WO2022180747A1 - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
WO2022180747A1
WO2022180747A1 PCT/JP2021/007171 JP2021007171W WO2022180747A1 WO 2022180747 A1 WO2022180747 A1 WO 2022180747A1 JP 2021007171 W JP2021007171 W JP 2021007171W WO 2022180747 A1 WO2022180747 A1 WO 2022180747A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
power supply
unit
supply device
Prior art date
Application number
PCT/JP2021/007171
Other languages
French (fr)
Japanese (ja)
Inventor
貴寛 平田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023501925A priority Critical patent/JP7370492B2/en
Priority to PCT/JP2021/007171 priority patent/WO2022180747A1/en
Publication of WO2022180747A1 publication Critical patent/WO2022180747A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • the present disclosure relates to a power supply device that rectifies an AC voltage to generate a DC voltage.
  • One type of power supply that rectifies an AC voltage to generate a DC voltage is a power supply that drives a motor using an inverter system. This power supply device is applied to air conditioners and the like.
  • the power supply device described in Patent Document 1 rectifies a commercial AC voltage from a commercial power supply with a diode bridge connected to a reactor and smoothes it with a smoothing capacitor to generate a DC voltage. This DC voltage is supplied from the inverter to the motor as a power supply voltage.
  • the present disclosure has been made in view of the above, and aims to obtain a power supply device that can stably operate a motor.
  • the power supply device of the present disclosure includes a converter section that converts the AC voltage of the commercial AC power source into a DC voltage, and a converter section that converts the DC voltage from the converter section into an AC voltage.
  • An inverter section for driving the motor, a voltage detection section for detecting the voltage value of the DC voltage supplied to the inverter section, a current detection section for detecting the value of current flowing through the motor, and a control device for controlling the converter section.
  • the converter section includes a plurality of reactors that can be connected to a commercial AC power supply and have different inductance values, and rectifies the AC voltage from the commercial AC power supply while being connected to the commercial AC power supply through one of the plurality of reactors.
  • the converter section has a first switching section for switching which of the plurality of reactors is connected to the commercial AC power supply, and a second switching section for switching which of the plurality of smoothing capacitors is to be connected to the rectifier circuit and the inverter section. and a switching unit.
  • the control device controls the first switching section and the second switching section based on the voltage value detected by the voltage detection section and the current value detected by the current detection section.
  • the power supply device has the effect of stably driving the motor.
  • FIG. 1 shows a configuration of a power supply device according to a first embodiment
  • FIG. FIG. 2 is a diagram showing a configuration of a microcomputer included in the power supply device according to the first embodiment
  • 4 is a flowchart showing the procedure of first control processing by the power supply device according to the first embodiment
  • 4 is a flowchart showing the processing procedure of second control processing by the power supply device according to the first embodiment
  • FIG. 4 shows a configuration of a power supply device according to a second embodiment
  • FIG. 10 is a flow chart showing a processing procedure of third control processing by the power supply device according to the second embodiment
  • FIG. 4 is a diagram showing a configuration example of a processing circuit provided in the microcomputer according to the first and second embodiments when the processing circuit is implemented by a processor and a memory;
  • FIG. 4 is a diagram showing an example of a processing circuit when the processing circuit included in the microcomputer according to the first and second embodiments is configured with dedicated hardware;
  • Embodiment 1. 1 is a diagram illustrating a configuration of a power supply device according to a first embodiment;
  • the power supply device 101 is a device that rectifies an AC voltage to generate a DC voltage (hereinafter referred to as a DC voltage Vdc) and converts the DC voltage Vdc into an AC voltage.
  • the power supply device 101 drives the compressor motor 15 by the inverter section 14 which is a load.
  • a compressor motor 15, which is an example of an electric motor, is a motor applied to an air conditioner or the like.
  • the power supply device 101 includes a converter section 13A that converts the AC voltage of the commercial AC power supply 1 into a DC voltage Vdc, and an inverter section 14 that drives the compressor motor 15 by an inverter system.
  • the inverter unit 14 converts the DC voltage Vdc from the converter unit 13A into an AC voltage and supplies the AC voltage to the compressor motor 15 .
  • the power supply device 101 also includes a bus voltage detection section 17 that detects the DC voltage Vdc from the converter section 13A, and a compressor current detection section 18 that detects the current flowing through the compressor motor 15 .
  • the power supply device 101 also includes a microcomputer (hereinafter referred to as a microcomputer) 16 that reads the DC voltage Vdc detected by the bus voltage detector 17 and the compressor current detected by the compressor current detector 18, and It has relay drive circuits 19A to 19C driven by signals.
  • the converter section 13A has reactors La and Lb, relays Ra1, Rb1 and Rc1 which are switching sections, relay excitation coils 8A, 8B and 8C, and smoothing capacitors Ca and Cb.
  • Relay Ra1 is a first switching unit
  • relays Rb1 and Rc1 are second switching units.
  • Reactors La and Lb are reactors with different inductance values. That is, the power supply device 101 has a plurality of reactors with different inductance values.
  • the smoothing capacitors Ca and Cb are capacitors having different capacitor capacities. That is, the power supply device 101 has a plurality of capacitors with different capacitor capacities.
  • the relay Ra1 is connected to the commercial AC power supply 1.
  • Relay Ra1 switches connection with commercial AC power supply 1 to connection with one of reactors La and Lb connected in parallel. That is, the relay Ra1 switches between the commercial AC power supply 1 and the reactors La and Lb to connect the commercial AC power supply 1 to the reactor La or to the reactor Lb.
  • Each of the reactors La and Lb has one end connectable to the relay Ra1 and the other end connected to the diode bridge 4 via the connection point 31 .
  • Diode bridge 4 is an example of a rectifier circuit.
  • the relay excitation coil 8A is connected to the relay drive circuit 19A.
  • the relay excitation coil 8B is connected to the relay drive circuit 19B, and the relay excitation coil 8C is connected to the relay drive circuit 19C.
  • the relay drive circuit 19A drives the relay Ra1 by controlling the relay excitation coil 8A.
  • the relay drive circuit 19B drives the relay Rb1 by controlling the relay excitation coil 8B.
  • the relay drive circuit 19C drives the relay Rc1 by controlling the relay excitation coil 8C.
  • the diode bridge 4 is connected to the reactors La and Lb, the commercial AC power supply 1, the relay Rb1, and the connection point 33.
  • the relay Rb1 has one end connected to the diode bridge 4 and the other end connectable to the connection point 34 or the connection point 32 .
  • the relay Rb1 switches connection with the diode bridge 4 to connection with one of the parallel-connected smoothing capacitors Ca and Cb. That is, the relay Rb1 connects the diode bridge 4 to the smoothing capacitor Ca through the connection point 32, or connects the smoothing capacitor Ca through the connection point 34 between the diode bridge 4 and the connection points 32 and 34. Toggles whether to connect to Cb.
  • smoothing capacitor Ca One end of the smoothing capacitor Ca is connectable to the relays Rb1 and Rc1 via the connection point 32, and the other end is connected to the connection point 33.
  • Smoothing capacitor Cb has one end connectable to relays Rb1 and Rc1 via connection point 34 and the other end connected to connection point 35 .
  • the relay Rc1 switches connection with the inverter unit 14 to connection with one of the parallel-connected smoothing capacitors Ca and Cb. That is, the relay Rc1 connects the inverter section 14 to the smoothing capacitor Ca via the connection point 32 or connects the smoothing capacitor Ca via the connection point 34 between the inverter section 14 and the connection points 32 and 34 . Toggles whether to connect to Cb.
  • connection point 35 is connected to the connection point 33 and the connection point 37.
  • the inverter unit 14 is connected to the connection points 36 and 37 and the compressor motor 15 .
  • the compressor current detection unit 18 is connected to the inverter unit 14 and detects the compressor current flowing through the compressor motor 15 by detecting the current flowing through the inverter unit 14 .
  • the bus voltage detection unit 17 is connected to the connection points 36 and 37 and detects the bus voltage of the inverter unit 14, that is, the DC voltage Vdc.
  • a microcomputer 16 which is a control device, is connected to relay drive circuits 19A to 19C, a compressor current detector 18, and a bus voltage detector 17.
  • the microcomputer 16 receives the compressor current detected by the compressor current detector 18 and the DC voltage Vdc detected by the bus voltage detector 17 .
  • Microcomputer 16 controls relay drive circuits 19A-19C based on DC voltage Vdc and compressor current.
  • the microcomputer 16 is configured such that one of the reactors La and Lb and one of the smoothing capacitors Ca and Cb is controlled so that the DC voltage Vdc is within the permissible range and the compressor current is within the permissible range.
  • the power supply device 101 is operated with either one.
  • the switching unit arranged in the power supply device 101 is not limited to the relays Ra1 and Rb1, and any switching unit such as a semiconductor switch may be used as long as it is a device capable of switching connections.
  • FIG. 2 is a diagram showing the configuration of a microcomputer included in the power supply device according to the first embodiment.
  • the microcomputer 16 has a voltage storage section 22 , a voltage comparison section 23 , a current storage section 25 , a current comparison section 26 and a relay control section 24 .
  • the voltage storage unit 22 is the first storage unit
  • the current storage unit 25 is the second storage unit.
  • the voltage storage unit 22 is connected to the bus voltage detection unit 17 and the voltage comparison unit 23 .
  • Voltage comparator 23 is connected to relay controller 24 and current comparator 26 .
  • Current storage unit 25 is connected to compressor current detection unit 18 and current comparison unit 26 .
  • the relay control section 24 is connected to the current comparing section 26 and the relay driving circuits 19A to 19C.
  • the voltage storage unit 22 is a memory or the like that stores the DC voltage Vdc detected by the bus voltage detection unit 17, the allowable voltage of the DC voltage Vdc, and the allowable limit voltage of the DC voltage Vdc.
  • the allowable voltage is the voltage allowed for the power supply device 101
  • the allowable limit voltage is the limit voltage allowed for the power supply device 101 .
  • the allowable voltage is a first reference value of voltage (first voltage reference value)
  • the allowable limit voltage is a second reference value of voltage (second voltage reference value).
  • the allowable voltage is a value smaller than the allowable limit voltage.
  • the allowable voltage is obtained by temporarily stopping the operation of the compressor motor 15, that is, the operation of the compressor motor 15 using the converter unit 13A, and switching the reactors La and Lb or switching the smoothing capacitors Ca and Cb. It is a reference value for determining whether or not.
  • the permissible limit voltage is a reference value for determining whether to completely stop the operation of the power supply device 101 and notify the abnormality. Therefore, when the DC voltage Vdc becomes equal to or higher than the allowable voltage, the power supply device 101 can resume operation after the switching of the reactors La and Lb or the switching of the smoothing capacitors Ca and Cb. becomes equal to or higher than the allowable limit voltage, the power supply device 101 stops the operation and notifies the abnormality.
  • the microcomputer 16 stops the operation of the compressor motor 15 and executes at least one of switching between the reactors La and Lb and switching between the smoothing capacitors Ca and Cb. do. After that, the microcomputer 16 restarts the operation of the compressor motor 15 .
  • the microcomputer 16 stops the operation of the compressor motor 15 and notifies the user of the abnormality.
  • the voltage comparison unit 23 When comparing the DC voltage Vdc and the allowable voltage of the DC voltage Vdc, the voltage comparison unit 23 reads the DC voltage Vdc and the allowable voltage of the DC voltage Vdc from the voltage storage unit 22 . When comparing the DC voltage Vdc with the allowable limit voltage of the DC voltage Vdc, the voltage comparator 23 reads the DC voltage Vdc and the allowable limit voltage of the DC voltage Vdc from the voltage storage unit 22 .
  • the voltage comparison unit 23 compares the DC voltage Vdc with the allowable voltage of the DC voltage Vdc when the power supply device 101 starts operating or when current normal information (to be described later) is received. Voltage comparison unit 23 compares DC voltage Vdc with the allowable limit voltage of DC voltage Vdc when power supply device 101 starts operating or when current limit normality information, which will be described later, is received.
  • the voltage comparator 23 sends information indicating that the DC voltage Vdc is lower than the allowable voltage (hereinafter referred to as normal voltage information) to the current comparator 26 .
  • the voltage comparison unit 23 sends information indicating that the DC voltage Vdc is equal to or higher than the allowable voltage (hereinafter referred to as voltage abnormality information) to the relay control unit 24 .
  • the voltage comparator 23 when the DC voltage Vdc is smaller than the allowable limit voltage, the voltage comparator 23 outputs information indicating that the DC voltage Vdc is smaller than the allowable limit voltage (hereinafter referred to as normal voltage limit information) to the current comparator 26 . send to
  • the current storage unit 25 is a memory or the like that stores the compressor current detected by the compressor current detection unit 18, the allowable current of the compressor current, and the allowable limit current of the compressor current.
  • the allowable current is the current allowed for the power supply device 101
  • the allowable limit current is the limit current allowed for the power supply device 101 .
  • the permissible current is a first reference value of current (first current reference value)
  • the permissible limit current is a second reference value of current (second current reference value).
  • the allowable current is a value smaller than the allowable limit current.
  • the allowable current is a reference value for determining whether to temporarily stop the operation of the compressor motor 15 and switch the reactors La and Lb or the smoothing capacitors Ca and Cb.
  • the permissible limit current is a reference value for determining whether to completely stop the operation of the power supply device 101 and notify the abnormality. Therefore, when the compressor current exceeds the allowable current, the power supply device 101 can resume operation after switching the reactors La and Lb or switching the smoothing capacitors Ca and Cb. becomes equal to or higher than the allowable limit current, the power supply device 101 stops operation and notifies the abnormality.
  • the microcomputer 16 stops the operation of the compressor motor 15 and executes at least one of switching between the reactors La and Lb and switching between the smoothing capacitors Ca and Cb. . After that, the microcomputer 16 restarts the operation of the compressor motor 15 . If the compressor current is equal to or higher than the allowable limit current, the microcomputer 16 stops the operation of the compressor motor 15 and notifies the user of the abnormality.
  • the current comparison unit 26 Upon receiving the normal voltage information from the voltage comparison unit 23, the current comparison unit 26 reads out the compressor current and the allowable current of the compressor current from the current storage unit 25. In this case, the current comparator 26 compares the compressor current and the allowable current.
  • the current comparing unit 26 sends information indicating that the compressor current is smaller than the allowable current (hereinafter referred to as normal current information) to the relay control unit 24 .
  • the current comparator 26 sends information indicating that the compressor current is equal to or higher than the allowable current (hereinafter referred to as current abnormality information) to the relay control unit 24 .
  • the current comparison unit 26 Upon receiving the voltage limit normal information from the voltage comparison unit 23, the current comparison unit 26 reads the compressor current and the allowable limit current of the compressor current from the current storage unit 25. In this case, the current comparator 26 compares the compressor current with the allowable limit current.
  • the current comparator 26 sends information indicating that the compressor current is smaller than the allowable limit current (hereinafter referred to as normal current limit information) to the voltage comparator 23. .
  • the relay control unit 24 controls the relay drive circuits 19A to 19C based on the information sent from the voltage comparison unit 23 and the information sent from the current comparison unit 26. Upon receiving the voltage abnormality information from the voltage comparison unit 23, the relay control unit 24 controls one of the relay drive circuits 19A to 19C. Also, when the relay control unit 24 receives current abnormality information from the current comparison unit 26, it controls any one of the relay drive circuits 19A to 19C.
  • the microcomputer 16 determines that the compressor motor 15 is Continue driving.
  • An element pair that is a combination of a reactor and a smoothing capacitor when the DC voltage Vdc is smaller than the allowable voltage and the compressor current is smaller than the allowable current is allowed and recommended for the operation of the compressor motor 15. It is a combination (permissible combination).
  • the microcomputer 16 When the voltage comparator 23 determines that the DC voltage Vdc is equal to or higher than the allowable voltage, the microcomputer 16 temporarily stops the operation of the compressor motor 15 and switches the reactors La and Lb or the smoothing capacitors Ca and Cb. , the operation of the compressor motor 15 is restarted.
  • the microcomputer 16 When the current comparator 26 determines that the compressor current is equal to or higher than the allowable current, the microcomputer 16 temporarily stops the operation of the compressor motor 15 and switches the reactors La and Lb or the smoothing capacitors Ca and Cb. , the operation of the compressor motor 15 is restarted.
  • the microcomputer 16 stops the operation of the compressor motor 15 . Further, the microcomputer 16 stops the operation of the compressor motor 15 when the current comparator 26 determines that the compressor current is equal to or higher than the allowable limit current.
  • the relationship between the inductance value of the reactor La and the inductance value of the reactor Lb is such that the inductance value of the reactor La ⁇ the inductance value of the reactor Lb.
  • the reactor La is connected between the commercial AC power supply 1 and the diode bridge 4 when the relay excitation coil 8A is not excited by the relay drive circuit 19A. Further, when the relay excitation coil 8A is excited by the relay driving circuit 19A, the commercial AC power supply 1 and the diode bridge 4 are connected by the reactor Lb.
  • the relationship between the capacitance of the smoothing capacitor Ca and the capacitance of the smoothing capacitor Cb is that the capacitance of the smoothing capacitor Ca ⁇ the capacitance of the smoothing capacitor Cb.
  • the diode bridge 4 and the inverter section 14 are connected by the smoothing capacitor Ca.
  • the relay drive circuit 19B excites the relay excitation coil 8B and the relay drive circuit 19C excites the relay excitation coil 8C
  • the diode bridge 4 and the inverter section 14 are connected by the smoothing capacitor Cb. be done.
  • the microcomputer 16 establishes connection between the commercial AC power supply 1 and the diode bridge 4 through either reactor La or Lb depending on whether the relay drive circuit 19A excites the relay excitation coil 8A. It is possible to control whether
  • microcomputer 16 connects between the diode bridge 4 and the inverter unit 14 depending on whether the relay drive circuit 19B excites the relay excitation coil 8B and whether the relay drive circuit 19C excites the relay excitation coil 8C. , smoothing capacitors Ca and Cb to be connected.
  • the voltage storage unit 22 stores the voltage of the difference between the maximum value and the minimum value of the DC voltage Vdc detected by the bus voltage detection unit 17 as the DC voltage Vdc detected by the bus voltage detection unit 17 . Further, the voltage storage unit 22 stores the voltage of the difference between the maximum value and the minimum value of the allowable range of the DC voltage Vdc as the allowable voltage, and stores the difference between the maximum value and the minimum value of the allowable limit range of the DC voltage Vdc. is stored as the allowable limit voltage.
  • the allowable voltage is defined by the maximum and minimum values of the allowable range of the DC voltage Vdc
  • the allowable limit voltage is defined by the maximum and minimum values of the allowable limit range of the DC voltage Vdc.
  • the current stored in the current storage unit 25 will be described.
  • the current storage unit 25 stores the maximum value of the compressor current detected by the compressor current detection unit 18 as the compressor current. Further, the current storage unit 25 stores the allowable maximum value of the compressor current as the allowable current, and stores the maximum allowable limit value of the compressor current as the allowable limit current.
  • the permissible current is defined by the maximum value of the permissible range of compressor current
  • the permissible limit current is defined by the maximum value of the permissible limit range of compressor current.
  • FIG. 3 is a flowchart of a procedure of first control processing by the power supply device according to the first embodiment; FIG.
  • the microcomputer 16 controls the relay drive circuits 19A-19C based on the DC voltage Vdc and the compressor current.
  • the bus voltage detector 17 detects the DC voltage Vdc (step ST2).
  • Bus voltage detection unit 17 may always detect DC voltage Vdc during operation of power supply device 101 .
  • the voltage storage unit 22 stores the difference between the maximum value and the minimum value of the DC voltage Vdc detected by the bus voltage detection unit 17 as the DC voltage Vdc.
  • the commercial alternating current power supply 1 and the diode bridge 4 are connected by the reactor La, and the diode bridge 4 and the inverter section 14 are connected to each other through smoothing. are connected by a capacitor Ca.
  • the voltage storage unit 22 stores the voltage of the difference between the maximum value and the minimum value of the DC voltage Vdc detected by the bus voltage detection unit 17 as the DC voltage Vdc detected by the bus voltage detection unit 17 .
  • the voltage comparison unit 23 compares the DC voltage Vdc stored in the voltage storage unit 22 with the allowable voltage stored in the voltage storage unit 22 in advance, and determines whether or not the DC voltage Vdc ⁇ allowable voltage (step ST3).
  • the compressor current detector 18 detects the compressor current (step ST4). Note that the compressor current detection unit 18 may constantly detect the compressor current while the power supply device 101 is in operation.
  • the current storage unit 25 stores the maximum value of the compressor current detected by the compressor current detection unit 18 as the compressor current.
  • the current comparison unit 26 compares the compressor current stored in the current storage unit 25 with the allowable current stored in advance in the current storage unit 25, and determines whether or not compressor current ⁇ allowable current (step ST5).
  • step ST5 If compressor current ⁇ allowable current (step ST5, Yes), the power supply device 101 continues the operation of the compressor motor 15 (step ST6). As a result, the power supply device 101 can prevent power supply resonance and operate stably. Then, after the specific time has passed, the power supply device 101 returns to the process of step ST2. That is, the bus voltage detector 17 detects the DC voltage Vdc (step ST2).
  • the voltage comparison unit 23 compares the DC voltage Vdc stored in the voltage storage unit 22 with the allowable voltage stored in the voltage storage unit 22 in advance, and determines whether or not the DC voltage Vdc ⁇ allowable voltage (step ST3).
  • step ST3 No If the DC voltage Vdc ⁇ the allowable voltage is not satisfied (step ST3, No), the power supply device 101 proceeds to the process of step ST7. Further, when the DC voltage Vdc ⁇ the allowable voltage, the power supply device 101 executes the processes of steps ST4 and ST5.
  • the current comparison unit 26 compares the compressor current stored in the current storage unit 25 with the allowable current stored in advance in the current storage unit 25, and determines whether or not compressor current ⁇ allowable current (step ST5). If compressor current ⁇ allowable current (step ST5, No), the power supply device 101 proceeds to the process of step ST7. Moreover, when compressor current ⁇ allowable current, the power supply device 101 executes the process of step ST6.
  • the microcomputer 16 determines that there is a power supply resonance abnormality and stops the operation of the compressor motor 15 . That is, the microcomputer 16 stops supplying the DC voltage Vdc from the converter section 13A to the inverter section 14 . Further, the microcomputer 16 drives the relay Ra1 by exciting the relay excitation coil 8A with the relay drive circuit 19A. As a result, the microcomputer 16 switches the connection between the commercial AC power supply 1 and the diode bridge 4 from the reactor La to the reactor Lb, and starts the operation of the compressor motor 15 (step ST7). That is, the microcomputer 16 starts supplying the DC voltage Vdc from the converter section 13A to the inverter section 14 .
  • step ST8 the power supply device 101 executes the processing from steps ST8 to ST12.
  • the processing from steps ST8 to ST12 is the same as the processing from steps ST2 to ST6 described above. That is, in step ST8, the bus voltage detection unit 17 detects the DC voltage Vdc, and in step ST9, the voltage comparison unit 23 determines whether or not DC voltage Vdc ⁇ allowable voltage.
  • step ST10 the compressor current detector 18 detects the compressor current, and in step ST11, the current comparator 26 determines whether or not compressor current ⁇ allowable current.
  • step ST12 the power supply device 101 continues the operation of the compressor motor 15, and after the specific time has elapsed, the process returns to step ST8.
  • step ST9, No If the DC voltage Vdc ⁇ allowable voltage is not satisfied (step ST9, No) or if the compressor current ⁇ allowable current is not satisfied (step ST11, No), the microcomputer 16 proceeds to the process of step ST13.
  • the microcomputer 16 determines that there is a power supply resonance abnormality and stops the operation of the compressor motor 15 . Further, the microcomputer 16 drives the relay Rb1 by exciting the relay excitation coil 8B with the relay drive circuit 19B. Further, the microcomputer 16 drives the relay Rc1 by exciting the relay excitation coil 8C with the relay driving circuit 19C. As a result, the microcomputer 16 switches the connection between the diode bridge 4 and the inverter section 14 from the smoothing capacitor Ca to the smoothing capacitor Cb, and starts the operation of the compressor motor 15 (step ST13).
  • the power supply device 101 executes the processes from steps ST14 to ST18.
  • the processing from steps ST14 to ST18 is the same as the processing from steps ST2 to ST6 described above. That is, in step ST14, the bus voltage detection unit 17 detects the DC voltage Vdc, and in step ST15, the voltage comparison unit 23 determines whether DC voltage Vdc ⁇ allowable voltage.
  • the compressor current detector 18 detects the compressor current, and in step ST17, the current comparator 26 determines whether or not compressor current ⁇ allowable current.
  • the power supply device 101 continues the operation of the compressor motor 15, and after the specific time has elapsed, the process returns to step ST14.
  • step ST15, No If the DC voltage Vdc ⁇ the allowable voltage (step ST15, No) or the compressor current ⁇ the allowable current (step ST17, No), the microcomputer 16 proceeds to the process of step ST19.
  • the microcomputer 16 determines that there is a power supply resonance abnormality and stops the operation of the compressor motor 15 . Furthermore, the microcomputer 16 does not excite the relay excitation coil 8A by the relay driving circuit 19A. As a result, the microcomputer 16 switches the connection between the commercial AC power supply 1 and the diode bridge 4 from the reactor Lb to the reactor La to start the operation of the compressor motor 15 (step ST19).
  • the power supply device 101 executes the processing from steps ST20 to ST24.
  • the processing from steps ST20 to ST24 is the same as the processing from steps ST2 to ST6 described above. That is, in step ST20, the bus voltage detection unit 17 detects the DC voltage Vdc, and in step ST21, the voltage comparison unit 23 determines whether DC voltage Vdc ⁇ allowable voltage.
  • the compressor current detector 18 detects the compressor current, and in step ST23, the current comparator 26 determines whether or not compressor current ⁇ allowable current.
  • the power supply device 101 continues the operation of the compressor motor 15, and after the specific time has elapsed, the process returns to step ST20.
  • step ST21, No If DC voltage Vdc ⁇ allowable voltage (step ST21, No) or compressor current ⁇ allowable current (step ST23, No), the power supply device 101 proceeds to the process of step ST25.
  • the process of step ST25 is the second control process by the power supply device 101 .
  • the power supply device 101 has executed the following four combinations as element pairs that are combinations of reactors and smoothing capacitors.
  • ⁇ Reactor La and smoothing capacitor Ca ⁇ Reactor La and smoothing capacitor Cb
  • Reactor Lb and smoothing capacitor Ca ⁇ Reactor Lb and smoothing capacitor Cb
  • the power supply device 101 may execute the above four combinations in any order. That is, the power supply device 101 may execute the processes from steps ST2 to ST6, the processes from steps ST7 to ST12, the processes from steps ST13 to ST18, and the processes from steps ST19 to ST24 in any order.
  • the microcomputer 16 does not execute the processing of steps ST2 to ST6 first, it executes the same processing as steps ST7, ST13, and ST19 before the processing of step ST2. Specifically, the microcomputer 16, in the processing of steps ST7 to ST12, the processing of steps ST13 to ST18, or the processing of steps ST19 to ST24, when the DC voltage Vdc ⁇ the allowable voltage or when the compressor current ⁇ the allowable current is not , the operation of the compressor motor 15 is stopped. Further, the microcomputer 16 does not excite the relay excitation coil 8A by the relay drive circuit 19A and does not excite the relay excitation coils 8B and 8C by the relay drive circuits 19B and 19C. As a result, the microcomputer 16 uses the connection between the commercial AC power supply 1 and the diode bridge 4 as the reactor La, and the connection between the diode bridge 4 and the inverter section 14 as the smoothing capacitor Ca. to start driving.
  • FIG. 4 is a flowchart of a second control process performed by the power supply according to the first embodiment; FIG.
  • the microcomputer 16 controls the relay drive circuits 19A-19C based on the DC voltage Vdc and the compressor current.
  • the power supply device 101 starts the second control process, which is the process of step ST25.
  • the microcomputer 16 determines that there is power resonance abnormality and stops the operation of the compressor motor 15 (step ST26).
  • microcomputer 16 drives the relay so that the DC voltage Vdc and the compressor current are the combination closest to the allowable voltage and allowable current among the four combinations (four element pairs) described above up to this point.
  • the circuits 19A to 19C are controlled to start operation (step ST27).
  • the microcomputer 16 sets the element pair, which is the combination of the reactor connected to the commercial AC power supply 1 and the smoothing capacitor connected to the diode bridge 4 and the inverter unit 14, to the combination closest to the allowable voltage and allowable current.
  • the relay driving circuits 19A to 19C are controlled to start operation.
  • the microcomputer 16 controls the relay drive circuits 19A to 19C so that the combination of the reactor and the smoothing capacitor is such that the DC voltage Vdc is the lowest and the compressor current is the lowest.
  • microcomputer 16 selects the closest combination of allowable voltage and allowable current based on DC voltage Vdc, allowable voltage, compressor current and allowable current stored in voltage storage unit 22 .
  • the combination of the reactor and the smoothing capacitor closest to the permissible voltage and permissible current is the most stable combination of the DC voltage Vdc and the compressor current.
  • the microcomputer 16 selects the combination of the reactor La and the smoothing capacitor Ca when the combination of the reactor La and the smoothing capacitor Ca is the combination closest to the allowable voltage and allowable current. Then, the microcomputer 16 controls the relay driving circuit 19A so that the connection between the commercial AC power supply 1 and the diode bridge 4 is connected via the reactor La. Further, the microcomputer 16 controls the relay drive circuits 19B and 19C so that the connection between the diode bridge 4 and the inverter section 14 is via the smoothing capacitor Ca.
  • the bus voltage detection unit 17 detects the DC voltage Vdc (step ST28).
  • the voltage storage unit 22 stores the voltage of the difference between the maximum value and the minimum value of the DC voltage Vdc detected by the bus voltage detection unit 17 as the DC voltage Vdc detected by the bus voltage detection unit 17 .
  • the voltage comparison unit 23 compares the DC voltage Vdc stored in the voltage storage unit 22 with the permissible limit voltage previously stored in the voltage storage unit 22, and determines whether or not the DC voltage Vdc ⁇ the permissible limit voltage. (step ST29).
  • step ST29, No If the DC voltage Vdc ⁇ the allowable limit voltage is not satisfied (step ST29, No), the power supply device 101 proceeds to the process of step ST35. If the DC voltage Vdc ⁇ the allowable limit voltage (step ST29, Yes), the compressor current detector 18 detects the compressor current (step ST30). The current storage unit 25 stores the maximum value of the compressor current detected by the compressor current detection unit 18 as the compressor current.
  • the current comparison unit 26 compares the compressor current stored in the current storage unit 25 with the permissible limit current stored in advance in the current storage unit 25, and determines whether or not compressor current ⁇ permissible limit current. (step ST31).
  • step ST31, No If compressor current ⁇ allowable current (step ST31, No), the power supply device 101 proceeds to the process of step ST35. If the compressor current ⁇ the allowable limit current (step ST31, Yes), the power supply device 101 continues the operation of the compressor motor 15 (step ST32). As a result, the power supply device 101 can be operated within a range in which there is no problem in quality even in a state of being subjected to power supply resonance.
  • the microcomputer 16 determines whether or not the elapsed operation time, which is the elapsed time since the power supply device 101 started operating the compressor motor 15 in the second control process, has passed a specific time. That is, the microcomputer 16 determines whether or not elapsed driving time>specific time (step ST33).
  • step ST33, No If the elapsed operation time>the specific time is not satisfied (step ST33, No), the power supply device 101 returns to the process of step ST28. On the other hand, if the elapsed operation time>the specific time (step ST33, Yes), the power supply device 101 returns to the first control process (step ST34). That is, the process returns to step ST2 in FIG.
  • step ST29, No the allowable limit voltage
  • step ST31, No the microcomputer 16 determines that there is a power supply resonance abnormality, and determines that the compressor motor 15 is stopped and an abnormality is notified (step ST35). That is, the microcomputer 16 determines that the DC voltage Vdc or the compressor current exceeds the permissible limit and that there is a power supply resonance abnormality, stops the operation of the compressor motor 15, and notifies the user of the abnormality.
  • the power supply device 101 can change at least one of the reactor and the smoothing capacitor according to the magnitude of the load on the inverter section 14 . As a result, the power supply device 101 can change the DC voltage Vdc to be generated, so that the DC voltage Vdc can be changed according to the characteristics or operating range of the compressor motor 15 . Therefore, since the power supply device 101 is not affected by the operating frequency of the compressor motor 15 and the characteristics of the compressor motor 15, no distortion occurs in the DC voltage Vdc. As a result, the power supply device 101 can prevent the occurrence of power resonance due to the characteristics of the power supply device 101 and the compressor motor 15 and the environment in which they are used. can.
  • the power supply device 101 can change at least one of the reactor and the smoothing capacitor, even if the characteristics of the compressor motor 15 are changed or the operating frequency of the compressor motor 15 is changed, , the current flowing through the compressor motor 15 is not distorted due to the wiring environment. Therefore, regardless of the characteristics of the power supply device 101 and the compressor motor 15 and the operating environment, the power supply resonance of the DC voltage Vdc and the compressor current does not occur in the power supply device 101 . Therefore, the operation of the power supply device 101 does not become unstable, the maximum value of the compressor current does not reach the upper limit of the protection circuit, and the operation of the compressor motor 15 does not stop.
  • the voltage comparator 23 compares the DC voltage Vdc and the allowable voltage
  • the current comparator 26 compares the compressor current and the allowable current.
  • the voltage comparator 23 compares the DC voltage Vdc with the permissible limit voltage
  • the current comparator 26 compares the compressor current with the permissible limit current.
  • the microcomputer 16 controls the relay drive circuits 19A to 19C based on these comparison results to use a combination of either the reactor La or Lb and the smoothing capacitor Ca or Cb to perform compression.
  • the machine motor 15 is running.
  • the power supply device 101 can operate the compressor motor 15 and the air conditioner while preventing power supply resonance due to the characteristics and usage environment of the power supply device 101 and the compressor motor 15 . Further, the power supply device 101 can prevent power supply resonance and achieve power saving.
  • the power supply device 101 selects an appropriate combination of one of the reactors La and Lb and one of the smoothing capacitors Ca and Cb based on the DC voltage Vdc and the compressor current. As a result, the power supply device 101 can improve the power factor of the air conditioner and efficiently operate the air conditioner.
  • Embodiment 2 Next, Embodiment 2 will be described with reference to FIGS. 5 and 6.
  • FIG. in the second embodiment the three reactors are switched and the three smoothing capacitors are switched according to the values of the DC voltage Vdc and the compressor current.
  • FIG. 5 is a diagram showing the configuration of the power supply device according to the second embodiment. 5 that achieve the same functions as those of the power supply device 101 of Embodiment 1 shown in FIG. 1 are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • the power supply device 102 drives the compressor motor 15 by means of the inverter section 14.
  • Power supply device 102 includes converter section 13B instead of converter section 13A, as compared with power supply device 101 .
  • the converter section 13B has relays Ra2, Rb2, and Rc2 instead of the relays Ra1, Rb1, and Rc1. Further, the converter section 13B has a reactor Lc in addition to the reactors La and Lb as compared with the converter section 13A. In addition to the smoothing capacitors Ca and Cb, the converter unit 13B has a smoothing capacitor Cc as compared with the converter unit 13A.
  • the relay Ra2 is connected to the commercial AC power supply 1. Also, the relay Ra2 switches the connection with the commercial AC power supply 1 to one of the parallel-connected reactors La to Lc. That is, the relay Ra2 switches between the commercial AC power supply 1 and the reactors La to Lc to connect the commercial AC power supply 1 to the reactor La, to the reactor Lb, or to the reactor Lc.
  • Each of the reactors La to Lc has one end connectable to the relay Ra2 and the other end connected to the diode bridge 4 via the connection point 31 .
  • the relay drive circuit 19A drives the relay Ra2 by controlling the relay excitation coil 8A.
  • the relay drive circuit 19B drives the relay Rb2 by controlling the relay excitation coil 8B.
  • the relay drive circuit 19C drives the relay Rc2 by controlling the relay excitation coil 8C.
  • the diode bridge 4 is connected to the reactors La to Lc, the commercial AC power supply 1, the relay Rb2, and the connection point 33.
  • One end of the relay Rb2 is connected to the diode bridge 4, and the other end is connectable to any one of the connection points 34, 32, and 38. As shown in FIG.
  • connection point 35 is connected to connection point 37 via connection point 39 .
  • the relay Rb2 switches connection with the diode bridge 4 to connection with one of the parallel-connected smoothing capacitors Ca to Cc. That is, the relay Rb2 connects the diode bridge 4 to the smoothing capacitor Ca via the connection point 32, to the smoothing capacitor Cb via the connection point 34, or to the smoothing capacitor Cb via the connection point 38. Toggles whether to connect to Cc.
  • the relay Rc2 switches connection with the inverter unit 14 to connection with one of the parallel-connected smoothing capacitors Ca to Cc. That is, the relay Rc2 connects the inverter section 14 to the smoothing capacitor Ca via the connection point 32, to the smoothing capacitor Cb via the connection point 34, or to the smoothing capacitor Cb via the connection point 38. Toggles whether to connect to Cc.
  • the switching unit arranged in the power supply device 102 is not limited to the relays Ra2 to Rc2, and any switching unit such as a semiconductor switch may be used as long as it can switch the connection.
  • the microcomputer 16 controls the relay drive circuits 19A-19C based on the DC voltage Vdc and the compressor current.
  • the power supply device 102 has a configuration in which a reactor Lc and a smoothing capacitor Cc are added to the power supply device 101 . Therefore, the number of combinations of reactors and smoothing capacitors increases by the amount of added reactors Lc and smoothing capacitors Cc. That is, in the first embodiment, there are four combinations of reactors and smoothing capacitors, whereas in the second embodiment, there are nine combinations (three types x three types) of reactors and smoothing capacitors. )become.
  • the power supply device 102 of the second embodiment performs the following five combinations in addition to the four combinations of the first embodiment. ⁇ Reactor La and smoothing capacitor Cc ⁇ Reactor Lb and smoothing capacitor Cc ⁇ Reactor Lc and smoothing capacitor Ca ⁇ Reactor Lc and smoothing capacitor Cb ⁇ Reactor Lc and smoothing capacitor Cc
  • the power supply device 101 of the first embodiment repeats the same processing as steps ST2 to ST6 four times, but the power supply device 102 of the second embodiment repeats the same processing as steps ST2 to ST6 nine times. repeat. Thereby, the power supply device 102 implements nine combinations of reactors and smoothing capacitors.
  • the microcomputer 16 of the second embodiment executes the above-described five combinations after executing the four combinations by executing steps ST1 to ST24, which are the first control processing described with reference to FIG.
  • FIG. 6 is a flow chart showing the procedure of the third control process by the power supply device according to the second embodiment.
  • the microcomputer 16 controls at least one of the relay drive circuits 19A to 19C while the operation of the power supply 102 is stopped, thereby switching the combination of the reactor and the smoothing capacitor to start the operation of the power supply 102. (step ST37). In this case, the microcomputer 16 switches to an unexecuted combination among the combinations of the reactor and the smoothing capacitor.
  • the power supply device 102 executes the processing from steps ST38 to ST42.
  • the processing from steps ST38 to ST42 is the same as the processing from steps ST2 to ST6 described above. That is, in step ST38, the bus voltage detection unit 17 detects the DC voltage Vdc, and in step ST39, the voltage comparison unit 23 determines whether or not DC voltage Vdc ⁇ allowable voltage.
  • the compressor current detector 18 detects the compressor current, and in step ST41, the current comparator 26 determines whether or not compressor current ⁇ allowable current.
  • the power supply device 102 continues the operation of the compressor motor 15, and after the specific time has elapsed, the process returns to step ST38.
  • step ST39, No If the DC voltage Vdc ⁇ the allowable voltage (step ST39, No) or the compressor current ⁇ the allowable current (step ST41, No), the microcomputer 16 proceeds to the process of step ST43.
  • the microcomputer 16 determines whether or not the switching process has been executed a specified number of times (step ST43).
  • the prescribed number of times is the number of times of switching that can execute all the combinations of the reactor and the smoothing capacitor.
  • the number of combinations of reactors and smoothing capacitors is nine, so the microcomputer 16 determines whether switching processing has been performed eight times.
  • step ST43 If the microcomputer 16 has not executed the switching process for the prescribed number of times (step ST43, No), it executes the process from step ST37 to ST43. Note that the power supply device 102 may execute the above nine combinations in any order.
  • step ST43, Yes When the third control process ends, that is, when the switching process has been performed the specified number of times (step ST43, Yes), the power supply 102 starts the second control process, which is the process of step ST25.
  • the number of reactors and smoothing capacitors included in power supply devices 101 and 102 with variable reactors and smoothing capacitors is limited to two types each or three types each. do not have. There is no limit to the number of reactors and smoothing capacitors that power supply devices 101 and 102 have, as long as at least one of the reactors and smoothing capacitors is plural.
  • the microcomputer 16 controls the relay drive circuits 19A to 19C to use a combination of any one of the reactors La to Lc and any one of the smoothing capacitors Ca to Cc. I am driving a 102. Therefore, in the second embodiment as well, the same effect as in the first embodiment can be obtained. That is, the power supply 102 can prevent power supply resonance due to the characteristics of the power supply 102 and the compressor motor 15 and the usage environment, and can operate the air conditioner while preventing the power supply resonance.
  • the air conditioner can be operated more stably than the power supply device 101.
  • the microcomputer 16 is implemented by a processing circuit.
  • the processing circuitry may be a processor and memory executing programs stored in the memory, or may be dedicated hardware.
  • FIG. 7 is a diagram showing a configuration example of a processing circuit when the processing circuit provided in the microcomputer according to the first and second embodiments is realized by a processor and memory.
  • a processing circuit 90 shown in FIG. 7 includes a processor 91 and a memory 92 .
  • each function of the processing circuit 90 is implemented by software, firmware, or a combination of software and firmware.
  • Software or firmware is written as a program and stored in memory 92 .
  • each function is realized by the processor 91 reading and executing the program stored in the memory 92.
  • This program can also be said to be a program for causing the microcomputer 16 to execute each function realized by the processing circuit 90 .
  • This program may be provided by a storage medium storing the program, or may be provided by other means such as a communication medium.
  • the above program can also be said to be a program that causes the microcomputer 16 to execute the processes described with reference to FIGS.
  • the processor 91 is, for example, a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, a microcontroller, or a DSP (Digital Signal Processor).
  • the memory 92 is a non-volatile or volatile memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), etc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), etc.
  • a semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc) is applicable.
  • FIG. 8 is a diagram showing an example of a processing circuit when the processing circuit included in the microcomputer according to the first and second embodiments is configured with dedicated hardware.
  • the processing circuit 93 shown in FIG. 8 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these thing applies.
  • the processing circuit 93 may be partially realized by dedicated hardware and partially realized by software or firmware.
  • the processing circuitry 93 can implement each of the functions described above by dedicated hardware, software, firmware, or a combination thereof.

Abstract

A supply device (101) comprises: a converter unit (13A); an inverter unit (14); a bus voltage detection unit (17) that detects the voltage value of a DC voltage supplied to the inverter unit (14); a compressor current detection unit (18) that detects the current value of current flowing through a motor; and a microcomputer (16) that controls the converter unit (13A). The converter unit (13A) includes reactors (La, Lb), a diode bridge (4), smoothing capacitors (Ca, Cb), a relay (Ra1) that executes switching as to which of the reactors (La, Lb) is to be connected to a commercial AC power source (1), and relays (Rb1, Rc1) that execute switching as to which of the smoothing capacitors (Ca, Cb) is to be connected to the diode bridge (4) and the inverter unit (14). The microcomputer (16) controls the relays (Ra1, Rb1, Rc1) on the basis of the voltage value detected by the bus voltage detection unit (17) and the current value detected by the compressor current detection unit (18).

Description

電源装置power supply
 本開示は、交流電圧を整流して直流電圧を生成する電源装置に関する。 The present disclosure relates to a power supply device that rectifies an AC voltage to generate a DC voltage.
 交流電圧を整流して直流電圧を生成する電源装置の1つに、インバータ方式でモータを駆動する電源装置がある。この電源装置は、空気調和機等に適用される。 One type of power supply that rectifies an AC voltage to generate a DC voltage is a power supply that drives a motor using an inverter system. This power supply device is applied to air conditioners and the like.
 特許文献1に記載の電源装置は、商用電源からの商用交流電圧を、リアクタに接続されたダイオードブリッジで整流し、平滑コンデンサで平滑して直流電圧を生成している。この直流電圧は、電源電圧としてインバータからモータに供給されている。 The power supply device described in Patent Document 1 rectifies a commercial AC voltage from a commercial power supply with a diode bridge connected to a reactor and smoothes it with a smoothing capacitor to generate a DC voltage. This DC voltage is supplied from the inverter to the motor as a power supply voltage.
特開平11-289766号公報JP-A-11-289766
 しかしながら、上記特許文献1の技術では、ダイオードブリッジに接続されたリアクタおよび平滑コンデンサが負荷の大小にかかわらず固定されており、生成される直流電圧を変更することができなかった。このため、電動機の特性および運転領域にかかわらず直流電圧が一定となるので、運転周波数および電動機の特性の影響を受けて直流電圧に歪みが発生する。この結果、電源装置および電動機の、特性および使用環境によって電源共振が発生し、電源装置によるモータの運転が不安定になるという問題があった。 However, in the technique of Patent Document 1, the reactor and smoothing capacitor connected to the diode bridge are fixed regardless of the size of the load, and the generated DC voltage cannot be changed. Therefore, the DC voltage is constant regardless of the characteristics of the motor and the operating range, so that the DC voltage is distorted under the influence of the operating frequency and the characteristics of the motor. As a result, power source resonance occurs depending on the characteristics and use environment of the power source device and the electric motor, and there is a problem that the operation of the motor by the power source device becomes unstable.
 本開示は、上記に鑑みてなされたものであって、モータを安定して運転できる電源装置を得ることを目的とする。 The present disclosure has been made in view of the above, and aims to obtain a power supply device that can stably operate a motor.
 上述した課題を解決し、目的を達成するために、本開示の電源装置は、商用交流電源の交流電圧を直流電圧に変換するコンバータ部と、コンバータ部からの直流電圧を交流電圧に変換してモータを駆動するインバータ部と、インバータ部に供給される直流電圧の電圧値を検出する電圧検出部と、モータに流れる電流値を検出する電流検出部と、コンバータ部を制御する制御装置とを備える。コンバータ部は、商用交流電源に接続可能でインダクタンス値が異なる複数のリアクタと、商用交流電源に複数のリアクタの何れかを介して接続された状態で商用交流電源からの交流電圧を整流して直流電圧を生成する整流回路と、整流回路およびインバータ部に接続可能で、且つ整流回路およびインバータ部に接続された状態で直流電圧を平滑化してインバータ部に送るコンデンサ容量が異なる複数の平滑用コンデンサとを有する。また、コンバータ部は、複数のリアクタの何れを商用交流電源に接続するかを切り替える第1の切替部と、複数の平滑用コンデンサの何れを整流回路およびインバータ部に接続するかを切り替える第2の切替部と、を有する。制御装置は、電圧検出部が検出した電圧値および電流検出部が検出した電流値に基づいて、第1の切替部および第2の切替部を制御する。 In order to solve the above-described problems and achieve the object, the power supply device of the present disclosure includes a converter section that converts the AC voltage of the commercial AC power source into a DC voltage, and a converter section that converts the DC voltage from the converter section into an AC voltage. An inverter section for driving the motor, a voltage detection section for detecting the voltage value of the DC voltage supplied to the inverter section, a current detection section for detecting the value of current flowing through the motor, and a control device for controlling the converter section. . The converter section includes a plurality of reactors that can be connected to a commercial AC power supply and have different inductance values, and rectifies the AC voltage from the commercial AC power supply while being connected to the commercial AC power supply through one of the plurality of reactors. a rectifying circuit that generates a voltage; and a plurality of smoothing capacitors having different capacitor capacities that are connectable to the rectifying circuit and the inverter unit, smooth the DC voltage while connected to the rectifying circuit and the inverter unit, and send the DC voltage to the inverter unit. have The converter section has a first switching section for switching which of the plurality of reactors is connected to the commercial AC power supply, and a second switching section for switching which of the plurality of smoothing capacitors is to be connected to the rectifier circuit and the inverter section. and a switching unit. The control device controls the first switching section and the second switching section based on the voltage value detected by the voltage detection section and the current value detected by the current detection section.
 本開示にかかる電源装置は、モータを安定して運転できるという効果を奏する。 The power supply device according to the present disclosure has the effect of stably driving the motor.
実施の形態1にかかる電源装置の構成を示す図1 shows a configuration of a power supply device according to a first embodiment; FIG. 実施の形態1にかかる電源装置が備えるマイコンの構成を示す図FIG. 2 is a diagram showing a configuration of a microcomputer included in the power supply device according to the first embodiment; 実施の形態1にかかる電源装置による第1の制御処理の処理手順を示すフローチャート4 is a flowchart showing the procedure of first control processing by the power supply device according to the first embodiment; 実施の形態1にかかる電源装置による第2の制御処理の処理手順を示すフローチャート4 is a flowchart showing the processing procedure of second control processing by the power supply device according to the first embodiment; 実施の形態2にかかる電源装置の構成を示す図FIG. 4 shows a configuration of a power supply device according to a second embodiment; 実施の形態2にかかる電源装置による第3の制御処理の処理手順を示すフローチャートFIG. 10 is a flow chart showing a processing procedure of third control processing by the power supply device according to the second embodiment; FIG. 実施の形態1,2にかかるマイコンが備える処理回路をプロセッサおよびメモリで実現する場合の処理回路の構成例を示す図FIG. 4 is a diagram showing a configuration example of a processing circuit provided in the microcomputer according to the first and second embodiments when the processing circuit is implemented by a processor and a memory; 実施の形態1,2にかかるマイコンが備える処理回路を専用のハードウェアで構成する場合の処理回路の例を示す図FIG. 4 is a diagram showing an example of a processing circuit when the processing circuit included in the microcomputer according to the first and second embodiments is configured with dedicated hardware;
 以下に、本開示の実施の形態にかかる電源装置を図面に基づいて詳細に説明する。 A power supply device according to an embodiment of the present disclosure will be described in detail below with reference to the drawings.
実施の形態1.
 図1は、実施の形態1にかかる電源装置の構成を示す図である。電源装置101は、交流電圧を整流して直流電圧(以下、直流電圧Vdcという)を生成し、直流電圧Vdcを交流電圧に変換する装置である。電源装置101は、負荷であるインバータ部14によって圧縮機用モータ15を駆動する。電動機の一例である圧縮機用モータ15は、空気調和機などに適用されるモータである。
Embodiment 1.
1 is a diagram illustrating a configuration of a power supply device according to a first embodiment; FIG. The power supply device 101 is a device that rectifies an AC voltage to generate a DC voltage (hereinafter referred to as a DC voltage Vdc) and converts the DC voltage Vdc into an AC voltage. The power supply device 101 drives the compressor motor 15 by the inverter section 14 which is a load. A compressor motor 15, which is an example of an electric motor, is a motor applied to an air conditioner or the like.
 電源装置101は、商用交流電源1の交流電圧を直流電圧Vdcに変換するコンバータ部13Aと、インバータ方式で圧縮機用モータ15を駆動するインバータ部14とを備えている。インバータ部14は、コンバータ部13Aからの直流電圧Vdcを交流電圧に変換して圧縮機用モータ15に供給する。 The power supply device 101 includes a converter section 13A that converts the AC voltage of the commercial AC power supply 1 into a DC voltage Vdc, and an inverter section 14 that drives the compressor motor 15 by an inverter system. The inverter unit 14 converts the DC voltage Vdc from the converter unit 13A into an AC voltage and supplies the AC voltage to the compressor motor 15 .
 また、電源装置101は、コンバータ部13Aからの直流電圧Vdcを検出する母線電圧検出部17と、圧縮機用モータ15に流れる電流を検出する圧縮機電流検出部18とを備えている。また、電源装置101は、母線電圧検出部17で検出した直流電圧Vdcと圧縮機電流検出部18で検出された圧縮機電流とを読み取るマイクロコンピュータ(以下、マイコンという)16と、マイコン16からの信号によって駆動するリレー駆動回路19A~19Cとを備えている。 The power supply device 101 also includes a bus voltage detection section 17 that detects the DC voltage Vdc from the converter section 13A, and a compressor current detection section 18 that detects the current flowing through the compressor motor 15 . The power supply device 101 also includes a microcomputer (hereinafter referred to as a microcomputer) 16 that reads the DC voltage Vdc detected by the bus voltage detector 17 and the compressor current detected by the compressor current detector 18, and It has relay drive circuits 19A to 19C driven by signals.
 コンバータ部13Aは、リアクタLa,Lbと、切替部であるリレーRa1,Rb1,Rc1と、リレー励磁コイル8A,8B,8Cと、平滑用コンデンサCa,Cbとを有している。リレーRa1が第1の切替部であり、リレーRb1,Rc1が第2の切替部である。 The converter section 13A has reactors La and Lb, relays Ra1, Rb1 and Rc1 which are switching sections, relay excitation coils 8A, 8B and 8C, and smoothing capacitors Ca and Cb. Relay Ra1 is a first switching unit, and relays Rb1 and Rc1 are second switching units.
 リアクタLa,Lbは、インダクタンス値が異なるリアクタである。すなわち、電源装置101は、インダクタンス値が異なる複数のリアクタを有している。平滑用コンデンサCa,Cbは、コンデンサ容量が異なるコンデンサである。すなわち、電源装置101は、コンデンサ容量が異なる複数のコンデンサを有している。 Reactors La and Lb are reactors with different inductance values. That is, the power supply device 101 has a plurality of reactors with different inductance values. The smoothing capacitors Ca and Cb are capacitors having different capacitor capacities. That is, the power supply device 101 has a plurality of capacitors with different capacitor capacities.
 リレーRa1は、商用交流電源1に接続されている。リレーRa1は、商用交流電源1との接続を、並列接続されているリアクタLa,Lbのうちの何れか一方への接続に切り替える。すなわち、リレーRa1は、商用交流電源1と、リアクタLa,Lbとの間で、商用交流電源1をリアクタLaに接続するか、リアクタLbに接続するかを切り替える。 The relay Ra1 is connected to the commercial AC power supply 1. Relay Ra1 switches connection with commercial AC power supply 1 to connection with one of reactors La and Lb connected in parallel. That is, the relay Ra1 switches between the commercial AC power supply 1 and the reactors La and Lb to connect the commercial AC power supply 1 to the reactor La or to the reactor Lb.
 リアクタLa,Lbは、それぞれ一方の端部がリレーRa1に接続可能となっており、他方の端部が接続点31を介してダイオードブリッジ4に接続されている。ダイオードブリッジ4は、整流回路の一例である。 Each of the reactors La and Lb has one end connectable to the relay Ra1 and the other end connected to the diode bridge 4 via the connection point 31 . Diode bridge 4 is an example of a rectifier circuit.
 リレー励磁コイル8Aは、リレー駆動回路19Aに接続されている。また、リレー励磁コイル8Bは、リレー駆動回路19Bに接続されており、リレー励磁コイル8Cは、リレー駆動回路19Cに接続されている。 The relay excitation coil 8A is connected to the relay drive circuit 19A. The relay excitation coil 8B is connected to the relay drive circuit 19B, and the relay excitation coil 8C is connected to the relay drive circuit 19C.
 リレー駆動回路19Aは、リレー励磁コイル8Aを制御することによって、リレーRa1を駆動する。リレー駆動回路19Bは、リレー励磁コイル8Bを制御することによって、リレーRb1を駆動する。リレー駆動回路19Cは、リレー励磁コイル8Cを制御することによって、リレーRc1を駆動する。 The relay drive circuit 19A drives the relay Ra1 by controlling the relay excitation coil 8A. The relay drive circuit 19B drives the relay Rb1 by controlling the relay excitation coil 8B. The relay drive circuit 19C drives the relay Rc1 by controlling the relay excitation coil 8C.
 ダイオードブリッジ4は、リアクタLa,Lb、商用交流電源1、リレーRb1、および接続点33に接続されている。リレーRb1は、一方の端部がダイオードブリッジ4に接続されており、他方の端部が接続点34または接続点32に接続可能となっている。リレーRb1は、ダイオードブリッジ4との接続を、並列接続されている平滑用コンデンサCa,Cbのうちの何れか一方への接続に切り替える。すなわち、リレーRb1は、ダイオードブリッジ4と、接続点32,34との間で、ダイオードブリッジ4を、接続点32を介して平滑用コンデンサCaに接続するか、接続点34を介して平滑用コンデンサCbに接続するかを切り替える。 The diode bridge 4 is connected to the reactors La and Lb, the commercial AC power supply 1, the relay Rb1, and the connection point 33. The relay Rb1 has one end connected to the diode bridge 4 and the other end connectable to the connection point 34 or the connection point 32 . The relay Rb1 switches connection with the diode bridge 4 to connection with one of the parallel-connected smoothing capacitors Ca and Cb. That is, the relay Rb1 connects the diode bridge 4 to the smoothing capacitor Ca through the connection point 32, or connects the smoothing capacitor Ca through the connection point 34 between the diode bridge 4 and the connection points 32 and 34. Toggles whether to connect to Cb.
 平滑用コンデンサCaは、一方の端部が接続点32を介してリレーRb1,Rc1に接続可能となっており、他方の端部が接続点33に接続されている。平滑用コンデンサCbは、一方の端部が接続点34を介してリレーRb1,Rc1に接続可能となっており、他方の端部が接続点35に接続されている。 One end of the smoothing capacitor Ca is connectable to the relays Rb1 and Rc1 via the connection point 32, and the other end is connected to the connection point 33. Smoothing capacitor Cb has one end connectable to relays Rb1 and Rc1 via connection point 34 and the other end connected to connection point 35 .
 リレーRc1は、一方の端部が接続点36を介してインバータ部14に接続されており、他方の端部が接続点34または接続点32に接続可能となっている。リレーRc1は、インバータ部14との接続を、並列接続されている平滑用コンデンサCa,Cbのうちの何れか一方への接続に切り替える。すなわち、リレーRc1は、インバータ部14と、接続点32,34との間で、インバータ部14を、接続点32を介して平滑用コンデンサCaに接続するか、接続点34を介して平滑用コンデンサCbに接続するかを切り替える。 One end of the relay Rc1 is connected to the inverter section 14 via the connection point 36, and the other end is connectable to the connection point 34 or the connection point 32. The relay Rc1 switches connection with the inverter unit 14 to connection with one of the parallel-connected smoothing capacitors Ca and Cb. That is, the relay Rc1 connects the inverter section 14 to the smoothing capacitor Ca via the connection point 32 or connects the smoothing capacitor Ca via the connection point 34 between the inverter section 14 and the connection points 32 and 34 . Toggles whether to connect to Cb.
 接続点35は、接続点33および接続点37に接続されている。インバータ部14は、接続点36,37および圧縮機用モータ15に接続されている。圧縮機電流検出部18は、インバータ部14に接続されており、インバータ部14に流れる電流を検出することで、圧縮機用モータ15に流れる圧縮機電流を検出する。母線電圧検出部17は、接続点36,37に接続されており、インバータ部14の母線電圧、すなわち直流電圧Vdcを検出する。 The connection point 35 is connected to the connection point 33 and the connection point 37. The inverter unit 14 is connected to the connection points 36 and 37 and the compressor motor 15 . The compressor current detection unit 18 is connected to the inverter unit 14 and detects the compressor current flowing through the compressor motor 15 by detecting the current flowing through the inverter unit 14 . The bus voltage detection unit 17 is connected to the connection points 36 and 37 and detects the bus voltage of the inverter unit 14, that is, the DC voltage Vdc.
 制御装置であるマイコン16は、リレー駆動回路19A~19C、圧縮機電流検出部18、および母線電圧検出部17に接続されている。マイコン16は、圧縮機電流検出部18が検出した圧縮機電流、および母線電圧検出部17が検出した直流電圧Vdcを受け付ける。マイコン16は、直流電圧Vdcおよび圧縮機電流に基づいて、リレー駆動回路19A~19Cを制御する。 A microcomputer 16, which is a control device, is connected to relay drive circuits 19A to 19C, a compressor current detector 18, and a bus voltage detector 17. The microcomputer 16 receives the compressor current detected by the compressor current detector 18 and the DC voltage Vdc detected by the bus voltage detector 17 . Microcomputer 16 controls relay drive circuits 19A-19C based on DC voltage Vdc and compressor current.
 実施の形態1のマイコン16は、直流電圧Vdcが許容範囲となり、且つ圧縮機電流が許容範囲となるように、リアクタLa,Lbのうちの何れか一方と、平滑用コンデンサCa,Cbのうちの何れか一方とで電源装置101を動作させる。 The microcomputer 16 according to the first embodiment is configured such that one of the reactors La and Lb and one of the smoothing capacitors Ca and Cb is controlled so that the DC voltage Vdc is within the permissible range and the compressor current is within the permissible range. The power supply device 101 is operated with either one.
 なお、電源装置101に配置される切替部は、リレーRa1,Rb1に限らず、半導体スイッチなどの接続を切り替えることが可能な装置であれば、何れの切替部が用いられてもよい。 Note that the switching unit arranged in the power supply device 101 is not limited to the relays Ra1 and Rb1, and any switching unit such as a semiconductor switch may be used as long as it is a device capable of switching connections.
 図2は、実施の形態1にかかる電源装置が備えるマイコンの構成を示す図である。マイコン16は、電圧記憶部22と、電圧比較部23と、電流記憶部25と、電流比較部26と、リレー制御部24とを有している。電圧記憶部22が第1の記憶部であり、電流記憶部25が第2の記憶部である。 FIG. 2 is a diagram showing the configuration of a microcomputer included in the power supply device according to the first embodiment. The microcomputer 16 has a voltage storage section 22 , a voltage comparison section 23 , a current storage section 25 , a current comparison section 26 and a relay control section 24 . The voltage storage unit 22 is the first storage unit, and the current storage unit 25 is the second storage unit.
 電圧記憶部22は、母線電圧検出部17および電圧比較部23に接続されている。電圧比較部23は、リレー制御部24および電流比較部26に接続されている。電流記憶部25は、圧縮機電流検出部18および電流比較部26に接続されている。リレー制御部24は、電流比較部26およびリレー駆動回路19A~19Cに接続されている。 The voltage storage unit 22 is connected to the bus voltage detection unit 17 and the voltage comparison unit 23 . Voltage comparator 23 is connected to relay controller 24 and current comparator 26 . Current storage unit 25 is connected to compressor current detection unit 18 and current comparison unit 26 . The relay control section 24 is connected to the current comparing section 26 and the relay driving circuits 19A to 19C.
 電圧記憶部22は、母線電圧検出部17が検出した直流電圧Vdc、直流電圧Vdcの許容電圧、および直流電圧Vdcの許容限界電圧を記憶するメモリなどである。許容電圧は、電源装置101に許容される電圧であり、許容限界電圧は、電源装置101に許容される限界の電圧である。換言すると、許容電圧は、電圧の第1の基準値(第1の電圧基準値)であり、許容限界電圧は、電圧の第2の基準値(第2の電圧基準値)である。また、許容電圧は、許容限界電圧よりも小さな値である。 The voltage storage unit 22 is a memory or the like that stores the DC voltage Vdc detected by the bus voltage detection unit 17, the allowable voltage of the DC voltage Vdc, and the allowable limit voltage of the DC voltage Vdc. The allowable voltage is the voltage allowed for the power supply device 101 , and the allowable limit voltage is the limit voltage allowed for the power supply device 101 . In other words, the allowable voltage is a first reference value of voltage (first voltage reference value), and the allowable limit voltage is a second reference value of voltage (second voltage reference value). Also, the allowable voltage is a value smaller than the allowable limit voltage.
 許容電圧は、圧縮機用モータ15の運転、すなわちコンバータ部13Aを用いた圧縮機用モータ15の運転を一時停止して、リアクタLa,Lbの切り替え、または平滑用コンデンサCa,Cbの切り替えを行うか否かを判定するための基準値である。許容限界電圧は、電源装置101の運転を完全に停止して異常を通知するかを判定するための基準値である。したがって、直流電圧Vdcが許容電圧以上となった場合は、リアクタLa,Lbの切り替え、または平滑用コンデンサCa,Cbの切り替えが行われた後に、電源装置101は運転を再開できるが、直流電圧Vdcが許容限界電圧以上となった場合は、電源装置101は運転を停止して異常を通知する。 The allowable voltage is obtained by temporarily stopping the operation of the compressor motor 15, that is, the operation of the compressor motor 15 using the converter unit 13A, and switching the reactors La and Lb or switching the smoothing capacitors Ca and Cb. It is a reference value for determining whether or not. The permissible limit voltage is a reference value for determining whether to completely stop the operation of the power supply device 101 and notify the abnormality. Therefore, when the DC voltage Vdc becomes equal to or higher than the allowable voltage, the power supply device 101 can resume operation after the switching of the reactors La and Lb or the switching of the smoothing capacitors Ca and Cb. becomes equal to or higher than the allowable limit voltage, the power supply device 101 stops the operation and notifies the abnormality.
 直流電圧Vdcが許容電圧以上である場合には、マイコン16が、圧縮機用モータ15の運転を停止し、リアクタLa,Lbの切り替え、および平滑用コンデンサCa,Cbの切り替えの少なくとも1つを実行する。この後、マイコン16は、圧縮機用モータ15の運転を再開する。直流電圧Vdcが許容限界電圧以上である場合には、マイコン16は、圧縮機用モータ15の運転を停止してユーザに異常を通知する。 When the DC voltage Vdc is equal to or higher than the allowable voltage, the microcomputer 16 stops the operation of the compressor motor 15 and executes at least one of switching between the reactors La and Lb and switching between the smoothing capacitors Ca and Cb. do. After that, the microcomputer 16 restarts the operation of the compressor motor 15 . When the DC voltage Vdc is equal to or higher than the allowable limit voltage, the microcomputer 16 stops the operation of the compressor motor 15 and notifies the user of the abnormality.
 電圧比較部23は、直流電圧Vdcと直流電圧Vdcの許容電圧とを比較する場合には、電圧記憶部22から、直流電圧Vdc、および直流電圧Vdcの許容電圧を読み出す。電圧比較部23は、直流電圧Vdcと直流電圧Vdcの許容限界電圧とを比較する場合には、電圧記憶部22から、直流電圧Vdc、および直流電圧Vdcの許容限界電圧を読み出す。 When comparing the DC voltage Vdc and the allowable voltage of the DC voltage Vdc, the voltage comparison unit 23 reads the DC voltage Vdc and the allowable voltage of the DC voltage Vdc from the voltage storage unit 22 . When comparing the DC voltage Vdc with the allowable limit voltage of the DC voltage Vdc, the voltage comparator 23 reads the DC voltage Vdc and the allowable limit voltage of the DC voltage Vdc from the voltage storage unit 22 .
 電圧比較部23は、電源装置101が運転を開始した場合、または後述する電流正常情報を受信した場合に、直流電圧Vdcと直流電圧Vdcの許容電圧とを比較する。また、電圧比較部23は、電源装置101が運転を開始した場合、または後述する電流限界正常情報を受信した場合に、直流電圧Vdcと直流電圧Vdcの許容限界電圧とを比較する。 The voltage comparison unit 23 compares the DC voltage Vdc with the allowable voltage of the DC voltage Vdc when the power supply device 101 starts operating or when current normal information (to be described later) is received. Voltage comparison unit 23 compares DC voltage Vdc with the allowable limit voltage of DC voltage Vdc when power supply device 101 starts operating or when current limit normality information, which will be described later, is received.
 電圧比較部23は、直流電圧Vdcが許容電圧よりも小さい場合には、直流電圧Vdcが許容電圧よりも小さいことを示す情報(以下、電圧正常情報という)を電流比較部26に送る。 When the DC voltage Vdc is lower than the allowable voltage, the voltage comparator 23 sends information indicating that the DC voltage Vdc is lower than the allowable voltage (hereinafter referred to as normal voltage information) to the current comparator 26 .
 また、電圧比較部23は、直流電圧Vdcが許容電圧以上の場合には、直流電圧Vdcが許容電圧以上であることを示す情報(以下、電圧異常情報という)をリレー制御部24に送る。 Also, when the DC voltage Vdc is equal to or higher than the allowable voltage, the voltage comparison unit 23 sends information indicating that the DC voltage Vdc is equal to or higher than the allowable voltage (hereinafter referred to as voltage abnormality information) to the relay control unit 24 .
 また、電圧比較部23は、直流電圧Vdcが許容限界電圧よりも小さい場合には、直流電圧Vdcが許容限界電圧よりも小さいことを示す情報(以下、電圧限界正常情報という)を電流比較部26に送る。 Further, when the DC voltage Vdc is smaller than the allowable limit voltage, the voltage comparator 23 outputs information indicating that the DC voltage Vdc is smaller than the allowable limit voltage (hereinafter referred to as normal voltage limit information) to the current comparator 26 . send to
 電流記憶部25は、圧縮機電流検出部18が検出した圧縮機電流、圧縮機電流の許容電流、および圧縮機電流の許容限界電流を記憶するメモリなどである。許容電流は、電源装置101に許容される電流であり、許容限界電流は、電源装置101に許容される限界の電流である。換言すると、許容電流は、電流の第1の基準値(第1の電流基準値)であり、許容限界電流は、電流の第2の基準値(第2の電流基準値)である。また、許容電流は、許容限界電流よりも小さな値である。 The current storage unit 25 is a memory or the like that stores the compressor current detected by the compressor current detection unit 18, the allowable current of the compressor current, and the allowable limit current of the compressor current. The allowable current is the current allowed for the power supply device 101 , and the allowable limit current is the limit current allowed for the power supply device 101 . In other words, the permissible current is a first reference value of current (first current reference value), and the permissible limit current is a second reference value of current (second current reference value). Also, the allowable current is a value smaller than the allowable limit current.
 許容電流は、圧縮機用モータ15の運転を一時停止して、リアクタLa,Lbの切り替え、または平滑用コンデンサCa,Cbの切り替えを行うか否かを判定するための基準値である。許容限界電流は、電源装置101の完全に運転を停止して異常を通知するかを判定するための基準値である。したがって、圧縮機電流が許容電流以上となった場合は、リアクタLa,Lbの切り替え、または平滑用コンデンサCa,Cbの切り替えが行われた後に、電源装置101は運転を再開できるが、圧縮機電流が許容限界電流以上となった場合は、電源装置101は運転を停止して異常を通知する。 The allowable current is a reference value for determining whether to temporarily stop the operation of the compressor motor 15 and switch the reactors La and Lb or the smoothing capacitors Ca and Cb. The permissible limit current is a reference value for determining whether to completely stop the operation of the power supply device 101 and notify the abnormality. Therefore, when the compressor current exceeds the allowable current, the power supply device 101 can resume operation after switching the reactors La and Lb or switching the smoothing capacitors Ca and Cb. becomes equal to or higher than the allowable limit current, the power supply device 101 stops operation and notifies the abnormality.
 圧縮機電流が許容電流以上である場合には、マイコン16が、圧縮機用モータ15の運転を停止し、リアクタLa,Lbの切り替え、平滑用コンデンサCa,Cbの切り替えの少なくとも1つを実行する。この後、マイコン16は、圧縮機用モータ15の運転を再開する。圧縮機電流が許容限界電流以上である場合には、マイコン16は、圧縮機用モータ15の運転を停止してユーザに異常を通知する。 When the compressor current is equal to or higher than the allowable current, the microcomputer 16 stops the operation of the compressor motor 15 and executes at least one of switching between the reactors La and Lb and switching between the smoothing capacitors Ca and Cb. . After that, the microcomputer 16 restarts the operation of the compressor motor 15 . If the compressor current is equal to or higher than the allowable limit current, the microcomputer 16 stops the operation of the compressor motor 15 and notifies the user of the abnormality.
 電流比較部26は、電圧比較部23から電圧正常情報を受信すると、電流記憶部25から、圧縮機電流、および圧縮機電流の許容電流を読み出す。この場合、電流比較部26は、圧縮機電流と許容電流とを比較する。 Upon receiving the normal voltage information from the voltage comparison unit 23, the current comparison unit 26 reads out the compressor current and the allowable current of the compressor current from the current storage unit 25. In this case, the current comparator 26 compares the compressor current and the allowable current.
 電流比較部26は、圧縮機電流が許容電流よりも小さい場合には、圧縮機電流が許容電流よりも小さいことを示す情報(以下、電流正常情報という)をリレー制御部24に送る。 When the compressor current is smaller than the allowable current, the current comparing unit 26 sends information indicating that the compressor current is smaller than the allowable current (hereinafter referred to as normal current information) to the relay control unit 24 .
 電流比較部26は、圧縮機電流が許容電流以上である場合には、圧縮機電流が許容電流以上であることを示す情報(以下、電流異常情報という)をリレー制御部24に送る。 When the compressor current is equal to or higher than the allowable current, the current comparator 26 sends information indicating that the compressor current is equal to or higher than the allowable current (hereinafter referred to as current abnormality information) to the relay control unit 24 .
 電流比較部26は、電圧比較部23から電圧限界正常情報を受信すると、電流記憶部25から、圧縮機電流、および圧縮機電流の許容限界電流を読み出す。この場合、電流比較部26は、圧縮機電流と許容限界電流とを比較する。 Upon receiving the voltage limit normal information from the voltage comparison unit 23, the current comparison unit 26 reads the compressor current and the allowable limit current of the compressor current from the current storage unit 25. In this case, the current comparator 26 compares the compressor current with the allowable limit current.
 電流比較部26は、圧縮機電流が許容限界電流よりも小さい場合には、圧縮機電流が許容限界電流よりも小さいことを示す情報(以下、電流限界正常情報という)を電圧比較部23に送る。 When the compressor current is smaller than the allowable limit current, the current comparator 26 sends information indicating that the compressor current is smaller than the allowable limit current (hereinafter referred to as normal current limit information) to the voltage comparator 23. .
 リレー制御部24は、電圧比較部23から送られてくる情報、および電流比較部26から送られてくる情報に基づいて、リレー駆動回路19A~19Cを制御する。リレー制御部24は、電圧比較部23から電圧異常情報を受信すると、リレー駆動回路19A~19Cの何れかを制御する。また、リレー制御部24は、電流比較部26から電流異常情報を受信すると、リレー駆動回路19A~19Cの何れかを制御する。 The relay control unit 24 controls the relay drive circuits 19A to 19C based on the information sent from the voltage comparison unit 23 and the information sent from the current comparison unit 26. Upon receiving the voltage abnormality information from the voltage comparison unit 23, the relay control unit 24 controls one of the relay drive circuits 19A to 19C. Also, when the relay control unit 24 receives current abnormality information from the current comparison unit 26, it controls any one of the relay drive circuits 19A to 19C.
 マイコン16は、電圧比較部23が、直流電圧Vdcが許容電圧よりも小さいと判定し、且つ電流比較部26が、圧縮機電流が許容電流よりも小さいと判定した場合、圧縮機用モータ15の運転を継続する。直流電圧Vdcが許容電圧よりも小さく、且つ圧縮機電流が許容電流よりも小さい場合のリアクタと平滑用コンデンサとの組み合わせである要素対が、圧縮機用モータ15の運転に許容されて推奨される組み合わせ(許容組み合わせ)である。 When the voltage comparison unit 23 determines that the DC voltage Vdc is smaller than the allowable voltage and the current comparison unit 26 determines that the compressor current is smaller than the allowable current, the microcomputer 16 determines that the compressor motor 15 is Continue driving. An element pair that is a combination of a reactor and a smoothing capacitor when the DC voltage Vdc is smaller than the allowable voltage and the compressor current is smaller than the allowable current is allowed and recommended for the operation of the compressor motor 15. It is a combination (permissible combination).
 マイコン16は、電圧比較部23が、直流電圧Vdcが許容電圧以上であると判定した場合、圧縮機用モータ15の運転を一時停止して、リアクタLa,Lbまたは平滑用コンデンサCa,Cbの切り替えを行ったうえで、圧縮機用モータ15の運転を再開する。 When the voltage comparator 23 determines that the DC voltage Vdc is equal to or higher than the allowable voltage, the microcomputer 16 temporarily stops the operation of the compressor motor 15 and switches the reactors La and Lb or the smoothing capacitors Ca and Cb. , the operation of the compressor motor 15 is restarted.
 マイコン16は、電流比較部26が、圧縮機電流が許容電流以上であると判定した場合、圧縮機用モータ15の運転を一時停止して、リアクタLa,Lbまたは平滑用コンデンサCa,Cbの切り替えを行ったうえで、圧縮機用モータ15の運転を再開する。 When the current comparator 26 determines that the compressor current is equal to or higher than the allowable current, the microcomputer 16 temporarily stops the operation of the compressor motor 15 and switches the reactors La and Lb or the smoothing capacitors Ca and Cb. , the operation of the compressor motor 15 is restarted.
 また、マイコン16は、電圧比較部23が、直流電圧Vdcが許容限界電圧以上であると判定した場合、圧縮機用モータ15の運転を停止させる。また、マイコン16は、電流比較部26が、圧縮機電流が許容限界電流以上であると判定した場合、圧縮機用モータ15の運転を停止させる。 Further, when the voltage comparison unit 23 determines that the DC voltage Vdc is equal to or higher than the allowable limit voltage, the microcomputer 16 stops the operation of the compressor motor 15 . Further, the microcomputer 16 stops the operation of the compressor motor 15 when the current comparator 26 determines that the compressor current is equal to or higher than the allowable limit current.
 リアクタLaのインダクタンス値と、リアクタLbのインダクタンス値との大小関係は、リアクタLaのインダクタンス値<リアクタLbのインダクタンス値の関係にある。 The relationship between the inductance value of the reactor La and the inductance value of the reactor Lb is such that the inductance value of the reactor La<the inductance value of the reactor Lb.
 電源装置101においては、リレー駆動回路19Aによってリレー励磁コイル8Aが励磁されない状態では、商用交流電源1とダイオードブリッジ4との間はリアクタLaで接続される。また、リレー駆動回路19Aによってリレー励磁コイル8Aが励磁された状態では、商用交流電源1とダイオードブリッジ4との間はリアクタLbで接続される。 In the power supply device 101, the reactor La is connected between the commercial AC power supply 1 and the diode bridge 4 when the relay excitation coil 8A is not excited by the relay drive circuit 19A. Further, when the relay excitation coil 8A is excited by the relay driving circuit 19A, the commercial AC power supply 1 and the diode bridge 4 are connected by the reactor Lb.
 平滑用コンデンサCaのコンデンサ容量と、平滑用コンデンサCbのコンデンサ容量との大小関係は、平滑用コンデンサCaのコンデンサ容量<平滑用コンデンサCbのコンデンサ容量の関係にある。 The relationship between the capacitance of the smoothing capacitor Ca and the capacitance of the smoothing capacitor Cb is that the capacitance of the smoothing capacitor Ca<the capacitance of the smoothing capacitor Cb.
 リレー駆動回路19Bによってリレー励磁コイル8Bが励磁されない状態で、且つリレー駆動回路19Cによってリレー励磁コイル8Cが励磁されない状態では、ダイオードブリッジ4とインバータ部14との間は平滑用コンデンサCaで接続される。リレー駆動回路19Bによってリレー励磁コイル8Bが励磁された状態で、且つリレー駆動回路19Cによってリレー励磁コイル8Cが励磁された状態では、ダイオードブリッジ4とインバータ部14との間は平滑用コンデンサCbで接続される。 When the relay drive circuit 19B does not excite the relay excitation coil 8B and when the relay drive circuit 19C does not excite the relay excitation coil 8C, the diode bridge 4 and the inverter section 14 are connected by the smoothing capacitor Ca. . When the relay drive circuit 19B excites the relay excitation coil 8B and the relay drive circuit 19C excites the relay excitation coil 8C, the diode bridge 4 and the inverter section 14 are connected by the smoothing capacitor Cb. be done.
 このように、マイコン16は、リレー駆動回路19Aがリレー励磁コイル8Aを励磁させるか否かによって、商用交流電源1とダイオードブリッジ4との間を、リアクタLa,Lbの何れを介した接続とするかを制御することが可能である。 In this manner, the microcomputer 16 establishes connection between the commercial AC power supply 1 and the diode bridge 4 through either reactor La or Lb depending on whether the relay drive circuit 19A excites the relay excitation coil 8A. It is possible to control whether
 また、マイコン16は、リレー駆動回路19Bがリレー励磁コイル8Bを励磁させるか否かと、リレー駆動回路19Cがリレー励磁コイル8Cを励磁させるか否かとによって、ダイオードブリッジ4とインバータ部14との間を、平滑用コンデンサCa,Cbの何れを介した接続とするかを制御することが可能である。 In addition, the microcomputer 16 connects between the diode bridge 4 and the inverter unit 14 depending on whether the relay drive circuit 19B excites the relay excitation coil 8B and whether the relay drive circuit 19C excites the relay excitation coil 8C. , smoothing capacitors Ca and Cb to be connected.
 ここで、電圧記憶部22が記憶する電圧について説明する。電圧記憶部22は、母線電圧検出部17が検出した直流電圧Vdcの最大値と最小値との差分の電圧を、母線電圧検出部17が検出した直流電圧Vdcとして記憶する。また、電圧記憶部22は、直流電圧Vdcの許容可能範囲の最大値と最小値との差分の電圧を許容電圧として記憶し、直流電圧Vdcの許容可能限界範囲の最大値と最小値との差分の電圧を許容限界電圧として記憶している。このように、許容電圧は、直流電圧Vdcの許容可能範囲の最大値と最小値とで規定され、許容限界電圧は、直流電圧Vdcの許容可能限界範囲の最大値と最小値とで規定されている。 Here, the voltages stored in the voltage storage unit 22 will be described. The voltage storage unit 22 stores the voltage of the difference between the maximum value and the minimum value of the DC voltage Vdc detected by the bus voltage detection unit 17 as the DC voltage Vdc detected by the bus voltage detection unit 17 . Further, the voltage storage unit 22 stores the voltage of the difference between the maximum value and the minimum value of the allowable range of the DC voltage Vdc as the allowable voltage, and stores the difference between the maximum value and the minimum value of the allowable limit range of the DC voltage Vdc. is stored as the allowable limit voltage. Thus, the allowable voltage is defined by the maximum and minimum values of the allowable range of the DC voltage Vdc, and the allowable limit voltage is defined by the maximum and minimum values of the allowable limit range of the DC voltage Vdc. there is
 電流記憶部25が記憶する電流について説明する。電流記憶部25は、圧縮機電流検出部18が検出した圧縮機電流の最大値を圧縮機電流として記憶している。また、電流記憶部25は、圧縮機電流の許容可能な最大値を許容電流として記憶し、圧縮機電流の許容可能限界の最大値を許容限界電流として記憶している。このように、許容電流は、圧縮機電流の許容可能範囲の最大値で規定され、許容限界電流は、圧縮機電流の許容可能限界範囲の最大値で規定されている。 The current stored in the current storage unit 25 will be described. The current storage unit 25 stores the maximum value of the compressor current detected by the compressor current detection unit 18 as the compressor current. Further, the current storage unit 25 stores the allowable maximum value of the compressor current as the allowable current, and stores the maximum allowable limit value of the compressor current as the allowable limit current. Thus, the permissible current is defined by the maximum value of the permissible range of compressor current, and the permissible limit current is defined by the maximum value of the permissible limit range of compressor current.
 次に、電源装置101による第1の制御処理の処理手順について説明する。図3は、実施の形態1にかかる電源装置による第1の制御処理の処理手順を示すフローチャートである。第1の制御処理では、マイコン16が、直流電圧Vdcおよび圧縮機電流に基づいて、リレー駆動回路19A~19Cを制御する。 Next, the processing procedure of the first control processing by the power supply device 101 will be described. 3 is a flowchart of a procedure of first control processing by the power supply device according to the first embodiment; FIG. In the first control process, the microcomputer 16 controls the relay drive circuits 19A-19C based on the DC voltage Vdc and the compressor current.
 電源装置101が第1の制御処理を開始すると、母線電圧検出部17は、直流電圧Vdcを検出する(ステップST2)。なお、母線電圧検出部17は、電源装置101の運転中は常に直流電圧Vdcを検出していてもよい。電圧記憶部22は、母線電圧検出部17が検出した直流電圧Vdcの最大値と最小値との差分を直流電圧Vdcとして記憶する。 When the power supply device 101 starts the first control process, the bus voltage detector 17 detects the DC voltage Vdc (step ST2). Bus voltage detection unit 17 may always detect DC voltage Vdc during operation of power supply device 101 . The voltage storage unit 22 stores the difference between the maximum value and the minimum value of the DC voltage Vdc detected by the bus voltage detection unit 17 as the DC voltage Vdc.
 電源装置101が第1の制御処理を開始した際には、商用交流電源1とダイオードブリッジ4との間は、リアクタLaで接続されており、ダイオードブリッジ4とインバータ部14との間は、平滑用コンデンサCaで接続されている。電圧記憶部22は、母線電圧検出部17が検出した直流電圧Vdcの最大値と最小値との差分の電圧を、母線電圧検出部17が検出した直流電圧Vdcとして記憶する。 When the power supply device 101 starts the first control process, the commercial alternating current power supply 1 and the diode bridge 4 are connected by the reactor La, and the diode bridge 4 and the inverter section 14 are connected to each other through smoothing. are connected by a capacitor Ca. The voltage storage unit 22 stores the voltage of the difference between the maximum value and the minimum value of the DC voltage Vdc detected by the bus voltage detection unit 17 as the DC voltage Vdc detected by the bus voltage detection unit 17 .
 電圧比較部23は、電圧記憶部22が記憶した直流電圧Vdcと、予め電圧記憶部22が記憶している許容電圧とを比較し、直流電圧Vdc<許容電圧であるか否かを判定する(ステップST3)。 The voltage comparison unit 23 compares the DC voltage Vdc stored in the voltage storage unit 22 with the allowable voltage stored in the voltage storage unit 22 in advance, and determines whether or not the DC voltage Vdc<allowable voltage ( step ST3).
 直流電圧Vdc<許容電圧である場合(ステップST3、Yes)、圧縮機電流検出部18は、圧縮機電流を検出する(ステップST4)。なお、圧縮機電流検出部18は、電源装置101の運転中は常に圧縮機電流を検出していてもよい。電流記憶部25は、圧縮機電流検出部18が検出した圧縮機電流の最大値を圧縮機電流として記憶する。 When the DC voltage Vdc<the allowable voltage (step ST3, Yes), the compressor current detector 18 detects the compressor current (step ST4). Note that the compressor current detection unit 18 may constantly detect the compressor current while the power supply device 101 is in operation. The current storage unit 25 stores the maximum value of the compressor current detected by the compressor current detection unit 18 as the compressor current.
 電流比較部26は、電流記憶部25が記憶した圧縮機電流と、予め電流記憶部25が記憶している許容電流とを比較し、圧縮機電流<許容電流であるか否かを判定する(ステップST5)。 The current comparison unit 26 compares the compressor current stored in the current storage unit 25 with the allowable current stored in advance in the current storage unit 25, and determines whether or not compressor current<allowable current ( step ST5).
 圧縮機電流<許容電流である場合(ステップST5、Yes)、電源装置101は、圧縮機用モータ15の運転を継続する(ステップST6)。これにより、電源装置101は、電源共振を防止し安定した運転が可能となる。そして、電源装置101は、特定時間が経過した後に、ステップST2の処理に戻る。すなわち、母線電圧検出部17が直流電圧Vdcを検出する(ステップST2)。 If compressor current < allowable current (step ST5, Yes), the power supply device 101 continues the operation of the compressor motor 15 (step ST6). As a result, the power supply device 101 can prevent power supply resonance and operate stably. Then, after the specific time has passed, the power supply device 101 returns to the process of step ST2. That is, the bus voltage detector 17 detects the DC voltage Vdc (step ST2).
 電圧比較部23は、電圧記憶部22が記憶した直流電圧Vdcと、予め電圧記憶部22が記憶している許容電圧とを比較し、直流電圧Vdc<許容電圧であるか否かを判定する(ステップST3)。 The voltage comparison unit 23 compares the DC voltage Vdc stored in the voltage storage unit 22 with the allowable voltage stored in the voltage storage unit 22 in advance, and determines whether or not the DC voltage Vdc<allowable voltage ( step ST3).
 直流電圧Vdc<許容電圧でない場合(ステップST3、No)、電源装置101は、ステップST7の処理に進む。また、直流電圧Vdc<許容電圧である場合、電源装置101は、ステップST4,ST5の処理を実行する。 If the DC voltage Vdc<the allowable voltage is not satisfied (step ST3, No), the power supply device 101 proceeds to the process of step ST7. Further, when the DC voltage Vdc<the allowable voltage, the power supply device 101 executes the processes of steps ST4 and ST5.
 電流比較部26は、電流記憶部25が記憶した圧縮機電流と、予め電流記憶部25が記憶している許容電流とを比較し、圧縮機電流<許容電流であるか否かを判定する(ステップST5)。圧縮機電流<許容電流でない場合(ステップST5、No)、電源装置101は、ステップST7の処理に進む。また、圧縮機電流<許容電流である場合、電源装置101は、ステップST6の処理を実行する。 The current comparison unit 26 compares the compressor current stored in the current storage unit 25 with the allowable current stored in advance in the current storage unit 25, and determines whether or not compressor current<allowable current ( step ST5). If compressor current < allowable current (step ST5, No), the power supply device 101 proceeds to the process of step ST7. Moreover, when compressor current < allowable current, the power supply device 101 executes the process of step ST6.
 マイコン16は、直流電圧Vdc<許容電圧でない場合、または圧縮機電流<許容電流でない場合、電源共振異常であると判定して圧縮機用モータ15の運転を停止する。すなわち、マイコン16は、コンバータ部13Aからインバータ部14への直流電圧Vdcの供給を停止する。さらに、マイコン16は、リレー駆動回路19Aによってリレー励磁コイル8Aを励磁させることでリレーRa1を駆動させる。これにより、マイコン16は、商用交流電源1とダイオードブリッジ4との間の接続を、リアクタLaからリアクタLbに切り替えて圧縮機用モータ15の運転を開始する(ステップST7)。すなわち、マイコン16は、コンバータ部13Aからインバータ部14への直流電圧Vdcの供給を開始する。 If the DC voltage Vdc < the allowable voltage or the compressor current < the allowable current, the microcomputer 16 determines that there is a power supply resonance abnormality and stops the operation of the compressor motor 15 . That is, the microcomputer 16 stops supplying the DC voltage Vdc from the converter section 13A to the inverter section 14 . Further, the microcomputer 16 drives the relay Ra1 by exciting the relay excitation coil 8A with the relay drive circuit 19A. As a result, the microcomputer 16 switches the connection between the commercial AC power supply 1 and the diode bridge 4 from the reactor La to the reactor Lb, and starts the operation of the compressor motor 15 (step ST7). That is, the microcomputer 16 starts supplying the DC voltage Vdc from the converter section 13A to the inverter section 14 .
 この後、電源装置101は、ステップST8からST12の処理を実行する。ステップST8からST12の処理は、前述したステップST2からST6の処理と同様の処理である。すなわち、ステップST8では、母線電圧検出部17が直流電圧Vdcを検出し、ステップST9では、電圧比較部23が、直流電圧Vdc<許容電圧であるか否かを判定する。ステップST10では、圧縮機電流検出部18が圧縮機電流を検出し、ステップST11では、電流比較部26が、圧縮機電流<許容電流であるか否かを判定する。ステップST12では、電源装置101が、圧縮機用モータ15の運転を継続し、特定時間が経過した後に、ステップST8の処理に戻る。 After that, the power supply device 101 executes the processing from steps ST8 to ST12. The processing from steps ST8 to ST12 is the same as the processing from steps ST2 to ST6 described above. That is, in step ST8, the bus voltage detection unit 17 detects the DC voltage Vdc, and in step ST9, the voltage comparison unit 23 determines whether or not DC voltage Vdc<allowable voltage. In step ST10, the compressor current detector 18 detects the compressor current, and in step ST11, the current comparator 26 determines whether or not compressor current<allowable current. In step ST12, the power supply device 101 continues the operation of the compressor motor 15, and after the specific time has elapsed, the process returns to step ST8.
 マイコン16は、直流電圧Vdc<許容電圧でない場合(ステップST9、No)、または圧縮機電流<許容電流でない場合(ステップST11、No)、ステップST13の処理に進む。 If the DC voltage Vdc<allowable voltage is not satisfied (step ST9, No) or if the compressor current<allowable current is not satisfied (step ST11, No), the microcomputer 16 proceeds to the process of step ST13.
 マイコン16は、直流電圧Vdc<許容電圧でない場合、または圧縮機電流<許容電流でない場合、電源共振異常であると判定して圧縮機用モータ15の運転を停止する。さらに、マイコン16は、リレー駆動回路19Bによってリレー励磁コイル8Bを励磁させることでリレーRb1を駆動させる。また、マイコン16は、リレー駆動回路19Cによってリレー励磁コイル8Cを励磁させることでリレーRc1を駆動させる。これにより、マイコン16は、ダイオードブリッジ4とインバータ部14との間の接続を、平滑用コンデンサCaから平滑用コンデンサCbに切り替えて圧縮機用モータ15の運転を開始する(ステップST13)。 If the DC voltage Vdc < the allowable voltage or the compressor current < the allowable current, the microcomputer 16 determines that there is a power supply resonance abnormality and stops the operation of the compressor motor 15 . Further, the microcomputer 16 drives the relay Rb1 by exciting the relay excitation coil 8B with the relay drive circuit 19B. Further, the microcomputer 16 drives the relay Rc1 by exciting the relay excitation coil 8C with the relay driving circuit 19C. As a result, the microcomputer 16 switches the connection between the diode bridge 4 and the inverter section 14 from the smoothing capacitor Ca to the smoothing capacitor Cb, and starts the operation of the compressor motor 15 (step ST13).
 この後、電源装置101は、ステップST14からST18の処理を実行する。ステップST14からST18の処理は、前述したステップST2からST6の処理と同様の処理である。すなわち、ステップST14では、母線電圧検出部17が直流電圧Vdcを検出し、ステップST15では、電圧比較部23が、直流電圧Vdc<許容電圧であるか否かを判定する。ステップST16では、圧縮機電流検出部18が圧縮機電流を検出し、ステップST17では、電流比較部26が、圧縮機電流<許容電流であるか否かを判定する。ステップST18では、電源装置101が、圧縮機用モータ15の運転を継続し、特定時間が経過した後に、ステップST14の処理に戻る。 After that, the power supply device 101 executes the processes from steps ST14 to ST18. The processing from steps ST14 to ST18 is the same as the processing from steps ST2 to ST6 described above. That is, in step ST14, the bus voltage detection unit 17 detects the DC voltage Vdc, and in step ST15, the voltage comparison unit 23 determines whether DC voltage Vdc<allowable voltage. In step ST16, the compressor current detector 18 detects the compressor current, and in step ST17, the current comparator 26 determines whether or not compressor current<allowable current. In step ST18, the power supply device 101 continues the operation of the compressor motor 15, and after the specific time has elapsed, the process returns to step ST14.
 マイコン16は、直流電圧Vdc<許容電圧でない場合(ステップST15、No)、または圧縮機電流<許容電流でない場合(ステップST17、No)、ステップST19の処理に進む。 If the DC voltage Vdc < the allowable voltage (step ST15, No) or the compressor current < the allowable current (step ST17, No), the microcomputer 16 proceeds to the process of step ST19.
 マイコン16は、直流電圧Vdc<許容電圧でない場合、または圧縮機電流<許容電流でない場合、電源共振異常であると判定して圧縮機用モータ15の運転を停止する。さらに、マイコン16は、リレー駆動回路19Aによってリレー励磁コイル8Aを励磁させない。これにより、マイコン16は、商用交流電源1とダイオードブリッジ4との間の接続を、リアクタLbからリアクタLaに切り替えて圧縮機用モータ15の運転を開始する(ステップST19)。 If the DC voltage Vdc < the allowable voltage or the compressor current < the allowable current, the microcomputer 16 determines that there is a power supply resonance abnormality and stops the operation of the compressor motor 15 . Furthermore, the microcomputer 16 does not excite the relay excitation coil 8A by the relay driving circuit 19A. As a result, the microcomputer 16 switches the connection between the commercial AC power supply 1 and the diode bridge 4 from the reactor Lb to the reactor La to start the operation of the compressor motor 15 (step ST19).
 この後、電源装置101は、ステップST20からST24の処理を実行する。ステップST20からST24の処理は、前述したステップST2からST6の処理と同様の処理である。すなわち、ステップST20では、母線電圧検出部17が直流電圧Vdcを検出し、ステップST21では、電圧比較部23が、直流電圧Vdc<許容電圧であるか否かを判定する。ステップST22では、圧縮機電流検出部18が圧縮機電流を検出し、ステップST23では、電流比較部26が、圧縮機電流<許容電流であるか否かを判定する。ステップST24では、電源装置101が、圧縮機用モータ15の運転を継続し、特定時間が経過した後に、ステップST20の処理に戻る。 After that, the power supply device 101 executes the processing from steps ST20 to ST24. The processing from steps ST20 to ST24 is the same as the processing from steps ST2 to ST6 described above. That is, in step ST20, the bus voltage detection unit 17 detects the DC voltage Vdc, and in step ST21, the voltage comparison unit 23 determines whether DC voltage Vdc<allowable voltage. In step ST22, the compressor current detector 18 detects the compressor current, and in step ST23, the current comparator 26 determines whether or not compressor current<allowable current. In step ST24, the power supply device 101 continues the operation of the compressor motor 15, and after the specific time has elapsed, the process returns to step ST20.
 直流電圧Vdc<許容電圧でない場合(ステップST21、No)、または圧縮機電流<許容電流でない場合(ステップST23、No)、電源装置101は、ステップST25の処理に進む。ステップST25の処理は、電源装置101による第2の制御処理である。 If DC voltage Vdc<allowable voltage (step ST21, No) or compressor current<allowable current (step ST23, No), the power supply device 101 proceeds to the process of step ST25. The process of step ST25 is the second control process by the power supply device 101 .
 電源装置101は、ステップST2からST25までの処理を実行することによって、リアクタと、平滑用コンデンサとの組み合わせである要素対として、以下の4つの組み合わせを実行したことになる。
・リアクタLaと、平滑用コンデンサCa
・リアクタLaと、平滑用コンデンサCb
・リアクタLbと、平滑用コンデンサCa
・リアクタLbと、平滑用コンデンサCb
By executing the processing from steps ST2 to ST25, the power supply device 101 has executed the following four combinations as element pairs that are combinations of reactors and smoothing capacitors.
・Reactor La and smoothing capacitor Ca
・Reactor La and smoothing capacitor Cb
・Reactor Lb and smoothing capacitor Ca
・Reactor Lb and smoothing capacitor Cb
 なお、電源装置101は、上記4つの組み合わせを、何れの順番で実行してもよい。すなわち、電源装置101は、ステップST2からST6の処理、ステップST7からST12の処理、ステップST13からST18の処理、ステップST19からST24の処理を何れの順番で実行してもよい。 Note that the power supply device 101 may execute the above four combinations in any order. That is, the power supply device 101 may execute the processes from steps ST2 to ST6, the processes from steps ST7 to ST12, the processes from steps ST13 to ST18, and the processes from steps ST19 to ST24 in any order.
 マイコン16は、ステップST2からST6の処理を最初に実行しない場合は、ステップST2の処理の前にステップST7,ST13,ST19と同様の処理を実行する。具体的には、マイコン16は、ステップST7からST12の処理、ステップST13からST18の処理、またはステップST19からST24の処理において、直流電圧Vdc<許容電圧でない場合、または圧縮機電流<許容電流でない場合、圧縮機用モータ15の運転を停止する。さらに、マイコン16は、リレー駆動回路19Aによってリレー励磁コイル8Aを励磁させず、リレー駆動回路19B,19Cによってリレー励磁コイル8B,8Cを励磁させない。これにより、マイコン16は、商用交流電源1とダイオードブリッジ4との間の接続を、リアクタLaとし、ダイオードブリッジ4とインバータ部14との間の接続を、平滑用コンデンサCaとして圧縮機用モータ15の運転を開始する。 If the microcomputer 16 does not execute the processing of steps ST2 to ST6 first, it executes the same processing as steps ST7, ST13, and ST19 before the processing of step ST2. Specifically, the microcomputer 16, in the processing of steps ST7 to ST12, the processing of steps ST13 to ST18, or the processing of steps ST19 to ST24, when the DC voltage Vdc<the allowable voltage or when the compressor current<the allowable current is not , the operation of the compressor motor 15 is stopped. Further, the microcomputer 16 does not excite the relay excitation coil 8A by the relay drive circuit 19A and does not excite the relay excitation coils 8B and 8C by the relay drive circuits 19B and 19C. As a result, the microcomputer 16 uses the connection between the commercial AC power supply 1 and the diode bridge 4 as the reactor La, and the connection between the diode bridge 4 and the inverter section 14 as the smoothing capacitor Ca. to start driving.
 次に、電源装置101による第2の制御処理の処理手順について説明する。図4は、実施の形態1にかかる電源装置による第2の制御処理の処理手順を示すフローチャートである。第2の制御処理では、マイコン16が、直流電圧Vdcおよび圧縮機電流に基づいて、リレー駆動回路19A~19Cを制御する。 Next, the processing procedure of the second control processing by the power supply device 101 will be described. 4 is a flowchart of a second control process performed by the power supply according to the first embodiment; FIG. In the second control process, the microcomputer 16 controls the relay drive circuits 19A-19C based on the DC voltage Vdc and the compressor current.
 電源装置101は、第1の制御処理が終了すると、ステップST25の処理である第2の制御処理を開始する。電源装置101が第2の制御処理を開始すると、マイコン16は、電源共振異常であると判定して圧縮機用モータ15の運転を停止する(ステップST26)。 When the first control process ends, the power supply device 101 starts the second control process, which is the process of step ST25. When the power supply device 101 starts the second control process, the microcomputer 16 determines that there is power resonance abnormality and stops the operation of the compressor motor 15 (step ST26).
 さらに、マイコン16は、この時点までに上述した4つの組み合わせ(4つの要素対)の中で、直流電圧Vdcおよび圧縮機電流が、許容電圧および許容電流に最も近い組み合わせになるように、リレー駆動回路19A~19Cを制御し、運転を開始する(ステップST27)。 Furthermore, the microcomputer 16 drives the relay so that the DC voltage Vdc and the compressor current are the combination closest to the allowable voltage and allowable current among the four combinations (four element pairs) described above up to this point. The circuits 19A to 19C are controlled to start operation (step ST27).
 すなわち、マイコン16は、商用交流電源1に接続されるリアクタと、ダイオードブリッジ4およびインバータ部14に接続される平滑用コンデンサとの組み合わせである要素対が、許容電圧および許容電流に最も近い組み合わせになるように、リレー駆動回路19A~19Cを制御し、運転を開始する。換言すると、マイコン16は、直流電圧Vdcが最も低く、且つ圧縮機電流が最も低くなるような、リアクタと平滑用コンデンサとの組み合わせとなるように、リレー駆動回路19A~19Cを制御し、運転を開始する。この場合において、マイコン16は、電圧記憶部22が記憶した、直流電圧Vdc、許容電圧、圧縮機電流、および許容電流に基づいて、許容電圧および許容電流に最も近い組み合わせを選択する。リアクタと平滑用コンデンサとの組み合わせが、許容電圧および許容電流に最も近い組み合わせは、直流電圧Vdcおよび圧縮機電流が最も安定している組み合わせである。 That is, the microcomputer 16 sets the element pair, which is the combination of the reactor connected to the commercial AC power supply 1 and the smoothing capacitor connected to the diode bridge 4 and the inverter unit 14, to the combination closest to the allowable voltage and allowable current. The relay driving circuits 19A to 19C are controlled to start operation. In other words, the microcomputer 16 controls the relay drive circuits 19A to 19C so that the combination of the reactor and the smoothing capacitor is such that the DC voltage Vdc is the lowest and the compressor current is the lowest. Start. In this case, microcomputer 16 selects the closest combination of allowable voltage and allowable current based on DC voltage Vdc, allowable voltage, compressor current and allowable current stored in voltage storage unit 22 . The combination of the reactor and the smoothing capacitor closest to the permissible voltage and permissible current is the most stable combination of the DC voltage Vdc and the compressor current.
 例えば、マイコン16は、リアクタLaと平滑用コンデンサCaとの組み合わせが、許容電圧および許容電流に最も近い組み合わせであった場合、リアクタLaと平滑用コンデンサCaとの組み合わせを選択する。そして、マイコン16は、商用交流電源1とダイオードブリッジ4との間の接続がリアクタLaを介した接続となるように、リレー駆動回路19Aを制御する。また、マイコン16は、ダイオードブリッジ4とインバータ部14との間の接続が平滑用コンデンサCaを介した接続となるように、リレー駆動回路19B,19Cを制御する。 For example, the microcomputer 16 selects the combination of the reactor La and the smoothing capacitor Ca when the combination of the reactor La and the smoothing capacitor Ca is the combination closest to the allowable voltage and allowable current. Then, the microcomputer 16 controls the relay driving circuit 19A so that the connection between the commercial AC power supply 1 and the diode bridge 4 is connected via the reactor La. Further, the microcomputer 16 controls the relay drive circuits 19B and 19C so that the connection between the diode bridge 4 and the inverter section 14 is via the smoothing capacitor Ca.
 電源装置101が圧縮機用モータ15の運転を開始すると、母線電圧検出部17は、直流電圧Vdcを検出する(ステップST28)。電圧記憶部22は、母線電圧検出部17が検出した直流電圧Vdcの最大値と最小値との差分の電圧を、母線電圧検出部17が検出した直流電圧Vdcとして記憶する。 When the power supply device 101 starts operating the compressor motor 15, the bus voltage detection unit 17 detects the DC voltage Vdc (step ST28). The voltage storage unit 22 stores the voltage of the difference between the maximum value and the minimum value of the DC voltage Vdc detected by the bus voltage detection unit 17 as the DC voltage Vdc detected by the bus voltage detection unit 17 .
 電圧比較部23は、電圧記憶部22が記憶した直流電圧Vdcと、予め電圧記憶部22が記憶している許容限界電圧とを比較し、直流電圧Vdc<許容限界電圧であるか否かを判定する(ステップST29)。 The voltage comparison unit 23 compares the DC voltage Vdc stored in the voltage storage unit 22 with the permissible limit voltage previously stored in the voltage storage unit 22, and determines whether or not the DC voltage Vdc<the permissible limit voltage. (step ST29).
 直流電圧Vdc<許容限界電圧でない場合(ステップST29、No)、電源装置101は、ステップST35の処理に進む。直流電圧Vdc<許容限界電圧である場合(ステップST29、Yes)、圧縮機電流検出部18は、圧縮機電流を検出する(ステップST30)。電流記憶部25は、圧縮機電流検出部18が検出した圧縮機電流の最大値を圧縮機電流として記憶する。 If the DC voltage Vdc<the allowable limit voltage is not satisfied (step ST29, No), the power supply device 101 proceeds to the process of step ST35. If the DC voltage Vdc<the allowable limit voltage (step ST29, Yes), the compressor current detector 18 detects the compressor current (step ST30). The current storage unit 25 stores the maximum value of the compressor current detected by the compressor current detection unit 18 as the compressor current.
 電流比較部26は、電流記憶部25が記憶した圧縮機電流と、予め電流記憶部25が記憶している許容限界電流とを比較し、圧縮機電流<許容限界電流であるか否かを判定する(ステップST31)。 The current comparison unit 26 compares the compressor current stored in the current storage unit 25 with the permissible limit current stored in advance in the current storage unit 25, and determines whether or not compressor current<permissible limit current. (step ST31).
 圧縮機電流<許容電流でない場合(ステップST31、No)、電源装置101は、ステップST35の処理に進む。圧縮機電流<許容限界電流である場合(ステップST31、Yes)、電源装置101は、圧縮機用モータ15の運転を継続する(ステップST32)。これにより、電源装置101は、電源共振を受けた状態でも品質に問題ない範囲で運転が可能となる。 If compressor current < allowable current (step ST31, No), the power supply device 101 proceeds to the process of step ST35. If the compressor current<the allowable limit current (step ST31, Yes), the power supply device 101 continues the operation of the compressor motor 15 (step ST32). As a result, the power supply device 101 can be operated within a range in which there is no problem in quality even in a state of being subjected to power supply resonance.
 マイコン16は、第2の制御処理で電源装置101が圧縮機用モータ15の運転を開始してからの経過時間である運転経過時間が、特定時間を経過したか否かを判定する。すなわち、マイコン16は、運転経過時間>特定時間であるか否かを判定する(ステップST33)。 The microcomputer 16 determines whether or not the elapsed operation time, which is the elapsed time since the power supply device 101 started operating the compressor motor 15 in the second control process, has passed a specific time. That is, the microcomputer 16 determines whether or not elapsed driving time>specific time (step ST33).
 運転経過時間>特定時間でない場合(ステップST33、No)、電源装置101は、ステップST28の処理に戻る。一方、運転経過時間>特定時間である場合(ステップST33、Yes)、電源装置101は、第1の制御処理に戻る(ステップST34)。すなわち、図3のステップST2の処理に戻る。 If the elapsed operation time>the specific time is not satisfied (step ST33, No), the power supply device 101 returns to the process of step ST28. On the other hand, if the elapsed operation time>the specific time (step ST33, Yes), the power supply device 101 returns to the first control process (step ST34). That is, the process returns to step ST2 in FIG.
 マイコン16は、直流電圧Vdc<許容限界電圧でない場合(ステップST29、No)、または圧縮機電流<許容限界電流でない場合(ステップST31、No)、電源共振異常であると判定し、圧縮機用モータ15の運転を停止し、異常を通知する(ステップST35)。すなわち、マイコン16は、直流電圧Vdcまたは圧縮機電流が許容限界を超えた電源共振異常であると判定して圧縮機用モータ15の運転を停止し、ユーザに異常を通知する。 If the DC voltage Vdc < the allowable limit voltage (step ST29, No) or if the compressor current <the allowable limit current (step ST31, No), the microcomputer 16 determines that there is a power supply resonance abnormality, and determines that the compressor motor 15 is stopped and an abnormality is notified (step ST35). That is, the microcomputer 16 determines that the DC voltage Vdc or the compressor current exceeds the permissible limit and that there is a power supply resonance abnormality, stops the operation of the compressor motor 15, and notifies the user of the abnormality.
 電源装置101は、インバータ部14の負荷の大小に応じて、リアクタおよび平滑用コンデンサの少なくとも一方を変更できる。これにより、電源装置101は、生成する直流電圧Vdcを変更することができるので、圧縮機用モータ15の特性または運転領域に応じて直流電圧Vdcを変更できる。したがって、電源装置101は、圧縮機用モータ15の運転周波数および圧縮機用モータ15の特性の影響を受けることがないので、直流電圧Vdcに歪みは発生しない。この結果、電源装置101は、電源装置101および圧縮機用モータ15の特性および使用環境による電源共振の発生を防止できるので、圧縮機用モータ15の運転が安定し、振動および音の発生を抑制できる。 The power supply device 101 can change at least one of the reactor and the smoothing capacitor according to the magnitude of the load on the inverter section 14 . As a result, the power supply device 101 can change the DC voltage Vdc to be generated, so that the DC voltage Vdc can be changed according to the characteristics or operating range of the compressor motor 15 . Therefore, since the power supply device 101 is not affected by the operating frequency of the compressor motor 15 and the characteristics of the compressor motor 15, no distortion occurs in the DC voltage Vdc. As a result, the power supply device 101 can prevent the occurrence of power resonance due to the characteristics of the power supply device 101 and the compressor motor 15 and the environment in which they are used. can.
 また、電源装置101は、リアクタおよび平滑用コンデンサの少なくとも一方を変更できるので、圧縮機用モータ15の特性が変更された場合、または圧縮機用モータ15の運転周波数が変化した場合であっても、配線環境によって圧縮機用モータ15に流れる電流に歪みが発生することはない。このため、電源装置101は、電源装置101および圧縮機用モータ15の特性および使用環境にかかわらず、直流電圧Vdcおよび圧縮機電流の電源共振が発生することはない。したがって、電源装置101は、運転が不安定になることはなく、圧縮機電流の最大値が保護回路の上限に達することもなく、圧縮機用モータ15の運転が停止することもない。 Moreover, since the power supply device 101 can change at least one of the reactor and the smoothing capacitor, even if the characteristics of the compressor motor 15 are changed or the operating frequency of the compressor motor 15 is changed, , the current flowing through the compressor motor 15 is not distorted due to the wiring environment. Therefore, regardless of the characteristics of the power supply device 101 and the compressor motor 15 and the operating environment, the power supply resonance of the DC voltage Vdc and the compressor current does not occur in the power supply device 101 . Therefore, the operation of the power supply device 101 does not become unstable, the maximum value of the compressor current does not reach the upper limit of the protection circuit, and the operation of the compressor motor 15 does not stop.
 このように、実施の形態1では、電圧比較部23が、直流電圧Vdcと許容電圧とを比較し、電流比較部26が、圧縮機電流と許容電流とを比較している。また、電圧比較部23が、直流電圧Vdcと許容限界電圧とを比較し、電流比較部26が、圧縮機電流と許容限界電流とを比較している。そして、マイコン16が、これらの比較結果に基づいて、リレー駆動回路19A~19Cを制御することで、リアクタLa,Lbの何れかと、平滑用コンデンサCa,Cbの何れかとの組み合わせを用いて、圧縮機用モータ15を運転している。 Thus, in Embodiment 1, the voltage comparator 23 compares the DC voltage Vdc and the allowable voltage, and the current comparator 26 compares the compressor current and the allowable current. Also, the voltage comparator 23 compares the DC voltage Vdc with the permissible limit voltage, and the current comparator 26 compares the compressor current with the permissible limit current. Then, the microcomputer 16 controls the relay drive circuits 19A to 19C based on these comparison results to use a combination of either the reactor La or Lb and the smoothing capacitor Ca or Cb to perform compression. The machine motor 15 is running.
 これにより、電源装置101は、電源装置101および圧縮機用モータ15の特性および使用環境による電源共振を防止した、圧縮機用モータ15および空気調和機の運転を実行することが可能となる。また、電源装置101は、電源共振を防止して、省電力化を図ることが可能となる。 As a result, the power supply device 101 can operate the compressor motor 15 and the air conditioner while preventing power supply resonance due to the characteristics and usage environment of the power supply device 101 and the compressor motor 15 . Further, the power supply device 101 can prevent power supply resonance and achieve power saving.
 また、電源装置101は、直流電圧Vdcおよび圧縮機電流に基づいて、リアクタLa,Lbの何れかと、平滑用コンデンサCa,Cbの何れかとの適切な組み合わせを選択している。これにより、電源装置101は、空気調和機の電源力率を改善でき、効率良く空気調和機を運転することができる。 Also, the power supply device 101 selects an appropriate combination of one of the reactors La and Lb and one of the smoothing capacitors Ca and Cb based on the DC voltage Vdc and the compressor current. As a result, the power supply device 101 can improve the power factor of the air conditioner and efficiently operate the air conditioner.
実施の形態2.
 つぎに、図5および図6を用いて実施の形態2について説明する。実施の形態2では、直流電圧Vdcおよび圧縮機電流の値に応じて、3つのリアクタを切り替えるとともに、3つの平滑用コンデンサを切り替える。
Embodiment 2.
Next, Embodiment 2 will be described with reference to FIGS. 5 and 6. FIG. In the second embodiment, the three reactors are switched and the three smoothing capacitors are switched according to the values of the DC voltage Vdc and the compressor current.
 図5は、実施の形態2にかかる電源装置の構成を示す図である。図5の各構成要素のうち図1に示す実施の形態1の電源装置101と同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。 FIG. 5 is a diagram showing the configuration of the power supply device according to the second embodiment. 5 that achieve the same functions as those of the power supply device 101 of Embodiment 1 shown in FIG. 1 are denoted by the same reference numerals, and overlapping descriptions are omitted.
 電源装置102は、電源装置101と同様に、インバータ部14によって圧縮機用モータ15を駆動する。電源装置102は、電源装置101と比較して、コンバータ部13Aの代わりに、コンバータ部13Bを備えている。 The power supply device 102, like the power supply device 101, drives the compressor motor 15 by means of the inverter section 14. Power supply device 102 includes converter section 13B instead of converter section 13A, as compared with power supply device 101 .
 コンバータ部13Bは、コンバータ部13Aと比較して、リレーRa1,Rb1,Rc1の代わりに、リレーRa2,Rb2,Rc2を有している。また、コンバータ部13Bは、コンバータ部13Aと比較して、リアクタLa,Lbに加えて、リアクタLcを有している。また、コンバータ部13Bは、コンバータ部13Aと比較して、平滑用コンデンサCa,Cbに加えて、平滑用コンデンサCcを有している。 Compared to the converter section 13A, the converter section 13B has relays Ra2, Rb2, and Rc2 instead of the relays Ra1, Rb1, and Rc1. Further, the converter section 13B has a reactor Lc in addition to the reactors La and Lb as compared with the converter section 13A. In addition to the smoothing capacitors Ca and Cb, the converter unit 13B has a smoothing capacitor Cc as compared with the converter unit 13A.
 リレーRa2は、商用交流電源1に接続されている。また、リレーRa2は、商用交流電源1との接続を、並列接続されているリアクタLa~Lcのうちの何れかの接続に切り替える。すなわち、リレーRa2は、商用交流電源1と、リアクタLa~Lcとの間で、商用交流電源1をリアクタLaに接続するか、リアクタLbに接続するか、リアクタLcに接続するかを切り替える。 The relay Ra2 is connected to the commercial AC power supply 1. Also, the relay Ra2 switches the connection with the commercial AC power supply 1 to one of the parallel-connected reactors La to Lc. That is, the relay Ra2 switches between the commercial AC power supply 1 and the reactors La to Lc to connect the commercial AC power supply 1 to the reactor La, to the reactor Lb, or to the reactor Lc.
 リアクタLa~Lcは、それぞれ一方の端部がリレーRa2に接続可能となっており、他方の端部が接続点31を介してダイオードブリッジ4に接続されている。 Each of the reactors La to Lc has one end connectable to the relay Ra2 and the other end connected to the diode bridge 4 via the connection point 31 .
 実施の形態2では、リレー駆動回路19Aは、リレー励磁コイル8Aを制御することによって、リレーRa2を駆動する。リレー駆動回路19Bは、リレー励磁コイル8Bを制御することによって、リレーRb2を駆動する。リレー駆動回路19Cは、リレー励磁コイル8Cを制御することによって、リレーRc2を駆動する。 In the second embodiment, the relay drive circuit 19A drives the relay Ra2 by controlling the relay excitation coil 8A. The relay drive circuit 19B drives the relay Rb2 by controlling the relay excitation coil 8B. The relay drive circuit 19C drives the relay Rc2 by controlling the relay excitation coil 8C.
 ダイオードブリッジ4は、リアクタLa~Lc、商用交流電源1、リレーRb2、および接続点33に接続されている。リレーRb2は、一方の端部がダイオードブリッジ4に接続されており、他方の端部が接続点34,32,38の何れかに接続可能となっている。 The diode bridge 4 is connected to the reactors La to Lc, the commercial AC power supply 1, the relay Rb2, and the connection point 33. One end of the relay Rb2 is connected to the diode bridge 4, and the other end is connectable to any one of the connection points 34, 32, and 38. As shown in FIG.
 平滑用コンデンサCcは、一方の端部が接続点38を介してリレーRb2,Rc2に接続可能となっており、他方の端部が接続点39に接続されている。接続点35は、接続点39を介して接続点37に接続されている。 One end of the smoothing capacitor Cc is connectable to the relays Rb2 and Rc2 via the connection point 38, and the other end is connected to the connection point 39. Connection point 35 is connected to connection point 37 via connection point 39 .
 リレーRb2は、ダイオードブリッジ4との接続を、並列接続されている平滑用コンデンサCa~Ccのうちの何れか一つへの接続に切り替える。すなわち、リレーRb2は、ダイオードブリッジ4を、接続点32を介して平滑用コンデンサCaに接続するか、接続点34を介して平滑用コンデンサCbに接続するか、接続点38を介して平滑用コンデンサCcに接続するかを切り替える。 The relay Rb2 switches connection with the diode bridge 4 to connection with one of the parallel-connected smoothing capacitors Ca to Cc. That is, the relay Rb2 connects the diode bridge 4 to the smoothing capacitor Ca via the connection point 32, to the smoothing capacitor Cb via the connection point 34, or to the smoothing capacitor Cb via the connection point 38. Toggles whether to connect to Cc.
 リレーRc2は、一方の端部が接続点36を介してインバータ部14に接続されており、他方の端部が接続点34,32,38の何れかに接続可能となっている。リレーRc2は、インバータ部14との接続を、並列接続されている平滑用コンデンサCa~Ccのうちの何れか一つへの接続に切り替える。すなわち、リレーRc2は、インバータ部14を、接続点32を介して平滑用コンデンサCaに接続するか、接続点34を介して平滑用コンデンサCbに接続するか、接続点38を介して平滑用コンデンサCcに接続するかを切り替える。 One end of the relay Rc2 is connected to the inverter section 14 via the connection point 36, and the other end is connectable to any one of the connection points 34, 32, and 38. The relay Rc2 switches connection with the inverter unit 14 to connection with one of the parallel-connected smoothing capacitors Ca to Cc. That is, the relay Rc2 connects the inverter section 14 to the smoothing capacitor Ca via the connection point 32, to the smoothing capacitor Cb via the connection point 34, or to the smoothing capacitor Cb via the connection point 38. Toggles whether to connect to Cc.
 なお、電源装置102に配置される切替部は、リレーRa2~Rc2に限らず、半導体スイッチなどの接続を切り替えることが可能な装置であれば、何れの切替部が用いられてもよい。 It should be noted that the switching unit arranged in the power supply device 102 is not limited to the relays Ra2 to Rc2, and any switching unit such as a semiconductor switch may be used as long as it can switch the connection.
 次に、電源装置102による第3の制御処理の処理手順について説明する。第3の制御処理では、マイコン16が、直流電圧Vdcおよび圧縮機電流に基づいて、リレー駆動回路19A~19Cを制御する。 Next, the processing procedure of the third control processing by the power supply device 102 will be described. In the third control process, the microcomputer 16 controls the relay drive circuits 19A-19C based on the DC voltage Vdc and the compressor current.
 電源装置102は、電源装置101にリアクタLcおよび平滑用コンデンサCcが追加された構成となっている。このため、追加されたリアクタLcおよび平滑用コンデンサCcが増えた分だけ、リアクタと平滑用コンデンサとの組み合わせの数が増える。すなわち、実施の形態1では、リアクタと平滑用コンデンサとの組み合わせが4つであったのに対して、実施の形態2では、リアクタと平滑用コンデンサとの組み合わせが9つ(3種類×3種類)になる。 The power supply device 102 has a configuration in which a reactor Lc and a smoothing capacitor Cc are added to the power supply device 101 . Therefore, the number of combinations of reactors and smoothing capacitors increases by the amount of added reactors Lc and smoothing capacitors Cc. That is, in the first embodiment, there are four combinations of reactors and smoothing capacitors, whereas in the second embodiment, there are nine combinations (three types x three types) of reactors and smoothing capacitors. )become.
 実施の形態2の電源装置102は、実施の形態1の4つの組み合わせに加えて、以下の5つの組み合わせを実行する。
・リアクタLaと、平滑用コンデンサCc
・リアクタLbと、平滑用コンデンサCc
・リアクタLcと、平滑用コンデンサCa
・リアクタLcと、平滑用コンデンサCb
・リアクタLcと、平滑用コンデンサCc
The power supply device 102 of the second embodiment performs the following five combinations in addition to the four combinations of the first embodiment.
・Reactor La and smoothing capacitor Cc
・Reactor Lb and smoothing capacitor Cc
・Reactor Lc and smoothing capacitor Ca
・Reactor Lc and smoothing capacitor Cb
・Reactor Lc and smoothing capacitor Cc
 実施の形態1の電源装置101は、ステップST2からST6の処理と同様の処理を4回繰り返したが、実施の形態2の電源装置102は、ステップST2からST6の処理と同様の処理を9回繰り返す。これにより、電源装置102は、リアクタと平滑用コンデンサとの9つの組み合わせを実行する。 The power supply device 101 of the first embodiment repeats the same processing as steps ST2 to ST6 four times, but the power supply device 102 of the second embodiment repeats the same processing as steps ST2 to ST6 nine times. repeat. Thereby, the power supply device 102 implements nine combinations of reactors and smoothing capacitors.
 実施の形態2のマイコン16は、図3で説明した第1の制御処理であるステップST1からST24までを実行することで4種類の組み合わせを実行した後に、上述した5種類の組み合わせを実行する。 The microcomputer 16 of the second embodiment executes the above-described five combinations after executing the four combinations by executing steps ST1 to ST24, which are the first control processing described with reference to FIG.
 図6は、実施の形態2にかかる電源装置による第3の制御処理の処理手順を示すフローチャートである。マイコン16は、電源装置102の運転を停止した状態で、リレー駆動回路19A~19Cの少なくとも1つを制御することで、リアクタと平滑用コンデンサとの組み合わせを切り替えて、電源装置102の運転を開始する(ステップST37)。この場合において、マイコン16は、リアクタと平滑用コンデンサとの組み合わせのうち未実行の組み合わせに切り替える。 FIG. 6 is a flow chart showing the procedure of the third control process by the power supply device according to the second embodiment. The microcomputer 16 controls at least one of the relay drive circuits 19A to 19C while the operation of the power supply 102 is stopped, thereby switching the combination of the reactor and the smoothing capacitor to start the operation of the power supply 102. (step ST37). In this case, the microcomputer 16 switches to an unexecuted combination among the combinations of the reactor and the smoothing capacitor.
 この後、電源装置102は、ステップST38からST42の処理を実行する。ステップST38からST42の処理は、前述したステップST2からST6の処理と同様の処理である。すなわち、ステップST38では、母線電圧検出部17が直流電圧Vdcを検出し、ステップST39では、電圧比較部23が、直流電圧Vdc<許容電圧であるか否かを判定する。ステップST40では、圧縮機電流検出部18が圧縮機電流を検出し、ステップST41では、電流比較部26が、圧縮機電流<許容電流であるか否かを判定する。ステップST42では、電源装置102が、圧縮機用モータ15の運転を継続し、特定時間が経過した後に、ステップST38の処理に戻る。 After that, the power supply device 102 executes the processing from steps ST38 to ST42. The processing from steps ST38 to ST42 is the same as the processing from steps ST2 to ST6 described above. That is, in step ST38, the bus voltage detection unit 17 detects the DC voltage Vdc, and in step ST39, the voltage comparison unit 23 determines whether or not DC voltage Vdc<allowable voltage. In step ST40, the compressor current detector 18 detects the compressor current, and in step ST41, the current comparator 26 determines whether or not compressor current<allowable current. In step ST42, the power supply device 102 continues the operation of the compressor motor 15, and after the specific time has elapsed, the process returns to step ST38.
 マイコン16は、直流電圧Vdc<許容電圧でない場合(ステップST39、No)、または圧縮機電流<許容電流でない場合(ステップST41、No)、ステップST43の処理に進む。 If the DC voltage Vdc < the allowable voltage (step ST39, No) or the compressor current < the allowable current (step ST41, No), the microcomputer 16 proceeds to the process of step ST43.
 マイコン16は、規定回数分の切り替え処理を実行したか否かを判定する(ステップST43)。規定回数は、リアクタと平滑用コンデンサとの組み合わせ数を全て実行できる切り替え回数である。実施の形態2では、リアクタと平滑用コンデンサとの組み合わせ数が9であるので、マイコン16は、8回の切り替え処理を実行したか否かを判定する。 The microcomputer 16 determines whether or not the switching process has been executed a specified number of times (step ST43). The prescribed number of times is the number of times of switching that can execute all the combinations of the reactor and the smoothing capacitor. In the second embodiment, the number of combinations of reactors and smoothing capacitors is nine, so the microcomputer 16 determines whether switching processing has been performed eight times.
 マイコン16は、規定回数分の切り替え処理を実行していない場合(ステップST43、No)、ステップST37からST43の処理を実行する。なお、電源装置102は、上記9つの組み合わせを、何れの順番で実行してもよい。 If the microcomputer 16 has not executed the switching process for the prescribed number of times (step ST43, No), it executes the process from step ST37 to ST43. Note that the power supply device 102 may execute the above nine combinations in any order.
 電源装置102は、第3の制御処理が終了すると、すなわち規定回数分の切り替え処理を実行した場合(ステップST43、Yes)、ステップST25の処理である第2の制御処理を開始する。 When the third control process ends, that is, when the switching process has been performed the specified number of times (step ST43, Yes), the power supply 102 starts the second control process, which is the process of step ST25.
 なお、実施の形態1,2で説明したように、リアクタと平滑用コンデンサとを可変とする電源装置101,102が有するリアクタおよび平滑用コンデンサの数は、2種類ずつ、または3種類ずつに限らない。電源装置101,102が有するリアクタおよび平滑用コンデンサの数に制限はなく、リアクタおよび平滑用コンデンサの少なくとも一方が複数であればよい。 As described in the first and second embodiments, the number of reactors and smoothing capacitors included in power supply devices 101 and 102 with variable reactors and smoothing capacitors is limited to two types each or three types each. do not have. There is no limit to the number of reactors and smoothing capacitors that power supply devices 101 and 102 have, as long as at least one of the reactors and smoothing capacitors is plural.
 このように、実施の形態2では、マイコン16が、リレー駆動回路19A~19Cを制御することで、リアクタLa~Lcの何れかと、平滑用コンデンサCa~Ccの何れかとの組み合わせを用いて電源装置102を運転している。したがって、実施の形態2でも、実施の形態1と同様の効果を得ることができる。すなわち、電源装置102は、電源装置102および圧縮機用モータ15の特性および使用環境による電源共振を防止することができ、電源共振を防止した空気調和機の運転を実行することが可能となる。 As described above, in the second embodiment, the microcomputer 16 controls the relay drive circuits 19A to 19C to use a combination of any one of the reactors La to Lc and any one of the smoothing capacitors Ca to Cc. I am driving a 102. Therefore, in the second embodiment as well, the same effect as in the first embodiment can be obtained. That is, the power supply 102 can prevent power supply resonance due to the characteristics of the power supply 102 and the compressor motor 15 and the usage environment, and can operate the air conditioner while preventing the power supply resonance.
 電源装置102は、電源装置101よりも選択できるリアクタおよび平滑用コンデンサの個数が多いので、電源装置101よりも空気調和機を安定して運転することができる。 Since the power supply device 102 has more reactors and smoothing capacitors to choose from than the power supply device 101, the air conditioner can be operated more stably than the power supply device 101.
 ここで、マイコン16のハードウェア構成について説明する。マイコン16は、処理回路により実現される。処理回路は、メモリに格納されるプログラムを実行するプロセッサおよびメモリであってもよいし、専用のハードウェアであってもよい。 Here, the hardware configuration of the microcomputer 16 will be explained. The microcomputer 16 is implemented by a processing circuit. The processing circuitry may be a processor and memory executing programs stored in the memory, or may be dedicated hardware.
 図7は、実施の形態1,2にかかるマイコンが備える処理回路をプロセッサおよびメモリで実現する場合の処理回路の構成例を示す図である。図7に示す処理回路90は、プロセッサ91およびメモリ92を備える。処理回路90がプロセッサ91およびメモリ92で構成される場合、処理回路90の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ92に格納される。処理回路90では、メモリ92に記憶されたプログラムをプロセッサ91が読み出して実行することにより、各機能を実現する。すなわち、処理回路90は、マイコン16の処理が結果的に実行されることになるプログラムを格納するためのメモリ92を備える。このプログラムは、処理回路90により実現される各機能をマイコン16に実行させるためのプログラムであるともいえる。このプログラムは、プログラムが記憶された記憶媒体により提供されてもよいし、通信媒体など他の手段により提供されてもよい。上記プログラムは、図3,4,6で説明した処理をマイコン16に実行させるプログラムであるとも言える。 FIG. 7 is a diagram showing a configuration example of a processing circuit when the processing circuit provided in the microcomputer according to the first and second embodiments is realized by a processor and memory. A processing circuit 90 shown in FIG. 7 includes a processor 91 and a memory 92 . When the processing circuit 90 is composed of the processor 91 and the memory 92, each function of the processing circuit 90 is implemented by software, firmware, or a combination of software and firmware. Software or firmware is written as a program and stored in memory 92 . In the processing circuit 90, each function is realized by the processor 91 reading and executing the program stored in the memory 92. FIG. That is, the processing circuit 90 has a memory 92 for storing a program that results in the execution of the processing of the microcomputer 16 . This program can also be said to be a program for causing the microcomputer 16 to execute each function realized by the processing circuit 90 . This program may be provided by a storage medium storing the program, or may be provided by other means such as a communication medium. The above program can also be said to be a program that causes the microcomputer 16 to execute the processes described with reference to FIGS.
 ここで、プロセッサ91は、例えば、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコントローラ、またはDSP(Digital Signal Processor)などである。また、メモリ92は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)などが該当する。 Here, the processor 91 is, for example, a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, a microcontroller, or a DSP (Digital Signal Processor). In addition, the memory 92 is a non-volatile or volatile memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), etc. A semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc) is applicable.
 図8は、実施の形態1,2にかかるマイコンが備える処理回路を専用のハードウェアで構成する場合の処理回路の例を示す図である。図8に示す処理回路93は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。処理回路93については、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。このように、処理回路93は、専用のハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。 FIG. 8 is a diagram showing an example of a processing circuit when the processing circuit included in the microcomputer according to the first and second embodiments is configured with dedicated hardware. The processing circuit 93 shown in FIG. 8 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these thing applies. The processing circuit 93 may be partially realized by dedicated hardware and partially realized by software or firmware. Thus, the processing circuitry 93 can implement each of the functions described above by dedicated hardware, software, firmware, or a combination thereof.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above embodiments are only examples, and can be combined with other known techniques, or can be combined with other embodiments, without departing from the scope of the invention. It is also possible to omit or change part of the configuration.
 1 商用交流電源、4 ダイオードブリッジ、8A~8C リレー励磁コイル、13A,13B コンバータ部、14 インバータ部、15 圧縮機用モータ、16 マイコン、17 母線電圧検出部、18 圧縮機電流検出部、19A~19C リレー駆動回路、22 電圧記憶部、23 電圧比較部、24 リレー制御部、25 電流記憶部、26 電流比較部、31~39 接続点、90,93 処理回路、91 プロセッサ、92 メモリ、101,102 電源装置、Ca~Cc 平滑用コンデンサ、La~Lc リアクタ、Ra1~Rc1,Ra2~Rc2 リレー。 1 Commercial AC power supply, 4 Diode bridge, 8A to 8C Relay excitation coil, 13A, 13B Converter section, 14 Inverter section, 15 Compressor motor, 16 Microcomputer, 17 Bus voltage detection section, 18 Compressor current detection section, 19A ~ 19C relay drive circuit, 22 voltage storage unit, 23 voltage comparison unit, 24 relay control unit, 25 current storage unit, 26 current comparison unit, 31 to 39 connection points, 90, 93 processing circuit, 91 processor, 92 memory, 101, 102 Power supply, Ca-Cc smoothing capacitor, La-Lc reactor, Ra1-Rc1, Ra2-Rc2 relay.

Claims (9)

  1.  商用交流電源の交流電圧を直流電圧に変換するコンバータ部と、
     前記コンバータ部からの直流電圧を交流電圧に変換してモータを駆動するインバータ部と、
     前記インバータ部に供給される前記直流電圧の電圧値を検出する電圧検出部と、
     前記モータに流れる電流値を検出する電流検出部と、
     前記コンバータ部を制御する制御装置と、
     を備え、
     前記コンバータ部は、
     前記商用交流電源に接続可能でインダクタンス値が異なる複数のリアクタと、
     前記商用交流電源に前記複数のリアクタの何れかを介して接続された状態で前記商用交流電源からの交流電圧を整流して前記直流電圧を生成する整流回路と、
     前記整流回路および前記インバータ部に接続可能で、且つ前記整流回路および前記インバータ部に接続された状態で前記直流電圧を平滑化して前記インバータ部に送るコンデンサ容量が異なる複数の平滑用コンデンサと、
     前記複数のリアクタの何れを前記商用交流電源に接続するかを切り替える第1の切替部と、
     前記複数の平滑用コンデンサの何れを前記整流回路および前記インバータ部に接続するかを切り替える第2の切替部と、
     を有し、
     前記制御装置は、
     前記電圧検出部が検出した前記電圧値および前記電流検出部が検出した前記電流値に基づいて、前記第1の切替部および前記第2の切替部を制御する電源装置。
    a converter unit that converts the AC voltage of a commercial AC power supply to a DC voltage;
    an inverter unit that converts the DC voltage from the converter unit into an AC voltage to drive the motor;
    a voltage detection unit that detects the voltage value of the DC voltage supplied to the inverter unit;
    a current detection unit that detects a current value flowing through the motor;
    a control device that controls the converter;
    with
    The converter section
    a plurality of reactors connectable to the commercial AC power supply and having different inductance values;
    a rectifier circuit connected to the commercial AC power supply via one of the plurality of reactors and rectifying an AC voltage from the commercial AC power supply to generate the DC voltage;
    a plurality of smoothing capacitors having different capacitor capacities connectable to the rectifier circuit and the inverter unit, and smoothing the DC voltage while being connected to the rectifier circuit and the inverter unit and sending the DC voltage to the inverter unit;
    a first switching unit that switches which one of the plurality of reactors is to be connected to the commercial AC power supply;
    a second switching unit that switches which of the plurality of smoothing capacitors is connected to the rectifier circuit and the inverter;
    has
    The control device is
    A power supply device that controls the first switching section and the second switching section based on the voltage value detected by the voltage detection section and the current value detected by the current detection section.
  2.  前記制御装置は、
     前記電圧値に対する第1の基準値である第1の電圧基準値を記憶する第1の記憶部と、
     前記電圧検出部が検出した前記電圧値と、前記第1の電圧基準値とを比較する電圧比較部と、
     前記電圧比較部による比較結果に基づいて、前記第1の切替部および前記第2の切替部を制御するリレー制御部と、
     を有する、
     請求項1に記載の電源装置。
    The control device is
    a first storage unit that stores a first voltage reference value that is a first reference value for the voltage value;
    a voltage comparison unit that compares the voltage value detected by the voltage detection unit and the first voltage reference value;
    a relay control unit that controls the first switching unit and the second switching unit based on the comparison result of the voltage comparison unit;
    having
    The power supply device according to claim 1 .
  3.  前記制御装置は、
     前記電流値に対する第1の基準値である第1の電流基準値を記憶する第2の記憶部と、
     前記電流検出部が検出した前記電流値と、前記第1の電流基準値とを比較する電流比較部と、
     を有し、
     前記リレー制御部は、前記電流比較部による比較結果に基づいて、前記第1の切替部および前記第2の切替部を制御する、
     請求項2に記載の電源装置。
    The control device is
    a second storage unit that stores a first current reference value that is a first reference value for the current value;
    a current comparison unit that compares the current value detected by the current detection unit and the first current reference value;
    has
    The relay control unit controls the first switching unit and the second switching unit based on the comparison result of the current comparison unit.
    The power supply device according to claim 2.
  4.  前記制御装置は、
     前記商用交流電源に接続される前記リアクタと、前記整流回路および前記インバータ部に接続される前記平滑用コンデンサとの組み合わせである要素対が、前記電圧値が前記第1の電圧基準値よりも低く、且つ前記電流値が前記第1の電流基準値よりも低くなる組み合わせである許容組み合わせとなるように前記第1の切替部および前記第2の切替部を制御する、
     請求項3に記載の電源装置。
    The control device is
    The element pair, which is a combination of the reactor connected to the commercial AC power supply and the smoothing capacitor connected to the rectifier circuit and the inverter unit, has a voltage value lower than the first voltage reference value. and controlling the first switching unit and the second switching unit so that an allowable combination is a combination in which the current value is lower than the first current reference value,
    The power supply device according to claim 3.
  5.  前記制御装置は、
     前記要素対が、前記許容組み合わせでない場合、前記コンバータ部から前記インバータ部への前記直流電圧の供給を停止し、前記要素対を変更して前記コンバータ部から前記インバータ部への前記直流電圧の供給を開始する、
     請求項4に記載の電源装置。
    The control device is
    If the element pair is not the allowable combination, supply of the DC voltage from the converter section to the inverter section is stopped, and the element pair is changed to supply the DC voltage from the converter section to the inverter section. to start the
    The power supply device according to claim 4.
  6.  前記制御装置は、
     前記要素対の全てが、前記許容組み合わせでない場合、前記要素対が、前記電圧値が前記第1の電圧基準値に最も近く、且つ前記電流値が前記第1の電流基準値に最も近い組み合わせとなるように、前記第1の切替部および前記第2の切替部を制御する、
     請求項4または5に記載の電源装置。
    The control device is
    If all of the element pairs are not the allowable combination, the element pair is the combination in which the voltage value is closest to the first voltage reference value and the current value is closest to the first current reference value. controlling the first switching unit and the second switching unit so that
    The power supply device according to claim 4 or 5.
  7.  前記制御装置は、
     前記電圧検出部が検出した前記電圧値と、前記第1の電圧基準値よりも大きく前記電圧値に対する第2の基準値である第2の電圧基準値とを比較し、前記電圧検出部が検出した前記電圧値が前記第2の電圧基準値以上となる場合には、前記コンバータ部から前記インバータ部への前記直流電圧の供給を停止する、
     請求項2から6の何れか1つに記載の電源装置。
    The control device is
    The voltage value detected by the voltage detection unit is compared with a second voltage reference value that is greater than the first voltage reference value and is a second reference value for the voltage value, and the voltage detection unit detects stopping the supply of the DC voltage from the converter unit to the inverter unit when the voltage value obtained is equal to or higher than the second voltage reference value;
    The power supply device according to any one of claims 2 to 6.
  8.  前記制御装置は、
     前記電流検出部が検出した前記電流値と、前記第1の電流基準値よりも大きく前記電流値に対する第2の基準値である第2の電流基準値とを比較し、前記電流検出部が検出した前記電流値が前記第2の電流基準値以上となる場合には、前記コンバータ部から前記インバータ部への前記直流電圧の供給を停止する、
     請求項3から6の何れか1つに記載の電源装置。
    The control device is
    The current value detected by the current detection unit is compared with a second current reference value that is larger than the first current reference value and is a second reference value for the current value, and the current detection unit detects stopping the supply of the DC voltage from the converter unit to the inverter unit when the current value obtained is equal to or greater than the second current reference value;
    The power supply device according to any one of claims 3 to 6.
  9.  前記第1の切替部および前記第2の切替部は、リレーである、
     請求項1から8の何れか1つに記載の電源装置。
    The first switching unit and the second switching unit are relays,
    The power supply device according to any one of claims 1 to 8.
PCT/JP2021/007171 2021-02-25 2021-02-25 Power supply device WO2022180747A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023501925A JP7370492B2 (en) 2021-02-25 2021-02-25 power supply
PCT/JP2021/007171 WO2022180747A1 (en) 2021-02-25 2021-02-25 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007171 WO2022180747A1 (en) 2021-02-25 2021-02-25 Power supply device

Publications (1)

Publication Number Publication Date
WO2022180747A1 true WO2022180747A1 (en) 2022-09-01

Family

ID=83048985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007171 WO2022180747A1 (en) 2021-02-25 2021-02-25 Power supply device

Country Status (2)

Country Link
JP (1) JP7370492B2 (en)
WO (1) WO2022180747A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211651A (en) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd Inverter air conditioner
JP2001286146A (en) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd Power-source unit
US6608770B2 (en) * 2001-08-31 2003-08-19 Vlt Corporation Passive control of harmonic current drawn from an AC input by rectification circuitry
JP2005006398A (en) * 2003-06-11 2005-01-06 Flying Mole Corp Ac/dc converter
JP2007135254A (en) * 2005-11-08 2007-05-31 Sharp Corp Power unit and freezer air-conditioner
JP2014192952A (en) * 2013-03-26 2014-10-06 Canon Inc Power-supply device and image formation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211651A (en) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd Inverter air conditioner
JP2001286146A (en) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd Power-source unit
US6608770B2 (en) * 2001-08-31 2003-08-19 Vlt Corporation Passive control of harmonic current drawn from an AC input by rectification circuitry
JP2005006398A (en) * 2003-06-11 2005-01-06 Flying Mole Corp Ac/dc converter
JP2007135254A (en) * 2005-11-08 2007-05-31 Sharp Corp Power unit and freezer air-conditioner
JP2014192952A (en) * 2013-03-26 2014-10-06 Canon Inc Power-supply device and image formation device

Also Published As

Publication number Publication date
JP7370492B2 (en) 2023-10-27
JPWO2022180747A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US8164292B2 (en) Motor controller of air conditioner
JP2648575B2 (en) Operation control device for air conditioner and control method therefor
EP2119914B1 (en) Inverter compressor operation method and compressor drive device
US7999409B2 (en) Power conditioner and method of managing the same
WO2022180747A1 (en) Power supply device
US11581839B2 (en) Rotary-machine control device, refrigerant compression apparatus, and air conditioner
US10928112B2 (en) Heat pump device
US10944350B2 (en) Motor drive device
JP6533951B2 (en) Motor drive device, drive device of compressor using the same, and refrigerator
WO2022172419A1 (en) Power conversion device, motor drive device, and air conditioner
US11626825B2 (en) Rotary machine control device, refrigerant compression device, refrigeration cycle apparatus, and air conditioner
JPH0833392A (en) Air conditioner
CN116458049A (en) Power conversion device, motor drive device, and refrigeration cycle application device
JP2006223014A (en) Motor drive device
WO2022172418A1 (en) Power conversion device, motor driving device, and refrigeration-cycle application instrument
WO2012114626A1 (en) Power supply circuit and heat pump unit
JP6673949B2 (en) Motor drive device and determination method
WO2023238229A1 (en) Power conversion device, motor drive device, and refrigeration cycle application apparatus
JP3316279B2 (en) Air conditioner
WO2023131990A1 (en) Power conversion device, motor drive device, and refrigeration cycle applied apparatus
WO2023175893A1 (en) Drive device and air conditioning device
CN116783811A (en) Power conversion device, motor drive device, and refrigeration cycle application device
WO2022176015A1 (en) Power conversion device and air conditioner
US20230155476A1 (en) Power supply device and method for controlling same
JP7428730B2 (en) power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023501925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927849

Country of ref document: EP

Kind code of ref document: A1