WO2022180771A1 - Power storage management device, power storage device, and method for managing power storage unit - Google Patents

Power storage management device, power storage device, and method for managing power storage unit Download PDF

Info

Publication number
WO2022180771A1
WO2022180771A1 PCT/JP2021/007280 JP2021007280W WO2022180771A1 WO 2022180771 A1 WO2022180771 A1 WO 2022180771A1 JP 2021007280 W JP2021007280 W JP 2021007280W WO 2022180771 A1 WO2022180771 A1 WO 2022180771A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
ocv
unit
capacitor
current
Prior art date
Application number
PCT/JP2021/007280
Other languages
French (fr)
Japanese (ja)
Inventor
健志 ▲濱▼田
Original Assignee
武蔵精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武蔵精密工業株式会社 filed Critical 武蔵精密工業株式会社
Priority to JP2023501942A priority Critical patent/JP7497513B2/en
Priority to PCT/JP2021/007280 priority patent/WO2022180771A1/en
Publication of WO2022180771A1 publication Critical patent/WO2022180771A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging

Definitions

  • the present invention relates to a power storage management device, a power storage device, and a method for managing a power storage unit.
  • a power storage unit that includes a parallel block in which a lithium ion secondary battery and a lithium ion capacitor are connected in parallel. According to such a power storage unit, the lithium ion secondary battery exhibits high capacity characteristics, and the lithium ion capacitor exhibits high output characteristics (see Patent Document 1 below).
  • a large current may periodically or sporadically flow through the power storage unit depending on the operating state of the load.
  • the current flowing in the power storage unit mainly flows through the lithium ion capacitor with a low internal resistance.
  • the voltage of the lithium ion capacitor decreases as the discharge duration from the point at which a large current begins to flow becomes longer.
  • the current flowing to the power storage unit mainly flows to the lithium-ion secondary battery, and as a result, the lithium-ion secondary battery may enter an overcurrent condition.
  • the lithium ion secondary battery may enter an overcurrent state.
  • abnormal processing such as cutting off the current path to the storage unit can be considered.
  • the abnormality processing based on the overcurrent threshold functions even in the initial stage when the current flowing in the power storage unit mainly flows through the lithium-ion capacitor, which has a low internal resistance. .
  • the high output characteristics of the lithium ion capacitor are not sufficiently exhibited.
  • Such problems are not limited to the combination of a lithium-ion secondary battery and a lithium-ion capacitor, but are common to power storage units in which a non-lithium-ion secondary battery and a capacitor are connected in parallel. be.
  • An object of the present invention is to provide a power storage management device, a power storage device, and a method for managing a power storage unit that can solve the above-described problems.
  • the power storage management device disclosed in this specification is a power storage unit that includes one parallel block in which a secondary battery and a capacitor are connected in parallel, or a plurality of parallel blocks that are connected in series to each other. and a current measuring unit for measuring the current flowing through the parallel block, a voltage measuring unit for measuring the terminal voltage of the parallel block, and the parallel current measured by the current measuring unit.
  • An abnormality determination unit that performs abnormality processing on the condition that the current flowing through the block exceeds the overcurrent threshold as a necessary condition, the current flowing through the parallel block measured by the current measurement unit, and the voltage measurement unit the capacitor based on at least one of the terminal voltage of the parallel block, the internal resistance of the secondary battery, the internal resistance of the capacitor, the current duration of the storage unit, and the capacitance of the capacitor and an OCV estimating unit that estimates the OCV of the capacitor, and a threshold changing unit that changes the overcurrent threshold according to the OCV difference, which is the difference between the OCV of the capacitor estimated by the OCV estimating unit and the reference OCV. .
  • the current flowing through the parallel block measured by the current measuring unit is the sum of the current flowing through the secondary battery and the current flowing through the capacitor.
  • the current flowing through the capacitor correlates with the OCV of the capacitor, and the OCV (voltage) of the capacitor changes linearly during charging and discharging compared to the secondary battery. Therefore, the inventor of the present invention has made extensive studies to grasp the changes in the current flowing in the capacitor and the current flowing in the secondary battery, which are not directly measured, based on the change in the OCV of the capacitor.
  • the threshold can be appropriately changed.
  • the overcurrent threshold is changed according to the difference between the OCV of the capacitor estimated by the OCV estimation unit and the reference OCV. As a result, according to the power storage management device, it is possible to suppress the occurrence of an overcurrent state in the secondary battery while suppressing deterioration of high output characteristics due to the capacitor.
  • the reference OCV is a value corresponding to the OCV of the secondary battery, and the threshold changing unit reduces the absolute value of the overcurrent threshold as the OCV difference increases. It is good also as a structure which carries out. According to this power storage management device, for example, compared to the case where the reference OCV is a predetermined fixed value, it is possible to grasp the current flowing in the capacitor more accurately, so while suppressing the deterioration of the high output characteristics due to the capacitor It is possible to more effectively suppress the occurrence of an overcurrent state in the secondary battery.
  • the overcurrent threshold during charging may be decreased as the OCV of the capacitor is higher than the reference OCV and as the OCV difference is larger. According to this power storage management device, during charging, it is possible to suppress the occurrence of an overcurrent state in the secondary battery while suppressing deterioration of high output characteristics due to the capacitor.
  • the overcurrent threshold during discharging may be decreased as the OCV of the capacitor is lower than the reference OCV and as the OCV difference is larger. According to this power storage management device, during discharging, it is possible to suppress the occurrence of an overcurrent state in the secondary battery while suppressing deterioration of high output characteristics due to the capacitor.
  • the power storage management device may further include a threshold correction unit that corrects the overcurrent threshold according to the SOC of the secondary battery or the parallel block. According to this power storage management device, for example, compared to a configuration that does not consider the SOC of the secondary battery or the parallel block, excessive The current threshold can be set to an appropriate value.
  • the power storage management device further includes a temperature measuring unit that measures the temperature of the parallel block, and an SOC estimating unit that estimates the SOC of the secondary battery or the parallel block, wherein the OCV estimating unit , from the temperature measured by the temperature measuring unit and the SOC estimated by the SOC estimating unit, reference is made to pre-stored related information that associates the temperature, SOC, and current duration of the parallel block.
  • the internal resistance of the secondary battery and the internal resistance of the capacitor may be estimated. According to this power storage management device, for example, compared to a configuration that does not consider changes in the internal resistance of the secondary battery or capacitor, the OCV of the capacitor can be accurately estimated, and the occurrence of the overcurrent state of the secondary battery can be more effectively prevented. can be suppressed to
  • the overcurrent The configuration may include a forced change unit that reduces the absolute value of the threshold. According to this power storage management device, it is possible to prevent the occurrence of an overcurrent state in the secondary battery in the event of an abnormality in which, for example, a large amount of current continuously flows through the parallel block.
  • the capacitor is determined to be in an overvoltage state and a predetermined overvoltage process is executed, and the OCV of the capacitor exceeds the predetermined overvoltage threshold.
  • the configuration may include an execution unit that determines that the capacitor is in a low voltage state and executes predetermined low voltage processing when the voltage falls below the low voltage threshold. According to this power storage management device, it is possible to suppress the occurrence of an overvoltage state and a low voltage state of the capacitor.
  • the power storage unit includes one parallel block in which a secondary battery and a capacitor are connected in parallel, or a plurality of the parallel blocks connected in series, and the power storage management device. , may be provided. According to this power storage device, it is possible to suppress the occurrence of an overcurrent state in the secondary battery while suppressing deterioration in high output characteristics due to the capacitor.
  • the power storage unit management method disclosed in this specification includes one parallel block in which a secondary battery and a capacitor are connected in parallel, or a plurality of the parallel blocks in which a secondary battery and a capacitor are connected in series.
  • a method for managing a power storage unit comprising: a power storage unit; a current measurement unit that measures current flowing through the parallel block; and a voltage measurement unit that measures terminal voltage of the parallel block, wherein the current measured by the current measurement unit is: a step of performing abnormality processing on the condition that the current flowing through the parallel block exceeds an overcurrent threshold as a necessary condition; and the current flowing through the parallel block measured by the current measurement unit and the voltage measurement unit measuring based on at least one of the terminal voltage of the parallel block, the internal resistance of the secondary battery, the internal resistance of the capacitor, the current duration of the power storage unit, and the capacitance of the capacitor, the estimating an OCV of a capacitor; and modifying the overcurrent threshold in response to an OCV difference, which is the difference between the estimated OCV of the capacitor and a
  • the technology disclosed in this specification can be implemented in various forms, for example, in the form of a power storage management device, a power storage device, a management method thereof, and the like.
  • FIG. 1 is an explanatory diagram schematically showing the configuration of a power storage device 100 according to this embodiment.
  • the power storage device 100 includes a power storage unit 10 and a power storage management device 20 .
  • the power storage unit 10 has a configuration in which one or more parallel blocks 11 are connected in series. As shown in FIG. 1 , in this embodiment, the power storage unit 10 is composed of a plurality of parallel blocks 11 . Each parallel block 11 includes a lithium ion battery (hereinafter referred to as "LIB”) 12b and a lithium ion capacitor (hereinafter referred to as "LIC”) 12c which are connected in parallel, and thus has a large energy capacity and high output. It can be charged and discharged.
  • the parallel block 11 further includes a LIB resistor Rb serially connected to the LIB 12b and a LIC resistor Rc serially connected to the LIC 12c.
  • the LIB 12b is an example of a secondary battery in the claims
  • the LIC 12c is an example of a capacitor in the claims.
  • Power storage unit 10 is connected to a load (not shown) and an external power source via positive terminal 42 and negative terminal 44 .
  • the power storage management device 20 is a device for managing the power storage device 100 including the power storage unit 10 .
  • the power storage management device 20 includes a voltmeter 22, an ammeter 24, a thermometer 26, a monitoring unit 28, a line switch 40, a control unit 60, a recording unit 72, a history unit 74, and an interface (I/ F) portion 76;
  • One voltmeter 22 is provided for each parallel block 11 .
  • Each voltmeter 22 is connected in parallel to each parallel block 11 , measures the voltage of each parallel block 11 , and outputs a signal indicating the voltage measurement value to the monitoring section 28 .
  • Ammeter 24 is connected in series with power storage unit 10 . Ammeter 24 measures the current flowing through power storage unit 10 (parallel block 11 ) and outputs a signal indicating the current measurement value to monitoring unit 28 .
  • Thermometer 26 is arranged near power storage unit 10 . Thermometer 26 measures the temperature of power storage unit 10 (parallel block 11 ) and outputs a signal indicating the temperature measurement value to monitoring unit 28 .
  • monitoring unit 28 Based on the signals received from voltmeter 22, ammeter 24, and thermometer 26, monitoring unit 28 sends signals indicating the voltage of each parallel block 11, the current flowing through power storage unit 10, and the temperature of power storage unit 10 to control unit 60. output to.
  • the voltmeter 22 and the monitoring unit 28 are examples of the voltage measuring unit
  • the ammeter 24 and the monitoring unit 28 are examples of the current measuring unit
  • the thermometer 26 and the monitoring unit 28 are examples of the battery temperature measuring unit. be.
  • the line switch 40 is installed between the power storage section 10 and the negative terminal 44 .
  • Line switch 40 is ON/OFF-controlled by control unit 60 to open and close connections between power storage unit 10 and a load and an external power source.
  • the control unit 60 is configured using, for example, a multi-core CPU and programmable devices (Field Programmable Gate Array (FPGA), Programmable Logic Device (PLD), etc.), and controls the operation of the power storage management device 20.
  • the control unit 60 includes an OCV (open circuit voltage) estimating unit 62, an internal resistance estimating unit 64, a threshold changing unit 66, an SOC (state of charge, charging rate) estimating unit 68, and an abnormality determining unit. 70 and a forced change unit 78 . The functions of these units will be described together with the description of the overcurrent suppression process described later.
  • the recording unit 72 is composed of, for example, a ROM, a RAM, a hard disk drive (HDD), etc., and stores various programs and data, and is used as a work area and a data storage area when executing various processes. .
  • the recording unit 72 stores a computer program for executing overcurrent suppression processing, which will be described later.
  • the computer program is provided in a state stored in a computer-readable recording medium (not shown) such as a CD-ROM, DVD-ROM, or USB memory, and installed in the power storage device 100 to the recording unit 72. Stored.
  • each internal resistance estimation table is a table used for estimating the internal resistance of each of the LIB 12b and LIC 12c provided in each parallel block 11.
  • FIG. FIG. 2 is an explanatory diagram showing an example of an internal resistance estimation table.
  • Each internal resistance estimation table is a table that associates the SOC of parallel block 11 , the temperature, and the internal resistances of LIB 12 b and LIC 12 c for each duration T of the current state of power storage unit 10 .
  • the current state of power storage unit 10 includes a charged state in which power storage unit 10 is charged, a discharged state in which power storage unit 10 is discharged, and a stopped state in which power storage unit 10 is neither charged nor discharged.
  • the internal resistance estimation table is determined experimentally in advance. By referring to the internal resistance estimation table corresponding to each duration T of the current state, the internal resistance of each of LIB 12b and LIC 12c can be estimated based on the SOC and temperature of power storage unit 10.
  • FIG. 2 the internal resistances of the LIB 12b and the LIC 12c are shown as Z1, Z2, .
  • the history unit 74 is composed of, for example, a ROM, a RAM, a hard disk drive (HDD), etc., and records various histories related to the power storage device 100 .
  • a history includes, for example, current continuation time (discharge continuation time, charge continuation time, stop continuation time) of power storage unit 10, which will be described later.
  • the interface unit 76 performs wired or wireless communication with other devices. For example, the history recorded in the history section 74 is updated by communication with another device via the interface section 76 .
  • FIG. 3 is a flowchart showing overcurrent suppression processing executed in power storage device 100 .
  • the overcurrent suppression process is a process for determining whether or not power storage unit 10 or each parallel block 11 is in an overcurrent state, and executing abnormality processing according to the determination result.
  • the overcurrent state refers to a state in which the value of current Ibat (charging current) flowing through power storage unit 10 exceeds an overcurrent threshold Ioc during charging when power storage unit 10 is being charged, and when power storage unit 10 is discharging.
  • the overcurrent suppression process may be performed by determining whether or not the power storage unit 10 as a whole is in an overcurrent state, and executing an abnormality processing according to the determination result. It may be determined whether or not each of the blocks 11 is in an overcurrent state, and when it is determined that at least one parallel block 11 is in an overcurrent state, the abnormality processing may be executed.
  • the overcurrent suppression process is started, for example, automatically when power storage device 100 is started, or in response to an instruction from an administrator.
  • the current value of charging current flowing into power storage unit 10 is defined as “positive”, and the current value of discharging current flowing out of power storage unit 10 is defined as “negative”. Also, one parallel block 11 included in the power storage unit 10 will be described as an example.
  • the controller 60 of the power storage management device 20 first performs various initial settings (S110). For example, the control unit 60 sets the OCV (Vob) of the LIB 12b and the OCV (Voc) of the LIC 12c to the same value (eg, the initial OCV, which is the voltage of the parallel block 11 measured when the power storage device 100 is started). . Also, the overcurrent threshold Ioc during charging is set to the initial value Ioc,int. This initial value Ioc,int is a value (a value with a large absolute value) that is slightly higher than the current value of the maximum current (rush current) that flows into the parallel block 11 at the start of charging, for example.
  • the overcurrent threshold value Iod during discharge is set to the initial value Iod,int.
  • This initial value Iod, int is a value slightly lower (larger in absolute value) than the current value of the maximum current (inrush current) that flows out from the parallel block 11 at the start of discharge, for example.
  • the abnormality determination unit 70 (FIG. 1) of the power storage management device 20 determines whether or not the parallel block 11 is in an overcurrent state (including an overcurrent state of the LIC 12c alone and an overcurrent state of the LIB 12b alone). Processing is performed (S120). During charging of the power storage unit 10, the abnormality determination unit 70 determines that the measured current value of the current Ibat (charging current) flowing through the parallel block 11 (power storage unit 10) exceeds the overcurrent threshold value Ioc during charging. It determines that the parallel block 11 is in an overcurrent state.
  • Ibat charging current
  • Ioc overcurrent threshold value
  • the abnormality determination unit 70 determines whether the parallel block 11 is overcharged on the condition that the current measurement value of the current Ibat (discharge current) flowing through the parallel block 11 is below the overcurrent threshold value Iod during discharging. It is judged to be in a current state.
  • the abnormality determination unit 70 executes abnormality processing corresponding to the overcurrent abnormality in the parallel block 11 (power storage unit 10) (S130). , the overcurrent threshold adjustment process ends.
  • the abnormal process includes, for example, a process of notifying an overcurrent abnormality of power storage unit 10 to the outside via interface unit 76, a process of closing negative terminal 44 and prohibiting charging/discharging of power storage unit 10, and the like. is.
  • the control unit 60 determines whether the OCV (Voc) of the LIC 12c is within a predetermined range.
  • the predetermined range is, for example, the allowable voltage range in specifications defined in the LIC 12c, which is equal to or less than a predetermined overvoltage threshold and equal to or more than a predetermined low voltage threshold.
  • the OCV estimation processing of the LIC 12c will be described later (see S220, S320, S430).
  • the control unit 60 executes abnormality processing corresponding to the voltage abnormality of the OCV of the LIC 12c (S130), and performs the overcurrent threshold adjustment processing. finish. Specifically, when the OCV of the LIC 12c exceeds a predetermined overvoltage threshold, the control unit 60 determines that the LIC 12c is in an overvoltage state and executes predetermined overvoltage processing. Further, when the OCV of the LIC 12c is below a predetermined low voltage threshold, the control unit 60 determines that the LIC 12c is in a low voltage state and executes predetermined low voltage processing.
  • the overvoltage process includes, for example, a process of notifying an overvoltage abnormality of the LIC 12c to the outside via the interface unit 76, or a process of closing the negative terminal 44 to prohibit charging of the power storage unit 10.
  • processing to The low-voltage process includes, for example, a process of notifying the outside of the LIC 12c of a low-voltage abnormality via the interface unit 76, a process of closing the negative terminal 44 and prohibiting the discharge of the power storage unit 10, and the like.
  • the control unit 60 functions as an execution unit in the claims.
  • the voltage abnormality of the LIC 12c has not occurred.
  • stop state is determined (S150).
  • the signal output from the ammeter 24 is a signal corresponding to the presence or absence of the current Ibat flowing through the power storage unit 10 and the direction of flow (depending on the level of the voltage across a detection resistor (not shown) provided in the ammeter 24).
  • the control unit 60 determines the current state (charged state, discharged state, stopped state) of the power storage unit 10 based on the level of the signal output from the ammeter 24 and the level inversion of the signal. do.
  • the internal resistance estimation unit 64 (FIG. 1) of the power storage management device 20 estimates the internal resistance Zb of the LIB 12b and the internal resistance Zc of the LIC 12c (S300).
  • the internal resistance estimation unit 64 selects an internal resistance estimation table corresponding to the discharge duration Td from the recording unit 72, and refers to the selected internal resistance estimation table, based on the SOC and temperature of the parallel block 11, Estimate internal resistances Zb and Zc of LIB 12b and LIC 12c, respectively. Note that the initial SOC of the parallel block 11 can be estimated by various known estimation methods.
  • the initial SOC is calculated based on the initial OCV and the curve representing the SOC-OCV characteristic
  • the SOC of the parallel block 11 can be estimated based on the initial SOC and the current integrated value of the current Ibat of the power storage unit 10. .
  • FIG. 4 is an equivalent circuit of the parallel block 11 during discharging.
  • Ibatd in FIG. 4 means the discharge current
  • Vbat means the terminal voltage of the parallel block 11
  • C means the capacitance of the LIC 12c.
  • the current Ic (discharge current Icd) flowing through the LIC 12c can be obtained by the following equation (1).
  • the OCV estimation unit 62 executes an OCV estimation process for estimating the OCV (Vocd) during discharging of the LIC 12c (S320).
  • the OCV estimation unit 62 estimates the OCV during discharge of the LIC 12c using, for example, the following equations 2 to 5 (see FIG. 4).
  • “Vocd1” in Equation 2 is the value of LIC 12c when changes in internal resistances Zb and Zc of LIB 12b and LIC 12c due to the duration of the discharge state of power storage unit 10 (hereinafter referred to as “discharge duration”) are not considered.
  • the first virtual OCV can be obtained by Equation 3 below.
  • Vocd0 in Equation 3 is the initial OCV of the parallel block 11, for example.
  • C is the capacitance of power storage unit 10 .
  • Td is the discharge duration time of power storage unit 10 .
  • control unit 60 counts time at a predetermined sampling cycle, and records the determination result of current state determination (S150) of power storage unit 10 described above in history unit 74 in association with the count at the time of determination. do. Therefore, the OCV estimating unit 62 can identify the current discharge duration time Td from the history stored in the history unit 74 .
  • Ic0 in Equation 3 is the discharge current that flows out from the LIC 12c at the start of discharge (hereinafter referred to as "initial discharge current"), and can be obtained by Equation 4 below.
  • Icc in Equation 4 is a charging current that flows from LIB 12b to LIC 12c when power storage unit 10 is discharged, and has an initial value of zero when power storage device 100 starts to discharge for the first time after activation.
  • “Vocd2” in Equation 2 is the second virtual OCV of LIC 12c when changes in internal resistances Zb and Zc of LIB 12b and LIC 12c with the discharge duration time of power storage unit 10 are considered.
  • the second virtual OCV can be obtained by Equation 5 below.
  • the control unit 60 first determines whether or not to perform adjustment processing (S340 to S360) for the overcurrent threshold value Iod during discharge. Specifically, the control unit 60 determines whether or not the currently set discharge overcurrent threshold Iod is equal to or less than the lower current threshold Iod,min (S330).
  • the lower limit current threshold Iod,min is, for example, the lowest value (lowest current value) of the allowable voltage range on specifications defined in the LIB 12b. In this embodiment, this determination is made based on whether or not the absolute value of the overcurrent threshold value Iod during discharge is equal to or greater than the absolute value of the minimum current value.
  • the processing for changing the overcurrent threshold Iod during discharge (S340 to S360) described below is executed. Without doing so, the process returns to S120. This prevents the overcurrent threshold Iod during discharge from being set outside the allowable voltage range of the LIB 12b.
  • the threshold change unit 66 determines the OCV of the LIC 12c estimated by the OCV estimation process and the reference OCV.
  • the overcurrent threshold Iod during discharging is changed according to the OCV difference ⁇ Vd, which is the difference between the two (S340).
  • the reference OCV is a value corresponding to the OCV of the parallel block 11, and may be the OCV of the LIB 12b or the OCV of the parallel block 11, for example.
  • the SOC estimator 68 calculates the initial SOC based on the initial OCV of the parallel block 11 and the curve representing the SOC-OCV characteristic of the LIB 12b, and based on the initial SOC and the current integrated value of the current Ib of the LIB 12b.
  • the SOC of LIB 12b can be estimated, and the OCV of LIB 12b can be estimated based on the SOC and the curve representing the SOC-OCV characteristics of LIB 12b.
  • the OCV of the parallel block 11 can be estimated based on the SOC of the parallel block 11 estimated by the initial SOC estimation process and the curve representing the OC-OCV characteristics of the parallel block 11 .
  • the threshold change unit 66 reduces the absolute value of the overcurrent threshold Iod during discharge according to the increase in the OCV difference ⁇ Vd.
  • the OCV of the LIC 12c decreases relative to the OCV of the LIB 12b as the discharge duration time elapses, and the OCV difference increases.
  • the overcurrent threshold Iod during discharge is changed to a higher value according to the amount of increase in the OCV difference.
  • the forced change unit 78 of the power storage management device 20 changes the average value of the current Ibat flowing through the parallel block 11 measured by the ammeter 24 in a predetermined period (hereinafter referred to as the “period average current value”) to the reference average value.
  • the reference average value is, for example, a value whose absolute value is slightly smaller than the upper limit of the allowable current range that can flow through the parallel block 11 (during discharging, the upper limit of the allowable current range If the period average current value falls below the reference average value, it means that there is an abnormal state in which a relatively large discharge current is continuously flowing from the parallel block 11.
  • the forced change unit 78 reduces the absolute value of the overcurrent threshold regardless of the OCV difference ⁇ Vd (S360), and returns to S120.
  • the overcurrent threshold Iod during discharge is forcibly changed to a value (for example, the lower limit current threshold Iod,min) whose absolute value is smaller than the overcurrent threshold Iod during discharge set in S340.
  • control unit 60 executes the processing during charging (S200 to S260).
  • This adjustment process is the same as the above-described discharge process (S300 to S360). It differs in that Iod is "negative”.
  • the threshold change unit 66 reduces the absolute value of the overcurrent threshold Ioc during charging according to the increase in the OCV difference.
  • the OCV of the LIC 12c increases relative to the OCV of the LIB 12b as the charging duration elapses, and the OCV difference increases.
  • the overcurrent threshold Iod during charging is changed to a lower value according to the amount of increase in the OCV difference.
  • a detailed description of the processing during charging (S200 to S260) is omitted.
  • the control unit 60 When it is determined that the power storage unit 10 is in the stopped state (S150: stop), the control unit 60 first determines whether the OCV (Voc) of the LIC 12c substantially matches the OCV (Vob) of the LIB 12b. (S400).
  • the OCV of LIB 12b is the initial OCV.
  • the fact that the OCV of the LIC 12c and the OCV of the LIB 12b do not substantially match is because the current Ibat does not flow through the power storage unit 10, but the state immediately before the power storage unit 10 is stopped, for example, is in the charged state or the discharged state. , means that the difference between the OCV of LIC12c and the OCV of LIB12b remains. At this time, currents flow through the LIB 12b and the LIC 12c that configure the parallel block 11 in directions that reduce the difference from the OCV.
  • the control unit 60 adjusts the overcurrent threshold according to the OCV difference of the LIC 12c when the power storage unit 10 is stopped.
  • the OCV of LIB 12b can be regarded as the initial OCV.
  • the overcurrent threshold is set to LIC 12c immediately before the start of discharging or charging. can be adjusted from an appropriate value considering the difference between the OCV of LIB12b and the OCV of LIB12b.
  • the control unit 60 executes the same internal resistance estimation process as in S300 (S410), is specified (S420). For example, if the state immediately before the power storage unit 10 was in the discharged state, the LIC 12c is charged by the current flowing from the LIB 12b to the LIC 12c when the power storage unit 10 is in the stopped state. A charging current (Icc) flowing from the LIB 12b to the LIC 12c at the beginning of the stop can be obtained by the following equation (6). "Vbat” in Equation 6 is the terminal voltage of the parallel block 11 when stopped.
  • “Voc” in Equation 6 is the OCV of LIC 12c during charging estimated in S220 when the state immediately before power storage unit 10 was in the charged state, and the state immediately before power storage unit 10 was in the discharged state. In this case, it is the OCV (Vocd) of the LIC 12c during discharge estimated in S320.
  • the control unit 60 estimates the OCV (Vocs) of the LIC 12c when stopped (S430).
  • the OCV estimating unit 62 estimates the OCV of the LIC 12c when stopped using, for example, Equation 7 below. That is, the OCV (Vocs) during discharging of the LIC 12c can be obtained by the following equation 2.
  • Ts is the stop duration time of power storage unit 10 .
  • the control unit 60 can identify the current stop duration time from the history stored in the history unit 74, for example.
  • the threshold change unit 66 changes the overcurrent threshold Ios at stop according to the OCV difference ⁇ Vd, which is the difference between the OCV of the LIC 12c estimated by the OCV estimation process and the reference OCV (S440).
  • the threshold changing unit 66 reduces the absolute value of the overcurrent threshold Ios at the time of stop according to the increase in the OCV difference ⁇ Vd.
  • the OCV of the LIC 12c increases to approach the OCV of the LIB 12b as the stop duration time elapses, and the OCV difference decreases.
  • the overcurrent threshold Ios at stop is changed to a lower value (a value with a larger absolute value) according to the amount of decrease in the OCV difference.
  • the OCV of the LIC 12c decreases to approach the OCV of the LIB 12b as the stop duration time elapses, and the OCV difference decreases. According to the amount of decrease in the OCV difference, the overcurrent threshold Ios at stop is changed to a higher value (a value with a larger absolute value).
  • control unit 60 executes processing (S410 to S440) for changing the overcurrent threshold Ios at stop. without returning to S120. As a result, wasteful execution of the process for changing the overcurrent threshold is suppressed.
  • the current Ibat flowing through the parallel block 11 measured by the ammeter 24 is the sum of the current Ib flowing through the LIB 12b and the current Ic flowing through the LIC 12c ( See Figure 4).
  • the current Ic flowing through the LIC 12c correlates with the OCV of the LIC 12c, and the OCV (terminal voltage) of the LIC 12c changes linearly during charge and discharge compared to the LIB 12b.
  • the present inventors have made intensive studies, and found that changes in the current Ic flowing through the LIC 12c and the current Ib flowing through the LIB 12b, which are not directly measured, can be grasped based on changes in the OCV of the LIC 12c. It was newly discovered that the threshold values Ioc, Iod, and Ios can be appropriately changed.
  • the overcurrent threshold is changed according to the difference between the OCV of the LIC 12c estimated by the OCV estimation process (S220, S320, S430) and the reference OCV.
  • the present embodiment it is possible to suppress the occurrence of an overcurrent state in the LIB 12b while suppressing deterioration of the high-output characteristics of the LIC 12c.
  • FIG. 5 is a first time chart showing changes in each element in the process in which power storage unit 10 shifts from the discharged state to the stopped state
  • FIG. 4 is a second time chart showing changes in each element
  • the horizontal axis of each figure is the current duration (discharge duration, stop duration).
  • the “discharge” in the “current state” means the discharge state of the power storage unit 10.
  • the line switch 40 is in the ON state, or the constant current control is performed by the ON/OFF control, and the power storage device This is a state in which a constant current is flowing through a load (for example, a motor) connected to 100 .
  • “Stopped” in “current state” means a stopped state of power storage unit 10. Specifically, line switch 40 is in an open state and power is not supplied to the load. Also, in each figure, the OCV (Vob) of the LIB 12b is assumed to be substantially constant.
  • the discharge current Ibat is mainly the discharge current Ic (Icd) from the LIC 12c having a small internal resistance.
  • the overcurrent threshold Iod during discharge is set to a relatively large value (low value)
  • the OCV of the LIC 12c decreases as the discharge duration Td elapses (see t0 to t3), and the OCV difference ⁇ V, which is the difference between the OCV of the LIC 12c and the OCV of the LIB 12b, increases. Accordingly, the discharge current Ic from the LIC 12c decreases (increases), the discharge current Ib from the LIB 12b increases (decreases), and then the discharge current Ibat from the parallel block 11 is mainly discharged from the LIB 12b. It becomes the current Ib (Ibd). At this time, the overcurrent threshold value Iod during discharging is changed to a smaller value (higher value) step by step according to the OCV difference ⁇ V. As a result, the LIB 12b can be prevented from entering an overcurrent state, compared to a configuration in which the overcurrent threshold value Iod during discharge is not changed from the initial value at the start of discharge.
  • the power storage unit 10 changes from the discharged state to the stopped state.
  • the overcurrent threshold Iod during discharge see t3
  • the power storage unit 10 changes from the discharged state to the stopped state.
  • the discharge current Ib from the LIB 12b flows into the LIC 12c, and the LIC 12c starts to be charged.
  • the OCV difference ⁇ V decreases as the stop duration time Ts elapses (t3 to t6).
  • the overcurrent threshold value Iod at the time of stop is changed to a larger value (lower value) step by step according to the OCV difference ⁇ V while taking over the previous value.
  • a pulse current with a shorter discharge duration is flowing through the power storage unit 10 than in the example of FIG.
  • Power storage unit 10 changes from a discharged state to a stopped state (see t2), returns to a discharged state shortly thereafter (see t3), and soon thereafter enters a stopped state (see t4).
  • the discharge continuation time and the stop continuation time are relatively short, and the OCV difference ⁇ V changes little, so the overcurrent threshold Iod is kept constant (see t2 to t5).
  • the change in the overcurrent threshold is suppressed, and the electric state of the power storage unit 10 is suppressed. is controlled so that it is set to an appropriate value regardless of the transition to any state.
  • the reference OCV is a value corresponding to the OCV of the parallel block 11. According to the present embodiment, the current Ic and the like flowing through the LIC 12c can be grasped more accurately than when the reference OCV is a predetermined fixed value. occurrence of the overcurrent state can be more effectively suppressed.
  • the higher the OCV of the LIC 12c than the reference OCV and the larger the OCV difference the smaller the overcurrent threshold Ioc during charging (S240 in FIG. 3).
  • the overcurrent threshold Ioc during charging S240 in FIG. 3
  • the overcurrent threshold Iod during discharging is decreased (S340 in FIG. 3).
  • the overcurrent threshold Iod during discharging it is possible to suppress the occurrence of an overcurrent state in the LIB 12b while suppressing deterioration in the high-output characteristics of the LIC 12c.
  • the configuration of the power storage device 100 in the above embodiment is merely an example, and various modifications are possible.
  • the LIB 12b is used as an example of the secondary battery, but the secondary battery is not limited to this, and may be a secondary battery other than a lithium-based battery.
  • the LIC12c is exemplified as a capacitor, the capacitor is not limited to this, and a capacitor other than a lithium-based capacitor may be used.
  • the parallel block may have a configuration in which the secondary battery (LIB 12b) and the capacitor (LIC 12c) are accommodated in separate cases and connected in parallel, or the secondary battery and the capacitor are arranged in parallel in the same case.
  • one or more secondary batteries, one or more capacitors, and an electrolytic solution may be accommodated in the same space, or one or more secondary batteries and one or more capacitors may be housed in different spaces (cell chamber, battery case).
  • the configuration may be such that the process of S140 is not performed. Further, in the OCV estimation processing (S220, S320, S430) of the LIC 12c, the internal resistance of the LIB 12b and the LIC 12c may be set to a fixed value, and the internal resistance estimation processing (S200, S300, S410) may not be executed. Also, in the overcurrent suppression process (FIG. 3), the configuration may be such that the processes of S250 and S350 are not executed.
  • the reference OCV is not limited to the OCV of the LIB 12b or the OCV of the parallel block 11.
  • the terminal voltage of the parallel block 11 may be used, and changes in the OCV of the LIB 12b are ignored. It may be a fixed value (eg, zero).
  • the overcurrent threshold may be corrected according to the SOC of the LIB 12b or the parallel block 11. Specifically, in some LIBs, when the SOC falls below a predetermined lower limit (for example, 10%), the OCV change rate and internal resistance of the LIB 12b increase. It is preferable to correct the absolute value of the overcurrent threshold during discharge to a smaller value according to the decrease in the SOC of the parallel block 11 . In some LIBs, when the SOC exceeds a predetermined upper limit (for example, 90%), the OCV change rate and internal resistance of the LIB 12b increase. It is preferable to correct the absolute value of the overcurrent threshold during charging to a smaller value according to the increase in the SOC. In this case, the controller 60 functions as a threshold corrector.
  • a predetermined lower limit for example, 10%
  • the OCV change rate and internal resistance of the LIB 12b increase. It is preferable to correct the absolute value of the overcurrent threshold during discharge to a smaller value according to the decrease in the SOC of the parallel block 11 .
  • Power storage unit 11 Parallel block 12b: LIB 12c: LIC 20: Power storage management device 22: Voltmeter 24: Ammeter 26: Thermometer 28: Monitoring unit 40: Line switch 42: Plus terminal 44: Minus terminal 60: Control Unit 62: OCV estimation unit 64: Internal resistance estimation unit 66: Threshold change unit 68: SOC estimation unit 70: Abnormal judgment unit 72: Recording unit 74: History unit 76: Interface unit 78: Forced change unit 100: Power storage device Rb: LIB resistance Rc: LIC resistance Zb, Zc: internal resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention suppresses the occurrence of an overcurrent state of a secondary battery while suppressing a decline in high-output characteristics caused by a capacitor. This power storage management device manages a power storage unit comprising parallel blocks, in each of which a secondary battery and a capacitor are connected in parallel to each other. The power storage management device comprises: a current measurement part for measuring currents flowing in the parallel blocks; a voltage measurement part for measuring terminal voltages of the parallel blocks; an abnormality determination part for carrying out abnormal-time processing, under the necessary condition that a current flowing in any one of the parallel blocks as measured by the current measurement part has exceeded an overcurrent threshold value; an OCV estimation part for estimating OCVs of the capacitors; and a threshold value change part for changing the overcurrent threshold value in accordance with OCV differences, that is, differences between the OCVs of the capacitors estimated by the OCV estimation part and a reference OCV.

Description

蓄電管理装置、蓄電装置、および、蓄電部の管理方法Power storage management device, power storage device, and method for managing power storage unit
 本発明は、蓄電管理装置、蓄電装置、および、蓄電部の管理方法に関する。 The present invention relates to a power storage management device, a power storage device, and a method for managing a power storage unit.
 従来から、リチウムイオン二次電池とリチウムイオンキャパシタとが互いに並列に接続された並列ブロックを備える蓄電部が知られている。このような蓄電部によれば、リチウムイオン二次電池によって高容量の特性が発揮され、リチウムイオンキャパシタによって高出力の特性が発揮される(下記特許文献1参照)。 Conventionally, a power storage unit is known that includes a parallel block in which a lithium ion secondary battery and a lithium ion capacitor are connected in parallel. According to such a power storage unit, the lithium ion secondary battery exhibits high capacity characteristics, and the lithium ion capacitor exhibits high output characteristics (see Patent Document 1 below).
特開2011-216685号公報JP 2011-216685 A
 上記従来の蓄電部では、例えば負荷の動作状態に応じて蓄電部に周期的または単発的な大電流が流れることがある。蓄電部に大電流が流れ始める初期段階では、蓄電部に流れる電流は、主として、内部抵抗が小さいリチウムイオンキャパシタに流れる。しかし、放電時においては、大電流が流れ始めた時点からの放電継続時間が長くなるほど、リチウムイオンキャパシタの電圧が低下する。リチウムイオンキャパシタの電圧が低下し、リチウムイオン二次電池との電圧差が拡大すると、蓄電部に流れる電流は、主として、リチウムイオン二次電池に流れるようになり、その結果、リチウムイオン二次電池が過電流状態になるおそれがある。なお、充電時においては、放電時とは逆に、大電流が流れ始めた時点からの充電継続時間が長くなるほど、リチウムイオンキャパシタの電圧が増大してリチウムイオン電池との電圧差が拡大し、その結果、リチウムイオン二次電池が過電流状態になるおそれがある。 In the above conventional power storage unit, for example, a large current may periodically or sporadically flow through the power storage unit depending on the operating state of the load. In the initial stage when a large current starts to flow in the power storage unit, the current flowing in the power storage unit mainly flows through the lithium ion capacitor with a low internal resistance. However, during discharge, the voltage of the lithium ion capacitor decreases as the discharge duration from the point at which a large current begins to flow becomes longer. When the voltage of the lithium-ion capacitor drops and the voltage difference with the lithium-ion secondary battery increases, the current flowing to the power storage unit mainly flows to the lithium-ion secondary battery, and as a result, the lithium-ion secondary battery may enter an overcurrent condition. It should be noted that during charging, contrary to discharging, the longer the charging duration from the time when a large current started to flow, the greater the voltage of the lithium ion capacitor and the larger the voltage difference with the lithium ion battery. As a result, the lithium ion secondary battery may enter an overcurrent state.
 そこで、リチウムイオン二次電池の過電流状態の発生を抑制するため、蓄電部に流れる電流が一定の過電流閾値を超えた場合に、例えば蓄電部への電流経路を遮断するなどの異常時処理を行うことが考えられる。しかし、このような一定の過電流閾値による異常時処理では、蓄電部に流れる電流が、主として、内部抵抗が小さいリチウムイオンキャパシタに流れる初期段階でも過電流閾値による異常時処理が機能することになる。その結果、リチウムイオンキャパシタによる高出力の特性が十分に発揮されない、という課題が生じる。 Therefore, in order to suppress the occurrence of an overcurrent state in the lithium-ion secondary battery, when the current flowing in the storage unit exceeds a certain overcurrent threshold, abnormal processing such as cutting off the current path to the storage unit can be considered. However, in such an abnormality processing based on a constant overcurrent threshold, the abnormality processing based on the overcurrent threshold functions even in the initial stage when the current flowing in the power storage unit mainly flows through the lithium-ion capacitor, which has a low internal resistance. . As a result, there arises a problem that the high output characteristics of the lithium ion capacitor are not sufficiently exhibited.
 なお、このような課題は、リチウムイオン二次電池とリチウムイオンキャパシタとの組み合わせに限らず、リチウムイオン系以外の二次電池とキャパシタとが互いに並列に接続された蓄電部にも共通の課題である。 Such problems are not limited to the combination of a lithium-ion secondary battery and a lithium-ion capacitor, but are common to power storage units in which a non-lithium-ion secondary battery and a capacitor are connected in parallel. be.
 本発明は、上述した課題を解決することが可能な蓄電管理装置、蓄電装置、および、蓄電部の管理方法を提供することを目的とする。 An object of the present invention is to provide a power storage management device, a power storage device, and a method for managing a power storage unit that can solve the above-described problems.
(1)本明細書に開示される蓄電管理装置は、二次電池とキャパシタとが互いに並列に接続された1つの並列ブロック、または、互いに直列に接続された複数の前記並列ブロックを備える蓄電部を管理するための蓄電管理装置であって、前記並列ブロックに流れる電流を計測する電流計測部と、前記並列ブロックの端子電圧を計測する電圧計測部と、前記電流計測部により測定された前記並列ブロックに流れる電流が過電流閾値を超えたことを必要条件として異常時処理を行う異常判断部と、前記電流計測部により計測された前記並列ブロックに流れる電流と、前記電圧計測部により計測された前記並列ブロックの端子電圧と、前記二次電池の内部抵抗と、前記キャパシタの内部抵抗と、前記蓄電部の電流継続時間と、前記キャパシタの静電容量と、の少なくとも1つに基づき、前記キャパシタのOCVを推定するOCV推定部と、前記OCV推定部により推定された前記キャパシタのOCVと基準OCVとの差であるOCV差に応じて、前記過電流閾値を変更する閾値変更部と、を備える。 (1) The power storage management device disclosed in this specification is a power storage unit that includes one parallel block in which a secondary battery and a capacitor are connected in parallel, or a plurality of parallel blocks that are connected in series to each other. and a current measuring unit for measuring the current flowing through the parallel block, a voltage measuring unit for measuring the terminal voltage of the parallel block, and the parallel current measured by the current measuring unit. An abnormality determination unit that performs abnormality processing on the condition that the current flowing through the block exceeds the overcurrent threshold as a necessary condition, the current flowing through the parallel block measured by the current measurement unit, and the voltage measurement unit the capacitor based on at least one of the terminal voltage of the parallel block, the internal resistance of the secondary battery, the internal resistance of the capacitor, the current duration of the storage unit, and the capacitance of the capacitor and an OCV estimating unit that estimates the OCV of the capacitor, and a threshold changing unit that changes the overcurrent threshold according to the OCV difference, which is the difference between the OCV of the capacitor estimated by the OCV estimating unit and the reference OCV. .
 電流計測部により測定される並列ブロックに流れる電流は、二次電池に流れる電流とキャパシタに流れる電流とを合算した電流である。ここで、キャパシタに流れる電流は、キャパシタのOCVに相関し、キャパシタでは、二次電池に比べて、充放電時にOCV(電圧)が直線的に変化する。そこで、本発明者は、鋭意検討を重ねることにより、直接に計測されないキャパシタに流れる電流と二次電池に流れる電流とのそれぞれの変化を、キャパシタのOCVの変化に基づき把握することによって、過電流閾値を適切に変更できる、ことを新たに見出した。本蓄電管理装置では、OCV推定部により推定されたキャパシタのOCVと基準OCVとの差に応じて、過電流閾値が変更される。これにより、本蓄電管理装置によれば、キャパシタによる高出力の特性の低下を抑制しつつ、二次電池の過電流状態の発生を抑制することができる。 The current flowing through the parallel block measured by the current measuring unit is the sum of the current flowing through the secondary battery and the current flowing through the capacitor. Here, the current flowing through the capacitor correlates with the OCV of the capacitor, and the OCV (voltage) of the capacitor changes linearly during charging and discharging compared to the secondary battery. Therefore, the inventor of the present invention has made extensive studies to grasp the changes in the current flowing in the capacitor and the current flowing in the secondary battery, which are not directly measured, based on the change in the OCV of the capacitor. We have newly found that the threshold can be appropriately changed. In this power storage management device, the overcurrent threshold is changed according to the difference between the OCV of the capacitor estimated by the OCV estimation unit and the reference OCV. As a result, according to the power storage management device, it is possible to suppress the occurrence of an overcurrent state in the secondary battery while suppressing deterioration of high output characteristics due to the capacitor.
(2)上記蓄電管理装置において、前記基準OCVは、前記二次電池のOCVに相当する値であり、前記閾値変更部は、前記OCV差の増加に応じて前記過電流閾値の絶対値を小さくする構成としてもよい。本蓄電管理装置によれば、例えば基準OCVが所定の固定値である場合に比べて、キャパシタに流れる電流等をより正確に把握できるため、キャパシタによる高出力の特性の低下を抑制しつつ、二次電池の過電流状態の発生をより効果的に抑制することができる。 (2) In the power storage management device, the reference OCV is a value corresponding to the OCV of the secondary battery, and the threshold changing unit reduces the absolute value of the overcurrent threshold as the OCV difference increases. It is good also as a structure which carries out. According to this power storage management device, for example, compared to the case where the reference OCV is a predetermined fixed value, it is possible to grasp the current flowing in the capacitor more accurately, so while suppressing the deterioration of the high output characteristics due to the capacitor It is possible to more effectively suppress the occurrence of an overcurrent state in the secondary battery.
(3)上記蓄電管理装置において、前記キャパシタのOCVが前記基準OCVより高く、かつ、前記OCV差が大きいほど、充電時の前記過電流閾値を小さくする構成としてもよい。本蓄電管理装置によれば、充電時において、キャパシタによる高出力の特性の低下を抑制しつつ、二次電池の過電流状態の発生を抑制することができる。 (3) In the power storage management device, the overcurrent threshold during charging may be decreased as the OCV of the capacitor is higher than the reference OCV and as the OCV difference is larger. According to this power storage management device, during charging, it is possible to suppress the occurrence of an overcurrent state in the secondary battery while suppressing deterioration of high output characteristics due to the capacitor.
(4)上記蓄電管理装置において、前記キャパシタのOCVが前記基準OCVより低く、かつ、前記OCV差が大きいほど、放電時の前記過電流閾値を小さくする構成としてもよい。本蓄電管理装置によれば、放電時において、キャパシタによる高出力の特性の低下を抑制しつつ、二次電池の過電流状態の発生を抑制することができる。 (4) In the power storage management device, the overcurrent threshold during discharging may be decreased as the OCV of the capacitor is lower than the reference OCV and as the OCV difference is larger. According to this power storage management device, during discharging, it is possible to suppress the occurrence of an overcurrent state in the secondary battery while suppressing deterioration of high output characteristics due to the capacitor.
(5)上記蓄電管理装置において、さらに、前記二次電池または前記並列ブロックのSOCに応じて前記過電流閾値を補正する閾値補正部を備える構成としてもよい。本蓄電管理装置によれば、例えば二次電池または並列ブロックのSOCを考慮しない構成に比べて、二次電池または並列ブロックのSOCに伴って変化する二次電池の電流許容範囲に応じて、過電流閾値を適切な値にすることができる。 (5) The power storage management device may further include a threshold correction unit that corrects the overcurrent threshold according to the SOC of the secondary battery or the parallel block. According to this power storage management device, for example, compared to a configuration that does not consider the SOC of the secondary battery or the parallel block, excessive The current threshold can be set to an appropriate value.
(6)上記蓄電管理装置において、さらに、前記並列ブロックの温度を計測する温度計測部と、前記二次電池または前記並列ブロックのSOCを推定するSOC推定部と、を備え、前記OCV推定部は、前記温度計測部により計測された温度と、前記SOC推定部により推定されたSOCとから、あらかじめ記憶された、前記並列ブロックの温度とSOCと電流継続時間とが関連づけられた関連情報を参照して、前記二次電池の内部抵抗と前記キャパシタの内部抵抗とを推定する構成としてもよい。本蓄電管理装置によれば、例えば二次電池やキャパシタの内部抵抗の変化を考慮しない構成に比べて、キャパシタのOCVを正確に推定し、二次電池の過電流状態の発生を、より効果的に抑制することができる。 (6) The power storage management device further includes a temperature measuring unit that measures the temperature of the parallel block, and an SOC estimating unit that estimates the SOC of the secondary battery or the parallel block, wherein the OCV estimating unit , from the temperature measured by the temperature measuring unit and the SOC estimated by the SOC estimating unit, reference is made to pre-stored related information that associates the temperature, SOC, and current duration of the parallel block. , the internal resistance of the secondary battery and the internal resistance of the capacitor may be estimated. According to this power storage management device, for example, compared to a configuration that does not consider changes in the internal resistance of the secondary battery or capacitor, the OCV of the capacitor can be accurately estimated, and the occurrence of the overcurrent state of the secondary battery can be more effectively prevented. can be suppressed to
(7)上記蓄電管理装置において、さらに、前記電流計測部により計測された前記並列ブロックに流れる電流の所定期間における平均値が、基準平均値を超える場合、前記OCV差に関係なく、前記過電流閾値の絶対値を小さくする強制変更部を備える構成としてもよい。本蓄電管理装置によれば、例えば連続的に大量の電流が並列ブロックに流れる異常時において、二次電池の過電流状態の発生を未然に抑制することができる。 (7) In the power storage management device, if the average value of the current flowing through the parallel block measured by the current measuring unit in a predetermined period exceeds a reference average value, regardless of the OCV difference, the overcurrent The configuration may include a forced change unit that reduces the absolute value of the threshold. According to this power storage management device, it is possible to prevent the occurrence of an overcurrent state in the secondary battery in the event of an abnormality in which, for example, a large amount of current continuously flows through the parallel block.
(8)上記蓄電管理装置において、さらに、前記キャパシタのOCVが所定の過電圧閾値を超えた場合、前記キャパシタが過電圧状態と判断して所定の過電圧時処理を実行し、前記キャパシタのOCVが所定の低電圧閾値を下回った場合、前記キャパシタが低電圧状態と判断し所定の低電圧時処理を実行する実行部を備える構成としてもよい。本蓄電管理装置によれば、キャパシタの過電圧及び低電圧状態の発生を抑制することができる。 (8) In the power storage management device, further, when the OCV of the capacitor exceeds a predetermined overvoltage threshold, the capacitor is determined to be in an overvoltage state and a predetermined overvoltage process is executed, and the OCV of the capacitor exceeds the predetermined overvoltage threshold. The configuration may include an execution unit that determines that the capacitor is in a low voltage state and executes predetermined low voltage processing when the voltage falls below the low voltage threshold. According to this power storage management device, it is possible to suppress the occurrence of an overvoltage state and a low voltage state of the capacitor.
(9)上記蓄電装置において、二次電池とキャパシタとが互いに並列に接続された1つの並列ブロック、または、互いに直列に接続された複数の前記並列ブロックを備える蓄電部と、上記蓄電管理装置と、備える構成としてもよい。本蓄電装置によれば、キャパシタによる高出力の特性の低下を抑制しつつ、二次電池の過電流状態の発生を抑制することができる。 (9) In the power storage device, the power storage unit includes one parallel block in which a secondary battery and a capacitor are connected in parallel, or a plurality of the parallel blocks connected in series, and the power storage management device. , may be provided. According to this power storage device, it is possible to suppress the occurrence of an overcurrent state in the secondary battery while suppressing deterioration in high output characteristics due to the capacitor.
(10)本明細書に開示される蓄電部の管理方法は、二次電池とキャパシタとが互いに並列に接続された1つの並列ブロック、または、互いに直列に接続された複数の前記並列ブロックを備える蓄電部と、前記並列ブロックに流れる電流を計測する電流計測部と、前記並列ブロックの端子電圧を計測する電圧計測部と、を備える蓄電部の管理方法であって、前記電流計測部により測定された前記並列ブロックに流れる電流が過電流閾値を超えたことを必要条件として異常時処理を行う工程と、前記電流計測部により計測された前記並列ブロックに流れる電流と、前記電圧計測部により計測された前記並列ブロックの端子電圧と、前記二次電池の内部抵抗と、前記キャパシタの内部抵抗と、前記蓄電部の電流継続時間と、前記キャパシタの静電容量と、の少なくとも1つに基づき、前記キャパシタのOCVを推定する工程と、推定された前記キャパシタのOCVと基準OCVとの差であるOCV差に応じて、前記過電流閾値を変更する工程と、を含む。本蓄電部の管理方法によれば、キャパシタによる高出力の特性の低下を抑制しつつ、二次電池の過電流状態の発生を抑制することができる。 (10) The power storage unit management method disclosed in this specification includes one parallel block in which a secondary battery and a capacitor are connected in parallel, or a plurality of the parallel blocks in which a secondary battery and a capacitor are connected in series. A method for managing a power storage unit comprising: a power storage unit; a current measurement unit that measures current flowing through the parallel block; and a voltage measurement unit that measures terminal voltage of the parallel block, wherein the current measured by the current measurement unit is: a step of performing abnormality processing on the condition that the current flowing through the parallel block exceeds an overcurrent threshold as a necessary condition; and the current flowing through the parallel block measured by the current measurement unit and the voltage measurement unit measuring based on at least one of the terminal voltage of the parallel block, the internal resistance of the secondary battery, the internal resistance of the capacitor, the current duration of the power storage unit, and the capacitance of the capacitor, the estimating an OCV of a capacitor; and modifying the overcurrent threshold in response to an OCV difference, which is the difference between the estimated OCV of the capacitor and a reference OCV. According to this power storage unit management method, it is possible to suppress the occurrence of an overcurrent state in the secondary battery while suppressing deterioration of high output characteristics due to the capacitor.
 なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、蓄電管理装置、蓄電装置、その管理方法等の形態で実現することが可能である。 The technology disclosed in this specification can be implemented in various forms, for example, in the form of a power storage management device, a power storage device, a management method thereof, and the like.
実施形態における蓄電装置100の構成を概略的に示す説明図BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows roughly the structure of the electrical storage apparatus 100 in embodiment 内部抵抗推定テーブルの一例を示す説明図Explanatory diagram showing an example of an internal resistance estimation table 蓄電装置100において実行される過電流抑制処理を示すフローチャートFlowchart showing overcurrent suppression processing executed in power storage device 100 放電時の並列ブロック11の等価回路Equivalent circuit of parallel block 11 during discharge 蓄電部10が放電状態から停止状態に移行する過程における各要素の変化を示す第1のタイムチャートA first time chart showing changes in each element in the process in which power storage unit 10 transitions from a discharged state to a stopped state. 蓄電部10が放電状態から停止状態に移行する過程における各要素の変化を示す第2のタイムチャートA second time chart showing changes in each element in the process in which power storage unit 10 transitions from the discharged state to the stopped state.
A.実施形態:
A-1.蓄電装置100の構成:
 図1は、本実施形態における蓄電装置100の構成を概略的に示す説明図である。蓄電装置100は、蓄電部10と、蓄電管理装置20とを備える。
A. Embodiment:
A-1. Configuration of power storage device 100:
FIG. 1 is an explanatory diagram schematically showing the configuration of a power storage device 100 according to this embodiment. The power storage device 100 includes a power storage unit 10 and a power storage management device 20 .
 蓄電部10は、1つまたは複数の並列ブロック11が直列に接続された構成を有している。図1に示すように、本実施形態では、蓄電部10は、複数の並列ブロック11から構成されている。各並列ブロック11は、互いに並列に接続されたリチウムイオン電池(以下、「LIB」という)12bとリチウムイオンキャパシタ(以下、「LIC」という)12cとを備えるため、エネルギー容量が大きくてかつ高出力充放電が可能である。なお、並列ブロック11は、さらに、LIB12bに直列に接続されたLIB抵抗Rbと、LIC12cに直列に接続されたLIC抵抗Rcとを備えている。LIB12bは、特許請求の範囲における二次電池の一例であり、LIC12cは、特許請求の範囲におけるキャパシタの一例である。蓄電部10は、プラス端子42およびマイナス端子44を介して、図示しない負荷および外部電源に接続される。 The power storage unit 10 has a configuration in which one or more parallel blocks 11 are connected in series. As shown in FIG. 1 , in this embodiment, the power storage unit 10 is composed of a plurality of parallel blocks 11 . Each parallel block 11 includes a lithium ion battery (hereinafter referred to as "LIB") 12b and a lithium ion capacitor (hereinafter referred to as "LIC") 12c which are connected in parallel, and thus has a large energy capacity and high output. It can be charged and discharged. The parallel block 11 further includes a LIB resistor Rb serially connected to the LIB 12b and a LIC resistor Rc serially connected to the LIC 12c. The LIB 12b is an example of a secondary battery in the claims, and the LIC 12c is an example of a capacitor in the claims. Power storage unit 10 is connected to a load (not shown) and an external power source via positive terminal 42 and negative terminal 44 .
 蓄電管理装置20は、蓄電部10を含む蓄電装置100を管理するための装置である。蓄電管理装置20は、電圧計22と、電流計24と、温度計26と、監視部28と、ラインスイッチ40と、制御部60と、記録部72と、履歴部74と、インターフェース(I/F)部76とを備えている。 The power storage management device 20 is a device for managing the power storage device 100 including the power storage unit 10 . The power storage management device 20 includes a voltmeter 22, an ammeter 24, a thermometer 26, a monitoring unit 28, a line switch 40, a control unit 60, a recording unit 72, a history unit 74, and an interface (I/ F) portion 76;
 電圧計22は、各並列ブロック11に対して1つ設けられている。各電圧計22は、各並列ブロック11に対して並列に接続され、各並列ブロック11の電圧を計測して、電圧計測値を示す信号を監視部28に向けて出力する。電流計24は、蓄電部10に対して直列に接続されている。電流計24は、蓄電部10(並列ブロック11)に流れる電流を計測して、電流計測値を示す信号を監視部28に向けて出力する。温度計26は、蓄電部10の近くに配置されている。温度計26は、蓄電部10(並列ブロック11)の温度を計測して、温度計測値を示す信号を監視部28に向けて出力する。監視部28は、電圧計22、電流計24および温度計26から受け取った信号に基づき、各並列ブロック11の電圧、蓄電部10に流れる電流および蓄電部10の温度を示す信号を制御部60に向けて出力する。電圧計22および監視部28は、電圧計測部の一例であり、電流計24および監視部28は、電流計測部の一例であり、温度計26および監視部28は、電池温度計測部の一例である。 One voltmeter 22 is provided for each parallel block 11 . Each voltmeter 22 is connected in parallel to each parallel block 11 , measures the voltage of each parallel block 11 , and outputs a signal indicating the voltage measurement value to the monitoring section 28 . Ammeter 24 is connected in series with power storage unit 10 . Ammeter 24 measures the current flowing through power storage unit 10 (parallel block 11 ) and outputs a signal indicating the current measurement value to monitoring unit 28 . Thermometer 26 is arranged near power storage unit 10 . Thermometer 26 measures the temperature of power storage unit 10 (parallel block 11 ) and outputs a signal indicating the temperature measurement value to monitoring unit 28 . Based on the signals received from voltmeter 22, ammeter 24, and thermometer 26, monitoring unit 28 sends signals indicating the voltage of each parallel block 11, the current flowing through power storage unit 10, and the temperature of power storage unit 10 to control unit 60. output to. The voltmeter 22 and the monitoring unit 28 are examples of the voltage measuring unit, the ammeter 24 and the monitoring unit 28 are examples of the current measuring unit, and the thermometer 26 and the monitoring unit 28 are examples of the battery temperature measuring unit. be.
 ラインスイッチ40は、蓄電部10とマイナス端子44との間に設置されている。ラインスイッチ40は、制御部60によってオン・オフ制御されることにより、蓄電部10と負荷および外部電源との間の接続を開閉する。 The line switch 40 is installed between the power storage section 10 and the negative terminal 44 . Line switch 40 is ON/OFF-controlled by control unit 60 to open and close connections between power storage unit 10 and a load and an external power source.
 制御部60は、例えば、マルチコアCPU、プログラマブルなデバイス(Field Programmable Gate Array(FPGA)、Programmable Logic Device(PLD)等)を用いて構成され、蓄電管理装置20の動作を制御する。制御部60は、OCV(Open Circuit Voltage、開回路電圧)推定部62と、内部抵抗推定部64と、閾値変更部66と、SOC(State of Charge、充電率)推定部68と、異常判断部70と、強制変更部78としての機能を有する。これら各部の機能については、後述の過電流抑制処理の説明に合わせて説明する。 The control unit 60 is configured using, for example, a multi-core CPU and programmable devices (Field Programmable Gate Array (FPGA), Programmable Logic Device (PLD), etc.), and controls the operation of the power storage management device 20. The control unit 60 includes an OCV (open circuit voltage) estimating unit 62, an internal resistance estimating unit 64, a threshold changing unit 66, an SOC (state of charge, charging rate) estimating unit 68, and an abnormality determining unit. 70 and a forced change unit 78 . The functions of these units will be described together with the description of the overcurrent suppression process described later.
 記録部72は、例えばROMやRAM、ハードディスクドライブ(HDD)等により構成され、各種のプログラムやデータを記憶したり、各種の処理を実行する際の作業領域やデータの記憶領域として利用されたりする。例えば、記録部72には、後述する過電流抑制処理を実行するためのコンピュータプログラムが格納されている。該コンピュータプログラムは、例えば、CD-ROMやDVD-ROM、USBメモリ等のコンピュータ読み取り可能な記録媒体(不図示)に格納された状態で提供され、蓄電装置100にインストールすることにより記録部72に格納される。 The recording unit 72 is composed of, for example, a ROM, a RAM, a hard disk drive (HDD), etc., and stores various programs and data, and is used as a work area and a data storage area when executing various processes. . For example, the recording unit 72 stores a computer program for executing overcurrent suppression processing, which will be described later. The computer program is provided in a state stored in a computer-readable recording medium (not shown) such as a CD-ROM, DVD-ROM, or USB memory, and installed in the power storage device 100 to the recording unit 72. Stored.
 また、記録部72には、内部抵抗推定テーブル(T=0,T=1,T=3・・・)が格納されている。各内部抵抗推定テーブルは、各並列ブロック11に備えられたLIB12bおよびLIC12cのそれぞれの内部抵抗の推定に用いられるテーブルである。図2は、内部抵抗推定テーブルの一例を示す説明図である。各内部抵抗推定テーブルは、蓄電部10の電流状態の継続時間Tごとにおける、並列ブロック11のSOCと、温度と、LIB12bおよびLIC12cそれぞれの内部抵抗とを関連付けるテーブルである。蓄電部10の電流状態には、蓄電部10が充電されている充電状態と、蓄電部10が放電している放電状態であるか、蓄電部10が充電状態でも放電状態でもない停止状態とがある。内部抵抗推定テーブルに規定される関係は、予め実験的に定められる。電流状態の継続時間Tごとに対応する内部抵抗推定テーブルを参照することにより、蓄電部10のSOCおよび温度に基づき、LIB12bおよびLIC12cそれぞれの内部抵抗を推定することができる。なお、図2では、LIB12bおよびLIC12cそれぞれの内部抵抗を、Z1,Z2,・・・などと表示しているが、内部抵抗推定テーブルには、実際には内部抵抗の数値が規定されている。 In addition, the recording unit 72 stores an internal resistance estimation table (T=0, T=1, T=3...). Each internal resistance estimation table is a table used for estimating the internal resistance of each of the LIB 12b and LIC 12c provided in each parallel block 11. FIG. FIG. 2 is an explanatory diagram showing an example of an internal resistance estimation table. Each internal resistance estimation table is a table that associates the SOC of parallel block 11 , the temperature, and the internal resistances of LIB 12 b and LIC 12 c for each duration T of the current state of power storage unit 10 . The current state of power storage unit 10 includes a charged state in which power storage unit 10 is charged, a discharged state in which power storage unit 10 is discharged, and a stopped state in which power storage unit 10 is neither charged nor discharged. be. The relationships defined in the internal resistance estimation table are determined experimentally in advance. By referring to the internal resistance estimation table corresponding to each duration T of the current state, the internal resistance of each of LIB 12b and LIC 12c can be estimated based on the SOC and temperature of power storage unit 10. FIG. In FIG. 2, the internal resistances of the LIB 12b and the LIC 12c are shown as Z1, Z2, .
 履歴部74は、例えばROMやRAM、ハードディスクドライブ(HDD)等により構成され、蓄電装置100に関する各種履歴を記録する。このような履歴としては、例えば、後述する蓄電部10の電流継続時間(放電継続時間、充電継続時間、停止継続時間)が挙げられる。インターフェース部76は、有線または無線により他の装置との通信を行う。例えば、インターフェース部76を介した他の装置との通信により、履歴部74に記録された履歴が更新される。 The history unit 74 is composed of, for example, a ROM, a RAM, a hard disk drive (HDD), etc., and records various histories related to the power storage device 100 . Such a history includes, for example, current continuation time (discharge continuation time, charge continuation time, stop continuation time) of power storage unit 10, which will be described later. The interface unit 76 performs wired or wireless communication with other devices. For example, the history recorded in the history section 74 is updated by communication with another device via the interface section 76 .
A-2.過電流抑制処理:
 次に、蓄電装置100において蓄電管理装置20により実行される過電流抑制処理について説明する。図3は、蓄電装置100において実行される過電流抑制処理を示すフローチャートである。過電流抑制処理は、蓄電部10または各並列ブロック11が過電流状態であるか否かを判断し、その判断結果に応じた異常時処理を実行するための処理である。過電流状態とは、蓄電部10の充電時では、蓄電部10に流れる電流Ibat(充電電流)の電流値が、充電時の過電流閾値Iocを超えた状態をいい、蓄電部10の放電時では、蓄電部10に流れる電流Ibat(放電電流)の電流値が、放電時の過電流閾値Iodを超えた状態をいう。過電流抑制処理は、蓄電部10全体に対して過電流状態であるか否かを判断し、その判断結果に応じた異常時処理を実行してもよいし、蓄電部10が備える複数の並列ブロック11のそれぞれに対して過電流状態であるか否かを判断し、少なくとも1つの並列ブロック11が過電流状態であると判断された場合に異常時処理を実行してもよい。過電流抑制処理は、例えば、蓄電装置100の起動時に、自動的に、または、管理者からの指示に応じて開始される。なお、以下の説明では、蓄電部10に流れ込む充電電流の電流値を「正」とし、蓄電部10から流れ出る放電電流の電流値を「負」とする。また、蓄電部10が備える1つの並列ブロック11を例に挙げて説明する。
A-2. Overcurrent suppression processing:
Next, the overcurrent suppression process executed by the power storage management device 20 in the power storage device 100 will be described. FIG. 3 is a flowchart showing overcurrent suppression processing executed in power storage device 100 . The overcurrent suppression process is a process for determining whether or not power storage unit 10 or each parallel block 11 is in an overcurrent state, and executing abnormality processing according to the determination result. The overcurrent state refers to a state in which the value of current Ibat (charging current) flowing through power storage unit 10 exceeds an overcurrent threshold Ioc during charging when power storage unit 10 is being charged, and when power storage unit 10 is discharging. Then, it refers to a state in which the current value of the current Ibat (discharge current) flowing through the power storage unit 10 exceeds the overcurrent threshold value Iod during discharge. The overcurrent suppression process may be performed by determining whether or not the power storage unit 10 as a whole is in an overcurrent state, and executing an abnormality processing according to the determination result. It may be determined whether or not each of the blocks 11 is in an overcurrent state, and when it is determined that at least one parallel block 11 is in an overcurrent state, the abnormality processing may be executed. The overcurrent suppression process is started, for example, automatically when power storage device 100 is started, or in response to an instruction from an administrator. In the following description, the current value of charging current flowing into power storage unit 10 is defined as "positive", and the current value of discharging current flowing out of power storage unit 10 is defined as "negative". Also, one parallel block 11 included in the power storage unit 10 will be described as an example.
 過電流抑制処理(図3)が開始されると、蓄電管理装置20の制御部60は、まずは各種の初期設定を行う(S110)。制御部60は、例えば、LIB12bのOCV(Vob)と、LIC12cのOCV(Voc)とを同じ値(例えば、蓄電装置100の起動時に計測された並列ブロック11の電圧である初期OCV)に設定する。また、充電時の過電流閾値Iocを、初期値Ioc,intに設定する。この初期値Ioc,intは、例えば充電開始時に並列ブロック11に流れ込む最大電流(突入電流)の電流値より若干高い値(絶対値が大きい値)である。また、放電時の過電流閾値Iodを、初期値Iod,intに設定する。この初期値Iod,intは、例えば放電開始時に並列ブロック11から流れ出る最大電流(突入電流)の電流値より若干低い値(絶対値が大きい値)である。 When the overcurrent suppression process (FIG. 3) is started, the controller 60 of the power storage management device 20 first performs various initial settings (S110). For example, the control unit 60 sets the OCV (Vob) of the LIB 12b and the OCV (Voc) of the LIC 12c to the same value (eg, the initial OCV, which is the voltage of the parallel block 11 measured when the power storage device 100 is started). . Also, the overcurrent threshold Ioc during charging is set to the initial value Ioc,int. This initial value Ioc,int is a value (a value with a large absolute value) that is slightly higher than the current value of the maximum current (rush current) that flows into the parallel block 11 at the start of charging, for example. Also, the overcurrent threshold value Iod during discharge is set to the initial value Iod,int. This initial value Iod, int is a value slightly lower (larger in absolute value) than the current value of the maximum current (inrush current) that flows out from the parallel block 11 at the start of discharge, for example.
 次に、蓄電管理装置20の異常判断部70(図1)は、並列ブロック11が過電流状態(LIC12c単体の過電流状態、LIB12b単体の過電流状態を含む)であるか否かの異常判断処理を行う(S120)。蓄電部10の充電時には、異常判断部70は、並列ブロック11(蓄電部10)に流れる電流Ibat(充電電流)の電流計測値が、充電時の過電流閾値Iocを超えたことを条件に、並列ブロック11が過電流状態であると判断する。蓄電部10の放電時には、異常判断部70は、並列ブロック11に流れる電流Ibat(放電電流)の電流計測値が、放電時の過電流閾値Iodを下回ったことを条件に、並列ブロック11が過電流状態であると判断する。 Next, the abnormality determination unit 70 (FIG. 1) of the power storage management device 20 determines whether or not the parallel block 11 is in an overcurrent state (including an overcurrent state of the LIC 12c alone and an overcurrent state of the LIB 12b alone). Processing is performed (S120). During charging of the power storage unit 10, the abnormality determination unit 70 determines that the measured current value of the current Ibat (charging current) flowing through the parallel block 11 (power storage unit 10) exceeds the overcurrent threshold value Ioc during charging. It determines that the parallel block 11 is in an overcurrent state. During discharging of the power storage unit 10, the abnormality determination unit 70 determines whether the parallel block 11 is overcharged on the condition that the current measurement value of the current Ibat (discharge current) flowing through the parallel block 11 is below the overcurrent threshold value Iod during discharging. It is judged to be in a current state.
 並列ブロック11が過電流状態であると判断された場合(S120:YES)、異常判断部70は、並列ブロック11(蓄電部10)の過電流異常に対応した異常時処理を実行し(S130)、本過電流閾値調整処理を終了する。異常時処理は、例えば、蓄電部10の過電流異常を、インターフェース部76を介して外部に報知する処理や、マイナス端子44を閉状態にして蓄電部10の充放電の実行を禁止する処理などである。 When it is determined that the parallel block 11 is in the overcurrent state (S120: YES), the abnormality determination unit 70 executes abnormality processing corresponding to the overcurrent abnormality in the parallel block 11 (power storage unit 10) (S130). , the overcurrent threshold adjustment process ends. The abnormal process includes, for example, a process of notifying an overcurrent abnormality of power storage unit 10 to the outside via interface unit 76, a process of closing negative terminal 44 and prohibiting charging/discharging of power storage unit 10, and the like. is.
 一方、並列ブロック11が過電流状態ではなく、正常状態であると判断された場合(S120:NO)、制御部60は、LIC12cのOCV(Voc)が所定範囲内であるか否かを判断する(S140)。ここで、所定範囲とは、例えばLIC12cに定められている仕様上の電圧許容範囲であり、所定の過電圧閾値以下であり、かつ、所定の低電圧閾値以上である。ここで、LIC12cのOCV推定処理については後述する(S220,S320,S430参照)。 On the other hand, if it is determined that the parallel block 11 is in a normal state rather than an overcurrent state (S120: NO), the control unit 60 determines whether the OCV (Voc) of the LIC 12c is within a predetermined range. (S140). Here, the predetermined range is, for example, the allowable voltage range in specifications defined in the LIC 12c, which is equal to or less than a predetermined overvoltage threshold and equal to or more than a predetermined low voltage threshold. Here, the OCV estimation processing of the LIC 12c will be described later (see S220, S320, S430).
 LIC12cのOCVが所定範囲内でないと判断された場合(S140:NO)、制御部60は、LIC12cのOCVの電圧異常に対応した異常時処理を実行し(S130)、本過電流閾値調整処理を終了する。具体的には、制御部60は、LIC12cのOCVが、所定の過電圧閾値を超えた場合、LIC12cが過電圧状態であると判断して所定の過電圧時処理を実行する。また、制御部60は、LIC12cのOCVが、所定の低電圧閾値を下回った場合、LIC12cが低電圧状態であると判断して所定の低電圧時処理を実行する。なお、本実施形態では、過電圧時処理は、例えば、LIC12cの過電圧異常を、インターフェース部76を介して外部に報知する処理や、マイナス端子44を閉状態にして蓄電部10の充電の実行を禁止する処理などである。低電圧時処理は、例えば、LIC12cの低電圧異常を、インターフェース部76を介して外部に報知する処理や、マイナス端子44を閉状態にして蓄電部10の放電の実行を禁止する処理などである。このとき、制御部60は、特許請求の範囲における実行部として機能する。 When it is determined that the OCV of the LIC 12c is not within the predetermined range (S140: NO), the control unit 60 executes abnormality processing corresponding to the voltage abnormality of the OCV of the LIC 12c (S130), and performs the overcurrent threshold adjustment processing. finish. Specifically, when the OCV of the LIC 12c exceeds a predetermined overvoltage threshold, the control unit 60 determines that the LIC 12c is in an overvoltage state and executes predetermined overvoltage processing. Further, when the OCV of the LIC 12c is below a predetermined low voltage threshold, the control unit 60 determines that the LIC 12c is in a low voltage state and executes predetermined low voltage processing. In the present embodiment, the overvoltage process includes, for example, a process of notifying an overvoltage abnormality of the LIC 12c to the outside via the interface unit 76, or a process of closing the negative terminal 44 to prohibit charging of the power storage unit 10. processing to The low-voltage process includes, for example, a process of notifying the outside of the LIC 12c of a low-voltage abnormality via the interface unit 76, a process of closing the negative terminal 44 and prohibiting the discharge of the power storage unit 10, and the like. . At this time, the control unit 60 functions as an execution unit in the claims.
 一方、LIC12cのOCVが所定範囲内であると判断された場合(S140:YES)、LIC12cの電圧異常は発生していないため、制御部60は、蓄電部10の電流状態(充電状態、放電状態、停止状態)を判断する(S150)。例えば、電流計24から出力される信号は、蓄電部10に流れる電流Ibatの有無および流れる向きに応じた信号(当該電流計24に備えられた検出抵抗(図示しない)の両端電圧の高低に応じた信号)であり、制御部60は、電流計24から出力される信号のレベルと、その信号のレベル反転とに基づき、蓄電部10の電流状態(充電状態、放電状態、停止状態)を判断する。 On the other hand, if it is determined that the OCV of the LIC 12c is within the predetermined range (S140: YES), the voltage abnormality of the LIC 12c has not occurred. , stop state) is determined (S150). For example, the signal output from the ammeter 24 is a signal corresponding to the presence or absence of the current Ibat flowing through the power storage unit 10 and the direction of flow (depending on the level of the voltage across a detection resistor (not shown) provided in the ammeter 24). The control unit 60 determines the current state (charged state, discharged state, stopped state) of the power storage unit 10 based on the level of the signal output from the ammeter 24 and the level inversion of the signal. do.
A-2-1.放電時:
 蓄電部10が放電状態であると判断された場合(S150:放電)、放電時におけるLIB12bに流れる電流IbおよびLIC12cに流れる電流Icの算出と、LIC12cの放電時のOCVの推定とを行う。
A-2-1. When discharging:
When it is determined that power storage unit 10 is in a discharging state (S150: discharging), the current Ib flowing through LIB 12b and the current Ic flowing through LIC 12c during discharging are calculated, and the OCV during discharging of LIC 12c is estimated.
 まず、蓄電管理装置20の内部抵抗推定部64(図1)は、LIB12bの内部抵抗ZbおよびLIC12cの内部抵抗Zcを推定する(S300)。内部抵抗推定部64は、記録部72から、放電継続時間Tdに対応した内部抵抗推定テーブルを選択し、その選択した内部抵抗推定テーブルを参照することにより、並列ブロック11のSOCおよび温度に基づき、LIB12bおよびLIC12cそれぞれの内部抵抗Zb,Zcを推定する。なお、並列ブロック11の初期SOCは、各種の公知の推定方法により推定することが可能である。例えば、上記初期OCVとSOC-OCV特性を表す曲線とに基づき初期SOCを算出し、その初期SOCと蓄電部10の電流Ibatの電流積算値とに基づき並列ブロック11のSOCを推定することができる。 First, the internal resistance estimation unit 64 (FIG. 1) of the power storage management device 20 estimates the internal resistance Zb of the LIB 12b and the internal resistance Zc of the LIC 12c (S300). The internal resistance estimation unit 64 selects an internal resistance estimation table corresponding to the discharge duration Td from the recording unit 72, and refers to the selected internal resistance estimation table, based on the SOC and temperature of the parallel block 11, Estimate internal resistances Zb and Zc of LIB 12b and LIC 12c, respectively. Note that the initial SOC of the parallel block 11 can be estimated by various known estimation methods. For example, the initial SOC is calculated based on the initial OCV and the curve representing the SOC-OCV characteristic, and the SOC of the parallel block 11 can be estimated based on the initial SOC and the current integrated value of the current Ibat of the power storage unit 10. .
 次に、蓄電管理装置20のOCV推定部62(図1)は、LIB12bに流れる電流Ibと、LIC12cに流れる電流Icとをそれぞれ算出する(S310)。具体的には、次の通りである。図4は、放電時の並列ブロック11の等価回路である。図4中の「Ibatd」は放電電流を意味し、「Vbat」は並列ブロック11の端子電圧を意味し、「C」はLIC12cの静電容量を意味する。図4から明らかなように、LIC12cに流れる電流Ic(放電電流Icd)は、次の式1により求めることができる。
Figure JPOXMLDOC01-appb-M000001
 また、LIB12bに流れる電流Ib(放電電流Ibd)は、蓄電部10の放電電流IbatdからLIC12cの放電電流Icdを減算することにより求めることができる(Ibd=Ibatd-Icd)。
Next, the OCV estimator 62 (FIG. 1) of the power storage management device 20 calculates the current Ib flowing through the LIB 12b and the current Ic flowing through the LIC 12c (S310). Specifically, it is as follows. FIG. 4 is an equivalent circuit of the parallel block 11 during discharging. "Ibatd" in FIG. 4 means the discharge current, "Vbat" means the terminal voltage of the parallel block 11, and "C" means the capacitance of the LIC 12c. As is clear from FIG. 4, the current Ic (discharge current Icd) flowing through the LIC 12c can be obtained by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Further, the current Ib (discharge current Ibd) flowing through the LIB 12b can be obtained by subtracting the discharge current Icd of the LIC 12c from the discharge current Ibatd of the electric storage unit 10 (Ibd=Ibatd−Icd).
 次に、OCV推定部62は、LIC12cの放電時のOCV(Vocd)を推定するためのOCV推定処理を実行する(S320)。この放電時のOCV推定処理では、OCV推定部62は、例えば、次の式2~式5を用いて、LIC12cの放電時のOCVを推定する(図4参照)。
Figure JPOXMLDOC01-appb-M000002
 式2中の「Vocd1」は、蓄電部10の放電状態が継続した時間(以下、「放電継続時間」という)に伴うLIB12bおよびLIC12cそれぞれの内部抵抗Zb,Zcの変化を考慮しない場合におけるLIC12cの第1の仮想OCVである。第1の仮想OCVは、次の式3により求めることができる。
Figure JPOXMLDOC01-appb-M000003
Next, the OCV estimation unit 62 executes an OCV estimation process for estimating the OCV (Vocd) during discharging of the LIC 12c (S320). In this discharge OCV estimation process, the OCV estimation unit 62 estimates the OCV during discharge of the LIC 12c using, for example, the following equations 2 to 5 (see FIG. 4).
Figure JPOXMLDOC01-appb-M000002
“Vocd1” in Equation 2 is the value of LIC 12c when changes in internal resistances Zb and Zc of LIB 12b and LIC 12c due to the duration of the discharge state of power storage unit 10 (hereinafter referred to as “discharge duration”) are not considered. A first virtual OCV. The first virtual OCV can be obtained by Equation 3 below.
Figure JPOXMLDOC01-appb-M000003
 式3中の「Vocd0」は、例えば並列ブロック11の初期OCVである。「C」は、蓄電部10の静電容量である。「Td」は、蓄電部10の放電継続時間である。制御部60は、例えば、所定のサンプリング周期で時間をカウントしており、上述した蓄電部10の電流状態判断(S150)の判断結果を、その判断時のカウントに対応付けて履歴部74に記録する。このため、OCV推定部62は、履歴部74に記憶された履歴から、現時点での放電継続時間Tdを特定することができる。 "Vocd0" in Equation 3 is the initial OCV of the parallel block 11, for example. “C” is the capacitance of power storage unit 10 . “Td” is the discharge duration time of power storage unit 10 . For example, control unit 60 counts time at a predetermined sampling cycle, and records the determination result of current state determination (S150) of power storage unit 10 described above in history unit 74 in association with the count at the time of determination. do. Therefore, the OCV estimating unit 62 can identify the current discharge duration time Td from the history stored in the history unit 74 .
 また、式3中の「Ic0」は、放電開始時にLIC12cから流れ出る放電電流(以下、「放電初期電流」)であり、次の式4により求めることができる。
Figure JPOXMLDOC01-appb-M000004
 式4中の「Icc」は、蓄電部10の放電時においてLIB12bからLIC12cに流れ込む充電電流であり、蓄電装置100の起動後、最初の放電開始時の初期値はゼロである。
Also, "Ic0" in Equation 3 is the discharge current that flows out from the LIC 12c at the start of discharge (hereinafter referred to as "initial discharge current"), and can be obtained by Equation 4 below.
Figure JPOXMLDOC01-appb-M000004
"Icc" in Equation 4 is a charging current that flows from LIB 12b to LIC 12c when power storage unit 10 is discharged, and has an initial value of zero when power storage device 100 starts to discharge for the first time after activation.
 式2中の「Vocd2」は、蓄電部10の放電継続時間に伴うLIB12bおよびLIC12cそれぞれの内部抵抗Zb,Zcの変化を考慮した場合におけるLIC12cの第2の仮想OCVである。第2の仮想OCVは、次の式5により求めることができる。
Figure JPOXMLDOC01-appb-M000005
“Vocd2” in Equation 2 is the second virtual OCV of LIC 12c when changes in internal resistances Zb and Zc of LIB 12b and LIC 12c with the discharge duration time of power storage unit 10 are considered. The second virtual OCV can be obtained by Equation 5 below.
Figure JPOXMLDOC01-appb-M000005
 次に、制御部60は、まず、放電時の過電流閾値Iodに対する調整処理(S340~S360)を実行するか否かを判断する。具体的には、制御部60は、現在設定されている放電時の過電流閾値Iodが下限電流閾値Iod,min以下であるか否かを判断する(S330)。下限電流閾値Iod,minは、例えばLIB12bに定められている仕様上の電圧許容範囲の最低値(最低電流値)である。なお、本実施形態では、この判断は、放電時の過電流閾値Iodの絶対値が最低電流値の絶対値以上であるか否かによって行われる。 Next, the control unit 60 first determines whether or not to perform adjustment processing (S340 to S360) for the overcurrent threshold value Iod during discharge. Specifically, the control unit 60 determines whether or not the currently set discharge overcurrent threshold Iod is equal to or less than the lower current threshold Iod,min (S330). The lower limit current threshold Iod,min is, for example, the lowest value (lowest current value) of the allowable voltage range on specifications defined in the LIB 12b. In this embodiment, this determination is made based on whether or not the absolute value of the overcurrent threshold value Iod during discharge is equal to or greater than the absolute value of the minimum current value.
 放電時の過電流閾値Iodが下限電流閾値Iod,minを上回ると判断された場合(S330:NO)、次述する放電時の過電流閾値Iodを変更するための処理(S340~S360)を実行せずに、S120に戻る。これにより、放電時の過電流閾値IodがLIB12bの電圧許容範囲外に設定されることが抑制される。 If it is determined that the overcurrent threshold Iod during discharge exceeds the lower limit current threshold Iod,min (S330: NO), the processing for changing the overcurrent threshold Iod during discharge (S340 to S360) described below is executed. Without doing so, the process returns to S120. This prevents the overcurrent threshold Iod during discharge from being set outside the allowable voltage range of the LIB 12b.
 一方、放電時の過電流閾値Iodが下限電流閾値Iod,min以下であると判断された場合(S330:YES)、閾値変更部66は、OCV推定処理により推定されたLIC12cのOCVと基準OCVとの差であるOCV差ΔVdに応じて、放電時の過電流閾値Iodを変更する(S340)。本実施形態では、基準OCVは、並列ブロック11のOCVに相当する値であり、例えば、LIB12bのOCVでもよいし、並列ブロック11のOCVでもよい。例えば、SOC推定部68は、並列ブロック11の上記初期OCVと、LIB12bのSOC-OCV特性を表す曲線とに基づき初期SOCを算出し、その初期SOCとLIB12bの電流Ibの電流積算値とに基づきLIB12bのSOCを推定し、そのSOCと、LIB12bのSOC-OCV特性を表す曲線とに基づきLIB12bのOCVを推定することができる。また、上記初期SOC推定処理により推定される並列ブロック11のSOCと、並列ブロック11のOC-OCV特性を表す曲線とに基づき並列ブロック11のOCVを推定することができる。閾値変更部66は、OCV差ΔVdの増加に応じて放電時の過電流閾値Iodの絶対値を小さくする。本実施形態では、放電継続時間の経過に伴って、LIC12cのOCVが、LIB12bのOCVに対して相対的に減少し、OCV差が増加していく。そのOCV差の増加量に応じて、放電時の過電流閾値Iodが高い値に変更される。 On the other hand, if it is determined that the overcurrent threshold Iod during discharge is equal to or lower than the lower current threshold Iod,min (S330: YES), the threshold change unit 66 determines the OCV of the LIC 12c estimated by the OCV estimation process and the reference OCV. The overcurrent threshold Iod during discharging is changed according to the OCV difference ΔVd, which is the difference between the two (S340). In this embodiment, the reference OCV is a value corresponding to the OCV of the parallel block 11, and may be the OCV of the LIB 12b or the OCV of the parallel block 11, for example. For example, the SOC estimator 68 calculates the initial SOC based on the initial OCV of the parallel block 11 and the curve representing the SOC-OCV characteristic of the LIB 12b, and based on the initial SOC and the current integrated value of the current Ib of the LIB 12b. The SOC of LIB 12b can be estimated, and the OCV of LIB 12b can be estimated based on the SOC and the curve representing the SOC-OCV characteristics of LIB 12b. Also, the OCV of the parallel block 11 can be estimated based on the SOC of the parallel block 11 estimated by the initial SOC estimation process and the curve representing the OC-OCV characteristics of the parallel block 11 . The threshold change unit 66 reduces the absolute value of the overcurrent threshold Iod during discharge according to the increase in the OCV difference ΔVd. In this embodiment, the OCV of the LIC 12c decreases relative to the OCV of the LIB 12b as the discharge duration time elapses, and the OCV difference increases. The overcurrent threshold Iod during discharge is changed to a higher value according to the amount of increase in the OCV difference.
 次に、蓄電管理装置20の強制変更部78は、電流計24により計測された並列ブロック11に流れる電流Ibatの所定期間における平均値(以下、「期間平均電流値という」が、基準平均値を下回るか否かを判断する(S350)。基準平均値は、例えば並列ブロック11に流すことができる電流許容範囲の上限値よりも絶対値が若干小さい値(放電時では、電流許容範囲の上限値よりも若干高い値)である。期間平均電流値が基準平均値を下回ることは、並列ブロック11から比較的に大きな放電電流が連続的に流れている異常状態であることを意味する。そこで、期間平均電流値が基準平均値を下回ると判断された場合(S350:YES)、強制変更部78は、OCV差ΔVdに関係なく、過電流閾値の絶対値を小さくし(S360)、S120に戻る。本実施形態では、放電時の過電流閾値Iodを、S340で設定された放電時の過電流閾値Iodよりも絶対値が小さい値(例えば下限電流閾値Iod,min)に強制的に変更する。これにより、例えば連続的に大量の電流が蓄電部10に流れる異常時において、LIB12bの過電流状態の発生を未然に抑制することができる。一方、期間平均電流値が基準平均値以上であると判断された場合(S350:NO)、連続的に大量の電流が蓄電部10に流れる異常が発生していないため、S340で変更された放電時の過電流閾値Iodが維持され、S120に戻る。 Next, the forced change unit 78 of the power storage management device 20 changes the average value of the current Ibat flowing through the parallel block 11 measured by the ammeter 24 in a predetermined period (hereinafter referred to as the “period average current value”) to the reference average value. The reference average value is, for example, a value whose absolute value is slightly smaller than the upper limit of the allowable current range that can flow through the parallel block 11 (during discharging, the upper limit of the allowable current range If the period average current value falls below the reference average value, it means that there is an abnormal state in which a relatively large discharge current is continuously flowing from the parallel block 11. Therefore, If it is determined that the period average current value is lower than the reference average value (S350: YES), the forced change unit 78 reduces the absolute value of the overcurrent threshold regardless of the OCV difference ΔVd (S360), and returns to S120. In this embodiment, the overcurrent threshold Iod during discharge is forcibly changed to a value (for example, the lower limit current threshold Iod,min) whose absolute value is smaller than the overcurrent threshold Iod during discharge set in S340. As a result, it is possible to prevent an overcurrent state from occurring in the LIB 12b, for example, in the event of an abnormality in which a large amount of current continuously flows to the power storage unit 10. On the other hand, if the period average current value is equal to or greater than the reference average value, If so (S350: NO), an abnormality in which a large amount of current continuously flows into power storage unit 10 does not occur, so the overcurrent threshold value Iod during discharge changed in S340 is maintained, and the process returns to S120.
A-2-2.充電時:
 蓄電部10が充電状態であると判断された場合(S150:充電)、制御部60は、充電時の処理(S200~S260)を実行する。この調整処理は、前述した放電時の処理(S300~S360)と同様であり、本実施形態では、充電時の過電流閾値Iocが「正」であるのに対して、放電時の過電流閾値Iodが「負」である点で異なる。閾値変更部66は、S240において、OCV差の増加に応じて充電時の過電流閾値Iocの絶対値を小さくする。本実施形態では、充電継続時間の経過に伴って、LIC12cのOCVが、LIB12bのOCVに対して相対的に増加し、OCV差が増加していく。そのOCV差の増加量に応じて、充電時の過電流閾値Iodが低い値に変更される。充電時の処理(S200~S260)の詳細説明は割愛する。
A-2-2. When charging:
When it is determined that power storage unit 10 is in a charged state (S150: charging), control unit 60 executes the processing during charging (S200 to S260). This adjustment process is the same as the above-described discharge process (S300 to S360). It differs in that Iod is "negative". In S240, the threshold change unit 66 reduces the absolute value of the overcurrent threshold Ioc during charging according to the increase in the OCV difference. In this embodiment, the OCV of the LIC 12c increases relative to the OCV of the LIB 12b as the charging duration elapses, and the OCV difference increases. The overcurrent threshold Iod during charging is changed to a lower value according to the amount of increase in the OCV difference. A detailed description of the processing during charging (S200 to S260) is omitted.
A-2-3.停止時:
 蓄電部10が停止状態であると判断された場合(S150:停止)、制御部60は、まず、LIC12cのOCV(Voc)が、LIB12bのOCV(Vob)と略一致するか否かを判断する(S400)。本実施形態では、LIB12bのOCVは、上記初期OCVである。LIC12cのOCVとLIB12bのOCVとが略一致しないことは、蓄電部10に電流Ibatは流れていないが、例えば蓄電部10が停止状態になる直前の状態が充電状態または放電状態であったことにより、LIC12cのOCVとLIB12bのOCVとの差が残存していることを意味する。このとき、並列ブロック11を構成するLIB12bやLIC12cには、そのOCVとの差を低減させる方向に電流がそれぞれ流れる。
A-2-3. When stopped:
When it is determined that the power storage unit 10 is in the stopped state (S150: stop), the control unit 60 first determines whether the OCV (Voc) of the LIC 12c substantially matches the OCV (Vob) of the LIB 12b. (S400). In this embodiment, the OCV of LIB 12b is the initial OCV. The fact that the OCV of the LIC 12c and the OCV of the LIB 12b do not substantially match is because the current Ibat does not flow through the power storage unit 10, but the state immediately before the power storage unit 10 is stopped, for example, is in the charged state or the discharged state. , means that the difference between the OCV of LIC12c and the OCV of LIB12b remains. At this time, currents flow through the LIB 12b and the LIC 12c that configure the parallel block 11 in directions that reduce the difference from the OCV.
 そこで、制御部60は、蓄電部10の停止状態におけるLIC12cのOCV差に応じて、過電流閾値を調整するようにしている。なお、LIB12bのOCVは上記初期OCVとみなすことができる。これにより、蓄電部10の停止状態においてLIB12bやLIC12cに電流がまだ流れている最中に蓄電部10の放電や充電が再開された場合において、過電流閾値を、放電や充電の開始直前のLIC12cのOCVとLIB12bのOCVとの差を加味した適切な値から調整することができる。 Therefore, the control unit 60 adjusts the overcurrent threshold according to the OCV difference of the LIC 12c when the power storage unit 10 is stopped. Note that the OCV of LIB 12b can be regarded as the initial OCV. As a result, when discharging or charging of power storage unit 10 is resumed while current is still flowing through LIB 12b or LIC 12c in the stopped state of power storage unit 10, the overcurrent threshold is set to LIC 12c immediately before the start of discharging or charging. can be adjusted from an appropriate value considering the difference between the OCV of LIB12b and the OCV of LIB12b.
 LIC12cのOCVとLIB12bのOCVとが略一致しないと判断された場合(S400:YES)、制御部60は、S300と同様の内部抵抗推定処理を実行し(S410)、次に、停止時におけるLIC12cの充放電電流Icを特定する(S420)。例えば、蓄電部10の直前の状態が放電状態であった場合、蓄電部10の停止状態では、LIB12bからLIC12cに流れる電流によってLIC12cが充電される。停止時当初にLIB12bからLIC12cに流れる充電電流(Icc)は、次の式6により求めることができる。
Figure JPOXMLDOC01-appb-M000006
 式6の「Vbat」は、停止時の並列ブロック11の端子電圧である。式6の「Voc」は、蓄電部10の直前の状態が充電状態であった場合、S220で推定された充電時のLIC12cのOCVであり、蓄電部10の直前の状態が放電状態であった場合、S320で推定された放電時のLIC12cのOCV(Vocd)である。
If it is determined that the OCV of the LIC 12c and the OCV of the LIB 12b do not substantially match (S400: YES), the control unit 60 executes the same internal resistance estimation process as in S300 (S410), is specified (S420). For example, if the state immediately before the power storage unit 10 was in the discharged state, the LIC 12c is charged by the current flowing from the LIB 12b to the LIC 12c when the power storage unit 10 is in the stopped state. A charging current (Icc) flowing from the LIB 12b to the LIC 12c at the beginning of the stop can be obtained by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
"Vbat" in Equation 6 is the terminal voltage of the parallel block 11 when stopped. “Voc” in Equation 6 is the OCV of LIC 12c during charging estimated in S220 when the state immediately before power storage unit 10 was in the charged state, and the state immediately before power storage unit 10 was in the discharged state. In this case, it is the OCV (Vocd) of the LIC 12c during discharge estimated in S320.
 次に、制御部60は、停止時のLIC12cのOCV(Vocs)を推定する(S430)。この停止時のOCV推定処理では、OCV推定部62は、例えば、次の式7を用いて、LIC12cの停止時のOCVを推定する。すなわち、LIC12cの放電時のOCV(Vocs)は、次の式2により求めることができる。
Figure JPOXMLDOC01-appb-M000007
 「Ts」は、蓄電部10の停止継続時間である。制御部60は、例えば、履歴部74に記憶された履歴から、現時点での停止継続時間を特定することができる。
Next, the control unit 60 estimates the OCV (Vocs) of the LIC 12c when stopped (S430). In this stop OCV estimation process, the OCV estimating unit 62 estimates the OCV of the LIC 12c when stopped using, for example, Equation 7 below. That is, the OCV (Vocs) during discharging of the LIC 12c can be obtained by the following equation 2.
Figure JPOXMLDOC01-appb-M000007
“Ts” is the stop duration time of power storage unit 10 . The control unit 60 can identify the current stop duration time from the history stored in the history unit 74, for example.
 次に、閾値変更部66は、OCV推定処理により推定されたLIC12cのOCVと基準OCVとの差であるOCV差ΔVdに応じて、停止時の過電流閾値Iosを変更する(S440)。閾値変更部66は、OCV差ΔVdの増加に応じて停止時の過電流閾値Iosの絶対値を小さくする。本実施形態では、直前の状態が放電状態であった場合、停止継続時間の経過に伴って、LIC12cのOCVが、LIB12bのOCVに近づくように増加し、OCV差が減少していく。そのOCV差の減少量に応じて、停止時の過電流閾値Iosが低い値(絶対値が大きい値)に変更される。直前の状態が充電状態であった場合、停止継続時間の経過に伴って、LIC12cのOCVが、LIB12bのOCVに近づくように減少し、OCV差が減少していく。そのOCV差の減少量に応じて、停止時の過電流閾値Iosが高い値(絶対値が大きい値)に変更される。 Next, the threshold change unit 66 changes the overcurrent threshold Ios at stop according to the OCV difference ΔVd, which is the difference between the OCV of the LIC 12c estimated by the OCV estimation process and the reference OCV (S440). The threshold changing unit 66 reduces the absolute value of the overcurrent threshold Ios at the time of stop according to the increase in the OCV difference ΔVd. In this embodiment, when the previous state was the discharge state, the OCV of the LIC 12c increases to approach the OCV of the LIB 12b as the stop duration time elapses, and the OCV difference decreases. The overcurrent threshold Ios at stop is changed to a lower value (a value with a larger absolute value) according to the amount of decrease in the OCV difference. If the previous state was the charging state, the OCV of the LIC 12c decreases to approach the OCV of the LIB 12b as the stop duration time elapses, and the OCV difference decreases. According to the amount of decrease in the OCV difference, the overcurrent threshold Ios at stop is changed to a higher value (a value with a larger absolute value).
 一方、LIC12cのOCVとLIB12bのOCVとが略一致すると判断された場合(S400:NO)、制御部60は、停止時の過電流閾値Iosを変更するための処理(S410~S440)を実行せずに、S120に戻る。これにより、過電流閾値を変更するための処理が無駄に実行されることが抑制される。 On the other hand, when it is determined that the OCV of the LIC 12c and the OCV of the LIB 12b substantially match (S400: NO), the control unit 60 executes processing (S410 to S440) for changing the overcurrent threshold Ios at stop. without returning to S120. As a result, wasteful execution of the process for changing the overcurrent threshold is suppressed.
A-3.本実施形態の効果:
 以上説明したように、本実施形態の蓄電装置100では、電流計24により測定される並列ブロック11に流れる電流Ibatは、LIB12bに流れる電流IbとLIC12cに流れる電流Icとを合算した電流である(図4参照)。ここで、LIC12cに流れる電流Icは、LIC12cのOCVに相関し、LIC12cでは、LIB12bに比べて、充放電時にOCV(端子電圧)が直線的に変化する。そこで、本発明者は、鋭意検討を重ねることにより、直接に計測されないLIC12cに流れる電流IcとLIB12bに流れる電流Ibとのそれぞれの変化を、LIC12cのOCVの変化に基づき把握することによって、過電流閾値Ioc,Iod,Iosを適切に変更できる、ことを新たに見出した。本実施形態では、OCV推定処理(S220,S320,S430)により推定されたLIC12cのOCVと基準OCVとの差に応じて、過電流閾値が変更される。これにより、本実施形態によれば、LIC12cによる高出力の特性の低下を抑制しつつ、LIB12bの過電流状態の発生を抑制することができる。
A-3. Effect of this embodiment:
As described above, in the power storage device 100 of the present embodiment, the current Ibat flowing through the parallel block 11 measured by the ammeter 24 is the sum of the current Ib flowing through the LIB 12b and the current Ic flowing through the LIC 12c ( See Figure 4). Here, the current Ic flowing through the LIC 12c correlates with the OCV of the LIC 12c, and the OCV (terminal voltage) of the LIC 12c changes linearly during charge and discharge compared to the LIB 12b. Therefore, the present inventors have made intensive studies, and found that changes in the current Ic flowing through the LIC 12c and the current Ib flowing through the LIB 12b, which are not directly measured, can be grasped based on changes in the OCV of the LIC 12c. It was newly discovered that the threshold values Ioc, Iod, and Ios can be appropriately changed. In this embodiment, the overcurrent threshold is changed according to the difference between the OCV of the LIC 12c estimated by the OCV estimation process (S220, S320, S430) and the reference OCV. As a result, according to the present embodiment, it is possible to suppress the occurrence of an overcurrent state in the LIB 12b while suppressing deterioration of the high-output characteristics of the LIC 12c.
 以下、蓄電部10が放電状態から停止状態に移行する場合を例に挙げて説明する。図5は、蓄電部10が放電状態から停止状態に移行する過程における各要素の変化を示す第1のタイムチャートであり、図6は、蓄電部10が放電状態から停止状態に移行する過程における各要素の変化を示す第2のタイムチャートである。各図の横軸は、電流継続時間(放電継続時間、停止継続時間)である。また、「電流状態」における「放電」は、蓄電部10の放電状態を意味し、具体的には、ラインスイッチ40のオン状態、または、オン・オフ制御による定電流制御が実行され、蓄電装置100に接続された負荷(例えばモータなど)に一定値の電流が流れている状態である。「電流状態」における「停止」は、蓄電部10の停止状態を意味し、具体的には、ラインスイッチ40が開状態となり、負荷に電力が供給されていない状態である。また、各図では、LIB12bのOCV(Vob)は、略一定であるとされている。 A case where power storage unit 10 transitions from a discharged state to a stopped state will be described below as an example. FIG. 5 is a first time chart showing changes in each element in the process in which power storage unit 10 shifts from the discharged state to the stopped state, and FIG. 4 is a second time chart showing changes in each element; The horizontal axis of each figure is the current duration (discharge duration, stop duration). In addition, the “discharge” in the “current state” means the discharge state of the power storage unit 10. Specifically, the line switch 40 is in the ON state, or the constant current control is performed by the ON/OFF control, and the power storage device This is a state in which a constant current is flowing through a load (for example, a motor) connected to 100 . "Stopped" in "current state" means a stopped state of power storage unit 10. Specifically, line switch 40 is in an open state and power is not supplied to the load. Also, in each figure, the OCV (Vob) of the LIB 12b is assumed to be substantially constant.
 図5に示すように、蓄電部10の放電状態になると(t0参照)、並列ブロック11から比較的に大きな放電電流Ibatが流れ始める。並列ブロック11から放電電流Ibatが流れ始める初期段階では、その放電電流Ibatは、主として、内部抵抗が小さいLIC12cからの放電電流Ic(Icd)である。このとき、放電時の過電流閾値Iodは比較的に大きい値(低い値)に設定されているため、放電開始時の立ち上がり電流によって過電流状態であると誤って判断されて、蓄電装置100が作動しないなどの不具合が生じることを抑制できる。 As shown in FIG. 5, when the electric storage unit 10 is discharged (see t0), a relatively large discharge current Ibat begins to flow from the parallel block 11 . At the initial stage when the discharge current Ibat starts to flow from the parallel block 11, the discharge current Ibat is mainly the discharge current Ic (Icd) from the LIC 12c having a small internal resistance. At this time, since the overcurrent threshold Iod during discharge is set to a relatively large value (low value), it is erroneously determined that an overcurrent state exists due to the rising current at the start of discharge, and power storage device 100 is shut down. It is possible to suppress the occurrence of problems such as non-operation.
 その後、放電継続時間Tdの経過(t0~t3参照)に伴ってLIC12cのOCVが低下し、LIC12cのOCVとLIB12bのOCVとの差であるOCV差ΔVが拡大する。それに伴って、LIC12cからの放電電流Icが減少し(高くなり)、LIB12bからの放電電流Ibが増加し(低くなり)、その後、並列ブロック11からの放電電流Ibatは、主として、LIB12bからの放電電流Ib(Ibd)になる。この際、放電時の過電流閾値Iodは、OCV差ΔVに応じて、段階的に小さい値(高い値)に変更される。これにより、放電時の過電流閾値Iodが放電開始の初期値から変更されない構成に比べて、LIB12bが過電流状態になることを抑制することができる。 After that, the OCV of the LIC 12c decreases as the discharge duration Td elapses (see t0 to t3), and the OCV difference ΔV, which is the difference between the OCV of the LIC 12c and the OCV of the LIB 12b, increases. Accordingly, the discharge current Ic from the LIC 12c decreases (increases), the discharge current Ib from the LIB 12b increases (decreases), and then the discharge current Ibat from the parallel block 11 is mainly discharged from the LIB 12b. It becomes the current Ib (Ibd). At this time, the overcurrent threshold value Iod during discharging is changed to a smaller value (higher value) step by step according to the OCV difference ΔV. As a result, the LIB 12b can be prevented from entering an overcurrent state, compared to a configuration in which the overcurrent threshold value Iod during discharge is not changed from the initial value at the start of discharge.
 並列ブロック11からの放電電流Ibatが放電時の過電流閾値Iod以下になると(t3参照)、蓄電部10が放電状態から停止状態になる。これにより、LIC12cに十分な電流が流れるときに過電流異常であると判断せずに、その後、LIC12cに十分な電流が流れずにLIB12bに大電流がなれるおそれがあるときに過電流異常と判断し、12bを保護することができる。蓄電部10が停止状態になると、LIB12bからの放電電流IbがLIC12cに流れ込んでLIC12cが充電され始める。その後、停止継続時間Tsの経過(t3~t6)に伴ってOCV差ΔVが減少する。この際、停止時の過電流閾値Iodは、直前の値を引き継ぎつつ、OCV差ΔVに応じて、段階的に大きい値(低い値)に変更される。これにより、LIC12cのOCVとLIB12bのOCVが略一致していない状態で蓄電部10が停止状態から放電状態になった場合においても、LIB12bが過電流状態になることを精度よく抑制することができる。 When the discharge current Ibat from the parallel block 11 becomes equal to or less than the overcurrent threshold Iod during discharge (see t3), the power storage unit 10 changes from the discharged state to the stopped state. As a result, when a sufficient current flows through the LIC 12c, it is not judged to be an overcurrent abnormality. After that, when there is a risk of a large current flowing through the LIB 12b due to insufficient current flowing through the LIC 12c, it is judged as an overcurrent abnormality. and protect 12b. When the power storage unit 10 is stopped, the discharge current Ib from the LIB 12b flows into the LIC 12c, and the LIC 12c starts to be charged. After that, the OCV difference ΔV decreases as the stop duration time Ts elapses (t3 to t6). At this time, the overcurrent threshold value Iod at the time of stop is changed to a larger value (lower value) step by step according to the OCV difference ΔV while taking over the previous value. As a result, even when the power storage unit 10 changes from a stopped state to a discharging state in a state where the OCV of the LIC 12c and the OCV of the LIB 12b do not substantially match, the LIB 12b can be prevented from entering an overcurrent state with accuracy. .
 図6の例では、図5の例に比べて、蓄電部10に放電継続時間が短いパルス電流が流れている場合である。蓄電部10が放電状態から停止状態になり(t2参照)、その後、まもなく放電状態に復帰している(t3参照)、その後、まもなく停止状態になっている(t4参照)。この間、放電継続時間および停止継続時間が比較的に短く、OCV差ΔVの増減が小さいため、過電流閾値Iodが一定に維持されている(t2~t5参照)。このように、本実施形態では、通電状態(放電状態または充電状態)と停止状態とが比較的に短い期間で繰り返される場合には、過電流閾値の変更が抑制され、蓄電部10の電気状態がどのような状態に移行しても適切な値に設定されるよう制御される。 In the example of FIG. 6, a pulse current with a shorter discharge duration is flowing through the power storage unit 10 than in the example of FIG. Power storage unit 10 changes from a discharged state to a stopped state (see t2), returns to a discharged state shortly thereafter (see t3), and soon thereafter enters a stopped state (see t4). During this period, the discharge continuation time and the stop continuation time are relatively short, and the OCV difference ΔV changes little, so the overcurrent threshold Iod is kept constant (see t2 to t5). As described above, in the present embodiment, when the energized state (discharged state or charged state) and the stopped state are repeated in relatively short periods, the change in the overcurrent threshold is suppressed, and the electric state of the power storage unit 10 is suppressed. is controlled so that it is set to an appropriate value regardless of the transition to any state.
 本実施形態では、LIC12cのOCV推定処理(S220,S320,S430)において、基準OCVは、並列ブロック11のOCVに相当する値である。本実施形態によれば、例えば基準OCVが所定の固定値である場合に比べて、LIC12cに流れる電流Ic等をより正確に把握できるため、LIC12cによる高出力の特性の低下を抑制しつつ、LIB12bの過電流状態の発生をより効果的に抑制することができる。 In this embodiment, in the OCV estimation process (S220, S320, S430) of the LIC 12c, the reference OCV is a value corresponding to the OCV of the parallel block 11. According to the present embodiment, the current Ic and the like flowing through the LIC 12c can be grasped more accurately than when the reference OCV is a predetermined fixed value. occurrence of the overcurrent state can be more effectively suppressed.
 本実施形態では、LIC12cのOCVが基準OCVより高く、かつ、OCV差が大きいほど、充電時の過電流閾値Iocを小さくする(図3のS240)。これにより、充電時において、LIC12cによる高出力の特性の低下を抑制しつつ、LIB12bの過電流状態の発生を抑制することができる。 In this embodiment, the higher the OCV of the LIC 12c than the reference OCV and the larger the OCV difference, the smaller the overcurrent threshold Ioc during charging (S240 in FIG. 3). As a result, during charging, it is possible to suppress the occurrence of an overcurrent state in the LIB 12b while suppressing deterioration in the high-output characteristics of the LIC 12c.
 本実施形態では、12cのOCVが基準OCVより低く、かつ、OCV差が大きいほど、放電時の過電流閾値Iodを小さくする(図3のS340)。これにより、放電時において、LIC12cによる高出力の特性の低下を抑制しつつ、LIB12bの過電流状態の発生を抑制することができる。 In this embodiment, as the OCV of 12c is lower than the reference OCV and as the OCV difference is larger, the overcurrent threshold Iod during discharging is decreased (S340 in FIG. 3). As a result, during discharging, it is possible to suppress the occurrence of an overcurrent state in the LIB 12b while suppressing deterioration in the high-output characteristics of the LIC 12c.
B.変形例:
 本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
B. Variant:
The technology disclosed in this specification is not limited to the above-described embodiments, and can be modified in various forms without departing from the scope of the invention. For example, the following modifications are possible.
 上記実施形態における蓄電装置100の構成は、あくまで一例であり、種々変形可能である。例えば上記実施形態では、二次電池としてLIB12bを例示したが、これに限らず、リチウム系以外の二次電池でもよい。また、キャパシタとしてLIC12cを例示したが、これに限らず、リチウム系以外のキャパシタでもよい。また、並列ブロックは、二次電池(LIB12b)とキャパシタ(LIC12c)とが別々のケースにそれぞれ収容されつつ並列に接続された構成でもよいし、二次電池とキャパシタとが同一ケース内で互いに並列に接続された構成でもよい。後者の場合、例えば、1または複数の二次電池と1または複数のキャパシタと電解液とが同一の空間内に収容された構成でもよいし、1または複数の二次電池と1または複数のキャパシタとが互いに異なる空間(セル室、電槽)にそれぞれ収容された構成でもよい。 The configuration of the power storage device 100 in the above embodiment is merely an example, and various modifications are possible. For example, in the above embodiment, the LIB 12b is used as an example of the secondary battery, but the secondary battery is not limited to this, and may be a secondary battery other than a lithium-based battery. In addition, although the LIC12c is exemplified as a capacitor, the capacitor is not limited to this, and a capacitor other than a lithium-based capacitor may be used. In addition, the parallel block may have a configuration in which the secondary battery (LIB 12b) and the capacitor (LIC 12c) are accommodated in separate cases and connected in parallel, or the secondary battery and the capacitor are arranged in parallel in the same case. may be connected to the In the latter case, for example, one or more secondary batteries, one or more capacitors, and an electrolytic solution may be accommodated in the same space, or one or more secondary batteries and one or more capacitors may be housed in different spaces (cell chamber, battery case).
 上記実施形態における過電流抑制処理の内容は、あくまで一例であり、種々変形可能である。過電流抑制処理(図3)において、S140の処理を実施しない構成でもよい。また、LIC12cのOCV推定処理(S220,S320,S430)において、LIB12bおよびLIC12cの内部抵抗を固定値として、内部抵抗推定処理(S200,S300,S410)を実行しない構成でもよい。また、過電流抑制処理(図3)において、S250,S350の処理を実行しない構成でもよい。 The content of the overcurrent suppression process in the above embodiment is merely an example, and various modifications are possible. In the overcurrent suppression process (FIG. 3), the configuration may be such that the process of S140 is not performed. Further, in the OCV estimation processing (S220, S320, S430) of the LIC 12c, the internal resistance of the LIB 12b and the LIC 12c may be set to a fixed value, and the internal resistance estimation processing (S200, S300, S410) may not be executed. Also, in the overcurrent suppression process (FIG. 3), the configuration may be such that the processes of S250 and S350 are not executed.
 過電流閾値の変更(S240,S340,S440)において、基準OCVは、LIB12bのOCVや並列ブロック11のOCVに限らず、例えば、並列ブロック11の端子電圧でもよいし、LIB12bのOCVの変化を無視した固定値(例えばゼロ)でもよい。 In changing the overcurrent threshold (S240, S340, S440), the reference OCV is not limited to the OCV of the LIB 12b or the OCV of the parallel block 11. For example, the terminal voltage of the parallel block 11 may be used, and changes in the OCV of the LIB 12b are ignored. It may be a fixed value (eg, zero).
 上記実施形態における式1から式7までの数式は、あくまで一例であり、これに限らず、別の数式を用いてもよい。 The formulas 1 to 7 in the above embodiment are only examples, and other formulas may be used without being limited to them.
 上記実施形態において、LIB12bまたは並列ブロック11のSOCに応じて過電流閾値を補正してもよい。具体的には、LIBには、SOCが所定下限値(例えば10%)を下回ると、LIB12bのOCVの変化率や内部抵抗が大きくなるものがあるため、そのようなLIBを用いる場合、LIB12bまたは並列ブロック11のSOCの低下に応じて、放電時の過電流閾値の絶対値を、より小さい値に補正することが好ましい。また、LIBには、SOCが所定上限値(例えば90%)を上回ると、LIB12bのOCVの変化率や内部抵抗が大きくなるものがあるため、そのようなLIBを用いる場合、LIB12bまたは並列ブロック11のSOCの上昇に応じて、充電時の過電流閾値の絶対値を、より小さい値に補正することが好ましい。この場合、制御部60は、閾値補正部として機能する。 In the above embodiment, the overcurrent threshold may be corrected according to the SOC of the LIB 12b or the parallel block 11. Specifically, in some LIBs, when the SOC falls below a predetermined lower limit (for example, 10%), the OCV change rate and internal resistance of the LIB 12b increase. It is preferable to correct the absolute value of the overcurrent threshold during discharge to a smaller value according to the decrease in the SOC of the parallel block 11 . In some LIBs, when the SOC exceeds a predetermined upper limit (for example, 90%), the OCV change rate and internal resistance of the LIB 12b increase. It is preferable to correct the absolute value of the overcurrent threshold during charging to a smaller value according to the increase in the SOC. In this case, the controller 60 functions as a threshold corrector.
10:蓄電部 11:並列ブロック 12b:LIB 12c:LIC 20:蓄電管理装置 22:電圧計 24:電流計 26:温度計 28:監視部 40:ラインスイッチ 42:プラス端子 44:マイナス端子 60:制御部 62:OCV推定部 64:内部抵抗推定部 66:閾値変更部 68:SOC推定部 70:異常判断部 72:記録部 74:履歴部 76:インターフェース部 78:強制変更部 100:蓄電装置 Rb:LIB抵抗 Rc:LIC抵抗 Zb,Zc:内部抵抗 10: Power storage unit 11: Parallel block 12b: LIB 12c: LIC 20: Power storage management device 22: Voltmeter 24: Ammeter 26: Thermometer 28: Monitoring unit 40: Line switch 42: Plus terminal 44: Minus terminal 60: Control Unit 62: OCV estimation unit 64: Internal resistance estimation unit 66: Threshold change unit 68: SOC estimation unit 70: Abnormal judgment unit 72: Recording unit 74: History unit 76: Interface unit 78: Forced change unit 100: Power storage device Rb: LIB resistance Rc: LIC resistance Zb, Zc: internal resistance

Claims (10)

  1.  二次電池とキャパシタとが互いに並列に接続された1つの並列ブロック、または、互いに直列に接続された複数の前記並列ブロックを備える蓄電部を管理するための蓄電管理装置であって、
     前記並列ブロックに流れる電流を計測する電流計測部と、
     前記並列ブロックの端子電圧を計測する電圧計測部と、
     前記電流計測部により測定された前記並列ブロックに流れる電流が過電流閾値を超えたことを必要条件として異常時処理を行う異常判断部と、
     前記電流計測部により計測された前記並列ブロックに流れる電流と、前記電圧計測部により計測された前記並列ブロックの端子電圧と、前記二次電池の内部抵抗と、前記キャパシタの内部抵抗と、前記蓄電部の電流継続時間と、前記キャパシタの静電容量と、の少なくとも1つに基づき、前記キャパシタのOCVを推定するOCV推定部と、
     前記OCV推定部により推定された前記キャパシタのOCVと基準OCVとの差であるOCV差に応じて、前記過電流閾値を変更する閾値変更部と、
    を備える、蓄電管理装置。
    A power storage management device for managing a power storage unit comprising one parallel block in which a secondary battery and a capacitor are connected in parallel or a plurality of the parallel blocks connected in series,
    a current measuring unit that measures the current flowing through the parallel block;
    a voltage measurement unit that measures the terminal voltage of the parallel block;
    an abnormality determination unit that performs an abnormality processing on the condition that the current flowing through the parallel block measured by the current measurement unit exceeds an overcurrent threshold as a necessary condition;
    the current flowing through the parallel block measured by the current measuring unit; the terminal voltage of the parallel block measured by the voltage measuring unit; the internal resistance of the secondary battery; the internal resistance of the capacitor; an OCV estimation unit that estimates the OCV of the capacitor based on at least one of a current duration of the unit and a capacitance of the capacitor;
    a threshold changing unit that changes the overcurrent threshold according to an OCV difference that is a difference between the OCV of the capacitor estimated by the OCV estimating unit and a reference OCV;
    A power storage management device.
  2.  請求項1に記載の蓄電管理装置であって、
     前記基準OCVは、前記二次電池のOCVに相当する値であり、
     前記閾値変更部は、前記OCV差の増加に応じて前記過電流閾値の絶対値を小さくする、蓄電管理装置。
    The power storage management device according to claim 1,
    The reference OCV is a value corresponding to the OCV of the secondary battery,
    The power storage management device, wherein the threshold changing unit reduces the absolute value of the overcurrent threshold according to an increase in the OCV difference.
  3.  請求項1または請求項2に記載の蓄電管理装置であって、
     前記キャパシタのOCVが前記基準OCVより高く、かつ、前記OCV差が大きいほど、充電時の前記過電流閾値を小さくする、蓄電管理装置。
    The power storage management device according to claim 1 or claim 2,
    The power storage management device, wherein the higher the OCV of the capacitor than the reference OCV and the larger the OCV difference, the smaller the overcurrent threshold during charging.
  4.  請求項1から請求項3までのいずれか一項に記載の蓄電管理装置であって、
     前記キャパシタのOCVが前記基準OCVより低く、かつ、前記OCV差が大きいほど、放電時の前記過電流閾値を小さくする、蓄電管理装置。
    The power storage management device according to any one of claims 1 to 3,
    The power storage management device, wherein the OCV of the capacitor is lower than the reference OCV and the larger the OCV difference, the smaller the overcurrent threshold during discharging.
  5.  請求項1から請求項4までのいずれか一項に記載の蓄電管理装置であって、
     さらに、前記二次電池または前記並列ブロックのSOCに応じて前記過電流閾値を補正する閾値補正部を備える、蓄電管理装置。
    The power storage management device according to any one of claims 1 to 4,
    The power storage management device further includes a threshold correction unit that corrects the overcurrent threshold according to the SOC of the secondary battery or the parallel block.
  6.  請求項1から請求項5までのいずれか一項に記載の蓄電管理装置であって、
     さらに、前記並列ブロックの温度を計測する温度計測部と、
     前記二次電池または前記並列ブロックのSOCを推定するSOC推定部と、を備え、
     前記OCV推定部は、前記温度計測部により計測された温度と、前記SOC推定部により推定されたSOCとから、あらかじめ記憶された、前記並列ブロックの温度とSOCと電流継続時間とが関連づけられた関連情報を参照して、前記二次電池の内部抵抗と前記キャパシタの内部抵抗とを推定する、蓄電管理装置。
    The power storage management device according to any one of claims 1 to 5,
    Furthermore, a temperature measuring unit that measures the temperature of the parallel block;
    an SOC estimation unit that estimates the SOC of the secondary battery or the parallel block;
    The OCV estimating unit associates the pre-stored temperature, SOC, and current duration of the parallel block from the temperature measured by the temperature measuring unit and the SOC estimated by the SOC estimating unit. A power storage management device that estimates the internal resistance of the secondary battery and the internal resistance of the capacitor by referring to related information.
  7.  請求項1から請求項6までのいずれか一項に記載の蓄電管理装置であって、
     さらに、前記電流計測部により計測された前記並列ブロックに流れる電流の所定期間における平均値が、基準平均値を超える場合、前記OCV差に関係なく、前記過電流閾値の絶対値を小さくする強制変更部を備える、蓄電管理装置。
    The power storage management device according to any one of claims 1 to 6,
    Furthermore, when the average value of the current flowing through the parallel block measured by the current measurement unit in a predetermined period exceeds a reference average value, regardless of the OCV difference, the absolute value of the overcurrent threshold is forced to be changed to a smaller value. A power storage management device comprising a unit.
  8.  請求項1から請求項7までのいずれか一項に記載の蓄電管理装置であって、
     さらに、前記キャパシタのOCVが所定の過電圧閾値を超えた場合、前記キャパシタが過電圧状態と判断して所定の過電圧時処理を実行し、前記キャパシタのOCVが所定の低電圧閾値を下回った場合、前記キャパシタが低電圧状態と判断し所定の低電圧時処理を実行する実行部を備える、蓄電管理装置。
    The power storage management device according to any one of claims 1 to 7,
    Further, when the OCV of the capacitor exceeds a predetermined overvoltage threshold, the capacitor is determined to be in an overvoltage state and a predetermined overvoltage process is executed, and when the OCV of the capacitor is less than the predetermined low voltage threshold, the A power storage management device comprising an execution unit that determines that a capacitor is in a low voltage state and executes predetermined low voltage processing.
  9.  二次電池とキャパシタとが互いに並列に接続された1つの並列ブロック、または、互いに直列に接続された複数の前記並列ブロックを備える蓄電部と、
     請求項1から請求項8までのいずれか一項に記載の蓄電管理装置と、備える、蓄電装置。
    a power storage unit including one parallel block in which a secondary battery and a capacitor are connected in parallel, or a plurality of the parallel blocks connected in series;
    A power storage device comprising the power storage management device according to any one of claims 1 to 8.
  10.  二次電池とキャパシタとが互いに並列に接続された1つの並列ブロック、または、互いに直列に接続された複数の前記並列ブロックを備える蓄電部と、
     前記並列ブロックに流れる電流を計測する電流計測部と、
     前記並列ブロックの端子電圧を計測する電圧計測部と、を備える蓄電部の管理方法であって、
     前記電流計測部により測定された前記並列ブロックに流れる電流が過電流閾値を超えたことを必要条件として異常時処理を行う工程と、
     前記電流計測部により計測された前記並列ブロックに流れる電流と、前記電圧計測部により計測された前記並列ブロックの端子電圧と、前記二次電池の内部抵抗と、前記キャパシタの内部抵抗と、前記蓄電部の電流継続時間と、前記キャパシタの静電容量と、の少なくとも1つに基づき、前記キャパシタのOCVを推定する工程と、
     推定された前記キャパシタのOCVと基準OCVとの差であるOCV差に応じて、前記過電流閾値を変更する工程と、
     を含む、蓄電部の管理方法。
    a power storage unit including one parallel block in which a secondary battery and a capacitor are connected in parallel, or a plurality of the parallel blocks connected in series;
    a current measuring unit that measures the current flowing through the parallel block;
    A method for managing a power storage unit, comprising: a voltage measuring unit that measures a terminal voltage of the parallel block;
    a step of performing abnormality processing on the condition that the current flowing through the parallel block measured by the current measuring unit exceeds an overcurrent threshold as a necessary condition;
    the current flowing through the parallel block measured by the current measuring unit; the terminal voltage of the parallel block measured by the voltage measuring unit; the internal resistance of the secondary battery; the internal resistance of the capacitor; estimating an OCV of the capacitor based on at least one of a current duration of a section and a capacitance of the capacitor;
    varying the overcurrent threshold in response to an OCV difference, which is the difference between the estimated OCV of the capacitor and a reference OCV;
    A method of managing a power storage unit, including
PCT/JP2021/007280 2021-02-26 2021-02-26 Power storage management device, power storage device, and method for managing power storage unit WO2022180771A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023501942A JP7497513B2 (en) 2021-02-26 POWER STORAGE MANAGEMENT DEVICE, POWER STORAGE DEVICE, AND MANAGEMENT METHOD FOR POWER STORAGE SECTION
PCT/JP2021/007280 WO2022180771A1 (en) 2021-02-26 2021-02-26 Power storage management device, power storage device, and method for managing power storage unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007280 WO2022180771A1 (en) 2021-02-26 2021-02-26 Power storage management device, power storage device, and method for managing power storage unit

Publications (1)

Publication Number Publication Date
WO2022180771A1 true WO2022180771A1 (en) 2022-09-01

Family

ID=83048949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007280 WO2022180771A1 (en) 2021-02-26 2021-02-26 Power storage management device, power storage device, and method for managing power storage unit

Country Status (1)

Country Link
WO (1) WO2022180771A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164068A (en) * 2001-11-22 2003-06-06 Hitachi Ltd Power supply and distributed power supply system, and electric vehicle mounted with it
JP2006138750A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Battery monitoring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164068A (en) * 2001-11-22 2003-06-06 Hitachi Ltd Power supply and distributed power supply system, and electric vehicle mounted with it
JP2006138750A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Battery monitoring device

Also Published As

Publication number Publication date
JPWO2022180771A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
JP6585164B2 (en) How to manage battery operating range
JP4962808B2 (en) Engine automatic control device and storage battery charge control device
US7482784B2 (en) Degradation judgment circuit for secondary battery
JP4606846B2 (en) Battery monitoring device
WO2013054672A1 (en) Lead storage battery system
EP2249456A1 (en) Charge method and charge device
JP2009106147A (en) Secondary cell charge control method and charge control circuit
CN108802625B (en) SOC self-adaptive correction method for secondary battery
CN110400987B (en) Battery charging and discharging current limiting method, battery management system and storage medium
US20110267007A1 (en) Discharge method for a battery pack
JP2016518807A (en) Method and apparatus for charging a rechargeable battery
CN109088114B (en) Battery module charging and discharging control method
CN112467822A (en) Battery management method, device and system
JP6956240B2 (en) Battery device and its control method
WO2015178075A1 (en) Battery control device
JP2018050373A (en) Battery system
JP4796784B2 (en) Rechargeable battery charging method
CN113994222A (en) Battery control device
CN114801883A (en) Battery equalization control method, system, storage medium, electronic device and vehicle
WO2022180771A1 (en) Power storage management device, power storage device, and method for managing power storage unit
JP7497513B2 (en) POWER STORAGE MANAGEMENT DEVICE, POWER STORAGE DEVICE, AND MANAGEMENT METHOD FOR POWER STORAGE SECTION
KR20170142451A (en) Battery management system, battery pack and method for charging battery
JP2020139846A (en) State estimation device
CN111313499B (en) Battery over-discharge protection method and battery management system
US20230231407A1 (en) Semiconductor device and control method of charging battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023501942

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927873

Country of ref document: EP

Kind code of ref document: A1