WO2022181149A1 - Electric dust collector - Google Patents

Electric dust collector Download PDF

Info

Publication number
WO2022181149A1
WO2022181149A1 PCT/JP2022/002350 JP2022002350W WO2022181149A1 WO 2022181149 A1 WO2022181149 A1 WO 2022181149A1 JP 2022002350 W JP2022002350 W JP 2022002350W WO 2022181149 A1 WO2022181149 A1 WO 2022181149A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrostatic precipitator
slits
microwave
bottom plate
internal space
Prior art date
Application number
PCT/JP2022/002350
Other languages
French (fr)
Japanese (ja)
Inventor
幸平 村上
匡 中川
広幸 當山
章朝 瑞慶覧
大樹 袴田
Original Assignee
富士電機株式会社
学校法人幾徳学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社, 学校法人幾徳学園 filed Critical 富士電機株式会社
Priority to EP22759191.4A priority Critical patent/EP4173718A4/en
Priority to KR1020237003443A priority patent/KR20230029962A/en
Priority to CN202280006093.1A priority patent/CN116056793A/en
Publication of WO2022181149A1 publication Critical patent/WO2022181149A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/88Cleaning-out collected particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/09Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces at right angles to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/12Cleaning the device by burning the trapped particles

Definitions

  • the present invention relates to an electrostatic precipitator.
  • Patent Document 1 "a collection unit that collects charged particles, and a microwave generation unit that generates microwaves to be introduced into the dust collection unit and burns the charged particles collected in the dust collection unit with the microwaves. and provides an electrostatic precipitator comprising: [Prior art documents] [Patent Literature] [Patent Document 1] International Publication No. 2020/084934
  • microwaves When using microwaves to burn particulate matter contained in exhaust gas, it is desirable to improve the energy efficiency of microwaves.
  • a first aspect of the present invention provides an electrostatic precipitator.
  • the electrostatic precipitator has a bottom plate on which the particulate matter contained in the exhaust gas is deposited, a collection part provided with a plurality of first slits in the bottom plate, a propagation part having an internal space in which microwaves propagate, Prepare.
  • the plurality of first slits are arranged at positions overlapping the internal space. Microwaves propagate from the internal space to the collecting section through the plurality of first slits.
  • the electric dust collector may further include a charging section that charges particulate matter and a dust collection section that collects the charged particulate matter.
  • the collection section may be arranged below the dust collection section. Particulate matter collected by the dust collector may accumulate on the bottom plate.
  • the propagating portion is separated from the plurality of first slits by a predetermined distance in a first direction that is an in-plane direction of the bottom plate and a direction that intersects the long sides of the plurality of first slits. It may have one microwave inlet. Microwaves may be introduced into the interior space through the first microwave inlet. The width of each of the plurality of first slits in the first direction may be greater as the distance from the first microwave introduction port to one of the plurality of first slits in the first direction is greater.
  • the propagating portion is separated from the plurality of first slits by a predetermined distance in a first direction that is an in-plane direction of the bottom plate and a direction that intersects the long sides of the plurality of first slits. It may have one microwave inlet. Microwaves may be introduced into the interior space through the first microwave inlet. The larger the distance from the first microwave introduction port to one of the first slits in the first direction in the first direction, the more adjacent first slits in the first direction among the plurality of first slits. The interval with other first slits may be small.
  • the collecting part may further have a first side plate that intersects with the bottom plate, faces the internal space, and is arranged furthest apart from the first microwave introduction port in top view.
  • a second slit may be provided in the first side plate.
  • the width of the propagation part in the direction intersecting the first direction may spread from the first microwave introduction port to the plurality of first slits.
  • the width of the propagating portion in the direction intersecting the first direction may widen in a tapered shape from the first microwave introduction port to the plurality of first slits.
  • the width of the propagation portion in a second direction that intersects with the first direction and the width of the propagation portion in a third direction that is a third direction that intersects with the first direction and is different from the second direction are It may extend over a plurality of first slits.
  • the width of the propagation portion in a second direction that intersects with the first direction and the width of the propagation portion in a third direction that is a third direction that intersects with the first direction and is different from the second direction are It may spread like a horn across the plurality of first slits.
  • the propagation section may further include an outer plate facing the internal space and extending in the first direction when viewed from above, and a second microwave introduction port provided in the outer plate.
  • the propagation part may further have an outer bottom plate facing the internal space and provided below the bottom plate, and a third microwave introduction port provided in the outer bottom plate.
  • a microwave introduction pipe through which microwaves introduced into the internal space from the outside of the propagation part pass may be connected to the first microwave introduction port.
  • the microwave introduction pipe may have a first recess that is recessed in a direction intersecting the traveling direction of the microwave.
  • the depth of the first recess may be 1/4 of the microwave wavelength.
  • the dust collection part may have a dust collection electrode.
  • the dust collection electrode may have a second concave portion recessed in a direction intersecting the direction from the collection portion to the dust collection portion.
  • the depth of the second recess may be 1 ⁇ 4 of the microwave wavelength.
  • the dust collection electrode may be provided with an opening through which the exhaust gas passes.
  • the second recess may be arranged between the collecting portion and the opening in the direction from the collecting portion to the dust collecting portion.
  • the charging part and the dust collection part may be provided in the pipe through which the exhaust gas passes.
  • the collecting part may be arranged below the pipe.
  • the collection part may further have a second side plate that intersects with the bottom plate and faces the internal space.
  • a plurality of first slits may be provided extending from the bottom plate to the second side plate.
  • the electrostatic precipitator may further include a coating material provided on the upper surface of the bottom plate and covering at least one of the plurality of first slits.
  • the covering material may be provided inside at least one first slit.
  • the covering material may have a projection projecting from the upper surface to the lower surface of the bottom plate.
  • the protrusion may be provided inside the first slit.
  • the covering material may be provided inside the first slit provided in the second side plate.
  • the covering material may be provided inside the second slit.
  • a depression corresponding to the first slit may be provided on the upper surface of the covering material.
  • the covering material may be removable from the top surface of the bottom plate.
  • FIG. 4 is a diagram showing an example of a cross section taken along line aa' shown in FIG. 3;
  • FIG. It is a figure which shows another example in the top view of the electrostatic precipitator 100 shown by FIG.
  • FIG. 4 shows another example in the top view of the electrostatic precipitator 100 shown by FIG.
  • FIG. shows another example in the top view of the electrostatic precipitator 100 shown by FIG.
  • FIG. 14 is a diagram showing an example of a cross section taken along line aa' shown in FIG.
  • FIG. 13; 4 is an enlarged view of the vicinity of a first microwave introduction port 22 in FIG. 3.
  • FIG. 5 is an enlarged view of the vicinity of a first microwave introduction port 22 in FIG. 4.
  • FIG. FIG. 2 is an enlarged view of the inside of the dust collector 40 in the electrostatic precipitator 100 shown in FIG. 1;
  • FIG. 18 is an enlarged view of a dust collection electrode 41 in FIG. 17; 18 is another enlarged view of the dust collection electrode 41 in FIG. 17.
  • FIG. It is a figure which shows an example of arrangement
  • FIG. 1 is a diagram showing an example of an electrostatic precipitator 100 according to one embodiment of the present invention.
  • the electrostatic precipitator 100 includes a collection section 10 and a propagation section 20 .
  • the electric dust collector 100 may include a dust collector 40 .
  • the collecting part 10 has a bottom plate 11 .
  • the propagation part 20 has an internal space 21 through which microwaves propagate. In this example, the propagation part 20 has a first microwave introduction port 22 .
  • the plane parallel to the plate surface of the bottom plate 11 is defined as the XY plane, and the direction perpendicular to the plate surface of the bottom plate 11 is defined as the Z-axis direction.
  • the XY plane may be a horizontal plane, and the Z-axis direction may be parallel to the direction of gravity.
  • a predetermined direction in the XY plane is defined as the X-axis direction, and a direction orthogonal to the X-axis in the XY plane is defined as the Y-axis direction.
  • a top view refers to a case where the electrostatic precipitator 100 is viewed in the Z-axis direction from the dust collecting section 40 to the propagating section 20 .
  • the collection unit 10 is arranged below the dust collection unit 40 .
  • a bottom view refers to a case where the electrostatic precipitator 100 is viewed in the Z-axis direction from the propagating portion 20 to the dust collecting portion 40 .
  • a side view refers to a case where the electrostatic precipitator 100 is viewed in the XY plane direction.
  • FIG. 2 is a diagram showing an example of a block diagram of the electrostatic precipitator 100 and the electrostatic precipitator system 200 according to one embodiment of the present invention.
  • the electrostatic precipitator system 200 includes a microwave generator 91 , a power unit 92 and an electrostatic precipitator 100 .
  • the power plant 92 generates exhaust gas 30 by burning fuel.
  • the power plant 92 is, for example, an engine.
  • Exhaust gas 30 contains particulate matter (PM) 32 .
  • Particulate matter 32 is also referred to as black carbon.
  • Particulate matter 32 is generated by incomplete combustion of fossil fuels.
  • the particulate matter 32 is fine particles containing carbon as a main component.
  • the electrostatic precipitator 100 may include a charging section 90.
  • the charging section 90 charges the particulate matter 32 .
  • the charging section 90 may generate negative ions by negative corona discharge.
  • the charging section 90 may charge the particulate matter 32 with the negative ions.
  • the dust collection unit 40 collects the charged particulate matter 32 .
  • the collecting unit 10 collects particulate matter 32 .
  • Particulate matter 32 collected by the dust collector 40 accumulates on the bottom plate 11 (see FIG. 1) of the collector 10 .
  • the collecting section 10 is arranged below the dust collecting section 40 .
  • the particulate matter 32 dropped from the dust collection section 40 to the collection section 10 is deposited on the bottom plate 11 .
  • the microwave generator 91 generates microwaves 93 .
  • the particulate matter 32 collected by the collection unit 10 is burned by the microwaves 93 .
  • Microwaves 93 are electromagnetic waves having a frequency of 300 MHz to 300 GHz.
  • FIG. 3 is a top view showing an example of the electrostatic precipitator 100 shown in FIG. In FIG. 3, the dust collection part 40 is omitted.
  • a microwave introduction pipe 94 may be connected to the first microwave introduction port 22 .
  • microwaves 93 introduced into the internal space 21 from the outside of the propagation section 20 pass through the microwave introduction pipe 94 .
  • the bottom plate 11 has an upper surface 96 and a lower surface 98 . Particulate matter 32 is deposited on top surface 96 .
  • a plurality of first slits 80 are provided in the bottom plate 11 . In this example, nine first slits 80 are provided in the bottom plate 11 .
  • the first slit 80 extends through the bottom plate 11 from the upper surface 96 to the lower surface 98 .
  • the first slit 80 of this example has a rectangular shape with long sides 81 and short sides 82 .
  • the in-plane direction of the bottom plate 11 and the direction crossing the long side 81 of the first slit 80 is defined as a first direction dr1.
  • the first direction dr ⁇ b>1 is a direction perpendicular to the long side 81 and parallel to the short side 82 .
  • the first direction dr1 is parallel to the Y-axis direction.
  • the in-plane direction of the bottom plate 11 and the direction crossing the short side 82 of the first slit 80 is defined as a second direction dr2.
  • the second direction dr ⁇ b>2 is a direction perpendicular to the short side 82 and parallel to the long side 81 .
  • the second direction dr2 is parallel to the X-axis direction.
  • the collecting part 10 has a first side plate 15, a second side plate 12 and a third side plate 18.
  • the collecting section 10 has two second side plates 12 (second side plate 12-1 and second side plate 12-2).
  • the second side plate 12-1 and the second side plate 12-2 face each other across a collection space 97 (described later) in the second direction dr2.
  • the first side plate 15 and the third side plate 18 of this example extend in the second direction dr2 when viewed from above.
  • the second side plate 12 of this example extends in the first direction dr1 when viewed from above.
  • the first side plate 15 is arranged farthest from the first microwave inlet 22 in the first direction dr1.
  • first side plate 15 includes outer surface 16 and inner surface 17
  • second side plate 12 includes outer surface 13 and inner surface 14
  • third side plate 18 includes outer surface 19 and inner surface 99.
  • the collection part 10 has a collection space 97 .
  • the collection space 97 is a space above the upper surface 96 of the bottom plate 11 and is a space surrounded by the inner surface 17 , the inner surface 14 and the inner surface 99 .
  • the first side plate 15 , the second side plate 12 and the third side plate 18 may face the internal space 21 .
  • the outer surface 16 of the first side plate 15 , the outer surface 13 of the second side plate 12 , and the outer surface 19 of the third side plate 18 face the interior space 21 .
  • the first side plate 15 , the second side plate 12 and the third side plate 18 may cross the bottom plate 11 .
  • the first side plate 15 , the second side plate 12 and the third side plate 18 are perpendicular to the bottom plate 11 .
  • the propagation part 20 has a top plate 24 , an outer bottom plate 25 , an outer plate 23 and an outer plate 33 .
  • the outer bottom plate 25 is arranged below the top plate 24 in the Z-axis direction and separated from the top plate 24 .
  • Top plate 24 , outer bottom plate 25 , outer plate 23 and outer plate 33 face interior space 21 .
  • the plate surfaces of the top plate 24 and the outer bottom plate 25 are arranged parallel to the XY plane.
  • the propagation part 20 has two outer plates 23 (an outer plate 23-1 and an outer plate 23-2).
  • the propagation section 20 has two outer plates 33 (an outer plate 33-1 and an outer plate 33-2).
  • the outer plate 23 of this example extends in the first direction dr1 when viewed from above.
  • the outer plate 33 of this example extends in the second direction dr2 when viewed from above.
  • the outer plate 23 includes an inner surface 26.
  • Outer plate 33 includes an inner surface 36 .
  • the internal space 21 is a space sandwiched between the top plate 24 and the outer bottom plate 25 in the Z-axis direction and surrounded by the inner side surface 26 and the inner side surface 36 in the XY plane.
  • the bottom plate 11 and the first slit 80 are arranged at positions overlapping with the internal space 21 of the propagation section 20 when viewed from above.
  • the bottom surface 98 of the bottom plate 11 is in contact with the internal space 21 .
  • the collection space 97 of the collection section 10 and the internal space 21 of the propagation section 20 communicate with each other via the first slit 80 .
  • width Wp1 and Wp2 are assumed to be width Wp1 and width Wp2, respectively.
  • Width Wp1 may be different from or equal to width Wp2.
  • the width Wp1 may be 1000 mm or more and 1300 mm or less.
  • the width Wp2 may be 50 mm or more and 500 mm or less.
  • width Wc1 and width Wc2 are defined as width Wc1 and width Wc2, respectively.
  • Width Wc1 may be different from or equal to width Wc2.
  • the width Wc1 may be 800 mm or more and 1000 mm or less.
  • the width Wc2 may be 50 mm or more and 450 mm or less.
  • the width Wc1 may be smaller than the width Wp1 and may be equal to the width Wp1.
  • Width Wc2 may be smaller than width Wp2 and may be equal to width Wp2.
  • microwaves 93 are introduced into the internal space 21 through the first microwave introduction port 22 .
  • the microwave 93 may be introduced in the first direction dr1 at the position of the first microwave introduction port 22 in the first direction dr1.
  • the first microwave introduction port 22 may be separated from the plurality of first slits 80 by a predetermined distance in the first direction dr1. Let the predetermined distance be distance ds1.
  • the microwave 93 introduced in the first direction dr1 tends to propagate radially in the XY plane in the internal space 21 when viewed from above. Therefore, since the first microwave introduction port 22 is separated from the first slit 80 by the distance ds1, the microwaves 93 are likely to be uniform at the position of the first slit 80 in the XY plane.
  • the fact that the microwaves 93 are uniform means that the traveling direction of the microwaves 93 is not biased toward a specific traveling direction in the XY plane and in the Z-axis direction.
  • the distance ds1 may be 0.2 times or more and 400 times or less, or may be 0.4 times or more and 200 times or less, the wavelength of the microwave 93 .
  • the microwave 93 propagates from the internal space 21 to the collection space 97 of the collection section 10 through the plurality of first slits 80 . Since the microwaves 93 are uniform at the position of the first slit 80 in the XY plane, the microwaves 93 easily propagate uniformly to the collection space 97 through the first slit 80 . This makes it easier for the microwaves 93 to uniformly irradiate the particulate matter 32 deposited on the bottom plate 11 regardless of the position of the particulate matter 32 on the upper surface 96 . Therefore, the particulate matter 32 is more likely to be efficiently burned by the microwaves 93 .
  • the long side 81 of the first slit 80 may be arranged in a direction that intersects the direction in which the microwave 93 is introduced into the internal space 21 (the first direction dr1 in this example). This makes it easier for the particulate matter 32 to be burned efficiently by the microwaves 93 than when the long sides 81 are arranged in a direction parallel to the direction in which the microwaves 93 are introduced.
  • the microwaves 93 introduced into the internal space 21 propagate radially in the internal space 21 , and the radially propagated microwaves 93 propagate to the collection space 97 through the plurality of first slits 80 . Therefore, in this example, the microwaves 93 may be introduced into the internal space 21 from one first microwave introduction port 22 . Therefore, the number of microwave introducing pipes 94 through which the microwaves 93 generated by the microwave generating section 91 pass may be one. Microwave inlet tubes 94 can be expensive. In this example, since only one microwave introduction pipe 94 is required, the cost of the electrostatic precipitator system 200 (see FIG. 2) is more likely to be reduced than when a plurality of microwave introduction pipes 94 are arranged.
  • the width of the first slit 80 in the first direction dr1 is assumed to be width W1.
  • Width W1 is the width of short side 82 .
  • the width W1 may be 0.1 to 40 times the wavelength of the microwave 93 .
  • the width W1 may be 15 mm or more and 40 mm or less.
  • the width of the interval between one first slit 80 and another first slit 80 adjacent in the first direction dr1 is defined as width W2.
  • the width W2 of the interval between one first slit 80 and another first slit 80 adjacent in the first direction dr1 is equal over all of the plurality of first slits 80 .
  • the width W2 may be 2.0 to 10.0 times the width W1.
  • the width W2 may be 50 mm or more and 200 mm or less.
  • the width of the first slit 80 in the second direction dr2 is assumed to be width W3.
  • a width W3 is the width of the long side 81 .
  • the width W3 of the long side 81 is the same across all of the multiple first slits 80 .
  • Width W3 may be 1/2 or more of the wavelength of microwave 93 .
  • width W3 may be 61.3 mm or more.
  • FIG. 4 is a diagram showing an example of a cross section taken along line aa' shown in FIG.
  • the aa' line shows the microwave introduction pipe 94, the outer plate 33-2, the first microwave introduction port 22, the top plate 24, the outer bottom plate 25, the internal space 21, the third side plate 18, the dust collection part 40, the It is a YZ section passing through the collecting space 97, the first side plate 15 and the outer plate 33-1.
  • the dust collector 40 is indicated by hatching. However, in FIG. 4, the dust collecting electrode in the dust collecting portion 40 is omitted. In this example, the particulate matter 32 collected in the dust collecting section 40 falls onto the upper surface 96 of the bottom plate 11 .
  • the upper end of the collecting part 10 be the upper end Eh.
  • the position of the upper end Eh in the Z-axis direction is indicated by a rough broken line.
  • the position of the upper end Eh may match the position of the upper surface of the top plate 24 in the propagation section 20 .
  • the collecting section 10 may be arranged inside the propagating section 20 .
  • a lower surface 98 of the bottom plate 11 may be in contact with the internal space 21 .
  • the upper surface of the outer bottom plate 25 is referred to as an upper surface 27.
  • a direction perpendicular to the first direction dr1 and the second direction dr2 is defined as a third direction dr3.
  • the third direction dr3 is the same as the Z-axis direction.
  • the lower surface 98 of the bottom plate 11 may be spaced apart from the upper surface 27 by a predetermined distance in the third direction dr3. Let the predetermined distance be distance ds2. As described above, the microwaves 93 introduced in the first direction dr1 tend to radially propagate through the internal space 21 in the XY plane when viewed from above. Therefore, since the lower surface 98 is separated from the upper surface 27 by the distance ds2, the microwaves 93 introduced into the internal space 21 are directed from the internal space 21 to the collection space 97 in the third direction dr3. easier to proceed. In FIG. 4, the microwaves 93 traveling in the direction from the interior space 21 to the collection space 97 are indicated by dashed arrows.
  • the distance ds2 may be 200 times or less the wavelength of the microwave 93, or may be 100 times or less.
  • the distance ds may be 250 mm or less, and may be 200 mm or less.
  • At least a portion of the dust collecting section 40 may be arranged so as to overlap the collecting section 10 in the Z-axis direction.
  • part of the dust collecting section 40 and the collecting section 10 are arranged to overlap in the Z-axis direction between the upper surface 96 of the bottom plate 11 and the upper end Eh of the collecting section 10 .
  • FIG. 5 is a top view showing another example of the electrostatic precipitator 100 shown in FIG.
  • the first slit 80 arranged closest to the first microwave introduction port 22 in the first direction dr1 is referred to as a first slit 80-1
  • the first slit 80 arranged farthest away from the first microwave introduction port 22 is referred to as a first slit 80-1.
  • Widths W1 of the first slits 80-1 to 80-9 are set to widths W1-1 to W1-9, respectively.
  • Each width of 80 is large. That is, the width W1 increases from the first slit 80-1 to the first slit 80-9.
  • the width W1-1 is the smallest and the width W1-9 is the largest. This makes it easier to suppress the loss of the microwaves 93 than when all nine widths W1 are equal (that is, when shown in FIG. 3).
  • FIG. 6 is a top view showing another example of the electrostatic precipitator 100 shown in FIG.
  • ten first slits 80 are provided in the bottom plate 11 .
  • the first slit 80 arranged closest to the first microwave introduction port 22 in the first direction dr1 is referred to as a first slit 80-1
  • the first slit 80 arranged farthest away from the first microwave introduction port 22 is referred to as a first slit 80-1.
  • the width W1 (see FIG. 3) of one first slit 80 is equal over the ten first slits 80. As shown in FIG.
  • the width of the interval between the first slit 80-k and the first slit 80-(k+1) adjacent in the first direction dr1 is defined as width W2-k.
  • k is an integer of 1 or more and 9 or less.
  • the distance between one first slit 80 and another first slit 80 adjacent in the direction dr1 is small. That is, in this example, the larger k is, the smaller the width W2-k is. This makes it easier to suppress the loss of the microwave 93 than when all eight widths W2 are equal (that is, when shown in FIG. 3).
  • FIG. 7 is a top view showing another example of the electrostatic precipitator 100 shown in FIG.
  • the electrostatic precipitator 100 of this example is different from the electrostatic precipitator 100 shown in FIG. 3 in that a coating material 83 is further provided.
  • the covering material 83 is indicated by hatching.
  • the covering material 83 is provided on the upper surface 96 of the bottom plate 11 (see FIG. 4). That is, in this example, the covering material 83 is arranged in the collection space 97 .
  • the covering material 83 may cover at least one first slit 80 among the plurality of first slits 80 . In this example, the covering material 83 covers all (nine) first slits 80 .
  • the particulate matter 32 does not pass through the covering material 83.
  • the microwaves 93 pass through the covering material 83 .
  • the transmittance and absorbance of the microwaves 93 in the covering material 83 may be 90% or more and less than 10%, respectively.
  • the covering material 83 is, for example, at least one of a heat insulating material such as glass wool, ceramic fiber, and quartz glass.
  • the temperature of the exhaust gas 30 (see FIG. 2) discharged from the power plant 92 (see FIG. 2) may range from 300°C to 400°C. Therefore, the temperature of the particulate matter 32 may also be 300.degree. C. to 400.degree. When the particulate matter 32 is combusted by the microwaves 93, the combustion may further raise the temperature. Therefore, the heat resistance temperature of the covering material 83 is preferably 800° C. or higher.
  • FIG. 8 is a diagram showing an example of a side view of the vicinity of the bottom plate 11 in FIG.
  • FIG. 8 is a diagram of the electrostatic precipitator 100 viewed in the X-axis direction.
  • FIG. 8 is an enlarged view of the vicinity of one first slit 80. As shown in FIG.
  • the upper and lower surfaces of the covering material 83 are referred to as an upper surface 87 and a lower surface 86, respectively.
  • the lower surface 86 of the covering material 83 is provided in contact with the upper surface 96 of the bottom plate 11 .
  • the covering material 83 may be provided inside at least one first slit 80 .
  • the covering material 83 may have a protrusion 84 protruding from the upper surface 96 of the bottom plate 11 toward the lower surface 98 thereof.
  • the protrusion 84 may be provided inside the first slit 80 .
  • the protruding portion 84 being provided inside the first slit 80 means that the protruding portion 84 is arranged between the upper surface 96 and the lower surface 98 in the third direction dr3.
  • a depression 85 corresponding to the first slit 80 may be provided on the upper surface 87 of the covering material 83 .
  • the recess 85 is a recess provided in the upper surface 87 of the coating material 83 and is recessed in the coating material 83 in the direction from the upper surface 87 to the lower surface 86 of the coating material 83 .
  • the recess 85 corresponding to the first slit 80 means that at least part of the recess 85 in the first direction dr1 and at least part of the first slit 80 in the first direction dr1 are arranged at the same position. Point. In this example, the entire recess 85 in the first direction dr1 and the entire first slit 80 in the first direction dr1 are arranged at the same position.
  • the particulate matter 32 falling on the upper surface 87 of the covering material 83 tends to accumulate in the depressions 85 . Since the recesses 85 correspond to the first slits 80 , the particulate matter 32 deposited in the recesses 85 is irradiated by the microwaves 93 traveling through the first slits 80 in the direction from the internal space 21 to the collection space 97 . Burns easily. Therefore, the combustion efficiency of the particulate matter 32 in the electrostatic precipitator 100 is more likely to be improved than when the recess 85 is not provided in the upper surface 87 .
  • FIG. 8 shows the vicinity of one first slit 80
  • a convex portion 84 is provided inside at least one first slit 80 among the plurality of first slits 80 shown in FIG. you can
  • a convex portion 84 may be provided inside all of the plurality of first slits 80 .
  • a recess 85 corresponding to at least one first slit 80 of the plurality of first slits 80 may be provided on the upper surface 87 of the covering material 83 .
  • a plurality of depressions 85 corresponding to the plurality of first slits 80 may be provided on the upper surface 87 of the covering material 83 .
  • the covering material 83 may be removable from the upper surface 96 of the bottom plate 11 .
  • the covering material 83 is at least one of a heat insulating material such as glass wool, ceramic fiber, and quartz glass.
  • a heat insulating material such as glass wool
  • the covering material 83 and the part of the covering material 83 arranged above the first slit 80 tends to enter the inside of the first slit 80 .
  • protrusions 84 are likely to be formed on the covering material 83
  • depressions 85 corresponding to the first slits 80 are likely to be formed on the upper surface 87 of the covering material 83 .
  • FIG. 9 is a diagram showing another example of the electrostatic precipitator 100 shown in FIG.
  • FIG. 9 is an example when the electrostatic precipitator 100 shown in FIG. 1 is viewed from the second side plate 12-1 to the second side plate 12-2 (see FIG. 3).
  • the outer plate 23 (see FIG. 3) of the propagation part 20 is omitted.
  • hatching of the dust collecting portion 40 shown in FIG. 4 is omitted.
  • the first slit 80 is also provided in the second side plate 12 .
  • the electrostatic precipitator 100 of this example differs from the electrostatic precipitator shown in FIG. 3 in this respect.
  • a first slit 80 provided in the second side plate 12 penetrates the second side plate 12 from the outer surface 13 to the inner surface 14 (see FIG. 3) of the second side plate 12 .
  • a plurality of first slits 80 may be provided extending from the bottom plate 11 to the second side plate 12 .
  • the plurality of first slits may be provided extending from the bottom plate 11 to the second side plate 12-1, and may be provided extending from the bottom plate 11 to the second side plate 12-2 (see FIG. 3). good.
  • the microwaves 93 (see FIGS. 3 and 4) propagating in the second direction dr2 (see FIG. 3) in the internal space 21 are It becomes easier to propagate to the collection space 97 through the first slit 80 provided in the second side plate 12 . This makes it easier for the particulate matter 32 to be burned by the microwaves 93 than when the plurality of first slits 80 are provided only in the bottom plate 11 (that is, in the example of FIG. 3).
  • the covering material 83 When the covering material 83 is provided on the upper surface 96 of the bottom plate 11 (that is, in the case of FIG. 7), the covering material 83 may also be provided on the inner surface 14 (see FIG. 3) of the second side plate 12. When the coating material 83 is provided on the inner surface 14 of the second side plate 12, the coating material 83 is provided inside the first slit 80 provided in the second side plate 12, as in the example shown in FIG. may be provided.
  • FIG. 10 is a diagram showing another example of the electrostatic precipitator 100 shown in FIG.
  • FIG. 10 is an example when the electrostatic precipitator 100 shown in FIG. 1 is viewed from the first side plate 15 to the third side plate 18 (see FIG. 3).
  • the outer plate 33 (see FIG. 3) of the propagation part 20 is omitted.
  • hatching of the dust collecting portion 40 shown in FIG. 4 is omitted.
  • the first side plate 15 is provided with a second slit 88 .
  • the electrostatic precipitator 100 of this example differs from the electrostatic precipitator shown in FIG. 3 in this respect.
  • the second slit 88 extends through the first side plate 15 from the outer surface 16 to the inner surface 17 (see FIG. 3) of the first side plate 15 .
  • a plurality of second slits 88 may be provided in the first side plate 15 .
  • the long side of the second slit 88 may be provided parallel to the second direction dr2, or may be provided parallel to the third direction dr3. In this example, the long side of the second slit 88 is provided parallel to the second direction dr2.
  • the microwave 93 reflected by the inner surface 36-1 (see FIG. 3) of the propagation part 20 passes through the second slit 88 to the collection space 97. easier to propagate. This makes it easier for the particulate matter 32 to be burned by the microwaves 93 than when the plurality of first slits 80 are provided only in the bottom plate 11 (that is, in the example of FIG. 3).
  • the covering material 83 When the covering material 83 is provided on the upper surface 96 of the bottom plate 11 (that is, in the case of FIG. 7), the covering material 83 may also be provided on the inner surface 17 (see FIG. 3) of the first side plate 15. When the covering material 83 is provided on the inner surface 17 of the first side plate 15, the covering material 83 may be provided inside the second slit 88 as in the example shown in FIG.
  • FIG. 11 is a diagram showing another example of the electrostatic precipitator 100 shown in FIG. 1 viewed from above.
  • the propagation part 20 further has a second microwave introduction port 61 provided in the outer plate 23 .
  • the electrostatic precipitator 100 of this example differs from the electrostatic precipitator 100 shown in FIG. 3 in this respect.
  • the propagation section 20 may have a plurality of second microwave introduction ports 61 .
  • the propagation part 20 of this example has two second microwave introduction ports 61 (a second microwave introduction port 61-1 and a second microwave introduction port 61-2).
  • the outer plate 23-1 is provided with the second microwave introduction port 61-1
  • the outer plate 23-2 is provided with the second microwave introduction port 61-2.
  • a microwave introduction pipe 60 may be connected to the second microwave introduction port 61 .
  • a microwave introduction pipe 60-1 is connected to the second microwave introduction port 61-1, and a microwave introduction pipe 60-2 is connected to the second microwave introduction port 61-2.
  • microwaves 93 introduced into the internal space 21 from the outside of the propagating section 20 pass through the microwave introducing pipe 94 and the microwave introducing pipe 60 .
  • the direction of the microwaves 93 introduced into the internal space 21 through the first microwave introduction port 22 and the direction of the microwaves 93 introduced into the internal space 21 through the second microwave introduction port 61 may be different.
  • the direction of the microwaves 93 introduced into the internal space 21 through the first microwave introduction port 22 is the first direction dr1.
  • the direction of the microwave 93 introduced into the internal space 21 through the second microwave introduction port 61-1 is the second direction dr2, and the microwave introduced into the internal space 21 through the second microwave introduction port 61-2.
  • the direction of the waves 93 is parallel to the second direction dr2 and opposite to the second direction dr2.
  • the microwave 93 tends to be more uniform.
  • the second side plate 12 of the collection part 10 is provided with the first slit 80 (see FIG. 9). Particulate matter collected in the collection space 97 by introducing the microwave 93 into the internal space 21 through the second microwave introduction port 61 and providing the first slit 80 in the second side plate 12 32 are more likely to burn more efficiently.
  • FIG. 12 is a diagram showing an example of the bottom view of the electrostatic precipitator 100 shown in FIG.
  • the propagation part 20 further has a third microwave introduction port 63 provided in the outer bottom plate 25 .
  • the electrostatic precipitator 100 of this example differs from the electrostatic precipitator 100 shown in FIG. 11 in this respect.
  • a microwave introduction pipe 62 may be connected to the third microwave introduction port 63 .
  • a microwave 93 introduced into the internal space 21 from the outside of the propagating section 20 passes through the microwave introduction pipe 94 , the microwave introduction pipe 60 and the microwave introduction pipe 62 .
  • the direction of the microwaves 93 introduced into the internal space 21 through the third microwave introduction port 63 is the direction of the microwaves 93 introduced into the internal space 21 through the first microwave introduction port 22 and the direction of the microwaves 93 introduced into the internal space 21 through the second microwave introduction port 61.
  • the direction of the microwaves 93 introduced into the internal space 21 may be different. This makes it easier for the microwaves 93 to be more uniform in the internal space 21 than in the example shown in FIG.
  • the direction of the microwaves 93 introduced into the internal space 21 through the third microwave introduction port 63 is the third direction dr3 (see FIG. 4).
  • the third microwave introduction port 63 may be arranged at a position overlapping the bottom plate 11 of the collecting section 10 in a bottom view. Thereby, the microwaves 93 introduced into the internal space 21 through the third microwave introduction port 63 are easily introduced into the collection space 97 . This makes it easier for the particulate matter 32 collected in the collection space 97 to be burned more efficiently.
  • FIG. 13 is a top view showing another example of the electrostatic precipitator 100 shown in FIG.
  • the width of the propagating portion 20 in the direction intersecting the first direction dr1 extends from the first microwave introduction port 22 to the plurality of first slits 80 .
  • the electrostatic precipitator 100 of this example differs from the electrostatic precipitator 100 shown in FIG. 11 in this respect.
  • the direction crossing the first direction dr1 may be a direction parallel to the long side 81 of the first slit 80 .
  • the width of the propagating portion 20 in the second direction dr2 is tapered from the first microwave introduction port 22 to the plurality of first slits 80 .
  • FIG. 14 is a diagram showing an example of a cross section taken along line aa' shown in FIG.
  • the width of the propagating portion 20 in the third direction dr3 also widens from the first microwave introduction port 22 to the plurality of first slits 80 . That is, in this example, the internal space 21 from the first microwave introduction port 22 to the plurality of first slits 80 has a horn shape. Therefore, the gain of the microwave 93 tends to be greater than in the examples shown in FIGS. 3 and 4.
  • FIG. 15 is an enlarged view of the vicinity of the first microwave introduction port 22 in FIG.
  • the microwave introduction tube 94 may have a first recess 50 .
  • the first concave portion 50 is recessed in a direction (in this example, the direction from the dust collecting portion 40 to the collecting portion 10) that intersects the traveling direction of the microwave 93 (in this example, the Y-axis direction).
  • FIG. 16 is an enlarged view of the vicinity of the first microwave introduction port 22 in FIG.
  • the first concave portion 50 of this example is recessed in the direction from the dust collecting portion 40 to the collecting portion 10 (see FIG. 4).
  • the depth of the first concave portion 50 is defined as depth dp1.
  • the depth dp1 may be 1/4 of the wavelength of the microwave 93 (see FIG. 3, etc.).
  • the microwaves 93 traveling in the direction from the microwave introduction pipe 94 to the internal space 21 and the microwaves 93 traveling from the internal space 21 to the microwave introduction pipe It cancels out the microwave 93 traveling in the direction toward 94 .
  • the depth dp1 is 1/4 of the wavelength of the microwave 93, the reflectance of the microwave 93 reflected from the first concave portion 50 toward the internal space 21 can be easily improved. This facilitates efficient combustion of the particulate matter 32 in the collecting section 10 .
  • the first concave portion 50 may have a so-called choke structure that cancels out the traveling wave and the reflected wave of the microwave 93 .
  • the dust collection part 40 may have a dust collection electrode 41 .
  • the dust collection part 40 may have a plurality of dust collection electrodes 41 .
  • the dust collection section 40 of this example has seven dust collection electrodes 41 (dust collection electrodes 41-1 to 41-7).
  • the dust collection electrode 41 may be plate-shaped. In this example, the plate surface of the plate-shaped dust collection electrode 41 is arranged parallel to the XZ plane.
  • the dust collection electrode 41 may be provided with a plurality of openings 42 through which the exhaust gas 30 passes.
  • the opening 42 penetrates the plate surface in the thickness direction (Y-axis direction) of the plate-shaped dust collection electrode 41 .
  • the exhaust gas 30 passes through the inside of the dust collection part 40 in a direction intersecting the plate surface of the dust collection electrode 41 .
  • the exhaust gas 30 passes through the inside of the dust collection section in the direction from the dust collection electrode 41-1 to the dust collection electrode 41-7.
  • One of the adjacent dust collection electrodes 41 may be connected to the power supply 43 and the other may be grounded.
  • the dust collection electrode 41-1, the dust collection electrode 41-3, the dust collection electrode 41-5 and the dust collection electrode 41-7 are connected to the power source 43, and the dust collection electrode 41-2 and the dust collection electrode 41 -4 and the collecting electrode 41-6 are grounded.
  • the charged particulate matter 32 (see FIG. 4) is collected by the grounded dust collection electrode 41 due to the potential difference generated between the adjacent dust collection electrodes 41 .
  • the collected particulate matter 32 falls into the collecting section 10 .
  • the dust collection electrode 41 may have a second concave portion 44 .
  • the second concave portion 44 is recessed in the thickness direction of the plate-like dust collection electrode 41 plate surface.
  • the second concave portion 44 is recessed in a direction (Y-axis direction in this example) intersecting the direction from the collecting portion 10 to the dust collecting portion 40 (Z-axis direction in this example).
  • FIG. 18 is an enlarged view of the dust collection electrode 41 in FIG.
  • FIG. 18 is a diagram of one dust collection electrode 41 viewed in the thickness direction of the plate surface.
  • the second concave portion 44 may have a rectangular shape having long sides 45 and short sides 46 when the dust collection electrode 41 is viewed in the thickness direction of the plate surface.
  • the long side 45 of the second concave portion 44 may intersect the direction from the collecting portion 10 to the dust collecting portion 40 (the Z-axis direction in this example). In this example, the long side 45 is perpendicular to the direction from the collecting portion 10 to the dust collecting portion 40 .
  • the second concave portion 44 may be arranged between the collecting portion 10 and the opening 42 in the direction from the collecting portion 10 to the dust collecting portion 40 .
  • FIG. 19 is another enlarged view of the dust collection electrode 41 in FIG.
  • FIG. 19 is a diagram of one dust collection electrode 41 viewed in a direction parallel to the plate surface.
  • the second concave portion 44 of this example is recessed in the thickness direction of the plate surface when the dust collection electrode 41 is viewed in a direction parallel to the plate surface.
  • the depth from the plate surface of the second recess 44 is defined as depth dp2.
  • the depth dp2 may be 1/4 of the wavelength of the microwave 93 (see FIG. 3, etc.).
  • the second concave portion 44 may be arranged between the collecting portion 10 and the opening 42 in the direction from the collecting portion 10 to the dust collecting portion 40 . This makes it difficult for the microwaves 93 to travel toward the opening 42 side of the second concave portion 44 .
  • the second concave portion 44 may have a so-called choke structure that cancels out the traveling wave and the reflected wave of the microwave 93 .
  • FIG. 20 is a diagram showing an example of the arrangement of the electrostatic precipitator 100.
  • FIG. Exhaust gas 30 discharged by power plant 92 passes through pipe 110 .
  • the charging unit 90 and the dust collection unit 40 may be provided in the pipe 110 through which the exhaust gas 30 passes.
  • the charging unit 90 and the dust collection unit 40 may be provided in the flow path of the exhaust gas 30 inside the pipe 110 .
  • the range of the electrostatic precipitator 100 is indicated by a dashed line frame.
  • the charging unit 90 may be provided upstream of the flow path of the exhaust gas 30 in the pipe 110 relative to the dust collection unit 40 . As a result, the particulate matter 32 charged by the charging section 90 is collected by the dust collection section 40 .
  • the collection unit 10 may be arranged below the pipe 110 .
  • the propagation section 20 may be arranged below the pipe 110 .
  • Particulate matter 32 may be combusted outside piping 110 by microwaves 93 (see FIG. 3).

Landscapes

  • Electrostatic Separation (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

Provided is an electric dust collector comprising: a collecting part having a bottom plate on which particulate matter contained in exhaust gas is deposited, the bottom plate being provided with a plurality of first slits; and a propagation part having an internal space where microwaves propagate, the plurality of first slits being disposed in positions overlapping the internal space in a top view, and the microwaves propagating from the internal space to the collection part through the plurality of first slits.

Description

電気集塵装置Electrostatic precipitator
 本発明は、電気集塵装置に関する。 The present invention relates to an electrostatic precipitator.
 特許文献1には、「帯電粒子を捕集する捕集部と、集塵部に導入するマイクロ波を発生し、集塵部に捕集された帯電粒子をマイクロ波により燃焼させるマイクロ波発生部と、を備える電気集塵装置を提供する」と記載されている。
[先行技術文献]
[特許文献]
  [特許文献1]国際公開第2020/084934号
In Patent Document 1, "a collection unit that collects charged particles, and a microwave generation unit that generates microwaves to be introduced into the dust collection unit and burns the charged particles collected in the dust collection unit with the microwaves. and provides an electrostatic precipitator comprising:
[Prior art documents]
[Patent Literature]
[Patent Document 1] International Publication No. 2020/084934
解決しようとする課題Problem to be solved
 排ガスに含まれる粒子状物質をマイクロ波により燃焼させる場合、マイクロ波のエネルギー効率を向上させることが望ましい。 When using microwaves to burn particulate matter contained in exhaust gas, it is desirable to improve the energy efficiency of microwaves.
一般的開示General disclosure
 本発明の第1の態様においては、電気集塵装置を提供する。電気集塵装置は、排ガスに含まれる粒子状物質が堆積する底板を有し、底板に複数の第1スリットが設けられた捕集部と、マイクロ波が伝搬する内部空間を有する伝搬部と、を備える。上面視において、複数の第1スリットは内部空間と重なる位置に配置される。マイクロ波は、内部空間から複数の第1スリットを通じて捕集部に伝搬する。 A first aspect of the present invention provides an electrostatic precipitator. The electrostatic precipitator has a bottom plate on which the particulate matter contained in the exhaust gas is deposited, a collection part provided with a plurality of first slits in the bottom plate, a propagation part having an internal space in which microwaves propagate, Prepare. When viewed from above, the plurality of first slits are arranged at positions overlapping the internal space. Microwaves propagate from the internal space to the collecting section through the plurality of first slits.
 電気集塵装置は、粒子状物質を帯電させる帯電部と、帯電した粒子状物質を集塵する集塵部と、をさらに備えてよい。捕集部は、集塵部の下方に配置されてよい。底板には、集塵部により集塵された粒子状物質が堆積してよい。 The electric dust collector may further include a charging section that charges particulate matter and a dust collection section that collects the charged particulate matter. The collection section may be arranged below the dust collection section. Particulate matter collected by the dust collector may accumulate on the bottom plate.
 伝搬部は、底板の面内方向、且つ、複数の第1スリットの長辺に交差する方向である第1方向において、複数の第1スリットと予め定められた距離、離隔して設けられた第1マイクロ波導入口を有してよい。マイクロ波は、第1マイクロ波導入口を通じて内部空間に導入されてよい。第1方向における、第1マイクロ波導入口から複数の第1スリットのうちの1つの第1スリットまでの距離が大きいほど、第1方向における複数の第1スリットのそれぞれの幅が大きくてよい。 The propagating portion is separated from the plurality of first slits by a predetermined distance in a first direction that is an in-plane direction of the bottom plate and a direction that intersects the long sides of the plurality of first slits. It may have one microwave inlet. Microwaves may be introduced into the interior space through the first microwave inlet. The width of each of the plurality of first slits in the first direction may be greater as the distance from the first microwave introduction port to one of the plurality of first slits in the first direction is greater.
 伝搬部は、底板の面内方向、且つ、複数の第1スリットの長辺に交差する方向である第1方向において、複数の第1スリットと予め定められた距離、離隔して設けられた第1マイクロ波導入口を有してよい。マイクロ波は、第1マイクロ波導入口を通じて内部空間に導入されてよい。第1方向における、第1マイクロ波導入口から複数の第1スリットのうちの1つの第1スリットまでの距離が大きいほど、複数の第1スリットのうち第1方向において隣り合う一の第1スリットと他の第1スリットとの間隔が小さくてよい。 The propagating portion is separated from the plurality of first slits by a predetermined distance in a first direction that is an in-plane direction of the bottom plate and a direction that intersects the long sides of the plurality of first slits. It may have one microwave inlet. Microwaves may be introduced into the interior space through the first microwave inlet. The larger the distance from the first microwave introduction port to one of the first slits in the first direction in the first direction, the more adjacent first slits in the first direction among the plurality of first slits. The interval with other first slits may be small.
 捕集部は、底板と交差し、内部空間に面し、上面視において第1マイクロ波導入口から最も離隔して配置された第1の側板をさらに有してよい。第1の側板には、第2スリットが設けられていてよい。 The collecting part may further have a first side plate that intersects with the bottom plate, faces the internal space, and is arranged furthest apart from the first microwave introduction port in top view. A second slit may be provided in the first side plate.
 第1方向と交差する方向における伝搬部の幅は、第1マイクロ波導入口から複数の第1スリットにかけて広がっていてよい。 The width of the propagation part in the direction intersecting the first direction may spread from the first microwave introduction port to the plurality of first slits.
 第1方向と交差する方向における伝搬部の幅は、第1マイクロ波導入口から複数の第1スリットにかけてテーパー状に広がっていてよい。 The width of the propagating portion in the direction intersecting the first direction may widen in a tapered shape from the first microwave introduction port to the plurality of first slits.
 第1方向と交差する第2方向における伝搬部の幅と、第1方向と交差する第3方向であって第2方向と異なる第3方向における伝搬部の幅とは、第1マイクロ波導入口から複数の第1スリットにかけて広がっていてよい。 The width of the propagation portion in a second direction that intersects with the first direction and the width of the propagation portion in a third direction that is a third direction that intersects with the first direction and is different from the second direction are It may extend over a plurality of first slits.
 第1方向と交差する第2方向における伝搬部の幅と、第1方向と交差する第3方向であって第2方向と異なる第3方向における伝搬部の幅とは、第1マイクロ波導入口から複数の第1スリットにかけてホーン状に広がっていてよい。 The width of the propagation portion in a second direction that intersects with the first direction and the width of the propagation portion in a third direction that is a third direction that intersects with the first direction and is different from the second direction are It may spread like a horn across the plurality of first slits.
 伝搬部は、内部空間に面し、上面視において第1方向に延伸する外側板と、外側板に設けられた第2マイクロ波導入口と、をさらに有してよい。 The propagation section may further include an outer plate facing the internal space and extending in the first direction when viewed from above, and a second microwave introduction port provided in the outer plate.
 伝搬部は、内部空間に面し、底板の下方に設けられた外底板と、外底板に設けられた第3マイクロ波導入口と、をさらに有してよい。 The propagation part may further have an outer bottom plate facing the internal space and provided below the bottom plate, and a third microwave introduction port provided in the outer bottom plate.
 第1マイクロ波導入口には、伝搬部の外部から内部空間に導入されるマイクロ波が通過するマイクロ波導入管が接続されてよい。マイクロ波導入管は、マイクロ波の進行方向に交差する方向に窪んだ第1凹部を有してよい。第1凹部の深さは、マイクロ波の波長の1/4であってよい。 A microwave introduction pipe through which microwaves introduced into the internal space from the outside of the propagation part pass may be connected to the first microwave introduction port. The microwave introduction pipe may have a first recess that is recessed in a direction intersecting the traveling direction of the microwave. The depth of the first recess may be 1/4 of the microwave wavelength.
 集塵部は、集塵電極を有してよい。集塵電極は、捕集部から集塵部への方向に交差する方向に窪んだ第2凹部を有してよい。第2凹部の深さは、マイクロ波の波長の1/4であってよい。 The dust collection part may have a dust collection electrode. The dust collection electrode may have a second concave portion recessed in a direction intersecting the direction from the collection portion to the dust collection portion. The depth of the second recess may be ¼ of the microwave wavelength.
 集塵電極には、排ガスが通過する開口が設けられてよい。第2凹部は、捕集部から集塵部への方向において、捕集部と開口との間に配置されてよい。 The dust collection electrode may be provided with an opening through which the exhaust gas passes. The second recess may be arranged between the collecting portion and the opening in the direction from the collecting portion to the dust collecting portion.
 帯電部および集塵部は、排ガスが通過する配管に設けられてよい。捕集部は、配管の下方に配置されていてよい。 The charging part and the dust collection part may be provided in the pipe through which the exhaust gas passes. The collecting part may be arranged below the pipe.
 捕集部は、底板と交差し内部空間に面する第2の側板をさらに有してよい。底板から第2の側板にわたり、複数の第1スリットが延伸して設けられていてよい。 The collection part may further have a second side plate that intersects with the bottom plate and faces the internal space. A plurality of first slits may be provided extending from the bottom plate to the second side plate.
 電気集塵装置は、底板の上面に設けられ、複数の第1スリットのうち少なくとも一つの第1スリットを覆う被覆材をさらに備えてよい。 The electrostatic precipitator may further include a coating material provided on the upper surface of the bottom plate and covering at least one of the plurality of first slits.
 被覆材は、少なくとも一つの第1スリットの内部に設けられていてよい。 The covering material may be provided inside at least one first slit.
 被覆材は、底板の上面から下面への方向に突出した凸部を有してよい。凸部は、第1スリットの内部に設けられてよい。 The covering material may have a projection projecting from the upper surface to the lower surface of the bottom plate. The protrusion may be provided inside the first slit.
 被覆材は、第2の側板に設けられた第1スリットの内部に設けられていてよい。 The covering material may be provided inside the first slit provided in the second side plate.
 被覆材は、第2スリットの内部に設けられていてよい。 The covering material may be provided inside the second slit.
 被覆材の上面には、第1スリットに対応する窪みが設けられていてよい。 A depression corresponding to the first slit may be provided on the upper surface of the covering material.
 被覆材は、底板の上面から着脱可能であってよい。 The covering material may be removable from the top surface of the bottom plate.
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 It should be noted that the above outline of the invention does not list all the features of the present invention. Subcombinations of these feature groups can also be inventions.
本発明の一つの実施形態に係る電気集塵装置100の一例を示す図である。It is a figure showing an example of electrostatic precipitator 100 concerning one embodiment of the present invention. 本発明の一つの実施形態に係る電気集塵装置100および電気集塵システム200のブロック図の一例を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows an example of the block diagram of the electrostatic precipitator 100 which concerns on one Embodiment of this invention, and the electrostatic precipitator system 200. FIG. 図1に示される電気集塵装置100の上面視における一例を示す図である。It is a figure which shows an example in the top view of the electrostatic precipitator 100 shown by FIG. 図3に示されるa-a'線における断面の一例を示す図である。4 is a diagram showing an example of a cross section taken along line aa' shown in FIG. 3; FIG. 図1に示される電気集塵装置100の上面視における他の一例を示す図である。It is a figure which shows another example in the top view of the electrostatic precipitator 100 shown by FIG. 図1に示される電気集塵装置100の上面視における他の一例を示す図である。It is a figure which shows another example in the top view of the electrostatic precipitator 100 shown by FIG. 図1に示される電気集塵装置100の上面視における他の一例を示す図である。It is a figure which shows another example in the top view of the electrostatic precipitator 100 shown by FIG. 図7における底板11の近傍の側面視における一例を示す図である。It is a figure which shows an example in the side view of the vicinity of the baseplate 11 in FIG. 図1に示される電気集塵装置100の他の一例を示す図である。It is a figure which shows another example of the electrostatic precipitator 100 shown by FIG. 図1に示される電気集塵装置100の他の一例を示す図である。It is a figure which shows another example of the electrostatic precipitator 100 shown by FIG. 図1に示される電気集塵装置100の上面視における他の一例を示す図である。It is a figure which shows another example in the top view of the electrostatic precipitator 100 shown by FIG. 図1に示される電気集塵装置100の下面視における一例を示す図である。It is a figure which shows an example in the bottom view of the electrostatic precipitator 100 shown by FIG. 図1に示される電気集塵装置100の上面視における他の一例を示す図である。It is a figure which shows another example in the top view of the electrostatic precipitator 100 shown by FIG. 図13に示されるa-a'線における断面の一例を示す図である。FIG. 14 is a diagram showing an example of a cross section taken along line aa' shown in FIG. 13; 図3における第1マイクロ波導入口22の近傍の拡大図である。4 is an enlarged view of the vicinity of a first microwave introduction port 22 in FIG. 3. FIG. 図4における第1マイクロ波導入口22の近傍の拡大図である。5 is an enlarged view of the vicinity of a first microwave introduction port 22 in FIG. 4. FIG. 図1に示される電気集塵装置100における集塵部40の内部の拡大図である。FIG. 2 is an enlarged view of the inside of the dust collector 40 in the electrostatic precipitator 100 shown in FIG. 1; 図17における集塵電極41の拡大図である。FIG. 18 is an enlarged view of a dust collection electrode 41 in FIG. 17; 図17における集塵電極41の他の拡大図である。18 is another enlarged view of the dust collection electrode 41 in FIG. 17. FIG. 電気集塵装置100の配置の一例を示す図である。It is a figure which shows an example of arrangement|positioning of the electrostatic precipitator 100. FIG.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Although the present invention will be described below through embodiments of the invention, the following embodiments do not limit the invention according to the scope of claims. Also, not all combinations of features described in the embodiments are essential for the solution of the invention.
 図1は、本発明の一つの実施形態に係る電気集塵装置100の一例を示す図である。電気集塵装置100は、捕集部10および伝搬部20を備える。電気集塵装置100は、集塵部40を備えてよい。捕集部10は、底板11を有する。伝搬部20は、マイクロ波が伝搬する内部空間21を有する。本例において、伝搬部20は第1マイクロ波導入口22を有する。 FIG. 1 is a diagram showing an example of an electrostatic precipitator 100 according to one embodiment of the present invention. The electrostatic precipitator 100 includes a collection section 10 and a propagation section 20 . The electric dust collector 100 may include a dust collector 40 . The collecting part 10 has a bottom plate 11 . The propagation part 20 has an internal space 21 through which microwaves propagate. In this example, the propagation part 20 has a first microwave introduction port 22 .
 本明細書においては、X軸、Y軸およびZ軸の直交座標軸を用いて技術的事項を説明する場合がある。本明細書において、底板11の板面に平行な面をXY面とし、底板11の板面に垂直な方向をZ軸方向とする。XY面は水平面であってよく、Z軸方向は重力方向に平行であってよい。本明細書において、XY面内における所定の方向をX軸方向とし、XY面内においてX軸に直交する方向をY軸方向とする。 In this specification, technical matters may be explained using X, Y and Z orthogonal coordinate axes. In this specification, the plane parallel to the plate surface of the bottom plate 11 is defined as the XY plane, and the direction perpendicular to the plate surface of the bottom plate 11 is defined as the Z-axis direction. The XY plane may be a horizontal plane, and the Z-axis direction may be parallel to the direction of gravity. In this specification, a predetermined direction in the XY plane is defined as the X-axis direction, and a direction orthogonal to the X-axis in the XY plane is defined as the Y-axis direction.
 本明細書においては、Z軸方向において集塵部40の側を「上」、伝搬部20の側を「下」と称する。本例においてはZ軸方向を重力方向としているが、「上」、「下」の方向は重力方向に限定されない。本明細書において上面視とは、電気集塵装置100をZ軸方向に集塵部40から伝搬部20の方向に見た場合を指す。本例において、捕集部10は集塵部40の下方に配置されている。本明細書において下面視とは、電気集塵装置100をZ軸方向に伝搬部20から集塵部40の方向に見た場合を指す。本明細書において側面視とは、電気集塵装置100をXY面内方向に見た場合を指す。 In this specification, in the Z-axis direction, the side of the dust collecting section 40 is called "upper", and the side of the propagating section 20 is called "lower". In this example, the Z-axis direction is the direction of gravity, but the "up" and "down" directions are not limited to the direction of gravity. In this specification, a top view refers to a case where the electrostatic precipitator 100 is viewed in the Z-axis direction from the dust collecting section 40 to the propagating section 20 . In this example, the collection unit 10 is arranged below the dust collection unit 40 . In this specification, a bottom view refers to a case where the electrostatic precipitator 100 is viewed in the Z-axis direction from the propagating portion 20 to the dust collecting portion 40 . In this specification, a side view refers to a case where the electrostatic precipitator 100 is viewed in the XY plane direction.
 図2は、本発明の一つの実施形態に係る電気集塵装置100および電気集塵システム200のブロック図の一例を示す図である。本例において、電気集塵システム200は、マイクロ波発生部91、動力装置92および電気集塵装置100を備える。動力装置92は、燃料を燃焼することにより排ガス30を発生する。動力装置92は、例えばエンジンである。排ガス30には、粒子状物質(PM:Particle Matter)32が含まれる。粒子状物質32は、ブラックカーボンとも称される。粒子状物質32は、化石燃料の不完全燃焼により発生する。粒子状物質32は、炭素を主成分とする微粒子である。 FIG. 2 is a diagram showing an example of a block diagram of the electrostatic precipitator 100 and the electrostatic precipitator system 200 according to one embodiment of the present invention. In this example, the electrostatic precipitator system 200 includes a microwave generator 91 , a power unit 92 and an electrostatic precipitator 100 . The power plant 92 generates exhaust gas 30 by burning fuel. The power plant 92 is, for example, an engine. Exhaust gas 30 contains particulate matter (PM) 32 . Particulate matter 32 is also referred to as black carbon. Particulate matter 32 is generated by incomplete combustion of fossil fuels. The particulate matter 32 is fine particles containing carbon as a main component.
 電気集塵装置100は、帯電部90を備えてよい。帯電部90は、粒子状物質32を帯電させる。帯電部90は、マイナスコロナ放電によりマイナスイオンを発生してよい。帯電部90は、当該マイナスイオンにより粒子状物質32を帯電させてよい。 The electrostatic precipitator 100 may include a charging section 90. The charging section 90 charges the particulate matter 32 . The charging section 90 may generate negative ions by negative corona discharge. The charging section 90 may charge the particulate matter 32 with the negative ions.
 集塵部40は、帯電した粒子状物質32を集塵する。捕集部10は、粒子状物質32を捕集する。捕集部10の底板11(図1参照)には、集塵部40により集塵された粒子状物質32が堆積する。図1に示されるとおり、本例において、捕集部10は集塵部40の下方に配置されている。本例において、底板11には、集塵部40から捕集部10に落下した粒子状物質32が堆積する。 The dust collection unit 40 collects the charged particulate matter 32 . The collecting unit 10 collects particulate matter 32 . Particulate matter 32 collected by the dust collector 40 accumulates on the bottom plate 11 (see FIG. 1) of the collector 10 . As shown in FIG. 1 , in this example, the collecting section 10 is arranged below the dust collecting section 40 . In this example, the particulate matter 32 dropped from the dust collection section 40 to the collection section 10 is deposited on the bottom plate 11 .
 マイクロ波発生部91は、マイクロ波93を発生する。捕集部10に捕集された粒子状物質32は、マイクロ波93により燃焼する。マイクロ波93は、300MHzから300GHzの周波数を有する電磁波である。 The microwave generator 91 generates microwaves 93 . The particulate matter 32 collected by the collection unit 10 is burned by the microwaves 93 . Microwaves 93 are electromagnetic waves having a frequency of 300 MHz to 300 GHz.
 図3は、図1に示される電気集塵装置100の上面視における一例を示す図である。図3においては、集塵部40は省略されている。第1マイクロ波導入口22には、マイクロ波導入管94が接続されていてよい。本例において、伝搬部20の外部から内部空間21に導入されるマイクロ波93は、マイクロ波導入管94を通過する。 FIG. 3 is a top view showing an example of the electrostatic precipitator 100 shown in FIG. In FIG. 3, the dust collection part 40 is omitted. A microwave introduction pipe 94 may be connected to the first microwave introduction port 22 . In this example, microwaves 93 introduced into the internal space 21 from the outside of the propagation section 20 pass through the microwave introduction pipe 94 .
 底板11は、上面96および下面98を有する。上面96には、粒子状物質32が堆積する。底板11には、複数の第1スリット80が設けられている。本例においては、底板11には9つの第1スリット80が設けられている。第1スリット80は、上面96から下面98にわたり、底板11を貫通している。本例の第1スリット80は、長辺81および短辺82を有する矩形状である。 The bottom plate 11 has an upper surface 96 and a lower surface 98 . Particulate matter 32 is deposited on top surface 96 . A plurality of first slits 80 are provided in the bottom plate 11 . In this example, nine first slits 80 are provided in the bottom plate 11 . The first slit 80 extends through the bottom plate 11 from the upper surface 96 to the lower surface 98 . The first slit 80 of this example has a rectangular shape with long sides 81 and short sides 82 .
 底板11の面内方向、且つ、第1スリット80の長辺81に交差する方向を、第1方向dr1とする。本例においては、第1方向dr1は長辺81に直交する方向であり、短辺82に平行な方向である。本例においては、第1方向dr1はY軸方向に平行である。底板11の面内方向、且つ、第1スリット80の短辺82に交差する方向を、第2方向dr2とする。本例においては、第2方向dr2は短辺82に直交する方向であり、長辺81に平行な方向である。本例においては、第2方向dr2はX軸方向に平行である。 The in-plane direction of the bottom plate 11 and the direction crossing the long side 81 of the first slit 80 is defined as a first direction dr1. In this example, the first direction dr<b>1 is a direction perpendicular to the long side 81 and parallel to the short side 82 . In this example, the first direction dr1 is parallel to the Y-axis direction. The in-plane direction of the bottom plate 11 and the direction crossing the short side 82 of the first slit 80 is defined as a second direction dr2. In this example, the second direction dr<b>2 is a direction perpendicular to the short side 82 and parallel to the long side 81 . In this example, the second direction dr2 is parallel to the X-axis direction.
 本例において、捕集部10は、第1の側板15、第2の側板12および第3の側板18を有する。本例において、捕集部10は、2つの第2の側板12(第2の側板12-1および第2の側板12-2)を有する。第2の側板12-1および第2の側板12-2は、第2方向dr2において捕集空間97(後述)を挟んで対向している。 In this example, the collecting part 10 has a first side plate 15, a second side plate 12 and a third side plate 18. In this example, the collecting section 10 has two second side plates 12 (second side plate 12-1 and second side plate 12-2). The second side plate 12-1 and the second side plate 12-2 face each other across a collection space 97 (described later) in the second direction dr2.
 本例の第1の側板15および第3の側板18は、上面視において第2方向dr2に延伸している。本例の第2の側板12は、上面視において第1方向dr1に延伸している。第1の側板15、第2の側板12および第3の側板18のうち、第1の側板15は、第1方向dr1において第1マイクロ波導入口22から最も離隔して配置されている。 The first side plate 15 and the third side plate 18 of this example extend in the second direction dr2 when viewed from above. The second side plate 12 of this example extends in the first direction dr1 when viewed from above. Among the first side plate 15, the second side plate 12 and the third side plate 18, the first side plate 15 is arranged farthest from the first microwave inlet 22 in the first direction dr1.
 本例において、第1の側板15は外側面16および内側面17を含み、第2の側板12は外側面13および内側面14を含み、第3の側板18は外側面19および内側面99を含む。本例において、捕集部10は捕集空間97を有する。捕集空間97は、底板11の上面96の上方の空間であって、内側面17、内側面14および内側面99に囲まれた空間である。 In this example, first side plate 15 includes outer surface 16 and inner surface 17, second side plate 12 includes outer surface 13 and inner surface 14, and third side plate 18 includes outer surface 19 and inner surface 99. include. In this example, the collection part 10 has a collection space 97 . The collection space 97 is a space above the upper surface 96 of the bottom plate 11 and is a space surrounded by the inner surface 17 , the inner surface 14 and the inner surface 99 .
 第1の側板15、第2の側板12および第3の側板18は、内部空間21に面していてよい。本例においては、第1の側板15の外側面16、第2の側板12の外側面13および第3の側板18の外側面19が、内部空間21に面している。 The first side plate 15 , the second side plate 12 and the third side plate 18 may face the internal space 21 . In this example, the outer surface 16 of the first side plate 15 , the outer surface 13 of the second side plate 12 , and the outer surface 19 of the third side plate 18 face the interior space 21 .
 第1の側板15、第2の側板12および第3の側板18は、底板11と交差していてよい。本例においては、第1の側板15、第2の側板12および第3の側板18は、底板11と直交している。 The first side plate 15 , the second side plate 12 and the third side plate 18 may cross the bottom plate 11 . In this example, the first side plate 15 , the second side plate 12 and the third side plate 18 are perpendicular to the bottom plate 11 .
 本例において、伝搬部20は天板24、外底板25、外側板23および外側板33を有する。外底板25は、Z軸方向において天板24の下方に配置され、且つ、天板24と離隔して配置されている。天板24、外底板25、外側板23および外側板33は、内部空間21に面している。 In this example, the propagation part 20 has a top plate 24 , an outer bottom plate 25 , an outer plate 23 and an outer plate 33 . The outer bottom plate 25 is arranged below the top plate 24 in the Z-axis direction and separated from the top plate 24 . Top plate 24 , outer bottom plate 25 , outer plate 23 and outer plate 33 face interior space 21 .
 本例において、天板24および外底板25の板面は、XY面に平行に配置されている。本例において、伝搬部20は2つの外側板23(外側板23-1および外側板23-2)を有する。本例において、伝搬部20は2つの外側板33(外側板33-1および外側板33-2)を有する。本例の外側板23は、上面視において第1方向dr1に延伸している。本例の外側板33は、上面視において第2方向dr2に延伸している。 In this example, the plate surfaces of the top plate 24 and the outer bottom plate 25 are arranged parallel to the XY plane. In this example, the propagation part 20 has two outer plates 23 (an outer plate 23-1 and an outer plate 23-2). In this example, the propagation section 20 has two outer plates 33 (an outer plate 33-1 and an outer plate 33-2). The outer plate 23 of this example extends in the first direction dr1 when viewed from above. The outer plate 33 of this example extends in the second direction dr2 when viewed from above.
 外側板23は、内側面26を含む。外側板33は、内側面36を含む。内部空間21は、Z軸方向において天板24と外底板25とに挟まれ、且つ、XY面内において内側面26および内側面36に囲まれた空間である。 The outer plate 23 includes an inner surface 26. Outer plate 33 includes an inner surface 36 . The internal space 21 is a space sandwiched between the top plate 24 and the outer bottom plate 25 in the Z-axis direction and surrounded by the inner side surface 26 and the inner side surface 36 in the XY plane.
 底板11および第1スリット80は、上面視において、伝搬部20の内部空間21と重なる位置に配置されている。本例において、底板11の下面98は、内部空間21に接している。本例において、捕集部10の捕集空間97と伝搬部20の内部空間21とは、第1スリット80を介して連通している。 The bottom plate 11 and the first slit 80 are arranged at positions overlapping with the internal space 21 of the propagation section 20 when viewed from above. In this example, the bottom surface 98 of the bottom plate 11 is in contact with the internal space 21 . In this example, the collection space 97 of the collection section 10 and the internal space 21 of the propagation section 20 communicate with each other via the first slit 80 .
 内部空間21の第1方向dr1および第2方向dr2における幅を、それぞれ幅Wp1および幅Wp2とする。幅Wp1は、幅Wp2と異なっていてよく、等しくてもよい。幅Wp1は、1000mm以上1300mm以下であってよい。幅Wp2は、50mm以上500mm以下であってよい。 The widths of the internal space 21 in the first direction dr1 and the second direction dr2 are assumed to be width Wp1 and width Wp2, respectively. Width Wp1 may be different from or equal to width Wp2. The width Wp1 may be 1000 mm or more and 1300 mm or less. The width Wp2 may be 50 mm or more and 500 mm or less.
 捕集空間97の第1方向dr1および第2方向dr2における幅を、それぞれ幅Wc1および幅Wc2とする。幅Wc1は、幅Wc2と異なっていてよく、等しくてもよい。幅Wc1は、800mm以上1000mm以下であってよい。幅Wc2は、50mm以上450mm以下であってよい。 The widths of the collection space 97 in the first direction dr1 and the second direction dr2 are defined as width Wc1 and width Wc2, respectively. Width Wc1 may be different from or equal to width Wc2. The width Wc1 may be 800 mm or more and 1000 mm or less. The width Wc2 may be 50 mm or more and 450 mm or less.
 幅Wc1は、幅Wp1よりも小さくてよく、幅Wp1と等しくてもよい。幅Wc2は、幅Wp2よりも小さくてよく、幅Wp2と等しくてもよい。 The width Wc1 may be smaller than the width Wp1 and may be equal to the width Wp1. Width Wc2 may be smaller than width Wp2 and may be equal to width Wp2.
 本例において、マイクロ波93は、第1マイクロ波導入口22を通じて内部空間21に導入される。マイクロ波93は、第1方向dr1における第1マイクロ波導入口22の位置において、第1方向dr1に導入されてよい。第1マイクロ波導入口22は、第1方向dr1において複数の第1スリット80と予め定められた距離、離隔して設けられていてよい。当該予め定められた距離を、距離ds1とする。 In this example, microwaves 93 are introduced into the internal space 21 through the first microwave introduction port 22 . The microwave 93 may be introduced in the first direction dr1 at the position of the first microwave introduction port 22 in the first direction dr1. The first microwave introduction port 22 may be separated from the plurality of first slits 80 by a predetermined distance in the first direction dr1. Let the predetermined distance be distance ds1.
 第1方向dr1に導入されたマイクロ波93は、上面視において内部空間21をXY面内に放射状に伝搬しやすい。このため、第1マイクロ波導入口22が第1スリット80と距離ds1離隔して設けられていることにより、XY面内における第1スリット80の位置において、マイクロ波93が一様になりやすくなる。マイクロ波93が一様であるとは、マイクロ波93の進行方向が、XY面内およびZ軸方向において、特定の進行方向に偏っていない状態を指す。距離ds1は、マイクロ波93の波長の0.2倍以上400倍以下であってよく、0.4倍以上200倍以下であってもよい。 The microwave 93 introduced in the first direction dr1 tends to propagate radially in the XY plane in the internal space 21 when viewed from above. Therefore, since the first microwave introduction port 22 is separated from the first slit 80 by the distance ds1, the microwaves 93 are likely to be uniform at the position of the first slit 80 in the XY plane. The fact that the microwaves 93 are uniform means that the traveling direction of the microwaves 93 is not biased toward a specific traveling direction in the XY plane and in the Z-axis direction. The distance ds1 may be 0.2 times or more and 400 times or less, or may be 0.4 times or more and 200 times or less, the wavelength of the microwave 93 .
 マイクロ波93は、内部空間21から複数の第1スリット80を通じて捕集部10の捕集空間97に伝搬する。XY面内における第1スリット80の位置において、マイクロ波93が一様であることにより、マイクロ波93は第1スリット80を通じて捕集空間97に均一に伝搬しやすくなる。これにより、底板11に堆積した粒子状物質32に対して、上面96における粒子状物質32の位置にかかわらず、マイクロ波93が均一に照射されやすくなる。このため、粒子状物質32がマイクロ波93により効率的に燃焼されやすくなる。 The microwave 93 propagates from the internal space 21 to the collection space 97 of the collection section 10 through the plurality of first slits 80 . Since the microwaves 93 are uniform at the position of the first slit 80 in the XY plane, the microwaves 93 easily propagate uniformly to the collection space 97 through the first slit 80 . This makes it easier for the microwaves 93 to uniformly irradiate the particulate matter 32 deposited on the bottom plate 11 regardless of the position of the particulate matter 32 on the upper surface 96 . Therefore, the particulate matter 32 is more likely to be efficiently burned by the microwaves 93 .
 第1スリット80の長辺81は、内部空間21にマイクロ波93が導入される方向(本例においては第1方向dr1)に交差する方向に配置されてよい。これにより、長辺81が、マイクロ波93が導入される方向に平行な方向に配置される場合よりも、粒子状物質32がマイクロ波93により効率的に燃焼されやすくなる。 The long side 81 of the first slit 80 may be arranged in a direction that intersects the direction in which the microwave 93 is introduced into the internal space 21 (the first direction dr1 in this example). This makes it easier for the particulate matter 32 to be burned efficiently by the microwaves 93 than when the long sides 81 are arranged in a direction parallel to the direction in which the microwaves 93 are introduced.
 本例においては、内部空間21に導入されたマイクロ波93が内部空間21において放射状に伝搬し、放射状に伝搬したマイクロ波93が複数の第1スリット80を通じて捕集空間97に伝搬する。このため、本例においては、マイクロ波93は1つの第1マイクロ波導入口22から内部空間21に導入されればよい。このため、マイクロ波発生部91により発生されたマイクロ波93が通過するマイクロ波導入管94は、1つでよい。マイクロ波導入管94は高価である場合がある。本例においては、マイクロ波導入管94が1つでよいので、マイクロ波導入管94が複数配置される場合よりも、電気集塵システム200(図2参照)のコストが低減されやすくなる。 In this example, the microwaves 93 introduced into the internal space 21 propagate radially in the internal space 21 , and the radially propagated microwaves 93 propagate to the collection space 97 through the plurality of first slits 80 . Therefore, in this example, the microwaves 93 may be introduced into the internal space 21 from one first microwave introduction port 22 . Therefore, the number of microwave introducing pipes 94 through which the microwaves 93 generated by the microwave generating section 91 pass may be one. Microwave inlet tubes 94 can be expensive. In this example, since only one microwave introduction pipe 94 is required, the cost of the electrostatic precipitator system 200 (see FIG. 2) is more likely to be reduced than when a plurality of microwave introduction pipes 94 are arranged.
 第1スリット80の第1方向dr1における幅を、幅W1とする。幅W1は、短辺82の幅である。幅W1は、マイクロ波93の波長の0.1倍以上40倍以下であってよい。幅W1は、15mm以上40mm以下であってよい。 The width of the first slit 80 in the first direction dr1 is assumed to be width W1. Width W1 is the width of short side 82 . The width W1 may be 0.1 to 40 times the wavelength of the microwave 93 . The width W1 may be 15 mm or more and 40 mm or less.
 第1方向dr1において隣り合う一の第1スリット80と他の第1スリット80との間隔の幅を、幅W2とする。本例においては、複数の第1スリット80の全てにわたり、第1方向dr1において隣り合う一の第1スリット80と他の第1スリット80との間隔の幅W2は、等しい。幅W2は、幅W1の2.0倍以上10.0倍以下であってよい。幅W2は、50mm以上200mm以下であってよい。 The width of the interval between one first slit 80 and another first slit 80 adjacent in the first direction dr1 is defined as width W2. In this example, the width W2 of the interval between one first slit 80 and another first slit 80 adjacent in the first direction dr1 is equal over all of the plurality of first slits 80 . The width W2 may be 2.0 to 10.0 times the width W1. The width W2 may be 50 mm or more and 200 mm or less.
 第1スリット80の第2方向dr2における幅を、幅W3とする。幅W3は、長辺81の幅である。本例においては、複数の第1スリット80の全てにわたり、長辺81の幅W3は等しい。幅W3は、マイクロ波93の波長の1/2以上であってよい。マイクロ波93の周波数が2.45GHzである場合、幅W3は61.3mm以上であってよい。 The width of the first slit 80 in the second direction dr2 is assumed to be width W3. A width W3 is the width of the long side 81 . In this example, the width W3 of the long side 81 is the same across all of the multiple first slits 80 . Width W3 may be 1/2 or more of the wavelength of microwave 93 . When the frequency of microwave 93 is 2.45 GHz, width W3 may be 61.3 mm or more.
 図4は、図3に示されるa-a'線における断面の一例を示す図である。a-a'線は、マイクロ波導入管94、外側板33-2、第1マイクロ波導入口22、天板24、外底板25、内部空間21、第3の側板18、集塵部40、捕集空間97、第1の側板15および外側板33-1を通るYZ断面である。図4において、集塵部40がハッチングにて示されている。ただし、図4において、集塵部40における集塵電極は、省略されている。本例において、集塵部40において集塵された粒子状物質32は、底板11の上面96に落下する。 FIG. 4 is a diagram showing an example of a cross section taken along line aa' shown in FIG. The aa' line shows the microwave introduction pipe 94, the outer plate 33-2, the first microwave introduction port 22, the top plate 24, the outer bottom plate 25, the internal space 21, the third side plate 18, the dust collection part 40, the It is a YZ section passing through the collecting space 97, the first side plate 15 and the outer plate 33-1. In FIG. 4, the dust collector 40 is indicated by hatching. However, in FIG. 4, the dust collecting electrode in the dust collecting portion 40 is omitted. In this example, the particulate matter 32 collected in the dust collecting section 40 falls onto the upper surface 96 of the bottom plate 11 .
 捕集部10の上端を、上端Ehとする。図4において、Z軸方向における上端Ehの位置が、粗い破線にて示されている。Z軸方向において、上端Ehの位置は、伝搬部20における天板24の上面の位置と一致していてよい。捕集部10は、伝搬部20の内部に配置されていてよい。底板11の下面98は、内部空間21に接していてよい。 Let the upper end of the collecting part 10 be the upper end Eh. In FIG. 4, the position of the upper end Eh in the Z-axis direction is indicated by a rough broken line. In the Z-axis direction, the position of the upper end Eh may match the position of the upper surface of the top plate 24 in the propagation section 20 . The collecting section 10 may be arranged inside the propagating section 20 . A lower surface 98 of the bottom plate 11 may be in contact with the internal space 21 .
 外底板25の上面を、上面27とする。第1方向dr1および第2方向dr2に直交する方向を、第3方向dr3とする。本例においては、第3方向dr3はZ軸方向と同じである。 The upper surface of the outer bottom plate 25 is referred to as an upper surface 27. A direction perpendicular to the first direction dr1 and the second direction dr2 is defined as a third direction dr3. In this example, the third direction dr3 is the same as the Z-axis direction.
 底板11の下面98は、第3方向dr3において上面27と予め定められた距離、離隔して配置されていてよい。当該予め定められた距離を、距離ds2とする。上述したとおり、第1方向dr1に導入されたマイクロ波93は、上面視において内部空間21をXY面内に放射状に伝搬しやすい。このため、下面98が上面27から距離ds2離隔して配置されていることにより、内部空間21に導入されたマイクロ波93は、第3方向dr3に内部空間21から捕集空間97への方向に進みやすくなる。図4において、内部空間21から捕集空間97への方向に進むマイクロ波93が、破線矢印にて示されている。 The lower surface 98 of the bottom plate 11 may be spaced apart from the upper surface 27 by a predetermined distance in the third direction dr3. Let the predetermined distance be distance ds2. As described above, the microwaves 93 introduced in the first direction dr1 tend to radially propagate through the internal space 21 in the XY plane when viewed from above. Therefore, since the lower surface 98 is separated from the upper surface 27 by the distance ds2, the microwaves 93 introduced into the internal space 21 are directed from the internal space 21 to the collection space 97 in the third direction dr3. easier to proceed. In FIG. 4, the microwaves 93 traveling in the direction from the interior space 21 to the collection space 97 are indicated by dashed arrows.
 距離ds2は、マイクロ波93の波長の200倍以下であってよく、100倍以下であってもよい。距離dsは、250mm以下であってよく、200mm以下であってもよい。 The distance ds2 may be 200 times or less the wavelength of the microwave 93, or may be 100 times or less. The distance ds may be 250 mm or less, and may be 200 mm or less.
 集塵部40の少なくとも一部は、Z軸方向において捕集部10と重なるように配置されていてよい。本例においては、Z軸方向における底板11の上面96から捕集部10の上端Ehまでの間において、集塵部40の一部と捕集部10とが重なるように配置されている。 At least a portion of the dust collecting section 40 may be arranged so as to overlap the collecting section 10 in the Z-axis direction. In this example, part of the dust collecting section 40 and the collecting section 10 are arranged to overlap in the Z-axis direction between the upper surface 96 of the bottom plate 11 and the upper end Eh of the collecting section 10 .
 図5は、図1に示される電気集塵装置100の上面視における他の一例を示す図である。第1方向dr1において、第1マイクロ波導入口22に最も近接して配置された第1スリット80を第1スリット80-1とし、最も離隔して配置された第1スリット80を第1スリット80-9とする。第1スリット80-1~第1スリット80-9の幅W1を、それぞれ幅W1-1~幅W1-9とする。 FIG. 5 is a top view showing another example of the electrostatic precipitator 100 shown in FIG. The first slit 80 arranged closest to the first microwave introduction port 22 in the first direction dr1 is referred to as a first slit 80-1, and the first slit 80 arranged farthest away from the first microwave introduction port 22 is referred to as a first slit 80-1. 9. Widths W1 of the first slits 80-1 to 80-9 are set to widths W1-1 to W1-9, respectively.
 本例においては、第1方向dr1における、第1マイクロ波導入口22から複数の第1スリット80のうちの1つの第1スリット80までの距離が大きいほど、第1方向dr1における複数の第1スリット80のそれぞれの幅が大きい。即ち、第1スリット80-1から第1スリット80-9に至るほど、幅W1が大きい。9つの幅W1のうち、幅W1-1が最も小さく、幅W1-9が最も大きい。これにより、9つの幅W1が全て等しい場合(即ち図3に示される場合)よりも、マイクロ波93の損失が抑制されやすくなる。 In the present example, the larger the distance from the first microwave introduction port 22 to one of the plurality of first slits 80 in the first direction dr1, the more the plurality of first slits in the first direction dr1. Each width of 80 is large. That is, the width W1 increases from the first slit 80-1 to the first slit 80-9. Of the nine widths W1, the width W1-1 is the smallest and the width W1-9 is the largest. This makes it easier to suppress the loss of the microwaves 93 than when all nine widths W1 are equal (that is, when shown in FIG. 3).
 図6は、図1に示される電気集塵装置100の上面視における他の一例を示す図である。本例においては、底板11に10個の第1スリット80が設けられている。第1方向dr1において、第1マイクロ波導入口22に最も近接して配置された第1スリット80を第1スリット80-1とし、最も離隔して配置された第1スリット80を第1スリット80-10とする。本例においては、1つの第1スリット80の幅W1(図3参照)は、10個の第1スリット80にわたり等しい。 FIG. 6 is a top view showing another example of the electrostatic precipitator 100 shown in FIG. In this example, ten first slits 80 are provided in the bottom plate 11 . The first slit 80 arranged closest to the first microwave introduction port 22 in the first direction dr1 is referred to as a first slit 80-1, and the first slit 80 arranged farthest away from the first microwave introduction port 22 is referred to as a first slit 80-1. 10. In this example, the width W1 (see FIG. 3) of one first slit 80 is equal over the ten first slits 80. As shown in FIG.
 第1方向dr1において隣り合う第1スリット80-kと第1スリット80-(k+1)との間隔の幅を、幅W2-kとする。ここで、kは1以上9以下の整数である。本例においては、第1方向dr1における、第1マイクロ波導入口22から複数の第1スリット80のうちの1つの第1スリット80までの距離が大きいほど、複数の第1スリット80のうち第1方向dr1において隣り合う一の第1スリット80と他の第1スリット80との間隔が小さい。即ち、本例においては、kが大きいほど幅W2-kが小さい。これにより、8つの幅W2が全て等しい場合(即ち図3に示される場合)よりも、マイクロ波93の損失が抑制されやすくなる。 The width of the interval between the first slit 80-k and the first slit 80-(k+1) adjacent in the first direction dr1 is defined as width W2-k. Here, k is an integer of 1 or more and 9 or less. In the present example, the larger the distance from the first microwave introduction port 22 to one first slit 80 of the plurality of first slits 80 in the first direction dr1, the first of the plurality of first slits 80. The distance between one first slit 80 and another first slit 80 adjacent in the direction dr1 is small. That is, in this example, the larger k is, the smaller the width W2-k is. This makes it easier to suppress the loss of the microwave 93 than when all eight widths W2 are equal (that is, when shown in FIG. 3).
 図7は、図1に示される電気集塵装置100の上面視における他の一例を示す図である。本例の電気集塵装置100は、被覆材83をさらに備える点で、図3に示される電気集塵装置100と異なる。図7において、被覆材83がハッチングで示されている。 FIG. 7 is a top view showing another example of the electrostatic precipitator 100 shown in FIG. The electrostatic precipitator 100 of this example is different from the electrostatic precipitator 100 shown in FIG. 3 in that a coating material 83 is further provided. In FIG. 7, the covering material 83 is indicated by hatching.
 本例において、被覆材83は底板11の上面96(図4参照)に設けられている。即ち、本例において、被覆材83は捕集空間97に配置されている。被覆材83は、複数の第1スリット80のうち少なくとも一つの第1スリット80を覆っていてよい。本例においては、被覆材83は、全ての(9つの)第1スリット80を覆っている。 In this example, the covering material 83 is provided on the upper surface 96 of the bottom plate 11 (see FIG. 4). That is, in this example, the covering material 83 is arranged in the collection space 97 . The covering material 83 may cover at least one first slit 80 among the plurality of first slits 80 . In this example, the covering material 83 covers all (nine) first slits 80 .
 粒子状物質32(図4参照)は、被覆材83を通過しない。マイクロ波93は、被覆材83を透過する。被覆材83におけるマイクロ波93の透過率および吸収率は、それぞれ90%以上および10%未満であってよい。被覆材83は、例えばグラスウール等の断熱材、セラミックファイバおよび石英ガラスの少なくとも1つである。 The particulate matter 32 (see FIG. 4) does not pass through the covering material 83. The microwaves 93 pass through the covering material 83 . The transmittance and absorbance of the microwaves 93 in the covering material 83 may be 90% or more and less than 10%, respectively. The covering material 83 is, for example, at least one of a heat insulating material such as glass wool, ceramic fiber, and quartz glass.
 動力装置92(図2参照)から排出される排ガス30(図2参照)の温度は、300℃~400℃である場合がある。このため、粒子状物質32の温度も、300℃~400℃である場合がある。マイクロ波93により粒子状物質32が燃焼される場合、燃焼によりさらに温度が上昇する場合がある。このため、被覆材83の耐熱温度は、800℃以上であることが好ましい。 The temperature of the exhaust gas 30 (see FIG. 2) discharged from the power plant 92 (see FIG. 2) may range from 300°C to 400°C. Therefore, the temperature of the particulate matter 32 may also be 300.degree. C. to 400.degree. When the particulate matter 32 is combusted by the microwaves 93, the combustion may further raise the temperature. Therefore, the heat resistance temperature of the covering material 83 is preferably 800° C. or higher.
 図8は、図7における底板11の近傍の側面視における一例を示す図である。図8は、電気集塵装置100をX軸方向に見た図である。図8は、1つの第1スリット80の近傍を拡大した図である。 FIG. 8 is a diagram showing an example of a side view of the vicinity of the bottom plate 11 in FIG. FIG. 8 is a diagram of the electrostatic precipitator 100 viewed in the X-axis direction. FIG. 8 is an enlarged view of the vicinity of one first slit 80. As shown in FIG.
 被覆材83の上面および下面を、それぞれ上面87および下面86とする。本例において、被覆材83の下面86は、底板11の上面96に接して設けられている。 The upper and lower surfaces of the covering material 83 are referred to as an upper surface 87 and a lower surface 86, respectively. In this example, the lower surface 86 of the covering material 83 is provided in contact with the upper surface 96 of the bottom plate 11 .
 被覆材83は、少なくとも一つの第1スリット80の内部に設けられていてよい。被覆材83は底板11の上面96から下面98への方向に突出した凸部84を有してよい。凸部84は、第1スリット80の内部に設けられてよい。凸部84が第1スリット80の内部に設けられているとは、凸部84が、第3方向dr3において上面96と下面98との間に配置されている状態を指す。被覆材83が第1スリット80の内部に設けられることにより、被覆材83が底板11の上面96に固定されやすくなる。 The covering material 83 may be provided inside at least one first slit 80 . The covering material 83 may have a protrusion 84 protruding from the upper surface 96 of the bottom plate 11 toward the lower surface 98 thereof. The protrusion 84 may be provided inside the first slit 80 . The protruding portion 84 being provided inside the first slit 80 means that the protruding portion 84 is arranged between the upper surface 96 and the lower surface 98 in the third direction dr3. By providing the covering material 83 inside the first slit 80 , the covering material 83 can be easily fixed to the upper surface 96 of the bottom plate 11 .
 被覆材83の上面87には、第1スリット80に対応する窪み85が設けられていてよい。窪み85とは、被覆材83の上面87に設けられた窪みであって、被覆材83の上面87から下面86への方向に窪んだ、被覆材83の窪みである。窪み85が第1スリット80に対応するとは、窪み85の第1方向dr1における少なくとも一部と、第1スリット80の第1方向dr1における少なくとも一部とが、同じ位置に配置されている状態を指す。本例においては、窪み85の第1方向dr1における全体と、第1スリット80の第1方向dr1における全体とが、同じ位置に配置されている。 A depression 85 corresponding to the first slit 80 may be provided on the upper surface 87 of the covering material 83 . The recess 85 is a recess provided in the upper surface 87 of the coating material 83 and is recessed in the coating material 83 in the direction from the upper surface 87 to the lower surface 86 of the coating material 83 . The recess 85 corresponding to the first slit 80 means that at least part of the recess 85 in the first direction dr1 and at least part of the first slit 80 in the first direction dr1 are arranged at the same position. Point. In this example, the entire recess 85 in the first direction dr1 and the entire first slit 80 in the first direction dr1 are arranged at the same position.
 被覆材83の上面87に窪み85が設けられている場合、被覆材83の上面87に落下した粒子状物質32は、窪み85に堆積しやすくなる。窪み85は、第1スリット80に対応しているので、窪み85に堆積した粒子状物質32は、第1スリット80を内部空間21から捕集空間97への方向に進行するマイクロ波93により、燃焼しやすくなる。このため、上面87に窪み85が設けられない場合よりも、電気集塵装置100における粒子状物質32の燃焼効率が向上しやすくなる。 When the upper surface 87 of the covering material 83 is provided with the depressions 85 , the particulate matter 32 falling on the upper surface 87 of the covering material 83 tends to accumulate in the depressions 85 . Since the recesses 85 correspond to the first slits 80 , the particulate matter 32 deposited in the recesses 85 is irradiated by the microwaves 93 traveling through the first slits 80 in the direction from the internal space 21 to the collection space 97 . Burns easily. Therefore, the combustion efficiency of the particulate matter 32 in the electrostatic precipitator 100 is more likely to be improved than when the recess 85 is not provided in the upper surface 87 .
 図8においては、1つの第1スリット80の近傍が示されているが、図7に示される複数の第1スリット80のうち少なくとも一つの第1スリット80の内部に、凸部84が設けられてよい。複数の第1スリット80の全ての内部に、凸部84が設けられてもよい。被覆材83の上面87には、複数の第1スリット80の少なくとも一つの第1スリット80に対応する窪み85が設けられていてよい。被覆材83の上面87には、複数の第1スリット80のそれぞれに対応する複数の窪み85が設けられていてもよい。 Although FIG. 8 shows the vicinity of one first slit 80, a convex portion 84 is provided inside at least one first slit 80 among the plurality of first slits 80 shown in FIG. you can A convex portion 84 may be provided inside all of the plurality of first slits 80 . A recess 85 corresponding to at least one first slit 80 of the plurality of first slits 80 may be provided on the upper surface 87 of the covering material 83 . A plurality of depressions 85 corresponding to the plurality of first slits 80 may be provided on the upper surface 87 of the covering material 83 .
 被覆材83は、底板11の上面96から着脱可能であってよい。上述したとおり、被覆材83は、例えばグラスウール等の断熱材、セラミックファイバおよび石英ガラスの少なくとも1つである。被覆材83が、例えばグラスウール等の断熱材である場合、底板11の上面96に配置された被覆材83に対して上面96から下面98への方向へ押圧力が印加された場合、被覆材83の一部であって第1スリット80の上方に配置された被覆材83の当該一部は、第1スリット80の内部に侵入しやすい。これにより、被覆材83には凸部84が生じやすく、且つ、被覆材83の上面87には、第1スリット80に対応する窪み85が生じやすい。 The covering material 83 may be removable from the upper surface 96 of the bottom plate 11 . As described above, the covering material 83 is at least one of a heat insulating material such as glass wool, ceramic fiber, and quartz glass. When the covering material 83 is a heat insulating material such as glass wool, for example, when a pressing force is applied to the covering material 83 arranged on the upper surface 96 of the bottom plate 11 in the direction from the upper surface 96 to the lower surface 98, the covering material 83 and the part of the covering material 83 arranged above the first slit 80 tends to enter the inside of the first slit 80 . As a result, protrusions 84 are likely to be formed on the covering material 83 , and depressions 85 corresponding to the first slits 80 are likely to be formed on the upper surface 87 of the covering material 83 .
 図9は、図1に示される電気集塵装置100の他の一例を示す図である。図9は、図1に示される電気集塵装置100を第2の側板12-1から第2の側板12-2への方向(図3参照)に見た場合の一例である。ただし、図9において伝搬部20の外側板23(図3参照)は省略されている。図9において、図4に示される集塵部40のハッチングは省略されている。 FIG. 9 is a diagram showing another example of the electrostatic precipitator 100 shown in FIG. FIG. 9 is an example when the electrostatic precipitator 100 shown in FIG. 1 is viewed from the second side plate 12-1 to the second side plate 12-2 (see FIG. 3). However, in FIG. 9, the outer plate 23 (see FIG. 3) of the propagation part 20 is omitted. In FIG. 9, hatching of the dust collecting portion 40 shown in FIG. 4 is omitted.
 本例においては、第1スリット80が第2の側板12にも設けられている。本例の電気集塵装置100は、係る点で図3に示される電気集塵装置と異なる。第2の側板12に設けられた第1スリット80は、第2の側板12の外側面13から内側面14(図3参照)にわたり、第2の側板12を貫通している。 In this example, the first slit 80 is also provided in the second side plate 12 . The electrostatic precipitator 100 of this example differs from the electrostatic precipitator shown in FIG. 3 in this respect. A first slit 80 provided in the second side plate 12 penetrates the second side plate 12 from the outer surface 13 to the inner surface 14 (see FIG. 3) of the second side plate 12 .
 複数の第1スリット80は、底板11から第2の側板12にわたり、延伸して設けられていてよい。複数の第1スリットは、底板11から第2の側板12-1にわたり延伸して設けられていてよく、底板11から第2の側板12-2(図3参照)にわたり延伸して設けられていてよい。 A plurality of first slits 80 may be provided extending from the bottom plate 11 to the second side plate 12 . The plurality of first slits may be provided extending from the bottom plate 11 to the second side plate 12-1, and may be provided extending from the bottom plate 11 to the second side plate 12-2 (see FIG. 3). good.
 複数の第1スリット80が第2の側板12にも設けられていることにより、内部空間21を第2方向dr2(図3参照)に伝搬するマイクロ波93(図3および図4参照)は、第2の側板12に設けられた第1スリット80を通じて捕集空間97へ伝搬しやすくなる。これにより、複数の第1スリット80が底板11のみに設けられている場合(即ち図3の例の場合)よりもさらに、粒子状物質32がマイクロ波93により燃焼されやすくなる。 Since the plurality of first slits 80 are also provided in the second side plate 12, the microwaves 93 (see FIGS. 3 and 4) propagating in the second direction dr2 (see FIG. 3) in the internal space 21 are It becomes easier to propagate to the collection space 97 through the first slit 80 provided in the second side plate 12 . This makes it easier for the particulate matter 32 to be burned by the microwaves 93 than when the plurality of first slits 80 are provided only in the bottom plate 11 (that is, in the example of FIG. 3).
 底板11の上面96に被覆材83が設けられる場合(即ち図7の例の場合)、当該被覆材83は、第2の側板12の内側面14(図3参照)にも設けられてよい。第2の側板12の内側面14に被覆材83が設けられる場合、当該被覆材83は、図8に示される例と同様に、第2の側板12に設けられた第1スリット80の内部に設けられてよい。 When the covering material 83 is provided on the upper surface 96 of the bottom plate 11 (that is, in the case of FIG. 7), the covering material 83 may also be provided on the inner surface 14 (see FIG. 3) of the second side plate 12. When the coating material 83 is provided on the inner surface 14 of the second side plate 12, the coating material 83 is provided inside the first slit 80 provided in the second side plate 12, as in the example shown in FIG. may be provided.
 図10は、図1に示される電気集塵装置100の他の一例を示す図である。図10は、図1に示される電気集塵装置100を第1の側板15から第3の側板18への方向(図3参照)に見た場合の一例である。ただし、図10において伝搬部20の外側板33(図3参照)は省略されている。図10において、図4に示される集塵部40のハッチングは省略されている。 FIG. 10 is a diagram showing another example of the electrostatic precipitator 100 shown in FIG. FIG. 10 is an example when the electrostatic precipitator 100 shown in FIG. 1 is viewed from the first side plate 15 to the third side plate 18 (see FIG. 3). However, in FIG. 10, the outer plate 33 (see FIG. 3) of the propagation part 20 is omitted. In FIG. 10, hatching of the dust collecting portion 40 shown in FIG. 4 is omitted.
 本例において、第1の側板15には第2スリット88が設けられている。本例の電気集塵装置100は、係る点で図3に示される電気集塵装置と異なる。第2スリット88は、第1の側板15の外側面16から内側面17(図3参照)にわたり、第1の側板15を貫通している。 In this example, the first side plate 15 is provided with a second slit 88 . The electrostatic precipitator 100 of this example differs from the electrostatic precipitator shown in FIG. 3 in this respect. The second slit 88 extends through the first side plate 15 from the outer surface 16 to the inner surface 17 (see FIG. 3) of the first side plate 15 .
 第1の側板15には、複数の第2スリット88が設けられてよい。第2スリット88の長辺は、第2方向dr2に平行に設けられてよく、第3方向dr3に平行に設けられてもよい。本例においては、第2スリット88の長辺は、第2方向dr2に平行に設けられている。 A plurality of second slits 88 may be provided in the first side plate 15 . The long side of the second slit 88 may be provided parallel to the second direction dr2, or may be provided parallel to the third direction dr3. In this example, the long side of the second slit 88 is provided parallel to the second direction dr2.
 第2スリット88が第1の側板15に設けられていることにより、伝搬部20の内側面36-1(図3参照)において反射したマイクロ波93は、第2スリット88を通じて捕集空間97へ伝搬しやすくなる。これにより、複数の第1スリット80が底板11のみに設けられている場合(即ち図3の例の場合)よりもさらに、粒子状物質32がマイクロ波93により燃焼されやすくなる。 Since the second slit 88 is provided in the first side plate 15, the microwave 93 reflected by the inner surface 36-1 (see FIG. 3) of the propagation part 20 passes through the second slit 88 to the collection space 97. easier to propagate. This makes it easier for the particulate matter 32 to be burned by the microwaves 93 than when the plurality of first slits 80 are provided only in the bottom plate 11 (that is, in the example of FIG. 3).
 底板11の上面96に被覆材83が設けられる場合(即ち図7の例の場合)、当該被覆材83は、第1の側板15の内側面17(図3参照)にも設けられてよい。第1の側板15の内側面17に被覆材83が設けられる場合、当該被覆材83は、図8に示される例と同様に、第2スリット88の内部に設けられてよい。 When the covering material 83 is provided on the upper surface 96 of the bottom plate 11 (that is, in the case of FIG. 7), the covering material 83 may also be provided on the inner surface 17 (see FIG. 3) of the first side plate 15. When the covering material 83 is provided on the inner surface 17 of the first side plate 15, the covering material 83 may be provided inside the second slit 88 as in the example shown in FIG.
 図11は、図1に示される電気集塵装置100の上面視における他の一例を示す図である。本例の電気集塵装置100においては、伝搬部20は、外側板23に設けられた第2マイクロ波導入口61をさらに有する。本例の電気集塵装置100は、係る点で図3に示される電気集塵装置100と異なる。 FIG. 11 is a diagram showing another example of the electrostatic precipitator 100 shown in FIG. 1 viewed from above. In the electrostatic precipitator 100 of this example, the propagation part 20 further has a second microwave introduction port 61 provided in the outer plate 23 . The electrostatic precipitator 100 of this example differs from the electrostatic precipitator 100 shown in FIG. 3 in this respect.
 伝搬部20は、複数の第2マイクロ波導入口61を有してよい。本例の伝搬部20は、2つの第2マイクロ波導入口61(第2マイクロ波導入口61―1および第2マイクロ波導入口61―2)を有する。本例においては、外側板23-1に第2マイクロ波導入口61-1が設けられ、外側板23-2に第2マイクロ波導入口61-2が設けられている。 The propagation section 20 may have a plurality of second microwave introduction ports 61 . The propagation part 20 of this example has two second microwave introduction ports 61 (a second microwave introduction port 61-1 and a second microwave introduction port 61-2). In this example, the outer plate 23-1 is provided with the second microwave introduction port 61-1, and the outer plate 23-2 is provided with the second microwave introduction port 61-2.
 第2マイクロ波導入口61には、マイクロ波導入管60が接続されてよい。本例においては、第2マイクロ波導入口61-1にマイクロ波導入管60-1が接続され、第2マイクロ波導入口61-2にマイクロ波導入管60-2が接続されている。本例において、伝搬部20の外部から内部空間21に導入されるマイクロ波93は、マイクロ波導入管94およびマイクロ波導入管60を通過する。 A microwave introduction pipe 60 may be connected to the second microwave introduction port 61 . In this example, a microwave introduction pipe 60-1 is connected to the second microwave introduction port 61-1, and a microwave introduction pipe 60-2 is connected to the second microwave introduction port 61-2. In this example, microwaves 93 introduced into the internal space 21 from the outside of the propagating section 20 pass through the microwave introducing pipe 94 and the microwave introducing pipe 60 .
 第1マイクロ波導入口22を通じて内部空間21に導入されるマイクロ波93の方向と、第2マイクロ波導入口61を通じて内部空間21に導入されるマイクロ波93の方向とは、異なっていてよい。本例においては、第1マイクロ波導入口22を通じて内部空間21に導入されるマイクロ波93の方向は、第1方向dr1である。本例において、第2マイクロ波導入口61-1を通じて内部空間21に導入されるマイクロ波93の方向は第2方向dr2であり、第2マイクロ波導入口61-2を通じて内部空間21に導入されるマイクロ波93の方向は、第2方向dr2に平行且つ第2方向dr2と反対の方向である。第1マイクロ波導入口22を通じて内部空間21に導入されるマイクロ波93の方向と第2マイクロ波導入口61を通じて内部空間21に導入されるマイクロ波93の方向とが異なっていることにより、内部空間21においてマイクロ波93がより一様になりやすくなる。 The direction of the microwaves 93 introduced into the internal space 21 through the first microwave introduction port 22 and the direction of the microwaves 93 introduced into the internal space 21 through the second microwave introduction port 61 may be different. In this example, the direction of the microwaves 93 introduced into the internal space 21 through the first microwave introduction port 22 is the first direction dr1. In this example, the direction of the microwave 93 introduced into the internal space 21 through the second microwave introduction port 61-1 is the second direction dr2, and the microwave introduced into the internal space 21 through the second microwave introduction port 61-2. The direction of the waves 93 is parallel to the second direction dr2 and opposite to the second direction dr2. Since the direction of the microwaves 93 introduced into the internal space 21 through the first microwave introduction port 22 is different from the direction of the microwaves 93 introduced into the internal space 21 through the second microwave introduction port 61, the internal space 21 , the microwave 93 tends to be more uniform.
 本例においては、捕集部10の第2の側板12に第1スリット80が設けられている(図9参照)ことが好ましい。第2マイクロ波導入口61を通じて内部空間21にマイクロ波93が導入され、且つ、第2の側板12に第1スリット80が設けられていることにより、捕集空間97において捕集された粒子状物質32が、より効率的に燃焼されやすくなる。 In this example, it is preferable that the second side plate 12 of the collection part 10 is provided with the first slit 80 (see FIG. 9). Particulate matter collected in the collection space 97 by introducing the microwave 93 into the internal space 21 through the second microwave introduction port 61 and providing the first slit 80 in the second side plate 12 32 are more likely to burn more efficiently.
 図12は、図1に示される電気集塵装置100の下面視における一例を示す図である。本例の電気集塵装置100においては、伝搬部20は、外底板25に設けられた第3マイクロ波導入口63をさらに有する。本例の電気集塵装置100は、係る点で図11に示される電気集塵装置100と異なる。 FIG. 12 is a diagram showing an example of the bottom view of the electrostatic precipitator 100 shown in FIG. In the electrostatic precipitator 100 of this example, the propagation part 20 further has a third microwave introduction port 63 provided in the outer bottom plate 25 . The electrostatic precipitator 100 of this example differs from the electrostatic precipitator 100 shown in FIG. 11 in this respect.
 第3マイクロ波導入口63には、マイクロ波導入管62が接続されてよい。本例において、伝搬部20の外部から内部空間21に導入されるマイクロ波93は、マイクロ波導入管94、マイクロ波導入管60およびマイクロ波導入管62を通過する。 A microwave introduction pipe 62 may be connected to the third microwave introduction port 63 . In this example, a microwave 93 introduced into the internal space 21 from the outside of the propagating section 20 passes through the microwave introduction pipe 94 , the microwave introduction pipe 60 and the microwave introduction pipe 62 .
 第3マイクロ波導入口63を通じて内部空間21に導入されるマイクロ波93の方向は、第1マイクロ波導入口22を通じて内部空間21に導入されるマイクロ波93の方向、および、第2マイクロ波導入口61を通じて内部空間21に導入されるマイクロ波93の方向と異なっていてよい。これにより、内部空間21においてマイクロ波93が、図11に示される例よりもさらに一様になりやすくなる。本例においては、第3マイクロ波導入口63を通じて内部空間21に導入されるマイクロ波93の方向は、第3方向dr3(図4参照)である。 The direction of the microwaves 93 introduced into the internal space 21 through the third microwave introduction port 63 is the direction of the microwaves 93 introduced into the internal space 21 through the first microwave introduction port 22 and the direction of the microwaves 93 introduced into the internal space 21 through the second microwave introduction port 61. The direction of the microwaves 93 introduced into the internal space 21 may be different. This makes it easier for the microwaves 93 to be more uniform in the internal space 21 than in the example shown in FIG. In this example, the direction of the microwaves 93 introduced into the internal space 21 through the third microwave introduction port 63 is the third direction dr3 (see FIG. 4).
 第3マイクロ波導入口63は、下面視において、捕集部10の底板11と重なる位置に配置されてよい。これにより、第3マイクロ波導入口63を通じて内部空間21に導入されるマイクロ波93は、捕集空間97に導入されやすくなる。これにより、捕集空間97において捕集された粒子状物質32が、より効率的に燃焼されやすくなる。 The third microwave introduction port 63 may be arranged at a position overlapping the bottom plate 11 of the collecting section 10 in a bottom view. Thereby, the microwaves 93 introduced into the internal space 21 through the third microwave introduction port 63 are easily introduced into the collection space 97 . This makes it easier for the particulate matter 32 collected in the collection space 97 to be burned more efficiently.
 図13は、図1に示される電気集塵装置100の上面視における他の一例を示す図である。本例においては、第1方向dr1と交差する方向における伝搬部20の幅が、第1マイクロ波導入口22から複数の第1スリット80にかけて広がっている。本例の電気集塵装置100は、係る点で図11に示される電気集塵装置100と異なる。第1方向dr1と交差する方向とは、第1スリット80の長辺81と平行な方向であってよい。本例においては、第2方向dr2における伝搬部20の幅が、第1マイクロ波導入口22から複数の第1スリット80にかけて、テーパー状に広がっている。 FIG. 13 is a top view showing another example of the electrostatic precipitator 100 shown in FIG. In this example, the width of the propagating portion 20 in the direction intersecting the first direction dr1 extends from the first microwave introduction port 22 to the plurality of first slits 80 . The electrostatic precipitator 100 of this example differs from the electrostatic precipitator 100 shown in FIG. 11 in this respect. The direction crossing the first direction dr1 may be a direction parallel to the long side 81 of the first slit 80 . In this example, the width of the propagating portion 20 in the second direction dr2 is tapered from the first microwave introduction port 22 to the plurality of first slits 80 .
 図14は、図13に示されるa-a'線における断面の一例を示す図である。本例においては、第3方向dr3における伝搬部20の幅も、第1マイクロ波導入口22から複数の第1スリット80にかけて広がっている。即ち、本例においては、第1マイクロ波導入口22から複数の第1スリット80にかけての内部空間21の形状が、ホーン状である。このため、図3および図4に示される例よりも、マイクロ波93の利得が大きくなりやすくなる。 FIG. 14 is a diagram showing an example of a cross section taken along line aa' shown in FIG. In this example, the width of the propagating portion 20 in the third direction dr3 also widens from the first microwave introduction port 22 to the plurality of first slits 80 . That is, in this example, the internal space 21 from the first microwave introduction port 22 to the plurality of first slits 80 has a horn shape. Therefore, the gain of the microwave 93 tends to be greater than in the examples shown in FIGS. 3 and 4. FIG.
 図15は、図3における第1マイクロ波導入口22の近傍の拡大図である。マイクロ波導入管94は、第1凹部50を有してよい。第1凹部50は、マイクロ波93の進行方向(本例においてはY軸方向)に交差する方向(本例においては集塵部40から捕集部10への方向)に窪んでいる。 FIG. 15 is an enlarged view of the vicinity of the first microwave introduction port 22 in FIG. The microwave introduction tube 94 may have a first recess 50 . The first concave portion 50 is recessed in a direction (in this example, the direction from the dust collecting portion 40 to the collecting portion 10) that intersects the traveling direction of the microwave 93 (in this example, the Y-axis direction).
 図16は、図4における第1マイクロ波導入口22の近傍の拡大図である。本例の第1凹部50は、集塵部40から捕集部10への方向(図4参照)に窪んでいる。第1凹部50の深さを、深さdp1とする。 FIG. 16 is an enlarged view of the vicinity of the first microwave introduction port 22 in FIG. The first concave portion 50 of this example is recessed in the direction from the dust collecting portion 40 to the collecting portion 10 (see FIG. 4). The depth of the first concave portion 50 is defined as depth dp1.
 深さdp1は、マイクロ波93(図3等参照)の波長の1/4であってよい。これにより、マイクロ波93の進行方向における第1凹部50よりも内部空間21側において、マイクロ波導入管94から内部空間21への方向に進行するマイクロ波93と、内部空間21からマイクロ波導入管94への方向に進行するマイクロ波93とが打ち消し合う。深さdp1がマイクロ波93の波長の1/4であることにより、第1凹部50から内部空間21の方向へ反射するマイクロ波93の反射率が向上しやすくなる。これにより、捕集部10における粒子状物質32が効率的に燃焼されやすくなる。第1凹部50は、マイクロ波93の進行波と反射波とを打ち消す、いわゆるチョーク構造であってよい。 The depth dp1 may be 1/4 of the wavelength of the microwave 93 (see FIG. 3, etc.). As a result, the microwaves 93 traveling in the direction from the microwave introduction pipe 94 to the internal space 21 and the microwaves 93 traveling from the internal space 21 to the microwave introduction pipe It cancels out the microwave 93 traveling in the direction toward 94 . Since the depth dp1 is 1/4 of the wavelength of the microwave 93, the reflectance of the microwave 93 reflected from the first concave portion 50 toward the internal space 21 can be easily improved. This facilitates efficient combustion of the particulate matter 32 in the collecting section 10 . The first concave portion 50 may have a so-called choke structure that cancels out the traveling wave and the reflected wave of the microwave 93 .
 図17は、図1に示される電気集塵装置100における集塵部40の内部の拡大図である。ただし図17においては、図1における、集塵部40を示す実線、捕集部10および伝搬部20は省略されている。集塵部40は、集塵電極41を有してよい。集塵部40は、複数の集塵電極41を有してよい。本例の集塵部40は、7つの集塵電極41(集塵電極41―1~集塵電極41-7)を有する。 17 is an enlarged view of the inside of the dust collector 40 in the electrostatic precipitator 100 shown in FIG. 1. FIG. However, in FIG. 17, the solid line indicating the dust collecting portion 40, the collecting portion 10 and the propagating portion 20 in FIG. 1 are omitted. The dust collection part 40 may have a dust collection electrode 41 . The dust collection part 40 may have a plurality of dust collection electrodes 41 . The dust collection section 40 of this example has seven dust collection electrodes 41 (dust collection electrodes 41-1 to 41-7).
 集塵電極41は、板状であってよい。本例においては、板状の集塵電極41の板面が、XZ面に平行に配置されている。集塵電極41には、排ガス30が通過する複数の開口42が設けられていてよい。開口42は、板状の集塵電極41の厚さ方向(Y軸方向)に板面を貫通している。本例においては、排ガス30は集塵電極41の板面に交差する方向に、集塵部40の内部を通過する。本例においては、排ガス30は、集塵電極41-1から集塵電極41-7への方向に集塵部の内部を通過する。 The dust collection electrode 41 may be plate-shaped. In this example, the plate surface of the plate-shaped dust collection electrode 41 is arranged parallel to the XZ plane. The dust collection electrode 41 may be provided with a plurality of openings 42 through which the exhaust gas 30 passes. The opening 42 penetrates the plate surface in the thickness direction (Y-axis direction) of the plate-shaped dust collection electrode 41 . In this example, the exhaust gas 30 passes through the inside of the dust collection part 40 in a direction intersecting the plate surface of the dust collection electrode 41 . In this example, the exhaust gas 30 passes through the inside of the dust collection section in the direction from the dust collection electrode 41-1 to the dust collection electrode 41-7.
 隣り合う集塵電極41の一方は電源43に接続されてよく、他方は接地されてよい。本例においては、集塵電極41-1、集塵電極41-3、集塵電極41-5および集塵電極41-7は電源43に接続され、集塵電極41-2、集塵電極41-4および集塵電極41-6は接地されている。帯電した粒子状物質32(図4参照)は、隣り合う集塵電極41の間に発生する電位差により、接地された方の集塵電極41に集塵される。本例においては、集塵された粒子状物質32は、捕集部10に落下する。 One of the adjacent dust collection electrodes 41 may be connected to the power supply 43 and the other may be grounded. In this example, the dust collection electrode 41-1, the dust collection electrode 41-3, the dust collection electrode 41-5 and the dust collection electrode 41-7 are connected to the power source 43, and the dust collection electrode 41-2 and the dust collection electrode 41 -4 and the collecting electrode 41-6 are grounded. The charged particulate matter 32 (see FIG. 4) is collected by the grounded dust collection electrode 41 due to the potential difference generated between the adjacent dust collection electrodes 41 . In this example, the collected particulate matter 32 falls into the collecting section 10 .
 集塵電極41は、第2凹部44を有してよい。本例において、第2凹部44は、板状の集塵電極41板面の厚さ方向に窪んで設けられている。第2凹部44は、捕集部10から集塵部40への方向(本例においてはZ軸方向)に交差する方向(本例においてはY軸方向)に窪んでいる。 The dust collection electrode 41 may have a second concave portion 44 . In this example, the second concave portion 44 is recessed in the thickness direction of the plate-like dust collection electrode 41 plate surface. The second concave portion 44 is recessed in a direction (Y-axis direction in this example) intersecting the direction from the collecting portion 10 to the dust collecting portion 40 (Z-axis direction in this example).
 図18は、図17における集塵電極41の拡大図である。図18は、1つの集塵電極41を、板面の厚さ方向に見た図である。第2凹部44は、集塵電極41を板面の厚さ方向に見た場合において、長辺45および短辺46を有する矩形状であってよい。第2凹部44の長辺45は、捕集部10から集塵部40への方向(本例においてはZ軸方向)に交差してよい。本例においては、長辺45は捕集部10から集塵部40への方向に直交している。第2凹部44は、捕集部10から集塵部40への方向において、捕集部10と開口42との間に配置されてよい。 FIG. 18 is an enlarged view of the dust collection electrode 41 in FIG. FIG. 18 is a diagram of one dust collection electrode 41 viewed in the thickness direction of the plate surface. The second concave portion 44 may have a rectangular shape having long sides 45 and short sides 46 when the dust collection electrode 41 is viewed in the thickness direction of the plate surface. The long side 45 of the second concave portion 44 may intersect the direction from the collecting portion 10 to the dust collecting portion 40 (the Z-axis direction in this example). In this example, the long side 45 is perpendicular to the direction from the collecting portion 10 to the dust collecting portion 40 . The second concave portion 44 may be arranged between the collecting portion 10 and the opening 42 in the direction from the collecting portion 10 to the dust collecting portion 40 .
 図19は、図17における集塵電極41の他の拡大図である。図19は、1つの集塵電極41を、板面に平行な方向に見た図である。本例の第2凹部44は、集塵電極41を板面に平行な方向に見た場合において、板面の厚さ方向に窪んでいる。第2凹部44の板面からの深さを、深さdp2とする。 FIG. 19 is another enlarged view of the dust collection electrode 41 in FIG. FIG. 19 is a diagram of one dust collection electrode 41 viewed in a direction parallel to the plate surface. The second concave portion 44 of this example is recessed in the thickness direction of the plate surface when the dust collection electrode 41 is viewed in a direction parallel to the plate surface. The depth from the plate surface of the second recess 44 is defined as depth dp2.
 深さdp2は、マイクロ波93(図3等参照)の波長の1/4であってよい。これにより、第2凹部44よりも上方において、捕集部10から集塵部40への方向に進行するマイクロ波93と、集塵部40から捕集部10への方向に進行するマイクロ波93とが打ち消し合う。深さdp2がマイクロ波93の波長の1/4であることにより、第2凹部44から捕集部10への方向へ反射するマイクロ波93の反射率が向上しやすくなる。これにより、捕集部10における粒子状物質32が効率的に燃焼されやすくなる。 The depth dp2 may be 1/4 of the wavelength of the microwave 93 (see FIG. 3, etc.). As a result, above the second concave portion 44, microwaves 93 traveling in the direction from the collecting portion 10 to the dust collecting portion 40 and microwaves 93 traveling in the direction from the dust collecting portion 40 to the collecting portion 10 and cancel each other out. Since the depth dp2 is 1/4 of the wavelength of the microwaves 93, the reflectance of the microwaves 93 reflected from the second concave portion 44 toward the collecting portion 10 can be easily improved. This facilitates efficient combustion of the particulate matter 32 in the collecting section 10 .
 上述したとおり、第2凹部44は、捕集部10から集塵部40への方向において、捕集部10と開口42との間に配置されてよい。これにより、第2凹部44よりも開口42側にマイクロ波93が進行しにくくなる。第2凹部44は、マイクロ波93の進行波と反射波とを打ち消す、いわゆるチョーク構造であってよい。 As described above, the second concave portion 44 may be arranged between the collecting portion 10 and the opening 42 in the direction from the collecting portion 10 to the dust collecting portion 40 . This makes it difficult for the microwaves 93 to travel toward the opening 42 side of the second concave portion 44 . The second concave portion 44 may have a so-called choke structure that cancels out the traveling wave and the reflected wave of the microwave 93 .
 図20は、電気集塵装置100の配置の一例を示す図である。動力装置92により排出された排ガス30は、配管110を通過する。帯電部90および集塵部40は、排ガス30が通過する配管110に設けられてよい。帯電部90および集塵部40は、配管110の内部における排ガス30の流路に設けられてよい。図20において、電気集塵装置100の範囲が一点鎖線の枠にて示されている。帯電部90は集塵部40よりも、配管110における排ガス30の流路の上流に設けられてよい。これにより、帯電部90により帯電させられた粒子状物質32が、集塵部40により集塵される。 FIG. 20 is a diagram showing an example of the arrangement of the electrostatic precipitator 100. FIG. Exhaust gas 30 discharged by power plant 92 passes through pipe 110 . The charging unit 90 and the dust collection unit 40 may be provided in the pipe 110 through which the exhaust gas 30 passes. The charging unit 90 and the dust collection unit 40 may be provided in the flow path of the exhaust gas 30 inside the pipe 110 . In FIG. 20, the range of the electrostatic precipitator 100 is indicated by a dashed line frame. The charging unit 90 may be provided upstream of the flow path of the exhaust gas 30 in the pipe 110 relative to the dust collection unit 40 . As a result, the particulate matter 32 charged by the charging section 90 is collected by the dust collection section 40 .
 捕集部10は、配管110の下方に配置されてよい。伝搬部20は、配管110の下方に配置されてよい。粒子状物質32は、配管110の外部において、マイクロ波93(図3参照)により燃焼されてよい。 The collection unit 10 may be arranged below the pipe 110 . The propagation section 20 may be arranged below the pipe 110 . Particulate matter 32 may be combusted outside piping 110 by microwaves 93 (see FIG. 3).
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments. It is obvious to those skilled in the art that various modifications and improvements can be made to the above embodiments. It is clear from the description of the scope of the claims that forms with such modifications or improvements can also be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as actions, procedures, steps, and stages in devices, systems, programs, and methods shown in claims, specifications, and drawings is etc., and it should be noted that they can be implemented in any order unless the output of a previous process is used in a later process. Regarding the operation flow in the claims, specification, and drawings, even if explanations are made using "first," "next," etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10・・・捕集部、11・・・底板、12・・・側板、13・・・外側面、14・・・内側面、15・・・側板、16・・・外側面、17・・・内側面、18・・・側板、19・・・外側面、20・・・伝搬部、21・・・内部空間、22・・・第1マイクロ波導入口、23・・・外側板、24・・・天板、25・・・外底板、26・・・内側面、27・・・上面、30・・・排ガス、32・・・粒子状物質、33・・・外側板、36・・・内側面、40・・・集塵部、41・・・集塵電極、42・・・開口、43・・・電源、44・・・第2凹部、45・・・長辺、46・・・短辺、50・・・第1凹部、60・・・マイクロ波導入管、61・・・第2マイクロ波導入口、62・・・マイクロ波導入管、63・・・第3マイクロ波導入口、80・・・第1スリット、81・・・長辺、82・・・短辺、83・・・被覆材、84・・・凸部、86・・・下面、87・・・上面、88・・・第2スリット、90・・・帯電部、91・・・マイクロ波発生部、92・・・動力装置、93・・・マイクロ波、94・・・マイクロ波導入管、96・・・上面、97・・・捕集空間、98・・・下面、99・・・内側面、100・・・電気集塵装置、110・・・配管、200・・・電気集塵システム DESCRIPTION OF SYMBOLS 10... Collection part, 11... Bottom plate, 12... Side plate, 13... Outer surface, 14... Inner surface, 15... Side plate, 16... Outer surface, 17... Inner surface 18 Side plate 19 Outer surface 20 Propagation part 21 Internal space 22 First microwave introduction port 23 Outer plate 24 Top plate 25 Outer bottom plate 26 Inner surface 27 Upper surface 30 Exhaust gas 32 Particulate matter 33 Outer plate 36 Inner surface 40 Dust collection part 41 Dust collection electrode 42 Opening 43 Power supply 44 Second recess 45 Long side 46 Short side 50 First concave portion 60 Microwave introduction pipe 61 Second microwave introduction port 62 Microwave introduction pipe 63 Third microwave introduction port 80 ... first slit 81 long side 82 short side 83 covering material 84 convex portion 86 lower surface 87 upper surface 88 second slit, 90 charging section, 91 microwave generating section, 92 power unit, 93 microwave, 94 microwave introduction tube, 96 upper surface, 97... Collection space, 98... Lower surface, 99... Inner surface, 100... Electrostatic precipitator, 110... Piping, 200... Electrostatic precipitator system

Claims (16)

  1.  排ガスに含まれる粒子状物質が堆積する底板を有し、前記底板に複数の第1スリットが設けられた捕集部と、
     マイクロ波が伝搬する内部空間を有する伝搬部と、
     を備え、
     上面視において、前記複数の第1スリットは前記内部空間と重なる位置に配置され、
     前記マイクロ波は、前記内部空間から前記複数の第1スリットを通じて前記捕集部に伝搬する、
     電気集塵装置。
    a collection unit having a bottom plate on which particulate matter contained in the exhaust gas accumulates, the bottom plate being provided with a plurality of first slits;
    a propagation part having an internal space in which microwaves propagate;
    with
    When viewed from above, the plurality of first slits are arranged at positions overlapping with the internal space,
    The microwave propagates from the internal space through the plurality of first slits to the collecting section,
    Electrostatic precipitator.
  2.  前記粒子状物質を帯電させる帯電部と、
     帯電した前記粒子状物質を集塵する集塵部と、
     をさらに備え、
     前記捕集部は、前記集塵部の下方に配置され、
     前記底板には、前記集塵部により集塵された前記粒子状物質が堆積する、
     請求項1に記載の電気集塵装置。
    a charging unit that charges the particulate matter;
    a dust collection unit that collects the charged particulate matter;
    further comprising
    The collecting unit is arranged below the dust collecting unit,
    The particulate matter collected by the dust collection unit is deposited on the bottom plate.
    The electrostatic precipitator according to claim 1.
  3.  前記伝搬部は、前記底板の面内方向、且つ、前記複数の第1スリットの長辺に交差する方向である第1方向において、前記複数の第1スリットと予め定められた距離、離隔して設けられた第1マイクロ波導入口を有し、
     前記マイクロ波は、前記第1マイクロ波導入口を通じて前記内部空間に導入され、
     前記第1方向における、前記第1マイクロ波導入口から前記複数の第1スリットのうちの1つの第1スリットまでの距離が大きいほど、前記第1方向における前記複数の第1スリットのそれぞれの幅が大きい、
     請求項2に記載の電気集塵装置。
    The propagating portion is separated from the plurality of first slits by a predetermined distance in a first direction that is an in-plane direction of the bottom plate and a direction that intersects the long sides of the plurality of first slits. Having a first microwave inlet provided,
    The microwave is introduced into the internal space through the first microwave introduction port,
    The larger the distance from the first microwave introduction port to one of the plurality of first slits in the first direction, the greater the width of each of the plurality of first slits in the first direction. big,
    The electrostatic precipitator according to claim 2.
  4.  前記伝搬部は、前記底板の面内方向、且つ、前記複数の第1スリットの長辺に交差する方向である第1方向において、前記複数の第1スリットと予め定められた距離、離隔して設けられた第1マイクロ波導入口を有し、
     前記マイクロ波は、前記第1マイクロ波導入口を通じて前記内部空間に導入され、
     前記第1方向における、前記第1マイクロ波導入口から前記複数の第1スリットのうちの1つの第1スリットまでの距離が大きいほど、前記複数の第1スリットのうち前記第1方向において隣り合う一の第1スリットと他の第1スリットとの間隔が小さい、
     請求項2に記載の電気集塵装置。
    The propagating portion is separated from the plurality of first slits by a predetermined distance in a first direction that is an in-plane direction of the bottom plate and a direction that intersects the long sides of the plurality of first slits. Having a first microwave inlet provided,
    The microwave is introduced into the internal space through the first microwave introduction port,
    The larger the distance from the first microwave introduction port to one of the plurality of first slits in the first direction, the more adjacent one of the plurality of first slits in the first direction. The distance between the first slit of and the other first slit is small,
    The electrostatic precipitator according to claim 2.
  5.  前記捕集部は、前記底板と交差し、前記内部空間に面し、上面視において前記第1マイクロ波導入口から最も離隔して配置された第1の側板をさらに有し、
     前記第1の側板には、第2スリットが設けられている、
     請求項3または4に記載の電気集塵装置。
    The collecting part further has a first side plate that intersects with the bottom plate, faces the internal space, and is arranged furthest apart from the first microwave introduction port in a top view,
    The first side plate is provided with a second slit,
    The electrostatic precipitator according to claim 3 or 4.
  6.  前記第1方向と交差する方向における前記伝搬部の幅は、前記第1マイクロ波導入口から前記複数の第1スリットにかけて広がっている、請求項3から5のいずれか一項に記載の電気集塵装置。 The electrostatic precipitator according to any one of claims 3 to 5, wherein the width of the propagating portion in the direction intersecting the first direction spreads from the first microwave introduction port to the plurality of first slits. Device.
  7.  前記伝搬部は、前記内部空間に面し、上面視において前記第1方向に延伸する外側板と、前記外側板に設けられた第2マイクロ波導入口と、をさらに有する、請求項3から6のいずれか一項に記載の電気集塵装置。 7. The apparatus according to any one of claims 3 to 6, wherein the propagation section further includes an outer plate facing the internal space and extending in the first direction when viewed from above, and a second microwave introduction port provided in the outer plate. The electrostatic precipitator according to any one of the items.
  8.  前記伝搬部は、前記内部空間に面し、前記底板の下方に設けられた外底板と、前記外底板に設けられた第3マイクロ波導入口と、をさらに有する、請求項3から7のいずれか一項に記載の電気集塵装置。 8. The propagating section further includes an outer bottom plate facing the internal space and provided below the bottom plate, and a third microwave introduction port provided in the outer bottom plate. The electrostatic precipitator according to item 1.
  9.  前記第1マイクロ波導入口には、前記伝搬部の外部から前記内部空間に導入されるマイクロ波が通過するマイクロ波導入管が接続され、
     前記マイクロ波導入管は、前記マイクロ波の進行方向に交差する方向に窪んだ第1凹部を有し、
     前記第1凹部の深さは、前記マイクロ波の波長の1/4である、
     請求項3から8のいずれか一項に記載の電気集塵装置。
    A microwave introduction pipe through which microwaves introduced into the internal space from the outside of the propagating portion pass is connected to the first microwave introduction port,
    The microwave introduction pipe has a first recess recessed in a direction intersecting the traveling direction of the microwave,
    The depth of the first recess is 1/4 of the wavelength of the microwave,
    The electrostatic precipitator according to any one of claims 3 to 8.
  10.  前記集塵部は、集塵電極を有し、
     前記集塵電極は、前記捕集部から前記集塵部への方向に交差する方向に窪んだ第2凹部を有し、
     前記第2凹部の深さは、前記マイクロ波の波長の1/4である、
     請求項2から9のいずれか一項に記載の電気集塵装置。
    The dust collection part has a dust collection electrode,
    The dust collection electrode has a second concave portion recessed in a direction intersecting a direction from the collection portion to the dust collection portion,
    The depth of the second recess is 1/4 of the wavelength of the microwave,
    The electrostatic precipitator according to any one of claims 2 to 9.
  11.  前記帯電部および前記集塵部は、前記排ガスが通過する配管に設けられ、
     前記捕集部は、前記配管の下方に配置されている、
     請求項2から10のいずれか一項に記載の電気集塵装置。
    The charging unit and the dust collection unit are provided in a pipe through which the exhaust gas passes,
    The collection unit is arranged below the pipe,
    The electrostatic precipitator according to any one of claims 2 to 10.
  12.  前記捕集部は、前記底板と交差し前記内部空間に面する第2の側板をさらに有し、
     前記底板から前記第2の側板にわたり、前記複数の第1スリットが延伸して設けられている、
     請求項1から11のいずれか一項に記載の電気集塵装置。
    The collection part further has a second side plate that intersects with the bottom plate and faces the internal space,
    The plurality of first slits are provided extending from the bottom plate to the second side plate,
    The electrostatic precipitator according to any one of claims 1 to 11.
  13.  前記底板の上面に設けられ、前記複数の第1スリットのうち少なくとも一つの第1スリットを覆う被覆材をさらに備える、請求項1から12のいずれか一項に記載の電気集塵装置。 The electrostatic precipitator according to any one of claims 1 to 12, further comprising a coating material provided on the upper surface of said bottom plate and covering at least one first slit among said plurality of first slits.
  14.  前記被覆材が、前記少なくとも一つの第1スリットの内部に設けられている、請求項13に記載の電気集塵装置。 The electrostatic precipitator according to claim 13, wherein the covering material is provided inside the at least one first slit.
  15.  前記被覆材の上面には、前記第1スリットに対応する窪みが設けられている、請求項14に記載の電気集塵装置。 The electrostatic precipitator according to claim 14, wherein the upper surface of the covering material is provided with a depression corresponding to the first slit.
  16.  前記被覆材が前記底板の上面から着脱可能である、請求項13から15のいずれか一項に記載の電気集塵装置。 The electrostatic precipitator according to any one of claims 13 to 15, wherein the covering material is removable from the upper surface of the bottom plate.
PCT/JP2022/002350 2021-02-25 2022-01-24 Electric dust collector WO2022181149A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22759191.4A EP4173718A4 (en) 2021-02-25 2022-01-24 Electric dust collector
KR1020237003443A KR20230029962A (en) 2021-02-25 2022-01-24 electrostatic precipitator
CN202280006093.1A CN116056793A (en) 2021-02-25 2022-01-24 Electric dust collector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-029007 2021-02-25
JP2021029007A JP2022130055A (en) 2021-02-25 2021-02-25 Electric dust collector

Publications (1)

Publication Number Publication Date
WO2022181149A1 true WO2022181149A1 (en) 2022-09-01

Family

ID=83048878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002350 WO2022181149A1 (en) 2021-02-25 2022-01-24 Electric dust collector

Country Status (5)

Country Link
EP (1) EP4173718A4 (en)
JP (1) JP2022130055A (en)
KR (1) KR20230029962A (en)
CN (1) CN116056793A (en)
WO (1) WO2022181149A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502055A (en) * 1985-02-12 1987-08-13 バイエリツシエ モ−ト−レン ウエルケ アクチエンゲゼルシヤフト A device for removing soot, etc. from the exhaust of an internal combustion engine
US5458850A (en) * 1993-06-10 1995-10-17 Daimler-Benz Aktiengesellschaft Method and apparatus for reducing exhaust gases particles
JPH08290029A (en) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd Method and apparatus for treating exhaust gas
JP2000173799A (en) * 1998-12-01 2000-06-23 Sumitomo Metal Ind Ltd Microwave plasma processing device
JP2011252387A (en) * 2010-05-31 2011-12-15 Denso Corp Exhaust emission control device of internal combustion engine
WO2015129233A1 (en) * 2014-02-26 2015-09-03 パナソニック株式会社 Microwave treatment device
WO2020084934A1 (en) 2018-10-26 2020-04-30 富士電機株式会社 Electric dust collector

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3528445A1 (en) * 1985-08-08 1987-02-19 Bayerische Motoren Werke Ag DEVICE AND METHOD FOR ELIMINATING RUSS OR THE LIKE. FROM THE EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE
DE10307217B4 (en) * 2003-02-20 2006-04-13 Schott Ag Door with viewing window for microwave ovens
CN2878474Y (en) * 2005-12-16 2007-03-14 美的集团有限公司 Double-layer shielding structure for microwave pavement heating device
JP5693287B2 (en) * 2011-02-21 2015-04-01 富士電機株式会社 Electric dust collector
CN203976415U (en) * 2014-06-26 2014-12-03 复旦大学 The device of high whiteness powdered material is calcined in a kind of microwave heating
JP6617833B2 (en) * 2016-06-15 2019-12-11 富士電機株式会社 Particulate matter combustion equipment
JP6880848B2 (en) * 2017-03-10 2021-06-02 富士通株式会社 Microwave irradiation equipment, exhaust gas purification equipment, automobiles and management systems
CN110493908B (en) * 2019-08-13 2021-11-16 广西壮族自治区农业科学院 Microwave leakage prevention grid and microwave heater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502055A (en) * 1985-02-12 1987-08-13 バイエリツシエ モ−ト−レン ウエルケ アクチエンゲゼルシヤフト A device for removing soot, etc. from the exhaust of an internal combustion engine
US5458850A (en) * 1993-06-10 1995-10-17 Daimler-Benz Aktiengesellschaft Method and apparatus for reducing exhaust gases particles
JPH08290029A (en) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd Method and apparatus for treating exhaust gas
JP2000173799A (en) * 1998-12-01 2000-06-23 Sumitomo Metal Ind Ltd Microwave plasma processing device
JP2011252387A (en) * 2010-05-31 2011-12-15 Denso Corp Exhaust emission control device of internal combustion engine
WO2015129233A1 (en) * 2014-02-26 2015-09-03 パナソニック株式会社 Microwave treatment device
WO2020084934A1 (en) 2018-10-26 2020-04-30 富士電機株式会社 Electric dust collector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4173718A4

Also Published As

Publication number Publication date
JP2022130055A (en) 2022-09-06
EP4173718A1 (en) 2023-05-03
EP4173718A4 (en) 2024-01-17
KR20230029962A (en) 2023-03-03
CN116056793A (en) 2023-05-02

Similar Documents

Publication Publication Date Title
CN111771297B (en) Exhaust duct for battery pack and battery pack
EP2454021B1 (en) Hot sieving electrostatic precipitator
WO2022181149A1 (en) Electric dust collector
JP2009506517A5 (en)
KR101054315B1 (en) Electric precipitation
JP6597190B2 (en) Microwave irradiation device and exhaust purification device
KR20190084906A (en) Flue-gas desulfurization(fgd) including electrostatic precipitator
CN212166996U (en) Plasma formula tail gas processing apparatus based on microwave
EP3318735B1 (en) Plasma generating electrode, electrode panel, and plasma reactor
KR102074398B1 (en) Particulate matter combustion device
KR102274772B1 (en) Micro-Particles in Exhaust Gas Conglomerating Apparatus Having a Vibro-Acoustic System
EP2666535B1 (en) Flow control grid
KR101159227B1 (en) Reactor assembly for hybrid scrubber
EP3991849A1 (en) Dust collector
US10309649B2 (en) Exhaust duct
JP2003144841A (en) Apparatus and method for decomposing hazardous gas by microwave
US20210283621A1 (en) Electrostatic precipitator
US6797241B2 (en) Non-thermal plasma reactor having individually retained positive and negative reactor plates
JP2017057853A (en) Silencer panel and system having plastic perforated side wall and electrostatic particle removal system
KR102543513B1 (en) electrostatic precipitator
JP7476547B2 (en) Electrostatic Precipitator
KR20150096330A (en) A powder generator for treating exhaust gas
KR102217763B1 (en) Electrostatic precipitator using electromagnetic wave
CN210171019U (en) Dust removing device
JP2019060316A (en) Plasma reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022759191

Country of ref document: EP

Effective date: 20230130

NENP Non-entry into the national phase

Ref country code: DE