外の樹脂であってもよいし、アルミナ、シリカ、ガラスなどの非磁性セラミックスやこれらを含む非磁性無機物であってもよいし、空隙であってもよく、さらにこれらの混合物であってもよい。この点、非磁性部60及び非磁性膜70についても同様である。また、層間非磁性部50、非磁性部60及び非磁性膜70の材質は、非磁性材料であれば、互いに異なっていてもよいし、部分的に異なっていてもよい。 · The material of the interlayer non-magnetic portion 50 is not limited to the example of the above embodiment as long as it is a non-magnetic material. The interlayer non-magnetic portion 50 may be made of resin other than acrylic resin, epoxy resin, or silicon resin, or may be made of non-magnetic ceramics such as alumina, silica, or glass, or non-magnetic inorganic materials containing these. It may be a void or a mixture thereof. In this regard, the same applies to the nonmagnetic portion 60 and the nonmagnetic film 70 . The materials of the interlayer nonmagnetic portion 50, the nonmagnetic portion 60, and the nonmagnetic film 70 may be different from each other, or may be partially different, as long as they are nonmagnetic materials.
 ・上記各実施形態において、層間非磁性部50、非磁性部60及び非磁性膜70は一体化していてもよいし、別の部材であってもよい。例えば、層間非磁性部50は、中空であってもよいし、磁性薄帯40の表面が酸化した酸化膜が絶縁体となって構成されていてもよい。 · In each of the above embodiments, the interlayer nonmagnetic portion 50, the nonmagnetic portion 60, and the nonmagnetic film 70 may be integrated or may be separate members. For example, the interlayer non-magnetic portion 50 may be hollow, or may be composed of an insulating oxide film obtained by oxidizing the surface of the magnetic ribbon 40 .
 ・上記各実施形態において、層間非磁性部50を省いてもよい。この場合、第2軸Zに沿う方向に隣り合う磁性薄帯40同士が直接接触していてもよい。
 ・上記実施形態において、非磁性部60を省いてもよい。この場合、第3軸又は第4軸に沿う方向に並ぶ磁性薄帯40同士が直接接触していてもよい。また、非磁性部60が、インダクタ配線30と磁性薄帯40との間に存在していてもよい。この場合、非磁性部60によって、インダクタ配線30と磁性薄帯40との間の絶縁性を確保できる。
- In each of the above-described embodiments, the interlayer non-magnetic portion 50 may be omitted. In this case, the magnetic ribbons 40 adjacent to each other in the direction along the second axis Z may be in direct contact with each other.
- In the above embodiment, the non-magnetic portion 60 may be omitted. In this case, the magnetic ribbons 40 aligned in the direction along the third axis or the fourth axis may be in direct contact with each other. Also, the nonmagnetic portion 60 may exist between the inductor wiring 30 and the magnetic ribbon 40 . In this case, the nonmagnetic portion 60 can ensure insulation between the inductor wiring 30 and the magnetic ribbon 40 .
 なお、「複数の磁性薄帯40が積層された」及び「複数の磁性薄帯40が並ぶ」とは、具体的には、隣接する磁性薄帯40同士が完全に又は部分的に絶縁されている場合や微視的に物理的な境界が存在する場合を指す。例えば、磁性薄帯40同士が焼結されて完全に一体化されている状態などは含まない。 It should be noted that "a plurality of magnetic ribbons 40 are laminated" and "a plurality of magnetic ribbons 40 are lined up" specifically mean that the adjacent magnetic ribbons 40 are completely or partially insulated from each other. It refers to the case where there is a physical boundary on a microscopic scale. For example, it does not include a state in which the magnetic strips 40 are sintered and completely integrated.
 ・第1部分P1に第1磁性薄帯41が存在するのであれば、第3部分P3には第1磁性薄帯41が存在していなくてもよい。反対に、第3部分P3に第1磁性薄帯41が存在するのであれば、第1部分P1には第1磁性薄帯41が存在していなくてもよい。第1配線端IP1の第2軸Zに沿う方向における位置によっては、第1部分P1及び第3部分P3の何れか一方にのみ第1磁性薄帯41が存在することもありうる。 · As long as the first magnetic ribbon 41 exists in the first portion P1, the first magnetic ribbon 41 does not have to exist in the third portion P3. Conversely, if the first magnetic ribbon 41 exists in the third portion P3, the first magnetic ribbon 41 may not exist in the first portion P1. Depending on the position of the first wiring end IP1 in the direction along the second axis Z, the first magnetic ribbon 41 may exist only on either the first portion P1 or the third portion P3.
 ・第1部分P1に第2磁性薄帯42が存在するのであれば、第3部分P3には第2磁性薄帯42が存在していなくてもよい。反対に、第3部分P3に第2磁性薄帯42が存在するのであれば、第1部分P1には第2磁性薄帯42が存在していなくてもよい。第2配線端IP2の第2軸Zに沿う方向における位置によっては、第1部分P1及び第3部分P3の何れか一方にのみ第2磁性薄帯42が存在することもありうる。 · As long as the second magnetic ribbon 42 exists in the first portion P1, the second magnetic ribbon 42 does not have to exist in the third portion P3. Conversely, if the second magnetic ribbon 42 exists in the third portion P3, the second magnetic ribbon 42 may not exist in the first portion P1. Depending on the position of the second wiring end IP2 in the direction along the second axis Z, the second magnetic ribbon 42 may exist only on either the first portion P1 or the third portion P3.
 ・上記各実施形態によれば、磁性薄帯40は、第2軸Zに沿う同一の位置において、第1軸Xに沿う方向に2個並んでおり、中心軸CAすなわち第3軸に沿う方向に2個並んでいる。すなわち、「M」及び「N」を正の整数とした場合、磁性薄帯40は、第2軸Zに沿う同一の位置において、第3軸に沿う方向に「M」個並んでおり、第1軸Xすなわち第4軸に沿う方向に「N」個並んでおり、「M」及び「N」のいずれも2である。上記実施形態において、第4軸に沿う方向に並ぶ第1磁性薄帯41の数である「M」は、1個であってもよいし、3個以上であってもよい。また、中心軸CAに沿う方向に並ぶ磁性薄帯40の数である「N」は、1個であってもよいし、3個以上であってもよい。なお、「M」及び「N」の少なくともいずれか一方が2以上であると、第2軸Zから視たときの1つ当たりの磁性薄帯40の面積を小さくできるので、渦電流による損失を小さくしやすい。 According to each of the above embodiments, two magnetic strips 40 are arranged in the direction along the first axis X at the same position along the second axis Z, and the direction along the central axis CA, that is, the third axis. 2 are lined up in the . That is, when "M" and "N" are positive integers, "M" magnetic ribbons 40 are arranged in the same position along the second axis Z in the direction along the third axis. "N" pieces are arranged in the direction along the first axis X, that is, the fourth axis, and both "M" and "N" are two. In the above embodiment, "M", which is the number of first magnetic ribbons 41 arranged in the direction along the fourth axis, may be one, or may be three or more. Also, "N", which is the number of magnetic ribbons 40 arranged in the direction along the central axis CA, may be one, or may be three or more. Note that if at least one of "M" and "N" is 2 or more, the area of each magnetic ribbon 40 as viewed from the second axis Z can be reduced, so loss due to eddy currents can be reduced. Easy to make small.
 ・磁性薄帯40は、アモルファス状の磁性材料で構成したものでなくてもよい。すなわち、磁性薄帯40は、ナノ結晶などのように結晶化した磁性材料からなる磁性薄帯であってもよい。例えば、磁性材料としてFeSiBPCuからなる磁性層を磁性薄帯40とするとよい。この構成によれば、インダクタ部品10,10Bの飽和磁束密度Bsを高くできる。 · The magnetic ribbon 40 does not have to be made of an amorphous magnetic material. That is, the magnetic ribbon 40 may be a magnetic ribbon made of a crystallized magnetic material such as nanocrystals. For example, the magnetic ribbon 40 may be a magnetic layer made of FeSiBPCu as a magnetic material. According to this configuration, the saturation magnetic flux density Bs of inductor components 10 and 10B can be increased.
 ・上記第1実施形態において、磁性部80に含まれる磁性粉はアモルファス状の磁性材料でなくてもよい。すなわち、磁性部80は、ナノ結晶などのように結晶化した磁性材料を含む構成でもよい。 · In the first embodiment, the magnetic powder contained in the magnetic portion 80 does not have to be an amorphous magnetic material. That is, the magnetic portion 80 may be configured to include a crystallized magnetic material such as nanocrystals.
 ・上記第2実施形態において、微少磁性薄帯81Bは、アモルファス状の磁性材料で構成したものでなくてもよい。すなわち、微少磁性薄帯81Bは、ナノ結晶などのように結晶化した磁性材料からなる薄帯であってもよい。 · In the second embodiment, the fine magnetic ribbon 81B does not have to be made of an amorphous magnetic material. That is, the fine magnetic ribbon 81B may be a ribbon made of a crystallized magnetic material such as nanocrystals.
 ・上記各実施形態において、非磁性バインダ80bは、ガラスからなるものであってもよい。すなわち、磁性部80,80Bは、非磁性バインダ80bがガラスからなるガラスコンポジット部であってもよい。 · In each of the above embodiments, the non-magnetic binder 80b may be made of glass. That is, the magnetic portions 80 and 80B may be glass composite portions in which the non-magnetic binder 80b is made of glass.
 ・第2部分P2において、インダクタ配線30の第1正方向X1に磁性部80,80Bが配置されているのであれば、インダクタ配線30の第1負方向X2に磁性部80,80Bを配置しなくてもよい。この場合、例えば、インダクタ配線30の第1負方向X2には、第2軸Zに沿う方向に磁性薄帯40と層間非磁性部50とが交互に積層された積層体を配置してもよい。 ・In the second portion P2, if the magnetic portions 80 and 80B are arranged in the first positive direction X1 of the inductor wiring 30, the magnetic portions 80 and 80B should not be arranged in the first negative direction X2 of the inductor wiring 30. may In this case, for example, in the first negative direction X2 of the inductor wiring 30, a laminate in which the magnetic ribbons 40 and the interlayer non-magnetic portions 50 are alternately laminated in the direction along the second axis Z may be arranged. .
 ・第2軸Zに沿う方向に隣り合う1組の磁性薄帯40間の間隔は、異なっていてもよい。例えば、層間非磁性部50の第2軸Zに沿う方向の寸法が小さい場合、製造方法によっては20%程度の製造誤差が生じることもあり得る。また例えば、上述した変更例のように、層間非磁性部50の一部分が中空になることで、第2軸Zに沿う方向に隣り合う1組の磁性薄帯40間の間隔がばらつくこともあり得る。また、層間非磁性部50と磁性薄帯40との間に空隙が存在することもある。この場合、第2軸Zに沿う方向に隣り合う1組の磁性薄帯40間の間隔は、層間非磁性部50と空隙との長さを足し合わせたものとなる。したがって、第2軸Zに沿う方向に隣り合う1組の磁性薄帯40間の間隔は、第2軸Zに沿う方向に隣り合う複数組の磁性薄帯40間の間隔の平均値に対して、80%以上120%以下であれば、ほぼ等しいとみなせる。なお、第2軸Zに沿う方向に隣り合う1組の磁性薄帯40間の間隔は、電子顕微鏡にて1000倍から10000倍までの間の倍率に拡大した一枚の画像のうち、第2軸Zに沿う方向の最小の寸法とする。また、第2軸Zに沿う方向に隣り合う複数組の磁性薄帯40間の間隔の平均値は、電子顕微鏡にて6つ以上の磁性薄帯40がおさまる一枚の画像で測定した5組の磁性薄帯40間の間隔の平均値である。 · The distance between a pair of magnetic ribbons 40 adjacent to each other in the direction along the second axis Z may be different. For example, if the dimension of the interlayer nonmagnetic portion 50 in the direction along the second axis Z is small, a manufacturing error of about 20% may occur depending on the manufacturing method. Further, for example, as in the modified example described above, part of the interlayer non-magnetic portion 50 may be hollow, so that the gap between a pair of magnetic ribbons 40 adjacent to each other in the direction along the second axis Z may vary. obtain. A gap may also exist between the interlayer non-magnetic portion 50 and the magnetic ribbon 40 . In this case, the distance between a pair of magnetic ribbons 40 adjacent to each other in the direction along the second axis Z is the sum of the lengths of the interlayer nonmagnetic portion 50 and the gap. Therefore, the interval between one pair of magnetic ribbons 40 adjacent in the direction along the second axis Z is , 80% or more and 120% or less, they can be regarded as substantially equal. The interval between a pair of magnetic ribbons 40 adjacent in the direction along the second axis Z is the second Let it be the smallest dimension in the direction along the Z axis. In addition, the average value of the spacing between multiple sets of magnetic ribbons 40 adjacent in the direction along the second axis Z is 5 sets measured from one image in which six or more magnetic ribbons 40 are fitted with an electron microscope. is the average value of the spacing between the magnetic strips 40 of .
 ・複数の磁性薄帯40の第2軸Zに沿う方向の寸法は、互いに同一でなくてもよいし、平均値に対して、20%より大きくばらついていてもかまわない。
 ・複数の層間非磁性部50の第2軸Zに沿う方向の寸法は、異なっていてもよい。層間非磁性部50の第2軸Zに沿う方向の寸法が小さい場合、製造方法によっては20%程度の製造誤差が生じることもあり得る。したがって、層間非磁性部50の第2軸Zに沿う方向の寸法は、複数の層間非磁性部50の第2軸Zに沿う方向の寸法の平均値に対して、80%以上120%以下であれば、ほぼ等しいとみなせる。なお、1つの層間非磁性部50の第2軸Zに沿う方向の寸法は、電子顕微鏡にて1000倍から10000倍までの間の倍率に拡大した一枚の画像のうち、3点の平均値とする。また、複数の層間非磁性部50の第2軸Zに沿う方向の寸法は、電子顕微鏡にて3つ以上の層間非磁性部50がおさまる一枚の画像で測定した1つの層間非磁性部50の第2軸Zに沿う方向の寸法の平均値である。
- The dimensions of the plurality of magnetic strips 40 in the direction along the second axis Z may not be the same, and may vary by more than 20% from the average value.
- The dimensions of the plurality of interlayer non-magnetic portions 50 in the direction along the second axis Z may be different. If the dimension of the interlayer nonmagnetic portion 50 in the direction along the second axis Z is small, a manufacturing error of about 20% may occur depending on the manufacturing method. Therefore, the dimension of the interlayer nonmagnetic portion 50 in the direction along the second axis Z is 80% or more and 120% or less of the average value of the dimension of the plurality of interlayer nonmagnetic portions 50 in the direction along the second axis Z. If so, they can be considered almost equal. The dimension of one interlayer nonmagnetic portion 50 in the direction along the second axis Z is the average value of three points in one image magnified between 1,000 and 10,000 times with an electron microscope. and In addition, the dimension of the plurality of interlayer nonmagnetic portions 50 in the direction along the second axis Z is one interlayer nonmagnetic portion 50 measured by an electron microscope using a single image containing three or more interlayer nonmagnetic portions 50. is the average value of the dimensions in the direction along the second axis Z of .
 ・複数の層間非磁性部50の第2軸Zに沿う方向の寸法は、互いに同一でなくてもよいし、平均値に対して、20%より大きくばらついていてもかまわない。
 ・非磁性部60の数や位置は、上記実施形態の例に限られない。第1軸Xに沿う方向や中心軸CAに沿う方向における磁性薄帯40の数や位置に併せて、非磁性部60の数や位置を変更すればよい。また、非磁性部60の大きさも、第2軸Zに沿う方向における同一の位置における磁性薄帯40の間隔に併せて、適宜変更すればよい。
- The dimensions of the plurality of interlayer non-magnetic portions 50 in the direction along the second axis Z may not be the same, and may vary by more than 20% from the average value.
- The number and positions of the non-magnetic portions 60 are not limited to those in the above embodiment. The number and positions of the non-magnetic portions 60 may be changed according to the number and positions of the magnetic strips 40 in the direction along the first axis X and in the direction along the central axis CA. Also, the size of the non-magnetic portion 60 may be appropriately changed according to the interval between the magnetic ribbons 40 at the same position in the direction along the second axis Z. FIG.
 10,10B,10C…インダクタ部品
 20…素体
 30,130…インダクタ配線
 40…磁性薄帯
 41…第1磁性薄帯
 42…第2磁性薄帯
 50…層間非磁性部
 60…非磁性部
 70…非磁性膜
 80,80B…磁性部
 80a…磁性体
 80b…非磁性バインダ
 81B…微少磁性薄帯
 81Ba…非磁性部
 AR11…所定範囲
 CA…中心軸
 IP1…第1配線端
 IP2…第2配線端
 MF…主面
 MP11,MP21…第1端
 MP12,MP22…第2端
 VL1…第1仮想直線
 VL2…第2仮想直線
 VL3…第3仮想直線
 VL4…第4仮想直線
 VR,VR2…仮想長方形
 X…第1軸
 Z…第2軸
DESCRIPTION OF SYMBOLS 10, 10B, 10C... Inductor component 20... Element body 30, 130... Inductor wiring 40... Magnetic ribbon 41... First magnetic ribbon 42... Second magnetic ribbon 50... Interlayer non-magnetic portion 60... Non-magnetic portion 70... Non-magnetic film 80, 80B... Magnetic portion 80a... Magnetic material 80b... Non-magnetic binder 81B... Fine magnetic ribbon 81Ba... Non-magnetic part AR11... Predetermined range CA... Central axis IP1... First wire end IP2... Second wire end MF Principal surface MP11, MP21 First end MP12, MP22 Second end VL1 First virtual straight line VL2 Second virtual straight line VL3 Third virtual straight line VL4 Fourth virtual straight line VR, VR2 Virtual rectangle X Third 1st axis Z...2nd axis

Claims (14)

  1.  磁性材料からなる平板状の複数の磁性薄帯を含み、複数の前記磁性薄帯が、前記磁性薄帯の主面に対して直交する方向に積層された素体と、
     前記素体の内部で、前記主面に沿って延びているインダクタ配線と、を備え、
     前記インダクタ配線の延びる軸を中心軸とし、前記中心軸に直交する断面視で前記主面に沿う軸を第1軸とし、前記断面視で前記主面に直交する軸を第2軸としたとき、
     前記素体は、前記第2軸に沿う方向における前記インダクタ配線と同一の位置に配置されている磁性部を有し、
     前記磁性部は、磁性材料からなる複数の磁性体を含有しており、
     前記磁性体を前記第2軸に直交する方向で切断した場合の断面のうち、面積が最大となる前記磁性体の断面を最大断面としたとき、複数の前記磁性体の前記最大断面の面積は、前記主面の面積よりも小さい
     インダクタ部品。
    an element body including a plurality of flat magnetic ribbons made of a magnetic material, wherein the plurality of magnetic ribbons are laminated in a direction orthogonal to the main surface of the magnetic ribbon;
    an inductor wiring extending along the main surface inside the base body,
    When the axis along which the inductor wiring extends is taken as a central axis, the axis along the main surface in a cross-sectional view perpendicular to the central axis is taken as a first axis, and the axis perpendicular to the main surface in a cross-sectional view is taken as a second axis ,
    the base body has a magnetic portion arranged at the same position as the inductor wiring in the direction along the second axis;
    The magnetic part contains a plurality of magnetic bodies made of a magnetic material,
    When the cross section of the magnetic body having the maximum area among the cross sections of the magnetic body cut in the direction orthogonal to the second axis is defined as the maximum cross section, the area of the maximum cross section of the plurality of magnetic bodies is , an inductor component smaller than the area of the main surface.
  2.  複数の前記磁性体は磁性粉であり、
     前記磁性部は、非磁性材料からなり、複数の前記磁性粉を含有する非磁性バインダを有する
     請求項1に記載のインダクタ部品。
    the plurality of magnetic bodies are magnetic powder,
    2. The inductor component according to claim 1, wherein the magnetic portion is made of a non-magnetic material and has a non-magnetic binder containing a plurality of the magnetic powders.
  3.  前記非磁性バインダは、ガラスからなる
     請求項2に記載のインダクタ部品。
    The inductor component according to claim 2, wherein the non-magnetic binder is made of glass.
  4.  前記非磁性バインダは、樹脂からなる
     請求項2に記載のインダクタ部品。
    The inductor component according to claim 2, wherein the non-magnetic binder is made of resin.
  5.  前記磁性部では、前記第2軸と直交する方向に複数の前記磁性体が並んでいる
     請求項1~請求項4のうち何れか一項に記載のインダクタ部品。
    The inductor component according to any one of claims 1 to 4, wherein in the magnetic portion, a plurality of the magnetic bodies are arranged in a direction perpendicular to the second axis.
  6.  前記磁性部では、前記第2軸と直交する方向で互いに隣り合う前記磁性体の間に非磁性材料からなる非磁性部が介在している
     請求項5に記載のインダクタ部品。
    6. The inductor component according to claim 5, wherein in said magnetic portion, a non-magnetic portion made of a non-magnetic material is interposed between said magnetic bodies adjacent to each other in a direction orthogonal to said second axis.
  7.  前記磁性部では、前記第2軸に沿う方向に複数の前記磁性体が並んでいる
     請求項1~請求項6のうち何れか一項に記載のインダクタ部品。
    The inductor component according to any one of claims 1 to 6, wherein in the magnetic portion, a plurality of the magnetic bodies are arranged in a direction along the second axis.
  8.  前記磁性部では、前記第2軸に沿う方向で互いに隣り合う前記磁性体の間に非磁性材料からなる非磁性部が介在している
     請求項7に記載のインダクタ部品。
    8. The inductor component according to claim 7, wherein in the magnetic portion, a nonmagnetic portion made of a nonmagnetic material is interposed between the magnetic bodies that are adjacent to each other in the direction along the second axis.
  9.  「M」及び「N」を正の整数とし、且つ「M」及び「N」のうち、少なくとも一方を「2」以上としたとき、
     前記磁性薄帯は、前記第2軸に沿う同一の位置において、前記第2軸に直交する第3軸に沿う方向に「M」個並んでおり、前記第2軸及び前記第3軸に直交する第4軸に沿う方向に「N」個並んでいる
     請求項1~請求項8のうち何れか一項に記載のインダクタ部品。
    When "M" and "N" are positive integers, and at least one of "M" and "N" is "2" or more,
    At the same position along the second axis, "M" magnetic ribbons are arranged in a direction along a third axis orthogonal to the second axis, and are orthogonal to the second axis and the third axis. The inductor component according to any one of claims 1 to 8, wherein "N" pieces are arranged in a direction along the fourth axis.
  10.  複数の前記磁性体は、焼結体である
     請求項1~請求項9のうち何れか一項に記載のインダクタ部品。
    The inductor component according to any one of claims 1 to 9, wherein the plurality of magnetic bodies are sintered bodies.
  11.  複数の前記磁性体は、アモルファス状態の前記磁性材料を含む
     請求項1~請求項9のうち何れか一項に記載のインダクタ部品。
    The inductor component according to any one of claims 1 to 9, wherein the plurality of magnetic bodies include the magnetic material in an amorphous state.
  12.  前記第1軸に沿う2つの方向のうち、一つの方向を第1正方向としたとき、
     前記断面視において、
      前記インダクタ配線の前記第1正方向の端を第1配線端とし、
      前記インダクタ配線に対して前記第2軸に沿う方向に積層された前記磁性薄帯のうち、前記第1配線端からの前記第2軸に沿う方向の距離が最も短い前記磁性薄帯を第1磁性薄帯とし、
      前記磁性薄帯における前記第1軸に沿う方向の両端を除く範囲を所定範囲としたとき、
      前記第1配線端を通り前記第2軸に沿う方向に延びる第1仮想直線を引いたときに、前記第1仮想直線は、前記第1磁性薄帯の前記所定範囲内を通る
     請求項1~請求項11のうち何れか一項に記載のインダクタ部品。
    When one of the two directions along the first axis is defined as the first positive direction,
    In the cross-sectional view,
    The end of the inductor wiring in the first positive direction is defined as a first wiring end,
    Among the magnetic ribbons laminated in the direction along the second axis with respect to the inductor wiring, the magnetic ribbon having the shortest distance in the direction along the second axis from the end of the first wiring is selected as the first magnetic ribbon. as a magnetic strip,
    When the range excluding both ends of the magnetic ribbon in the direction along the first axis is defined as a predetermined range,
    When drawing a first imaginary straight line passing through the first wiring end and extending in a direction along the second axis, the first imaginary straight line passes through the predetermined range of the first magnetic strip. 12. The inductor component according to any one of claims 11 to 13.
  13.  前記第1正方向とは反対方向を第1負方向としたとき、
     前記断面視において、
      前記第1磁性薄帯の前記第1正方向の端を第1端とし、前記第1負方向の端を第2端としたとき、
      前記第2端を通り前記第2軸に沿う方向に第2仮想直線を引いたときに、前記第2仮想直線は、前記インダクタ配線を通る
     請求項12に記載のインダクタ部品。
    When the direction opposite to the first positive direction is defined as the first negative direction,
    In the cross-sectional view,
    When the first positive end of the first magnetic ribbon is defined as a first end and the first negative direction end is defined as a second end,
    13. The inductor component according to claim 12, wherein when a second imaginary straight line is drawn through the second end in a direction along the second axis, the second imaginary straight line passes through the inductor wiring.
  14.  前記断面視において、前記インダクタ配線に外接するとともに、前記第1軸に沿う第1辺及び前記第2軸に沿う第2辺を有する面積が最小の仮想長方形を描いたときに、前記第1辺は、前記第2辺よりも長い
     請求項1~請求項13のうち何れか一項に記載のインダクタ部品。
    In the cross-sectional view, when drawing a virtual rectangle with a minimum area that circumscribes the inductor wiring and has a first side along the first axis and a second side along the second axis, the first side is longer than the second side.
PCT/JP2022/003068 2021-02-26 2022-01-27 Inductor component WO2022181182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021030984 2021-02-26
JP2021-030984 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181182A1 true WO2022181182A1 (en) 2022-09-01

Family

ID=83049157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003068 WO2022181182A1 (en) 2021-02-26 2022-01-27 Inductor component

Country Status (1)

Country Link
WO (1) WO2022181182A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276509A (en) * 1985-09-30 1987-04-08 Toshiba Corp Thin type transformer
JPH0661084A (en) * 1992-08-07 1994-03-04 Murata Mfg Co Ltd Manufacture of multilayered beads inductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276509A (en) * 1985-09-30 1987-04-08 Toshiba Corp Thin type transformer
JPH0661084A (en) * 1992-08-07 1994-03-04 Murata Mfg Co Ltd Manufacture of multilayered beads inductor

Similar Documents

Publication Publication Date Title
JP5614479B2 (en) Coil parts manufacturing method
KR101792281B1 (en) Power Inductor and Manufacturing Method for the Same
JP5381956B2 (en) Coil parts
KR102052770B1 (en) Power inductor and method for manufacturing the same
JP6863553B2 (en) Coil electronic components and their manufacturing methods
WO2012053439A1 (en) Coil component and method for producing same
JP5874199B2 (en) Coil component and manufacturing method thereof
TW200701266A (en) Magnetic element
KR20160126751A (en) Coil electronic component and manufacturing method thereof
TWI690953B (en) Coil parts
JP7240813B2 (en) coil parts
US20160343498A1 (en) Coil component and manufacturing method thereof
JP6630974B2 (en) Power inductor
CN104078222A (en) Inductor and method for manufacturing the same
JP5126338B2 (en) Transformer parts
JPWO2018235539A1 (en) Coil parts
JP6631722B2 (en) Inductor
WO2018235550A1 (en) Coil component
WO2022181182A1 (en) Inductor component
JP2009032922A (en) Reactor core and reactor
JP2003257744A (en) Magnetic element, manufacturing method thereof, and power-supply module using the same
WO2022181183A1 (en) Inductor component
WO2022181187A1 (en) Inductor component
WO2022181179A1 (en) Inductor component
WO2022181185A1 (en) Inductor component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759224

Country of ref document: EP

Kind code of ref document: A1