WO2022180669A1 - Information processing device, control method, program, and storage medium - Google Patents

Information processing device, control method, program, and storage medium Download PDF

Info

Publication number
WO2022180669A1
WO2022180669A1 PCT/JP2021/006797 JP2021006797W WO2022180669A1 WO 2022180669 A1 WO2022180669 A1 WO 2022180669A1 JP 2021006797 W JP2021006797 W JP 2021006797W WO 2022180669 A1 WO2022180669 A1 WO 2022180669A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
region
interest
measurement
information
Prior art date
Application number
PCT/JP2021/006797
Other languages
French (fr)
Japanese (ja)
Inventor
健志 幸田
到 竹村
Original Assignee
パイオニア株式会社
パイオニアスマートセンシングイノベーションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, パイオニアスマートセンシングイノベーションズ株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2021/006797 priority Critical patent/WO2022180669A1/en
Publication of WO2022180669A1 publication Critical patent/WO2022180669A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers

Definitions

  • This disclosure relates to processing of measured data.
  • a laser radar device that irradiates a space to be detected with a pulse of laser light and detects an object in the space to be detected based on the level of the reflected light.
  • Patent Document 1 by appropriately controlling the emission direction (scanning direction) of light pulses that are repeatedly emitted, the surrounding space is scanned, and by observing the return light, information about objects existing in the surroundings is obtained.
  • a lidar is disclosed that generates point cloud data representing information such as distance, reflectance, and the like.
  • the present disclosure has been made in order to solve the above-described problems, and its main purpose is to provide an information processing device that can suitably reduce the amount of data to be uploaded.
  • the claimed invention is Acquisition means for acquiring measurement data by the measuring device; detection means for detecting a region of interest in a frame that is the measurement data for each measurement cycle by the measurement device; compression means for compressing the first data, which is the measurement data that does not belong to the region of interest, and the second data, which is the measurement data that belongs to the region of interest, in different compression modes; transmission means for transmitting the compressed first data and the second data to a data collection device; It is an information processing device having
  • a computer-implemented control method comprising: Acquiring measurement data from a measuring device, detecting a region of interest in a frame that is the measurement data for each measurement cycle by the measurement device; Compressing first data, which is the measurement data that does not belong to the region of interest, and second data, which is the measurement data that belongs to the region of interest, in different compression modes; transmitting the compressed first data and second data to a data collection device; control method.
  • the invention described in the claims Acquiring measurement data from a measuring device, detecting a region of interest in a frame that is the measurement data for each measurement cycle by the measurement device; Compressing first data, which is the measurement data that does not belong to the region of interest, and second data, which is the measurement data that belongs to the region of interest, in different compression modes; A program that causes a computer to execute a process of transmitting the compressed first data and second data to a data collection device.
  • FIG. 1 is a schematic configuration diagram of a data collection system
  • FIG. 1 is a block configuration diagram of an information processing device
  • FIG. 4 is a functional block diagram of a data processing unit
  • FIG. It is a figure which shows the measurement range of a rider. It is an example of the flowchart which shows the processing procedure of an information processing apparatus.
  • the information processing apparatus includes acquisition means for acquiring measurement data by a measurement device, and detection means for detecting a region of interest in a frame that is the measurement data for each measurement cycle by the measurement device. and compression means for compressing the first data, which is the measurement data that does not belong to the region of interest, and the second data, which is the measurement data that belongs to the region of interest, in different compression modes; and transmitting means for transmitting the data and the second data to a data collection device.
  • the information processing device changes the compression mode of the measurement data based on whether it belongs to the region of interest or not, thereby preventing the loss of highly important information and reducing the amount of data to be transmitted to the data collection device. can be effectively reduced.
  • the compression means lossy-compresses the first data and losslessly-compresses the second data.
  • the information processing device can suitably reduce the amount of data to be transmitted to the data collection device while preventing the loss of the measurement data of the region of interest.
  • the information processing apparatus further includes metadata adding means for adding metadata relating to detection of the region of interest to the compressed second data. According to this aspect, it is possible to suitably add useful information as metadata when using the second data after compression.
  • the detection means determines detection conditions for the region of interest based on an application to be applied. According to this aspect, it is possible to set an important region as the region of interest for each application and accurately determine the compression aspect of the measurement data for each position to be measured.
  • the measurement device generates the measurement data including luminance information, and the detection means detects the region of interest based on the luminance.
  • the information processing device can suitably set the region of interest according to the brightness.
  • the detection means detects a dynamic object in the frame and sets the region of interest based on the detection result of the dynamic object.
  • the information processing apparatus can preferably set the region of interest based on the detection result of the dynamic object.
  • the measurement data includes luminance information and reflection intensity information
  • the compressing means converts at least one of the first data and the second data into the luminance information and the reflection intensity information.
  • the intensity information is compressed by different compression modes. Therefore, the information processing apparatus can appropriately change the compression mode of the luminance information and the reflection intensity information according to their importance.
  • a control method executed by a computer in which measurement data obtained by a measuring device is acquired, and a region of interest is detected in a frame of the measurement data for each measurement cycle of the measuring device.
  • the first data that is the measurement data that is detected and does not belong to the region of interest and the second data that is the measurement data that belongs to the region of interest are compressed in different compression modes, and the compressed first data and The second data is transmitted to a data collection device.
  • measurement data by a measuring device is acquired, a region of interest is detected in a frame that is the measurement data for each measurement cycle by the measuring device, and the region of interest that does not belong to the region of interest is detected.
  • the program is stored in a storage medium.
  • FIG. 1 shows a schematic configuration of a data collection system according to this embodiment.
  • the data collection system includes an information processing device 1 that processes data generated by a sensor group 2, and a data collection device 4 that is a server device that collects and manages data.
  • the information processing device 1 is electrically connected to the sensor group 2 and processes data output by various sensors included in the sensor group 2 .
  • the sensor group 2 includes at least a lidar (Lidar: Light Detection and Ranging, or Laser Illuminated Detection and Ranging) 3 .
  • the information processing device 1 generates upload information “Iu” based on the data generated by the rider 3 and transmits the generated upload information Iu to the data collection device 4 .
  • the information processing device 1 compresses the data for each measurement direction generated by the rider 3 by applying either reversible compression or irreversible compression according to the classification result of the data. As a result, the information processing device 1 generates the upload information Iu with a suitably reduced data amount.
  • the information processing device 1 may be an electronic control device of a measuring unit fixedly installed on a road or a parking lot, or may be a navigation device mounted on a moving body such as a vehicle or a ship. It may be an electronic control unit built in a moving body. Further, the information processing device 1 may be configured integrally with the rider 3 as an electronic control device for the rider 3 .
  • the lidar 3 discretely measures the distance to an object in the external world by emitting a pulsed laser while changing the angle within a predetermined angular range in the horizontal and vertical directions.
  • the lidar 3 includes an irradiation unit that irradiates laser light while changing the irradiation direction (that is, the measurement direction), a light receiving unit that receives reflected light (scattered light) of the irradiated laser light, and light receiving output from the light receiving unit. and an output for outputting data based on the signal.
  • the data measured by the lidar 3 for each irradiation direction in which the pulse laser is irradiated is the irradiation direction corresponding to the laser light received by the light receiving unit. and the response delay time of the laser beam specified based on the light receiving signal.
  • the lidar 3 converts the data corresponding to each measurement point in the measurement (scanning) range of the lidar 3 (that is, the irradiation range of the pulse laser) into one frame of point cloud data.
  • the point cloud data for each frame can be regarded as image data when each measurement point is a pixel position and the data for each measurement point is pixel data.
  • the rider 3 is an example of a "measurement device" in the present invention.
  • the lidar 3 is not limited to the above-described scan type lidar, and may be a flash type lidar that generates three-dimensional data by diffusing laser light into the field of view of a two-dimensional array sensor.
  • the sensor group 2 may include various external sensors and/or internal sensors.
  • the sensor group 2 may include a GNSS (Global Navigation Satellite System) receiver, an autonomous positioning device, etc. required for generating position information when provided in a mobile object.
  • GNSS Global Navigation Satellite System
  • the data collection device 4 is a device that collects measurement data from a rider, receives upload information Iu from the information processing device 1, and stores the received upload information Iu. Although only one set of the information processing device 1 and the sensor group 2 is illustrated in FIG. 1, there may be a plurality of sets of the information processing device 1 and the sensor group 2 instead. In this case, the data collection device 4 receives the upload information Iu from each information processing device 1 .
  • the point cloud data is included in the upload information Iu after being compressed by the information processing apparatus 1 .
  • the point cloud data includes, for example, measurement position information, reflection intensity information, distance information, and noise floor information for each measurement point.
  • the measurement position information is identification information (ID) that identifies a target measurement point (scanning point).
  • the reflection intensity information is information on the reflection intensity of the irradiated laser beam (that is, the received light intensity of the reflected light). Specifically, the reflection intensity information represents the peak received light intensity of the reflected light of the irradiated laser beam.
  • the reflection intensity information may be information representing the reflectance of the irradiated object estimated from the measured reflection intensity.
  • the distance information is information representing the distance to the object to be irradiated. The distance is calculated based on the time-of-flight specified by the light reception timing of the peak of the reflected light of the irradiated laser light.
  • the reflection intensity information and the distance information may be information representing a set of reflection intensity and distance corresponding to a plurality of peaks of reflected light.
  • the noise floor information is information regarding the noise floor of the reflection intensity. Noise floor information represents, for example, the mean, variance, or/and other statistics of reflected intensities that are considered noise.
  • the noise floor information is generated, for example, based on the reflection intensity that is not used for distance calculation (that is, other than the peak) among the reflection intensities in the reflected light receiving period, or the reflection intensity in the non-receiving period. Note that instead of the rider 3 generating these various types of information (measured position information, reflection intensity information, distance information, noise floor information, etc.), the information processing apparatus 1 generates these various types of information from the raw data of the rider 3. may
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the information processing apparatus 1. As shown in FIG. The information processing device 1 mainly has an interface 11 , a memory 12 and a controller 13 . These elements are interconnected via bus lines.
  • the interface 11 performs interface operations related to data transfer between the information processing device 1 and an external device.
  • the interface 11 acquires output data from the sensor group 2 such as the rider 3 and supplies it to the controller 13 .
  • the interface 11 also transmits the upload information Iu generated by the controller 13 to the data collection device 4 under the control of the controller 13 .
  • the interface 11 transmits a signal related to control of the mobile object generated by the controller 13 to an electronic control unit (ECU: Electronic Control Unit) of the mobile object. ).
  • the interface 11 may be a wireless interface such as a network adapter for wireless communication, or a hardware interface for connecting with an external device via a cable or the like.
  • the interface 11 may perform interface operations with various peripheral devices such as an input device, a display device, and a sound output device.
  • the memory 12 is composed of various volatile and nonvolatile memories such as RAM (Random Access Memory), ROM (Read Only Memory), hard disk drive, and flash memory.
  • the memory 12 stores a program for the controller 13 to execute predetermined processing. Note that the program executed by the controller 13 may be stored in a storage medium other than the memory 12 .
  • the memory 12 stores various information related to data compression processing executed by the controller 13 .
  • memory 12 has region of interest information I1.
  • the region-of-interest information I1 is information about a region of interest (also referred to as a “region of interest”) within a frame of point cloud data.
  • the region-of-interest information I1 includes information about detection conditions for the region-of-interest for each application.
  • the condition for detecting the region of interest depends on the application to be executed, and may be a condition based on brightness or a condition regarding the presence or absence of a dynamic object. A method of detecting the region of interest based on the region of interest information I1 will be described later.
  • the controller 13 includes one or more processors such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and a TPU (Tensor Processing Unit), and controls the information processing apparatus 1 as a whole. In this case, the controller 13 executes various processes described later by executing programs stored in the memory 12 or the like.
  • processors such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and a TPU (Tensor Processing Unit)
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • TPU Transistor Processing Unit
  • the controller 13 also functionally has a data processing unit 14 and an upload unit 15 .
  • the data processing unit 14 executes processing related to compression of point cloud data generated by the rider 3 .
  • the upload unit 15 transmits the upload information Iu including the compressed data of the point cloud data generated by the data processing unit 14 to the data collection device 4 via the interface 11 .
  • the upload unit 15 transmits the compressed data of the point cloud data generated by the data processing unit 14 to the data collection device 4 in one or more measurement cycles (scanning cycles).
  • the controller 13 functions as "acquisition means”, “detection means”, “compression means”, “transmission means”, and a computer that executes programs.
  • the processing executed by the controller 13 is not limited to being realized by program-based software, and may be realized by any combination of hardware, firmware, and software. Also, the processing executed by the controller 13 may be implemented using a user-programmable integrated circuit such as an FPGA (Field-Programmable Gate Array) or a microcomputer. In this case, this integrated circuit may be used to implement the program executed by the controller 13 in this embodiment.
  • a user-programmable integrated circuit such as an FPGA (Field-Programmable Gate Array) or a microcomputer. In this case, this integrated circuit may be used to implement the program executed by the controller 13 in this embodiment.
  • the data processing unit 14 compresses the data of the measurement points belonging to the region of interest among the frames of the point cloud data obtained by the measurement for one cycle by lossless compression, and compresses the data of the measurement points not belonging to the region of interest. is compressed by lossy compression.
  • the data processing unit 14 generates compressed data for the necessary area while maintaining sufficient accuracy, generates compressed data for the less important area at a high compression ratio, and generates data for the upload information Iu. Preferably reduce capacity.
  • FIG. 3 is an example of functional blocks of the data processing unit 14.
  • the data processing unit 14 functionally includes a region-of-interest detection unit 41 , an irreversible compression unit 42 , a reversible compression unit 43 , a metadata addition unit 44 , and a data integration unit 45 .
  • the blocks that exchange data are connected by solid lines, but the combinations of blocks that exchange data are not limited to those shown in FIG.
  • the region-of-interest detection unit 41 acquires the point cloud data generated by the rider 3 via the interface 11, and detects the region of interest in the frame of the point cloud data specified for each measurement cycle.
  • the region-of-interest detection unit 41 refers to the region-of-interest information I1 to recognize the region-of-interest detection condition according to the application to be executed, and detects a region (for example, a rectangular region) in the frame that satisfies the detection condition. , is detected as the region of interest.
  • the detection method of the region of interest may be any method such as object detection (recognition) based on point cloud data, image recognition, and estimation based on luminance value distribution. This will be described later with reference to (B).
  • the region-of-interest detection unit 41 acquires information about the application that is the use of the point cloud data from the data collection device 4 or another processing block in the controller 13, and based on the information about the acquired application, A detection condition for the region of interest may be determined.
  • the region-of-interest detection conditions are recorded in the region-of-interest information I1 in association with each application. Select conditions.
  • the region-of-interest detection unit 41 supplies the data corresponding to the measurement points that do not belong to the region of interest (also referred to as “first data D1”) to the irreversible compression unit 42, and the data corresponding to the measurement points that belong to the region of interest.
  • Data also referred to as “second data D2”
  • the region-of-interest detection unit 41 also supplies information (also referred to as “detection information I2”) regarding the detection of the region of interest to the metadata provision unit 44 .
  • the detection information I2 is information generated in the detection of the region of interest. , information on detection accuracy, etc.).
  • the irreversible compression unit 42 performs irreversible compression on the first data D1 supplied from the region of interest detection unit 41 .
  • the first data D1 is data corresponding to measurement points that do not belong to the region of interest, and is data of low importance in the application to be executed.
  • the irreversible compression method executed by the irreversible compression unit 42 may be any method.
  • the lossy compression unit 42 compresses the first data D1 according to the compression mode defined in the region of interest information I1 or the like. Perform lossy compression. Then, the irreversible compression unit 42 supplies data obtained by irreversibly compressing the first data D1 (also referred to as “irreversible compressed data Da1”) to the data integration unit 45 .
  • the irreversible compression unit 42 may change the compression rate for each frame. For example, the irreversible compression unit 42 may increase the compression rate as the region of interest in the frame becomes smaller (that is, as the number of measurement points corresponding to the first data D1 for each frame increases). In this case, for example, when the second data D2 does not exist and the first data D1 is the entire frame, the irreversible compression unit 42 maximizes the compression rate and reduces the data amount of the irreversible compressed data Da1 to zero. (that is, the irreversible compressed data Da1 is not generated).
  • the reversible compression section 43 performs reversible compression on the second data D2 supplied from the region of interest detection section 41 .
  • the second data D2 is data corresponding to the measurement points belonging to the region of interest, and is data of high importance in the application to be executed.
  • the lossless compression method executed by the lossless compression unit 43 may be any method.
  • the reversible compression unit 43 performs lossless compression of the second data D2 according to the compression mode defined in the region of interest information I1.
  • the irreversible compression unit 42 supplies data obtained by reversibly compressing the second data D2 (also referred to as “reversible compressed data Da2”) to the metadata adding unit 44 .
  • the metadata addition unit 44 adds the detection information I2 supplied from the region of interest detection unit 41 as metadata to the lossless compressed data Da2 generated by the lossless compression unit 43 . Then, the metadata adding unit 44 supplies the second compressed data “Db2”, which is the reversible compressed data Da2 to which the metadata is added, to the data integrating unit 45 .
  • the data integration unit 45 integrates the irreversible compressed data Da1 generated by the irreversible compression unit 42 and the reversible compressed data Db2 generated by the metadata adding unit 44 for each frame (also referred to as “integrated data Du”). ). Then, the data integration unit 45 supplies the integrated data Du integrated for each frame to the upload unit 15 . After that, the upload unit 15 transmits the upload information Iu including one or more integrated data Du to the data collection device 4 . After receiving the upload information Iu, the data collection device 4 stores the upload information Iu. Then, the data collection device 4 decompresses the lossy-compressed data Da1 and reversible-compressed data Db2 of the integrated data Du included in the received upload information Iu, and uses the decompressed data for a predetermined application.
  • FIGS. 4A and 4B are diagrams showing the measurement range of the rider 3.
  • the region-of-interest detection unit 41 determines the region of interest based on the brightness measured at each measurement point. Specifically, the region-of-interest detection unit 41 identifies a measurement point whose brightness is higher than a threshold pre-recorded in the region-of-interest information I1 or the like, and sets the region of interest based on the identified measurement point. In this case, for example, the region-of-interest detection unit 41 sets the smallest rectangular region including measurement points whose brightness is greater than the threshold as the region of interest. On the other hand, the region-of-interest detection unit 41 regards the region of the frame other than the rectangular region described above as not the region of interest.
  • the region-of-interest detection unit 41 sets a region in which an object such as a road surface and features around the road exists as a region of interest, and there is no loss of information in the compression process.
  • the region-of-interest detection unit 41 excludes regions of low brightness and no object from the region of interest, and increases the compression rate in the compression process to suitably reduce the amount of data.
  • efficient compression of the amount of data transmission can be performed without missing important information.
  • the region-of-interest detection unit 41 detects a dynamic object region by detecting changes in point cloud data between frames, and based on the detected dynamic object region.
  • Set a region of interest In this case, for example, the region-of-interest detection unit 41 sets the smallest rectangular region (so-called bounding box) including the region of the dynamic object as the region of interest.
  • the region-of-interest detection unit 41 may detect the above-described dynamic object region using an arbitrary technique for detecting a dynamic object region based on time-series image data.
  • the region-of-interest detection unit 41 regards the region of the frame other than the rectangular region described above as not the region of interest.
  • the region-of-interest detection unit 41 sets the region in which the dynamic object exists as the region of interest when the information of the dynamic object is important in the applied application, and performs the compression processing. can be subjected to lossless compression so that there is no loss of information in
  • the region-of-interest detection unit 41 can exclude regions in which no dynamic object exists from the region of interest, increase the compression rate in the compression process, and suitably reduce the amount of data.
  • efficient compression of the amount of data transmission can be performed without missing important information.
  • the setting example of the region of interest is not limited to the examples of FIGS. 4A and 4B, and the region of interest may be set according to various conditions depending on the application using the point cloud data.
  • the region-of-interest information I1 or the like specifies that a specific type of object (including a moving object) is to be detected
  • the region-of-interest detection unit 41 detects the specified type of object.
  • the region of interest may be set based on the detection result.
  • the defined type of object is, for example, a pedestrian, a forward vehicle, a specific feature (including a white line, a sign, etc.), or a combination thereof.
  • the region-of-interest detection unit 41 may detect a region of a specific type of object, for example, based on any trained reasoner based on semantic segmentation, instance segmentation, or the like.
  • the reasoner described above is, for example, a learning model trained to output a region classification result for each pixel (measurement point) when one or a predetermined number of frames are input.
  • FIG. 5 is an example of a flow chart showing processing procedures in this embodiment.
  • the information processing device 1 repeatedly executes the processing of the flowchart of FIG.
  • the data processing unit 14 of the information processing device 1 acquires point cloud data for each frame generated by the rider 3 via the interface 11 (step S11). Then, the data processing unit 14 detects a region of interest based on the point cloud data acquired in step S11 (step S12). In this case, for example, the data processing unit 14 refers to the region-of-interest information I1 and detects the region of interest in the target frame based on the region-of-interest detection conditions according to the application to be applied.
  • the data processing unit 14 determines whether or not a region of interest exists in the target frame (step S13). Then, if a region of interest exists in the target frame (step S13; Yes), the data processing unit 14 losslessly compresses the second data D2, which is data of measurement points belonging to the region of interest, and removes the data from the region of interest.
  • the first data D1 which is the data of the measuring point to which it belongs, is irreversibly compressed (step S14).
  • the data processing unit 14 converts the first data D1 into lossy-compressed data Da1, and converts the second data D2 into lossless-compressed data Da2.
  • the data processing unit 14 efficiently compresses the data of the measurement points belonging to the region of interest by losslessly compressing the data of the measurement points belonging to the region of interest to suitably suppress the loss of information. quantity can be reduced.
  • the data processing unit 14 adds detection information I2 relating to the detection of the region of interest as metadata to the losslessly compressed data Da2 generated in step S14 (step S15). Thereby, the data processing unit 14 generates lossless compression data Db2.
  • step S13 the data processing unit 14 irreversibly compresses all the data in the target frame (step S17). Thereby, the data processing unit 14 generates the irreversible compressed data Da1.
  • step S17 the data processing unit 14 does not have to generate the irreversible compressed data Da1, which is the data to be transmitted to the data collecting device 4.
  • FIG. This case corresponds to maximizing the compression ratio.
  • the upload unit 15 transmits the upload information Iu to the data collection device 4 via the interface 11 (step S16).
  • the upload information Iu includes integrated data Du obtained by integrating the lossy-compressed data Da1 generated in step S14 and the lossless-compressed data Db2 generated in step S15, or the lossy-compressed data generated in step S17. Da1 is included.
  • the controller 13 of the information processing device 1 acquires measurement data from the rider 3, which is a measurement device. Then, the controller 13 detects the region of interest in the frames that are measurement data for each measurement cycle by the lidar 3 . Then, the controller 13 compresses the first data D1, which is measurement data that does not belong to the region of interest, and the second data D2, which is measurement data that belongs to the region of interest, in different compression modes. The controller 13 then transmits the upload information Iu including the compressed first data D1 and second data D2 to the data collecting device 4 . As a result, the information processing device 1 can suitably reduce the amount of data to be transmitted to the data collecting device 4 while suitably ensuring the accuracy of important measurement data.
  • the information processing device 1 may generate and transmit the upload information Iu based on the measurement result of an external sensor other than the rider 3 that measures the distance. Even in this case, the information processing apparatus 1 regards the data measured by the external sensor in one measurement cycle as one frame, detects the region of interest in the frame, and reversibly converts the data belonging to the region of interest. Compress and lossy compress data that falls outside the region of interest. This makes it possible to suitably reduce the amount of data to be uploaded while preventing the loss of important data.
  • the information processing device 1 may compress the distance information and the reflection intensity information in different compression modes. For example, in the case of the first data D1 belonging to the outside of the region of interest, the information processing device 1 increases the compression ratio in lossy compression of the reflection intensity information rather than the distance information. In another example, in the case of the second data D2 belonging to the region of interest, the information processing apparatus 1 losslessly compresses only the distance information, and lossy compresses the reflection intensity information. According to these examples, the information processing apparatus 1 can perform compression processing by prioritizing the accuracy of the distance information over the accuracy of the reflection intensity information.
  • Non-transitory computer readable media include various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic storage media (e.g., floppy disks, magnetic tapes, hard disk drives), magneto-optical storage media (e.g., magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R/W, semiconductor memory (eg mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).

Abstract

A controller 13 of an information processing device 1 acquires measurement data from a writer 3, which is a measurement device. The controller 13 detects, in a frame, a region of interest that is measurement data for each measurement period from the writer 3. The controller 13 uses different compression modes to respectively compress first data D1, which is measurement data not belonging to the region of interest, and second data D2, which is measurement data belonging to the region of interest. The controller 13 transmits, to a data collection device 4, upload information Iu that includes the compressed first data D1 and second data D2.

Description

情報処理装置、制御方法、プログラム及び記憶媒体Information processing device, control method, program and storage medium
 本開示は、計測したデータの処理に関する。 This disclosure relates to processing of measured data.
 従来から、被検出空間にレーザ光のパルスを照射し、その反射光のレベルに基づいて、被検出空間内の対象物を検出するレーザレーダ装置が知られている。例えば、特許文献1には、繰り返し出射される光パルスの出射方向(走査方向)を適切に制御することにより周辺空間を走査し、その戻り光を観測することにより、周辺に存在する物体に関する情報である距離、反射率などの情報を表す点群データを生成するライダが開示されている。 Conventionally, there has been known a laser radar device that irradiates a space to be detected with a pulse of laser light and detects an object in the space to be detected based on the level of the reflected light. For example, in Patent Document 1, by appropriately controlling the emission direction (scanning direction) of light pulses that are repeatedly emitted, the surrounding space is scanned, and by observing the return light, information about objects existing in the surroundings is obtained. A lidar is disclosed that generates point cloud data representing information such as distance, reflectance, and the like.
特開2018-009831号公報JP 2018-009831 A
 ライダなどの計測装置が所定の走査周期に従い生成する点群データをアップロードしてサーバ装置により収集管理する場合には、生成される点群データの容量が大きいため、通信負荷やサーバ装置の処理負荷等が過大となることが問題となる。従って、送信するデータについて、実質的な情報量の低下を抑制しつつ、全体のデータ容量を削減する必要がある。 When uploading point cloud data generated by a measurement device such as a lidar according to a predetermined scanning cycle and collecting and managing it by a server device, the volume of generated point cloud data is large, so communication load and processing load on the server device. etc. become excessively large. Therefore, it is necessary to reduce the overall data volume while suppressing a substantial decrease in the amount of information to be transmitted.
 本開示は、上記のような課題を解決するためになされたものであり、アップロードするデータ量の削減を好適に実行することが可能な情報処理装置を提供することを主な目的とする。 The present disclosure has been made in order to solve the above-described problems, and its main purpose is to provide an information processing device that can suitably reduce the amount of data to be uploaded.
 請求項に記載の発明は、
 計測装置による計測データを取得する取得手段と、
 前記計測装置による計測周期ごとの前記計測データであるフレームにおいて関心領域を検出する検出手段と、
 前記関心領域に属しない前記計測データである第1データと、前記関心領域に属する前記計測データである第2データとを、異なる圧縮態様により圧縮する圧縮手段と、
 圧縮された前記第1データ及び前記第2データを、データ収集装置に送信する送信手段と、
を有する情報処理装置である。
The claimed invention is
Acquisition means for acquiring measurement data by the measuring device;
detection means for detecting a region of interest in a frame that is the measurement data for each measurement cycle by the measurement device;
compression means for compressing the first data, which is the measurement data that does not belong to the region of interest, and the second data, which is the measurement data that belongs to the region of interest, in different compression modes;
transmission means for transmitting the compressed first data and the second data to a data collection device;
It is an information processing device having
 また、請求項に記載の発明は、
 コンピュータが実行する制御方法であって、
 計測装置による計測データを取得し、
 前記計測装置による計測周期ごとの前記計測データであるフレームにおいて関心領域を検出し、
 前記関心領域に属しない前記計測データである第1データと、前記関心領域に属する前記計測データである第2データとを、異なる圧縮態様により圧縮し、
 圧縮された前記第1データ及び前記第2データを、データ収集装置に送信する、
制御方法である。
In addition, the invention described in the claims,
A computer-implemented control method comprising:
Acquiring measurement data from a measuring device,
detecting a region of interest in a frame that is the measurement data for each measurement cycle by the measurement device;
Compressing first data, which is the measurement data that does not belong to the region of interest, and second data, which is the measurement data that belongs to the region of interest, in different compression modes;
transmitting the compressed first data and second data to a data collection device;
control method.
 また、請求項に記載の発明は、
 計測装置による計測データを取得し、
 前記計測装置による計測周期ごとの前記計測データであるフレームにおいて関心領域を検出し、
 前記関心領域に属しない前記計測データである第1データと、前記関心領域に属する前記計測データである第2データとを、異なる圧縮態様により圧縮し、
 圧縮された前記第1データ及び前記第2データを、データ収集装置に送信する処理をコンピュータに実行させるプログラムである。
In addition, the invention described in the claims,
Acquiring measurement data from a measuring device,
detecting a region of interest in a frame that is the measurement data for each measurement cycle by the measurement device;
Compressing first data, which is the measurement data that does not belong to the region of interest, and second data, which is the measurement data that belongs to the region of interest, in different compression modes;
A program that causes a computer to execute a process of transmitting the compressed first data and second data to a data collection device.
データ収集システムの概略構成図である。1 is a schematic configuration diagram of a data collection system; FIG. 情報処理装置のブロック構成図である。1 is a block configuration diagram of an information processing device; FIG. データ処理部の機能ブロック図である。4 is a functional block diagram of a data processing unit; FIG. ライダの計測範囲を示す図である。It is a figure which shows the measurement range of a rider. 情報処理装置の処理手順を示すフローチャートの一例である。It is an example of the flowchart which shows the processing procedure of an information processing apparatus.
 本発明の好適な実施形態によれば、情報処理装置は、計測装置による計測データを取得する取得手段と、前記計測装置による計測周期ごとの前記計測データであるフレームにおいて関心領域を検出する検出手段と、前記関心領域に属しない前記計測データである第1データと、前記関心領域に属する前記計測データである第2データとを、異なる圧縮態様により圧縮する圧縮手段と、圧縮された前記第1データ及び前記第2データを、データ収集装置に送信する送信手段と、を有する。この態様によれば、情報処理装置は、関心領域に属するか否かに基づき計測データの圧縮態様を異ならせることで、重要性が高い情報の損失を防ぎつつ、データ収集装置に送信するデータ量を効率的に削減することができる。 According to a preferred embodiment of the present invention, the information processing apparatus includes acquisition means for acquiring measurement data by a measurement device, and detection means for detecting a region of interest in a frame that is the measurement data for each measurement cycle by the measurement device. and compression means for compressing the first data, which is the measurement data that does not belong to the region of interest, and the second data, which is the measurement data that belongs to the region of interest, in different compression modes; and transmitting means for transmitting the data and the second data to a data collection device. According to this aspect, the information processing device changes the compression mode of the measurement data based on whether it belongs to the region of interest or not, thereby preventing the loss of highly important information and reducing the amount of data to be transmitted to the data collection device. can be effectively reduced.
 上記情報処理装置の一態様では、前記圧縮手段は、前記第1データを非可逆圧縮し、前記第2データを可逆圧縮する。この態様によれば、情報処理装置は、関心がある領域の計測データの損失を防ぎつつ、データ収集装置に送信するデータ量を好適に削減することができる。 In one aspect of the information processing apparatus, the compression means lossy-compresses the first data and losslessly-compresses the second data. According to this aspect, the information processing device can suitably reduce the amount of data to be transmitted to the data collection device while preventing the loss of the measurement data of the region of interest.
 上記情報処理装置の他の一態様では、情報処理装置は、圧縮後の前記第2データに対し、前記関心領域の検出に関するメタデータを付与するメタデータ付与手段をさらに有する。この態様により、圧縮後の第2データの利用時において有用な情報を好適にメタデータとして付与することができる。 In another aspect of the information processing apparatus, the information processing apparatus further includes metadata adding means for adding metadata relating to detection of the region of interest to the compressed second data. According to this aspect, it is possible to suitably add useful information as metadata when using the second data after compression.
 上記情報処理装置の他の一態様では、前記検出手段は、適用するアプリケーションに基づき、前記関心領域の検出条件を決定する。この態様により、アプリケーションごとに重要な領域を関心領域として設定し、計測される位置ごとの計測データの圧縮態様を的確に決定することができる。 In another aspect of the information processing apparatus, the detection means determines detection conditions for the region of interest based on an application to be applied. According to this aspect, it is possible to set an important region as the region of interest for each application and accurately determine the compression aspect of the measurement data for each position to be measured.
 上記情報処理装置の他の一態様では、前記計測装置は輝度情報を含む前記計測データを生成し、前記検出手段は、輝度に基づき、前記関心領域を検出する。この態様により、情報処理装置は、輝度に応じて関心領域を好適に設定することができる。 In another aspect of the information processing device, the measurement device generates the measurement data including luminance information, and the detection means detects the region of interest based on the luminance. According to this aspect, the information processing device can suitably set the region of interest according to the brightness.
 上記情報処理装置の他の一態様では、前記検出手段は、前記フレームにおいて動的物体を検出し、前記動的物体の検出結果に基づき前記関心領域を設定する。この態様により、情報処理装置は、動的物体の検出結果に基づき関心領域を好適に設定することができる。 In another aspect of the information processing apparatus, the detection means detects a dynamic object in the frame and sets the region of interest based on the detection result of the dynamic object. According to this aspect, the information processing apparatus can preferably set the region of interest based on the detection result of the dynamic object.
 上記情報処理装置の他の一態様では、前記計測データは、輝度情報と反射強度情報を含み、前記圧縮手段は、前記第1データと前記第2データの少なくとも一方において、前記輝度情報と前記反射強度情報とを異なる圧縮態様により圧縮する。これにより、情報処理装置は、輝度情報と反射強度情報とを夫々の重要度に応じて好適に圧縮態様を異ならせることができる。 In another aspect of the information processing apparatus, the measurement data includes luminance information and reflection intensity information, and the compressing means converts at least one of the first data and the second data into the luminance information and the reflection intensity information. The intensity information is compressed by different compression modes. Thereby, the information processing apparatus can appropriately change the compression mode of the luminance information and the reflection intensity information according to their importance.
 本発明の他の好適な実施形態によれば、コンピュータが実行する制御方法であって、計測装置による計測データを取得し、前記計測装置による計測周期ごとの前記計測データであるフレームにおいて関心領域を検出し、前記関心領域に属しない前記計測データである第1データと、前記関心領域に属する前記計測データである第2データとを、異なる圧縮態様により圧縮し、圧縮された前記第1データ及び前記第2データを、データ収集装置に送信する。コンピュータは、この制御方法を実行することで、重要性が高い情報の損失を防ぎつつ、データ収集装置に送信するデータ量を効率的に削減することができる。 According to another preferred embodiment of the present invention, there is provided a control method executed by a computer, in which measurement data obtained by a measuring device is acquired, and a region of interest is detected in a frame of the measurement data for each measurement cycle of the measuring device. The first data that is the measurement data that is detected and does not belong to the region of interest and the second data that is the measurement data that belongs to the region of interest are compressed in different compression modes, and the compressed first data and The second data is transmitted to a data collection device. By executing this control method, the computer can efficiently reduce the amount of data transmitted to the data collection device while preventing the loss of highly important information.
 本発明の他の好適な実施形態によれば、計測装置による計測データを取得し、前記計測装置による計測周期ごとの前記計測データであるフレームにおいて関心領域を検出し、前記関心領域に属しない前記計測データである第1データと、前記関心領域に属する前記計測データである第2データとを、異なる圧縮態様により圧縮し、圧縮された前記第1データ及び前記第2データを、データ収集装置に送信する処理をコンピュータに実行させるプログラムである。コンピュータは、このプログラムを実行することで、重要性が高い情報の損失を防ぎつつ、データ収集装置に送信するデータ量を効率的に削減することができる。好適には、上記プログラムは、記憶媒体に記憶される。 According to another preferred embodiment of the present invention, measurement data by a measuring device is acquired, a region of interest is detected in a frame that is the measurement data for each measurement cycle by the measuring device, and the region of interest that does not belong to the region of interest is detected. compressing the first data, which is measurement data, and the second data, which is the measurement data belonging to the region of interest, in different compression modes; and transmitting the compressed first data and second data to a data collection device It is a program that causes a computer to execute the process of sending. By executing this program, the computer can efficiently reduce the amount of data transmitted to the data collection device while preventing the loss of highly important information. Preferably, the program is stored in a storage medium.
 以下、図面を参照して本発明の好適な実施例について説明する。 Preferred embodiments of the present invention will be described below with reference to the drawings.
 (1)データ収集システムの概要
 図1は、本実施例に係るデータ収集システムの概略構成である。データ収集システムは、センサ群2が生成するデータに関する処理を行う情報処理装置1と、データの収集及び管理を行うサーバ装置であるデータ収集装置4とを有する。
(1) Overview of Data Collection System FIG. 1 shows a schematic configuration of a data collection system according to this embodiment. The data collection system includes an information processing device 1 that processes data generated by a sensor group 2, and a data collection device 4 that is a server device that collects and manages data.
 情報処理装置1は、センサ群2と電気的に接続し、センサ群2に含まれる各種センサが出力するデータの処理を行う。センサ群2には、ライダ(Lidar:Light Detection and Ranging、または、Laser Illuminated Detection And Ranging)3が少なくとも含まれている。そして、情報処理装置1は、ライダ3が生成するデータに基づきアップロード情報「Iu」を生成し、生成したアップロード情報Iuをデータ収集装置4に送信する。この場合、情報処理装置1は、ライダ3が生成する計測方向ごとのデータを、当該データの分類結果に応じて可逆圧縮又は非可逆圧縮のいずれかを適用して圧縮する。これにより、情報処理装置1は、データ量を好適に削減したアップロード情報Iuを生成する。 The information processing device 1 is electrically connected to the sensor group 2 and processes data output by various sensors included in the sensor group 2 . The sensor group 2 includes at least a lidar (Lidar: Light Detection and Ranging, or Laser Illuminated Detection and Ranging) 3 . Then, the information processing device 1 generates upload information “Iu” based on the data generated by the rider 3 and transmits the generated upload information Iu to the data collection device 4 . In this case, the information processing device 1 compresses the data for each measurement direction generated by the rider 3 by applying either reversible compression or irreversible compression according to the classification result of the data. As a result, the information processing device 1 generates the upload information Iu with a suitably reduced data amount.
 なお、情報処理装置1は、道路や駐車場などに固定設置される計測ユニットの電子制御装置であってもよく、車両や船舶などの移動体に搭載されるナビゲーション装置であってもよく、当該移動体に内蔵された電子制御装置であってもよい。また、情報処理装置1は、ライダ3の電子制御装置としてライダ3と一体に構成されてもよい。 The information processing device 1 may be an electronic control device of a measuring unit fixedly installed on a road or a parking lot, or may be a navigation device mounted on a moving body such as a vehicle or a ship. It may be an electronic control unit built in a moving body. Further, the information processing device 1 may be configured integrally with the rider 3 as an electronic control device for the rider 3 .
 ライダ3は、水平方向および垂直方向の所定の角度範囲に対して角度を変えながらパルスレーザを出射することで、外界に存在する物体までの距離を離散的に計測する。この場合、ライダ3は、照射方向(即ち計測方向)を変えながらレーザ光を照射する照射部と、照射したレーザ光の反射光(散乱光)を受光する受光部と、受光部が出力する受光信号に基づくデータを出力する出力部とを有する。パルスレーザが照射される照射方向(パルスレーザによる計測が行われる方向であり、「計測点」とも呼ぶ。)ごとにライダ3が計測するデータは、受光部が受光したレーザ光に対応する照射方向と、上述の受光信号に基づき特定される当該レーザ光の応答遅延時間とに基づき生成される。そして、ライダ3は、1回の計測(走査)周期において、ライダ3の計測(走査)範囲(即ちパルスレーザの照射範囲)における各計測点に対応するデータを、1フレーム分の点群データとして生成する。なお、フレーム毎の点群データは、各計測点を画素位置、計測点ごとのデータを画素データとした場合、画像データとみなすことができる。 The lidar 3 discretely measures the distance to an object in the external world by emitting a pulsed laser while changing the angle within a predetermined angular range in the horizontal and vertical directions. In this case, the lidar 3 includes an irradiation unit that irradiates laser light while changing the irradiation direction (that is, the measurement direction), a light receiving unit that receives reflected light (scattered light) of the irradiated laser light, and light receiving output from the light receiving unit. and an output for outputting data based on the signal. The data measured by the lidar 3 for each irradiation direction in which the pulse laser is irradiated (the direction in which measurement is performed by the pulse laser and is also referred to as a “measurement point”) is the irradiation direction corresponding to the laser light received by the light receiving unit. and the response delay time of the laser beam specified based on the light receiving signal. Then, in one measurement (scanning) cycle, the lidar 3 converts the data corresponding to each measurement point in the measurement (scanning) range of the lidar 3 (that is, the irradiation range of the pulse laser) into one frame of point cloud data. Generate. Note that the point cloud data for each frame can be regarded as image data when each measurement point is a pixel position and the data for each measurement point is pixel data.
 ライダ3は、本発明における「計測装置」の一例である。なお、ライダ3は、上述したスキャン型のライダに限らず、2次元アレイ状のセンサの視野にレーザ光を拡散照射することによって3次元データを生成するフラッシュ型のライダであってもよい。 The rider 3 is an example of a "measurement device" in the present invention. Note that the lidar 3 is not limited to the above-described scan type lidar, and may be a flash type lidar that generates three-dimensional data by diffusing laser light into the field of view of a two-dimensional array sensor.
 なお、センサ群2には、ライダ3に加え、種々の外界センサ又は/及び内界センサが含まれてもよい。例えば、センサ群2は、移動体に設けられる場合には、位置情報の生成に必要なGNSS(Global Navigation Satellite System)受信機、自律測位装置等を含んでもよい。 In addition to the rider 3, the sensor group 2 may include various external sensors and/or internal sensors. For example, the sensor group 2 may include a GNSS (Global Navigation Satellite System) receiver, an autonomous positioning device, etc. required for generating position information when provided in a mobile object.
 データ収集装置4は、ライダによる計測データを収集する装置であり、情報処理装置1からアップロード情報Iuを受信し、受信したアップロード情報Iuを記憶する。なお、図1では、情報処理装置1及びセンサ群2の組が1組のみ図示されているが、これに代えて、複数の情報処理装置1及びセンサ群2の組が存在してもよい。この場合、データ収集装置4は、各情報処理装置1からアップロード情報Iuを受信する。 The data collection device 4 is a device that collects measurement data from a rider, receives upload information Iu from the information processing device 1, and stores the received upload information Iu. Although only one set of the information processing device 1 and the sensor group 2 is illustrated in FIG. 1, there may be a plurality of sets of the information processing device 1 and the sensor group 2 instead. In this case, the data collection device 4 receives the upload information Iu from each information processing device 1 .
 ここで、アップロード情報Iuに含まれるライダ3の点群データについて補足説明する。点群データは、情報処理装置1によりデータ圧縮された状態でアップロード情報Iuに含まれている。そして、点群データは、例えば、計測点毎に、計測位置情報と、反射強度情報と、距離情報と、ノイズフロア情報とを含んでいる。計測位置情報は、対象の計測点(走査点)を識別する識別情報(ID)である。反射強度情報は、照射したレーザ光の反射強度(即ち反射光の受光強度)に関する情報である。具体的には、反射強度情報は、照射したレーザ光の反射光のピークの受光強度を表す。なお、反射強度情報は、計測された反射強度により推定される被照射物の反射率を表す情報であってもよい。距離情報は、被照射物までの距離を表す情報である。距離は、照射したレーザ光の反射光のピークの受光タイミングにより特定される飛行時間(Time-of-Flight)に基づき算出される。なお、反射強度情報及び距離情報は、反射光の複数のピークに対応する反射強度及び距離の組を表す情報であってもよい。ノイズフロア情報は、反射強度のノイズフロアに関する情報である。ノイズフロア情報は、例えば、ノイズとみなされる反射強度の平均、分散又は/及びその他の統計量を表す。ノイズフロア情報は、例えば、反射光の受光期間における反射強度のうち距離の算出に用いていない(即ちピーク以外の)反射強度、又は、非受光期間における反射強度に基づ生成される。なお、ライダ3がこれらの各種情報(計測位置情報、反射強度情報、距離情報、ノイズフロア情報等)を生成する代わりに、ライダ3の生データからこれらの各種情報を情報処理装置1が生成してもよい。 Here, a supplementary explanation will be given of the point cloud data of the rider 3 included in the upload information Iu. The point cloud data is included in the upload information Iu after being compressed by the information processing apparatus 1 . The point cloud data includes, for example, measurement position information, reflection intensity information, distance information, and noise floor information for each measurement point. The measurement position information is identification information (ID) that identifies a target measurement point (scanning point). The reflection intensity information is information on the reflection intensity of the irradiated laser beam (that is, the received light intensity of the reflected light). Specifically, the reflection intensity information represents the peak received light intensity of the reflected light of the irradiated laser beam. Note that the reflection intensity information may be information representing the reflectance of the irradiated object estimated from the measured reflection intensity. The distance information is information representing the distance to the object to be irradiated. The distance is calculated based on the time-of-flight specified by the light reception timing of the peak of the reflected light of the irradiated laser light. Note that the reflection intensity information and the distance information may be information representing a set of reflection intensity and distance corresponding to a plurality of peaks of reflected light. The noise floor information is information regarding the noise floor of the reflection intensity. Noise floor information represents, for example, the mean, variance, or/and other statistics of reflected intensities that are considered noise. The noise floor information is generated, for example, based on the reflection intensity that is not used for distance calculation (that is, other than the peak) among the reflection intensities in the reflected light receiving period, or the reflection intensity in the non-receiving period. Note that instead of the rider 3 generating these various types of information (measured position information, reflection intensity information, distance information, noise floor information, etc.), the information processing apparatus 1 generates these various types of information from the raw data of the rider 3. may
 (2)情報処理装置の構成
 図2は、情報処理装置1のハードウェア構成の一例を示すブロック図である。情報処理装置1は、主に、インターフェース11と、メモリ12と、コントローラ13と、を有する。これらの各要素は、バスラインを介して相互に接続されている。
(2) Configuration of Information Processing Apparatus FIG. 2 is a block diagram showing an example of the hardware configuration of the information processing apparatus 1. As shown in FIG. The information processing device 1 mainly has an interface 11 , a memory 12 and a controller 13 . These elements are interconnected via bus lines.
 インターフェース11は、情報処理装置1と外部装置とのデータの授受に関するインターフェース動作を行う。本実施例では、インターフェース11は、ライダ3などのセンサ群2から出力データを取得し、コントローラ13へ供給する。また、インターフェース11は、コントローラ13の制御に基づき、コントローラ13が生成したアップロード情報Iuを、データ収集装置4へ送信する。また、インターフェース11は、情報処理装置1が車両などの移動体に搭載されている場合には、コントローラ13が生成した移動体の制御に関する信号を、移動体の電子制御装置(ECU:Electronic Control Unit)へ供給してもよい。インターフェース11は、無線通信を行うためのネットワークアダプタなどのワイヤレスインターフェースであってもよく、ケーブル等により外部装置と接続するためのハードウェアインターフェースであってもよい。また、インターフェース11は、入力装置、表示装置、音出力装置等の種々の周辺装置とのインターフェース動作を行ってもよい。 The interface 11 performs interface operations related to data transfer between the information processing device 1 and an external device. In this embodiment, the interface 11 acquires output data from the sensor group 2 such as the rider 3 and supplies it to the controller 13 . The interface 11 also transmits the upload information Iu generated by the controller 13 to the data collection device 4 under the control of the controller 13 . In addition, when the information processing device 1 is mounted on a mobile object such as a vehicle, the interface 11 transmits a signal related to control of the mobile object generated by the controller 13 to an electronic control unit (ECU: Electronic Control Unit) of the mobile object. ). The interface 11 may be a wireless interface such as a network adapter for wireless communication, or a hardware interface for connecting with an external device via a cable or the like. Also, the interface 11 may perform interface operations with various peripheral devices such as an input device, a display device, and a sound output device.
 メモリ12は、RAM(Random Access Memory)、ROM(Read Only Memory)、ハードディスクドライブ、フラッシュメモリなどの各種の揮発性メモリ及び不揮発性メモリにより構成される。メモリ12は、コントローラ13が所定の処理を実行するためのプログラムが記憶される。なお、コントローラ13が実行するプログラムは、メモリ12以外の記憶媒体に記憶されてもよい。 The memory 12 is composed of various volatile and nonvolatile memories such as RAM (Random Access Memory), ROM (Read Only Memory), hard disk drive, and flash memory. The memory 12 stores a program for the controller 13 to execute predetermined processing. Note that the program executed by the controller 13 may be stored in a storage medium other than the memory 12 .
 また、メモリ12には、コントローラ13が実行するデータ圧縮処理に関連する種々の情報が記憶されている。例えば、メモリ12は、関心領域情報I1を有する。関心領域情報I1は、点群データのフレーム内において関心がある領域(「関心領域」とも呼ぶ。)に関する情報である。例えば、関心領域情報I1は、アプリケーションごとに、関心領域の検出条件に関する情報を含んでいる。関心領域の検出条件は、実行するアプリケーションに依存しており、輝度に基づく条件であってもよく、動的物体の有無に関する条件であってもよい。関心領域情報I1に基づく関心領域の検出方法については後述する。 In addition, the memory 12 stores various information related to data compression processing executed by the controller 13 . For example, memory 12 has region of interest information I1. The region-of-interest information I1 is information about a region of interest (also referred to as a “region of interest”) within a frame of point cloud data. For example, the region-of-interest information I1 includes information about detection conditions for the region-of-interest for each application. The condition for detecting the region of interest depends on the application to be executed, and may be a condition based on brightness or a condition regarding the presence or absence of a dynamic object. A method of detecting the region of interest based on the region of interest information I1 will be described later.
 コントローラ13は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、TPU(Tensor Processing Unit)などの1又は複数のプロセッサを含み、情報処理装置1の全体を制御する。この場合、コントローラ13は、メモリ12等に記憶されたプログラムを実行することで、後述する種々の処理を実行する。 The controller 13 includes one or more processors such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and a TPU (Tensor Processing Unit), and controls the information processing apparatus 1 as a whole. In this case, the controller 13 executes various processes described later by executing programs stored in the memory 12 or the like.
 また、コントローラ13は、機能的には、データ処理部14と、アップロード部15とを有する。データ処理部14は、ライダ3が生成する点群データの圧縮に関する処理を実行する。アップロード部15は、データ処理部14が生成した点群データの圧縮データを含むアップロード情報Iuを、インターフェース11を介してデータ収集装置4に送信する。この場合、例えば、アップロード部15は、データ処理部14が生成した点群データの圧縮データを、1又は複数回分の計測周期(走査周期)ごとにデータ収集装置4に送信する。 The controller 13 also functionally has a data processing unit 14 and an upload unit 15 . The data processing unit 14 executes processing related to compression of point cloud data generated by the rider 3 . The upload unit 15 transmits the upload information Iu including the compressed data of the point cloud data generated by the data processing unit 14 to the data collection device 4 via the interface 11 . In this case, for example, the upload unit 15 transmits the compressed data of the point cloud data generated by the data processing unit 14 to the data collection device 4 in one or more measurement cycles (scanning cycles).
 そして、コントローラ13は、「取得手段」、「検出手段」、「圧縮手段」、「送信手段」及びプログラムを実行するコンピュータ等として機能する。 The controller 13 functions as "acquisition means", "detection means", "compression means", "transmission means", and a computer that executes programs.
 なお、コントローラ13が実行する処理は、プログラムによるソフトウェアで実現することに限ることなく、ハードウェア、ファームウェア、及びソフトウェアのうちのいずれかの組み合わせ等により実現してもよい。また、コントローラ13が実行する処理は、例えばFPGA(Field-Programmable Gate Array)又はマイコン等の、ユーザがプログラミング可能な集積回路を用いて実現してもよい。この場合、この集積回路を用いて、コントローラ13が本実施例において実行するプログラムを実現してもよい。 It should be noted that the processing executed by the controller 13 is not limited to being realized by program-based software, and may be realized by any combination of hardware, firmware, and software. Also, the processing executed by the controller 13 may be implemented using a user-programmable integrated circuit such as an FPGA (Field-Programmable Gate Array) or a microcomputer. In this case, this integrated circuit may be used to implement the program executed by the controller 13 in this embodiment.
 (3)データ圧縮処理
 次に、情報処理装置1のデータ処理部14による点群データの圧縮処理について説明する。概略的には、データ処理部14は、1周期分の計測により得られる点群データのフレームのうち関心領域に属する計測点のデータを可逆圧縮により圧縮し、関心領域に属しない計測点のデータを非可逆圧縮により圧縮する。これにより、データ処理部14は、必要な領域については十分な精度を保ちつつ圧縮したデータを生成し、重要度の低い領域については高い圧縮率により圧縮したデータを生成し、アップロード情報Iuのデータ容量を好適に削減する。
(3) Data Compression Process Next, the point cloud data compression process by the data processing unit 14 of the information processing apparatus 1 will be described. Schematically, the data processing unit 14 compresses the data of the measurement points belonging to the region of interest among the frames of the point cloud data obtained by the measurement for one cycle by lossless compression, and compresses the data of the measurement points not belonging to the region of interest. is compressed by lossy compression. As a result, the data processing unit 14 generates compressed data for the necessary area while maintaining sufficient accuracy, generates compressed data for the less important area at a high compression ratio, and generates data for the upload information Iu. Preferably reduce capacity.
 図3は、データ処理部14の機能ブロックの一例である。データ処理部14は、機能的には、関心領域検出部41と、非可逆圧縮部42と、可逆圧縮部43と、メタデータ付与部44と、データ統合部45とを有する。なお、図3では、データの授受が行われるブロック同士を実線により結んでいるが、データの授受が行われるブロックの組合せは図3に限定されない。 FIG. 3 is an example of functional blocks of the data processing unit 14. FIG. The data processing unit 14 functionally includes a region-of-interest detection unit 41 , an irreversible compression unit 42 , a reversible compression unit 43 , a metadata addition unit 44 , and a data integration unit 45 . In FIG. 3, the blocks that exchange data are connected by solid lines, but the combinations of blocks that exchange data are not limited to those shown in FIG.
 関心領域検出部41は、ライダ3が生成する点群データをインターフェース11を介して取得し、計測周期ごとに特定される点群データのフレームに対して関心領域の検出を行う。この場合、関心領域検出部41は、関心領域情報I1を参照することで、実行するアプリケーションに応じた関心領域の検出条件を認識し、当該検出条件を満たすフレーム内の領域(例えば矩形領域)を、関心領域として検出する。関心領域の検出方法は、点群データに基づく物体検知(認識)、画像認識、輝度値分布による推定などの任意の方法であってもよく、具体例については、図3(A)及び図3(B)を参照して後述する。なお、関心領域検出部41は、データ収集装置4又はコントローラ13内の他の処理ブロックから、点群データの用途であるアプリケーションに関する情報を取得し、取得したアプリケーションに関する情報に基づいて、適用すべき関心領域の検出条件を決定してもよい。この場合、関心領域情報I1には、関心領域の検出条件がアプリケーションごとに紐付けて記録されており、関心領域検出部41は、取得したアプリケーションに関する情報に基づいて、適用すべき関心領域の検出条件を選択する。 The region-of-interest detection unit 41 acquires the point cloud data generated by the rider 3 via the interface 11, and detects the region of interest in the frame of the point cloud data specified for each measurement cycle. In this case, the region-of-interest detection unit 41 refers to the region-of-interest information I1 to recognize the region-of-interest detection condition according to the application to be executed, and detects a region (for example, a rectangular region) in the frame that satisfies the detection condition. , is detected as the region of interest. The detection method of the region of interest may be any method such as object detection (recognition) based on point cloud data, image recognition, and estimation based on luminance value distribution. This will be described later with reference to (B). Note that the region-of-interest detection unit 41 acquires information about the application that is the use of the point cloud data from the data collection device 4 or another processing block in the controller 13, and based on the information about the acquired application, A detection condition for the region of interest may be determined. In this case, the region-of-interest detection conditions are recorded in the region-of-interest information I1 in association with each application. Select conditions.
 そして、関心領域検出部41は、関心領域に属しない計測点に対応するデータ(「第1データD1」とも呼ぶ。)を非可逆圧縮部42に供給し、関心領域に属する計測点に対応するデータ(「第2データD2」とも呼ぶ。)を可逆圧縮部43に供給する。また、関心領域検出部41は、関心領域の検出に関する情報(「検出情報I2」とも呼ぶ。)をメタデータ付与部44に供給する。ここで、検出情報I2は、関心領域の検出において生成された情報であって、例えば、関心領域の検出において物体検知(認識)を行った場合には、検知した物体に関する情報(例えば物体の種類、検知精度等に関する情報)などが該当する。 Then, the region-of-interest detection unit 41 supplies the data corresponding to the measurement points that do not belong to the region of interest (also referred to as “first data D1”) to the irreversible compression unit 42, and the data corresponding to the measurement points that belong to the region of interest. Data (also referred to as “second data D2”) is supplied to the lossless compression section 43 . The region-of-interest detection unit 41 also supplies information (also referred to as “detection information I2”) regarding the detection of the region of interest to the metadata provision unit 44 . Here, the detection information I2 is information generated in the detection of the region of interest. , information on detection accuracy, etc.).
 非可逆圧縮部42は、関心領域検出部41から供給された第1データD1に対し、非可逆圧縮を行う。ここで、第1データD1は、関心領域に属しない計測点に対応するデータであり、実行するアプリケーションにおいて重要度が低いデータとなる。非可逆圧縮部42が実行する非可逆圧縮手法は任意の方法であってもよい。また、関心領域情報I1等に圧縮率や圧縮アルゴリズム等の圧縮態様が定められている場合には、非可逆圧縮部42は、関心領域情報I1等において定められた圧縮態様により第1データD1の非可逆圧縮を行う。そして、非可逆圧縮部42は、第1データD1を非可逆圧縮したデータ(「非可逆圧縮データDa1」とも呼ぶ。)をデータ統合部45へ供給する。 The irreversible compression unit 42 performs irreversible compression on the first data D1 supplied from the region of interest detection unit 41 . Here, the first data D1 is data corresponding to measurement points that do not belong to the region of interest, and is data of low importance in the application to be executed. The irreversible compression method executed by the irreversible compression unit 42 may be any method. Further, when a compression mode such as a compression ratio or a compression algorithm is defined in the region of interest information I1 or the like, the lossy compression unit 42 compresses the first data D1 according to the compression mode defined in the region of interest information I1 or the like. Perform lossy compression. Then, the irreversible compression unit 42 supplies data obtained by irreversibly compressing the first data D1 (also referred to as “irreversible compressed data Da1”) to the data integration unit 45 .
 ここで、非可逆圧縮部42は、フレーム毎に圧縮率を変化させてもよい。例えば、非可逆圧縮部42は、フレームにおける関心領域が小さいほど(即ち、フレームごとの第1データD1に対応する計測点数が多いほど)、圧縮率を高くしてもよい。この場合、非可逆圧縮部42は、例えば、第2データD2が存在せず、第1データD1がフレーム全体である場合には、圧縮率を最大化し、非可逆圧縮データDa1のデータ量を0(即ち非可逆圧縮データDa1を生成しない)としてもよい。 Here, the irreversible compression unit 42 may change the compression rate for each frame. For example, the irreversible compression unit 42 may increase the compression rate as the region of interest in the frame becomes smaller (that is, as the number of measurement points corresponding to the first data D1 for each frame increases). In this case, for example, when the second data D2 does not exist and the first data D1 is the entire frame, the irreversible compression unit 42 maximizes the compression rate and reduces the data amount of the irreversible compressed data Da1 to zero. (that is, the irreversible compressed data Da1 is not generated).
 可逆圧縮部43は、関心領域検出部41から供給された第2データD2に対し、可逆圧縮を行う。ここで、第2データD2は、関心領域に属する計測点に対応するデータであり、実行するアプリケーションにおいて重要度が高いデータとなる。可逆圧縮部43が実行する可逆圧縮手法は任意の方法であってもよい。また、関心領域情報I1等に圧縮態様が定められている場合には、可逆圧縮部43は、関心領域情報I1において定められた圧縮態様により第2データD2の可逆圧縮を行う。そして、非可逆圧縮部42は、第2データD2を可逆圧縮したデータ(「可逆圧縮データDa2」とも呼ぶ。)をメタデータ付与部44へ供給する。 The reversible compression section 43 performs reversible compression on the second data D2 supplied from the region of interest detection section 41 . Here, the second data D2 is data corresponding to the measurement points belonging to the region of interest, and is data of high importance in the application to be executed. The lossless compression method executed by the lossless compression unit 43 may be any method. Moreover, when the compression mode is defined in the region of interest information I1 or the like, the reversible compression unit 43 performs lossless compression of the second data D2 according to the compression mode defined in the region of interest information I1. Then, the irreversible compression unit 42 supplies data obtained by reversibly compressing the second data D2 (also referred to as “reversible compressed data Da2”) to the metadata adding unit 44 .
 メタデータ付与部44は、可逆圧縮部43が生成する可逆圧縮データDa2に対し、関心領域検出部41から供給された検出情報I2を、メタデータとして付加する。そして、メタデータ付与部44は、メタデータを付加した可逆圧縮データDa2である第2圧縮データ「Db2」を、データ統合部45に供給する。 The metadata addition unit 44 adds the detection information I2 supplied from the region of interest detection unit 41 as metadata to the lossless compressed data Da2 generated by the lossless compression unit 43 . Then, the metadata adding unit 44 supplies the second compressed data “Db2”, which is the reversible compressed data Da2 to which the metadata is added, to the data integrating unit 45 .
 データ統合部45は、非可逆圧縮部42が生成する非可逆圧縮データDa1と、メタデータ付与部44が生成する可逆圧縮データDb2とをフレーム毎に統合したデータ(「統合データDu」とも呼ぶ。)を生成する。そして、データ統合部45は、フレーム毎に統合した統合データDuを、アップロード部15に供給する。その後、アップロード部15は、統合データDuを1又は複数含むアップロード情報Iuをデータ収集装置4に送信する。そして、データ収集装置4は、アップロード情報Iuを受信後、アップロード情報Iuを記憶する。そして、データ収集装置4は、受信したアップロード情報Iuに含まれる統合データDuの非可逆圧縮データDa1及び可逆圧縮データDb2を夫々解凍する処理を行い、解凍後のデータを所定のアプリケーションに使用する。 The data integration unit 45 integrates the irreversible compressed data Da1 generated by the irreversible compression unit 42 and the reversible compressed data Db2 generated by the metadata adding unit 44 for each frame (also referred to as “integrated data Du”). ). Then, the data integration unit 45 supplies the integrated data Du integrated for each frame to the upload unit 15 . After that, the upload unit 15 transmits the upload information Iu including one or more integrated data Du to the data collection device 4 . After receiving the upload information Iu, the data collection device 4 stores the upload information Iu. Then, the data collection device 4 decompresses the lossy-compressed data Da1 and reversible-compressed data Db2 of the integrated data Du included in the received upload information Iu, and uses the decompressed data for a predetermined application.
 次に、関心領域検出部41による関心領域の検出処理の具体例について説明する。図4(A)、(B)は、ライダ3の計測範囲を示す図である。図4(A)、(B)では、関心領域検出部41が検出した関心領域が破線枠及びハッチングにより強調表示されている。 Next, a specific example of detection processing of the region of interest by the region of interest detection unit 41 will be described. 4A and 4B are diagrams showing the measurement range of the rider 3. FIG. In FIGS. 4A and 4B, the region of interest detected by the region-of-interest detection unit 41 is highlighted by a dashed frame and hatching.
 図4(A)の例では、関心領域検出部41は、各計測点において計測された輝度に基づき、関心領域を決定している。具体的には、関心領域検出部41は、関心領域情報I1等に予め記録された閾値よりも輝度が大きい計測点を特定し、特定した計測点に基づき関心領域を設定する。この場合、例えば、関心領域検出部41は、輝度が閾値よりも大きい計測点を含む最小の矩形領域を、関心領域として設定する。一方、関心領域検出部41は、上述の矩形領域以外のフレームの領域については、関心領域ではないとみなす。 In the example of FIG. 4A, the region-of-interest detection unit 41 determines the region of interest based on the brightness measured at each measurement point. Specifically, the region-of-interest detection unit 41 identifies a measurement point whose brightness is higher than a threshold pre-recorded in the region-of-interest information I1 or the like, and sets the region of interest based on the identified measurement point. In this case, for example, the region-of-interest detection unit 41 sets the smallest rectangular region including measurement points whose brightness is greater than the threshold as the region of interest. On the other hand, the region-of-interest detection unit 41 regards the region of the frame other than the rectangular region described above as not the region of interest.
 図4(A)の例によれば、関心領域検出部41は、道路の路面及び道路周辺の地物などの物体が存在する領域を、関心領域として設定し、圧縮処理において情報の損失がないように可逆圧縮の対象とすることができる。一方、関心領域検出部41は、輝度が小さく、物体が存在しない領域を、関心領域から除外し、圧縮処理において圧縮率を高めてデータ量を好適に削減することができる。このように、図4(A)の例によれば、重要な情報を欠落させることなく、効率の良いデータ伝送量の圧縮を行うことができる。 According to the example of FIG. 4A, the region-of-interest detection unit 41 sets a region in which an object such as a road surface and features around the road exists as a region of interest, and there is no loss of information in the compression process. can be subject to lossless compression as follows: On the other hand, the region-of-interest detection unit 41 excludes regions of low brightness and no object from the region of interest, and increases the compression rate in the compression process to suitably reduce the amount of data. As described above, according to the example of FIG. 4A, efficient compression of the amount of data transmission can be performed without missing important information.
 図4(B)の例では、関心領域検出部41は、点群データのフレーム間での変化等を検出することで、動的物体の領域を検出し、検出した動的物体の領域に基づき関心領域を設定する。この場合、例えば、関心領域検出部41は、動的物体の領域を含む最小の矩形領域(所謂バウンディングボックス)を、関心領域として設定する。なお、関心領域検出部41は、この場合、時系列の画像データに基づいて動的物体の領域を検出する任意手法を用いて、上述の動的物体の領域の検出を行ってもよい。一方、関心領域検出部41は、上述の矩形領域以外のフレームの領域については、関心領域ではないとみなす。 In the example of FIG. 4B, the region-of-interest detection unit 41 detects a dynamic object region by detecting changes in point cloud data between frames, and based on the detected dynamic object region. Set a region of interest. In this case, for example, the region-of-interest detection unit 41 sets the smallest rectangular region (so-called bounding box) including the region of the dynamic object as the region of interest. In this case, the region-of-interest detection unit 41 may detect the above-described dynamic object region using an arbitrary technique for detecting a dynamic object region based on time-series image data. On the other hand, the region-of-interest detection unit 41 regards the region of the frame other than the rectangular region described above as not the region of interest.
 図4(B)の例によれば、関心領域検出部41は、適用するアプリケーションにおいて動的物体の情報が重要である場合に、動的物体が存在する領域を関心領域として設定し、圧縮処理において情報の損失がないように可逆圧縮の対象とすることができる。一方、関心領域検出部41は、この場合、動的物体が存在しない領域を関心領域から除外し、圧縮処理において圧縮率を高めてデータ量を好適に削減することができる。このように、図4(B)の例によっても、重要な情報を欠落させることなく、効率の良いデータ伝送量の圧縮を行うことができる。 According to the example of FIG. 4B, the region-of-interest detection unit 41 sets the region in which the dynamic object exists as the region of interest when the information of the dynamic object is important in the applied application, and performs the compression processing. can be subjected to lossless compression so that there is no loss of information in On the other hand, in this case, the region-of-interest detection unit 41 can exclude regions in which no dynamic object exists from the region of interest, increase the compression rate in the compression process, and suitably reduce the amount of data. Thus, also in the example of FIG. 4B, efficient compression of the amount of data transmission can be performed without missing important information.
 なお、関心領域の設定例は、図4(A)及び図4(B)の例に限定されず、点群データを用いるアプリケーションによって種々の条件により関心領域が設定されてもよい。例えば、関心領域検出部41は、関心領域情報I1等において特定の種類の物体(移動体を含む)を検出対象とすることが定められている場合には、定められた種類の物体を検出し、その検出結果に基づき関心領域を設定してもよい。この場合、定められた種類の物体は、例えば、歩行者、前方車両、特定の地物(白線、標識等を含む)、又はこれらの組み合わせなどが該当する。この場合、関心領域検出部41は、例えば、セマンティックセグメンテーションやインスタンスセグメンテーションなどに基づく任意の学習済みの推論器に基づき、特定種類の物体の領域を検出してもよい。上述の推論器は、例えば、1又は所定枚数のフレームが入力された場合に、画素(計測点)ごとの領域分類結果を出力するように学習された学習モデルである。 The setting example of the region of interest is not limited to the examples of FIGS. 4A and 4B, and the region of interest may be set according to various conditions depending on the application using the point cloud data. For example, when the region-of-interest information I1 or the like specifies that a specific type of object (including a moving object) is to be detected, the region-of-interest detection unit 41 detects the specified type of object. , the region of interest may be set based on the detection result. In this case, the defined type of object is, for example, a pedestrian, a forward vehicle, a specific feature (including a white line, a sign, etc.), or a combination thereof. In this case, the region-of-interest detection unit 41 may detect a region of a specific type of object, for example, based on any trained reasoner based on semantic segmentation, instance segmentation, or the like. The reasoner described above is, for example, a learning model trained to output a region classification result for each pixel (measurement point) when one or a predetermined number of frames are input.
 (4)処理フロー
 図5は、本実施例における処理手順を示すフローチャートの一例である。情報処理装置1は、図5のフローチャートの処理を繰り返し実行する。
(4) Processing Flow FIG. 5 is an example of a flow chart showing processing procedures in this embodiment. The information processing device 1 repeatedly executes the processing of the flowchart of FIG.
 まず、情報処理装置1のデータ処理部14は、インターフェース11を介し、ライダ3が生成するフレーム毎の点群データを取得する(ステップS11)。そして、データ処理部14は、ステップS11で取得した点群データに基づき、関心領域の検出を行う(ステップS12)。この場合、例えば、データ処理部14は、関心領域情報I1を参照し、適用するアプリケーションに応じた関心領域の検出条件に基づき、対象のフレームにおける関心領域の検出を行う。 First, the data processing unit 14 of the information processing device 1 acquires point cloud data for each frame generated by the rider 3 via the interface 11 (step S11). Then, the data processing unit 14 detects a region of interest based on the point cloud data acquired in step S11 (step S12). In this case, for example, the data processing unit 14 refers to the region-of-interest information I1 and detects the region of interest in the target frame based on the region-of-interest detection conditions according to the application to be applied.
 そして、データ処理部14は、対象のフレームにおいて関心領域が存在するか否か判定する(ステップS13)。そして、対象のフレームにおいて関心領域が存在する場合(ステップS13;Yes)、データ処理部14は、関心領域に属する計測点のデータである第2データD2を可逆圧縮し、かつ、関心領域外に属する計測点のデータである第1データD1を非可逆圧縮する(ステップS14)。これにより、データ処理部14は、第1データD1を非可逆圧縮データDa1に変換し、第2データD2を可逆圧縮データDa2に変換する。この場合、データ処理部14は、関心領域に属する計測点のデータを可逆圧縮して情報の欠落を好適に抑制しつつ、関心領域外に属する計測点のデータを非可逆圧縮により効率的にデータ量を削減することができる。 Then, the data processing unit 14 determines whether or not a region of interest exists in the target frame (step S13). Then, if a region of interest exists in the target frame (step S13; Yes), the data processing unit 14 losslessly compresses the second data D2, which is data of measurement points belonging to the region of interest, and removes the data from the region of interest. The first data D1, which is the data of the measuring point to which it belongs, is irreversibly compressed (step S14). As a result, the data processing unit 14 converts the first data D1 into lossy-compressed data Da1, and converts the second data D2 into lossless-compressed data Da2. In this case, the data processing unit 14 efficiently compresses the data of the measurement points belonging to the region of interest by losslessly compressing the data of the measurement points belonging to the region of interest to suitably suppress the loss of information. quantity can be reduced.
 そして、データ処理部14は、ステップS14で生成された可逆圧縮データDa2に対し、関心領域の検出に関する検出情報I2をメタデータとして付与する(ステップS15)。これにより、データ処理部14は、可逆圧縮データDb2を生成する。 Then, the data processing unit 14 adds detection information I2 relating to the detection of the region of interest as metadata to the losslessly compressed data Da2 generated in step S14 (step S15). Thereby, the data processing unit 14 generates lossless compression data Db2.
 一方、ステップS13において、対象のフレームにおいて関心領域が存在しない場合(ステップS13;No)、データ処理部14は、対象のフレームの全データを非可逆圧縮する(ステップS17)。これにより、データ処理部14は、非可逆圧縮データDa1を生成する。なお、ステップS17では、データ処理部14は、データ収集装置4に送信すべきデータである非可逆圧縮データDa1を生成しなくともよい。この場合、圧縮率を最大にすることに対応する。 On the other hand, if the region of interest does not exist in the target frame in step S13 (step S13; No), the data processing unit 14 irreversibly compresses all the data in the target frame (step S17). Thereby, the data processing unit 14 generates the irreversible compressed data Da1. In step S17, the data processing unit 14 does not have to generate the irreversible compressed data Da1, which is the data to be transmitted to the data collecting device 4. FIG. This case corresponds to maximizing the compression ratio.
 そして、アップロード部15は、アップロード情報Iuをデータ収集装置4へインターフェース11を介して送信する(ステップS16)。この場合、アップロード情報Iuには、ステップS14で生成された非可逆圧縮データDa1及びステップS15で生成された可逆圧縮データDb2を統合した統合データDu、又は、ステップS17で生成された非可逆圧縮データDa1が含まれている。 Then, the upload unit 15 transmits the upload information Iu to the data collection device 4 via the interface 11 (step S16). In this case, the upload information Iu includes integrated data Du obtained by integrating the lossy-compressed data Da1 generated in step S14 and the lossless-compressed data Db2 generated in step S15, or the lossy-compressed data generated in step S17. Da1 is included.
 以上説明したように、本実施例に係る情報処理装置1のコントローラ13は、計測装置であるライダ3による計測データを取得する。そして、コントローラ13は、ライダ3による計測周期ごとの計測データであるフレームにおいて関心領域を検出する。そして、コントローラ13は、関心領域に属しない計測データである第1データD1と、関心領域に属する計測データである第2データD2とを、異なる圧縮態様により圧縮する。そして、コントローラ13は、圧縮された第1データD1及び第2データD2を含むアップロード情報Iuを、データ収集装置4に送信する。これにより、情報処理装置1は、重要な計測データの精度を好適に確保しつつ、データ収集装置4に送信するデータ量を好適に削減することができる。 As described above, the controller 13 of the information processing device 1 according to this embodiment acquires measurement data from the rider 3, which is a measurement device. Then, the controller 13 detects the region of interest in the frames that are measurement data for each measurement cycle by the lidar 3 . Then, the controller 13 compresses the first data D1, which is measurement data that does not belong to the region of interest, and the second data D2, which is measurement data that belongs to the region of interest, in different compression modes. The controller 13 then transmits the upload information Iu including the compressed first data D1 and second data D2 to the data collecting device 4 . As a result, the information processing device 1 can suitably reduce the amount of data to be transmitted to the data collecting device 4 while suitably ensuring the accuracy of important measurement data.
 (6)変形例
 上述の実施例に好適な変形例について説明する。以下の変形例は組み合わせて上述の実施例に適用してもよい。
(6) Modification A modification suitable for the above embodiment will be described. The following modifications may be combined and applied to the above embodiment.
 (変形例1)
 情報処理装置1は、ライダ3以外の距離計測を行う外界センサの計測結果に基づきアップロード情報Iuの生成・送信を行ってもよい。この場合であっても、情報処理装置1は、外界センサが1回の計測周期において計測するデータを1つのフレームとみなし、当該フレーム内において関心領域の検出を行い、関心領域に属するデータを可逆圧縮し、関心領域外に属するデータを非可逆圧縮する。これにより、重要なデータの損失を防ぎつつ、アップロードするデータ量を好適に削減することができる。
(Modification 1)
The information processing device 1 may generate and transmit the upload information Iu based on the measurement result of an external sensor other than the rider 3 that measures the distance. Even in this case, the information processing apparatus 1 regards the data measured by the external sensor in one measurement cycle as one frame, detects the region of interest in the frame, and reversibly converts the data belonging to the region of interest. Compress and lossy compress data that falls outside the region of interest. This makes it possible to suitably reduce the amount of data to be uploaded while preventing the loss of important data.
 (変形例2)
 情報処理装置1は、距離情報と反射強度情報とで異なる圧縮態様により圧縮してもよい。例えば、情報処理装置1は、関心領域外に属する第1データD1の場合、距離情報よりも反射強度情報の非可逆圧縮における圧縮率を高くする。他の例では、情報処理装置1は、関心領域内に属する第2データD2の場合、距離情報のみを可逆圧縮し、反射強度情報については非可逆圧縮を行う。これらの例によれば、情報処理装置1は、距離情報の精度を反射強度情報の精度よりも優先して圧縮処理を行うことができる。
(Modification 2)
The information processing device 1 may compress the distance information and the reflection intensity information in different compression modes. For example, in the case of the first data D1 belonging to the outside of the region of interest, the information processing device 1 increases the compression ratio in lossy compression of the reflection intensity information rather than the distance information. In another example, in the case of the second data D2 belonging to the region of interest, the information processing apparatus 1 losslessly compresses only the distance information, and lossy compresses the reflection intensity information. According to these examples, the information processing apparatus 1 can perform compression processing by prioritizing the accuracy of the distance information over the accuracy of the reflection intensity information.
 なお、上述した実施例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータであるコントローラ等に供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記憶媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記憶媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記憶媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。 It should be noted that, in the above-described embodiments, the program can be stored using various types of non-transitory computer readable media and supplied to a controller or the like that is a computer. Non-transitory computer readable media include various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic storage media (e.g., floppy disks, magnetic tapes, hard disk drives), magneto-optical storage media (e.g., magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R/W, semiconductor memory (eg mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
 以上、実施例を参照して本願発明を説明したが、本願発明は上記実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。すなわち、本願発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。また、引用した上記の特許文献等の各開示は、本書に引用をもって繰り込むものとする。 Although the present invention has been described with reference to the examples, the present invention is not limited to the above examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. That is, the present invention naturally includes various variations and modifications that a person skilled in the art can make according to the entire disclosure including the scope of claims and technical ideas. In addition, the disclosures of the cited patent documents and the like are incorporated herein by reference.
 1 情報処理装置
 2 センサ群
 3 ライダ
 4 データ収集装置
REFERENCE SIGNS LIST 1 information processing device 2 sensor group 3 lidar 4 data collection device

Claims (10)

  1.  計測装置による計測データを取得する取得手段と、
     前記計測装置による計測周期ごとの前記計測データであるフレームにおいて関心領域を検出する検出手段と、
     前記関心領域に属しない前記計測データである第1データと、前記関心領域に属する前記計測データである第2データとを、異なる圧縮態様により圧縮する圧縮手段と、
     圧縮された前記第1データ及び前記第2データを、データ収集装置に送信する送信手段と、
    を有する情報処理装置。
    Acquisition means for acquiring measurement data by the measuring device;
    detection means for detecting a region of interest in a frame that is the measurement data for each measurement cycle by the measurement device;
    compression means for compressing the first data, which is the measurement data that does not belong to the region of interest, and the second data, which is the measurement data that belongs to the region of interest, in different compression modes;
    transmission means for transmitting the compressed first data and the second data to a data collection device;
    Information processing device having
  2.  前記圧縮手段は、前記第1データを非可逆圧縮し、前記第2データを可逆圧縮する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein said compression means lossy-compresses said first data and losslessly-compresses said second data.
  3.  圧縮後の前記第2データに対し、前記関心領域の検出に関するメタデータを付与するメタデータ付与手段をさらに有する、請求項1または2に記載の情報処理装置。 The information processing apparatus according to claim 1 or 2, further comprising metadata adding means for adding metadata relating to detection of the region of interest to the compressed second data.
  4.  前記検出手段は、適用するアプリケーションに基づき、前記関心領域の検出条件を決定する、請求項1~3のいずれか一項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 3, wherein the detection means determines detection conditions for the region of interest based on an application to be applied.
  5.  前記計測装置は輝度情報を含む前記計測データを生成し、
     前記検出手段は、輝度に基づき、前記関心領域を検出する、請求項1~4のいずれか一項に記載の情報処理装置。
    The measurement device generates the measurement data including luminance information,
    5. The information processing apparatus according to claim 1, wherein said detection means detects said region of interest based on luminance.
  6.  前記検出手段は、前記フレームにおいて動的物体を検出し、前記動的物体の検出結果に基づき前記関心領域を設定する、請求項1~4のいずれか一項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 4, wherein said detection means detects a dynamic object in said frame and sets said region of interest based on a detection result of said dynamic object.
  7.  前記計測データは、輝度情報と反射強度情報を含み、
     前記圧縮手段は、前記第1データと前記第2データの少なくとも一方において、前記輝度情報と前記反射強度情報とを異なる圧縮態様により圧縮する、請求項1~6のいずれか一項に記載の情報処理装置。
    The measurement data includes luminance information and reflection intensity information,
    The information according to any one of claims 1 to 6, wherein said compression means compresses said luminance information and said reflection intensity information in at least one of said first data and said second data in different compression modes. processing equipment.
  8.  コンピュータが実行する制御方法であって、
     計測装置による計測データを取得し、
     前記計測装置による計測周期ごとの前記計測データであるフレームにおいて関心領域を検出し、
     前記関心領域に属しない前記計測データである第1データと、前記関心領域に属する前記計測データである第2データとを、異なる圧縮態様により圧縮し、
     圧縮された前記第1データ及び前記第2データを、データ収集装置に送信する、
    制御方法。
    A computer-implemented control method comprising:
    Acquiring measurement data from a measuring device,
    detecting a region of interest in a frame that is the measurement data for each measurement cycle by the measurement device;
    Compressing first data, which is the measurement data that does not belong to the region of interest, and second data, which is the measurement data that belongs to the region of interest, in different compression modes;
    transmitting the compressed first data and second data to a data collection device;
    control method.
  9.  計測装置による計測データを取得し、
     前記計測装置による計測周期ごとの前記計測データであるフレームにおいて関心領域を検出し、
     前記関心領域に属しない前記計測データである第1データと、前記関心領域に属する前記計測データである第2データとを、異なる圧縮態様により圧縮し、
     圧縮された前記第1データ及び前記第2データを、データ収集装置に送信する処理をコンピュータに実行させるプログラム。
    Acquiring measurement data from a measuring device,
    detecting a region of interest in a frame that is the measurement data for each measurement cycle by the measurement device;
    Compressing first data, which is the measurement data that does not belong to the region of interest, and second data, which is the measurement data that belongs to the region of interest, in different compression modes;
    A program that causes a computer to execute a process of transmitting the compressed first data and second data to a data collection device.
  10.  請求項9に記載のプログラムを記憶した記憶媒体。 A storage medium storing the program according to claim 9.
PCT/JP2021/006797 2021-02-24 2021-02-24 Information processing device, control method, program, and storage medium WO2022180669A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/006797 WO2022180669A1 (en) 2021-02-24 2021-02-24 Information processing device, control method, program, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/006797 WO2022180669A1 (en) 2021-02-24 2021-02-24 Information processing device, control method, program, and storage medium

Publications (1)

Publication Number Publication Date
WO2022180669A1 true WO2022180669A1 (en) 2022-09-01

Family

ID=83047818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006797 WO2022180669A1 (en) 2021-02-24 2021-02-24 Information processing device, control method, program, and storage medium

Country Status (1)

Country Link
WO (1) WO2022180669A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026997A (en) * 2006-07-18 2008-02-07 Denso Corp Pedestrian recognition device and pedestrian recognition method
US8525835B1 (en) * 2010-02-24 2013-09-03 The Boeing Company Spatial data compression using implicit geometry
JP2018116004A (en) * 2017-01-20 2018-07-26 パイオニア株式会社 Data compression apparatus, control method, program and storage medium
WO2019181839A1 (en) * 2018-03-22 2019-09-26 パイオニア株式会社 Data structure, terminal device, data communication method, program, and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026997A (en) * 2006-07-18 2008-02-07 Denso Corp Pedestrian recognition device and pedestrian recognition method
US8525835B1 (en) * 2010-02-24 2013-09-03 The Boeing Company Spatial data compression using implicit geometry
JP2018116004A (en) * 2017-01-20 2018-07-26 パイオニア株式会社 Data compression apparatus, control method, program and storage medium
WO2019181839A1 (en) * 2018-03-22 2019-09-26 パイオニア株式会社 Data structure, terminal device, data communication method, program, and storage medium

Similar Documents

Publication Publication Date Title
JP6696697B2 (en) Information processing device, vehicle, information processing method, and program
US20230014874A1 (en) Obstacle detection method and apparatus, computer device, and storage medium
US10740658B2 (en) Object recognition and classification using multiple sensor modalities
CN108271408B (en) Generating three-dimensional maps of scenes using passive and active measurements
CN109219760B (en) Method for detecting at least one parking space for a vehicle
JP2015143979A (en) Image processor, image processing method, program, and image processing system
US11216682B2 (en) Detecting sensor occlusion with compressed image data
WO2021012987A1 (en) Object detection method, apparatus and system, and device
US10962644B1 (en) Dynamic laser power control in light detection and ranging (LiDAR) systems
JP6876445B2 (en) Data compressors, control methods, programs and storage media
CN113777622B (en) Rail obstacle identification method and device
WO2022180669A1 (en) Information processing device, control method, program, and storage medium
JP6881986B2 (en) Data compression device, data decompression device, control method, program and storage medium
CN115359332A (en) Data fusion method and device based on vehicle-road cooperation, electronic equipment and system
US20210132189A1 (en) Synthetic generation of radar, lidar and ultrasound measurement data
WO2022180790A1 (en) Information processing device, control method, program, and storage medium
WO2022172888A1 (en) Information processing device, control method, program, and storage medium
WO2022186127A1 (en) Information processing device, control method, program, and storage medium
US20210383117A1 (en) Identification of decreased object detectability for a video stream
WO2022185376A1 (en) Information processing device, control method, program, and storage medium
WO2023032518A1 (en) Data compression system and method of using
JP2022139722A (en) Information processing device, control method, program, and storage medium
EP4303627A1 (en) Information processing device, control method, program, and storage medium
JP2022139711A (en) Information processing device, control method, program, and storage medium
CN110549975A (en) 3D Sensor-based automobile radar system and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927773

Country of ref document: EP

Kind code of ref document: A1