WO2022179351A1 - 一种血压监测方法、装置及可穿戴设备 - Google Patents

一种血压监测方法、装置及可穿戴设备 Download PDF

Info

Publication number
WO2022179351A1
WO2022179351A1 PCT/CN2022/072749 CN2022072749W WO2022179351A1 WO 2022179351 A1 WO2022179351 A1 WO 2022179351A1 CN 2022072749 W CN2022072749 W CN 2022072749W WO 2022179351 A1 WO2022179351 A1 WO 2022179351A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood pressure
calibration
index information
user
physiological index
Prior art date
Application number
PCT/CN2022/072749
Other languages
English (en)
French (fr)
Inventor
张�杰
左韶军
傅小煜
陈庆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022179351A1 publication Critical patent/WO2022179351A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1102Ballistocardiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/332Portable devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices

Definitions

  • the present application relates to the technical field of intelligent terminals, and in particular, to a blood pressure monitoring method, device and wearable device.
  • CVD cardiovascular disease
  • Continuous blood pressure monitoring is a major innovation in the history of hypertension diagnosis technology. It can measure a person's blood pressure in daily life, not only in light and moderate physical activity, but also in sleep. Continuous blood pressure monitoring has the advantages of removing measurement chance, reducing misdiagnosis rate, identifying masked nocturnal hypertension, identifying white coat hypertension, measuring blood pressure rhythm, and guiding drug treatment.
  • Non-invasive cuffless blood pressure measurement methods can realize continuous blood pressure monitoring. Since blood pressure measurement models established by different subjects are easily affected by individual differences, in order to reduce individual differences Influence on blood pressure prediction results, blood pressure calibration is usually performed with the help of cuffed blood pressure, and continuous changes in blood pressure are monitored on the basis of the calibration value.
  • embodiments of the present application provide a blood pressure monitoring method, the method comprising: in response to a first operation, the electronic device enters a calibration mode; and displaying a first graphical user interface, the first graphical user interface is used for Prompt the user to perform the first action; measure the first blood pressure value, and collect the first physiological index information; display a second graphical user interface, the second graphical user interface is used to prompt the user to perform the second action; measure the second blood pressure value, and collecting second physiological index information; in response to the second operation, the electronic device enters a measurement mode; collecting third physiological index information; according to the first blood pressure value, the second blood pressure value, the first physiological index information and the second physiological index information to determine a third blood pressure value corresponding to the third physiological index information.
  • the user is prompted to perform different actions (including the first action and the second action) by displaying a plurality of graphical user interfaces (including the first graphical user interface and the second graphical user interface), so that the The user's blood pressure influencing factors such as heart rate, stroke volume, total peripheral resistance, etc. change.
  • the blood pressure value (including the first blood pressure value and the second blood pressure value) when the user performs different actions, and collect the physiological index information (including the first physiological index information and the second physiological index information) to fully capture the influence of the user's blood pressure
  • the collected physiological index information (that is, the third physiological index information) corresponds to The blood pressure value (that is, the third blood pressure value)
  • the blood pressure value is more accurate, so as to achieve accurate measurement of the user's blood pressure.
  • the method further includes: displaying a third graphical user interface, the third A graphical user interface displays options for a plurality of calibration scenarios; the first graphical user interface is displayed in response to a user's selection of a calibration scenario.
  • users can choose the most suitable and most matching calibration scene to complete the calibration according to their daily activities, which can make the calibration more personalized and targeted, effectively reduce the calibration time, and improve the user experience.
  • the calibration scene corresponds to the calibration scene of the user's physical state, the user's environment state One or more of the calibration scenarios.
  • the user's physical state and the state of the user's environment are different.
  • the user's blood pressure influencing factors such as heart rate, stroke volume, total peripheral resistance, etc. change.
  • the user's physical state or the state of the different user's environment induces changes in the user's blood pressure influencing factors, so as to fully capture the changes in the user's blood pressure influencing factors, and achieve blood pressure calibration in different states of the user's body or the user's environment.
  • the calibration scenes corresponding to the physical state of the user include sitting scenes, lying still scenes, standing scenes, brain power One or more of an activity scene, a relaxation/rest scene, an anaerobic exercise scene, and an aerobic exercise scene;
  • the calibration scene corresponding to the state of the environment in which the user is located includes one or more of a cold scene and a sultry scene.
  • the user's blood pressure influencing factors such as heart rate, stroke volume, total peripheral resistance, etc. change, and the provided multiple calibration scenarios can comprehensively cover the user's blood pressure influencing factors. , so as to achieve blood pressure calibration in different scenarios and improve the accuracy of blood pressure measurement by the calibrated wearable device.
  • the method further includes: displaying a fourth graphic A user interface, wherein the fourth graphical user interface displays timing information.
  • the timing information is displayed through the fourth graphical user interface, thereby prompting the user the time when the first action has been performed, or when the first action needs to be performed, and the user can complete the indicated exercise according to the prompt of the graphical user interface , so as to complete the blood pressure measurement in the corresponding calibration scenario, which is simple and convenient, and improves the user experience.
  • the method further includes: acquiring the type of medicine, the dosage, and the taking time of the medicine taken by the user ; Determine the first moment and the second moment according to the drug type, dosage and taking time; respectively at the first moment and the second moment, display the fifth graphical user interface, the fifth graphical user interface is used for prompting The user performs the first operation.
  • the first moment may represent the time point when the user's drug concentration is the highest
  • the second moment may represent the time point when the user's drug concentration is the lowest in the user's body.
  • the fifth graph is displayed when the user's drug concentration is the highest and the drug concentration is the lowest.
  • the user interface prompts the user to perform blood pressure calibration, fully considers the influence of changes in drug concentration on the user's blood pressure, improves the accuracy of blood pressure calibration, and makes the blood pressure value measured by the calibrated wearable device more accurate.
  • the method further includes: every preset period, displaying a fifth graphical user interface, the fifth graphical user interface is used to prompt the user to perform the first operation, or measure the fourth blood pressure value of the user through the air bag and the pressure sensor, where the fourth blood pressure value corresponds to the latest collected third physiological index information
  • a fifth graphical user interface is displayed.
  • a fifth graphical user interface may be displayed every preset period to prompt the user to perform the first operation, that is, to remind the user Perform blood pressure calibration on the wearable device, or, after the fourth blood pressure value of the user is obtained by measuring the airbag and the pressure sensor configured on the wearable device, the fourth blood pressure value corresponds to the third blood pressure value corresponding to the newly collected third physiological index information.
  • the blood pressure values are compared, and when the difference between the two is greater than the first threshold, a fifth graphical user interface is displayed, thereby reminding the user to perform the first operation, that is, reminding the user to calibrate the blood pressure of the wearable device, thereby improving the measurement of the wearable device after calibration. blood pressure accuracy.
  • the first blood pressure value, the second blood pressure value, the The first physiological index information and the second physiological index information, and determining the third blood pressure value corresponding to the third physiological index information may include: determining the similarity between the first physiological index information and the third physiological index information and the similarity between the second physiological index information and the third physiological index information; determine the target similarity greater than the second threshold, and the target physiological index information corresponding to the target similarity; The corresponding target blood pressure values are weighted and summed to obtain the third blood pressure value, wherein the weight of the target blood pressure value is positively correlated with the similarity between the corresponding target physiological index information and the third physiological index information.
  • the weight of the corresponding target physiological index information is positively correlated with the similarity between the corresponding target physiological index information and the third physiological index information; that is, the higher the similarity, the greater the weight of the corresponding target blood pressure value, thereby increasing the blood pressure measurement range and improving the blood pressure. the accuracy of the measurement.
  • embodiments of the present application provide a blood pressure monitoring method, the method comprising: in response to a first operation, the electronic device enters a calibration mode; displaying a first graphical user interface; the first graphical user interface is used for prompting the user to perform the first action; collecting the first physiological index information; displaying a second graphical user interface for prompting the user to input the first blood pressure value; receiving the first blood pressure value input by the user; displaying the third a graphical user interface; the third graphical user interface is used to prompt the user to perform a second action; the second physiological index information is collected; a fourth graphical user interface is displayed, and the fourth graphical user interface is used to prompt the user to input a second blood pressure value ; receive the second blood pressure value input by the user; in response to the second operation, the electronic device enters the measurement mode; collects third physiological index information; according to the first blood pressure value, the second blood pressure value, the first The physiological index information and the second physiological index information determine a third blood pressure value corresponding to the third
  • the user is prompted to perform different actions (including the first action and the second action) by displaying a plurality of graphical user interfaces (including the first graphical user interface and the third graphical user interface), so that the The user's blood pressure influencing factors such as heart rate, stroke volume, total peripheral resistance, etc. change.
  • Collect the physiological index information including the first physiological index information and the second physiological index information
  • prompt respectively by displaying a plurality of graphical user interfaces including the second graphical user interface and the fourth graphical user interface.
  • the user inputs the blood pressure value (including the first blood pressure value and the second blood pressure value), and receives the blood pressure value input by the user, fully captures the changes of the user's blood pressure influencing factors, and realizes blood pressure calibration in multiple calibration scenarios;
  • the multiple blood pressure values and multiple physiological index information obtained in the calibration phase are used to determine the blood pressure value (ie the third blood pressure value) corresponding to the collected physiological index information (ie the third physiological index information), and the blood pressure value is more accurate, Thereby, accurate measurement of the user's blood pressure is achieved.
  • the method further includes: displaying a fifth graphical user interface, the fifth A graphical user interface displays options for a plurality of calibration scenarios, and the first graphical user interface is displayed in response to a user's selection of a calibration scenario.
  • the calibration scene corresponds to the calibration scene of the user's physical state, the user's environment state One or more of the calibration scenarios.
  • the calibration scenes corresponding to the physical state of the user include sitting scenes, lying still scenes, standing scenes, mental One or more of an activity scene, a relaxation/rest scene, an anaerobic exercise scene, and an aerobic exercise scene;
  • the calibration scene corresponding to the state of the environment in which the user is located includes one or more of a cold scene and a sultry scene.
  • the method further includes: displaying a sixth graphic A user interface, wherein the sixth graphical user interface displays timing information.
  • the method further includes: acquiring the type of medicine, the dosage, and the taking time of the medicine taken by the user ; Determine the first moment and the second moment according to the drug type, dosage and taking time; respectively at the first moment and the second moment, display a seventh graphical user interface, the seventh graphical user interface is used for prompting The user performs the first operation.
  • the method further includes: every preset period, displaying a seventh graphical user interface, where the seventh graphical user interface is used to prompt the user to perform the first operation.
  • determining the third blood pressure value corresponding to the third physiological index information includes: determining the similarity between the first physiological index information and the third physiological index information , and the similarity between the second physiological index information and the third physiological index information; determine the target similarity greater than the second threshold, and the target physiological index information corresponding to the target similarity; The target blood pressure value is weighted and summed to obtain the third blood pressure value, wherein the weight of the target blood pressure value is positively correlated with the similarity between the corresponding target physiological index information and the third physiological index information.
  • embodiments of the present application provide a blood pressure monitoring method, the method comprising: in response to a first operation, the electronic device enters a calibration mode; and displaying a first graphical user interface, the first graphical user interface is used for prompting the user to perform the first action; receiving the first blood pressure value, and collecting the first physiological index information; displaying a second graphical user interface for prompting the user to perform the second action; receiving the second blood pressure value, and collecting second physiological index information; in response to the second operation, the electronic device enters a measurement mode; collecting third physiological index information; according to the first blood pressure value, the second blood pressure value, the first physiological index information and the second physiological index information to determine a third blood pressure value corresponding to the third physiological index information.
  • the user is prompted to perform different actions by displaying multiple graphical user interfaces, so that the user's blood pressure influencing factors such as heart rate, stroke volume, total peripheral resistance, etc. change.
  • in the measurement stage according to the calibration stage to obtain A plurality of blood pressure values and a plurality of physiological index information are obtained, and a third blood pressure value corresponding to the collected third physiological index information is determined, and the blood pressure value has a higher precision, thereby realizing accurate measurement of the user's blood pressure.
  • the method further includes: displaying a third graphical user interface, the third A graphical user interface displays options for a plurality of calibration scenarios; the first graphical user interface is displayed in response to a user's selection of a calibration scenario.
  • the calibration scene corresponds to the calibration scene of the user's physical state, the user's location One or more of the calibration scenarios for the state of the environment.
  • the calibration scenes corresponding to the physical state of the user include sitting scenes, lying still scenes, standing scenes, brain power One or more of an activity scene, a relaxation/rest scene, an anaerobic exercise scene, and an aerobic exercise scene;
  • the calibration scene corresponding to the state of the environment in which the user is located includes one or more of a cold scene and a sultry scene.
  • the method further includes: displaying a fourth graphic A user interface, wherein the fourth graphical user interface displays timing information.
  • the method further includes: acquiring the type of medicine, the dosage, and the taking time of the medicine taken by the user ; Determine the first moment and the second moment according to the drug type, dosage and taking time; respectively at the first moment and the second moment, display the fifth graphical user interface, the fifth graphical user interface is used for prompting The user performs the first operation.
  • the method further includes: every preset period, displaying a fifth graphical user interface, the fifth graphical user interface is used to prompt the user to perform the first operation.
  • the third blood pressure value corresponding to the third physiological index information may include: determining the similarity between the first physiological index information and the third physiological index information and the similarity between the second physiological index information and the third physiological index information; determine the target similarity greater than the second threshold, and the target physiological index information corresponding to the target similarity; The corresponding target blood pressure values are weighted and summed to obtain the third blood pressure value, wherein the weight of the target blood pressure value is positively correlated with the similarity between the corresponding target physiological index information and the third physiological index information.
  • the embodiments of the present application provide a blood pressure monitoring device, the device includes: a first response module, for responding to a first operation, the electronic device enters a calibration mode; a first display module for displaying the first a graphical user interface, the first graphical user interface is used to prompt the user to perform the first action; the first calibration module is used to measure the first blood pressure value and collect the first physiological index information; the second display module is used to display The second graphical user interface, the second graphical user interface is used to prompt the user to perform the second action; the second calibration module is used to measure the second blood pressure value and collect the second physiological index information; the second response module is used to In response to the second operation, the electronic device enters a measurement mode; a measurement module is used to collect third physiological index information; a blood pressure value determination module is used to determine according to the first blood pressure value, the second blood pressure value, the The first physiological index information and the second physiological index information determine a third blood pressure value corresponding to the third physiological index information.
  • the apparatus further includes a third display module, configured to: display a third graphical user interface, where the third graphical user interface displays multiple options for a calibration scenario, the first graphical user interface is displayed in response to a user selection operation on the calibration scenario.
  • the calibration scene corresponds to one or more of the calibration scene of the user's physical state and the calibration scene of the state of the user's environment.
  • the calibration scenes corresponding to the physical state of the user include sitting scenes, lying still scenes, standing scenes, brain power One or more of an activity scene, a relaxation/rest scene, an anaerobic exercise scene, and an aerobic exercise scene; the calibration scene corresponding to the state of the environment in which the user is located includes one or more of a cold scene and a sultry scene.
  • the apparatus further includes a fourth display module, configured to: display a fourth graphic A user interface, wherein the fourth graphical user interface displays timing information.
  • the apparatus further includes: a first reminder module, configured to acquire the medicines taken by the user type, dosage and taking time; according to the type of medicine, dosage and taking time, determine the first moment and the second moment; respectively at the first moment and the second moment, display a fifth graphical user interface, the fifth The graphical user interface is used to prompt the user to perform the first operation.
  • a first reminder module configured to acquire the medicines taken by the user type, dosage and taking time; according to the type of medicine, dosage and taking time, determine the first moment and the second moment; respectively at the first moment and the second moment, display a fifth graphical user interface, the fifth The graphical user interface is used to prompt the user to perform the first operation.
  • the apparatus further includes: a second reminder module, configured to every preset Period, display the fifth graphical user interface, the fifth graphical user interface is used to prompt the user to perform the first operation, or measure the user's fourth blood pressure value through the air bag and the pressure sensor, and the fourth blood pressure value and the latest collected blood pressure value
  • a fifth graphical user interface is displayed.
  • the blood pressure value determination module is further configured to: determine the first physiological The similarity between the index information and the third physiological index information, and the similarity between the second physiological index information and the third physiological index information; determine the target similarity greater than the second threshold, and the target similarity corresponding to target physiological index information; weighting and summing the target blood pressure values corresponding to the target physiological index information to obtain the third blood pressure value, wherein the weight of the target blood pressure value is the difference between the corresponding target physiological index information and the third physiological index information. Similarity is positively correlated.
  • the embodiments of the present application provide a blood pressure monitoring device, the device includes: a first response module, for responding to a first operation, the electronic device enters a calibration mode; a first display module for displaying the first a graphical user interface, the first graphical user interface is used to prompt the user to perform the first action; the first collection module is used to collect the first physiological index information; the second display module is used to display the second graphical user interface, the The second graphical user interface is used to prompt the user to input the first blood pressure value; the first receiving module is used to receive the first blood pressure value input by the user; the third display module is used to display the third graphical user interface; the third The graphical user interface is used to prompt the user to perform the second action; the second collection module is used to collect the second physiological index information; the fourth display module is used to display the fourth graphical user interface, and the fourth graphical user interface is used to prompt The user inputs a second blood pressure value; the second receiving module is used to receive the second blood pressure value input by the user;
  • the apparatus further includes a fifth display module, configured to: display a fifth graphical user interface, where the fifth graphical user interface displays multiple options for a calibration scenario, the first graphical user interface is displayed in response to a user selection operation on the calibration scenario.
  • the calibration scene corresponds to the calibration scene of the user's physical state, the user's location One or more of the calibration scenarios for the state of the environment.
  • the calibration scenes corresponding to the physical state of the user include sitting scenes, lying still scenes, standing scenes, brain power One or more of an activity scene, a relaxation/rest scene, an anaerobic exercise scene, and an aerobic exercise scene;
  • the calibration scene corresponding to the state of the environment in which the user is located includes one or more of a cold scene and a sultry scene.
  • the apparatus further includes a sixth display module, configured to: display a sixth graphic A user interface, wherein the fourth graphical user interface displays timing information.
  • the apparatus further includes: a first reminder module, configured to obtain the The type of medicine, the dosage and the taking time; the first moment and the second moment are determined according to the type of medicine, the dosage and the taking time; the seventh graphical user interface is displayed at the first moment and the second moment respectively, and the Seven graphical user interfaces are used to prompt the user to perform the first operation.
  • a first reminder module configured to obtain the The type of medicine, the dosage and the taking time
  • the first moment and the second moment are determined according to the type of medicine, the dosage and the taking time
  • the seventh graphical user interface is displayed at the first moment and the second moment respectively, and the Seven graphical user interfaces are used to prompt the user to perform the first operation.
  • the apparatus further includes: a second reminder module, configured to every preset period, displaying a seventh graphical user interface, where the seventh graphical user interface is used to prompt the user to perform the first operation.
  • the blood pressure value determination module is further configured to: determine the first physiological The similarity between the index information and the third physiological index information, and the similarity between the second physiological index information and the third physiological index information; determine the target similarity greater than the second threshold, and the target similarity corresponding to target physiological index information; weighting and summing the target blood pressure values corresponding to the target physiological index information to obtain the third blood pressure value, wherein the weight of the target blood pressure value is the difference between the corresponding target physiological index information and the third physiological index information. Similarity is positively correlated.
  • an embodiment of the present application provides a blood pressure monitoring device, the device includes: a first response module, for responding to a first operation, the electronic device enters a calibration mode; a first display module for displaying the first a graphical user interface, the first graphical user interface is used to prompt the user to perform the first action; the first calibration module is used to receive the first blood pressure value and collect the first physiological index information; the second display module is used to display The second graphical user interface, the second graphical user interface is used to prompt the user to perform the second action; the second calibration module is used to receive the second blood pressure value and collect the second physiological index information; the second response module is used to In response to the second operation, the electronic device enters a measurement mode; a measurement module is used to collect third physiological index information; a blood pressure value determination module is used to determine according to the first blood pressure value, the second blood pressure value, the The first physiological index information and the second physiological index information determine a third blood pressure value corresponding to the third physiological index information.
  • the apparatus further includes a third display module, configured to: display a third graphical user interface, where the third graphical user interface displays multiple options for a calibration scenario, the first graphical user interface is displayed in response to a user selection operation on the calibration scenario.
  • the calibration scene corresponds to one or more of the calibration scene of the user's physical state and the calibration scene of the state of the user's environment.
  • the calibration scenes corresponding to the physical state of the user include sitting scenes, lying still scenes, standing scenes, brain power One or more of an activity scene, a relaxation/rest scene, an anaerobic exercise scene, and an aerobic exercise scene; the calibration scene corresponding to the state of the environment in which the user is located includes one or more of a cold scene and a sultry scene.
  • the apparatus further includes a fourth display module, configured to: display a fourth graphic A user interface, wherein the fourth graphical user interface displays timing information.
  • the device further includes: a first reminder module, configured to acquire the medicines taken by the user type, dosage and taking time; according to the type of medicine, dosage and taking time, determine the first moment and the second moment; respectively at the first moment and the second moment, display a fifth graphical user interface, the fifth The graphical user interface is used to prompt the user to perform the first operation.
  • a first reminder module configured to acquire the medicines taken by the user type, dosage and taking time; according to the type of medicine, dosage and taking time, determine the first moment and the second moment; respectively at the first moment and the second moment, display a fifth graphical user interface, the fifth The graphical user interface is used to prompt the user to perform the first operation.
  • the apparatus further includes: a second reminder module, configured to every preset period, displaying a fifth graphical user interface, where the fifth graphical user interface is used to prompt the user to perform the first operation.
  • the blood pressure value determination module is further configured to: determine the first physiological The similarity between the index information and the third physiological index information, and the similarity between the second physiological index information and the third physiological index information; determine the target similarity greater than the second threshold, and the target similarity corresponding to target physiological index information; weighting and summing the target blood pressure values corresponding to the target physiological index information to obtain the third blood pressure value, wherein the weight of the target blood pressure value is the difference between the corresponding target physiological index information and the third physiological index information. Similarity is positively correlated.
  • embodiments of the present application provide a wearable device, including: a display screen for displaying a graphical user interface; a sensor for collecting physiological index information; an air bag and a pressure sensor for measuring blood pressure; processing a device, configured to execute the first aspect or one of multiple possible implementations of the first aspect by controlling at least one of the display screen, the sensor, and the airbag and the pressure sensor or several blood pressure monitoring methods.
  • embodiments of the present application provide a wearable device, including: a display screen for displaying a graphical user interface; a sensor for collecting physiological index information; an input component for receiving a blood pressure value input by a user; A processor, configured to execute the second aspect or one of multiple possible implementations of the second aspect by controlling at least one of the display screen, the sensor, and the input component or Several methods of blood pressure monitoring.
  • a wearable device comprising: a display screen for displaying a graphical user interface; a sensor for collecting physiological index information; and a communication component for receiving blood pressure from outside the wearable device a value; a processor configured to execute the third aspect or one of multiple possible implementations of the third aspect by controlling at least one of the display screen, the sensor, and the communication component One or more blood pressure monitoring methods.
  • embodiments of the present application provide a non-volatile computer-readable storage medium, on which computer program instructions are stored, and when the computer program instructions are executed by a processor, implement the above-mentioned first aspect or the first aspect
  • a blood pressure monitoring method that implements one or more of the multiple possible implementations of the second aspect, or a blood pressure monitoring method that implements the second aspect or one or more of the multiple possible implementations of the second aspect, or The third aspect or one or more of the blood pressure monitoring methods in the various possible implementation manners of the third aspect.
  • embodiments of the present application provide a computer program product, comprising computer-readable codes, or a non-volatile computer-readable storage medium carrying computer-readable codes, when the computer-readable codes are stored in
  • the processor in the electronic device executes the first aspect or one or more of the blood pressure monitoring methods in multiple possible implementations of the first aspect, or executes the second aspect or the first aspect.
  • FIG. 1 shows a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 2 shows a schematic diagram of another application scenario according to an embodiment of the present application.
  • FIG. 3 shows a flowchart of a blood pressure monitoring method according to an embodiment of the present application.
  • FIG. 4 shows a schematic diagram of a smart wearable watch entering a calibration mode according to an embodiment of the present application.
  • FIG. 5 shows a schematic diagram of blood pressure calibration in multiple calibration scenarios according to an embodiment of the present application.
  • FIG. 6 shows a schematic diagram of blood pressure calibration in an anaerobic exercise scenario according to an embodiment of the present application.
  • FIG. 7 shows a schematic diagram of a calibration scene selection according to an embodiment of the present application.
  • FIG. 8 shows a flowchart of blood pressure calibration in a standard scenario according to an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of setting a custom scene according to an embodiment of the present application.
  • FIG. 10 shows a flowchart of blood pressure calibration in a custom scenario according to an embodiment of the present application.
  • 11A-11B illustrate schematic diagrams of determining user attributes according to an embodiment of the present application.
  • FIG. 12 shows a flowchart of blood pressure calibration for a person taking medication for hypertension according to an embodiment of the present application.
  • FIG. 13 shows a schematic diagram of a state space according to an embodiment of the present application.
  • FIG. 14 shows a schematic diagram of predicting blood pressure using state space according to an embodiment of the present application.
  • FIG. 15 shows a flowchart of a blood pressure monitoring method according to an embodiment of the present application.
  • FIG. 16 shows a schematic diagram of blood pressure calibration in multiple calibration scenarios according to an embodiment of the present application.
  • FIG. 17 shows a schematic diagram of blood pressure calibration in an anaerobic exercise scenario according to an embodiment of the present application.
  • FIG. 18 shows a flowchart of a blood pressure monitoring method according to an embodiment of the present application.
  • FIG. 19 shows a flowchart of another blood pressure monitoring method according to an embodiment of the present application.
  • FIG. 20 shows a flowchart of another blood pressure monitoring method according to an embodiment of the present application.
  • FIG. 21 shows a structural diagram of a blood pressure monitoring device according to an embodiment of the present application.
  • FIG. 22 shows a structural diagram of another blood pressure monitoring device according to an embodiment of the present application.
  • FIG. 23 shows a structural diagram of another blood pressure monitoring device according to an embodiment of the present application.
  • FIG. 24 shows a schematic structural diagram of a smart wearable watch according to an embodiment of the present application.
  • Hypertension is the most common chronic non-communicable disease and has the highest disease burden globally. Hypertension has become an important public health problem associated with a range of clinical diseases and adverse outcomes. There are ethnic differences in the pathogenesis of cardiovascular and cerebrovascular events in hypertension. With a large population in the world and an increasing aging population, it is very important to properly diagnose and treat hypertension.
  • Continuous blood pressure monitoring represented by ambulatory blood pressure monitoring (ABPM) is an important out-of-office blood pressure measurement method and plays a central role in hypertension monitoring and management. , abnormal blood pressure rhythm and other aspects play an important role.
  • each set of data includes pulse wave transit time and blood pressure value; according to the multiple sets of data, a parameter set for measuring blood pressure with the sphygmomanometer is determined.
  • the scene is single, the blood pressure influencing factors are limited, and there is no relatively accurate blood pressure value as a benchmark. Therefore, the effect of blood pressure calibration and blood pressure tracking is poor.
  • the sphygmomanometer cuff can be placed on the upper arm, and the watch to be calibrated can be worn on the wrist of the other arm. Put your phone on the table for easy access. On your phone, open the relevant app and follow the on-screen instructions: Start blood pressure measurement on the cuff-based blood pressure monitor. The measurement on the watch to be calibrated will start automatically. Enter cuff-based blood pressure monitoring readings in the mobile blood pressure monitoring app. Repeat the above steps twice (three measurements in total) to complete the calibration of the watch to be calibrated.
  • calibration is performed only in a sitting scene, and the blood pressure value measured during use fluctuates slightly around the calibration value, so it is impossible to track the large changes in blood pressure.
  • the embodiment of the present application provides a blood pressure monitoring method.
  • the blood pressure monitoring method of the embodiment of the present application can be executed by a blood pressure monitoring device, and the user is prompted through prompt information to complete multiple calibrations.
  • the user's calibrated blood pressure values and corresponding physiological signals are obtained in each calibration scenario, and the changes in the user's blood pressure influencing factors are fully captured to realize blood pressure calibration in multiple calibration scenarios; in the blood pressure measurement stage, according to the collected blood pressure
  • the physiological signal, as well as the calibrated blood pressure value and the corresponding physiological signal in each of the above calibration scenarios determine the measured blood pressure value of the user, and the blood pressure value is more accurate, thereby realizing accurate measurement of the user's blood pressure.
  • the blood pressure monitoring device may be a device with a function of measuring the blood pressure of the user, and at the same time, the accuracy of the blood pressure measurement can be improved through calibration.
  • the blood pressure monitoring device may include an electrocardiogram (ECG) sensor, a photoplethysmography (PPG) sensor, a pressure sensor, a Ballistocardiography (BCG) sensor, a Seismocardiography (SCG) sensor, an impedance Plethysmography (impedance plethysmography, IPG) sensors and other sensors that can collect the user's physiological signals, through these sensors to measure the user's PPG, ECG, IPG, SCG, BCG, heart sounds and other physiological signals, determine the corresponding physiological index information, so as to obtain the user's physiological signal. blood pressure value.
  • ECG electrocardiogram
  • PPG photoplethysmography
  • BCG Ballistocardiography
  • SCG Seismocardiography
  • IPG impedance Plethysmography
  • the blood pressure monitoring device may be a smart wearable device with a blood pressure monitoring function
  • the wearable device may be a device worn on the arm or wrist, for example, a smart wearable watch, etc.; it may also be worn on the chest or palm. device, such as a smart necklace, etc.; it can also be a device worn on the head, such as a smart earphone, etc.
  • the specific form of the smart wearable device is not limited in this application.
  • the blood pressure monitoring device can be a professional device in a hospital with a blood pressure monitoring function, for example, a 24-hour ambulatory blood pressure monitor; exemplarily, the blood pressure monitoring device can also be an intelligent body fat scale and a blood pressure measuring instrument with a blood pressure monitoring function. and other equipment.
  • the blood pressure monitoring method provided by the present application is described by taking the blood pressure monitoring device as a smart wearable watch as an example.
  • FIG. 1 shows a schematic diagram of an application scenario according to an embodiment of the present application; as shown in FIG. 1 , when the user calibrates blood pressure, the user wears the smart wearable watch 101 on the left or right hand (the figure shows the smart wearable watch 101 Wearing on the right wrist), in order to achieve a better blood pressure measurement effect, the user can put the watch band of the watch 101 to be smartly worn close to the wrist.
  • the smart wearable watch 101 may include: an air bag (such as a micro-pump air bag), a pressure sensor and a PPG sensor, or may also include an ECG sensor; wherein the air bag and the pressure sensor work together to measure the user's blood pressure by oscillometric method
  • the blood pressure value is used as the calibrated blood pressure value.
  • the measurement process can include: automatically inflating the air bag through the pressure of the micro pump, stopping the pressure after inflating for a certain time, and starting to deflate, when the air pressure drops to a certain level, the blood flow can pass through
  • the blood vessel has a certain oscillating wave.
  • the oscillating wave propagates to the pressure sensor.
  • the pressure sensor can detect the pressure and fluctuation in the air bag in real time, and then calculate the user's blood pressure value based on the pressure and fluctuation based on the principle of oscillometric method.
  • the value is the calibrated blood pressure value.
  • the PPG sensor is used to collect PPG signals, and the collection process includes: the light-emitting diode of the PPG sensor emits a photoelectric signal to the user's skin, and the photodiode of the PPG sensor collects pulse waves to generate the PPG signal.
  • ECG sensors can be used to acquire ECG signals.
  • the blood pressure value can be obtained according to the corresponding relationship between the characteristic value of the preset characteristic of the PPG signal and the blood pressure value through the pulse wave characteristic parameter measurement method; the measurement principle is based on different characteristics of the pre-established preset characteristic of the PPG signal.
  • the blood pressure value corresponding to the characteristic value is determined, that is, the blood pressure value of the user.
  • the PPG sensor and the ECG sensor can be used together to measure the user's blood pressure value through the pulse wave velocity blood pressure measurement method; the measurement principle is based on the pulse wave velocity (Pulse Wave Velocity, PWV) and arterial blood pressure.
  • PTT Pulse Transit Time
  • pulse wave characteristic parameter method and pulse wave velocity blood pressure measurement method are only examples.
  • the blood pressure value can be obtained in combination with the pulse wave characteristic parameter method.
  • the smart wearable watch in order to obtain a blood pressure value with higher accuracy than the blood pressure value obtained based on the PPG signal or the combination of the PPG signal and the ECG signal, can obtain the calibrated blood pressure value through the air bag and the pressure sensor, and then combine the calibrated blood pressure value. It is convenient and quick to complete the blood pressure calibration without relying on other equipment.
  • FIG. 2 shows a schematic diagram of another application scenario according to an embodiment of the present application; as shown in FIG. 2 , when the user calibrates blood pressure, the user wears the smart wearable watch 101 and the blood pressure monitor 102 on the left arm and the right arm respectively ( The figure shows that the smart wearable watch 101 is worn on the right wrist and the blood pressure monitor 102 is worn on the left arm), and both the smart wearable watch 101 and the blood pressure monitor 102 can be worn on the left arm or the right arm ( Not shown in the figure), in order to achieve a better blood pressure measurement effect, the user can place the wristband of the smart wearable watch 101 close to the wrist, and the cuff of the blood pressure monitor 102 close to the arm.
  • the smart wearable watch 101 and the blood pressure monitor 102 can be connected in a wired or wireless (eg, bluetooth, wifi, etc.) manner.
  • the blood pressure monitor 102 may be a medically certified blood pressure monitor, and the blood pressure monitor 102 may measure the blood pressure value of the user through an oscillometric method.
  • the smart wearable watch 101 may include a PPG sensor, or may further include an ECG sensor.
  • PPG sensor or may further include an ECG sensor.
  • ECG sensor The working principle of PPG sensor and ECG sensor can be seen above.
  • the smart wearable watch in order to obtain a blood pressure value with higher accuracy than the blood pressure value obtained based on the PPG signal or the combination of the PPG signal and the ECG signal, the smart wearable watch can measure the calibrated blood pressure value through the blood pressure monitor, and then combine the calibrated blood pressure value with the blood pressure value. And the physiological signal obtained by the PPG sensor (or PPG sensor, ECG sensor, etc.), to obtain a higher-precision blood pressure value, and further improve the calibration accuracy.
  • the blood pressure monitoring method provided by the present application will be described below with reference to the application scenario shown in FIG. 1 .
  • FIG. 3 shows a flowchart of a blood pressure monitoring method according to an embodiment of the present application. As shown in FIG. 3 , the method may include the following steps:
  • Step 301 The smart wearable watch enters the calibration mode in response to the user's instruction.
  • the user can trigger an instruction to enter the calibration mode, and the smart wearable watch enters the calibration mode in response to the instruction; for example, the user can click the smart wearable watch to enter the calibration mode.
  • the virtual button of the calibration mode on the display screen of the watch triggers the instruction to enter the calibration mode; for example, the user can also trigger the instruction to enter the calibration mode by pressing the physical button for entering the calibration mode set by the smart wearable watch; example Exemplarily, the user can also trigger the instruction to enter the calibration mode by means of a voice command; exemplarily, the user can also trigger the instruction to enter the calibration mode by means of a shortcut gesture; in practical applications, the user can also use other means.
  • the instruction to trigger entering the calibration mode is not limited in this embodiment of the present application.
  • FIG. 4 shows a schematic diagram of a smart wearable watch entering a calibration mode according to an embodiment of the present application.
  • the user can click the icon of the "blood pressure" application of the smart wearable watch to trigger the smart wearable watch 101 to execute the application.
  • the display screen of the smart wearable watch 101 The virtual button 401 of the calibration mode and the virtual button 402 of the measurement mode are displayed on the upper panel; the user can click the virtual button 401 of the calibration mode to trigger an instruction to enter the calibration mode, and the smart wearable watch 101 responds to the instruction and enters the calibration mode.
  • Step 302 the smart wearable watch measures the calibrated blood pressure value of the user in each of the different calibration scenarios, and collects the physiological signal of the user.
  • the smart wearable watch collects the physiological signals of the user in different calibration scenarios.
  • the physiological signal may include: pulse wave signal, ECG signal, etc., wherein, the ECG signal is sent by the user's heart when beating, such as ECG signal, etc.; , for example, PPG signals, etc.
  • the airbag and pressure sensor of the smart wearable watch work together to measure the user's blood pressure value through the oscillometric method as a calibrated blood pressure value.
  • the smart wearable watch measures the user's calibrated blood pressure value and collects the user's physiological signal, which may include: the smart wearable watch can measure the oscillometric method in the calibration scenario. Calibrate the blood pressure value, and collect the physiological signal of the user in this scenario; wherein, the time to measure the calibrated blood pressure value in the calibration scenario may be before the time of collecting the physiological signal of the user in this scenario, or may be collected in the scenario of the user.
  • the physiological signal of the user in the calibration scene can be collected at a certain time interval, so as to avoid the influence of the pressure change on the physiological signal.
  • Influence for example, the airbag and pressure sensor of the smart wearable watch work together to obtain the calibrated blood pressure value in the calibration scenario.
  • the PPG sensor of the smart wearable watch starts to work to collect the user's PPG signal, or the PPG of the smart wearable watch.
  • the sensor and ECG sensor start to work, collecting the user's PPG signal and ECG signal.
  • the calibration scene may be a preset scene.
  • the user's physical state or the user's environment is different. In this way, the user's physical state or the user's environment can be induced by designing the scene.
  • blood pressure influencing factors such as heart rate, stroke volume, total peripheral resistance, etc. change, and the blood pressure is measured in various physical states or the state of the user's environment.
  • Calibration Obtain the physiological signals and calibrated blood pressure values of the user in different physical states or the user's environment, so as to fully capture the changes in the user's blood pressure influencing factors, and then use the calibrated equipment to achieve accurate tracking of the user's blood pressure.
  • Table 1 shows several preset calibration scenarios; as shown in Table 1, the calibration scenarios may include: a sitting scenario, a still lying scenario, a standing scenario, a mental activity scenario, a relaxation/rest scenario, and an anaerobic exercise scene, aerobic exercise scene, cold scene, sultry scene, etc.
  • the sitting scene, the lying scene, and the standing scene are scenes in a quiet state, and these scenes represent the changes of the user's physical state in different postures.
  • the sitting scene may include the user's sitting activity, representing the physical state in a sitting posture; the sitting scene may include the user's lying down activity, representing the physical state in the sitting posture; the standing scene may include the user's stationary standing activity, representing the standing posture. body state.
  • the mental activity scene and the relaxation/rest scene are scenes under neural activity, and these scenes represent the changes of the user's physical state when the sympathetic nerves and/or parasympathetic nerves are excited at different degrees.
  • mental activity scenarios can include: doing math problems, answering questions, etc., characterizing sympathetic nerve excitation, stimulating heart rate, stroke volume, venous systole to increase venous return, arterial systole to increase peripheral resistance, and blood pressure to increase ;
  • Relaxation/rest scenarios can include activities such as the Vasalva test, which characterize parasympathetic excitation, stimulate a lower heart rate, and lower blood pressure in a physical state.
  • anaerobic exercise scene and the aerobic exercise scene are the scenes under exercise, and these scenes represent the changes of the user's physical state during aerobic exercise and/or anaerobic exercise.
  • anaerobic exercise scenarios can include activities such as zama steps, which characterize a physical state that increases heart rate, increases cardiac output, increases peripheral resistance, and rapidly increases blood pressure.
  • Aerobic exercise scenarios can include activities such as cycling, step experiment, etc., which characterize the physical state of increasing heart rate, increasing cardiac output, reducing peripheral resistance, and increasing blood pressure.
  • the cold scene and the stuffy scene are scenes related to temperature, and these scenes represent changes in the state of the environment where the user is located.
  • a cold scene can include activities such as cold water stimulation, and the user is in this environment, peripheral blood vessels constrict, increase peripheral resistance, and increase blood pressure
  • a hot scene can include activities such as hot water stimulation, and the user is in this environment, peripheral blood vessels dilate , reduce peripheral resistance, lower blood pressure.
  • the following describes the process of the user completing the blood pressure calibration through the smart wearable watch under different calibration scenarios, taking the sit-down scene, the still-reclining scene, the mental activity scene, the relaxation/rest scene, and the anaerobic exercise scene as examples.
  • Fig. 5 shows a schematic diagram of blood pressure calibration under multiple calibration scenarios according to an embodiment of the present application
  • the smart wearable watch provides prompt information for a sitting scene, a still lying scene, a mental activity scene, and a relaxation/rest scene, thereby prompting the user to complete compliance with Physical activity of each calibration scenario
  • the display screen of the smart wearable watch can prompt the physical activity for the calibration scenario, so as to remind the user of the physical activity that the user needs to complete in the calibration scenario.
  • the smart wearable watch can also remind the user of the physical activities to be completed in the form of language broadcast, and the smart wearable watch can also demonstrate the physical activity to the user in the form of voice, pictures, videos, etc.; for example, as shown in Figure 5(a1)
  • the words “please lie still for 1 minute” are displayed on the display, thus reminding the user that the user needs to keep the still-lying posture for 1 minute in this calibration scene; as shown in Figure 5(a2)
  • the words “please sit still for 1 minute” are displayed on the display, thus reminding the user to keep the sitting posture for 1 minute; as shown in Figure 5(a3), the blood pressure calibration in the starting mental activity scene
  • the display screen can display the user to perform mathematical operations according to certain rules for one minute or display the question and answer questions for the user to answer.
  • the smart wearable watch can also remind the user to continue the physical activity that conforms to the calibration scene in the form of language broadcast, and also remind the user to The time required to perform physical activities that conform to the calibration scenario; as shown in Figure 5(d), after the countdown is over, the display of the smart wearable watch displays "blood pressure" During the measurement, please keep still” to remind the user to keep still.
  • the smart wearable watch can also remind the user to keep still in the form of language broadcast; , mental activity scene, relaxation/rest scene can remind the user to keep sitting still; at this time, the air bag and pressure sensor of the smart wearable watch work together to measure the user's blood pressure, and the PPG sensor (or, PPG sensor and ECG sensor) of the smart wearable watch Collect the user's physiological signals. As shown in Figure 5(e), the display of the smart wearable watch displays the word "measurement completed", thereby reminding the user that a blood pressure measurement in this calibration scenario is completed. The user's blood pressure measurement in this calibration scenario is completed.
  • FIG. 6 shows a schematic diagram of blood pressure calibration in an anaerobic exercise scene according to an embodiment of the present application
  • the smart wearable watch provides prompt information for the anaerobic exercise scene, thereby prompting the user to complete physical activities that conform to the anaerobic exercise scene
  • the display of the smart wearable watch displays "Please step to the limit, then Sit down and click the words "start measurement” and the virtual button to start, thus reminding the user that they need to step to the limit in the calibration scenario, and then sit down and click to start the measurement.
  • the smart wearable watch can also broadcast in language to remind the user that Zama step to the limit, then sit down and click to start the measurement.
  • the smart wearable watch can also give the user a demonstration guide of the Zama step to the limit through voice, pictures, videos, etc.; Under the premise, click the start button to trigger the start blood pressure measurement command, and the smart wearable watch responds to the command and starts blood pressure measurement, as shown in Figure 6(b), the display of the smart wearable watch displays "blood pressure measurement, please keep
  • the smart wearable watch can also remind the user to keep sitting still in the form of language broadcast; at this time, the airbag and pressure sensor of the smart wearable watch work together to measure the user's calibrated blood pressure value.
  • the PPG sensor (or, PPG sensor and ECG sensor) worn on the watch collects the physiological signals of the user. As shown in Figure 6(c), the display of the smart wearable watch displays the word "measurement completed", thereby reminding the user that the blood pressure measurement in the anaerobic exercise scene is completed. A blood pressure measurement in the user's anaerobic exercise scenario is completed.
  • the smart wearable watch can measure the user's calibrated blood pressure value and collect the user's physiological signals in each calibration scenario under the standard scenario.
  • FIG. 7 shows a schematic diagram of a calibration scene selection according to an embodiment of the present application; as shown in FIG. 7 , the user clicks the calibration mode virtual button 401 in FIG. 7( a ) to trigger the smart wearable watch 101 to enter the calibration mode, in the calibration mode shown in FIG. 7(b), the display screen of the smart wearable watch 101 displays the virtual buttons 1001 of the standard scene and the virtual buttons 1002 of the custom scene; the user can click the virtual button 1001 of the standard scene, An instruction to perform blood pressure calibration in the standard scene is triggered, and the smart wearable watch 101 responds to the instruction and executes the blood pressure calibration process in the standard scene.
  • the standard scenario may include a fixed combination of the above-mentioned preset multiple calibration scenarios, and each calibration scenario has a fixed execution sequence. Relax/rest scene, anaerobic exercise scene. It should be noted that, the type and quantity of calibration scenarios included in the standard scenario, and the execution sequence of each calibration scenario may be set according to requirements, which are not limited in this embodiment of the present application.
  • the user can complete the blood pressure calibration in the standard scenario by triggering the blood pressure calibration process in the standard scenario of the smart wearable device.
  • the standard scenario covers the induced heart rate, stroke volume, total Multiple calibration scenarios with changes in blood pressure influencing factors such as peripheral resistance.
  • the user can complete the blood pressure calibration in the standard scene without any other setting operations. The operation is simple and convenient, and the calibration effect is good. For example, when a user uses a smart wearable watch for blood pressure calibration for the first time, he can select a standard scenario, complete the blood pressure calibration in the standard scenario, and obtain the characteristics of the user's blood pressure influencing factors through one calibration, thereby ensuring better prediction of blood pressure values in subsequent measurement stages. precise.
  • FIG. 8 shows a flowchart of blood pressure calibration in a standard scenario according to an embodiment of the present application; as shown in FIG. 8 , after starting the blood pressure calibration in the standard scenario, the smart wearable watch can sequentially perform step 1101 , the lying down scenario Under the blood pressure calibration, step 1102, blood pressure calibration under the sitting scene, step 1103, blood pressure calibration under the mental activity scene, step 1104, blood pressure calibration under the relaxation/rest scene, step 1105, blood pressure calibration under the anaerobic exercise scene; thus completing the standard scene blood pressure calibration.
  • This embodiment of the present application does not limit the execution order of these steps.
  • the smart wearable watch can complete the blood pressure calibration in the recumbent scene, the sit-down scene, the mental activity scene, the relaxation/rest scene, and the anaerobic exercise scene by executing the above-mentioned processes in FIG. 5 and FIG. 6 in turn. Blood pressure calibration process in standard scenarios.
  • the smart wearable watch can measure the user's calibrated blood pressure value and collect the user's physiological signals in each calibration scenario under the user-defined scenario.
  • the custom scene may include multiple preset calibration scenes, and the execution sequence of each calibration scene, the type and number of calibration scenes included in the custom scene, and the execution sequence of each calibration scene may be set by the user, Exemplarily, the user may select multiple calibration scenarios from the preset multiple candidate calibration scenarios, and use the preset sequence of calibration scenarios as the execution sequence of the calibration scenarios.
  • the customized scene may include: executing a sedentary scene, a still-lying scene, a mental activity scene, a relaxation/rest scene, and an anaerobic exercise scene in sequence.
  • the user can click the virtual button 1002 of the custom scene to trigger an instruction to perform blood pressure calibration in the custom scene, and the smart wearable watch 101 responds to the instruction, Execute the blood pressure calibration process in the custom scenario.
  • the custom scene may be a selected calibration scene from multiple calibration scenes provided by the smart wearable watch.
  • FIG. 9 shows a schematic diagram of setting a custom scene according to an embodiment of the present application.
  • the custom scene virtual button 1002 in 9(a) By clicking the custom scene virtual button 1002 in 9(a), the custom selection page in FIG. 9(b) is entered.
  • the display screen of the smart wearable watch can display the available calibration scenes to the user.
  • the scene can include multiple calibration scenes shown in Table 1 above (only the sitting scene, the still lying scene, and the mental activity scene are shown in the figure). Create a custom scene.
  • the user selects the calibration scene according to his most frequent daily activities. For example, if the user works in front of the computer every day, he can select the sitting scene and the mental activity scene as custom scenes. In this way, users can choose the most suitable and most matching calibration scene to complete the calibration according to their daily activities, which can make the calibration more personalized and targeted, effectively reduce the calibration time, and improve the user experience.
  • FIG. 10 shows a flowchart of blood pressure calibration in a custom scenario according to an embodiment of the present application; as shown in FIG. 10 , if the user-defined scenario includes: a sedentary scenario, a recumbent recumbency scenario, a mental activity scenario, and no In the aerobic exercise scene, after starting the blood pressure calibration in the custom scene, the smart wearable watch can sequentially perform step 1301, blood pressure calibration in the sedentary scene, step 1302, blood pressure calibration in the sedentary scene, step 1303, blood pressure calibration in the mental activity scene, Step 1304 , blood pressure calibration in the anaerobic exercise scenario; thereby completing the blood pressure calibration in the custom scenario.
  • the user-defined scenario includes: a sedentary scenario, a recumbent recumbency scenario, a mental activity scenario, and no In the aerobic exercise scene
  • the smart wearable watch can sequentially perform step 1301, blood pressure calibration in the sedentary scene, step 1302, blood pressure calibration in the sedentary scene, step 1303, blood pressure calibration in the
  • the smart wearable watch can complete the lying-down scene, the sitting-down scene, and the mental activity in turn by executing the above-mentioned processes in Figures 5(a1)/5(a2)/5(a3)-5(e) and the processes in Figure 6 .
  • Blood pressure calibration in scenarios and anaerobic exercise scenarios. So far, the blood pressure calibration process in user-defined scenarios is completed.
  • the smart wearable watch can determine the blood pressure calibration time according to user attributes.
  • the user attribute may include: the user takes medicine for hypertension or other personnel.
  • the blood pressure calibration time may be the time for performing blood pressure calibration for each calibration scenario, and may also be the calibration time for the above-mentioned standard scenario or custom scenario.
  • FIGS. 11A-11B show a schematic diagram of determining user attributes according to an embodiment of the present application; as shown in FIG. 11A , in FIG. 11A(a), the user triggers the smart wearable watch by clicking the calibration mode virtual button 401 101 After entering the calibration mode, in FIG. 11A(b), the display screen of the smart wearable watch 101 displays the virtual buttons 1401 of the hypertensive medication personnel and the virtual buttons 1402 of other personnel; the user can click the virtual buttons of the hypertension medication personnel 1401 , triggering an instruction for blood pressure calibration for the hypertensive person taking medication, and the smart wearable watch 101 responds to the instruction and executes a blood pressure calibration process for the hypertensive medication person. If the user clicks the virtual button 1402 of another person, the smart wearable watch 101 executes the blood pressure calibration process in the above standard scenario or the blood pressure calibration process in the custom scenario.
  • Fig. 11A and Fig. 11B the user's selection of whether to be a hypertensive medication person and the operation of the user in the above-mentioned Fig. 8 to select a standard scene or a custom scene are in no particular order, that is, the user can first select the standard scene or the custom scene. , and then further select whether you are a person taking medicine for hypertension, as shown in FIG. 11B ; you can also choose whether you are a person taking medicine for hypertension first, and then further select a standard scene or a custom scene, as shown in FIG. 11A .
  • a blood pressure calibration may be performed respectively at the time points when the blood pressure drug concentration in the user is the highest and the drug concentration is the lowest.
  • calibration is performed when the drug concentration is the highest and the drug concentration is the lowest, so as to take into account the influence of changes in the drug concentration on the user's blood pressure, so that the measured blood pressure value is more accurate.
  • the time points of the highest drug concentration and the lowest drug concentration can be determined according to the product instructions of the antihypertensive drugs taken by the user or according to relevant public information. As shown in Table 2, it is an example of the time when the concentration of some antihypertensive drugs reaches the peak value.
  • Table 2 Description of the time when the concentration of some hypertensive antihypertensive drugs reaches the peak
  • Drug Name peak time half life Dosage Amlodipine 6 to 12 hours 35 ⁇ 50 hours 2.5 ⁇ 10mg,qd felodipine extended release tablets 2.5 to 5 hours 11 ⁇ 16 hours 5 ⁇ 10mg,qd Nifedipine Controlled Release Tablets 6 to 12 hours 30 ⁇ 60mg,qd nitrendipine 1 to 2 hours 10 ⁇ 22 hours 10 ⁇ 20mg, qd ⁇ bid lacidipine 0.5 ⁇ 1.5 hours 12 to 15 hours 4 ⁇ 8mg,qd lercanidipine 1.5 to 3 hours 8 to 10 hours 10 ⁇ 20mg,qd manidipine 1 to 4 hours 3.9 ⁇ 7.9 hours 10 ⁇ 20mg,qd cilnidipine 2.8 ⁇ 3.7 hours 5.2 ⁇ 8.1 hours 5 ⁇ 10mg,qd benidipine 0.8 ⁇ 1.1 hours 0.9 ⁇ 1.7 hours 2 ⁇ 12mg, qd
  • the user can click on the virtual button 1401 of each hypertensive medication person in the above-mentioned FIG. 11A and FIG. 11B, and select according to the prompt information displayed on the display screen of the smart wearable watch, or the voice prompt information, and the prompt information may include hypertension.
  • the user can choose the type, dosage and time of taking the medicine for high blood pressure.
  • the smart wearable watch can search the above pre-existing smart wearable watch according to the type and dosage of the high blood pressure medicine.
  • the time point when the concentration of hypertension and antihypertensive drugs in the watch reaches the peak value is used to determine the time point when the drug concentration reaches the highest and the time point when the concentration reaches the lowest level after taking the drug; at the same time, the time point before the user takes the drug can also be determined As the time point when the concentration reaches the lowest; thus reminding the user to perform the first blood pressure calibration before taking the drug, and reminding the user to perform the second blood pressure calibration when the drug concentration reaches the highest time point after the user completes the first blood pressure calibration , which can be manually triggered by the user at the reminded time.
  • Fig. 12 shows a blood pressure calibration flow chart for hypertensive drug users according to an embodiment of the present application; the user is a hypertensive drug user, the name of the drug selected by the user through the prompt information is manidipine, the dose is 20 mg, and the time for taking the drug is 20 mg. If it is 9:00, then the smart wearable watch can determine that the time point when the drug concentration reaches the highest is 4 hours after taking the drug, that is, 13:00, according to the above table 2, then the time for the first blood pressure calibration is 13:00, and the drug concentration reaches 13:00.
  • the lowest time point is about 7.9 hours after taking the medicine, which is about 17:00, and the second blood pressure calibration time is determined to be 17:00; at the same time, if the user-defined scene includes: sitting scene, lying still scene, mental activity scene , anaerobic exercise scene; the smart wearable watch reminds the user to perform blood pressure calibration at 13:00. If the user triggers a custom blood pressure calibration, the smart wearable watch can sequentially perform step 1501, blood pressure calibration in the still-recumbent scene, and step 1502, the sitting scene. Under the blood pressure calibration, step 1503, blood pressure calibration under the mental activity scene, step 1504, blood pressure calibration under the anaerobic exercise scene; thus completing the first blood pressure calibration.
  • the smart wearable watch can remind the user to perform the second blood pressure calibration at 17:00 through voice, vibration, display flashing, etc.; if the user triggers a custom blood pressure calibration, the smart wearable watch can Step 1501, blood pressure calibration in the still-recumbent scenario, step 1502, blood pressure calibration in the sedentary scenario, step 1503, blood pressure calibration in the mental activity scenario, and step 1504, blood pressure calibration in the anaerobic exercise scenario; thus completing the second blood pressure calibration.
  • the smart wearable watch can perform the above process of Fig. 5(a1)/5(a2)/5(a3)-5(e). And the process in FIG. 6 , complete the blood pressure calibration in the recumbent scene, the sitting scene, the mental activity scene, and the blood pressure calibration in the anaerobic exercise scene in sequence. At this point, the first blood pressure calibration or the second blood pressure calibration is completed.
  • Step 303 the smart wearable watch calibrates the blood pressure value according to the calibrated blood pressure value and the collected physiological signal in different calibration scenarios.
  • the characteristic value of the preset characteristic can be calculated by the PPG signal to obtain a characteristic matrix, and then the calibrated blood pressure value obtained in the calibration scene is used.
  • the blood pressure value corresponding to the feature matrix is marked, and the corresponding relationship between the feature value of the preset feature of the PPG signal and the blood pressure value is optimized, thereby completing the calibration.
  • the following takes the pulse wave characteristic parameter method as an example to describe the blood pressure value calibration and further blood pressure measurement process.
  • the smart wearable watch calculates the feature value of the preset feature according to the PPG signal collected in the above-mentioned calibration scenario, and the number of preset features may be one or more.
  • the preset features may include: pulse width, PPG signal period , PPG signal amplitude, peak value, trough value of PPG signal waveform, etc.
  • the smart wearable watch generates a feature matrix corresponding to the calibration scene according to the eigenvalues of the preset features, and the feature matrix can represent the physical state of the user in the calibration scene; and uses the calibration blood pressure value obtained in the calibration scene to mark the feature
  • the blood pressure value corresponding to the matrix can be expressed as Among them, m represents the number of features, and j represents the number corresponding to the current calibration of the calibration scene.
  • m represents the number of features
  • j represents the number corresponding to the current calibration of the calibration scene.
  • the calibrated blood pressure value obtained from the current calibration of the calibration scene is X j , then X j is used to mark Thereby, the corresponding relationship between the calibrated blood pressure value and the feature matrix is obtained, denoted as
  • the monitoring method may further include: using the above-mentioned smart wearable watch after blood pressure calibration to measure the blood pressure of the user.
  • users can realize 24-hour continuous blood pressure monitoring by wearing a smart wearable watch after blood pressure calibration.
  • Users can use the calibrated smart wearable watch to complete blood pressure measurement in a certain scenario.
  • the user can click the virtual button 401 of the measurement mode on the display screen of the smart wearable watch 101 in FIG. 4 while keeping the sitting posture still to trigger an instruction to enter the measurement mode, and the smart wearable watch 101 responds to the instruction and enters the measurement mode.
  • measurement mode blood pressure measurement is started, PPG signal is collected, blood pressure value is predicted according to the PPG signal, and the predicted blood pressure value is displayed.
  • the smart wearable watch collects a PPG signal in the measurement mode, and predicts the blood pressure value according to the PPG signal, which may include: calculating a feature value of a preset feature according to the PPG signal, and calculating a feature value of a preset feature according to the PPG signal. eigenvalue, generate a feature matrix corresponding to the current measurement, and determine one or more pre-stored feature matrices similar to the feature matrix corresponding to the current measurement in the pre-stored feature matrix, so as to obtain the currently measured blood pressure value.
  • the state space can be used to represent the range in which the feature matrix is located, wherein the feature matrix obtained under the above different calibration scenarios can be used as a known point in the state space, and each known point corresponds to a calibrated blood pressure value;
  • the feature matrix corresponding to the measurement is the to-be-determined point in the state space, so the to-be-determined point is obtained according to the distance between the to-be-determined point and one or more known points in the state space and the calibrated blood pressure value corresponding to the known point blood pressure value.
  • Characteristic matrix, different characteristic matrices constitute the state space.
  • FIG. 13 shows a schematic diagram of a state space according to an embodiment of the present application.
  • each point in the state space represents the PPG signal obtained by each calibration under different calibration scenarios.
  • Feature matrix different dots in the figure represent the feature matrix obtained by each calibration in the above standard scene, wherein, the dots with the same pattern represent the feature matrix obtained under the same calibration scene.
  • the jth point The corresponding blood pressure value X j can be expressed as in, represents the value of the m features at the jth point.
  • FIG. 14 shows a schematic diagram of predicting blood pressure using state space according to an embodiment of the present application.
  • the obtained characteristic matrix of the PPG signal is (y 1 , y 2 , ...,y m ), that is, the point represented by the triangle in the figure;
  • the current blood pressure value can be written as Y(y 1 , y 2 ,..., y m ), then the point and state in the state space corresponding to the user's current blood pressure measurement
  • the distance between points in space can be expressed as:
  • m represents the number of features contained in the feature matrix
  • i represents the i-th feature in the feature matrix
  • X j represents the blood pressure value corresponding to the j-th point in the state space
  • D j represents the state space corresponding to this measurement.
  • the distance between the point and the jth point in the state space, represents the value of the ith feature of the jth point
  • y i represents the value of the ith feature of the feature matrix of the obtained PPG signal
  • p is an optional parameter, generally 2 can be selected.
  • n points in the state space are determined, that is, the points in the circular area in Figure 14, and the blood pressure values corresponding to these n points are used to pass the formula: Then the blood pressure value Y of this blood pressure measurement can be predicted.
  • the weighting coefficient can be negatively correlated with the distance between the feature matrix corresponding to the calibrated blood pressure value and the feature matrix obtained under the current measurement scenario, that is, the smaller the distance, the greater the weight of the corresponding calibrated blood pressure value. This increases the blood pressure measurement range and improves the accuracy of blood pressure measurement.
  • the smart wearable watch can be regularly or irregularly calibrated for blood pressure, so as to provide the accuracy of blood pressure measurement by the calibrated smart wearable watch.
  • the smart wearable watch may remind the user to perform blood pressure calibration when an abnormal blood pressure value measured by the smart wearable watch is detected.
  • the airbag and pressure sensor of the smart wearable watch can measure the user's blood pressure on a regular basis (such as every 1 day), and communicate with the smart wearable watch at the same or adjacent time points through the PPG sensor.
  • the measured blood pressure value is compared, and if it exceeds the preset threshold, the user is reminded to perform blood pressure calibration, thereby realizing self-monitoring of the blood pressure measurement accuracy of the smart wearable watch.
  • the smart wearable watch can periodically remind the user to perform blood pressure calibration; wherein, the cycle can be a cycle preset by the smart wearable watch at the factory, or a cycle determined by the smart wearable watch in response to the user's blood pressure calibration cycle setting operation.
  • the smart wearable watch can display the blood pressure calibration cycle setting options to the user through the display screen, such as: 1 day, 1 week, one month, etc.
  • the user's cycle selection operation determines the blood pressure calibration cycle, and then reminds the user to perform blood pressure calibration when the blood pressure calibration cycle is satisfied.
  • the user can also choose to perform blood pressure calibration independently. For example, when the user uses the blood pressure measurement function of the smart wearable watch for the first time, or when the user does not perform blood pressure calibration for a long time, the smart wearable watch can remind the user to perform blood pressure calibration. You can choose whether to perform blood pressure calibration independently; for another example, the user can perform blood pressure calibration when he feels that his physical state or the state of the environment the user is in has changed.
  • prompt information is used to prompt the user to complete physical activities conforming to multiple calibration scenarios; after the user completes physical activities conforming to different calibration scenarios, the user's blood pressure influencing factors such as heart rate, stroke volume, total peripheral resistance, etc. change .
  • the user's calibrated blood pressure value in each calibration scenario is measured and the corresponding physiological signals are collected to fully capture the changes in the user's blood pressure influencing factors to achieve blood pressure calibration in multiple calibration scenarios; in the blood pressure measurement stage, according to the collected blood pressure
  • the blood pressure value and the corresponding physiological signal are calibrated in the above calibration scenarios to determine the measured blood pressure value of the user, and the blood pressure value is more accurate, so as to realize the accurate measurement of the user's blood pressure; at the same time, the blood pressure calibration process does not require the help of Other devices are easy to operate and improve user experience.
  • the blood pressure monitoring method provided by the present application will be described below with reference to the application scenario shown in FIG. 2 .
  • FIG. 15 shows a flowchart of a blood pressure monitoring method according to an embodiment of the present application. As shown in FIG. 15 , the method may include the following steps:
  • Step 1801 the smart wearable watch enters the calibration mode in response to the user's instruction.
  • step 301 in FIG. 3 For the manner of entering the calibration mode in this step, reference may be made to the relevant introduction in step 301 in FIG. 3 , which will not be repeated here.
  • the smart wearable watch 101 can be connected with the blood pressure monitor 102 through Bluetooth or WIFI equidistance communication, after the smart wearable watch enters the calibration mode, it can send the blood pressure monitor to the blood pressure monitor. The command to measure, thereby causing the blood pressure monitor to be ready to measure blood pressure.
  • the user when the smart wearable watch 101 enters the calibration mode, the user can manually operate the mode, so that the blood pressure monitor 102 is ready to measure blood pressure.
  • Step 1802 the smart wearable watch collects the physiological signals of the user in different calibration scenarios, and obtains the calibrated blood pressure value measured by the blood pressure monitor.
  • the smart wearable watch collects the physiological signals of the user in different calibration scenarios.
  • the blood pressure monitor measures the user's blood pressure value through an oscillometric method as a calibrated blood pressure value.
  • the smart wearable watch collects the physiological signals of the user in different calibration scenarios, and obtains the calibrated blood pressure value measured by the blood pressure monitor, which may include: the blood pressure monitor can measure the calibration by the oscillometric method At the same time, the smart wearable watch collects the user's physiological signals; the time when the blood pressure monitor measures the calibrated blood pressure value in the calibration scenario can be before the time when the user's physiological signals are collected in the scenario. After the time of collecting the physiological signal of the user in this scenario; the time for the blood pressure monitor to measure the calibrated blood pressure value in the calibration scenario can also be the same as the time of collecting the physiological signal of the user in this scenario, that is, while measuring the calibrated blood pressure value, Collect the user's physiological signals.
  • the smart wearable watch can send an instruction to start measuring blood pressure to the blood pressure monitor; at the same time, the PPG sensor of the smart wearable watch starts to work and collects the user's PPG signal, or the PPG sensor and the ECG sensor of the smart wearable watch start to work. , collect the user's PPG signal and ECG signal.
  • the blood pressure monitor obtains the calibrated blood pressure value in the scene through the oscillometric method, and sends the calibrated blood pressure value to the smart wearable device. For example, when the smart wearable watch and the blood pressure monitor are respectively worn on different arms of the user, the smart wearable watch sends an instruction to start measuring blood pressure to the blood pressure monitor while starting to collect the user's physiological signals. In this way, the user's calibrated blood pressure and physiological signals can be measured synchronously.
  • the smart wearable watch can send an instruction to start measuring blood pressure to the blood pressure monitor.
  • the blood pressure monitor obtains the calibrated blood pressure value in the scene through the oscillometric method, and sends the calibrated blood pressure value to the smart watch.
  • Wearable device after receiving the calibrated blood pressure value, or after a certain interval, the smart wearable device starts to collect the physiological signal of the user in the calibration scenario. For example, when the smart wearable watch and the blood pressure monitor are respectively worn on different arms of the user, after the smart wearable watch receives the calibrated blood pressure value, or after an interval of 30 seconds, the PPG sensor of the smart wearable watch starts to work and collects the user's blood pressure.
  • the PPG signal, or the PPG sensor and ECG sensor of the smart wearable watch start to work, collecting the user's PPG signal and ECG signal. In this way, the influence of changes in air pressure when the blood pressure monitor measures blood pressure on the collected physiological signals can be avoided, and the measurement accuracy can be improved.
  • the user can trigger the measurement of the blood pressure monitor to start working by manual operation, and at the same time, the PPG sensor of the smart wearable watch starts to work to collect the user's PPG signal, or the PPG sensor and the ECG sensor of the smart wearable watch start to work, Collect user's PPG signal and ECG signal.
  • the user can input the calibrated blood pressure value obtained by the blood pressure monitor to the smart wearable watch. For example, when the smart wearable watch and the blood pressure monitor are respectively worn on different arms of the user, the user can manually trigger the blood pressure monitor to measure and start working, and at the same time, the smart wearable watch starts to collect the user's physiological signals.
  • the user's calibrated blood pressure and physiological signals can be measured synchronously.
  • the user can trigger the measurement of the blood pressure monitor by manual operation to obtain the calibrated blood pressure value in the scenario; then, the user can input the calibrated blood pressure value into the smart wearable watch, and the smart wearable watch receives the calibration input from the user.
  • the blood pressure value or after a certain interval (such as 30S)
  • start to collect the physiological signals of the user in the calibration scenario or the user can trigger the blood pressure measurement function of the smart wearable watch by clicking the start button, etc., so that the smart wearable watch starts
  • the physiological signals of the user in the calibration scenario are collected, and after the collection is completed, the user inputs the calibrated blood pressure value on the smart wearable watch.
  • step 301 reference may be made to the relevant introduction in step 301 in the above-mentioned FIG. 3 for the calibration scene, physiological signals, etc., which will not be repeated here.
  • the following takes the sit-down scene, the still-reclining scene, the mental activity scene, the relaxation/rest scene, and the anaerobic exercise scene as examples to describe the process of the user completing the blood pressure calibration through the smart wearable watch and the blood pressure monitor in different calibration scenarios.
  • the smart wearable watch can be connected to the blood pressure monitor through Bluetooth or WIFI equidistance communication, the blood pressure calibration process in the sitting scene, the still lying scene, the mental activity scene, the relaxation/rest scene, and the anaerobic exercise scene
  • the difference from the above-mentioned Figures 5-6 is that the words "blood pressure measurement, please keep still" are displayed on the display screen of the smart wearable watch.
  • the smart wearable watch can send an instruction to the blood pressure monitor, and the blood pressure monitor measures the user's calibrated blood pressure value in response to the instruction.
  • the smart wearable watch starts to collect the user's physiological signal; the blood pressure monitor sends the calibrated blood pressure value. to smart wearable watches.
  • the smart wearable watch can also send an instruction to the blood pressure monitor, the blood pressure monitor measures the user's calibrated blood pressure value in response to the instruction, and sends the calibrated blood pressure value to the smart wearable watch, and the smart wearable watch receives the calibrated blood pressure value. Then, start to collect the user's physiological signal, or start to collect the user's physiological signal at a certain time interval. In this way, during the calibration process, the user can complete the calibration process through simple operations, which improves the user experience.
  • Fig. 16 shows a schematic diagram of blood pressure calibration in multiple calibration scenarios according to an embodiment of the present application; the smart wearable watch provides prompt information for a sitting scene, a still lying scene, a mental activity scene, and a relaxation/rest scene, thereby prompting the user Complete physical activities that match each calibration scenario; refer to the relevant description above for prompts.
  • the prompt information of the sitting scene, lying still scene, mental activity scene, and relaxation/rest scene can be seen.
  • the content of the prompt information please refer to the relevant description above.
  • the smart wearable watch PPG sensor collects the user's physiological signals
  • the blood pressure monitor measures the user's blood pressure.
  • the display of the smart wearable watch displays the words "measurement completed, please input the blood pressure value displayed by the blood pressure monitor", thereby reminding the user that the blood pressure measurement of the smart wearable watch has been completed, and reminding the user to monitor the blood pressure
  • the blood pressure value displayed by the meter is input into the smart wearable watch.
  • the smart wearable watch can also give corresponding reminders in the form of language broadcasts. As shown in Figure 16(g), after the smart wearable watch receives the blood pressure value input by the user, the display of the smart wearable watch displays the word "measurement completed", thereby reminding the user that the blood pressure measurement in this calibration scenario is completed, and in addition , the smart wearable watch can also broadcast in the form of language to remind the user that a blood pressure measurement in the calibration scenario is completed.
  • FIG. 17 shows a schematic diagram of blood pressure calibration in an anaerobic exercise scene according to an embodiment of the present application
  • the smart wearable watch provides prompt information for the anaerobic exercise scene, thereby prompting the user to complete physical activities that conform to the anaerobic exercise scene
  • the display of the smart wearable watch displays "Please step to the limit, then Sit down and click to start measurement, and trigger the words "Sphygmomanometer measurement” and the virtual button to start measurement, so as to remind the user that you need to step to the limit in this calibration scenario, then sit down and click the virtual button to start measurement, and remind the user that you can click , button, etc., to trigger the blood pressure monitor to perform the blood pressure measurement operation, and remind the user to zama step to the limit.
  • the user can click and other methods on the premise of the zama step to the limit and maintain a sitting position.
  • the blood pressure monitor performs the blood pressure measurement operation, and clicks the start button at the same time to trigger the start blood pressure measurement command, and the smart wearable watch responds to the command and starts blood pressure measurement.
  • the display screen of the smart wearable watch displays " During the blood pressure measurement, please keep still” to remind the user to keep still.
  • the smart wearable watch can also remind the user to keep sitting still in the form of language broadcast; at this time, the PPG sensor (or, PPG sensor and ECG sensor) collects the user's physiological signals, at the same time, the blood pressure monitor measures the user's blood pressure.
  • the display of the smart wearable watch displays the words "measurement completed, please input the blood pressure value displayed by the blood pressure monitor", thus reminding the user to display the blood pressure monitor display after the blood pressure measurement of the blood pressure monitor is completed.
  • the blood pressure value is input into the smart wearable watch.
  • the smart wearable watch can also give corresponding reminders in the form of language broadcasts.
  • the display of the smart wearable watch displays the word "measurement completed", thereby reminding the user that a blood pressure measurement in the anaerobic exercise scenario is completed.
  • the smart wearable watch can also broadcast in the form of language, Remind the user that a blood pressure measurement in the anaerobic exercise scenario is completed.
  • the smart wearable watch can collect the physiological signals of the user in a standard scenario, and obtain the calibrated blood pressure value measured by the blood pressure monitor.
  • the smart wearable watch can complete the blood pressure calibration in the recumbent scene, the sit-down scene, the mental activity scene, the relaxation/rest scene, and the anaerobic exercise scene by executing the above-mentioned processes in FIG. 16 and FIG. 17 .
  • the smart wearable watch can collect the user's physiological signals in a user-defined scenario, and obtain the calibrated blood pressure value measured by the blood pressure monitor.
  • the smart wearable watch can complete the recumbent scene, the sit-down scene, the mental activity scene, and the anaerobic exercise in sequence by executing the above-mentioned processes of Fig. 16(a1)/16(a2)/16(a3) and the process of Fig. 17 .
  • Blood pressure calibration in the scenario so far, the blood pressure calibration process in a user-defined scenario is completed.
  • the smart wearable watch can determine the blood pressure calibration time according to user attributes.
  • the user attributes, the method for determining the blood pressure calibration time, etc. can refer to the above-mentioned related introduction, and will not be repeated here.
  • the smart wearable watch can perform the operations of the above standard scenario or custom scenario at the determined blood pressure calibration time.
  • Step 1803 the smart wearable watch performs blood pressure value calibration according to the calibrated blood pressure values in different calibration scenarios and the collected physiological signals.
  • step 303 in FIG. 3 For a specific implementation manner of this step, reference may be made to the relevant introduction in step 303 in FIG. 3 , which will not be repeated here.
  • prompt information is used to prompt the user to complete physical activities conforming to multiple calibration scenarios; after the user completes physical activities conforming to different calibration scenarios, the user's blood pressure influencing factors such as heart rate, stroke volume, total peripheral resistance, etc. change .
  • the user's calibrated blood pressure values in each calibration scenario are received and the corresponding physiological signals are collected to fully capture the changes in the user's blood pressure influencing factors, and to achieve blood pressure calibration in multiple calibration scenarios; in the blood pressure measurement stage, according to the collected blood pressure
  • the blood pressure value and corresponding physiological signal are calibrated in each of the above calibration scenarios to determine the measured blood pressure value of the user, and the blood pressure value is more accurate, so as to achieve accurate measurement of the user's blood pressure;
  • the blood pressure value measured by a medically certified blood pressure monitor is used as the calibration blood pressure value, which can further improve the calibration accuracy.
  • FIG. 18 shows a flowchart of a blood pressure monitoring method according to an embodiment of the present application.
  • the method can be executed on an electronic device, for example, a wearable device in the scenario shown in FIG. 1 , as shown in FIG. 18 .
  • the method may include the following steps:
  • Step 1901 in response to the first operation, the electronic device enters a calibration mode
  • Step 1902 Display a first graphical user interface, where the first graphical user interface is used to prompt the user to perform the first action;
  • Step 1903 measure the first blood pressure value, and collect the first physiological index information
  • Step 1904 Display a second graphical user interface, where the second graphical user interface is used to prompt the user to perform the second action;
  • Step 1905 measure the second blood pressure value, and collect the second physiological index information
  • Step 1906 in response to the second operation, the electronic device enters the measurement mode
  • Step 1907 Collect third physiological index information
  • Step 1908 Determine a third blood pressure value corresponding to the third physiological index information according to the first blood pressure value, the second blood pressure value, the first physiological index information and the second physiological index information.
  • the electronic device in response to the user's first operation, enters the calibration mode and displays the first graphical user interface; measures the first blood pressure value when the user performs the first action based on the prompt of the first graphical user interface, and Collect the first physiological index information when the user performs the first action; display the second graphical user interface, measure the second blood pressure value when the user completes the second action based on the prompt of the second graphical user interface, and collect the second blood pressure value when the user performs the second action
  • the second physiological index information under the action situation; in response to the second operation of the user, the electronic device enters the measurement mode, collects the second physiological index information, and collects the second physiological index information according to the first blood pressure value, the second blood pressure value, the first physiological index information and the second Physiological index information, to determine a third blood pressure value corresponding to the third physiological index information.
  • the user is prompted to perform different actions (including the first action and the second action) by displaying a plurality of graphical user interfaces (including the first graphical user interface and the second graphical user interface), so that the blood pressure of the user can be adjusted.
  • Influencing factors such as heart rate, stroke volume, total peripheral resistance, etc. change.
  • the blood pressure value (including the first blood pressure value and the second blood pressure value) when the user performs different actions, and collect the physiological index information (including the first physiological index information and the second physiological index information) to fully capture the influence of the user's blood pressure
  • the collected physiological index information (that is, the third physiological index information) corresponds to The blood pressure value (that is, the third blood pressure value)
  • the blood pressure value is more accurate, so as to achieve accurate measurement of the user's blood pressure.
  • the first operation may represent an operation that triggers the wearable device to enter the calibration mode.
  • the user can perform the first operation by clicking a virtual button on the display screen of the wearable device, pressing a physical button, a voice command, a shortcut gesture, etc., for example, the user can click the virtual button of the calibration mode on the display screen in Figure 4 above. 401, or by clicking the virtual key 1001 that triggers the standard scene on the display screen in FIG. 7 to perform the first operation.
  • the wearable device may perform a calibration mode in response to the first operation.
  • step 1901 reference may be made to related examples or descriptions of steps 301 and 302 in FIG. 3 above.
  • the displayed first graphical user interface and the second graphical user interface are only examples, and other graphical user interfaces for prompting the user to perform corresponding actions may also be displayed.
  • the graphical user interface may include the interface displayed in the foregoing calibration scenario; for example, the above-mentioned Fig. 5(a1), Fig. 5(a2), Fig. 5(a3), Fig. 5(a4) and Fig. 6(a) can be displayed ) of any two or more graphical user interfaces.
  • the user can perform multiple actions according to the prompts of multiple graphical user interfaces, including but not limited to the first action and the second action.
  • This embodiment of the present application does not limit the prompt information displayed by each graphical user interface and the order in which each graphical user interface prompting the user to perform a corresponding action is displayed.
  • the multiple graphical user interfaces may be the corresponding graphical user interfaces under the preset standard scenarios, and can refer to the above-mentioned Figures 7 and 8 for relevant examples or expressions of the standard scenarios; for example, the order in which the multiple graphical user interfaces are displayed can be referred to.
  • the first blood pressure value and the second blood pressure value may be obtained by measurement, and may include the aforementioned calibrated blood pressure value.
  • the wearable device may itself be provided with a component for measuring the first blood pressure value, such as the airbag in FIG. 1 . and pressure sensor, the first blood pressure value and the second blood pressure value can be obtained by oscillometric measurement using the air bag and the pressure sensor, and the first and second blood pressure values with relatively high accuracy can be calibrated, which can improve the calibration accuracy. Accuracy.
  • the first physiological index information, the second physiological index information, and the third physiological index information may include any information that can reflect the physiological index of the human body, such as the aforementioned physiological signals, such as PPG, ECG, IPG, SCG, BCG, heart sounds and other physiological signals .
  • the first physiological index information, the second physiological index information, and the third physiological index information may be collected by a sensor (eg, a PPG sensor) provided by the wearable device itself.
  • the first physiological index information, the second physiological index information, and the third physiological index information are not direct blood pressure value measurement results, but include physiological index information other than the blood pressure value.
  • steps 1901 to 1907 reference may be made to relevant examples or descriptions in steps 301 and 302 shown in FIG. 3 above.
  • the second operation may represent an operation that triggers the wearable device to enter the measurement mode.
  • the measurement mode it may include a blood pressure measurement, or continuous blood pressure monitoring, etc.; the user can click the display of the wearable device by clicking
  • the second operation is triggered by various methods such as virtual buttons on the screen, pressing physical buttons, voice commands, and shortcut gestures.
  • the wearable device responds to the second operation and enters the measurement mode. For example, the user can click the display screen in Figure 4 above. Press the virtual key 402 of the measurement mode to trigger the second operation.
  • the third physiological index information may include the physiological signals of the user measured by various sensors of the wearable device when blood pressure is measured, for example, physiological signals such as PPG, ECG, IPG, SCG, BCG, and heart sounds.
  • the third blood pressure value represents the final measurement result of the user's blood pressure value by the wearable device.
  • step 1908 reference may be made to relevant examples or descriptions in step 303 in FIG. 3 above.
  • the third blood pressure value corresponding to the collected third physiological index information is determined according to the first blood pressure value, the second blood pressure value, the first physiological index information and the second physiological index information collected in the calibration phase
  • the method is not limited to the above examples, and can be selected and adjusted as needed; in addition, the blood pressure values and corresponding multiple (more than two) physiological indicators can also be obtained according to the user's multiple (more than two) exercises in the calibration scenario. information, and determine the third blood pressure corresponding to the collected third physiological index information.
  • the method further includes: displaying a third graphical user interface, where the third graphical user interface displays options for multiple calibration scenarios; responding to The first graphical user interface is displayed in response to the user's selection operation of the calibration scene.
  • the user can trigger the first operation in the manner described above.
  • the user can trigger the first operation by clicking the virtual button 1002 of the custom scene on the display screen in FIG. 7 .
  • the wearable device displays a third graphical user interface, for example, the third graphical user interface may be as shown in FIG. 9(b).
  • the GUI corresponding to the calibration scene selected by the user is sequentially displayed according to the preset order of each calibration scene in the plurality of calibration scenes, thereby prompting the user to perform actions under each calibration scene; wherein , the calibration scene selected by the user may include any number of calibration scenes among the plurality of calibration scenes displayed on the third graphical user interface.
  • the calibration scenario corresponds to one or more of the calibration scenario of the user's physical state and the calibration scenario of the state of the environment in which the user is located.
  • the user's physical state and the state of the user's environment are different.
  • the user's blood pressure influencing factors such as heart rate, stroke volume, total peripheral resistance, etc. change.
  • the state or the state of different user environments induces changes in the user's blood pressure influencing factors, so as to fully capture the changes in the user's blood pressure influencing factors, and realize blood pressure calibration in different states of the user's body or different states of the user's environment.
  • the calibration scenarios corresponding to the user's physical state may include one or more of a sitting scenario, a recumbent scenario, a standing scenario, a mental activity scenario, a relaxation/rest scenario, an anaerobic action scenario, and an aerobic action scenario.
  • the sitting scene, lying down scene, and standing scene are the scenes in the quiet posture of the user sitting, lying down, and standing, respectively, and these scenes represent the user's physical state in different quiet postures
  • the mental activity scene represents the user's sympathetic nerve excitation, Stimulates the physical state of increasing heart rate and stroke volume, constricting veins to increase venous return, constricting arteries to increase peripheral resistance, and increasing blood pressure
  • relaxation/rest scenarios represent the user's physical state of parasympathetic excitation, stimulated to reduce heart rate and blood pressure
  • the anaerobic action scene represents the user's physical state of increasing cardiac output, increasing peripheral resistance, and rapidly increasing blood pressure
  • the aerobic action scene represents the user's physical state of increasing heart rate, increasing cardiac output, reducing peripheral resistance, and increasing blood pressure.
  • the calibration scene corresponding to the state of the environment where the user is located may include one or more of a cold scene and a sultry scene; wherein, when the user is in the environment of the cold scene, peripheral blood vessels constrict, increasing peripheral resistance, Increase blood pressure; when the user is in a stuffy environment, peripheral blood vessels dilate, reduce peripheral resistance, and lower blood pressure.
  • the user's blood pressure influencing factors such as heart rate, stroke volume, total peripheral resistance, etc. change
  • the provided multiple calibration scenarios can more comprehensively cover the changes of the user's blood pressure influencing factors, so as to achieve Blood pressure calibration in different scenarios improves the accuracy of blood pressure measurement by the calibrated wearable device.
  • the method further includes: displaying a fourth graphical user interface, where the fourth graphical user interface displays timing information.
  • a graphical user interface in which the user displays timing information can be displayed; wherein, the timing information can include countdown or positive timing.
  • this embodiment of the present application does not limit this.
  • the fourth graphical user interface reference may be made to the relevant expressions in FIG. 5 and FIG. 6 above, for example, it may be shown in FIG. 5( c ).
  • the timing information is displayed through the fourth graphical user interface, thereby prompting the user the time when the first action has been performed, or when the first action needs to be performed.
  • the blood pressure measurement in the calibration scenario it is simple and convenient, and the user experience is improved.
  • step 1908 determine the third blood pressure value according to the first blood pressure value, the second blood pressure value, the first physiological index information and the second physiological index information
  • the third blood pressure value corresponding to the physiological index information may include: determining the similarity between the first physiological index information and the third physiological index information, and the difference between the second physiological index information and the third physiological index information. similarity; determining the target similarity greater than the second threshold, and target physiological index information corresponding to the target similarity; weighting and summing the target blood pressure values corresponding to the target physiological index information to obtain the third blood pressure value, wherein The weight of the target blood pressure value is positively correlated with the similarity between the corresponding target physiological index information and the third physiological index information.
  • the target physiological index information whose similarity is greater than the second threshold among the multiple physiological index information obtained in the calibration stage the target physiological index information whose similarity is greater than the second
  • the target blood pressure value corresponding to the target physiological index information of the threshold is weighted and summed to obtain the third blood pressure value of the user; in this way, the one or several target blood pressure values obtained in the calibration phase that are most similar to the current measurement scene are selected, and these target blood pressure values are selected.
  • the blood pressure values are weighted and summed to predict the currently measured third blood pressure value.
  • the weight of each target blood pressure value is positively correlated with the similarity between the corresponding target physiological index information and the third physiological index information; that is, the higher the similarity, the corresponding The greater the weight of the target blood pressure value, the greater the blood pressure measurement range and the higher the blood pressure measurement accuracy.
  • the similarity between the third physiological index information and each of the first physiological index information can be expressed in any appropriate manner, which is not limited in this application, as long as it can reflect the third physiological index information and the first physiological index information.
  • the similarity degree of the first physiological index information may further reflect the similarity degree of the scene of collecting the third physiological index information and the scene of collecting the first physiological index information.
  • the similarity can be represented by the distance between the feature matrix corresponding to the first physiological index information and the feature matrix corresponding to the third physiological index information obtained under the current measurement scenario, for example, it can be the state space shown in FIG. 13 above.
  • the second threshold may be preset, which is not limited in this embodiment of the present application; it is determined that the distance between the points of the feature matrix corresponding to the third physiological index information is greater than the target physiological index information corresponding to each point of the second threshold, so as to select the target physiological index information.
  • the target blood pressure value of one or several times that is most similar to the current measurement scene is obtained; the smaller the distance, the greater the weight of the corresponding target blood pressure value; the third blood pressure value of the user is obtained by the weighted sum of each target blood pressure value;
  • the method may further include: acquiring the type of medicine, the dosage and the taking time of the medicine taken by the user; determining the first moment and the second moment according to the type of medicine, the dosage and the taking time; At a moment and at the second moment, a fifth graphical user interface is displayed, and the fifth graphical user interface is used to prompt the user to perform the first operation.
  • the first moment may represent the time when the drug concentration in the user is the highest
  • the second moment may represent the time when the drug concentration in the user is the lowest
  • the fifth graphical user interface may display a blood pressure calibration pattern, for example, as The "blood pressure" icon shown in the above Figure 4(a) can also display the text for blood pressure calibration.
  • the user can also be prompted to issue the first operation by other means of reminding the user to perform blood pressure calibration.
  • the drug taken by the user may be an antihypertensive drug.
  • the time point of the highest drug concentration in the user's body and the lowest drug concentration in the user's body can be determined by the type, dosage and taking time of the antihypertensive drug taken by the user. time points, and remind the user to perform blood pressure calibration at these two time points; for the specific implementation, please refer to the relevant descriptions in FIG. 11A , FIG. 11B and FIG. 12 above.
  • the method may further include: displaying a fifth graphical user interface every preset period, where the fifth graphical user interface is used to prompt the user to perform the first operation, or, through the airbag and pressure
  • the sensor measures the fourth blood pressure value of the user, and when the difference between the fourth blood pressure value and the third blood pressure value corresponding to the newly collected third physiological index information is greater than the first threshold, a fifth graphical user interface is displayed.
  • a fifth graphical user interface may be displayed every preset period to prompt the user to perform the first operation, that is, to remind the user Perform blood pressure calibration on the wearable device, or obtain the user's first blood pressure measurement by measuring the air bag and pressure sensor configured on the wearable device (the measurement can be triggered automatically according to a preset period, or when the user measures blood pressure with the wearable device).
  • the fourth blood pressure value and the third blood pressure value determined at the most recent time point before the time point when the fourth blood pressure value was measured that is, the third blood pressure value corresponding to the latest collected third physiological index information
  • a fifth graphical user interface is displayed, thereby reminding the user to perform the first operation, that is, reminding the user to perform blood pressure calibration on the wearable device, thereby improving the blood pressure measurement accuracy of the wearable device after calibration.
  • the preset period may be 1 day, 1 week, one month, etc.
  • the first threshold may be preset, which is not limited in this embodiment of the present application; the method of reminding the user to perform blood pressure calibration can refer to the above, which is not repeated here. Repeat.
  • FIG. 19 shows a flowchart of another blood pressure monitoring method according to an embodiment of the present application.
  • the method can be executed on an electronic device, for example, can be executed on a wearable device in the scene shown in FIG. 2 , as shown in FIG. 19 As shown, the method may include the following steps:
  • Step 2001 in response to the first operation, the electronic device enters a calibration mode
  • Step 2002 displaying a first graphical user interface; the first graphical user interface is used to prompt the user to perform a first action;
  • Step 2003 collecting first physiological index information
  • Step 2004, displaying a second graphical user interface, where the second graphical user interface is used to prompt the user to input the first blood pressure value;
  • Step 2005 receiving the first blood pressure value input by the user
  • Step 2006 displaying a third graphical user interface; the third graphical user interface is used to prompt the user to perform the second action;
  • Step 2008 displaying a fourth graphical user interface, where the fourth graphical user interface is used to prompt the user to input the second blood pressure value;
  • Step 2009 receiving the second blood pressure value input by the user
  • Step 2011 collecting third physiological index information
  • Step 2012 Determine a third blood pressure value corresponding to the third physiological index information according to the first blood pressure value, the second blood pressure value, the first physiological index information and the second physiological index information.
  • the user is prompted to perform different actions (including the first action and the second action) by displaying a plurality of graphical user interfaces (including the first graphical user interface and the third graphical user interface), thereby Change the user's blood pressure influencing factors such as heart rate, stroke volume, total peripheral resistance, etc.
  • Collect the physiological index information including the first physiological index information and the second physiological index information
  • the user performs different actions respectively, and prompt respectively by displaying a plurality of graphical user interfaces (including the second graphical user interface and the fourth graphical user interface).
  • the user inputs the blood pressure value (including the first blood pressure value and the second blood pressure value), and receives the blood pressure value input by the user, fully captures the changes of the user's blood pressure influencing factors, and realizes blood pressure calibration in multiple calibration scenarios;
  • the multiple blood pressure values and multiple physiological index information obtained in the calibration phase are used to determine the blood pressure value (ie the third blood pressure value) corresponding to the collected physiological index information (ie the third physiological index information), and the blood pressure value is more accurate, Thereby, accurate measurement of the user's blood pressure is achieved.
  • the first operation, the second operation, the first action, the second action, the first physiological index information, the second physiological index information, and the third physiological index information may refer to the relevant expressions in FIG. 18 above.
  • the first blood pressure value and the second blood pressure value may be measured by other devices (eg, the above-mentioned blood pressure measuring instrument), and the wearable device may be provided with an input component to receive the blood pressure value input by the user.
  • the first blood pressure value when the user performs the first action and the second blood pressure value when the user performs the second action can be measured by the blood pressure measuring instrument in FIG. 2; the wearable device itself is provided with an input component, The first blood pressure value or the second blood pressure value displayed on the blood pressure measuring instrument input by the user is received through the input part.
  • first graphical user interface and the third graphical user interface reference may be made to the relevant descriptions of the first graphical user interface and the second graphical user interface in FIG. 18 above.
  • the second graphical user interface and the fourth graphical user interface may be as shown in FIG. 16( f ) and FIG. 17( c ) above.
  • step 2012 reference may be made to relevant examples or descriptions in step 1803 in FIG. 15 .
  • the method further includes: displaying a fifth graphical user interface, where the fifth graphical user interface displays options of multiple calibration scenarios, and responding to The first graphical user interface is displayed in response to the user's selection operation of the calibration scene.
  • the specific description of the fifth graphical user interface may refer to the related introduction of the third graphical user interface in FIG. 18 , and the specific description of the calibration scene may refer to the foregoing. In this way, users can choose the most suitable and most matching calibration scene to complete the calibration according to their daily activities, which can make the calibration more personalized and targeted, effectively reduce the calibration time, and improve the user experience.
  • the calibration scenario corresponds to one or more of the calibration scenario of the user's physical state and the calibration scenario of the state of the environment in which the user is located.
  • the user's physical state and the state of the user's environment are different.
  • the user's blood pressure influencing factors such as heart rate, stroke volume, total peripheral resistance, etc. change.
  • the state or the state of different user environments induces changes in the user's blood pressure influencing factors, so as to fully capture the changes in the user's blood pressure influencing factors, and realize blood pressure calibration in different states of the user's body or different states of the user's environment.
  • the calibration scenarios corresponding to the user's physical state may include one or more of a sitting scenario, a recumbent scenario, a standing scenario, a mental activity scenario, a relaxation/rest scenario, an anaerobic action scenario, and an aerobic action scenario.
  • the calibration scene corresponding to the state of the environment where the user is located may include one or more of a cold scene and a sultry scene; the specific description of each calibration scene, etc., can refer to the foregoing.
  • the user's blood pressure influencing factors such as heart rate, stroke volume, total peripheral resistance, etc. change
  • the provided multiple calibration scenarios can more comprehensively cover the changes of the user's blood pressure influencing factors, so as to achieve Blood pressure calibration in different scenarios improves the accuracy of blood pressure measurement by the calibrated wearable device.
  • the method further includes: displaying a sixth graphical user interface, where the sixth graphical user interface displays timing information.
  • the specific description of the sixth graphical user interface can refer to the relevant introduction of the fourth graphical user interface in FIG. 18 , and the specific description of the timing information can refer to the foregoing.
  • the timing information is displayed through the fourth graphical user interface, thereby prompting the user that the first graphical user interface has been performed.
  • the user can complete the indicated movement, thereby completing the blood pressure measurement in the corresponding calibration scenario, which is simple and convenient, and improves the user experience.
  • the third blood pressure value is determined according to the first blood pressure value, the second blood pressure value, the first physiological index information and the second physiological index information
  • the third blood pressure value corresponding to the physiological index information includes: determining the similarity between the first physiological index information and the third physiological index information, and the similarity between the second physiological index information and the third physiological index information determine the target similarity greater than the second threshold, and the target physiological index information corresponding to the target similarity; perform weighted summation on the target blood pressure values corresponding to the target physiological index information to obtain the third blood pressure value, where the target The weight of the blood pressure value is positively correlated with the similarity between the corresponding target physiological index information and the third physiological index information.
  • step 1908 the one or several target blood pressure values obtained in the calibration phase that are most similar to the current measurement scene are selected, and these blood pressure values are weighted and summed to predict the third blood pressure value currently measured.
  • the weight of each target blood pressure value corresponds to the corresponding blood pressure value.
  • the similarity between the target physiological index information and the third physiological index information is positively correlated; that is, the higher the similarity, the greater the weight of the corresponding first target blood pressure value, thereby increasing the blood pressure measurement range and improving the blood pressure measurement accuracy. Accuracy.
  • the method may further include: acquiring the type of medicine, the dosage and the taking time of the medicine taken by the user; determining the first moment and the second moment according to the type of medicine, the dosage and the taking time; At a moment and at the second moment, a seventh graphical user interface is displayed, and the seventh graphical user interface is used to prompt the user to perform the first operation.
  • a seventh graphical user interface is displayed, and the seventh graphical user interface is used to prompt the user to perform the first operation.
  • the first moment can represent the time point of the highest drug concentration in the user's body
  • the second moment can represent the time point of the lowest drug concentration in the user's body.
  • the method may further include: displaying a seventh graphical user interface every preset period, where the seventh graphical user interface is used to prompt the user to perform the first operation.
  • the seventh graphical user interface is used to prompt the user to perform the first operation.
  • a seventh graphical user interface may be displayed every preset period to prompt the user to issue the The first operation is to remind the user to perform blood pressure calibration on the wearable device, thereby improving the accuracy of blood pressure measurement by the calibrated wearable device.
  • Fig. 20 shows a flowchart of another blood pressure monitoring method according to an embodiment of the present application.
  • the method can be executed on an electronic device, for example, can be executed on a wearable device in the scene shown in Fig. 2 , as shown in Fig. 20 As shown, the method may include the following steps:
  • Step 2101 in response to the first operation, the electronic device enters a calibration mode
  • Step 2102 Display a first graphical user interface, where the first graphical user interface is used to prompt the user to perform the first action;
  • Step 2103 Receive a first blood pressure value, and collect first physiological index information
  • Step 2104 displaying a second graphical user interface, where the second graphical user interface is used to prompt the user to perform the second action;
  • Step 2105 receive the second blood pressure value, and collect the second physiological index information
  • Step 2106 in response to the second operation, the electronic device enters the measurement mode
  • Step 2107 Collect third physiological index information
  • Step 2108 Determine a third blood pressure value corresponding to the third physiological index information according to the first blood pressure value, the second blood pressure value, the first physiological index information and the second physiological index information.
  • the user in the calibration stage, the user is prompted to perform different actions by displaying multiple graphical user interfaces, so that the user's blood pressure influencing factors such as heart rate, stroke volume, and total peripheral resistance are changed.
  • the first operation, the second operation, the first action, the second action, the first graphical user interface, the second graphical user interface, the first physiological index information, the second physiological index information, and the third physiological index information may refer to the foregoing Relevant representation in Figure 18.
  • the first blood pressure value and the second blood pressure value may be measured by other devices (eg, the above-mentioned blood pressure measuring instrument), and the wearable device may also be provided with a communication component to receive blood pressure values measured and sent by other devices.
  • the first blood pressure value when the user performs the first action and the second blood pressure value when the user performs the second action can be measured by the blood pressure measuring instrument in FIG. 2; the wearable device itself is provided with a communication component, The first blood pressure value or the second blood pressure value measured and transmitted by the blood pressure measuring instrument is received through the communication means.
  • steps 2101 to 2107 reference may be made to steps 1801 and 1802 shown in FIG. 15 above.
  • step 2108 reference may be made to relevant examples or descriptions in step 1803 in FIG. 15 .
  • the method further includes: displaying a third graphical user interface, where the third graphical user interface displays options of multiple calibration scenarios, and responding to The first graphical user interface is displayed in response to the user's selection operation of the calibration scene.
  • the calibration scenario corresponds to one or more of the calibration scenario of the user's physical state and the calibration scenario of the state of the environment in which the user is located.
  • the calibration scenario corresponds to one or more of the calibration scenario of the user's physical state and the calibration scenario of the state of the environment in which the user is located.
  • the calibration scenarios corresponding to the physical state of the user may include one or more of a sitting scenario, a recumbent scenario, a standing scenario, a mental activity scenario, a relaxation/rest scenario, an anaerobic action scenario, and an aerobic action scenario.
  • the calibration scene corresponding to the state of the environment where the user is located may include one or more of a cold scene and a sultry scene.
  • the method further includes: displaying a fourth graphical user interface, where the fourth graphical user interface displays timing information.
  • step 2108 determine the third blood pressure value according to the first blood pressure value, the second blood pressure value, the first physiological index information and the second physiological index information
  • the third blood pressure value corresponding to the physiological index information includes: determining the similarity between the first physiological index information and the third physiological index information, and the similarity between the second physiological index information and the third physiological index information determine the target similarity greater than the second threshold, and the target physiological index information corresponding to the target similarity; perform weighted summation on the target blood pressure values corresponding to the target physiological index information to obtain the third blood pressure value, where the target The weight of the blood pressure value is positively correlated with the similarity between the corresponding target physiological index information and the third physiological index information.
  • the method may further include: acquiring the type of medicine, the dosage and the taking time of the medicine taken by the user; determining the first moment and the second moment according to the type of medicine, the dosage and the taking time; At a moment and at the second moment, a fifth graphical user interface is displayed, and the fifth graphical user interface is used to prompt the user to perform the first operation.
  • the method may further include: displaying a fifth graphical user interface every preset period, where the fifth graphical user interface is used to prompt the user to perform the first operation.
  • the embodiments of the present application further provide a blood pressure monitoring device, which is used to implement the technical solutions described in the above method embodiments.
  • Fig. 21 shows a structural diagram of a blood pressure monitoring device according to an embodiment of the present application.
  • the device may include: a first response module 2201, for responding to a first operation, the electronic device enters a calibration mode ;
  • the first display module 2202 is used to display the first graphical user interface, which is used to prompt the user to perform the first action;
  • the first calibration module 2203 is used to measure the first blood pressure value and collect the first physiological index information;
  • a second display module 2204 for displaying a second graphical user interface for prompting the user to perform a second action;
  • a second calibration module 2205 for measuring a second blood pressure value, and Collect second physiological index information;
  • second response module 2206 used to respond to the second operation, the electronic device enters the measurement mode;
  • measurement module 2207 used to collect third physiological index information;
  • blood pressure value determination module 2208 used for According to the first blood pressure value, the second blood pressure value, the first physiological index information and the second physiological index information, a third blood pressure value
  • the apparatus further includes a third display module, configured to: display a third graphical user interface, where the third graphical user interface displays options of a plurality of calibration scenarios, in response to the user's selection of the calibration scenarios selection operation, the first graphical user interface is displayed.
  • a third display module configured to: display a third graphical user interface, where the third graphical user interface displays options of a plurality of calibration scenarios, in response to the user's selection of the calibration scenarios selection operation, the first graphical user interface is displayed.
  • the calibration scene corresponds to one or more of the calibration scene of the user's physical state and the calibration scene of the state of the environment where the user is located.
  • the calibration scene corresponding to the physical state of the user includes one of a sitting scene, a still lying scene, a standing scene, a mental activity scene, a relaxation/rest scene, an anaerobic action scene, and an aerobic action scene
  • One or more of the calibration scenarios corresponding to the state of the environment where the user is located include one or more of a cold scenario and a stuffy scenario.
  • the apparatus further includes a fourth display module, configured to: display a fourth graphical user interface, where the fourth graphical user interface displays timing information.
  • the device further includes: a first reminder module, configured to acquire the type of medicine, the dosage and the taking time of the medicine taken by the user; according to the type of medicine, the dosage and the taking time of the medicine, determine the first time and the second time time; at the first time and the second time respectively, a fifth graphical user interface is displayed, and the fifth graphical user interface is used to prompt the user to perform the first operation.
  • a first reminder module configured to acquire the type of medicine, the dosage and the taking time of the medicine taken by the user; according to the type of medicine, the dosage and the taking time of the medicine, determine the first time and the second time time; at the first time and the second time respectively, a fifth graphical user interface is displayed, and the fifth graphical user interface is used to prompt the user to perform the first operation.
  • the apparatus further includes: a second reminder module, configured to display a fifth graphical user interface every preset period, and the fifth graphical user interface is configured to prompt the user to perform the first operation , or, measure the fourth blood pressure value of the user through the air bag and the pressure sensor, and when the difference between the fourth blood pressure value and the third blood pressure value corresponding to the latest collected third physiological index information is greater than the first threshold, display a fifth graphic user interface.
  • a second reminder module configured to display a fifth graphical user interface every preset period
  • the fifth graphical user interface is configured to prompt the user to perform the first operation , or, measure the fourth blood pressure value of the user through the air bag and the pressure sensor, and when the difference between the fourth blood pressure value and the third blood pressure value corresponding to the latest collected third physiological index information is greater than the first threshold, display a fifth graphic user interface.
  • the blood pressure value determination module is further configured to: determine the similarity between the first physiological index information and the third physiological index information, and the second physiological index information and the determining the similarity of the third physiological index information; determining the target similarity greater than the second threshold, and the target physiological index information corresponding to the target similarity; weighting and summing the target blood pressure values corresponding to the target physiological index information to obtain the obtained The third blood pressure value, wherein the weight of the target blood pressure value is positively correlated with the similarity between the corresponding target physiological index information and the third physiological index information.
  • Fig. 22 shows a structural diagram of another blood pressure monitoring device according to an embodiment of the present application.
  • the device may include: a first response module 2301, for responding to a first operation, the electronic device enters calibration mode; the first display module 2302 is used to display the first graphical user interface, the first graphical user interface is used to prompt the user to perform the first action; the first collection module 2303 is used to collect the first physiological index information; the second The display module 2304 is used to display the second graphical user interface, the second graphical user interface is used to prompt the user to input the first blood pressure value; the first receiving module 2305 is used to receive the first blood pressure value input by the user; the third display The module 2306 is used to display a third graphical user interface; the third graphical user interface is used to prompt the user to perform the second action; the second collection module 2307 is used to collect the second physiological index information; the fourth display module 2308 is used for to display a fourth graphical user interface, the fourth graphical user interface is used to prompt the user
  • the apparatus further includes a fifth display module, configured to: display a fifth graphical user interface, where the fifth graphical user interface displays options of a plurality of calibration scenarios, in response to the user's selection of the calibration scenarios selection operation, the first graphical user interface is displayed.
  • the calibration scene corresponds to one or more of the calibration scene of the user's physical state and the calibration scene of the state of the environment where the user is located.
  • the calibration scene corresponding to the physical state of the user includes one of a sitting scene, a still lying scene, a standing scene, a mental activity scene, a relaxation/rest scene, an anaerobic action scene, and an aerobic action scene
  • One or more of the calibration scenarios corresponding to the state of the environment where the user is located include one or more of a cold scenario and a sultry scenario.
  • the apparatus further includes a sixth display module, configured to: display a sixth graphical user interface, and the fourth graphical user interface displays timing information.
  • the device further includes: a first reminder module, configured to acquire the type of medicine, the dosage and the taking time of the medicine taken by the user; according to the type of medicine, the dosage and the taking time of the medicine, determine the first time and the second time time; at the first time and the second time, respectively, displaying a seventh graphical user interface, where the seventh graphical user interface is used to prompt the user to perform the first operation.
  • a first reminder module configured to acquire the type of medicine, the dosage and the taking time of the medicine taken by the user; according to the type of medicine, the dosage and the taking time of the medicine, determine the first time and the second time time; at the first time and the second time, respectively, displaying a seventh graphical user interface, where the seventh graphical user interface is used to prompt the user to perform the first operation.
  • the apparatus further includes: a second reminder module, configured to display a seventh graphical user interface every preset period, and the seventh graphical user interface is configured to prompt the user to perform the first operation .
  • the blood pressure value determination module is further configured to: determine the similarity between the first physiological index information and the third physiological index information, and the second physiological index information and the determining the similarity of the third physiological index information; determining the target similarity greater than the second threshold, and the target physiological index information corresponding to the target similarity; weighting and summing the target blood pressure values corresponding to the target physiological index information to obtain the obtained The third blood pressure value, wherein the weight of the target blood pressure value is positively correlated with the similarity between the corresponding target physiological index information and the third physiological index information.
  • Fig. 23 shows a structural diagram of another blood pressure monitoring device according to an embodiment of the present application.
  • the device may include: a first response module 2401, for responding to a first operation, the electronic device enters calibration mode; the first display module 2402 is used to display the first graphical user interface, the first graphical user interface is used to prompt the user to perform the first action; the first calibration module 2403 is used to receive the first blood pressure value and collect the first a physiological index information; the second display module 2404 is used to display a second graphical user interface, the second graphical user interface is used to prompt the user to perform the second action; the second calibration module 2405 is used to receive the second blood pressure value, and collect the second physiological index information; the second response module 2406 is used to enter the measurement mode of the electronic device in response to the second operation; the measurement module 2407 is used to collect the third physiological index information; the blood pressure value determination module 2408 is used for and determining a third blood pressure value corresponding to the third physiological index information according to the first blood pressure
  • the apparatus further includes a third display module, configured to: display a third graphical user interface, where the third graphical user interface displays options of a plurality of calibration scenarios, in response to the user's selection of the calibration scenarios selection operation, the first graphical user interface is displayed.
  • a third display module configured to: display a third graphical user interface, where the third graphical user interface displays options of a plurality of calibration scenarios, in response to the user's selection of the calibration scenarios selection operation, the first graphical user interface is displayed.
  • the calibration scene corresponds to one or more of the calibration scene of the user's physical state and the calibration scene of the state of the environment where the user is located.
  • the calibration scene corresponding to the physical state of the user includes one of a sitting scene, a still lying scene, a standing scene, a mental activity scene, a relaxation/rest scene, an anaerobic action scene, and an aerobic action scene
  • One or more of the calibration scenarios corresponding to the state of the environment where the user is located include one or more of a cold scenario and a sultry scenario.
  • the apparatus further includes a fourth display module, configured to: display a fourth graphical user interface, where the fourth graphical user interface displays timing information.
  • the device further includes: a first reminder module, configured to acquire the type of medicine, the dosage and the taking time of the medicine taken by the user; according to the type of medicine, the dosage and the taking time of the medicine, determine the first time and the second time time; at the first time and the second time respectively, a fifth graphical user interface is displayed, and the fifth graphical user interface is used to prompt the user to perform the first operation.
  • a first reminder module configured to acquire the type of medicine, the dosage and the taking time of the medicine taken by the user; according to the type of medicine, the dosage and the taking time of the medicine, determine the first time and the second time time; at the first time and the second time respectively, a fifth graphical user interface is displayed, and the fifth graphical user interface is used to prompt the user to perform the first operation.
  • the apparatus further includes: a second reminder module, configured to display a fifth graphical user interface every preset period, and the fifth graphical user interface is configured to prompt the user to perform the first operation .
  • the blood pressure value determination module is further configured to: determine the similarity between the first physiological index information and the third physiological index information, and the second physiological index information and the determining the similarity of the third physiological index information; determining the target similarity greater than the second threshold, and the target physiological index information corresponding to the target similarity; weighting and summing the target blood pressure values corresponding to the target physiological index information to obtain the obtained The third blood pressure value, wherein the weight of the target blood pressure value is positively correlated with the similarity between the corresponding target physiological index information and the third physiological index information.
  • FIG. 18 to FIG. 23 are respectively used to refer to the objects in the embodiments corresponding to each figure.
  • Embodiments of the present application provide a wearable device, including: a display screen for displaying a graphical user interface; a sensor for collecting physiological index information; an airbag and a pressure sensor for measuring blood pressure; a processor for The blood pressure monitoring method shown in FIG. 18 is performed by controlling at least one of the display screen, the sensor, and the air bag and the pressure sensor.
  • the processor can enter the calibration mode in response to the first operation, and control the display screen to display a first graphical user interface, where the first graphical user interface is used to prompt the user to perform the first action; the processor can control the airbag and the pressure sensor to measure The user has the first blood pressure value and controls the sensor to collect the first physiological index information; the display screen is controlled to display a second graphical user interface, and the second graphical user interface is used to prompt the user to perform the second action; the processor can control the air bag and the pressure sensor to measure the second blood pressure value, and control the sensor to collect the second physiological index information; the processor enters the calibration mode in response to the second operation, controls the sensor to collect the third physiological index information, and the processor according to the first blood pressure value, the second The blood pressure value, the first physiological index information and the second physiological index information determine a third blood pressure value corresponding to the third physiological index information.
  • Embodiments of the present application provide a wearable device, including: a display screen for displaying a graphical user interface; a sensor for collecting physiological index information; an input component for receiving a blood pressure value input by a user; a processor for The above-mentioned blood pressure monitoring method shown in FIG. 19 is performed by controlling at least one of the display screen, the sensor, and the input component.
  • the processor can enter the calibration mode in response to the first operation, and control the display screen to display a first graphical user interface, where the first graphical user interface is used to prompt the user to perform the first action; the processor can control the sensor to collect the first physiological index information; control the display screen to display a second graphical user interface, the second graphical user interface is used to prompt the user to input the first blood pressure value; the processor can control the input part to receive the first blood pressure value input by the user; control the display screen to display the first blood pressure value Three graphical user interfaces, the third graphical user interface is used to prompt the user to perform the second action; the processor can control the sensor to collect the second physiological index information; control the display screen to display the fourth graphical user interface, the fourth graphical user interface It is used to prompt the user to input the second blood pressure value; the processor can control the input part to receive the second blood pressure value input by the user; the processor enters the calibration mode in response to the second operation, controls the sensor to collect the third physiological index information, and the processor The first blood pressure value, the second
  • Embodiments of the present application provide a wearable device, including: a display screen for displaying a graphical user interface; a sensor for collecting physiological index information; a communication component for receiving blood pressure values from outside the wearable device; a processor , for executing the blood pressure monitoring method shown in FIG. 20 by controlling at least one of the display screen, the sensor, and the communication component.
  • the processor may enter the calibration mode in response to the first operation, and control the display screen to display a first graphical user interface, where the first graphical user interface is used to prompt the user to perform the first action; the processor may control the communication component to receive an external device measure and send the first blood pressure value and control the sensor to collect the first physiological index information; control the display screen to display a second graphical user interface, the second graphical user interface is used to prompt the user to perform the second action; the processor can control the communication part Receive the second blood pressure value measured and sent by the external device, and control the sensor to collect the second physiological index information; the processor enters the calibration mode in response to the second operation, and controls the sensor to collect the third physiological index information.
  • the blood pressure value, the second blood pressure value, the first physiological index information, and the second physiological index information determine a third blood pressure value corresponding to the third physiological index information.
  • FIG. 24 shows a schematic structural diagram of a wearable device according to an embodiment of the present application.
  • the wearable device may be a smart wearable watch
  • the smart wearable watch 900 may include a watch body and a wrist watch connected to each other.
  • the wristband may include a micro-pump airbag (not shown in FIG. 24 )
  • the watch body may include a front case (not shown in FIG. 24 ), a processor 901, a memory 902, a display screen 903 (such as a touch screen), a bottom case (not shown in FIG.
  • the smart wearable watch 900 may also include an antenna, buttons, indicator lights, and the like.
  • the structure of the smart wearable watch 900 shown in FIG. 24 does not constitute a limitation on the smart wearable watch, and may include more or less components than the one shown, or combine some components, or different Component placement.
  • the sensor module 905 may include: PPG sensor, ECG sensor, pressure sensor, acceleration sensor; of course, the sensor module 905 may also include, gyro sensor, distance sensor, proximity light sensor, fingerprint sensor, magnetic sensor, touch sensor, environment sensor Light sensor, bone conduction sensor, air pressure sensor, temperature sensor, heart rate sensor, humidity sensor, etc.
  • the sensor module 905 is connected to a microcontroller unit (MCU) 904 and controlled by the microcontroller unit (MCU) 904 .
  • the PPG sensor and/or the ECG sensor can collect the first physiological index information and the second physiological index information, and the pressure sensor can cooperate with the micropump airbag to measure the first blood pressure value.
  • the memory 902 may be used to store application program codes, such as application program codes for executing the blood pressure monitoring method of the embodiment of the present application.
  • the processor 901 may execute the above-mentioned application code to implement the functions of the smart wearable watch 900 in the embodiment of the present application.
  • the memory 920 may also store the Bluetooth address of the smart wearable watch 900 .
  • the Bluetooth address of the smart wearable watch 900 can be used to establish a Bluetooth connection with a smart device (eg, a blood pressure monitor) controlled by the smart wearable watch 900 .
  • the wireless communication module 907 is used to support short-distance data exchange between the smart wearable watch 900 and various electronic devices, such as mobile phones, such as data transmission between blood pressure monitors.
  • the wireless communication module 907 can be used for data transmission between the smart devices connected to the smart wearable watch 900, such as transmitting the blood pressure measurement instruction sent by the smart wearable watch 900 to the blood pressure monitor, etc. first blood pressure value.
  • the wireless communication module 907 may be a Bluetooth module. In other embodiments, the wireless communication module 907 may be a WiFi module.
  • the smart wearable watch 900 may include at least one receiver 913 and at least one microphone 906 .
  • the receiver 913 may also be referred to as an "earpiece”, and may be used to convert audio electrical signals into sound signals and play them.
  • the microphone 906 may also be referred to as "microphone”, “microphone”, and is used to convert sound signals into audio electrical signals. After being received by the audio circuit, it is converted into audio data; the audio circuit can also convert the audio data into electrical signals, transmit them to the speaker 908, and the speaker 908 converts them into sound signals and outputs them.
  • Display screen 903 may be a touch screen.
  • the touch screen includes a display panel and a touch panel. Among them, the display screen 903 can be used to display information input by the user or information provided to the user (such as prompt information) and various menus of the watch.
  • the display screen can be a liquid crystal display (LCD), an organic light-emitting diode (OLED) display, an active matrix organic light emitting diode (AMOLED) display, flexible Light-emitting diode (flexible light-emitting diode, FLED) display, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) display and so on.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • AMOLED active matrix organic light emitting diode
  • FLED flexible Light-emitting diode
  • QLED quantum dot light-emitting diode
  • the smart wearable watch 900 also includes a power source 911 (such as a battery) for supplying power to various components. Power management and other functions.
  • the power management system may include a wireless charging module, and the wireless charging module may include a charging coil for coupling with the charging coil in the charging base, so as to wirelessly charge the smart wearable watch 900 .
  • the smart wearable watch 900 may further include an RF circuit 910 .
  • the RF circuit 910 can be used for receiving and sending signals during transmission and reception of information or during a call. After receiving the downlink information of the base station, it can be processed by the processor 901; in addition, it can send uplink data to the base station.
  • RF circuitry 910 includes, but is not limited to, antennas, at least one amplifier, transceivers, couplers, low noise amplifiers, duplexers, and the like.
  • the RF circuit 910 can also communicate with the network and other mobile devices via wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to Global System for Mobile Communications, General Packet Radio Service, Code Division Multiple Access, Wideband Code Division Multiple Access, Long Term Evolution, email, short message service, and the like.
  • the smart wearable watch 900 may also include a positioning module, such as the GPS module 909 shown in FIG. 24 .
  • the positioning module may also be a global navigation satellite system (GLONASS) module or a Beidou navigation satellite system (BDS) module or the like.
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • the smart wearable watch 900 shown in FIG. 24 is only an example of the smart wearable watch, and the smart wearable watch 900 may have more or less components than those shown in FIG. more components, or may have different component configurations.
  • the various components shown in Figure 24 may be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • Embodiments of the present application provide a non-volatile computer-readable storage medium on which computer program instructions are stored, and when the computer program instructions are executed by a processor, implement the above method.
  • Embodiments of the present application provide a computer program product, including computer-readable codes, or a non-volatile computer-readable storage medium carrying computer-readable codes, when the computer-readable codes are stored in a processor of an electronic device When running in the electronic device, the processor in the electronic device executes the above method.
  • a computer-readable storage medium may be a tangible device that can hold and store instructions for use by the instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (Electrically Programmable Read-Only-Memory, EPROM or flash memory), static random access memory (Static Random-Access Memory, SRAM), portable compact disk read-only memory (Compact Disc Read-Only Memory, CD - ROM), Digital Video Disc (DVD), memory sticks, floppy disks, mechanically encoded devices, such as punch cards or raised structures in grooves on which instructions are stored, and any suitable combination of the foregoing .
  • RAM random access memory
  • ROM read only memory
  • EPROM erasable programmable read-only memory
  • EPROM Errically Programmable Read-Only-Memory
  • SRAM static random access memory
  • portable compact disk read-only memory Compact Disc Read-Only Memory
  • CD - ROM Compact Disc Read-Only Memory
  • DVD Digital Video Disc
  • memory sticks floppy disks
  • Computer readable program instructions or code described herein may be downloaded to various computing/processing devices from a computer readable storage medium, or to an external computer or external storage device over a network such as the Internet, a local area network, a wide area network and/or a wireless network.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • a network adapter card or network interface in each computing/processing device receives computer-readable program instructions from a network and forwards the computer-readable program instructions for storage in a computer-readable storage medium in each computing/processing device .
  • the computer program instructions used to perform the operations of the present application may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or in one or more source or object code written in any combination of programming languages, including object-oriented programming languages such as Smalltalk, C++, etc., and conventional procedural programming languages such as the "C" language or similar programming languages.
  • the computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server implement.
  • the remote computer may be connected to the user's computer through any kind of network—including a Local Area Network (LAN) or a Wide Area Network (WAN)—or, may be connected to an external computer (eg, use an internet service provider to connect via the internet).
  • electronic circuits such as programmable logic circuits, Field-Programmable Gate Arrays (FPGA), or Programmable Logic Arrays (Programmable Logic Arrays), are personalized by utilizing state information of computer-readable program instructions.
  • Logic Array, PLA the electronic circuit can execute computer readable program instructions to implement various aspects of the present application.
  • These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer or other programmable data processing apparatus to produce a machine that causes the instructions when executed by the processor of the computer or other programmable data processing apparatus , resulting in means for implementing the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
  • These computer readable program instructions can also be stored in a computer readable storage medium, these instructions cause a computer, programmable data processing apparatus and/or other equipment to operate in a specific manner, so that the computer readable medium on which the instructions are stored includes An article of manufacture comprising instructions for implementing various aspects of the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
  • Computer readable program instructions can also be loaded onto a computer, other programmable data processing apparatus, or other equipment to cause a series of operational steps to be performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , thereby causing instructions executing on a computer, other programmable data processing apparatus, or other device to implement the functions/acts specified in one or more blocks of the flowcharts and/or block diagrams.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more functions for implementing the specified logical function(s) executable instructions.
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented using hardware (eg, circuits or ASICs (Application) that perform the corresponding functions or actions. Specific Integrated Circuit, application-specific integrated circuit)), or can be implemented by a combination of hardware and software, such as firmware.

Abstract

一种血压监测方法、装置及可穿戴设备,其中,该方法包括:响应于用户的第一操作,电子设备进入校准模式,依次显示多个图形用户界面,各图形用户界面用于提示用户进行不同的动作;获取用户完成不同动作的第一血压值,以及采集用户完成不同动作的第一生理指标信息;响应于用户的第二操作,电子设备进入测量模式,采集第二生理指标信息,根据多组第一血压值和第一生理指标信息,确定第二生理指标信息对应的第二血压值。该方法充分捕捉用户进行不同动作后血压影响因素的变化,实现多个校准场景下的血压校准,且提高了测量的第二血压值的精度。

Description

一种血压监测方法、装置及可穿戴设备
本申请要求于2021年2月26日提交中国专利局、申请号为202110221000.4、发明名称为“一种血压监测方法、装置及可穿戴设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能终端技术领域,尤其涉及一种血压监测方法、装置及可穿戴设备。
背景技术
中国心血管病(Cardiovascular Disease,CVD)患病率处于持续上升阶段。目前,我国患病人数2.9亿,每年约有350万人死于心血管病。心血管病死亡率居首位,高于肿瘤及其他疾病。其中每10万人农村或城市居民中,心脏病死亡人数分别达到143.72人和136.21人,严重威胁着我国人民的健康。高血压是心脑血管病发病的第一危险因素,中国约有2.7亿高血压患者。中国高血压调查(CHS)于2012-2015年的研究结果显示,中国成人高血压患病率为27.9%,且≥15岁居民的高血压患病率呈现上升趋势;但中国目前的高血压知晓率约为51.5%、服药率约为46.1%、控制率约为16.9%,均远低于美国的86.2%、73%和61%。
连续血压监测是高血压诊断技术发展史上的重大创新,它可测量一个人日常生活状态下的血压,既可测量轻、中度体力活动状态下的血压,也可测量睡眠过程中的血压。连续血压监测具有可去除测量偶然性,降低误诊率,识别隐匿性夜间高血压,识别白大衣高血压,测量血压节律,指导药物治疗等优势。
目前的血压测量方法中听诊法、示波法等方法都需要对袖带进行人工或自动充放气来辅助测量,这样的测量方法会引起用户的不适,而且一段时间内只能测量一次血压值,无法进行连续测量。无创无袖带血压测量法(如脉搏波特征参数法和脉搏波速血压测量法)可以实现连续血压监测,由于不同受试者建立的血压测量模型极易受到个体差异的影响,为减小个体差异对血压预测结果的影响,通常会借助有袖带血压进行血压校准,在校准值的基础上监测血压的连续变化。
然而,现有借助有袖带血压对连续血压监测设备进行血压校准的方式,校准效果较差,校准后的血压测量精度有待提高。
发明内容
有鉴于此,提出了一种血压监测方法、装置及可穿戴设备。
第一方面,本申请的实施例提供了一种血压监测方法,所述方法包括:响应于第一操作,电子设备进入校准模式;显示第一图形用户界面,所述第一图形用户界面用于提示用户进行第一动作;测量第一血压值,以及采集第一生理指标信息;显示第二图形用户界面,所述第二图形用户界面用于提示用户进行第二动作;测量第二血压值,以及采集第二生理指标信息;响应于第二操作,所述电子设备进入测量模式;采集第三生理指标信息;根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理 指标信息对应的第三血压值。
基于上述技术方案,在校准阶段,通过显示多个图形用户界面(包括第一图形用户界面及第二图形用户界面)分别提示用户进行不同的动作(包括第一动作及第二动作),从而使用户的血压影响因素如心率、心搏量、总外周阻力等发生变化。分别测量用户进行不同动作情况下的血压值(包括第一血压值及第二血压值),以及采集生理指标信息(包括第一生理指标信息及第二生理指标信息),充分捕捉用户的血压影响因素的变化,实现多个校准场景下的血压校准;在测量阶段,根据校准阶段得到的多个血压值和多个生理指标信息,确定采集到的生理指标信息(即第三生理指标信息)对应的血压值(即第三血压值),该血压值的精度更高,从而实现用户血压的准确测量。
根据第一方面,在所述第一方面的第一种可能的实现方式中,所述响应于第一操作,电子设备进入校准模式之后,还包括:显示第三图形用户界面,所述第三图形用户界面显示多个校准场景的选项;响应于用户对校准场景的选择操作,显示所述第一图形用户界面。
基于上述技术方案,用户可自行根据自己日常活动选择最适合、最匹配的校准场景完成校准,可以使得校准更个性化、更具针对性,有效减少校准时间,提高了用户体验。
根据第一方面的第一种可能的实现方式,在所述第一方面的第二种可能的实现方式中,所述校准场景对应于用户的身体状态的校准场景、用户所处环境的状态的校准场景中的一种或多种。
基于上述技术方案,在不同的校准场景下,用户的身体状态、用户所处环境的状态等不同,相应的,用户的血压影响因素如心率、心搏量、总外周阻力等发生变化,通过不同的用户身体状态或不同的用户所处环境的状态诱导用户血压影响因素发生变化,从而充分捕捉用户的血压影响因素的变化,实现用户身体不同状态或用户所处环境的不同状态下的血压校准。
根据第一方面的第二种可能的实现方式,在所述第一方面的第三种可能的实现方式中,对应于用户的身体状态的校准场景包括静坐场景、静卧场景、站立场景、脑力活动场景、放松/休息场景、无氧运动场景、有氧运动场景中的一种或多种;对应于用户所处环境的状态的校准场景包括寒冷场景、闷热场景中的一种或多种。
基于上述技术方案,在不同的场景下,用户的血压影响因素如心率、心搏量、总外周阻力等发生变化,所提供的多个校准场景可以较全面的覆盖用户的血压影响因素的变化情形,从而实现不同场景下的血压校准,提高校准后的可穿戴设备测量血压的精度。
根据第一方面或者上述第一方面的多种可能的实现方式,在所述第一方面的第四种可能的实现方式中,所述显示第一图形用户界面之后,还包括:显示第四图形用户界面,所述第四图形用户界面显示计时信息。
基于上述技术方案,通过第四图形用户界面显示计时信息,从而提示用户已经进行第一动作的时间,或者还需进行第一动作时间,用户根据图形用户界面的提示,即可完成所指示的运动,从而完成对应校准场景下的血压测量,简单方便,提高了用户体验。
根据第一方面或者上述第一方面的多种可能的实现方式,在所述第一方面的第五种可能的实现方式中,所述方法还包括:获取用户服用的药物类型、剂量及服药时间;根据药物类型、剂量及服药时间,确定第一时刻及第二时刻;分别在所述第一时刻及所述第二时刻,显示第五图形用户界面,所述第五图形用户界面用于提示用户进行所述第一操作。
基于上述技术方案,第一时刻可以表示用户体内药物浓度最高的时间点,第二时刻可以 表示用户体内药物浓度最低的时间点,这样,在用户药物浓度最高和药物浓度最低的时候显示第五图形用户界面,提示用户进行血压校准,充分考虑了药物浓度的变化对用户血压的影响,提高了血压校准的准确性,从而使得校准后的可穿戴设备测量的血压值更准。
根据第一方面或者上述第一方面的多种可能的实现方式,在所述第一方面的第六种可能的实现方式中,所述方法还包括:每隔预设周期,显示第五图形用户界面,第五图形用户界面用于提示用户进行所述第一操作,或者,通过气囊和压力传感器测量用户的第四血压值,在所述第四血压值与最新采集的第三生理指标信息对应的第三血压值差异大于第一阈值时,显示第五图形用户界面。
基于上述技术方案,考虑到用户的身体状态或用户所处环境的状态会不断发生变化,可以每隔预设周期,显示第五图形用户界面,提示用户发进行所述第一操作,即提醒用户对可穿戴设备进行血压校准,或者,在通过可穿戴设备配置的气囊和压力传感器测量得到用户的第四血压值之后,对该第四血压值与最新采集的第三生理指标信息对应的第三血压值进行比较,当两者差异大于第一阈值时,显示第五图形用户界面,从而提醒用户进行第一操作,即提醒用户对可穿戴设备进行血压校准,从而提高校准后的可穿戴设备测量血压的准确度。
根据第一方面或者上述第一方面的多种可能的实现方式,在所述第一方面的第七种可能的实现方式中,根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值,可以包括:确定所述第一生理指标信息与所述第三生理指标信息的相似度,以及所述第二生理指标信息与所述第三生理指标信息的相似度;确定大于第二阈值的目标相似度,及目标相似度对应的目标生理指标信息;对所述目标生理指标信息对应的目标血压值进行加权求和,得到所述第三血压值,其中目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关。
基于上述技术方案,选取校准阶段得到的与当前测量场景最相似的一次或几次的目标血压值,对这些目标血压值进行加权求和,预测得到当前测量的第三血压值,各目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关;即,相似度越高,相应的目标血压值所占权重越大,由此增加了血压测量范围,提高了血压测量的准确度。
第二方面,本申请的实施例提供了一种血压监测方法,所述方法包括:响应于第一操作,电子设备进入校准模式;显示第一图形用户界面;所述第一图形用户界面用于提示用户进行第一动作;采集第一生理指标信息;显示第二图形用户界面,所述第二图形用户界面用于提示用户输入第一血压值;接收用户输入的第一血压值;显示第三图形用户界面;所述第三图形用户界面用于提示用户进行第二动作;采集第二生理指标信息;显示第四图形用户界面,所述第四图形用户界面用于提示用户输入第二血压值;接收用户输入的第二血压值;响应于第二操作,所述电子设备进入测量模式;采集第三生理指标信息;根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值。
基于上述技术方案,在校准阶段,通过显示多个图形用户界面(包括第一图形用户界面及第三图形用户界面)分别提示用户进行不同的动作(包括第一动作及第二动作),从而使用户的血压影响因素如心率、心搏量、总外周阻力等发生变化。分别采集用户进行不同动作情况下的生理指标信息(包括第一生理指标信息及第二生理指标信息),通过显示多个图形用户界面(包括第二图形用户界面及第四图形用户界面)分别提示用户输入血压值(包括第一血 压值及第二血压值),并接收用户输入的血压值,充分捕捉用户的血压影响因素的变化,实现多个校准场景下的血压校准;在测量阶段,根据校准阶段得到的多个血压值和多个生理指标信息,确定采集到的生理指标信息(即第三生理指标信息)对应的血压值(即第三血压值),该血压值的精度更高,从而实现用户血压的准确测量。
根据第二方面,在所述第二方面的第一种可能的实现方式中,所述响应于第一操作,电子设备进入校准模式之后,还包括:显示第五图形用户界面,所述第五图形用户界面显示多个校准场景的选项,响应于用户对校准场景的选择操作,显示所述第一图形用户界面。
根据第二方面的第一种可能的实现方式,在所述第二方面的第二种可能的实现方式中,所述校准场景对应于用户的身体状态的校准场景、用户所处环境的状态的校准场景中的一种或多种。
根据第二方面的第二种可能的实现方式,在所述第二方面的第三种可能的实现方式中,对应于用户的身体状态的校准场景包括静坐场景、静卧场景、站立场景、脑力活动场景、放松/休息场景、无氧运动场景、有氧运动场景中的一种或多种;对应于用户所处环境的状态的校准场景包括寒冷场景、闷热场景中的一种或多种。
根据第二方面或者上述第二方面的多种可能的实现方式,在所述第二方面的第四种可能的实现方式中,所述显示第一图形用户界面之后,还包括:显示第六图形用户界面,所述第六图形用户界面显示计时信息。
根据第二方面或者上述第二方面的多种可能的实现方式,在所述第二方面的第五种可能的实现方式中,所述方法还包括:获取用户服用的药物类型、剂量及服药时间;根据药物类型、剂量及服药时间,确定第一时刻及第二时刻;分别在所述第一时刻及所述第二时刻,显示第七图形用户界面,所述第七图形用户界面用于提示用户进行所述第一操作。
根据第二方面或者上述第二方面的多种可能的实现方式,在所述第二方面的第六种可能的实现方式中,所述方法还包括:每隔预设周期,显示第七图形用户界面,所述第七图形用户界面用于提示用户进行所述第一操作。
根据第二方面或者上述第二方面的多种可能的实现方式,在所述第二方面的第七种可能的实现方式中,根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值,包括:确定所述第一生理指标信息与所述第三生理指标信息的相似度,以及所述第二生理指标信息与所述第三生理指标信息的相似度;确定大于第二阈值的目标相似度,及目标相似度对应的目标生理指标信息;对所述目标生理指标信息对应的目标血压值进行加权求和,得到所述第三血压值,其中目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关。
第三方面,本申请的实施例提供了一种血压监测方法,所述方法包括:响应于第一操作,电子设备进入校准模式;显示第一图形用户界面,所述第一图形用户界面用于提示用户进行第一动作;接收第一血压值,以及采集第一生理指标信息;显示第二图形用户界面,所述第二图形用户界面用于提示用户进行第二动作;接收第二血压值,以及采集第二生理指标信息;响应于第二操作,所述电子设备进入测量模式;采集第三生理指标信息;根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值。
基于上述技术方案,在校准阶段,通过显示多个图形用户界面分别提示用户进行不同的 动作,从而使用户的血压影响因素如心率、心搏量、总外周阻力等发生变化。分别接收其他设备发送的用户进行不同动作情况下的血压值,以及采集生理指标信息,充分捕捉用户的血压影响因素的变化,实现多个校准场景下的血压校准;在测量阶段,根据校准阶段得到的多个血压值和多个生理指标信息,确定采集到的第三生理指标信息对应的第三血压值,该血压值的精度更高,从而实现用户血压的准确测量。
根据第三方面,在所述第三方面的第一种可能的实现方式中,所述响应于第一操作,电子设备进入校准模式之后,还包括:显示第三图形用户界面,所述第三图形用户界面显示多个校准场景的选项;响应于用户对校准场景的选择操作,显示所述第一图形用户界面。
根据第三方面或第三方面的第一种可能的实现方式,在所述第三方面的第二种可能的实现方式中,所述校准场景对应于用户的身体状态的校准场景、用户所处环境的状态的校准场景中的一种或多种。
根据第三方面的第二种可能的实现方式,在所述第三方面的第三种可能的实现方式中,对应于用户的身体状态的校准场景包括静坐场景、静卧场景、站立场景、脑力活动场景、放松/休息场景、无氧运动场景、有氧运动场景中的一种或多种;对应于用户所处环境的状态的校准场景包括寒冷场景、闷热场景中的一种或多种。
根据第三方面或者上述第三方面的多种可能的实现方式,在所述第三方面的第四种可能的实现方式中,所述显示第一图形用户界面之后,还包括:显示第四图形用户界面,所述第四图形用户界面显示计时信息。
根据第三方面或者上述第三方面的多种可能的实现方式,在所述第三方面的第五种可能的实现方式中,所述方法还包括:获取用户服用的药物类型、剂量及服药时间;根据药物类型、剂量及服药时间,确定第一时刻及第二时刻;分别在所述第一时刻及所述第二时刻,显示第五图形用户界面,所述第五图形用户界面用于提示用户进行所述第一操作。
根据第三方面或者上述第三方面的多种可能的实现方式,在所述第三方面的第六种可能的实现方式中,所述方法还包括:每隔预设周期,显示第五图形用户界面,第五图形用户界面用于提示用户进行所述第一操作。
根据第三方面或者上述第三方面的多种可能的实现方式,在所述第三方面的第七种可能的实现方式中,根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值,可以包括:确定所述第一生理指标信息与所述第三生理指标信息的相似度,以及所述第二生理指标信息与所述第三生理指标信息的相似度;确定大于第二阈值的目标相似度,及目标相似度对应的目标生理指标信息;对所述目标生理指标信息对应的目标血压值进行加权求和,得到所述第三血压值,其中目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关。
第四方面,本申请的实施例提供了一种血压监测装置,所述装置包括:第一响应模块,用于响应于第一操作,电子设备进入校准模式;第一显示模块,用于显示第一图形用户界面,所述第一图形用户界面用于提示用户进行第一动作;第一校准模块,用于测量第一血压值,以及采集第一生理指标信息;第二显示模块,用于显示第二图形用户界面,所述第二图形用户界面用于提示用户进行第二动作;第二校准模块,用于测量第二血压值,以及采集第二生理指标信息;第二响应模块,用于响应于第二操作,所述电子设备进入测量模式;测量模块,用于采集第三生理指标信息;血压值确定模块,用于根据所述第一血压值、所述第二血压值、 所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值。
根据第四方面,在所述第四方面的第一种可能的实现方式中,所述装置还包括第三显示模块,用于:显示第三图形用户界面,所述第三图形用户界面显示多个校准场景的选项,响应于用户对校准场景的选择操作,显示所述第一图形用户界面。
根据第四方面或第四方面的第一种可能的实现方式,所述校准场景对应于用户的身体状态的校准场景、用户所处环境的状态的校准场景中的一种或多种。
根据第四方面的第二种可能的实现方式,在所述第四方面的第三种可能的实现方式中,对应于用户的身体状态的校准场景包括静坐场景、静卧场景、站立场景、脑力活动场景、放松/休息场景、无氧运动场景、有氧运动场景中的一种或多种;对应于用户所处环境的状态的校准场景包括寒冷场景、闷热场景中的一种或多种。
根据第四方面或者上述第四方面的多种可能的实现方式,在所述第四方面的第四种可能的实现方式中,所述装置还包括第四显示模块,用于:显示第四图形用户界面,所述第四图形用户界面显示计时信息。
根据第四方面或者上述第四方面的多种可能的实现方式,在所述第四方面的第五种可能的实现方式中,述装置还包括:第一提醒模块,用于获取用户服用的药物类型、剂量及服药时间;根据药物类型、剂量及服药时间,确定第一时刻及第二时刻;分别在所述第一时刻及所述第二时刻,显示第五图形用户界面,所述第五图形用户界面用于提示用户进行所述第一操作。
根据第四方面或者上述第四方面的多种可能的实现方式,在所述第四方面的第六种可能的实现方式中,所述装置还包括:第二提醒模块,用于每隔预设周期,显示第五图形用户界面,第五图形用户界面用于提示用户进行所述第一操作,或者,通过气囊和压力传感器测量用户的第四血压值,在所述第四血压值与最新采集的第三生理指标信息对应的第三血压值差异大于第一阈值时,显示第五图形用户界面。
根据第四方面或者上述第四方面的多种可能的实现方式,在所述第四方面的第七种可能的实现方式中,所述血压值确定模块,还用于:确定所述第一生理指标信息与所述第三生理指标信息的相似度,以及所述第二生理指标信息与所述第三生理指标信息的相似度;确定大于第二阈值的目标相似度,及目标相似度对应的目标生理指标信息;对所述目标生理指标信息对应的目标血压值进行加权求和,得到所述第三血压值,其中目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关。
第五方面,本申请的实施例提供了一种血压监测装置,所述装置包括:第一响应模块,用于响应于第一操作,电子设备进入校准模式;第一显示模块,用于显示第一图形用户界面,所述第一图形用户界面用于提示用户进行第一动作;第一采集模块,用于采集第一生理指标信息;第二显示模块,用于显示第二图形用户界面,所述第二图形用户界面用于提示用户输入第一血压值;第一接收模块,用于接收用户输入的第一血压值;第三显示模块,用于显示第三图形用户界面;所述第三图形用户界面用于提示用户进行第二动作;第二采集模块,用于采集第二生理指标信息;第四显示模块,用于显示第四图形用户界面,所述第四图形用户界面用于提示用户输入第二血压值;第二接收模块,用于接收用户输入的第二血压值;第二响应模块,用于响应于第二操作,所述电子设备进入测量模式;测量模块,用于采集第三生 理指标信息;血压值确定模块,用于根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值。
根据第五方面,在所述第五方面的第一种可能的实现方式中,所述装置还包括第五显示模块,用于:显示第五图形用户界面,所述第五图形用户界面显示多个校准场景的选项,响应于用户对校准场景的选择操作,显示所述第一图形用户界面。
根据第五方面或第五方面的第一种可能的实现方式,在所述第五方面的第二种可能的实现方式中,所述校准场景对应于用户的身体状态的校准场景、用户所处环境的状态的校准场景中的一种或多种。
根据第五方面的第二种可能的实现方式,在所述第五方面的第三种可能的实现方式中,对应于用户的身体状态的校准场景包括静坐场景、静卧场景、站立场景、脑力活动场景、放松/休息场景、无氧运动场景、有氧运动场景中的一种或多种;对应于用户所处环境的状态的校准场景包括寒冷场景、闷热场景中的一种或多种。
根据第五方面或者上述第五方面的多种可能的实现方式,在所述第五方面的第四种可能的实现方式中,所述装置还包括第六显示模块,用于:显示第六图形用户界面,所述第四图形用户界面显示计时信息。
根据第五方面或者上述第五方面的多种可能的实现方式,在所述第五方面的第五种可能的实现方式中,所述装置还包括:第一提醒模块,用于获取用户服用的药物类型、剂量及服药时间;根据药物类型、剂量及服药时间,确定第一时刻及第二时刻;分别在所述第一时刻及所述第二时刻,显示第七图形用户界面,所述第七图形用户界面用于提示用户进行所述第一操作。
根据第五方面或者上述第五方面的多种可能的实现方式,在所述第五方面的第六种可能的实现方式中,所述装置还包括:第二提醒模块,用于每隔预设周期,显示第七图形用户界面,第七图形用户界面用于提示用户进行所述第一操作。
根据第五方面或者上述第五方面的多种可能的实现方式,在所述第五方面的第七种可能的实现方式中,所述血压值确定模块,还用于:确定所述第一生理指标信息与所述第三生理指标信息的相似度,以及所述第二生理指标信息与所述第三生理指标信息的相似度;确定大于第二阈值的目标相似度,及目标相似度对应的目标生理指标信息;对所述目标生理指标信息对应的目标血压值进行加权求和,得到所述第三血压值,其中目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关。
第六方面,本申请的实施例提供了一种血压监测装置,所述装置包括:第一响应模块,用于响应于第一操作,电子设备进入校准模式;第一显示模块,用于显示第一图形用户界面,所述第一图形用户界面用于提示用户进行第一动作;第一校准模块,用于接收第一血压值,以及采集第一生理指标信息;第二显示模块,用于显示第二图形用户界面,所述第二图形用户界面用于提示用户进行第二动作;第二校准模块,用于接收第二血压值,以及采集第二生理指标信息;第二响应模块,用于响应于第二操作,所述电子设备进入测量模式;测量模块,用于采集第三生理指标信息;血压值确定模块,用于根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值。
根据第六方面,在所述第六方面的第一种可能的实现方式中,所述装置还包括第三显示 模块,用于:显示第三图形用户界面,所述第三图形用户界面显示多个校准场景的选项,响应于用户对校准场景的选择操作,显示所述第一图形用户界面。
根据第六方面或第六方面的第一种可能的实现方式,所述校准场景对应于用户的身体状态的校准场景、用户所处环境的状态的校准场景中的一种或多种。
根据第六方面的第二种可能的实现方式,在所述第六方面的第三种可能的实现方式中,对应于用户的身体状态的校准场景包括静坐场景、静卧场景、站立场景、脑力活动场景、放松/休息场景、无氧运动场景、有氧运动场景中的一种或多种;对应于用户所处环境的状态的校准场景包括寒冷场景、闷热场景中的一种或多种。
根据第六方面或者上述第六方面的多种可能的实现方式,在所述第六方面的第四种可能的实现方式中,所述装置还包括第四显示模块,用于:显示第四图形用户界面,所述第四图形用户界面显示计时信息。
根据第六方面或者上述第六方面的多种可能的实现方式,在所述第六方面的第五种可能的实现方式中,述装置还包括:第一提醒模块,用于获取用户服用的药物类型、剂量及服药时间;根据药物类型、剂量及服药时间,确定第一时刻及第二时刻;分别在所述第一时刻及所述第二时刻,显示第五图形用户界面,所述第五图形用户界面用于提示用户进行所述第一操作。
根据第六方面或者上述第六方面的多种可能的实现方式,在所述第六方面的第六种可能的实现方式中,所述装置还包括:第二提醒模块,用于每隔预设周期,显示第五图形用户界面,第五图形用户界面用于提示用户进行所述第一操作。
根据第六方面或者上述第六方面的多种可能的实现方式,在所述第六方面的第七种可能的实现方式中,所述血压值确定模块,还用于:确定所述第一生理指标信息与所述第三生理指标信息的相似度,以及所述第二生理指标信息与所述第三生理指标信息的相似度;确定大于第二阈值的目标相似度,及目标相似度对应的目标生理指标信息;对所述目标生理指标信息对应的目标血压值进行加权求和,得到所述第三血压值,其中目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关。
第七方面,本申请的实施例提供了一种可穿戴设备,包括:显示屏,用于显示图形用户界面;传感器,用于采集生理指标信息;气囊及压力传感器,用于测量血压值;处理器,用于通过控制所述显示屏、所述传感器、和所述气囊及压力传感器中的至少其中之一,来执行上述第一方面或者第一方面的多种可能的实现方式中的一种或几种的血压监测方法。
第八方面,本申请的实施例提供了一种可穿戴设备,包括:显示屏,用于显示图形用户界面;传感器,用于采集生理指标信息;输入部件,用于接收用户输入的血压值;处理器,用于通过控制所述显示屏、所述传感器、和所述输入部件中的至少其中之一,来执行上述第二方面或者第二方面的多种可能的实现方式中的一种或几种的血压监测方法。
第九方面,本申请的实施例提供了一种可穿戴设备,包括:显示屏,用于显示图形用户界面;传感器,用于采集生理指标信息;通信部件,用于从可穿戴设备外部接收血压值;处理器,用于通过控制所述显示屏、所述传感器、和所述通信部件中的至少其中之一,来执行上述第三方面或者第三方面的多种可能的实现方式中的一种或几种的血压监测方法。
第十方面,本申请的实施例提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述第一方面或者第一方面的多种可 能的实现方式中的一种或几种的血压监测方法,或者实现上述第二方面或者第二方面的多种可能的实现方式中的一种或几种的血压监测方法,或者实现上述第三方面或者第三方面的多种可能的实现方式中的一种或几种的血压监测方法。
第十一方面,本申请的实施例提供了一种计算机程序产品,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备中运行时,所述电子设备中的处理器执行上述第一方面或者第一方面的多种可能的实现方式中的一种或几种的血压监测方法,或者执行上述第二方面或者第二方面的多种可能的实现方式中的一种或几种的血压监测方法,或者执行上述第三方面或者第三方面的多种可能的实现方式中的一种或几种的血压监测方法。
上述第二方面至第十一方面的各方面,及各方面的各种可能的实现方式的技术效果,参见上述第一方面。
本申请的这些和其他方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本申请的示例性实施例、特征和方面,并且用于解释本申请的原理。
图1示出根据本申请一实施例的一种应用场景示意图。
图2示出根据本申请一实施例的另一种应用场景示意图。
图3示出根据本申请一实施例的一种血压监测方法的流程图。
图4示出根据本申请一实施例的一种智能穿戴手表进入校准模式的示意图。
图5示出根据本申请一实施例的多个校准场景下血压校准的示意图。
图6示出根据本申请一实施例的一种无氧运动场景下血压校准的示意图。
图7示出根据本申请一实施例的一种校准场景选择的示意图。
图8示出根据本申请一实施例的一种标准场景下的血压校准流程图。
图9示出根据本申请一实施例的一种设定自定义场景的示意图。
图10示出根据本申请一实施例的一种自定义场景下的血压校准流程图。
图11A-11B示出根据本申请一实施例的一种确定用户属性的示意图。
图12示出根据本申请一实施例的一种针对高血压服药人员的血压校准流程图。
图13示出根据本申请一实施例的一种状态空间的示意图。
图14示出根据本申请一实施例的一种利用状态空间预测血压的示意图。
图15示出根据本申请一实施例的一种血压监测方法的流程图。
图16示出根据本申请一实施例的多个校准场景下血压校准的示意图。
图17示出根据本申请一实施例的一种无氧运动场景下血压校准的示意图。
图18示出根据本申请一实施例的一种血压监测方法的流程图。
图19示出根据本申请一实施例的另一种血压监测方法的流程图。
图20示出根据本申请一实施例的另一种血压监测方法的流程图。
图21示出根据本申请一实施例的一种血压监测装置的结构图。
图22示出根据本申请一实施例的另一种血压监测装置的结构图。
图23示出根据本申请一实施例的另一种血压监测装置的结构图。
图24示出根据本申请一实施例的一种智能穿戴手表的结构示意图。
具体实施方式
以下将参考附图详细说明本申请的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本申请,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本申请同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本申请的主旨。
高血压是最常见的慢性非传染性疾病,是全球疾病负担最重的疾病。高血压与一系列临床疾病和不良后果相关,已成为重要的公共卫生问题。高血压心脑血管事件的发生机理有种族差异。世界人口众多,老龄化加剧,合理诊治高血压相当重要。以动态血压监测(ambulatory blood pressure monitoring,ABPM)为代表的连续血压监测方法是重要的诊室外血压测量方法,在高血压监测和管理中发挥核心作用;ABPM在发现隐蔽性高血压、血压变异异常、血压节律异常等方面发挥重要作用。
以智能穿戴设备为代表的移动医疗技术最近发展迅猛,基于穿戴设备的血压测量技术尤其是重中之重。由于测量部位和测量原理的改变,一般而言,基于智能穿戴设备测量的血压准确率低于基于听诊法和示波法的测量准确率,在利用智能穿戴设备进行连续血压监测时,需要通过校准提高血压测量精度。
下面对智能穿戴设备进行校准血压的一些相关技术进行简单介绍。
在一些相关技术中,获取用户在一场景下的多组数据,每组数据包括脉搏波传导时间和血压值;根据多组数据,确定用于使用该血压计测量血压时的参数集合。该示例中,场景单一,血压影响因素变化有限,缺少相对准确的血压值作为基准,因此,血压校准和血压追踪的效果较差。
在另一些相关技术中,可以将血压计袖带放在上臂上,将待校准手表戴在另一只手臂的手腕上。将手机放在桌子上,方便拿取。手机上,打开相关应用程序并按照屏幕上的说明执行以下操作:在基于袖带的血压监护仪上开始血压测量。待校准手表上的测量将自动开始。在手机血压监测应用程序中输入基于袖带的血压监测读数。重复上述步骤两次(总共三次测量),以完成待校准手表的校准。该相关技术中,仅在静坐一个场景进行校准,使用过程中测得的血压值在校准值附近轻微波动,无法跟踪血压大幅变化。这是因为校准过程中只有静坐单一场景,无法诱导用户的血压影响因素的状态发生改变,而用户实际测量血压时血压影响因素的状态多样,从而导致血压测量过程中血压测量值不准,无法跟踪血压的变化。
为了解决上述血压校准效果差的技术问题,本申请实施例提供了一种血压监测方法,本申请实施例的血压监测方法,该方法可由血压监测设备执行,通过提示信息提示用户完成符合多个校准场景的身体活动;用户完成不同校准场景的身体活动后,用户的血压影响因素如心率、心搏量、总外周阻力等发生变化。在血压校准阶段,获取各校准场景下用户的校准血压值及对应的生理信号,充分捕捉用户的血压影响因素的变化,实现多个校准场景下的血压 校准;在血压测量阶段,根据采集到的生理信号,以及上述各校准场景下校准血压值和对应的生理信号,确定所测量的用户的血压值,血压值的精度更高,从而实现用户血压的准确测量。
其中,血压监测设备可以是具有测量用户血压功能,同时可通过校准来提升血压测量的准确度的设备。血压监测设备可以包括心电图(electrocardiograph,ECG)传感器、光电容积脉搏波描记图(photoplethysmography,PPG)传感器、压力传感器、心冲击图(Ballistocardiography,BCG)传感器、心震图(Seismocardiography,SCG)传感器、阻抗容积描记图(impedance plethysmography,IPG)传感器等可以采集用户生理信号的传感器,通过这些传感器测量用户的PPG、ECG、IPG、SCG、BCG、心音等生理信号,确定相应的生理指标信息,从而得到用户血压值。
示例性地,血压监测设备可以为具有血压监测功能的智能可穿戴设备,该可穿戴设备可以是穿戴在手臂或者手腕上的设备,例如,智能穿戴手表等;还可以是佩戴在胸前或者掌心的设备,例如,智能项链等;还可以是佩戴在头部的设备,例如,智能耳机等;本申请对智能穿戴设备的具体形式并不做限定。示例性地,血压监测设备可以为具有血压监测功能的医院内专业设备,例如,24小时动态血压仪;示例性地,血压监测设备还可以为具有血压监测功能的智能体脂秤、血压测量仪等设备。
本申请实施例中,以血压监测设备为智能穿戴手表为例,对本申请提供的血压监测方法进行说明。
图1示出根据本申请一实施例的一种应用场景示意图;如图1所示,用户在校准血压时,将智能穿戴手表101佩戴在左手或右手上(图中示出将智能穿戴手表101佩戴在右手腕上),为了达到更好的血压测量效果,用户可以将待智能穿戴手表101的表带紧贴手腕。
在一些示例中,智能穿戴手表101可以包括:气囊(如微泵气囊)、压力传感器及PPG传感器,或者还可包括ECG传感器;其中,气囊及压力传感器配合工作,通过示波法测量用户的血压值,将该血压值作为校准血压值,测量过程可以包括:通过微泵加压给气囊自动充气,充气一定时间后停止加压,开始放气,当气压降低到一定程度,血流就能通过血管,且具有一定的振荡波,振荡波传播到压力传感器,压力传感能实时检测到气囊内的压力及波动,然后基于该压力及波动基于示波法原理测算出用户的血压值,该血压值即为校准血压值。
其中,PPG传感器用于采集PPG信号,采集过程包括:PPG传感器的发光二极管向用户皮肤发射一种光电信号,通过PPG传感器的光敏二极管采集脉搏波,生成PPG信号。ECG传感器可用于采集ECG信号。相关技术中,可通过脉搏波特征参数测量法,根据PPG信号的预设特征的特征值与血压值的对应关系,得到血压值;该测量原理基于预先建立的PPG信号的预设特征的不同特征值与血压值的对应关系,在计算出实际测量的PPG信号的预设特征的特征值之后,根据该对应关系,确定该特征值对应的血压值,即为用户的血压值。或者,PPG传感器及ECG传感器可以配合使用,可以通过脉搏波速血压测量法,测量用户的血压值;该测量原理基于脉搏沿动脉传播的速率-脉搏波速度(Pulse Wave Velocity,PWV)与动脉血压之间具有的正相关性;常用的PWV测量方法可以包括计算脉搏波传输时间(Pulse Transit Time,PTT),也就是脉搏波从心脏传动至动脉上某一点所需的时间,具体包括:同步采集ECG信号和PPG信号,识别ECG信号的R波与PPG信号的最大值点,得到延迟时间PTT;通过预设的PTT与血压之间的数学模型关系(例如,PTT与血压之间的线性函数关系),最终得到收缩压 和舒张压的血压值。
需要说明的是,上述脉搏波特征参数法和脉搏波速血压测量法仅为示例,相关技术中,还可通过其他无创无袖带血压测量法获取用户的血压值,例如,脉搏波速血压测量法还可以结合脉搏波特征参数法获取血压值。
该场景中,为得到相比于基于PPG信号,或者PPG信号与ECG信号相结合得到的血压值精度更高的血压值,智能穿戴手表可以通过气囊、压力传感器得到校准血压值,再结合校准血压值和PPG传感器(或PPG传感器、ECG传感器等)得到的生理信号,得到更高精度的血压值,无需依赖其他设备即可完成血压校准,方便快捷。
图2示出根据本申请一实施例的另一种应用场景示意图;如图2所示,用户在校准血压时,将智能穿戴手表101及血压监护仪102分别佩戴在左手臂和右手臂上(图中示出将智能穿戴手表101佩戴在右手腕上、将血压监护仪102佩戴在左手臂上),还可以将智能穿戴手表101及血压监护仪102均佩戴在左手臂上或右手臂上(图中未示出),为了达到更好的血压测量效果,用户可以将智能穿戴手表101的表带紧贴手腕,将血压监护仪102的袖带紧贴手臂。示例性地,该智能穿戴手表101与血压监护仪102可以通过有线或无线(如,蓝牙、wifi等)方式连接。
其中,血压监护仪102可以为通过医疗认证的血压计,该血压监护仪102可以通过示波法测量用户的血压值。
在一些示例中,智能穿戴手表101可以包括:PPG传感器,或者还可包括ECG传感器。PPG传感器和ECG传感器的工作原理可参见上文。
该场景中,为得到相比于基于PPG信号,或者PPG信号与ECG信号相结合得到的血压值精度更高的血压值,智能穿戴手表可以通过血压监护仪测量校准血压值,再结合校准血压值和PPG传感器(或PPG传感器、ECG传感器等)得到的生理信号,得到更高精度的血压值,进一步提升校准准确性。
需要说明的是,本申请实施例描述的上述应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,针对其他相似的或新的应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合图1中所示的应用场景对本申请提供的血压监测方法进行说明。
图3示出了根据本申请一实施例的一种血压监测方法的流程图,如图3所示,该方法可以包括以下步骤:
步骤301、智能穿戴手表响应于用户的指令,进入校准模式。
该步骤中,在需要对图1中智能穿戴手表101进行血压校准时,用户可以触发进入校准模式的指令,智能穿戴手表响应于该指令,进入校准模式;示例性地,用户可以通过点击智能穿戴手表的显示屏上的校准模式的虚拟按键,触发进入校准模式的指令;示例性地,用户还可以通过按压智能穿戴手表设置的用于进入校准模式的物理按钮,触发进入校准模式的指令;示例性地,用户还可以通过语音指令的方式,触发进入校准模式的指令;示例性地,用户还可以通过快捷手势的方式,触发进入校准模式的指令;在实际应用中,用户还可以通过其它方式触发进入校准模式的指令,本申请实施例对此不作限定。
例如,图4示出根据本申请一实施例的一种智能穿戴手表进入校准模式的示意图。如图 4(a)所示,用户可以点击智能穿戴手表的“血压”应用程序的图标,触发智能穿戴手表101进行该应用程序,如图4(b)所示,智能穿戴手表101的显示屏上显示校准模式的虚拟按键401及测量模式的虚拟按键402;用户可以通过点击校准模式的虚拟按键401,触发进入校准模式的指令,智能穿戴手表101响应于该指令,进入校准模式。
步骤302、智能穿戴手表在不同校准场景中的每一校准场景下,测量用户的校准血压值,并采集用户的生理信号。
该步骤中,根据预设的不同校准场景,智能穿戴手表采集用户在不同校准场景下的生理信号。其中,生理信号可以包括:脉搏波信号、心电信号等,其中,心电信号是用户心脏在跳动时发出的,例如ECG信号等;脉搏波信号是用户血液在血管内流动与血管相互作用形成的,例如,PPG信号等。同时,智能穿戴手表的气囊及压力传感器配合工作,通过示波法测量用户的血压值,作为校准血压值。
在一种可能的实现方式中,智能穿戴手表在每一校准场景下,测量用户的校准血压值,并采集用户的生理信号,可以包括:智能穿戴手表可以通过示波法测量该校准场景下的校准血压值,并采集用户该场景下的生理信号;其中,测量该校准场景下的校准血压值的时间可以在采集用户该场景下的生理信号的时间之前,也可以在采集用户该场景下的生理信号的时间之后,示例性地,可以在通过示波法得到该场景下的校准血压值之后,间隔一定时间,开始采集用户在该校准场景下的生理信号,从而避免气压变化对生理信号的影响;例如,智能穿戴手表的气囊及压力传感器配合工作,得到该校准场景下的校准血压值,间隔30S后,智能穿戴手表的PPG传感器开始工作,采集用户的PPG信号,或者智能穿戴手表的PPG传感器及ECG传感器开始工作,采集用户的PPG信号及ECG信号。
考虑到人的体位、姿态、运动、饮食、药物、时间、季节、环境等等不同的环境下,均会带来血压的变化。血压的变化是通过改变人的心输出量(Cardiac Output,CO)、总外周阻力(Total peripheral resistance,TPR)等因素来实现,而CO又受到心率(Heart Rate,HR)和每搏输出量(Stroke Volume)的影响,TPR受到小动脉直径(Ateriolar radius,AR)和血液粘稠度(Blood viscosity)等的影响,而心率、每搏输出量、小动脉直径、血液粘稠度还可受到其他因素的影响。因此,本申请实施例中,校准场景可以为预设的场景,在不同的场景下,用户的身体状态或用户所处环境的状态不同,这样,通过设计场景诱导用户身体状态或用户所处环境的状态变化,在不同的身体状态或用户所处环境的状态下,血压影响因素如心率、心搏量、总外周阻力等发生变化,在各种身体状态或用户所处环境的状态下进行血压校准,获取用户在不同身体状态或用户所处环境的状态下的生理信号及校准血压值,从而充分捕捉用户的血压影响因素的变化,进而可以利用校准后的设备实现用户血压的准确跟踪。
示例性地,表1示出了几种预设的校准场景;如表1所示,校准场景可以包括:静坐场景、静卧场景、站立场景、脑力活动场景、放松/休息场景、无氧运动场景、有氧运动场景、寒冷场景、闷热场景等。
其中,静坐场景、静卧场景、站立场景为安静状态下的场景,这些场景表征了不同姿态时用户身体状态的改变。例如,静坐场景可以包括用户静坐活动,表征静坐姿态下的身体状态;静卧场景可以包括用户静卧活动,表征静卧姿态下的身体状态;站立场景可以包括用户静止站立活动,表征站立姿态下的身体状态。
其中,脑力活动场景、放松/休息场景为神经活动下的场景,这些场景表征了交感神经和/或副交感神经不同兴奋程度时用户身体状态的改变。例如,脑力活动场景可以包括:做数学题,问答题等活动,表征交感神经兴奋,刺激心率升高、心搏量增加,收缩静脉增加静脉回流,收缩动脉增加外周阻力,升高血压的身体状态;放松/休息场景可以包括瓦萨瓦尔(Vasalva)试验等活动,表征副交感神经兴奋,刺激心率降低,降低血压的身体状态。
其中,无氧运动场景、有氧运动场景为运动下的场景,这些场景表征了有氧运动和/或无氧运动时用户身体状态的改变。例如,无氧运动场景可以包括扎马步等活动,表征增加心率,增加心输出量,增加外周阻力,快速升高血压的身体状态。有氧运动场景可以包括骑车、台阶实验等活动,表征增加心率,增加心输出量,减少外周阻力,升高血压的身体状态。
其中,寒冷场景、闷热场景为与温度有关的场景,这些场景表征了用户所处环境的状态的改变。例如,寒冷场景可以包括冷水刺激等活动,用户处在该环境下,外周血管收缩,增加外周阻力,升高血压;闷热场景可以包括热水刺激等活动,用户处在该环境下,外周血管舒张,减少外周阻力,降低血压。
表1-校准场景表
Figure PCTCN2022072749-appb-000001
下面以静坐场景、静卧场景、脑力活动场景、放松/休息场景、无氧运动场景为例,对不同校准场景下,用户通过智能穿戴手表完成血压校准的过程进行说明。
图5示出根据本申请一实施例的多个校准场景下血压校准的示意图;智能穿戴手表提供针对静坐场景、静卧场景、脑力活动场景、放松/休息场景的提示信息,从而提示用户完成符 合各校准场景的身体活动;在开始一校准场景下血压校准之后,可以在智能穿戴手表的显示屏上提示针对该校准场景的身体活动,从而提示用户该校准场景下用户需完成的身体活动,另外,智能穿戴手表还可以以语言播报的形式,提醒用户需完成的身体活动,智能穿戴手表还可以通过语音、图片、视频等形式向用户进行身体活动的演示指导;例如,如图5(a1)所示,在开始静卧场景下血压校准之后,显示屏上显示“请静卧1分钟”字样,从而提醒用户需要该校准场景下用户需保持静卧姿态1分钟;如图5(a2)所示,在开始静坐场景下血压校准之后,显示屏上显示“请静坐1分钟”字样,从而提醒用户需保持静坐姿态1分钟;如图5(a3)所示,在开始脑力活动场景下血压校准之后,显示屏上可以显示用户按照一定规则进行数学运算一分钟或者显示问答题目让用户作答,如,可以显示“请进行从500连续减7的计算一分钟”字样,从而提醒用户需进行从500连续减7的计算(即500-7=493,493-7=486……)一分钟;如图5(a4)所示,在开始放松/休息场景下血压校准之后,显示屏上显示“Valsaval活动一分钟(请吸气后紧闭口鼻用力吐气5次)”字样,从而提醒用户需进行Valsaval活动一分钟,具体需在一分钟内吸气后紧闭口鼻用力吐气5次;在提示用户一校准场景下需完成的身体活动之后,如图5(b)所示,智能穿戴手表的显示屏上显示“倒计时即将开始”字样,从而提醒用户准备进行符合该校准场景的身体活动,例如,准备保持静卧姿态1分钟、准备保持静坐姿态1分钟、准备数学运算一分钟、准备进行Valsaval活动一分钟,另外,智能穿戴手表还可以以语言播报的形式,提醒用户倒计时即将开始;如图5(c)所示,智能穿戴手表的显示屏上可以显示“倒计时”字样,还可以显示倒计时的时间,还可以显示“沙漏”、“进度条”等动态图案,从而提醒用户继续进行符合该校准场景的身体活动,还可以提醒用户还需进行符合该校准场景的身体活动的时间,另外,智能穿戴手表还可以以语言播报的形式,提醒继续进行符合该校准场景的身体活动,还可以提醒用户还需进行符合该校准场景的身体活动的时间;如图5(d)所示,在倒计时结束之后,智能穿戴手表的显示屏上显示“血压测量中,请保持静止”字样,从而提醒用户保持静止,另外,智能穿戴手表还可以以语言播报的形式,提醒用户保持静止;例如,静卧场景下,可以提醒用户保持卧姿静止,静坐场景、脑力活动场景、放松/休息场景下可以提醒用户保持坐姿静止;此时,智能穿戴手表的气囊及压力传感器配合工作测量用户的血压,智能穿戴手表的PPG传感器(或,PPG传感器及ECG传感器)采集用户的生理信号。如图5(e)所示,智能穿戴手表的显示屏上显示“测量完毕”字样,从而提醒用户该校准场景下的一次血压测量完毕,另外,智能穿戴手表还可以以语言播报的形式,提醒用户该校准场景下的一次血压测量完毕。
图6示出根据本申请一实施例的一种无氧运动场景下血压校准的示意图;智能穿戴手表提供针对无氧运动场景的提示信息,从而提示用户完成符合无氧运动场景的身体活动;在开始无氧运动场景下血压校准之后,依次执行图6(a)-6(c)流程,如图6(a)所示,智能穿戴手表的显示屏上显示“请扎马步到极限,然后坐下点击开始测量”字样及开始的虚拟按钮,从而提醒用户该校准场景下需扎马步到极限,然后坐下点击开始测量,另外,智能穿戴手表还可以以语言播报的形式,提醒用户需扎马步到极限,然后坐下点击开始测量,智能穿戴手表还可以通过语音、图片、视频等形式向用户进行扎马步到极限的演示指导;用户在扎马步到极限,并且保持坐姿的前提下,点击该开始按钮,触发开始血压测量指令,智能穿戴手表响应于该指令,开始血压测量,如图6(b)所示,智能穿戴手表的显示屏上显示“血压测量中,请保持静止”字样,从而提醒用户保持静止,另外,智能穿戴手表还可以以语言播 报的形式,提醒用户保持坐姿静止;此时,智能穿戴手表的气囊及压力传感器配合工作测量用户的校准血压值,智能穿戴手表的PPG传感器(或,PPG传感器及ECG传感器)采集用户的生理信号。如图6(c)所示,智能穿戴手表的显示屏上显示“测量完毕”字样,从而提醒用户无氧运动场景下的血压测量完毕,另外,智能穿戴手表还可以以语言播报的形式,提醒用户无氧运动场景下的一次血压测量完毕。
在一种可能的实现方式中,智能穿戴手表可以在标准场景下的每个校准场景中,测量用户的校准血压值,并采集用户的生理信号。
例如,图7示出根据本申请一实施例的一种校准场景选择的示意图;如图7所示,用户点击图7(a)中的校准模式虚拟按钮401,触发智能穿戴手表101在进入校准模式,在图7(b)所示的校准模式中,智能穿戴手表101的显示屏上显示标准场景的虚拟按键1001及自定义场景的虚拟按键1002;用户可以通过点击标准场景的虚拟按键1001,触发在标准场景进行血压校准的指令,智能穿戴手表101响应于该指令,执行标准场景下的血压校准流程。
其中,标准场景可以包括上述预设的多个校准场景的固定组合,且每个校准场景具有固定执行顺序,示例性地,标准场景可以包括:依次执行静坐场景、静卧场景、脑力活动场景、放松/休息场景、无氧运动场景。需要说明的是,标准场景所包括的校准场景类别、数量,及各校准场景的执行顺序可以根据需求设定,本申请实施例对此不作限定。
这样,用户通过触发智能穿戴设备标准场景下的血压校准流程,从而可以在标准场景下完成血压校准,结合上文血压的影响因素分析可知,标准场景中涵盖了可以诱导心率、心搏量、总外周阻力等血压影响因素产生变化的多个校准场景。用户无需进行其他设置操作,即可在标准场景下完成血压校准,操作简单方便,且校准效果好。例如,用户第一次使用智能穿戴手表进行血压校准时,可以选择标准场景,在标准场景下完成血压的校准,可以通过一次校准获取用户血压影响因素的特征,进而确保后续测量阶段血压值预测更准确。
图8示出根据本申请一实施例的一种标准场景下的血压校准流程图;如图8所示,在开始标准场景下的血压校准之后,智能穿戴手表可依次执行步骤1101、静卧场景下血压校准,步骤1102、静坐场景下血压校准,步骤1103、脑力活动场景下血压校准,步骤1104、放松/休息场景下血压校准,步骤1105、无氧运动场景下血压校准;从而完成标准场景下的血压校准。本申请实施例不限制这些步骤的执行顺序。
示例性地,智能穿戴手表可以通过执行上述图5及图6中的流程,依次完成静卧场景、静坐场景、脑力活动场景、放松/休息场景及无氧运动场景下的血压校准,至此,完成标准场景下的血压校准流程。
在一种可能的实现方式中,智能穿戴手表可以在用户自定义场景下的每一个校准场景中,测量用户的校准血压值,并采集用户的生理信号。
其中,自定义场景可以包括上述预设的多个校准场景,及每个校准场景的执行顺序,自定义场景所包括的校准场景类别、数量,及各校准场景的执行顺序可以由用户设定,示例性地,用户可以在预设的多个候选校准场景中选择出多个校准场景,并以预设的各校准场景的先后顺序作为各校准场景的执行顺序,若用户依次选择了静坐场景、静卧场景、脑力活动场景、放松/休息场景、无氧运动场景,则自定义场景可以包括:依次执行静坐场景、静卧场景、脑力活动场景、放松/休息场景、无氧运动场景。
例如,如图7所示,智能穿戴手表101在进入校准模式后,用户可以通过点击自定义场 景的虚拟按键1002,触发在自定义场景进行血压校准的指令,智能穿戴手表101响应于该指令,执行自定义场景下的血压校准流程。
其中,自定义场景可以为从智能穿戴手表提供的多个校准场景中,选定的校准场景,例如,图9示出根据本申请一实施例的一种设定自定义场景的示意图,用户可以通过点击9(a)中的自定义场景虚拟按钮1002,进入图9(b)中的自定义选择页面,此时智能穿戴手表的显示屏上可以向用户展示可供选取的校准场景,该校准场景可以包括上述表1所示的多个校准场景(图中仅示出静坐场景、静卧场景、脑力活动场景),用户可以根据自己日常行为习惯,通过上下滑动、点击虚拟按钮等操作,选定自定义场景。这样,用户根据自己的频率最多的日常活动选择校准场景,例如,若用户日常在电脑前办公,则可以选择静坐场景及脑力活动场景,作为自定义场景。这样,用户可自行根据自己日常活动选择最适合、最匹配的校准场景完成校准,可以使得校准更个性化、更具针对性,有效减少校准时间,提高了用户体验。
图10示出根据本申请一实施例的一种自定义场景下的血压校准流程图;如图10所示,若用户自定义场景包括:依次执行静坐场景、静卧场景、脑力活动场景、无氧运动场景,在开始自定义场景下的血压校准之后,智能穿戴手表可以依次执行步骤1301、静卧场景下血压校准,步骤1302、静坐场景下血压校准,步骤1303、脑力活动场景下血压校准,步骤1304、无氧运动场景下血压校准;从而完成自定义场景下的血压校准。
示例性地,智能穿戴手表可以通过执行上述图5(a1)/5(a2)/5(a3)-5(e)流程及图6中的流程,依次完成静卧场景、静坐场景、脑力活动场景及无氧运动场景下的血压校准,至此,完成用户自定义场景下的血压校准流程。
在一种可能的实现方式中,智能穿戴手表可以根据用户属性,确定血压校准时间。
其中,用户属性可以包括:用户为高血压服药人员或其他人员。血压校准时间可以为:针对每一校准场景进行血压校准的时间,还可以为针对上述标准场景或自定义场景的校准时间。
例如,图11A-11B示出根据本申请一实施例的一种确定用户属性的示意图;如图11A所示,在图11A(a)中,用户通过点击校准模式虚拟按钮401,触发智能穿戴手表101在进入校准模式,在图11A(b)中,智能穿戴手表101的显示屏上显示高血压服药人员的虚拟按键1401及其他人员的虚拟按键1402;用户可以通过点击高血压服药人员的虚拟按键1401,触发针对高血压服药人员的血压校准的指令,智能穿戴手表101响应于该指令,执行针对高血压服药人员的血压校准流程。若用户点击其他人员的虚拟按键1402,则智能穿戴手表101执行上述标准场景下的血压校准流程或自定义场景下的血压校准流程。
需要说明的是,图11A和图11B中用户选择是否为高血压服药人员与上述图8中用户选择标准场景或自定义场景的操作,不分先后,即用户可以先选择标准场景或自定义场景,再进一步选择自己是否为高血压服药人员,如图11B所示;也可以先选择自己是否为高血压服药人员,再进一步选择标准场景或自定义场景,如图11A所示。
在一种可能的实现方式中,在用户为高血压服药人员的情况下,可以在用户体内高血压药物浓度最高和药物浓度最低的时间点分别进行一次血压校准。这样,针对高血压服药人群,在药物浓度最高和药物浓度最低的时候分别进行一次校准,从而考虑到药物浓度的变化对用户血压的影响,从而使得测量的血压值更准。
其中,药物浓度最高和药物浓度最低的时间点可以根据用户所服用的降压药的产品说明 书或者根据相关公开资料确定。如表2所示,为部分降压药物浓度达到峰值时间说明示例。
表2:部分高血压降压药物浓度达到峰值时间说明
药品名称 达峰时间 半衰期 用法用量
氨氯地平 6~12小时 35~50小时 2.5~10mg,qd
非洛地平缓释片 2.5~5小时 11~16小时 5~10mg,qd
硝苯地平控释片 6~12小时   30~60mg,qd
尼群地平 1~2小时 10~22小时 10~20mg,qd~bid
拉西地平 0.5~1.5小时 12~15小时 4~8mg,qd
乐卡地平 1.5~3小时 8~10小时 10~20mg,qd
马尼地平 1~4小时 3.9~7.9小时 10~20mg,qd
西尼地平 2.8~3.7小时 5.2~8.1小时 5~10mg,qd
贝尼地平 0.8~1.1小时 0.9~1.7小时 2~12mg,qd
示例性地,用户可以点击上述图11A和图11B中各高血压服药人员的虚拟按键1401,根据智能穿戴手表的显示屏显示的提示信息,或者语音提示信息进行选择,该提示信息可以包括高血压药物不同类型、不同剂量及不同服药的时间的选项,用户可以选择所服用的高血压药物类型、剂量及服药的时间,智能穿戴手表根据高血压药物类型和剂量,可以通过搜索上述预存在智能穿戴手表内的高血压降压药物浓度达到峰值时间说明(如表2)等方式,确定服药后药物浓度达到最高的时间点及浓度达到最低的时间点;同时,也可以将用户服药前的时间点作为浓度达到最低的时间点;从而提醒用户在服药前对进行第一次血压校准,并在用户完成第一次血压校准之后,药物浓度达到最高的时间点时,提醒用户进行第二次血压校准,可通过用户在所提醒的时间手动触发来进行校准。
图12示出根据本申请一实施例的一种针对高血压服药人员的血压校准流程图;用户为高血压服药人员,用户通过提示信息选择的药品名称为马尼地平,剂量为20mg,服药时间为9:00,则智能穿戴手表根据上述表2可以确定药物浓度达到最高的时间点为服药后4小时,即13:00,则确定第一次血压校准的时间为13:00,药物浓度达到最低的时间点约为服药后7.9小时,即约为17:00,则确定第二次血压校准时间为17:00;同时,若用户自定义场景包括:静坐场景、静卧场景、脑力活动场景、无氧运动场景;智能穿戴手表在13:00,提醒用户进行血压校准,若用户触发自定义血压校准,则智能穿戴手表可以依次执行步骤1501、静卧场景下血压校准,步骤1502、静坐场景下血压校准,步骤1503、脑力活动场景下血压校准,步骤1504、无氧运动场景下血压校准;从而完成第一次血压校准。在结束第一次血压校准之后,智能穿戴手表可以在17:00,通过语音、振动、显示屏闪烁等方式提醒用户进行第二次血压校准;若用户触发自定义血压校准,则智能穿戴手表可以依次执行步骤1501、静卧场景下血压校准,步骤1502、静坐场景下血压校准,步骤1503、脑力活动场景下血压校准,步骤1504、无氧运动场景下血压校准;从而完成第二次血压校准。
示例性地,在上述进行第一次血压校准或第二次血压校准的过程中,智能穿戴手表可以通过执行上述图5(a1)/5(a2)/5(a3)-5(e)流程及图6中的流程,依次完成静卧场景、静坐场景、脑力活动场景下血压校准及无氧运动场景下的血压校准,至此,完成第一次血压校准或第二次血压校准。
步骤303、智能穿戴手表根据不同校准场景下的校准血压值及采集的生理信号,进行血压值校准。
示例性地,校准场景中采集的生理信号包括PPG信号时,基于脉搏波特征参数法,可以通过PPG信号计算预设特征的特征值,得到特征矩阵,进而利用该校准场景中获取的校准血压值标记该特征矩阵所对应的血压值,优化PPG信号的预设特征的特征值与血压值的对应关系,从而完成校准。
下面以脉搏波特征参数法为例,对血压值校准及进一步的血压测量过程进行说明。
智能穿戴手表根据上述一校准场景下采集的PPG信号,计算预设特征的特征值,预设特征的数量可以为一个或多个,示例性地,预设特征可以包括:脉冲宽度、PPG信号周期、PPG信号振幅、PPG信号波形的波峰值、波谷值等等。
智能穿戴手表根据预设特征的特征值,生成该校准场景对应的特征矩阵,该特征矩阵即可表征用户在该校准场景下的身体状态;并利用该校准场景下得到的校准血压值标记该特征矩阵所对应的血压值。示例性地,特征矩阵可以表示为
Figure PCTCN2022072749-appb-000002
其中,m表示特征的数量,j表示该校准场景的本次校准对应的编号,例如上文中静卧场景下,静卧1分钟期间进行的校准作为该场景的一次校准。
Figure PCTCN2022072749-appb-000003
分别为不同预设特征对应的特征值。该校准场景的本次校准得到的校准血压值即为X j,则利用X j标记
Figure PCTCN2022072749-appb-000004
从而得到校准血压值与该特征矩阵的对应关系,记为
Figure PCTCN2022072749-appb-000005
这样,针对不同的校准场景下的每次血压校准,重复上述操作,可得到每一校准场景下的每次血压校准对应的特征矩阵,及该特征矩阵对应的校准血压值,从而可以建立校准血压值与PPG信号的特征矩阵之间的对应关系,将特征矩阵及对应关系保存至智能穿戴手表中,这样,在之后的血压测量中,根据测量的用户当前的PPG信号的特征矩阵及存储的校准血压值与PPG信号特征之间的对应关系,预测得到用户的当前的血压值。
进一步地,该监测方法还可以包括:利用上述血压校准后的智能穿戴手表,测量用户的血压。其中,用户可以通过佩戴血压校准后的智能穿戴手表,实现24小时连续血压监测。用户可以在某一场景下,利用校准后的智能穿戴手表,完成血压测量。例如,用户可以在保持坐姿静止的状态下,通过点击上述图4中智能穿戴手表101的显示屏上测量模式的虚拟按键401,触发进入测量模式的指令,智能穿戴手表101响应于该指令,进入测量模式,开始血压测量,采集PPG信号,根据该PPG信号预测血压值,并显示该预测的血压值。
在一种可能的实现方式中,智能穿戴手表在测量模式下,采集PPG信号,根据该PPG信号预测血压值,可以包括:根据该PPG信号,计算预设特征的特征值,根据预设特征的特征值,生成当前测量对应的特征矩阵,在预存的特征矩阵中,确定与该当前测量对应的特征矩阵相似的一个或多个预存特征矩阵,从而得到当前测量的血压值。
示例性地,可以利用状态空间表示特征矩阵所在的范围,其中,上述不同的校准场景下得到的特征矩阵可以作为该状态空间中已知点,每个已知点对应于一个校准血压值;当前测量对应的特征矩阵则为状态空间中待确定点,从而根据该待确定点与状态空间中的一个或多个已知点的距离,及已知点对应的校准血压值,得到该待确定点的血压值。这样,在上述通过预设的校准场景下完成的每次血压校准,可以诱导用户的心率、每搏输出量、心输出量、外周阻力等影响血压因素的改变,获取用户不同校准场景下得到的特征矩阵,不同特征矩阵即组成状态空间。
例如,图13示出根据本申请一实施例的一种状态空间的示意图,如图13所示,该状态空间中每一个点表示在不同的校准场景下,每次校准所得到的PPG信号的特征矩阵,图中不 同圆点表示上述标准场景下每次校准所得到的特征矩阵,其中,相同图案的圆点表示同一校准场景下得到的特征矩阵。该状态空间中,第j个点
Figure PCTCN2022072749-appb-000006
对应的血压值X j可以表示为
Figure PCTCN2022072749-appb-000007
其中,
Figure PCTCN2022072749-appb-000008
表示第j个点的m个特征的值。
图14示出根据本申请一实施例的一种利用状态空间预测血压的示意图,如图14所示,在当前血压测量过程中,所得到的PPG信号的特征矩阵为(y 1,y 2,…,y m),即图中三角形所代表的点;当前血压值可以记作Y(y 1,y 2,…,y m),则用户本次血压测量对应的状态空间中的点与状态空间中各点之间的距离可以表示为:
Figure PCTCN2022072749-appb-000009
其中,m表示特征矩阵所包含的特征的数量,i表示特征矩阵中的第i个特征,X j表示状态空间中第j个点对应的血压值,D j表示本次测量对应的状态空间中的点与状态空间中第j个点的距离,
Figure PCTCN2022072749-appb-000010
表示第j个点的第i个特征的值,y i表示所得到的PPG信号的特征矩阵第i个特征的值;p为可选参数,一般可选择为2。
对上述得到的次血压测量对应的状态空间中点与状态空间中各点之间的距离(即多个D j(Y,X j))进行归一化处理,使得
Figure PCTCN2022072749-appb-000011
从而确定状态空间中的n个点,即图14中圆形区域内的点,利用这n个点对应的血压值,通过公式:
Figure PCTCN2022072749-appb-000012
则可预测本次血压测量的血压值Y。
这样,在测量血压时,根据当前测量场景下得到的特征矩阵与预存的特征矩阵,选取与当前测量场景最相似的一次或几次的校准血压值,对这些校准血压值进行加权求和,得到预测得到当前测量的血压值,加权系数可与校准血压值对应的特征矩阵与当前测量场景下得到的特征矩阵之间的距离负相关,即,距离越小,相应的校准血压值所占权重越大,由此增加了血压测量范围,提高了血压测量的准确度。
从上述校准和预测的过程可以看出,血压校准的次数越多,校准场景越丰富,则状态空间的点越多,分布范围越丰富,则血压预测的准确度越高;本申请实施例中,在不同的校准场景下,用户的血压影响因素如心率、心搏量、总外周阻力等发生变化,在不同校准场景下进行校准,从而丰富状态空间中的点的数量及分布范围,使得实际测量得到的血压预测值更准。
进一步地,考虑到用户的身体状态或用户所处环境的状态会不断发生变化,可以定期或不定期的对智能穿戴手表进行血压校准,从而提供校准后的智能穿戴手表测量血压的准确度。
示例性地,智能穿戴手表可以在监测到智能穿戴手表所测得的血压值异常时,提醒用户进行血压校准。例如,当用户配置智能穿戴手表进行连续血压监测时,智能穿戴手表气囊及压力传感器可以定期(如每1天)测量用户的血压值,并与同一时间点或邻近时间点智能穿戴手表通过PPG传感器测得的血压值进行比较,若超过预设阈值,则提醒用户进行血压校准,从而实现了智能穿戴手表血压测量精度的自我监测。
示例性地,智能穿戴手表可以周期提醒用户进行血压校准;其中,该周期可以是智能穿戴手表出厂预设的周期,也可以是智能穿戴手表响应于用户的血压校准周期设置操作,所确定的周期,例如,用户第一次使用智能穿戴手表的血压测量功能时,智能穿戴手表可以通过显示屏可以向用户显示血压校准周期设置选项,如:1天、1周、一个月等,智能穿戴手表根据用户的周期选择操作,确定血压校准周期,进而在满足血压校准周期时,提醒用户进行血压校准。
示例性地,用户还可以自主选择进行血压校准,例如,用户第一次使用智能穿戴手表的血压测量功能时,或者用户长时间未进行血压校准时,智能穿戴手表可以提醒用户进行血压校准,用户可以自主选择是否进行血压校准;再例如,用户可以在感觉自己身体状态或用户所处环境的状态发生变化时,进行血压校准。
本申请实施例中,通过提示信息提示用户完成符合多个校准场景的身体活动;用户完成符合不同校准场景的身体活动后,用户的血压影响因素如心率、心搏量、总外周阻力等发生变化。在血压校准阶段,测量各校准场景下用户的校准血压值并采集对应的生理信号,充分捕捉用户的血压影响因素的变化,实现多个校准场景下的血压校准;在血压测量阶段,根据采集到的生理信号,以及上述各校准场景下校准血压值和对应的生理信号,确定所测量的用户的血压值,血压值的精度更高,从而实现用户血压的准确测量;同时,血压校准过程无需借助其他设备,操作方便,提高了用户体验。
下面结合图2中所示的应用场景对本申请提供的血压监测方法进行说明。
图15示出根据本申请一实施例的一种血压监测方法的流程图,如图15所示,该方法可以包括以下步骤:
步骤1801、智能穿戴手表响应于用户的指令,进入校准模式。
该步骤中进入校准模式的方式可参照上述图3中步骤301中相关介绍,此处不再赘述。
示例性地,在如图2中,若智能穿戴手表101可以与血压监测仪102通过蓝牙或者WI FI等距离通信方式连接,则智能穿戴手表进入校准模式后,可以向该血压监测仪发送准备血压测量的指令,从而使得血压监测仪进行测量血压的准备状态。
示例性地,在如图2中,在智能穿戴手表101进入校准模式,用户可以手动操作方式,使得血压监测仪102进行测量血压的准备状态。
步骤1802、智能穿戴手表在不同校准场景下,采集用户的生理信号,并获取血压监测仪所测的校准血压值。
该步骤中,根据预设的不同校准场景,智能穿戴手表采集用户在不同校准场景下的生理信号。同时,血压监测仪通过示波法测量用户的血压值,作为校准血压值。
在一种可能的实现方式中,智能穿戴手表在不同校准场景下,采集用户的生理信号,并获取血压监测仪所测的校准血压值,可以包括:血压监测仪可以通过示波法测量该校准场景下的校准血压值,同时,智能穿戴手表采集用户的生理信号;其中,血压监测仪测量该校准场景下的校准血压值的时间可以在采集用户该场景下的生理信号的时间之前,也可以在采集用户该场景下的生理信号的时间之后;血压监测仪测量该校准场景下的校准血压值的时间还可以与采集用户该场景下的生理信号的时间相同,即测量校准血压值的同时,采集用户的生理信号。
示例性地,智能穿戴手表可以向血压监测仪发送开始测量血压的指令;与此同时,智能穿戴手表的PPG传感器开始工作,采集用户的PPG信号,或者智能穿戴手表的PPG传感器及ECG传感器开始工作,采集用户的PPG信号及ECG信号。血压监测仪接收到该指令后,通过示波法得到该场景下的校准血压值,并将该校准血压值发送到智能穿戴设备。例如,智能穿戴手表及血压监护仪分别佩戴在用户的不同侧手臂上时,智能穿戴手表在开始采集用户的生理信号的同时,向血压监测仪发送开始测量血压的指令。这样,可以同步测量用户的校准血压及生理信号。
示例性地,智能穿戴手表可以向血压监测仪发送开始测量血压的指令,血压监测仪接收到该指令后,通过示波法得到该场景下的校准血压值,并将该校准血压值发送到智能穿戴设备;该智能穿戴设备在接收到该校准血压值之后,或者间隔一定时间之后,开始采集用户在该校准场景下的生理信号。例如,智能穿戴手表及血压监护仪分别佩戴在用户的不同侧手臂上时,智能穿戴手表可以在接收到该校准血压值之后,或者间隔30S之后,智能穿戴手表的PPG传感器开始工作,采集用户的PPG信号,或者智能穿戴手表的PPG传感器及ECG传感器开始工作,采集用户的PPG信号及ECG信号。这样,可以避免血压监测仪测量血压时的气压变化对采集生理信号的影响,提高测量的准确性。
示例性地,用户可以通过手动操作,触发血压监测仪测量开始工作,与此同时,智能穿戴手表的PPG传感器开始工作,采集用户的PPG信号,或者智能穿戴手表的PPG传感器及ECG传感器开始工作,采集用户的PPG信号及ECG信号。血压监测仪及智能穿戴手表测量完毕后,用户可以将该血压监测仪得到的校准血压值输入到智能穿戴手表。例如,智能穿戴手表及血压监护仪分别佩戴在用户的不同侧手臂上时,用户可以通过手动操作,触发血压监测仪测量开始工作,同时,智能穿戴手表开始采集用户的生理信号。这样,可以同步测量用户的校准血压及生理信号。示例性地,用户可以通过手动操作,触发血压监测仪测量,得到该场景下的校准血压值;然后,用户可以将该校准血压值输入到智能穿戴手表,智能穿戴手表接收到用户输入的该校准血压值之后,或间隔一定时间之后(如30S),开始采集用户在该校准场景下的生理信号,或者,用户可以通过点击开始按钮等操作触发智能穿戴手表的血压测量功能,使得智能穿戴手表开始采集用户在该校准场景下的生理信号,采集完毕后,用户在智能穿戴手表输入校准血压值。
该步骤中,校准场景、生理信号等内容可参照上述图3中步骤301中相关介绍,此处不再赘述。
下面以静坐场景、静卧场景、脑力活动场景、放松/休息场景、无氧运动场景为例,对不同校准场景下,用户通过智能穿戴手表及血压监测仪完成血压校准的过程进行说明。
示例性地,在智能穿戴手表可以与血压监测仪通过蓝牙或者WI FI等距离通信方式连接时,静坐场景、静卧场景、脑力活动场景、放松/休息场景、无氧运动场景下的血压校准流程可参照前述图5-图6中的相关介绍,此处不再赘述,与上述图5-图6不同之处在于,在智能穿戴手表的显示屏上显示“血压测量中,请保持静止”字样时,智能穿戴手表可以向血压监测仪发送指令,血压监测仪响应于该指令测量用户的校准血压值,与此同时,智能穿戴手表开始采集用户的生理信号;血压监测仪将该校准血压值发送到智能穿戴手表。或者,智能穿戴手表还可以向血压监测仪发送指令,血压监测仪响应与该指令测量用户的校准血压值,并将该校准血压值发送到智能穿戴手表,智能穿戴手表在收到该校准血压值后,开始采集用户的生理信号,或者间隔一定时间,开始采集用户的生理信号。这样,在校准过程中,用户通过简单操作即可完成,提高了用户体验。
示例性地,在智能穿戴手表及血压监护仪分别佩戴在用户的不同侧手臂上,用户通过手动操作,触发血压监测仪测量时,静坐场景、静卧场景、脑力活动场景、放松/休息场景、无氧运动场景下的血压校准流程如下述图16-图17中所示。这样,对血压监测仪的配置不进行限定,经济性高,提高了适用范围。
图16示出根据本申请一实施例的一种多个校准场景下血压校准的示意图;智能穿戴手表 提供针对静坐场景、静卧场景、脑力活动场景、放松/休息场景的提示信息,从而提示用户完成符合各校准场景的身体活动;提示方式可以参见上文相关表述。如图16(a1)-16(a4)所示为静坐场景、静卧场景、脑力活动场景、放松/休息场景的提示信息,提示信息的内容可以参见上文相关表述,在提示用户一校准场景下需完成的身体活动之后,如图16(b)所示,智能穿戴手表的显示屏上显示“倒计时即将开始”字样,从而提醒用户准备进行符合该校准场景的身体活动,另外,智能穿戴手表还可以以语言播报的形式,提醒用户倒计时即将开始;如图16(c)所示,智能穿戴手表的显示屏上可以提示“倒计时”,提醒用户继续进行符合该校准场景的身体活动,还可以提醒用户还需进行符合该校准场景的身体活动的时间;提示“倒计时”的方式可参照前文相关表述;如图16(d)所示,在倒计时进行最后阶段,如,进入最后5秒时,智能穿戴手表的显示屏上可以显示“请触发血压计测量”字样,从而提醒用户智能穿戴手表血压测量即将开始,可以通过点击、按键等方式,触发血压监护仪执行测量血压操作,另外,智能穿戴手表还可以以语言播报、屏幕闪烁等形式,进行相应提醒。如图16(e)所示,智能穿戴手表的显示屏上显示“血压测量中,请保持静止”字样,从而提醒用户保持静止,另外,智能穿戴手表还可以以语言播报的形式,提醒用户保持静止,例如,静卧场景下,可以提醒用户保持卧姿静止,静坐场景、脑力活动场景、放松/休息场景下可以提醒用户保持坐姿静止;此时,智能穿戴手表PPG传感器(或,PPG传感器及ECG传感器)采集用户的生理信号,与此同时,血压监护仪测量用户血压。如图16(f)所示,智能穿戴手表的显示屏上显示“测量完成,请输入血压计显示的血压值”字样,从而提醒用户智能穿戴手表的血压测量已经完成,并提醒用户将血压监护仪显示的血压值输入到智能穿戴手表中,另外,智能穿戴手表还可以以语言播报的形式,进行相应提醒。如图16(g)所示,在智能穿戴手表接收到用户输入的血压值后,智能穿戴手表的显示屏上显示“测量完毕”字样,从而提醒用户该校准场景下的一次血压测量完毕,另外,智能穿戴手表还可以以语言播报的形式,提醒用户该校准场景下的一次血压测量完毕。
图17示出根据本申请一实施例的一种无氧运动场景下血压校准的示意图;智能穿戴手表提供针对无氧运动场景的提示信息,从而提示用户完成符合无氧运动场景的身体活动;在开始无氧运动场景下血压校准之后,依次执行图17(a)-17(d)流程,如图17(a)所示,智能穿戴手表的显示屏上显示“请扎马步到极限,然后坐下点击开始测量,并触发血压计测量”字样及开始测量的虚拟按钮,从而提醒用户该校准场景下需扎马步到极限,然后坐下点击开始测量的虚拟按钮,同时提醒用户可以通过点击、按键等方式,触发血压监护仪执行测量血压操作,提醒用户扎马步到极限的其他方式可参照前文相关表述;用户在扎马步到极限,并且保持坐姿的前提下,通过点击等方式触发血压监护仪执行测量血压操作,同时点击该开始按钮,触发开始血压测量指令,智能穿戴手表响应于该指令,开始血压测量,如图17(b)所示,智能穿戴手表的显示屏上显示“血压测量中,请保持静止”字样,从而提醒用户保持静止,另外,智能穿戴手表还可以以语言播报的形式,提醒用户保持坐姿静止;此时,智能穿戴手表的PPG传感器(或,PPG传感器及ECG传感器)采集用户的生理信号,与此同时,血压监护仪测量用户血压。如图17(c)所示,智能穿戴手表的显示屏上显示“测量完成,请输入血压计显示的血压值”字样,从而提醒用户在血压监护仪的血压测量完成后,将血压监护仪显示的血压值输入到智能穿戴手表中,另外,智能穿戴手表还可以以语言播报的形式,进行相应提醒。如图17(d)所示,智能穿戴手表的显示屏上显示“测量完毕”字样,从而 提醒用户无氧运动场景下的一次血压测量完毕,另外,智能穿戴手表还可以以语言播报的形式,提醒用户无氧运动场景下的一次血压测量完毕。
在一种可能的实现方式中,智能穿戴手表在可以在标准场景下,采集用户的生理信号,并获取血压监测仪所测的校准血压值。
其中,标准场景的具体内容可参照前文相关介绍,此处不再赘述。
示例性地,智能穿戴手表可以通过执行上述图16及图17的流程,依次完成静卧场景、静坐场景、脑力活动场景、放松/休息场景及无氧运动场景下的血压校准,至此,完成标准场景下的血压校准流程。
在一种可能的实现方式中,智能穿戴手表可以在用户自定义场景下,采集用户的生理信号,并获取血压监测仪所测的校准血压值。
其中,自定义场景的具体内容可参照前文相关介绍,此处不再赘述。
示例性地,智能穿戴手表可以通过执行上述图16(a1)/16(a2)/16(a3)流程及图17的流程,依次完成静卧场景、静坐场景、脑力活动场景、及无氧运动场景下的血压校准,至此,完成用户一种自定义场景下的血压校准流程。
在一种可能的实现方式中,智能穿戴手表可以根据用户属性,确定血压校准时间。
其中,用户属性,确定血压校准时间的方式等内容可参照前文相关介绍,此处不再赘述。
示例性地,智能穿戴手表可以在确定的血压校准时间,执行上述标准场景或自定义场景的操作。
步骤1803、智能穿戴手表根据不同校准场景下的校准血压值及采集的生理信号,进行血压值校准。
该步骤中具体实现方式可参照上述图3中步骤303中相关介绍,此处不再赘述。
本申请实施例中,通过提示信息提示用户完成符合多个校准场景的身体活动;用户完成符合不同校准场景的身体活动后,用户的血压影响因素如心率、心搏量、总外周阻力等发生变化。在血压校准阶段,接收各校准场景下用户的校准血压值并采集对应的生理信号,充分捕捉用户的血压影响因素的变化,实现多个校准场景下的血压校准;在血压测量阶段,根据采集到的生理信号,以及上述各校准场景下校准血压值和对应的生理信号,确定所测量的用户的血压值,血压值的精度更高,从而实现用户血压的准确测量;同时,血压校准过程可以将通过医疗认证的血压监护仪测量的血压值作为校准血压值,可以进一步提升校准准确性。
图18示出根据本申请一实施例的一种血压监测方法的流程图,该方法可以在电子设备上执行,例如可在图1所示的场景中的可穿戴设备上执行,如图18所示,该方法可以包括以下步骤:
步骤1901、响应于第一操作,电子设备进入校准模式;
步骤1902、显示第一图形用户界面,所述第一图形用户界面用于提示用户进行第一动作;
步骤1903、测量第一血压值,以及采集第一生理指标信息;
步骤1904、显示第二图形用户界面,所述第二图形用户界面用于提示用户进行第二动作;
步骤1905、测量第二血压值,以及采集第二生理指标信息;
步骤1906、响应于第二操作,所述电子设备进入测量模式;
步骤1907、采集第三生理指标信息;
步骤1908、根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二 生理指标信息,确定所述第三生理指标信息对应的第三血压值。
根据本申请实施例,响应于用户的第一操作,电子设备进入校准模式,显示第一图形用户界面;测量用户基于第一图形用户界面的提示进行第一动作情况下的第一血压值,以及采集用户进行第一动作情况下的第一生理指标信息;显示第二图形用户界面,测量用户基于第二图形用户界面的提示完成第二动作情况下的第二血压值,以及采集用户进行第二动作情况下的第二生理指标信息;响应于用户的第二操作,电子设备进入测量模式,采集第二生理指标信息,根据第一血压值、第二血压值、第一生理指标信息和第二生理指标信息,确定第三生理指标信息对应的第三血压值。这样,在校准阶段,通过显示多个图形用户界面(包括第一图形用户界面及第二图形用户界面)分别提示用户进行不同的动作(包括第一动作及第二动作),从而使用户的血压影响因素如心率、心搏量、总外周阻力等发生变化。分别测量用户进行不同动作情况下的血压值(包括第一血压值及第二血压值),以及采集生理指标信息(包括第一生理指标信息及第二生理指标信息),充分捕捉用户的血压影响因素的变化,实现多个校准场景下的血压校准;在测量阶段,根据校准阶段得到的多个血压值和多个生理指标信息,确定采集到的生理指标信息(即第三生理指标信息)对应的血压值(即第三血压值),该血压值的精度更高,从而实现用户血压的准确测量。
其中,第一操作可表示触发可穿戴设备进入校准模式的操作。用户可以通过点击可穿戴设备的显示屏上的虚拟按键、按压物理按钮、语音指令、快捷手势等任意方式进行第一操作,例如,用户可以通过点击上述图4中显示屏上校准模式的虚拟按键401的方式,或者通过点击触发上述图7中显示屏上标准场景的虚拟按键1001方式进行第一操作。可穿戴设备接收到该第一操作后,可响应于该第一操作,进行校准模式。步骤1901可参照前文图3中步骤301及步骤302的相关示例或说明。
需要说明的是,电子设备进入校准模式之后,显示的第一图形用户界面及第二图形用户界面仅为示例,还可以显示其他用于提示用户进行相应动作的图形用户界面,本申请实施例对此不作限定,图形用户界面可以包括前文校准场景中显示的界面;例如,可以显示上述图5(a1)、图5(a2)、图5(a3)、图5(a4)及图6(a)中的任意两个或多个图形用户界面。可以理解的是,在校准模式之后,用户可以根据多个图形用户界面的提示,分别进行多个动作,包括但不限于第一动作及第二动作,其中,动作可以包括前文中身体活动,可以参照前文表1、图5、图6中相关表述,例如,可以为图5(a3)所示,“请进行从500连续减7的计算一分钟”,本申请实施例不限制各动作的具体形式,只要其能诱导用户通过身体活动实现血压影响因素的变化。
本申请实施例对各图形用户界面所显示的提示信息以及显示各提示用户进行相应动作的图形用户界面的顺序不作限定,图形用户界面显示的提示信息可参照前文,在一示例中,所显示的多个图形用户界面可以是预先设置的标准场景下对应的图形用户界面,可以参照前文图7、图8中,关于标准场景的相关示例或表述;例如,显示多个图形用户界面的顺序可以参照上述图8中所示标准场景中所包含的各校准场景的排序。这样,在校准模式中,涵盖了可以诱导心率、心搏量、总外周阻力等血压影响因素产生变化的多个动作,用户无需进行其他设置操作,通过进行第一操作,即可根据图形用户界面的提示进行多个动作,从而完成多个校准场景下血压校准,操作简单方便,且校准效果好。
其中,第一血压值和第二血压值可通过测量得到,可以包括前文的校准血压值,在一个 示例中,可穿戴设备可自身设置有测量第一血压值的部件,例如图1中的气囊及压力传感器,利用气囊及压力传感器,可以通过示波法测量得到第一血压值和第二血压值,以准确度相对较高的第一血压值及第二血压值进行校准,可提高校准的准确度。
第一生理指标信息、第二生理指标信息和第三生理指标信息可以包括能够反映人体生理指标的任意信息,例如前文的生理信号,例如,PPG、ECG、IPG、SCG、BCG、心音等生理信号。第一生理指标信息、第二生理指标信息和第三生理指标信息,可通过可穿戴设备自身设置的传感器(如PPG传感器)来采集。第一生理指标信息、第二生理指标信息和第三生理指标信息不是直接的血压值测量结果,其包括除血压值之外的生理指标信息。
步骤1901-步骤1907,可以参照上述图3所示步骤301及步骤302中相关示例或说明。
其中,第二操作可表示进行触发可穿戴设备进入测量模式的操作,在测量模式下,可以包括进行一次血压测量,也可以包括进行血压连续监测,等等;用户可以通过点击可穿戴设备的显示屏上的虚拟按键、按压物理按钮、语音指令、快捷手势等多种方式触发第二操作,可穿戴设备响应于该第二操作,进入测量模式,例如,用户可以通过点击上述图4中显示屏上测量模式的虚拟按键402,触发第二操作。第三生理指标信息可以包括进行血压测量时,可穿戴设备的各传感器所测得的用户的生理信号,例如,PPG、ECG、IPG、SCG、BCG、心音等生理信号。第三血压值表示可穿戴设备对用户血压值的最终测量结果。步骤1908中,可以参照上述图3中步骤303中相关示例或说明。本领域技术人员应理解,根据校准阶段采集到的第一血压值、第二血压值、第一生理指标信息和第二生理指标信息,确定采集到的第三生理指标信息对应的第三血压值的方式不限于以上示例,可根据需要进行选择和调整;此外,还可以根据校准场景下用户进行多个(大于两个)运动情况下的血压值及对应的多个(大于两个)生理指标信息,确定采集到的第三生理指标信息对应的第三血压。
在一种可能的实现方式中,所述响应于第一操作,电子设备进入校准模式之后,还包括:显示第三图形用户界面,所述第三图形用户界面显示多个校准场景的选项;响应于用户对校准场景的选择操作,显示所述第一图形用户界面。
本申请实施例中,用户可以通过前文所述方式触发第一操作,例如,可以通过点击上述图7中显示屏上自定义场景的虚拟按键1002,触发第一操作。可穿戴设备响应于该第一操作,显示第三图形用户界面,例如,第三图形用户界面可以如图9(b)所示。响应于用户对校准场景的选择操作,按照多个校准场景中各校准场景的预设顺序,依次显示用户所选择的校准场景对应的图形用户界面,从而提示用户进行各校准场景下的动作;其中,用户所选择的校准场景可以包含第三图形用户界面所显示的多个校准场景中任意数量的校准场景,例如,多个校准场景可以参照前文图9、图10中,关于自定义场景的相关示例或表述;这样,用户可自行根据自己日常活动选择最适合、最匹配的校准场景完成校准,可以使得校准更个性化、更具针对性,有效减少校准时间,提高了用户体验。
示例性地,校准场景对应于用户的身体状态的校准场景、用户所处环境的状态的校准场景中的一种或多种。这样,在不同的校准场景下,用户的身体状态、用户所处环境的状态等不同,相应的,用户的血压影响因素如心率、心搏量、总外周阻力等发生变化,通过不同的用户身体状态或不同的用户所处环境的状态诱导用户血压影响因素发生变化,从而充分捕捉用户的血压影响因素的变化,实现用户身体不同状态或用户所处环境的不同状态下的血压校准。
示例性地,对应于用户的身体状态的校准场景可以包括静坐场景、静卧场景、站立场景、脑力活动场景、放松/休息场景、无氧动作场景、有氧动作场景中的一种或多种,其中,静坐场景、静卧场景、站立场景分别为用户的静坐、静卧、站立的安静姿态下的场景,这些场景表征了不同安静姿态时用户身体状态;脑力活动场景表征用户交感神经兴奋,刺激心率升高、心搏量增加,收缩静脉增加静脉回流,收缩动脉增加外周阻力,升高血压的身体状态;放松/休息场景,表征用户副交感神经兴奋,刺激心率降低,降低血压的身体状态;无氧动作场景表征用户增加心输出量,增加外周阻力,快速升高血压的身体状态;有氧动作场景表征用户增加心率,增加心输出量,减少外周阻力,升高血压的身体状态。示例性地,对应于用户所处环境的状态的校准场景可以包括寒冷场景、闷热场景中的一种或多种;其中,用户处在该寒冷场景的环境下,外周血管收缩,增加外周阻力,升高血压;用户处在闷热场景的环境下,外周血管舒张,减少外周阻力,降低血压。这样,在不同的场景下,用户的血压影响因素如心率、心搏量、总外周阻力等发生变化,所提供的多个校准场景可以较全面的覆盖用户的血压影响因素的变化情形,从而实现不同场景下的血压校准,提高校准后的可穿戴设备测量血压的精度。
在一种可能的实现方式中,所述显示第一图形用户界面之后,还包括:显示第四图形用户界面,所述第四图形用户界面显示计时信息。可以理解的,在显示第二图形用户界面等用于指示用户进行相应运动的图形用户界面之后,均可以显示用户显示计时信息的图形用户界面;其中,计时信息可以包括倒计时,也可以包括正计时,本申请实施例对此不作限定,第四图形用户界面可以参照前文中图5、图6中相关表述,例如,可以如图5(c)所示。这样,通过第四图形用户界面显示计时信息,从而提示用户已经进行第一动作的时间,或者还需进行第一动作时间,用户根据图形用户界面的提示,即可完成所指示的运动,从而完成对应校准场景下的血压测量,简单方便,提高了用户体验。
在一种可能的实现方式中,在步骤1908中,根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值,可以包括:确定所述第一生理指标信息与所述第三生理指标信息的相似度,以及所述第二生理指标信息与所述第三生理指标信息的相似度;确定大于第二阈值的目标相似度,及目标相似度对应的目标生理指标信息;对所述目标生理指标信息对应的目标血压值进行加权求和,得到所述第三血压值,其中目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关。
本申请实施例中,在利用校准后的可穿戴设备测量用户的血压时,通过确定校准阶段得到的多个生理指标信息中相似度大于第二阈值的目标生理指标信息,对相似度大于第二阈值的目标生理指标信息对应的目标血压值进行加权求和,得到用户的第三血压值;这样,选取校准阶段得到的与当前测量场景最相似的一次或几次的目标血压值,对这些目标血压值进行加权求和,预测得到当前测量的第三血压值,各目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关;即,相似度越高,相应的目标血压值所占权重越大,由此增加了血压测量范围,提高了血压测量的准确度。
其中,第三生理指标信息与各第一生理指标信息(或第二生理指标信息)的相似度可以通过任意适当方式表示,本申请对此不作限制,只要其能够反映第三生理指标信息与第一生理指标信息的相似程度,进而反映采集第三生理指标信息的场景与采集第一生理指标信息的 场景的相似程度即可。例如,相似度可以通过第一生理指标信息对应的特征矩阵与当前测量场景下得到的第三生理指标信息对应的特征矩阵之间的距离表示,如,可以为上述图13中所示状态空间中的表示第一生理指标信息对应的特征矩阵的点与表示当前测量场景下得到的第三生理指标信息对应的特征矩阵的点之间的距离。第二阈值可以是预先设定的,本申请实施例对此不作限制;确定与第三生理指标信息对应的特征矩阵的点的距离大于第二阈值的各点对应的目标生理指标信息,从而选取出与当前测量场景最相似的一次或几次的目标血压值;距离越小,相应的目标血压值所占权重越大;通过对各目标血压值加权求和,得到用户的第三血压值;具体实现过程可以参照前文图13-14中相关表述。
在一种可能的实现方式中,该方法还可以包括:获取用户服用的药物类型、剂量及服药时间;根据药物类型、剂量及服药时间,确定第一时刻及第二时刻;分别在所述第一时刻及所述第二时刻,显示第五图形用户界面,所述第五图形用户界面用于提示用户进行所述第一操作。
本申请实施例中,第一时刻可以表示用户体内药物浓度最高的时间点,第二时刻可以表示用户体内药物浓度最低的时间点,第五图形用户界面可以显示进行血压校准的图案,例如,如上述图4(a)所示的“血压”图标,还可以显示进行血压校准的文字,此外,还可以通过前文中提醒用户进行血压校准的其他方式提示用户发出所述第一操作,此处不再赘述。其中,用户服用的药物可以为降压药,可以通过上述表2所示,通过用户服用的降压药的类型、剂量及服药时间,确定用户体内药物浓度最高的时间点及用户体内药物浓度最低的时间点,并在这两个时间点提醒用户进行血压校准;具体实现方式可参照前文图11A、图11B及图12中相关表述。
这样,在用户药物浓度最高和药物浓度最低的时候分别进行一次校准,充分考虑了药物浓度的变化对用户血压的影响,提高了血压校准的准确性,从而使得校准后的可穿戴设备测量的血压值更准。
在一种可能的实现方式中,该方法还可以包括:每隔预设周期,显示第五图形用户界面,第五图形用户界面用于提示用户进行所述第一操作,或者,通过气囊和压力传感器测量用户的第四血压值,在所述第四血压值与最新采集的第三生理指标信息对应的第三血压值差异大于第一阈值时,显示第五图形用户界面。
本申请实施例,考虑到用户的身体状态或用户所处环境的状态会不断发生变化,可以每隔预设周期,显示第五图形用户界面,提示用户发进行所述第一操作,即提醒用户对可穿戴设备进行血压校准,或者,在通过可穿戴设备配置的气囊和压力传感器测量(该测量可以根据预设周期自动触发,也可以由用户使用可穿戴设备测量血压时触发)得到用户的第四血压值之后,对该第四血压值与在测量第四血压值的时间点之前、最近的时间点确定的第三血压值(即最新采集的第三生理指标信息对应的第三血压值)进行比较,当两者差异大于第一阈值时,显示第五图形用户界面,从而提醒用户进行第一操作,即提醒用户对可穿戴设备进行血压校准,从而提高校准后的可穿戴设备测量血压的准确度。
其中,预设周期可以为1天、1周、一个月等,第一阈值可以预先设定的,本申请实施例对此不作限制;提醒用户进行血压校准的方式可以参照前文,此处不再赘述。
图19示出根据本申请一实施例的另一种血压监测方法的流程图,该方法可以在电子设备上执行,例如可在图2所示的场景中的可穿戴设备上执行,如图19所示,该方法可以包括以 下步骤:
步骤2001、响应于第一操作,电子设备进入校准模式;
步骤2002、显示第一图形用户界面;所述第一图形用户界面用于提示用户进行第一动作;
步骤2003、采集第一生理指标信息;
步骤2004、显示第二图形用户界面,所述第二图形用户界面用于提示用户输入第一血压值;
步骤2005、接收用户输入的第一血压值;
步骤2006、显示第三图形用户界面;所述第三图形用户界面用于提示用户进行第二动作;
步骤2007、采集第二生理指标信息;
步骤2008、显示第四图形用户界面,所述第四图形用户界面用于提示用户输入第二血压值;
步骤2009、接收用户输入的第二血压值;
步骤2010、响应于第二操作,所述电子设备进入测量模式;
步骤2011、采集第三生理指标信息;
步骤2012、根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值。
根据本申请实施例,在校准阶段,通过显示多个图形用户界面(包括第一图形用户界面及第三图形用户界面)分别提示用户进行不同的动作(包括第一动作及第二动作),从而使用户的血压影响因素如心率、心搏量、总外周阻力等发生变化。分别采集用户进行不同动作情况下的生理指标信息(包括第一生理指标信息及第二生理指标信息),通过显示多个图形用户界面(包括第二图形用户界面及第四图形用户界面)分别提示用户输入血压值(包括第一血压值及第二血压值),并接收用户输入的血压值,充分捕捉用户的血压影响因素的变化,实现多个校准场景下的血压校准;在测量阶段,根据校准阶段得到的多个血压值和多个生理指标信息,确定采集到的生理指标信息(即第三生理指标信息)对应的血压值(即第三血压值),该血压值的精度更高,从而实现用户血压的准确测量。
其中,第一操作、第二操作、第一动作、第二动作、第一生理指标信息、第二生理指标信息及第三生理指标信息可以参照前文图18中的相关表述。第一血压值及第二血压值可通过其他设备(例如上文的血压测量仪)测量得到,可穿戴设备可自身设置有输入部件,以接收用户输入的血压值。在一个示例中,可以通过图2中血压测量仪测量用户进行第一动作情况下的第一血压值,及用户进行第二动作情况下的第二血压值;可穿戴设备自身设置有输入部件,通过该输入部件接收用户输入的血压测量仪上显示的第一血压值或第二血压值。第一图形用户界面及第三图形用户界面可参照前文图18中第一图形用户界面及第二图形用户界面的相关表述。第二图形用户界面及第四图形用户界面可以如上述图16(f)及图17(c)所示。
步骤2001-步骤2011,可以参照上述图15所示步骤1801及步骤1802。步骤2012,可以参照图15中步骤1803中相关示例或说明。
在一种可能的实现方式中,所述响应于第一操作,电子设备进入校准模式之后,还包括:显示第五图形用户界面,所述第五图形用户界面显示多个校准场景的选项,响应于用户对校准场景的选择操作,显示所述第一图形用户界面。其中,第五图形用户界面的具体说明可以参见图18中第三图形用户界面的相关介绍,校准场景的具体说明可参照前文。这样,用户可 自行根据自己日常活动选择最适合、最匹配的校准场景完成校准,可以使得校准更个性化、更具针对性,有效减少校准时间,提高了用户体验。
示例性地,校准场景对应于用户的身体状态的校准场景、用户所处环境的状态的校准场景中的一种或多种。这样,在不同的校准场景下,用户的身体状态、用户所处环境的状态等不同,相应的,用户的血压影响因素如心率、心搏量、总外周阻力等发生变化,通过不同的用户身体状态或不同的用户所处环境的状态诱导用户血压影响因素发生变化,从而充分捕捉用户的血压影响因素的变化,实现用户身体不同状态或用户所处环境的不同状态下的血压校准。
示例性地,对应于用户的身体状态的校准场景可以包括静坐场景、静卧场景、站立场景、脑力活动场景、放松/休息场景、无氧动作场景、有氧动作场景中的一种或多种,对应于用户所处环境的状态的校准场景可以包括寒冷场景、闷热场景中的一种或多种;各校准场景等的具体说明可以参见前文。这样,在不同的场景下,用户的血压影响因素如心率、心搏量、总外周阻力等发生变化,所提供的多个校准场景可以较全面的覆盖用户的血压影响因素的变化情形,从而实现不同场景下的血压校准,提高校准后的可穿戴设备测量血压的精度。
在一种可能的实现方式中,所述显示第一图形用户界面之后,还包括:显示第六图形用户界面,所述第六图形用户界面显示计时信息。第六图形用户界面的具体说明可以参见图18中第四图形用户界面的相关介绍,计时信息的具体说明可参照前文,这样,通过第四图形用户界面显示计时信息,从而提示用户已经进行第一动作的时间,或者还需进行第一动作时间,用户根据图形用户界面的提示,即可完成所指示的运动,从而完成对应校准场景下的血压测量,简单方便,提高了用户体验。
在一种可能的实现方式中,在步骤2012中,根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值,包括:确定所述第一生理指标信息与所述第三生理指标信息的相似度,以及所述第二生理指标信息与所述第三生理指标信息的相似度;确定大于第二阈值的目标相似度,及目标相似度对应的目标生理指标信息;对所述目标生理指标信息对应的目标血压值进行加权求和,得到所述第三血压值,其中目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关。该步骤可参照上述图18中步骤1908的相关示例及说明。这样,选取校准阶段得到的与当前测量场景最相似的一次或几次的目标血压值,对这些血压值进行加权求和,预测得到当前测量的第三血压值,各目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关;即,相似度越高,相应的第一目标血压值所占权重越大,由此增加了血压测量范围,提高了血压测量的准确度。
在一种可能的实现方式中,该方法还可以包括:获取用户服用的药物类型、剂量及服药时间;根据药物类型、剂量及服药时间,确定第一时刻及第二时刻;分别在所述第一时刻及所述第二时刻,显示第七图形用户界面,所述第七图形用户界面用于提示用户进行所述第一操作。其中,第七图形用户界面的具体说明可参照上述图18中第五图形用户界面的相关介绍。第一时刻可以表示用户体内药物浓度最高的时间点,第二时刻可以表示用户体内药物浓度最低的时间点,这样,在用户药物浓度最高和药物浓度最低的时候分别进行一次校准,充分考虑了药物浓度的变化对用户血压的影响,提高了血压校准的准确性,从而使得校准后的可穿戴设备测量的血压值更准。
在一种可能的实现方式中,该方法还可以包括:每隔预设周期,显示第七图形用户界面,所述第七图形用户界面用于提示用户进行所述第一操作。其中,预设周期可参照前文相关介绍,这样,考虑到用户的身体状态或用户所处环境的状态会不断发生变化,可以每隔预设周期,显示第七图形用户界面,提示用户发出所述第一操作,即提醒用户对可穿戴设备进行血压校准,从而提高校准后的可穿戴设备测量血压的准确度。
图20示出根据本申请一实施例的另一种血压监测方法的流程图,该方法可以在电子设备上执行,例如可在图2所示的场景中的可穿戴设备上执行,如图20所示,该方法可以包括以下步骤:
步骤2101、响应于第一操作,电子设备进入校准模式;
步骤2102、显示第一图形用户界面,所述第一图形用户界面用于提示用户进行第一动作;
步骤2103、接收第一血压值,以及采集第一生理指标信息;
步骤2104、显示第二图形用户界面,所述第二图形用户界面用于提示用户进行第二动作;
步骤2105、接收第二血压值,以及采集第二生理指标信息;
步骤2106、响应于第二操作,所述电子设备进入测量模式;
步骤2107、采集第三生理指标信息;
步骤2108、根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值。
根据本申请实施例,在校准阶段,通过显示多个图形用户界面分别提示用户进行不同的动作,从而使用户的血压影响因素如心率、心搏量、总外周阻力等发生变化。分别接收其他设备发送的用户进行不同动作情况下的血压值,以及采集生理指标信息,充分捕捉用户的血压影响因素的变化,实现多个校准场景下的血压校准;在测量阶段,根据校准阶段得到的多个血压值和多个生理指标信息,确定采集到的第三生理指标信息对应的第三血压值,该血压值的精度更高,从而实现用户血压的准确测量。
其中,第一操作、第二操作、第一动作、第二动作、第一图形用户界面、第二图形用户界面、第一生理指标信息、第二生理指标信息及第三生理指标信息可以参照前文图18中的相关表述。第一血压值及第二血压值可通过其他设备(例如上文的血压测量仪)测量得到,可穿戴设备还可设置有通信部件,以接收其他设备测量并发送的血压值。在一个示例中,可以通过图2中血压测量仪测量用户进行第一动作情况下的第一血压值,及用户进行第二动作情况下的第二血压值;可穿戴设备自身设置有通信部件,通过该通信部件接收血压测量仪测量并发送的第一血压值或第二血压值。
步骤2101-步骤2107,可以参照上述图15所示步骤1801及步骤1802。步骤2108,可以参照图15中步骤1803中相关示例或说明。
在一种可能的实现方式中,所述响应于第一操作,电子设备进入校准模式之后,还包括:显示第三图形用户界面,所述第三图形用户界面显示多个校准场景的选项,响应于用户对校准场景的选择操作,显示所述第一图形用户界面。该可能的实现方式的具体说明及技术效果参见图18中相关介绍。
示例性地,校准场景对应于用户的身体状态的校准场景、用户所处环境的状态的校准场景中的一种或多种。该示例的具体说明及技术效果参见图18中相关介绍。
示例性地,对应于用户的身体状态的校准场景可以包括静坐场景、静卧场景、站立场景、 脑力活动场景、放松/休息场景、无氧动作场景、有氧动作场景中的一种或多种,对应于用户所处环境的状态的校准场景可以包括寒冷场景、闷热场景中的一种或多种。该示例的具体说明及技术效果参见图18中相关介绍。
在一种可能的实现方式中,所述显示第一图形用户界面之后,还包括:显示第四图形用户界面,所述第四图形用户界面显示计时信息。该可能的实现方式的具体说明及技术效果参见图18中相关介绍。
在一种可能的实现方式中,在步骤2108中,根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值,包括:确定所述第一生理指标信息与所述第三生理指标信息的相似度,以及所述第二生理指标信息与所述第三生理指标信息的相似度;确定大于第二阈值的目标相似度,及目标相似度对应的目标生理指标信息;对所述目标生理指标信息对应的目标血压值进行加权求和,得到所述第三血压值,其中目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关。该可能的实现方式的具体说明及技术效果参见图18中步骤1908相关介绍。
在一种可能的实现方式中,该方法还可以包括:获取用户服用的药物类型、剂量及服药时间;根据药物类型、剂量及服药时间,确定第一时刻及第二时刻;分别在所述第一时刻及所述第二时刻,显示第五图形用户界面,所述第五图形用户界面用于提示用户进行所述第一操作。该可能的实现方式的具体说明及技术效果参见图18中相关介绍。
在一种可能的实现方式中,该方法还可以包括:每隔预设周期,显示第五图形用户界面,所述第五图形用户界面用于提示用户进行所述第一操作。该可能的实现方式的具体说明及技术效果参见图18中相关介绍。
基于上述方法实施例的同一发明构思,本申请的实施例还提供了一种血压监测装置,该血压监测装置用于执行上述方法实施例所描述的技术方案。
图21示出根据本申请一实施例的一种血压监测装置的结构图,如图21所示,该装置可以包括:第一响应模块2201,用于响应于第一操作,电子设备进入校准模式;第一显示模块2202,用于显示第一图形用户界面,所述第一图形用户界面用于提示用户进行第一动作;第一校准模块2203,用于测量第一血压值,以及采集第一生理指标信息;第二显示模块2204,用于显示第二图形用户界面,所述第二图形用户界面用于提示用户进行第二动作;第二校准模块2205,用于测量第二血压值,以及采集第二生理指标信息;第二响应模块2206,用于响应于第二操作,所述电子设备进入测量模式;测量模块2207,用于采集第三生理指标信息;血压值确定模块2208,用于根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值。
在一种可能的实现方式中,所述装置还包括第三显示模块,用于:显示第三图形用户界面,所述第三图形用户界面显示多个校准场景的选项,响应于用户对校准场景的选择操作,显示所述第一图形用户界面。
在一种可能的实现方式中,所述校准场景对应于用户的身体状态的校准场景、用户所处环境的状态的校准场景中的一种或多种。
在一种可能的实现方式中,对应于用户的身体状态的校准场景包括静坐场景、静卧场景、站立场景、脑力活动场景、放松/休息场景、无氧动作场景、有氧动作场景中的一种或多种, 对应于用户所处环境的状态的校准场景包括寒冷场景、闷热场景中的一种或多种。
在一种可能的实现方式中,所述装置还包括第四显示模块,用于:显示第四图形用户界面,所述第四图形用户界面显示计时信息。
在一种可能的实现方式中,所述装置还包括:第一提醒模块,用于获取用户服用的药物类型、剂量及服药时间;根据药物类型、剂量及服药时间,确定第一时刻及第二时刻;分别在所述第一时刻及所述第二时刻,显示第五图形用户界面,所述第五图形用户界面用于提示用户进行所述第一操作。
在一种可能的实现方式中,所述装置还包括:第二提醒模块,用于每隔预设周期,显示第五图形用户界面,第五图形用户界面用于提示用户进行所述第一操作,或者,通过气囊和压力传感器测量用户的第四血压值,在所述第四血压值与最新采集的第三生理指标信息对应的第三血压值差异大于第一阈值时,显示第五图形用户界面。
在一种可能的实现方式中,所述血压值确定模块,还用于:确定所述第一生理指标信息与所述第三生理指标信息的相似度,以及所述第二生理指标信息与所述第三生理指标信息的相似度;确定大于第二阈值的目标相似度,及目标相似度对应的目标生理指标信息;对所述目标生理指标信息对应的目标血压值进行加权求和,得到所述第三血压值,其中目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关。
本申请实施例中,血压监测装置及其各种可能的实现方式的具体说明及技术效果可以参照前文图18中相关介绍,此处不再赘述。
图22示出根据本申请一实施例的另一种血压监测装置的结构图,如图22所示,该装置可以包括:第一响应模块2301,用于响应于第一操作,电子设备进入校准模式;第一显示模块2302,用于显示第一图形用户界面,所述第一图形用户界面用于提示用户进行第一动作;第一采集模块2303,用于采集第一生理指标信息;第二显示模块2304,用于显示第二图形用户界面,所述第二图形用户界面用于提示用户输入第一血压值;第一接收模块2305,用于接收用户输入的第一血压值;第三显示模块2306,用于显示第三图形用户界面;所述第三图形用户界面用于提示用户进行第二动作;第二采集模块2307,用于采集第二生理指标信息;第四显示模块2308,用于显示第四图形用户界面,所述第四图形用户界面用于提示用户输入第二血压值;第二接收模块2309,用于接收用户输入的第二血压值;第二响应模块2310,用于响应于第二操作,所述电子设备进入测量模式;测量模块2311,用于采集第三生理指标信息;血压值确定模块2312,用于根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值。
在一种可能的实现方式中,所述装置还包括第五显示模块,用于:显示第五图形用户界面,所述第五图形用户界面显示多个校准场景的选项,响应于用户对校准场景的选择操作,显示所述第一图形用户界面。
在一种可能的实现方式中,所述校准场景对应于用户的身体状态的校准场景、用户所处环境的状态的校准场景中的一种或多种。
在一种可能的实现方式中,对应于用户的身体状态的校准场景包括静坐场景、静卧场景、站立场景、脑力活动场景、放松/休息场景、无氧动作场景、有氧动作场景中的一种或多种,对应于用户所处环境的状态的校准场景包括寒冷场景、闷热场景中的一种或多种。
在一种可能的实现方式中,所述装置还包括第六显示模块,用于:显示第六图形用户界 面,所述第四图形用户界面显示计时信息。
在一种可能的实现方式中,所述装置还包括:第一提醒模块,用于获取用户服用的药物类型、剂量及服药时间;根据药物类型、剂量及服药时间,确定第一时刻及第二时刻;分别在所述第一时刻及所述第二时刻,显示第七图形用户界面,所述第七图形用户界面用于提示用户进行所述第一操作。
在一种可能的实现方式中,所述装置还包括:第二提醒模块,用于每隔预设周期,显示第七图形用户界面,第七图形用户界面用于提示用户进行所述第一操作。
在一种可能的实现方式中,所述血压值确定模块,还用于:确定所述第一生理指标信息与所述第三生理指标信息的相似度,以及所述第二生理指标信息与所述第三生理指标信息的相似度;确定大于第二阈值的目标相似度,及目标相似度对应的目标生理指标信息;对所述目标生理指标信息对应的目标血压值进行加权求和,得到所述第三血压值,其中目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关。
本申请实施例中,血压监测装置及其各种可能的实现方式的具体说明及技术效果可以参照前文图19中相关介绍,此处不再赘述。
图23示出根据本申请一实施例的另一种血压监测装置的结构图,如图23所示,该装置可以包括:第一响应模块2401,用于响应于第一操作,电子设备进入校准模式;第一显示模块2402,用于显示第一图形用户界面,所述第一图形用户界面用于提示用户进行第一动作;第一校准模块2403,用于接收第一血压值,以及采集第一生理指标信息;第二显示模块2404,用于显示第二图形用户界面,所述第二图形用户界面用于提示用户进行第二动作;第二校准模块2405,用于接收第二血压值,以及采集第二生理指标信息;第二响应模块2406,用于响应于第二操作,所述电子设备进入测量模式;测量模块2407,用于采集第三生理指标信息;血压值确定模块2408,用于根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值。
在一种可能的实现方式中,所述装置还包括第三显示模块,用于:显示第三图形用户界面,所述第三图形用户界面显示多个校准场景的选项,响应于用户对校准场景的选择操作,显示所述第一图形用户界面。
在一种可能的实现方式中,所述校准场景对应于用户的身体状态的校准场景、用户所处环境的状态的校准场景中的一种或多种。
在一种可能的实现方式中,对应于用户的身体状态的校准场景包括静坐场景、静卧场景、站立场景、脑力活动场景、放松/休息场景、无氧动作场景、有氧动作场景中的一种或多种,对应于用户所处环境的状态的校准场景包括寒冷场景、闷热场景中的一种或多种。
在一种可能的实现方式中,所述装置还包括第四显示模块,用于:显示第四图形用户界面,所述第四图形用户界面显示计时信息。
在一种可能的实现方式中,所述装置还包括:第一提醒模块,用于获取用户服用的药物类型、剂量及服药时间;根据药物类型、剂量及服药时间,确定第一时刻及第二时刻;分别在所述第一时刻及所述第二时刻,显示第五图形用户界面,所述第五图形用户界面用于提示用户进行所述第一操作。
在一种可能的实现方式中,所述装置还包括:第二提醒模块,用于每隔预设周期,显示第五图形用户界面,第五图形用户界面用于提示用户进行所述第一操作。
在一种可能的实现方式中,所述血压值确定模块,还用于:确定所述第一生理指标信息与所述第三生理指标信息的相似度,以及所述第二生理指标信息与所述第三生理指标信息的相似度;确定大于第二阈值的目标相似度,及目标相似度对应的目标生理指标信息;对所述目标生理指标信息对应的目标血压值进行加权求和,得到所述第三血压值,其中目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关。
本申请实施例中,血压监测装置及其各种可能的实现方式的具体说明及技术效果可以参照前文图20中相关介绍,,此处不再赘述。
上述图18-图23中的第一、第二、第三、第四等,分别用于指代各图对应的实施例中的对象。
本申请的实施例提供了一种可穿戴设备,包括:显示屏,用于显示图形用户界面;传感器,用于采集生理指标信息;气囊及压力传感器,用于测量血压值;处理器,用于通过控制所述显示屏、所述传感器、和所述气囊及压力传感器中的至少其中之一,来执行上述图18所示的血压监测方法。
其中,处理器可响应于第一操作,进入校准模式,控制显示屏显示第一图形用户界面,所述第一图形用户界面用于提示用户进行第一动作;处理器可控制气囊及压力传感器测量用户第一血压值并控制传感器采集第一生理指标信息;控制显示屏显示第二图形用户界面,所述第二图形用户界面用于提示用户进行第二动作;处理器可控制气囊及压力传感器测量第二血压值,并控制传感器采集第二生理指标信息;处理器响应于第二操作,进入校准模式,控制传感器采集第三生理指标信息,处理器根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值。
本申请的实施例提供了一种可穿戴设备,包括:显示屏,用于显示图形用户界面;传感器,用于采集生理指标信息;输入部件,用于接收用户输入的血压值;处理器,用于通过控制所述显示屏、所述传感器、和所述输入部件中的至少其中之一,来执行上述图19所示的血压监测方法。
其中,处理器可响应于第一操作,进入校准模式,控制显示屏显示第一图形用户界面,所述第一图形用户界面用于提示用户进行第一动作;处理器可控制传感器采集第一生理指标信息;控制显示屏显示第二图形用户界面,所述第二图形用户界面用于提示用户输入第一血压值;处理器可控制输入部件接收用户输入的第一血压值;控制显示屏显示第三图形用户界面,所述第三图形用户界面用于提示用户进行第二动作;处理器可控制传感器采集第二生理指标信息;控制显示屏显示第四图形用户界面,所述第四图形用户界面用于提示用户输入第二血压值;处理器可控制输入部件接收用户输入的第二血压值;处理器响应于第二操作,进入校准模式,控制传感器采集第三生理指标信息,处理器根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值。
本申请的实施例提供了一种可穿戴设备,包括:显示屏,用于显示图形用户界面;传感器,用于采集生理指标信息;通信部件,用于从可穿戴设备外部接收血压值;处理器,用于通过控制所述显示屏、所述传感器、和所述通信部件中的至少其中之一,来执行上述图20所示的血压监测方法。
其中,处理器可响应于第一操作,进入校准模式,控制显示屏显示第一图形用户界面, 所述第一图形用户界面用于提示用户进行第一动作;处理器可控制通信部件接收外部设备测量并发送的第一血压值并控制传感器采集第一生理指标信息;控制显示屏显示第二图形用户界面,所述第二图形用户界面用于提示用户进行第二动作;处理器可控制通信部件接收外部设备测量并发送的第二血压值,并控制传感器采集第二生理指标信息;处理器响应于第二操作,进入校准模式,控制传感器采集第三生理指标信息,处理器根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值。
图24示出根据本申请一实施例的一种可穿戴设备的结构示意图,如图24所示,该可穿戴设备可以为智能穿戴手表,该智能穿戴手表900可以包括相互连接的表体和腕带,其中,腕带可以包括微泵气囊(图24未示出),表体可以包括前壳(图24未示出)、处理器901、存储器902、显示屏903(如触摸屏)、底壳(图24未示出)、微控制单元(Micro Control Unit,MCU)904、传感器模块905、麦克风(Microphone,MIC)906、无线通信模块907、扬声器908、GPS模块909、RF电路910、电源911、电源管理系统912和受话器913等。尽管未示出,智能穿戴手表900还可以包括天线、按键和指示灯等。本领域技术人员可以理解,图24中示出的智能穿戴手表900结构并不构成对智能穿戴手表的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
其中,传感器模块905可以包括:PPG传感器、ECG传感器、压力传感器、加速度传感器;当然,传感器模块905还可以包括,陀螺仪传感器,距离传感器,接近光传感器,指纹传感器,磁传感器,触摸传感器,环境光传感器,骨传导传感器、气压传感器、温度传感器、心率传感器、湿度传感器等。传感器模块905与微控制单元(MCU)904连接,由微控制单元(MCU)904控制。PPG传感器和/或ECG传感器可以采集第一生理指标信息及第二生理指标信息,压力传感器可以与微泵气囊配合工作,测量第一血压值。
其中,存储器902可以用于存储应用程序代码,如用于执行本申请实施例的血压监测方法的应用程序代码。处理器901可以执行上述应用程序代码,以实现本申请实施例中智能穿戴手表900的功能。
存储器920中还可以存储有智能穿戴手表900的蓝牙地址。例如,智能穿戴手表900的蓝牙地址可以用于与智能穿戴手表900控制的智能设备(例如血压监护仪)建立蓝牙连接。
无线通信模块907,用于支持智能穿戴手表900与各种电子设备,如手机之间的短距离数据交换,如血压监护仪之间的数据传输。例如,无线通信模块907可以用于与智能穿戴手表900相连的智能设备之间进行数据传输,如向血压监护仪传输智能穿戴手表900所发出的血压测量指令等,再如接收血压监护仪传输的第一血压值。在一些实施例中,该无线通信模块907可以为蓝牙模块。在另一些实施例中,该无线通信模块907可以为WiFi模块。
智能穿戴手表900可以包括至少一个受话器913和至少一个麦克风906。受话器913也可以称为“听筒”,可以用于将音频电信号转换成声音信号并播放。麦克风906也可以称为“话筒”,“传声器”,用于将声音信号转换为音频电信号。由音频电路接收后转换为音频数据;音频电路也可以将音频数据转换为电信号,传输到扬声器908,由扬声器908转换为声音信号输出。
显示屏903可以是触摸屏。触摸屏包括显示面板和触控面板。其中,显示屏903可用于显示由用户输入的信息或提供给用户的信息(如提示信息)以及手表的各种菜单。显示屏可 以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED)显示屏,有源矩阵有机发光二极体(activematrix organic light emittingdiode,AMOLED)显示屏,柔性发光二极管(flexible light-emitting diode,FLED)显示屏,量子点发光二极管(quantum dot light emitting diodes,QLED)显示屏等等。
智能穿戴手表900还包括给各个部件供电的电源911(比如电池),可选的,电源911可以通过电源管理系统912与处理器901逻辑相连,从而通过电源管理系统912实现管理充电、放电、以及功耗管理等功能。可选的,电源管理系统可以包括无线充电模块,该无线充电模块可以包含充电线圈,用于与充电底座中的充电线圈之间耦合,以实现对智能穿戴手表900进行无线充电。
智能穿戴手表900中还可以包括RF电路910。该RF电路910可用于收发信息或通话过程中,信号的接收和发送,可以将基站的下行信息接收后,给处理器901处理;另外,将涉及上行的数据发送给基站。通常,RF电路910包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等器件。此外,RF电路910还可以通过无线通信与网络和其他移动设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统、通用分组无线服务、码分多址、宽带码分多址、长期演进、电子邮件、短消息服务等。
智能穿戴手表900中还可以包括定位模块,如图24所示的GPS模块909。当然,定位模块还可以是全球导航卫星系统(global navigation satellite system,GLONASS)模块或者北斗卫星导航系统(beidou navigation satellite system,BDS)模块等。定位模块用于获取智能穿戴手表900的地理位置信息。
应理解,图24所示的智能穿戴手表900仅仅是智能穿戴手表的一个范例,并且智能穿戴手表900可以具有比图24中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。图24中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
本申请的实施例提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。
本申请的实施例提供了一种计算机程序产品,包括计算机可读代码,或者承载有计算机可读代码的非易失性计算机可读存储介质,当所述计算机可读代码在电子设备的处理器中运行时,所述电子设备中的处理器执行上述方法。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Electrically Programmable Read-Only-Memory,EPROM或闪存)、静态随机存取存储器(Static Random-Access Memory,SRAM)、便携式压缩盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Video Disc,DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。
这里所描述的计算机可读程序指令或代码可以从计算机可读存储介质下载到各个计算/ 处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本申请操作的计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或可编程逻辑阵列(Programmable Logic Array,PLA),该电子电路可以执行计算机可读程序指令,从而实现本申请的各个方面。
这里参照根据本申请实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本申请的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本申请的多个实施例的装置、系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。
也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合, 可以用执行相应的功能或动作的硬件(例如电路或ASIC(Application Specific Integrated Circuit,专用集成电路))来实现,或者可以用硬件和软件的组合,如固件等来实现。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其它变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其它单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (20)

  1. 一种血压监测方法,其特征在于,所述方法包括:
    响应于第一操作,电子设备进入校准模式;
    显示第一图形用户界面,所述第一图形用户界面用于提示用户进行第一动作;
    测量第一血压值,以及采集第一生理指标信息;
    显示第二图形用户界面,所述第二图形用户界面用于提示用户进行第二动作;
    测量第二血压值,以及采集第二生理指标信息;
    响应于第二操作,所述电子设备进入测量模式;
    采集第三生理指标信息;
    根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值。
  2. 根据权利要求1所述的方法,其特征在于,所述响应于第一操作,电子设备进入校准模式之后,还包括:
    显示第三图形用户界面,所述第三图形用户界面显示多个校准场景的选项;
    响应于用户对校准场景的选择操作,显示所述第一图形用户界面。
  3. 根据权利要求2所述的方法,其特征在于,所述校准场景包括对应于用户的身体状态的校准场景、用户所处环境的状态的校准场景中的一种或多种。
  4. 根据权利要求3所述的方法,其特征在于,对应于用户的身体状态的校准场景包括静坐场景、静卧场景、站立场景、脑力活动场景、放松/休息场景、无氧运动场景、有氧运动场景中的一种或多种,
    对应于用户所处环境的状态的校准场景包括寒冷场景、闷热场景中的一种或多种。
  5. 根据权利要求1-4任意一项所述的方法,其特征在于,所述显示第一图形用户界面之后,还包括:
    显示第四图形用户界面,所述第四图形用户界面显示计时信息。
  6. 根据权利要求1-5任意一项所述的方法,其特征在于,所述方法还包括:
    获取所述用户服用的药物类型、剂量及服药时间;
    根据所述药物类型、剂量及服药时间,确定第一时刻及第二时刻;
    分别在所述第一时刻及所述第二时刻,显示第五图形用户界面,所述第五图形用户界面用于提示用户进行所述第一操作。
  7. 根据权利要求1-5任意一项所述的方法,其特征在于,所述方法还包括:
    每隔预设周期,显示第五图形用户界面,所述第五图形用户界面用于提示用户进行所述第一操作,或者,
    通过气囊和压力传感器测量用户的第四血压值,在所述第四血压值与最新采集的第三生理指标信息对应的第三血压值差异大于第一阈值时,显示第五图形用户界面。
  8. 根据权利要求1-7任意一项所述的方法,其特征在于,根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值,包括:
    确定所述第一生理指标信息与所述第三生理指标信息的相似度,以及所述第二生理指标信息与所述第三生理指标信息的相似度;
    确定大于第二阈值的目标相似度,及目标相似度对应的目标生理指标信息;
    对所述目标生理指标信息对应的目标血压值进行加权求和,得到所述第三血压值,其中目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关。
  9. 一种血压监测方法,其特征在于,所述方法包括:
    响应于第一操作,电子设备进入校准模式;
    显示第一图形用户界面;所述第一图形用户界面用于提示用户进行第一动作;
    采集第一生理指标信息;
    显示第二图形用户界面,所述第二图形用户界面用于提示用户输入第一血压值;
    接收用户输入的第一血压值;
    显示第三图形用户界面;所述第三图形用户界面用于提示用户进行第二动作;
    采集第二生理指标信息;
    显示第四图形用户界面,所述第四图形用户界面用于提示用户输入第二血压值,
    接收用户输入的第二血压值;
    响应于第二操作,所述电子设备进入测量模式;
    采集第三生理指标信息;
    根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值。
  10. 根据权利要求9所述的方法,其特征在于,所述响应于第一操作,电子设备进入校准模式之后,还包括:
    显示第五图形用户界面,所述第五图形用户界面显示多个校准场景的选项;
    响应于用户对校准场景的选择操作,显示所述第一图形用户界面。
  11. 根据权利要求10所述的方法,其特征在于,所述校准场景包括对应于用户的身体状态的校准场景、用户所处环境的状态的校准场景中的一种或多种。
  12. 根据权利要求11所述的方法,其特征在于,对应于用户的身体状态的校准场景包括静坐场景、静卧场景、站立场景、脑力活动场景、放松/休息场景、无氧运动场景、有氧运动场景中的一种或多种,
    对应于用户所处环境的状态的校准场景包括寒冷场景、闷热场景中的一种或多种。
  13. 根据权利要求9-12任意一项所述的方法,其特征在于,所述显示第一图形用户界面之后,还包括:
    显示第六图形用户界面,所述第六图形用户界面显示计时信息。
  14. 根据权利要求9-13任意一项所述的方法,其特征在于,所述方法还包括:
    获取所述用户服用的药物类型、剂量及服药时间;
    根据所述药物类型、剂量及服药时间,确定第一时刻及第二时刻;
    分别在所述第一时刻及所述第二时刻,显示第七图形用户界面,所述第七图形用户界面用于提示用户进行所述第一操作。
  15. 根据权利要求9-13任意一项所述的方法,其特征在于,所述方法还包括:
    每隔预设周期,显示第七图形用户界面,所述第七图形用户界面用于提示用户进行所述第一操作。
  16. 根据权利要求9-15任意一项所述的方法,其特征在于,根据所述第一血压值、所述第二血压值、所述第一生理指标信息和所述第二生理指标信息,确定所述第三生理指标信息对应的第三血压值,包括:
    确定所述第一生理指标信息与所述第三生理指标信息的相似度,以及所述第二生理指标 信息与所述第三生理指标信息的相似度;
    确定大于第二阈值的目标相似度,及目标相似度对应的目标生理指标信息;
    对所述目标生理指标信息对应的目标血压值进行加权求和,得到所述第三血压值,其中目标血压值的权重与对应的目标生理指标信息与第三生理指标信息的相似度正相关。
  17. 一种可穿戴设备,其特征在于,包括:
    显示屏,用于显示图形用户界面;
    传感器,用于采集生理指标信息;
    气囊及压力传感器,用于测量血压值;
    处理器,用于通过控制所述显示屏、所述传感器、和所述气囊及压力传感器中的至少其中之一,来执行权利要求1-8任意一项所述的方法。
  18. 一种可穿戴设备,其特征在于,包括:
    显示屏,用于显示图形用户界面;
    传感器,用于采集生理指标信息;
    输入部件,用于接收用户输入的血压值;
    处理器,用于通过控制所述显示屏、所述传感器、和所述输入部件中的至少其中之一,来执行权利要求9-16任意一项所述的方法。
  19. 一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求1-8中任意一项所述的方法,或者执行权利要求9-16任意一项所述的方法。
  20. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-8中任意一项所述的方法,或者执行权利要求9-16任意一项所述的方法。
PCT/CN2022/072749 2021-02-26 2022-01-19 一种血压监测方法、装置及可穿戴设备 WO2022179351A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110221000.4 2021-02-26
CN202110221000.4A CN114947786A (zh) 2021-02-26 2021-02-26 一种血压监测方法、装置及可穿戴设备

Publications (1)

Publication Number Publication Date
WO2022179351A1 true WO2022179351A1 (zh) 2022-09-01

Family

ID=82973086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072749 WO2022179351A1 (zh) 2021-02-26 2022-01-19 一种血压监测方法、装置及可穿戴设备

Country Status (2)

Country Link
CN (1) CN114947786A (zh)
WO (1) WO2022179351A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0875200A1 (en) * 1997-04-30 1998-11-04 Nihon Kohden Corporation Blood pressure monitoring apparatus
US20170209053A1 (en) * 2016-01-25 2017-07-27 Fitbit, Inc. Calibration of pulse-transit-time to blood pressure model using multiple physiological sensors and various methods for blood pressure variation
US20190059752A1 (en) * 2017-08-28 2019-02-28 Planexta, Inc. Method and apparatus for cuff less blood pressure monitoring based on simultaneously measured ECG and PPG signals designed in wristband form for continuous wearing
CN109963503A (zh) * 2016-10-10 2019-07-02 皇家飞利浦有限公司 用于确定用于血压测量设备的校准参数的装置和方法
CN110772241A (zh) * 2018-07-27 2020-02-11 三星电子株式会社 校准生物信息估计模型的设备和方法及生物信息估计设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0875200A1 (en) * 1997-04-30 1998-11-04 Nihon Kohden Corporation Blood pressure monitoring apparatus
US20170209053A1 (en) * 2016-01-25 2017-07-27 Fitbit, Inc. Calibration of pulse-transit-time to blood pressure model using multiple physiological sensors and various methods for blood pressure variation
CN109963503A (zh) * 2016-10-10 2019-07-02 皇家飞利浦有限公司 用于确定用于血压测量设备的校准参数的装置和方法
US20190059752A1 (en) * 2017-08-28 2019-02-28 Planexta, Inc. Method and apparatus for cuff less blood pressure monitoring based on simultaneously measured ECG and PPG signals designed in wristband form for continuous wearing
CN110772241A (zh) * 2018-07-27 2020-02-11 三星电子株式会社 校准生物信息估计模型的设备和方法及生物信息估计设备

Also Published As

Publication number Publication date
CN114947786A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
US11540735B2 (en) System and method for physiological parameter monitoring
US10998101B1 (en) Health management
US20220346664A1 (en) Ingestion-related biofeedback and personalized medical therapy method and system
US9865176B2 (en) Health monitoring system
CN107847153B (zh) 一种生理参数监测的系统和方法
US8684922B2 (en) Health monitoring system
US10553306B2 (en) Scaled-based methods and apparatuses for automatically updating patient profiles
US20130310658A1 (en) Activity Measurement Systems
US20170143268A1 (en) Aggregation and analysis of scale-based user data and remote user-physiologic device-based user data
US20140142396A1 (en) Health Measurement Systems
US20170148240A1 (en) Scale-based biometric authorization of communication between scale and a remote user-physiologic device
US20090216132A1 (en) System for Continuous Blood Pressure Monitoring
CN107016225B (zh) 个人穿戴装置持续检测生理信息轨迹的方法
US11742062B1 (en) Mobile algorithm-based vascular health evaluation processes
JP2017500159A (ja) センサの最適な位置付けのための方法、システム、及びデバイス
CN105167763B (zh) 一种健康检测仪
US20170146391A1 (en) Scale with foot-controlled user interface
JPH09103413A (ja) 健康管理支援装置
US20170146389A1 (en) Scale-based biometric authorization of multiple communication modes of the scale
WO2022179351A1 (zh) 一种血压监测方法、装置及可穿戴设备
WO2020039827A1 (ja) 健康管理装置、健康管理方法、及びプログラム
CN112086164A (zh) 身体状况反馈方法、系统、存储介质
US20230293019A1 (en) Automatically generating protocols or reports based on sensor data from a mobile device
US20230255498A1 (en) Monitoring users with a mobile device while the users engage in activities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22758717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22758717

Country of ref document: EP

Kind code of ref document: A1