WO2022179313A1 - 一种高灵敏度的柔性三维力触觉传感器及制备方法 - Google Patents

一种高灵敏度的柔性三维力触觉传感器及制备方法 Download PDF

Info

Publication number
WO2022179313A1
WO2022179313A1 PCT/CN2021/143957 CN2021143957W WO2022179313A1 WO 2022179313 A1 WO2022179313 A1 WO 2022179313A1 CN 2021143957 W CN2021143957 W CN 2021143957W WO 2022179313 A1 WO2022179313 A1 WO 2022179313A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
common electrode
inverted cone
cavity
cone assembly
Prior art date
Application number
PCT/CN2021/143957
Other languages
English (en)
French (fr)
Inventor
郭小辉
陈志亮
桂鹏彬
王思亮
曾玮
任信钢
杨利霞
许耀华
黄志祥
Original Assignee
安徽大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽大学 filed Critical 安徽大学
Priority to US17/771,818 priority Critical patent/US20230160761A1/en
Publication of WO2022179313A1 publication Critical patent/WO2022179313A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/144Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors with associated circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/26Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/165Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in capacitance

Definitions

  • the present application relates to the field of three-dimensional force tactile sensors, in particular to a flexible three-dimensional force tactile sensor with high sensitivity and a preparation method thereof.
  • the research of flexible 3D force tactile sensor includes flexible sensor technology, flexible material preparation and molding technology, durability research, etc.
  • the key problems are mainly reflected in the following aspects: (1) The measurement accuracy of the flexible 3D force tactile sensor is not high, and the measurement range smaller. (2) The measurement response speed of the flexible three-dimensional force tactile sensor is slow. (3) The flexible three-dimensional force tactile sensor is easy to wear and difficult to repair.
  • the purpose of the present application is to provide a flexible three-dimensional force tactile sensor with high sensitivity and a preparation method thereof.
  • a flexible three-dimensional force tactile sensor with high sensitivity comprising:
  • the hemispherical contact includes a tray with a groove on the surface, and a hemispherical protrusion arranged in the groove, and the connection between the groove and the upper surface of the tray is U-shaped, V-shaped, W-shaped or horizontal. set "S" type;
  • a flexible inverted cone assembly connected to the lower surface of the hemispherical contact, a flexible triangular excitation electrode is arranged on the side surface of the flexible inverted cone assembly, and the flexible inverted cone assembly is a cone or a multi-faceted pyramid with a multiple of 4;
  • It also includes a flexible substrate connected to the outer surface of the flexible common electrode for supporting the flexible common electrode and the hemispherical contact.
  • a second cavity with an opening is opened inside the flexible base, the shape of the second cavity is consistent with the shape of the flexible common electrode, the flexible common electrode is arranged on the inner wall of the second cavity of the flexible base, and the second cavity of the flexible base.
  • the flexible base is in the shape of a cuboid, and the length and width of the flexible base are consistent with the length and width of the tray.
  • the height of the flexible common electrode is less than the height of the second cavity of the flexible substrate, the flexible common electrode is connected with a wire connected to the ground and used as a common electrode, and each side surface of the flexible common electrode is bonded by silicone rubber.
  • the agent is bonded to each inner side of the second cavity of the flexible substrate.
  • the size of the flexible inverted cone assembly is smaller than the size of the first cavity of the flexible common electrode, and the flexible inverted cone assembly is bonded to the center position on the side of the tray without the hemispherical protrusions through silicone rubber.
  • the number of flexible triangular excitation electrodes is 4N, and N is a positive integer; when the flexible inverted cone component is a cone, the flexible triangular excitation electrode is in the shape of a curved sector and fits with the outer surface of the flexible inverted cone component; When the flexible inverted pyramid assembly is a polyhedral pyramid, the flexible triangular excitation electrode is triangular; a flexible triangular excitation electrode is arranged on each side of the flexible inverted pyramid assembly of the multi-sided pyramid, and the outer surface of the flexible triangular excitation electrode is provided with a silicone rubber layer, Each flexible triangular excitation electrode is connected with a wire used as an excitation terminal.
  • the material used for the hemispherical contact, flexible base, and flexible inverted cone assembly is silicone rubber or polydimethylsiloxane
  • the material used for the flexible common electrode and the flexible triangular excitation electrode is silicone conductive silver glue, conductive polymer materials, or conductive composites.
  • the shape of the flexible inverted pyramid assembly and the flexible common electrode is an inverted quadrangular pyramid.
  • a preparation method of a flexible three-dimensional force tactile sensor with high sensitivity comprising the following steps:
  • the resulting parts were assembled using silicone rubber as an adhesive.
  • the flexible triangular excitation electrodes and the flexible common electrodes form four capacitors with three-dimensional spatial distribution.
  • the distance between the pole plates and the effective facing area will be changed at the same time. Therefore, the change of the capacitance value is realized, and the magnitude and direction of the external force can be more sensitively sensed through the change of the four symmetrically distributed capacitance values.
  • the inverted quadrangular pyramid structure of the flexible common electrode and the design of its inverted quadrangular pyramid cavity increase the air cavity. Due to the small resistance of the air, under the same force, compared with the solid filling, this structure can obtain A larger amount of deformation helps to improve the sensitivity.
  • the flexible triangular excitation electrode Compared with the traditional rectangular excitation electrode, the flexible triangular excitation electrode has a triangular or fan-shaped structure. Due to the semi-enclosed design of the flexible triangular excitation electrode and the flexible common electrode, it can change the facing area of the plate under the action of normal force. , and according to the shape of the flexible inverted cone assembly, the flexible triangular excitation electrodes are placed obliquely, so that when the normal force is applied, not only the facing area but also the plate spacing can be changed, and the capacitance change is more obvious.
  • the flexible common electrode and the flexible triangular excitation electrode constitute four capacitors distributed in a three-dimensional space.
  • This spatially distributed capacitive structure has excellent performance, so that the capacitive flexible three-dimensional force tactile sensor of the present application has higher detection sensitivity and faster response speed than traditional three-dimensional force sensors.
  • the present application is based on the "inverted quadrangular pyramid” structure, and cooperates with hemispherical contacts, flexible common electrodes and flexible triangular excitation electrodes to form four capacitors with spatial three-dimensional distribution.
  • the "inverted quadrangular pyramid” structure can change the distance between the plates and the effective facing area at the same time, and has excellent characteristics such as high sensitivity and fast response.
  • the present application has wider application fields, including but not limited to applications in related fields such as intelligent robot electronic skin and medical instruments. Compared with other complex three-dimensional force sensors, the present application has better durability and is easy to maintain.
  • Figure 3 is a schematic structural diagram of a hemispherical contact
  • FIG. 4 is a schematic structural diagram of a flexible inverted cone assembly
  • FIG. 5 is a schematic structural diagram of a flexible triangular excitation electrode
  • FIG. 6 is a schematic structural diagram of a flexible common electrode
  • FIG. 7 is a schematic structural diagram of a flexible substrate.
  • the flexible common electrode 4 surrounding part of the flexible triangular excitation electrode 3 is provided with a first cavity 40 with an opening inside the flexible common electrode 4.
  • the shape of the first cavity 40 is consistent with the shape of the flexible inverted cone assembly 2.
  • the flexible triangular excitation electrode 3 and a part of the flexible inverted cone assembly 2 are arranged in the first cavity 40 of the flexible common electrode 4 , and the flexible triangular excitation electrode 3 and the flexible inverted cone assembly 2 are not in contact with the inner wall of the first cavity 40 of the flexible common electrode 4 form an air cavity.
  • the hemispherical contact 1 includes a tray 12 capable of covering the opening of the flexible base cavity, and a hemispherical protrusion 11 disposed on the tray, the hemispherical protrusion 11 is solid, and the upper surface of the tray 12 is provided with a concave
  • the groove 13, the groove 13 is a rectangular groove, and the connection 131 between the groove 13 and the upper surface of the tray 12 is U-shaped, V-shaped, W-shaped or horizontal "S" shape, preferably U-shaped, hemispherical convex 11 is arranged in the groove 13 of the tray 12, and the shape of the connection 131 makes the hemispherical protrusion 11 located in the groove 13 easier to be pushed and deformed when detecting the tangential force, so that the present application can detect the effect of the tangential force.
  • the hemispherical contact 1 is made of flexible insulating material, preferably silicone rubber; the structure of the hemispherical contact 1 makes it more sensitive to force, and the hemispherical protrusion is slightly stressed At the time, it can drive the deformation of the inverted quadrangular pyramid assembly 2 to produce a large change in the distance between the pole plates, so that the capacitance value changes more obviously.
  • the height of the flexible inverted cone assembly 2 is smaller than the size of the first cavity of the flexible common electrode 4, and the flexible inverted cone assembly 2 is bonded to the tray 12 by silicone rubber without the hemispherical protrusions 11.
  • the flexible inverted cone assembly is made of flexible insulating materials such as silicone rubber or polydimethylsiloxane, preferably silicone rubber, and the flexible inverted cone assembly 2 is a cone or a multiple of 4 faces
  • the multi-faceted pyramid, the flexible inverted pyramid component 2 is preferably an inverted quadrangular pyramid.
  • the number of flexible triangular excitation electrodes is 4N, and N is a positive integer.
  • the flexible inverted cone assembly 2 is a cone
  • the flexible triangular excitation electrode 3 is in the shape of a curved sector and fits with the outer surface of the flexible inverted cone assembly 2 .
  • the flexible inverted pyramid assembly 2 is a polyhedral pyramid
  • the flexible triangular excitation electrode 3 is a triangle
  • a flexible triangular excitation electrode 3 is provided on each side of the flexible inverted pyramid assembly 2 of the polyhedral pyramid.
  • the flexible triangular excitation electrode 3 There are 4 pieces, and the intervals are evenly arranged on the four outer sides of the inverted quadrangular-shaped flexible inverted cone assembly 2, which can measure the tangential force under the action of four directions.
  • the flexible inverted cone assembly is an 8-sided pyramid , and when 8 flexible triangular excitation electrodes 3 are arranged, the tangential force in 8 directions can be measured.
  • Each flexible triangular excitation electrode 3 is connected with a wire used as an excitation end.
  • the material of the flexible triangular excitation electrode 3 is a flexible conductive material such as silicone conductive silver glue, conductive polymer or conductive composite material, preferably silicone conductive silver glue, flexible
  • the outer surface of the triangular excitation electrode 3 is provided with a silicone rubber layer, such as GD401, GD402 and other commonly used room temperature vulcanized rubbers.
  • the flexible triangular excitation electrode 3 of 3 has a larger change in the area facing the two electrode plates of the capacitor under the same normal force, so the capacitance changes more obviously with the external force.
  • the flexible base 5 is in the shape of a cuboid
  • the material of the flexible base is made of flexible insulating materials such as silicone rubber or polydimethylsiloxane, preferably silicone rubber, and the size of the flexible base 5 can support the tray 12 , preferably,
  • the length and width of the flexible base 5 are consistent with the length and width of the tray 12;
  • the flexible base 5 is provided with a second cavity 50 with an opening, and the shape of the second cavity 50 is consistent with the shape of the flexible common electrode 4, preferably four inverted
  • the size of the second cavity 50 of the flexible base 5 is the size of the flexible inverted cone assembly 2 enlarged by 1.5 times, and the opening of the second cavity 50 is in the shape of a pyramid.
  • the length and width are smaller than the length and width of the rectangular parallelepiped on the outer surface of the flexible substrate 5 .
  • the shape of the flexible common electrode 4 is preferably an inverted quadrangular pyramid, and the material of the flexible common electrode 4 is a flexible conductive material such as silicone conductive silver glue, conductive polymer, or conductive composite material, preferably silicone conductive silver glue,
  • the height of the flexible common electrode 4 is smaller than the height of the second cavity 50 of the flexible substrate 5.
  • the flexible common electrode 4 is connected with a wire connected to the ground for making a common electrode, and the outer surface of the flexible common electrode 4 is made of silicone rubber as an adhesive.
  • the adhesive is bonded to each inner wall of the second cavity 50 of the flexible substrate 5 , and the second cavity 50 of the flexible substrate 5 is completely fitted and connected to the outer surface of the flexible common electrode 4 .
  • the flexible common electrode 4 is provided with a first cavity 40 for placing part of the flexible inverted pyramid assembly 2 and the flexible triangular excitation electrode 3 combination device.
  • the first cavity 40 is consistent with the flexible inverted pyramid assembly 2 in shape, preferably an inverted quadrangular pyramid.
  • the first cavity 40 of the flexible common electrode 4 is an open cavity, and part of the flexible triangular excitation electrode 3 and the flexible inverted cone assembly 2 are placed in the first cavity, so that the flexible common electrode 4 does not completely surround the flexible triangular excitation electrode.
  • the structure composed of the flexible substrate 5 and the flexible common electrode 4 and the structure composed of the flexible inverted cone assembly 2 and the flexible triangular excitation electrode 3 constitute a plurality of capacitors distributed in three-dimensional space, and act on the hemispherical contact according to the normal force and the tangential force.
  • the change law of the four capacitance values at the head 1 realizes the real-time perception of the three-dimensional force direction and magnitude.
  • the present application senses the direction and magnitude of the external force received by the hemispherical contact 1 through the change of multiple capacitance values, and records the time of the external force. Change the information to provide fast and accurate feedback for the intelligent control terminal.
  • the embodiment of the present application proposes a method for preparing a flexible three-dimensional force tactile sensor with high sensitivity, including the following steps:
  • the high-sensitivity flexible three-dimensional force tactile sensor of the present application works as follows:
  • the sensor is composed of flexible triangular excitation electrodes 3 and flexible common electrodes 5 to form a plurality of capacitors distributed in three-dimensional space.
  • the flexible triangular excitation electrode 3 compresses downward, the distance between the flexible triangular excitation electrode 3 and the flexible common electrode 4 decreases, and at the same time, the effective area of the electrode plate increases, and the multiple capacitance values increase in the same trend; under the action of the tangential force , the flexible triangular excitation electrode 3 is close to the common end that is closer to the force-bearing direction, the distance between the two polar plates is reduced, the effective area is increased, and the corresponding capacitance value is increased. On the contrary, the flexible triangular excitation electrode 3 is far away from the common end of the force-bearing direction, and the corresponding capacitance value decreases accordingly.
  • a set of capacitance values under external force is calibrated and determined, so that in practical applications, the capacitance value can be determined by the capacitance value. Inverse the magnitude and direction of the corresponding external force.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种高灵敏度的柔性三维力触觉传感器及制备方法,柔性三维力触觉传感器包括半球型触头(1),半球型触头(1)包括表面开设有凹槽(13)的托盘(12),以及设置在凹槽(13)内的半球型凸起;连接在半球型触头(1)下表面的柔性倒锥体组件(2),柔性倒锥体组件(2)的侧表面上设置有柔性三角形激励电极(3);包围部分柔性三角形激励电极(3)的柔性公共电极(4),柔性公共电极(4)内部开设有开口的与柔性倒锥体组件(2)外形一致的第一腔体(40),柔性三角形激励电极(3)及柔性倒锥体组件(2)的一部分设置在柔性公共电极(4)的第一腔体(40)内,柔性三角形激励电极(3)及柔性倒锥体组件(2)与柔性公共电极(4)的第一腔体(40)内壁无接触形成空气腔。

Description

一种高灵敏度的柔性三维力触觉传感器及制备方法
本申请要求于2021年2月25日提交中国国家知识产权局、申请号为202110210714.5、申请名称为一种高灵敏度的柔性三维力触觉传感器及制备方法的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及三维力触觉传感器领域,具体是一种高灵敏度的柔性三维力触觉传感器及制备方法。
背景技术
目前,对于机器人作业的智能化和精细化程度不断提高,机器人的制作要求也越来越严苛,国内外学者便将响应速度更快、灵敏度更高、检测范围更宽、耐用性更加优良作为柔性三维力柔性触觉传感器的研究方向。
国内外对柔性三维力触觉传感器已有一定的研究,但大多都是关于传感器制备材料方面的改进。传感器的基本工作原理主要集中于电容式、压阻式和光电式三个方向,原理较为简单,但要想设计一个新颖的结构仍比较困难。
柔性三维力触觉传感器的研究包括柔性传感器技术、柔性材料制备及成型技术、耐用性研究等,其关键问题主要体现在以下几个方面:(1)柔性三维力触觉传感器测量精度不高,测量范围较小。(2)柔性三维力触觉传感器测量响应速度慢。(3)柔性三维力触觉传感器易损耗,难以修复。
因此,采用复合导电材料及高耐用性柔性材料,发散创新思维设计新型可靠的结构,从而提高传感器的优良性能,将是柔性三维力触觉传感器发展的主流。
申请内容
本申请的目的在于提供一种高灵敏度的柔性三维力触觉传感器及制备方法。
为实现上述目的,本申请提供如下技术方案:
一种高灵敏度的柔性三维力触觉传感器,包括:
半球型触头,半球型触头包括表面开设有凹槽的托盘,以及设置在凹槽内的半球型凸起,凹槽与托盘上表面的连接处呈U型、V型、W型或横置的“S”型;
连接在半球型触头下表面的柔性倒锥体组件,柔性倒锥体组件的侧表面上设置有柔性三角形激励电极,柔性倒锥体组件为圆锥体或面数为4的倍数的多面棱锥;
包围部分柔性三角形激励电极的柔性公共电极,柔性公共电极内部开设有开口的第一腔体,第一腔体的形状与柔性倒锥体组件外形一致,柔性三角形激励电极及柔性倒锥体组件的一部分设置在柔性公共电极的第一腔体内,柔性三角形激励电极及柔性倒锥体组件与柔性公共电极的第一腔体内壁无接触形成空气腔。
其中,还包括与柔性公共电极外表面相连用于支撑柔性公共电极以及半球型触头的柔性基底。
其中,柔性基底内部开设有开口的第二腔体,第二腔体的形状与柔性公共电极的外形一致,柔性公共电极设置在柔性基底的第二腔体内壁上,柔性基底的第二腔体的顶面外缘与托盘下底面的外缘通过硅橡胶粘结固定。
其中,柔性基底呈长方体,柔性基底的长宽尺寸与托盘的长宽尺寸一致。
其中,柔性公共电极的高度小于柔性基底第二腔体的高度,柔性公共电极上连接有与地面相接的用于做公共电极的导线,柔性公共电极的每个侧表面通过硅橡胶作为粘接剂粘结于柔性基底第二腔体的每个内侧面。
其中,柔性倒锥体组件的尺寸小于柔性公共电极的第一腔体的尺寸,柔性倒锥体组件通过硅橡胶粘结在托盘未设置半球型凸起一侧的中心位置。
其中,柔性三角形激励电极的个数为4N个,N为正整数;当柔性倒锥体组件为圆锥体时,柔性三角形激励电极为有弧度的扇形并与柔性倒锥体组件外侧面贴合;当柔性倒锥体组件为多面棱锥时,柔性三角形激励电极为三角形;多面棱锥的柔性倒锥体组件的每个侧面上设置一个柔性三角形激励电极,柔性三角形激励电极外表面设置有硅橡胶层,每个柔性三角形激励电极上连接有用于做激励端的导线。
其中,半球型触头、柔性基底、柔性倒锥体组件采用的材料为硅橡胶或聚二甲基硅氧烷,柔性公共电极、柔性三角形激励电极采用的材料为有机硅导电银胶、导电聚合物、或导电复合材料。
其中,柔性倒锥体组件、柔性公共电极的形状为倒四棱锥形。
一种高灵敏度的柔性三维力触觉传感器的制备方法,包括以下步骤:
利用3D打印技术打印出柔性基底模具、柔性倒锥体组件模具、柔性公共电极模具以及半球型触头模具;
向柔性基底模具、柔性倒锥体组件模具、半球型触头模具中注入硅橡胶材料或聚二甲基硅氧烷(PDMS),向柔性公共电极模具中注入有机硅导电银胶(YC-02)、导电聚合物、或导电复合材料,待其固化后脱模,制得柔性基底、半球型触头、柔性倒锥体组件和柔性公共电极;
在制成的柔性倒锥体组件侧表面中心均匀涂抹有机硅导电银胶、导电聚合物、或导电复合材料,静置固化后,形成柔性三角形激励电极,在柔性三角形激励电极表面涂抹硅橡胶;
使用硅橡胶作粘接剂,将制得的部件进行组装。
本申请的有益效果包括:
本申请通过柔性三角形激励电极与柔性公共电极构成四个呈空间立体分布的电容,受法向力及切向力作用于半球型触头时,将同时改变极板的间距与有效正对面积,从而实现电容值的变化,通过对称分布的四个电容值的变化,可以更灵敏的感知所受外力的大小及方向。
本申请中半球型触头结构使得受力时更加敏感,半球型凸起当受微小力时即可带动柔性倒四棱锥形组件发生形变,配合托盘上的凹槽设计,凹槽与托盘上表面的连接处呈U型、V型、W型或横置的“S”型的设计,使得半球型凸起在检测切向力时更易被推动形变,使得本申请在检测切向力作用时更灵敏,能够获得更大的位移,即极板间距变化量较大,使得电容值变化更加明显。
柔性公共电极倒四棱锥形的结构及其倒四棱锥形腔体的设计,增加了空气腔,由于空气的阻力小,因此在相同大小的力作用下,相较于固体填充,本结构可以获得更大的形变量,有助于灵敏度的提升。
柔性三角形激励电极相较于传统的矩形激励电极的设计,为三角形或扇形结构,由于柔性三角形激励电极与柔性公共电极的半包围设计,实现在法向力作用下,改变极板的正对面积,且根据柔性倒锥体组件的形状,柔性三角形激励电极呈倾斜放置,这样在施加法向力作用时,不仅可以改变正对面积,还可改变极板间距,电容变化更为明显。
在柔性基底形成的倒四棱锥形的腔体内,柔性公共电极和柔性三角形激励电极构成四个呈空间立体分布的电容,通过受力,改变了极板间距和有效面积。这种空间立体分布的电容结构具有优良的性能,使得本申请的电容式柔性三维力触觉传感器,相较于传统三维力传感器,具有更高的检测灵敏度及更快的响应速度。
本申请基于“倒四棱锥”结构,配合半球型触头、柔性公共电极和柔性三角形激励电极构成四个呈空间立体分布的电容,相较于传统的电容式三维力结构,在相同法向力作用力下,“倒四棱锥形”结构可同时改变极板间距与有效正对面积,具有灵敏度高、响应快等优良特性。
此外,本申请相比于传统刚性三维力传感器,具有更广泛的应用领域,包含但不限于智能机器人电子皮肤和医疗器械等相关领域的应用。本申请结构清晰,组装方便,相比于其他复杂三维力传感器,本申请具有更好的耐用性并且便于维护。
附图说明
图1为本申请的结构爆炸图;
图2为本申请的整体结构示意图;
图3为半球型触头的结构示意图;
图4为柔性倒锥体组件的结构示意图;
图5为柔性三角形激励电极的结构示意图;
图6为柔性公共电极的结构示意图;
图7为柔性基底的结构示意图。
图中:1-半球型触头、11-半球型凸起、12-托盘、13-凹槽、131-连接处、2-柔性倒锥体组件、3-柔性三角形激励电极、4-柔性公共电极、5-柔性基底、40-第一腔体、50-第二腔体。
具体实施方式
为了对本申请实施例的技术方案、优点更加清晰,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行更加清楚、完整的描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1、2,本申请实施例中,一种高灵敏度的柔性三维力触觉传感器,包括:
半球型触头1,半球型触头1包括表面开设有凹槽13的托盘12,以及设置在凹槽12内的半球型凸起11,凹槽13与托盘12上表面的连接处131呈U型、V型、W型或横置的“S”型;
连接在半球型触头下表面的柔性倒锥体组件2,柔性倒锥体组件的侧表 面上设置有柔性三角形激励电极3,柔性倒锥体组件2为圆锥体或面数为4的倍数的多面棱锥;
包围部分柔性三角形激励电极3的柔性公共电极4,柔性公共电极4内部开设有开口的第一腔体40,第一腔体40的形状与柔性倒锥体组件2的外形一致,柔性三角形激励电极3及柔性倒锥体组件2的一部分设置在柔性公共电极4的第一腔体40内,柔性三角形激励电极3及柔性倒锥体组件2与柔性公共电极4的第一腔体40内壁无接触形成空气腔。
请参阅图3,半球型触头1包括能够盖住柔性基底腔体开口的托盘12,以及设置在托盘上的半球型凸起11,半球型凸起11为实心,托盘12上表面开设有凹槽13,凹槽13为矩形凹槽,凹槽13与托盘12上表面的连接处131呈U型、V型、W型或横置的“S”型,优选为U形,半球型凸起11设置在托盘12的凹槽13内,连接处131的形态设置使得位于凹槽13中的半球型凸起11在检测切向力时更易被推动发生形变,使得本申请在检测切向力作用时更灵敏,能够获得更大的位移,即极板间距变化量较大,电容值变化更加明显;托盘12未设置半球型凸起11的一侧的外缘通过硅橡胶与柔性基底5的第二腔体的顶面外缘粘结固定,半球型触头1采用柔性绝缘材料制成,优选为硅橡胶;半球型触头1的结构使得受力时更敏感,半球型凸起受轻微力时,能带动倒四棱锥组件2形变进而使极板间距产生较大变化量,使得电容值变化更明显。
请参阅图4、5,柔性倒锥体组件2的高度小于柔性公共电极4的第一腔体的尺寸大小,柔性倒锥体组件2通过硅橡胶粘结在托盘12未设置半球型凸起11一侧的中心位置,柔性倒锥体组件由硅橡胶或聚二甲基硅氧烷等 柔性绝缘材料制成,优选为硅橡胶,柔性倒锥体组件2为圆锥体或面数为4的倍数的多面棱锥,柔性倒锥体组件2优选为倒四棱锥形。
柔性三角形激励电极的个数为4N个,N为正整数。当柔性倒锥体组件2为圆锥体时,柔性三角形激励电极3为有弧度的扇形并与柔性倒锥体组件2外侧面贴合。当柔性倒锥体组件2为多面棱锥时,柔性三角形激励电极3为三角形,多面棱锥的柔性倒锥体组件2的每个侧面上设置一个柔性三角形激励电极3,优选的,柔性三角形激励电极3为4个,其间隔均匀地设置在倒四棱锥形的柔性倒锥体组件2的四个外侧面上,可测量四个方向作用下的切向力,当柔性倒锥体组件为8面棱锥,进而设置8个柔性三角形激励电极3时,可测量8个方向的切向力。
每个柔性三角形激励电极3上连接有用于做激励端的导线,柔性三角形激励电极3材料为有机硅导电银胶、导电聚合物或导电复合材料等柔性导电材料,优选为有机硅导电银胶,柔性三角形激励电极3外表面设置有硅橡胶层,如GD401、GD402等常用室温硫化橡胶,该硅橡胶层起到粘结固定柔性三角形激励电极3于柔性倒锥体组件2表面上以及绝缘作用,三角形形状的柔性三角形激励电极3相对于矩形激励电极,在相同法向力作用下,电容的两极板正对面积变化量更大,因此电容随外力变化更明显。
请参阅图7,柔性基底5呈长方体,柔性基底的材料为硅橡胶或聚二甲基硅氧烷等柔性绝缘材料制成,优选为硅橡胶,柔性基底5大小能够支撑托盘12,优选的,柔性基底5的长宽尺寸与托盘12的长宽尺寸一致;柔性基底5内部开设有开口的第二腔体50,第二腔体50的形状与柔性公共电极4的外形一致,优选为倒四棱锥形,该第二腔体50的开口四周形成有 外缘,柔性基底5的第二腔体50大小为柔性倒锥体组件2按比例放大1.5倍的大小,该第二腔体50开口处的长宽小于柔性基底5外表面长方体的长宽。
请参阅图6,柔性公共电极4外形优选为倒四棱锥形,柔性公共电极4材料为有机硅导电银胶、导电聚合物、或导电复合材料等柔性导电材料,优选为有机硅导电银胶,柔性公共电极4高度小于柔性基底5的第二腔体50的高度,柔性公共电极4上连接有与地面相接的用于做公共电极的导线,柔性公共电极4的外侧表面通过硅橡胶作为粘接剂粘结于柔性基底5的第二腔体50的每个内壁上,柔性基底5的第二腔体50与柔性公共电极4的外表面完全嵌合连接。
柔性公共电极4内部开设有用于放置部分柔性倒锥体组件2和柔性三角形激励电极3组合装置第一腔体40,第一腔体40与柔性倒锥体组件2外形一致,优选为倒四棱锥形,柔性公共电极4的第一腔体40为开口腔体,部分柔性三角形激励电极3及柔性倒锥体组件2置于第一腔体中,形成柔性公共电极4不完全包围柔性三角形激励电极3及柔性倒锥体组件2的结构,该种不完全包围的结构设计,使得在法向力作用下,极板的正对面积能得以改变,使得本申请的灵敏度得以提升,柔性三角形激励电极3及柔性倒锥体组件2与柔性公共电极4的倒四棱锥形腔体内壁无接触,两者间存在空气填充的腔体,也可将空气替换为公共导电柔性材料,则同时也改变了极板间介质,从而受力时也会改变极板间介电常数,但空气填充由于空气的阻力小,因此在相同大小的力作用下,相较于其他固体填充,空气腔结构可以获得更大的形变量,有助于灵敏度的提升。
柔性基底5和柔性公共电极4组成的结构与柔性倒锥体组件2和柔性三角形激励电极3组成的结构构成多个呈空间立体分布的电容,依据法向力及切向力作用于半球型触头1时四个电容值的变化规律,实现三维力方向及大小的实时感知,本申请通过多个电容值的变化,感知半球型触头1受到外力的方向及力的大小,记录外力的时变信息,为智能控制端提供快速、准确的反馈。
本申请实施例提出了一种根据上述的高灵敏度的柔性三维力触觉传感器的制备方法,包括以下步骤:
利用3D打印技术流体成型技术,使用多物理场仿真软件COMSOL进行建模设计各部件模具,打印出柔性基底模具、柔性倒锥体组件模具、柔性公共电极模具以及半球型触头模具;
向柔性基底模具、柔性倒锥体组件模具、半球型触头模具中注入硅橡胶材料,将有机硅导电银胶与固化剂混合后注入柔性公共电极模具中,将所有模具置于真空干燥箱中室温固化,保持温度于60℃,经2至3小时待其固化后脱模,制得柔性基座、半球型触头和柔性倒锥体组件,以及柔性公共电极;
在制成的柔性倒锥体组件四个侧表面中心均匀涂抹有机硅导电银胶,静置进行室温固化后,形成四个柔性三角形激励电极,在有机硅导电银胶的柔性三角形激励电极表面涂抹硅橡胶,进行绝缘处理;
使用硅橡胶作粘接剂对制得部件进行组装,将柔性公共电极与柔性基底粘接,将柔性倒锥体组件与半球型触头粘接,再将半球型触头与柔性基底粘接即制得本申请的传感器。
本申请的高灵敏度的柔性三维力触觉传感器,其工作原理如下:
传感器由柔性三角形激励电极3与柔性公共电极5构成多个呈空间立体分布的电容,受法向力及切向力作用于半球型触头1时,将同时改变极板的间距与有效正对面积,从而实现电容值的变化。在法向力作用下,柔性三角形激励电极3向下压缩,与柔性公共电极4的间距减小,同时极板的有效面积增大,多个电容值同趋势的增大;切向力作用下,柔性三角形激励电极3靠近距离受力方向较近的公共端,两极板间的间距减小、有效面积增大,对应的电容值增大。相反的,柔性三角形激励电极3远离受力方向的公共端,对应的电容值相应减小,通过多组实验的测量,标定确定外力下的一组电容值,从而在实际应用中可以通过电容值反演出对应的外力大小及方向。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本申请内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

  1. 一种高灵敏度的柔性三维力触觉传感器,包括:
    半球型触头(1),半球型触头(1)包括表面开设有凹槽(13)的托盘(12),以及设置在凹槽(13)内的半球型凸起(11);
    连接在半球型触头(1)下表面的柔性倒锥体组件(2),柔性倒锥体组件(2)的侧表面上设置有柔性三角形激励电极(3);
    包围部分柔性三角形激励电极(3)的柔性公共电极(4),柔性公共电极(4)内部开设有开口的第一腔体(40),第一腔体(40)的形状与柔性倒锥体组件(2)的外形一致,柔性三角形激励电极(3)及柔性倒锥体组件(2)的一部分设置在柔性公共电极(4)的第一腔体(40)内,柔性三角形激励电极(3)及柔性倒锥体组件(2)与柔性公共电极(4)的第一腔体内壁无接触形成空气腔。
  2. 根据权利要求1所述的高灵敏度的柔性三维力触觉传感器,其中,还包括与柔性公共电极(4)外表面相连用于支撑柔性公共电极(4)以及半球型触头(1)的柔性基底(5)。
  3. 根据权利要求2所述的高灵敏度的柔性三维力触觉传感器,其中,柔性基底(5)内部开设有开口的第二腔体(50),第二腔体(50)的形状与柔性公共电极(4)的外形一致,柔性公共电极(4)嵌合在柔性基底的第二腔体(50)内壁上,柔性基底(5)的第二腔体(50)的顶面外缘与托盘(12)下底面的外缘通过硅橡胶粘结固定。
  4. 根据权利要求2所述的高灵敏度的柔性三维力触觉传感器,其中, 柔性基底(5)呈长方体,柔性基底的长宽尺寸与托盘(12)的长宽尺寸一致。
  5. 根据权利要求2所述的高灵敏度的柔性三维力触觉传感器,其中,柔性公共电极(4)的高度小于柔性基底(5)的第二腔体(50)的高度,柔性公共电极(4)上连接有与地面相接的用于做公共电极的导线,柔性公共电极(4)的每个侧表面通过硅橡胶作为粘接剂粘结于柔性基底(5)的第二腔体(50)的每个内侧面。
  6. 根据权利要求1所述的高灵敏度的柔性三维力触觉传感器,其中,柔性倒锥体组件(2)的尺寸小于柔性公共电极(4)的第一腔体(40)的尺寸,柔性倒锥体组件(2)通过硅橡胶粘结在托盘(12)未设置半球型凸起(11)一侧的中心位置。
  7. 根据权利要求1所述的高灵敏度的柔性三维力触觉传感器,其中,柔性三角形激励电极的个数为4N个,N为正整数;
    当柔性倒锥体组件(2)为圆锥体时,柔性三角形激励电极(3)为有弧度的扇形并与柔性倒锥体组件(2)外侧面贴合;当柔性倒锥体组件(2)为多面棱锥时,柔性三角形激励电极(3)为三角形;
    多面棱锥的柔性倒锥体组件(2)的每个侧面上设置一个柔性三角形激励电极(3),柔性三角形激励电极(3)外表面设置有硅橡胶层,每个柔性三角形激励电极(3)上连接有用于做激励端的导线。
  8. 根据权利要求2所述的高灵敏度的柔性三维力触觉传感器,其中,半球型触头(1)、柔性基底(5)、柔性倒锥体组件(2)采用的材料为硅橡胶或聚二甲基硅氧烷,柔性公共电极(4)、柔性三角形激励电极(3) 采用的材料为有机硅导电银胶、导电聚合物、或导电复合材料。
  9. 根据权利要求1所述的高灵敏度的柔性三维力触觉传感器,其中,柔性倒锥体组件(2)和柔性公共电极(4)的形状为倒四棱锥形。
  10. 一种高灵敏度的柔性三维力触觉传感器的制备方法,包括以下步骤:
    利用3D打印技术打印出柔性基底模具、柔性倒锥体组件模具、柔性公共电极模具以及半球型触头模具;
    向柔性基底模具、柔性倒锥体组件模具、半球型触头模具中注入硅橡胶材料或聚二甲基硅氧烷,向柔性公共电极模具中注入有机硅导电银胶、导电聚合物、或导电复合材料,待其固化后脱模,制得柔性基底、半球型触头、柔性倒锥体组件和柔性公共电极;
    在制成的柔性倒锥体组件侧表面中心均匀涂抹有机硅导电银胶、导电聚合物、或导电复合材料,静置固化后,形成柔性三角形激励电极,在柔性三角形激励电极表面涂抹硅橡胶;
    使用硅橡胶作粘接剂,将制得的部件进行组装。
PCT/CN2021/143957 2021-02-25 2021-12-31 一种高灵敏度的柔性三维力触觉传感器及制备方法 WO2022179313A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/771,818 US20230160761A1 (en) 2021-02-25 2021-12-31 High-sensitivity flexible three-dimensional force tactile sensor and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110210714.5 2021-02-25
CN202110210714.5A CN113218542B (zh) 2021-02-25 2021-02-25 一种高灵敏度的柔性三维力触觉传感器及制备方法

Publications (1)

Publication Number Publication Date
WO2022179313A1 true WO2022179313A1 (zh) 2022-09-01

Family

ID=77084684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143957 WO2022179313A1 (zh) 2021-02-25 2021-12-31 一种高灵敏度的柔性三维力触觉传感器及制备方法

Country Status (3)

Country Link
US (1) US20230160761A1 (zh)
CN (1) CN113218542B (zh)
WO (1) WO2022179313A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218542B (zh) * 2021-02-25 2023-05-23 安徽大学 一种高灵敏度的柔性三维力触觉传感器及制备方法
CN115479711B (zh) * 2022-10-19 2023-05-23 中国科学院武汉岩土力学研究所 一种地下工程三维应力的硬壳包体应力计及监测系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959175A (zh) * 2017-03-21 2017-07-18 合肥工业大学 一种基于金字塔结构的全柔性电容式滑触觉传感器
WO2017215086A1 (zh) * 2016-06-16 2017-12-21 中兴通讯股份有限公司 传感器及确定力方向的方法
WO2018067626A1 (en) * 2016-10-04 2018-04-12 Arizona Board Of Regents On Behalf Of Arizona State University Flexible sensors incorporating piezoresistive composite materials and fabrication methods
CN108204869A (zh) * 2017-12-07 2018-06-26 电子科技大学 基于微结构介电层的薄膜晶体管压力传感器及制备方法
CN110793701A (zh) * 2019-11-19 2020-02-14 安徽大学 一种高灵敏度电容式柔性三维力触觉传感器及其制备方法
CN111366274A (zh) * 2020-04-07 2020-07-03 安徽大学 一种全柔性电容式三维力触觉传感器
CN111537115A (zh) * 2020-04-27 2020-08-14 西安交通大学 一种压阻式柔性三维力传感器阵列及其制备方法
CN111609953A (zh) * 2020-06-04 2020-09-01 安徽大学 一种基于球曲面电极的全柔性电容式三维力触觉传感器
CN113218542A (zh) * 2021-02-25 2021-08-06 安徽大学 一种高灵敏度的柔性三维力触觉传感器及制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852443A (en) * 1986-03-24 1989-08-01 Key Concepts, Inc. Capacitive pressure-sensing method and apparatus
KR102081892B1 (ko) * 2013-09-05 2020-02-26 삼성전자주식회사 압저항(piezo-resistive) 전극을 구비한 저항성 압력 센서
US10037098B2 (en) * 2015-07-29 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Methods and apparatus concerning sensitive force sensors
JP6876948B2 (ja) * 2017-03-23 2021-05-26 パナソニックIpマネジメント株式会社 触覚センサおよびこの触覚センサを構成する触覚センサユニット
GB2580928B (en) * 2019-01-30 2023-02-08 Hyve Dynamics Holdings Ltd A stretchable bidirectional capacitive pressure sensor and method of use
CN111751038B (zh) * 2020-07-06 2021-12-28 安徽大学 基于仿生蘑菇结构的高灵敏度电容式柔性三维力触觉传感器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017215086A1 (zh) * 2016-06-16 2017-12-21 中兴通讯股份有限公司 传感器及确定力方向的方法
WO2018067626A1 (en) * 2016-10-04 2018-04-12 Arizona Board Of Regents On Behalf Of Arizona State University Flexible sensors incorporating piezoresistive composite materials and fabrication methods
CN106959175A (zh) * 2017-03-21 2017-07-18 合肥工业大学 一种基于金字塔结构的全柔性电容式滑触觉传感器
CN108204869A (zh) * 2017-12-07 2018-06-26 电子科技大学 基于微结构介电层的薄膜晶体管压力传感器及制备方法
CN110793701A (zh) * 2019-11-19 2020-02-14 安徽大学 一种高灵敏度电容式柔性三维力触觉传感器及其制备方法
CN111366274A (zh) * 2020-04-07 2020-07-03 安徽大学 一种全柔性电容式三维力触觉传感器
CN111537115A (zh) * 2020-04-27 2020-08-14 西安交通大学 一种压阻式柔性三维力传感器阵列及其制备方法
CN111609953A (zh) * 2020-06-04 2020-09-01 安徽大学 一种基于球曲面电极的全柔性电容式三维力触觉传感器
CN113218542A (zh) * 2021-02-25 2021-08-06 安徽大学 一种高灵敏度的柔性三维力触觉传感器及制备方法

Also Published As

Publication number Publication date
US20230160761A1 (en) 2023-05-25
CN113218542B (zh) 2023-05-23
CN113218542A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2022179313A1 (zh) 一种高灵敏度的柔性三维力触觉传感器及制备方法
CN110793701B (zh) 一种高灵敏度电容式柔性三维力触觉传感器及其制备方法
CN107588872B (zh) 基于导电织物的三维力柔性触觉传感器
CN111982162B (zh) 一种柔性电容式接近-触觉双模传感阵列及制备方法
CN111609953B (zh) 一种基于球曲面电极的全柔性电容式三维力触觉传感器
CN111366274B (zh) 一种全柔性电容式三维力触觉传感器
CN112556895B (zh) 柔性压力传感器、制备方法及传感系统、柔性电子皮肤
CN110082010A (zh) 柔性触觉传感器阵列及应用于其的阵列扫描系统
CN111947813B (zh) 一种基于波纹管微结构的全柔性电容式三维力触觉传感器
CN108515694B (zh) 一种基于3d打印技术的柔性压力传感器芯片及其制作方法
CN109406012A (zh) 一种柔性压电式的三维触觉传感器阵列及其制备方法
CN111829698A (zh) 一种基于仿生机理的双层触觉传感器
CN111751038B (zh) 基于仿生蘑菇结构的高灵敏度电容式柔性三维力触觉传感器
WO2019119286A1 (zh) 一种柔性电子压力传感装置及其制备方法
CN106092384A (zh) 电容型压力传感器及其制备方法
CN104266788A (zh) 一种柔性电容压力传感装置
CN104236764A (zh) 一种电容式触滑觉传感器装置
CN113551811B (zh) 一种4d打印的多功能触觉传感器的设计方法
He et al. A multi-layered touch-pressure sensing ionogel material suitable for sensing integrated actuations of soft robots
CN111786590A (zh) 可同时检测温度和压力的摩擦纳米发电机及柔性传感器
CN113970392B (zh) 柔性接近觉与压力触觉传感器、传感系统及柔性电子皮肤
CN104990650B (zh) 一种多方向性电容式滑觉传感器
CN111473904A (zh) 一体式柔性三维力触觉传感器及其制作方法
CN108072389B (zh) 一种仿生贴附型可穿戴健康监测传感器制造方法
Jia et al. Flexible and highly sensitive piezoresistive pressure sensor with sandpaper as a mold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927737

Country of ref document: EP

Kind code of ref document: A1