WO2022179160A1 - 一种低轨卫星被动对月定标时机计算方法和系统 - Google Patents

一种低轨卫星被动对月定标时机计算方法和系统 Download PDF

Info

Publication number
WO2022179160A1
WO2022179160A1 PCT/CN2021/127951 CN2021127951W WO2022179160A1 WO 2022179160 A1 WO2022179160 A1 WO 2022179160A1 CN 2021127951 W CN2021127951 W CN 2021127951W WO 2022179160 A1 WO2022179160 A1 WO 2022179160A1
Authority
WO
WIPO (PCT)
Prior art keywords
included angle
vector
angle
time
real
Prior art date
Application number
PCT/CN2021/127951
Other languages
English (en)
French (fr)
Inventor
王超
李永昌
赵鸿志
张可立
王丽丽
Original Assignee
航天东方红卫星有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 航天东方红卫星有限公司 filed Critical 航天东方红卫星有限公司
Priority to EP21927584.9A priority Critical patent/EP4300346A1/en
Publication of WO2022179160A1 publication Critical patent/WO2022179160A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1021Earth observation satellites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/105Space science
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/12Timing analysis or timing optimisation

Definitions

  • the invention belongs to the technical field of satellite remote sensing, and in particular relates to a method and a system for calculating the passive moon calibration timing of a low-orbit satellite.
  • the satellite on-orbit-to-moon calibration mode is divided into active mode and passive mode.
  • the active mode requires the satellite to actively perform attitude maneuvering or load swing mirror pointing tracking, and adjust the field of view of the detector to point to the moon for imaging calibration, although the calibration period and calibration efficiency are more efficient.
  • it has strict requirements on satellite working mode and task scheduling.
  • the technical solution of the present invention is to overcome the deficiencies of the prior art, and to provide a method and system for calculating the timing of passive monthly calibration of low-orbit satellites. And the subsequent establishment of China's lunar radiation model provides data support.
  • the present invention discloses a method for calculating the timing of passive monthly calibration of low-orbit satellites, including:
  • Three vectors are constructed in the STK simulation scene; wherein, the first vector is the start vector of the cold sky field of view, the second vector is the end vector of the cold sky, and the third vector is the vector from the satellite body to the moon;
  • the included angle ⁇ 1 is the included angle between the first vector and the third vector
  • the included angle ⁇ 2 is the second included angle
  • the included angle ⁇ 3 is the included angle between the first vector and the second vector
  • the relationship between the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 is determined, and the timing of the monthly calibration is determined.
  • an STK simulation scenario including:
  • the semi-major axis of the orbit, the eccentricity, the orbit inclination, the argument of perigee, the right ascension and the angle of perigee of the ascending node are used as the input parameters of STK, and the STK simulation scene is established.
  • three vectors are constructed in the STK simulation scene, including:
  • the circular scanning disk coordinate system O-XYZ is established with the scanning center as the origin O; wherein, the X axis is the flight direction perpendicular to the paper surface outward, the Z axis points to the center of the earth, and the Y axis, the X axis and the Z axis form a right-handed system;
  • the sub-satellite point imaging vector Sub_point_vector is rotated by an angle ⁇ 1 counterclockwise, and the cold sky field of view start vector Start_vector is constructed;
  • the sub-satellite point imaging vector Sub_point_vector rotates the angle ⁇ 2 counterclockwise to construct the cold air end vector End_vector;
  • the vector sat2moon_vector from the satellite body to the moon is constructed.
  • the values of the angle ⁇ 1 and the angle ⁇ 2 are determined according to the load requirements.
  • the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 are determined according to the real-time angle values of the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 .
  • the relationship between and determine the timing of monthly calibration including:
  • the above method for calculating the passive moon calibration timing of low-orbit satellites while acquiring and outputting the real-time angle values of the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 in real time, it also includes: obtaining and outputting the current UTC time and the latitude and longitude of the current sub-satellite point.
  • the method further includes: determining and outputting the latitude and longitude of the sub-satellite point corresponding to the current UTC time.
  • an STK simulation scene is established, three vectors are constructed in the STK simulation scene, and three vectors are obtained and outputted in real time for the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 .
  • the step of real-time angle value is implemented in STK software.
  • the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 are determined according to the real-time angle values of the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 .
  • the relationship between them and the steps to determine the timing of monthly calibration are implemented in MATLAB software.
  • the present invention also discloses a low-orbit satellite passive monthly calibration timing calculation system, including:
  • the vector building module is used to construct three vectors in the STK simulation scene; the first vector is the start vector of the cold space field of view, the second vector is the end vector of the cold space, and the third vector is the vector from the satellite body to the moon;
  • the data acquisition module is used to acquire and output the real-time angle values of the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 in real time; wherein, the included angle ⁇ 1 is the included angle between the first vector and the third vector, the included angle The angle ⁇ 2 is the included angle between the second vector and the third vector, and the included angle ⁇ 3 is the included angle between the first vector and the second vector;
  • the determination module is used to determine the relationship between the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 according to the real-time angle values of the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 , and determine the mark time.
  • the present invention discloses a low-orbit satellite passive monthly calibration timing calculation scheme, the scene establishment is concise, the relationship between each vector and the included angle is clear, and the subsequent data calculation is convenient;
  • the present invention discloses a low-orbit satellite passive monthly calibration timing calculation scheme, which can calculate the passive monthly calibration timing of the satellite system and the corresponding ground latitude and longitude, which is beneficial to the ground application system to carry out data calibration work, and uses The cold sky field of view multiplexing is used as the field of view to calibrate the moon, which improves the efficiency of the satellite system.
  • the present invention discloses a calculation scheme for the passive monthly calibration timing of a low-orbit satellite, and analyzes parameters such as the monthly calibration timing.
  • the research results are applied to a low-orbit remote sensing satellite, which verifies the correctness and rationality of the scheme of the present invention; meanwhile, it provides data support for long-term monitoring of the stability of the remote sensing satellite detector and subsequent establishment of a Chinese lunar radiation model.
  • Fig. 1 is the step flow chart of a kind of low-orbit satellite passive monthly calibration timing calculation method in the embodiment of the present invention
  • FIG. 2 is a schematic diagram of a vector construction in an embodiment of the present invention.
  • the method for calculating the passive monthly calibration timing of the low-orbit satellite includes:
  • Step 101 establishing an STK simulation scene.
  • the orbit semi-major axis, eccentricity, orbit inclination, argument of perigee, ascending node right ascension and perigee angle can be acquired; then, the acquired orbit semi-major axis, eccentricity, orbit inclination, perigee amplitude
  • the angle, the ascending node right ascension and the near point angle are used as the input parameters of STK, and the STK simulation scene is established.
  • step 102 three vectors are constructed and obtained in the STK simulation scene.
  • the first vector refers to the start vector of the cold space field of view
  • the second vector refers to the end vector of the cold space
  • the third vector refers to the vector from the satellite body to the moon.
  • the establishment process of each vector is as follows:
  • a circular scanning disk coordinate system O-XYZ is established with the scanning center as the origin O.
  • the X axis is the flight direction perpendicular to the paper surface outward
  • the Z axis points to the center of the earth
  • the Y axis, the X axis and the Z axis form a right-handed system.
  • the sub-satellite point imaging vector Sub_point_vector coincides with the Z axis, and the starting point is the origin O.
  • the sub-satellite point imaging vector Sub_point_vector rotates the angle ⁇ 2 counterclockwise, and constructs the cold air end vector End_vector.
  • the values of the angle ⁇ 1 and the angle ⁇ 2 are determined according to the load requirements.
  • Step 103 Acquire and output real-time angle values of the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 in real time.
  • the included angle ⁇ 1 is the included angle between the first vector and the third vector
  • the included angle ⁇ 2 is the included angle between the second vector and the third vector
  • the included angle ⁇ 3 is the first vector The angle between the second vector.
  • Step 104 according to the real-time angle values of the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 , determine the relationship between the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 , and determine the timing of the monthly calibration .
  • the method while acquiring and outputting the real-time angle values of the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 in real time in step 103, it may also include: obtaining and outputting the current UTC time and the current Longitude and latitude of the sub-satellite point.
  • the method may further include: determining and outputting the latitude and longitude of the sub-satellite point corresponding to the UTC time at this time.
  • the present invention also discloses a low-orbit satellite passive moon calibration timing calculation system, including: a simulation module for establishing an STK simulation scene.
  • the vector building module is used to construct three vectors in the STK simulation scene; the first vector is the start vector of the cold sky field of view, the second vector is the end vector of the cold sky, and the third vector is the vector from the satellite body to the moon.
  • the data acquisition module is used to acquire and output the real-time angle values of the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 in real time; wherein, the included angle ⁇ 1 is the included angle between the first vector and the third vector, the included angle The angle ⁇ 2 is the included angle between the second vector and the third vector, and the included angle ⁇ 3 is the included angle between the first vector and the second vector.
  • the determination module is used to determine the relationship between the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 according to the real-time angle values of the included angle ⁇ 1 , the included angle ⁇ 2 and the included angle ⁇ 3 , and determine the mark time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种低轨卫星被动对月定标时机计算方法和系统,该方法包括:建立STK仿真场景(101);在STK仿真场景中构建得到三个矢量(102);其中,第一矢量为冷空视场开始矢量,第二矢量为冷空结束矢量,第三矢量为卫星本体至月球的矢量;实时获取并输出夹角α 1、夹角α 2和夹角θ 3的实时角度值(103);其中,夹角α 1为第一矢量与第三矢量之间的夹角、夹角α 2为第二矢量与第三矢量之间的夹角,夹角θ 3为第一矢量与第二矢量之间的夹角;根据夹角α 1、夹角α 2和夹角α 3的实时角度值,确定夹角α 1、夹角α 2和夹角θ 3之间的关系,并确定对月定标时机(104)。该方法分析了对月定标时机等参数,为长期监测遥感卫星探测器稳定性和后续建立中国月球辐射模型提供了数据支撑。

Description

一种低轨卫星被动对月定标时机计算方法和系统
本申请要求于2021年2月26日提交中国专利局、申请号为202110219884.X、发明名称为“一种低轨卫星被动对月定标时机计算方法和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于卫星遥感技术领域,尤其涉及一种低轨卫星被动对月定标时机计算方法和系统。
背景技术
国外MODIS、SeaWiFS、Pleiades、GOES等,以及国内风云三号卫星的MERSI均具备在轨对月定标能力。卫星在轨对月定标模式分主动式和被动式,主动式需要卫星主动进行姿态机动或载荷摆镜指向跟踪,调整探测器视场指向月球进行成像定标,尽管定标周期和定标效率更高,但对卫星工作模式和任务编排要求严格,部分卫星由于姿态机动能力和载荷模式等原因,无法采用主动式。
发明内容
本发明的技术解决问题:克服现有技术的不足,提供一种低轨卫星被动对月定标时机计算方法和系统,分析了对月定标时机等参数,为长期监测遥感卫星探测器稳定性和后续建立中国月球辐射模型提供了数据支撑。
为了解决上述技术问题,本发明公开了一种低轨卫星被动对月定标时机计算方法,包括:
建立STK仿真场景;
在STK仿真场景中构建得到三个矢量;其中,第一矢量为冷空视场开始矢量,第二矢量为冷空结束矢量,第三矢量为卫星本体至月球的矢量;
实时获取并输出夹角α 1、夹角α 2和夹角θ 3的实时角度值;其中,夹角α 1为第一矢量与第三矢量之间的夹角、夹角α 2为第二矢量与第三矢量之间的夹角, 夹角θ 3为第一矢量与第二矢量之间的夹角;
根据夹角α 1、夹角α 2和夹角α 3的实时角度值,确定夹角α 1、夹角α 2和夹角θ 3之间的关系,并确定对月定标时机。
在上述低轨卫星被动对月定标时机计算方法中,建立STK仿真场景,包括:
获取轨道半长轴、偏心率、轨道倾角、近地点幅角、升交点赤经和平近点角;
将轨道半长轴、偏心率、轨道倾角、近地点幅角、升交点赤经和平近点角作为STK的输入参数,建立得到STK仿真场景。
在上述低轨卫星被动对月定标时机计算方法中,在STK仿真场景中构建得到三个矢量,包括:
以扫描中心为原点O建立圆周扫描圆盘坐标系O-XYZ;其中,X轴为飞行方向垂直纸面向外,Z轴指向地心,Y轴与X轴和Z轴构成右手系;
确定星下点成像矢量Sub_point_vector;其中,星下点成像矢量Sub_point_vector与Z轴重合,起点为原点O;
朝向X方向,星下点成像矢量Sub_point_vector逆时针旋转角度θ 1,构建得到冷空视场开始矢量Start_vector;
朝向X方向,星下点成像矢量Sub_point_vector逆时针旋转角度θ 2,构建得到冷空结束矢量End_vector;
以原点O为起点,月球中心Om为终点,构建得到卫星本体至月球的矢量sat2moon_vector。
在上述低轨卫星被动对月定标时机计算方法中,角度θ 1和角度θ 2的取值根据载荷要求确定。
在上述低轨卫星被动对月定标时机计算方法中,根据夹角α 1、夹角α 2和夹角α 3的实时角度值,确定夹角α 1、夹角α 2和夹角θ 3之间的关系,并确定对月定标时机,包括:
若根据夹角α 1、夹角α 2和夹角α 3的实时角度值,确定α 12=θ 3,则确定月球进入到冷空视场,并将此时的UTC时间作为对月定标时机。
在上述低轨卫星被动对月定标时机计算方法中,在实时获取并输出夹角α 1、夹角α 2和夹角θ 3的实时角度值的同时,还包括:获取并输出当前UTC时间和当前星下点经纬度。
在上述低轨卫星被动对月定标时机计算方法中,在将此时的UTC时间作为对月定标时机之后,还包括:确定此时的UTC时间对应的星下点经纬度并输出。
在上述低轨卫星被动对月定标时机计算方法中,建立STK仿真场景、在STK仿真场景中构建得到三个矢量和实时获取并输出夹角α 1、夹角α 2和夹角θ 3的实时角度值的步骤在STK软件中实现。
在上述低轨卫星被动对月定标时机计算方法中,根据夹角α 1、夹角α 2和夹角α 3的实时角度值,确定夹角α 1、夹角α 2和夹角θ 3之间的关系,并确定对月定标时机的步骤在MATLAB软件中实现。
相应的,本发明还公开了一种低轨卫星被动对月定标时机计算系统,包括:
仿真模块,用于建立STK仿真场景;
矢量构建模块,用于在STK仿真场景中构建得到三个矢量;其中,第一矢量为冷空视场开始矢量,第二矢量为冷空结束矢量,第三矢量为卫星本体至月球的矢量;
数据获取模块,用于实时获取并输出夹角α 1、夹角α 2和夹角θ 3的实时角度值;其中,夹角α 1为第一矢量与第三矢量之间的夹角、夹角α 2为第二矢量与第三矢量之间的夹角,夹角θ 3为第一矢量与第二矢量之间的夹角;
判定模块,用于根据夹角α 1、夹角α 2和夹角α 3的实时角度值,确定夹角α 1、夹角α 2和夹角θ 3之间的关系,并确定对月定标时机。
本发明具有以下优点:
(1)本发明公开了一种低轨卫星被动对月定标时机计算方案,场景建立简洁,各矢量及夹角关系明确,便于后续数据计算;
(2)本发明公开了一种低轨卫星被动对月定标时机计算方案,可计算得到卫星系统被动对月定标时机及相应地面经纬度,有利于地面应用系统开展数据定标工作,同时利用冷空视场复用作为对月定标视场,提升了卫星系统使用效 能。
(3)本发明公开了一种低轨卫星被动对月定标时机计算方案,分析了对月定标时机等参数。并将研究成果应用于某低轨遥感卫星,验证了本发明方案的正确性及合理性;同时为长期监测遥感卫星探测器稳定性和后续建立中国月球辐射模型提供了数据支撑。
附图说明
图1是本发明实施例中一种低轨卫星被动对月定标时机计算方法的步骤流程图;
图2是本发明实施例中一种矢量构建示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明公开的实施方式作进一步详细描述。
如图1,在本实施例中,该低轨卫星被动对月定标时机计算方法,包括:
步骤101,建立STK仿真场景。
在本实施例中,可以获取轨道半长轴、偏心率、轨道倾角、近地点幅角、升交点赤经和平近点角;然后,将获取的轨道半长轴、偏心率、轨道倾角、近地点幅角、升交点赤经和平近点角作为STK的输入参数,建立得到STK仿真场景。
优选的,轨道半长轴、偏心率、轨道倾角、近地点幅角、升交点赤经和平近点角的取值可以如下:半长轴=7028.14km、偏心率=0.0010691°、轨道倾角=98.45°、近地点幅角=253.74°、升交点赤经=225.84°、平近点角=45.22°。
步骤102,在STK仿真场景中构建得到三个矢量。
在本实施例中,第一矢量是指冷空视场开始矢量,第二矢量是指冷空结束矢量,第三矢量是指卫星本体至月球的矢量。优选的,如图2,各矢量的建立过程如下:
1)以扫描中心为原点O建立圆周扫描圆盘坐标系O-XYZ。其中,X轴为飞行方向垂直纸面向外,Z轴指向地心,Y轴与X轴和Z轴构成右手系。
2)确定星下点成像矢量Sub_point_vector。其中,星下点成像矢量Sub_point_vector与Z轴重合,起点为原点O。
3)朝向X方向,星下点成像矢量Sub_point_vector逆时针旋转角度θ 1,构建得到冷空视场开始矢量Start_vector。
4)朝向X方向,星下点成像矢量Sub_point_vector逆时针旋转角度θ 2,构建得到冷空结束矢量End_vector。
5)以原点O为起点,月球中心Om为终点,构建得到卫星本体至月球的矢量sat2moon_vector。
其中,需要说明的是,角度θ 1和角度θ 2的取值根据载荷要求确定。
步骤103,实时获取并输出夹角α 1、夹角α 2和夹角θ 3的实时角度值。
在本实施例中,夹角α 1为第一矢量与第三矢量之间的夹角、夹角α 2为第二矢量与第三矢量之间的夹角,夹角θ 3为第一矢量与第二矢量之间的夹角。
步骤104,根据夹角α 1、夹角α 2和夹角α 3的实时角度值,确定夹角α 1、夹角α 2和夹角θ 3之间的关系,并确定对月定标时机。
在本实施例中,若根据夹角α 1、夹角α 2和夹角α 3的实时角度值,确定α 12=θ 3,则确定月球进入到冷空视场,并将此时的UTC时间作为对月定标时机。
在本发明的一优选实施例中,在步骤103实时获取并输出夹角α 1、夹角α 2和夹角θ 3的实时角度值的同时,还可以包括:获取并输出当前UTC时间和当前星下点经纬度。则相应的,在将此时的UTC时间作为对月定标时机之后,还可以包括:确定此时的UTC时间对应的星下点经纬度并输出。
其中,需要说明的是,上述步骤101~103可以在STK软件中实现;步骤104可以在MATLAB软件中实现。
在上述实施例的基础上,本发明还公开了一种低轨卫星被动对月定标时机计算系统,包括:仿真模块,用于建立STK仿真场景。矢量构建模块,用于在STK仿真场景中构建得到三个矢量;其中,第一矢量为冷空视场开始矢量,第二矢量为冷空结束矢量,第三矢量为卫星本体至月球的矢量。数据获取模块, 用于实时获取并输出夹角α 1、夹角α 2和夹角θ 3的实时角度值;其中,夹角α 1为第一矢量与第三矢量之间的夹角、夹角α 2为第二矢量与第三矢量之间的夹角,夹角θ 3为第一矢量与第二矢量之间的夹角。判定模块,用于根据夹角α 1、夹角α 2和夹角α 3的实时角度值,确定夹角α 1、夹角α 2和夹角θ 3之间的关系,并确定对月定标时机。
对于系统实施例而言,由于其与方法实施例相对应,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (10)

  1. 一种低轨卫星被动对月定标时机计算方法,其特征在于,包括:
    建立STK仿真场景;
    在STK仿真场景中构建得到三个矢量;其中,第一矢量为冷空视场开始矢量,第二矢量为冷空结束矢量,第三矢量为卫星本体至月球的矢量;
    实时获取并输出夹角α 1、夹角α 2和夹角θ 3的实时角度值;其中,夹角α 1为第一矢量与第三矢量之间的夹角、夹角α 2为第二矢量与第三矢量之间的夹角,夹角θ 3为第一矢量与第二矢量之间的夹角;
    根据夹角α 1、夹角α 2和夹角α 3的实时角度值,确定夹角α 1、夹角α 2和夹角θ 3之间的关系,并确定对月定标时机。
  2. 根据权利要求1所述的低轨卫星被动对月定标时机计算方法,其特征在于,建立STK仿真场景,包括:
    获取轨道半长轴、偏心率、轨道倾角、近地点幅角、升交点赤经和平近点角;
    将轨道半长轴、偏心率、轨道倾角、近地点幅角、升交点赤经和平近点角作为STK的输入参数,建立得到STK仿真场景。
  3. 根据权利要求1所述的低轨卫星被动对月定标时机计算方法,其特征在于,在STK仿真场景中构建得到三个矢量,包括:
    以扫描中心为原点O建立圆周扫描圆盘坐标系O-XYZ;其中,X轴为飞行方向垂直纸面向外,Z轴指向地心,Y轴与X轴和Z轴构成右手系;
    确定星下点成像矢量Sub_point_vector;其中,星下点成像矢量Sub_point_vector与Z轴重合,起点为原点O;
    朝向X方向,星下点成像矢量Sub_point_vector逆时针旋转角度θ 1,构建得到冷空视场开始矢量Start_vector;
    朝向X方向,星下点成像矢量Sub_point_vector逆时针旋转角度θ 2,构建得到冷空结束矢量End_vector;
    以原点O为起点,月球中心Om为终点,构建得到卫星本体至月球的矢量sat2moon_vector。
  4. 根据权利要求3所述的低轨卫星被动对月定标时机计算方法,其特征在于,角度θ 1和角度θ 2的取值根据载荷要求确定。
  5. 根据权利要求1所述的低轨卫星被动对月定标时机计算方法,其特征在于,根据夹角α 1、夹角α 2和夹角α 3的实时角度值,确定夹角α 1、夹角α 2和夹角θ 3之间的关系,并确定对月定标时机,包括:
    若根据夹角α 1、夹角α 2和夹角α 3的实时角度值,确定α 12=θ 3,则确定月球进入到冷空视场,并将此时的UTC时间作为对月定标时机。
  6. 根据权利要求5所述的低轨卫星被动对月定标时机计算方法,其特征在于,在实时获取并输出夹角α 1、夹角α 2和夹角θ 3的实时角度值的同时,还包括:获取并输出当前UTC时间和当前星下点经纬度。
  7. 根据权利要求6所述的低轨卫星被动对月定标时机计算方法,其特征在于,在将此时的UTC时间作为对月定标时机之后,还包括:确定此时的UTC时间对应的星下点经纬度并输出。
  8. 根据权利要求1所述的低轨卫星被动对月定标时机计算方法,其特征在于,建立STK仿真场景、在STK仿真场景中构建得到三个矢量和实时获取并输出夹角α 1、夹角α 2和夹角θ 3的实时角度值的步骤在STK软件中实现。
  9. 根据权利要求1所述的低轨卫星被动对月定标时机计算方法,其特征在于,根据夹角α 1、夹角α 2和夹角α 3的实时角度值,确定夹角α 1、夹角α 2和夹角θ 3之间的关系,并确定对月定标时机的步骤在MATLAB软件中实现。
  10. 一种低轨卫星被动对月定标时机计算系统,其特征在于,包括:
    仿真模块,用于建立STK仿真场景;
    矢量构建模块,用于在STK仿真场景中构建得到三个矢量;其中,第一矢量为冷空视场开始矢量,第二矢量为冷空结束矢量,第三矢量为卫星本体至月球的矢量;
    数据获取模块,用于实时获取并输出夹角α 1、夹角α 2和夹角θ 3的实时角度值;其中,夹角α 1为第一矢量与第三矢量之间的夹角、夹角α 2为第二矢量与第三矢量之间的夹角,夹角θ 3为第一矢量与第二矢量之间的夹角;
    判定模块,用于根据夹角α 1、夹角α 2和夹角α 3的实时角度值,确定夹角α 1、夹角α 2和夹角θ 3之间的关系,并确定对月定标时机。
PCT/CN2021/127951 2021-02-26 2021-11-01 一种低轨卫星被动对月定标时机计算方法和系统 WO2022179160A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21927584.9A EP4300346A1 (en) 2021-02-26 2021-11-01 Method and system for calculating passive lunar calibration occasion of low-earth-orbit satellite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110219884.X 2021-02-26
CN202110219884.XA CN112926208B (zh) 2021-02-26 2021-02-26 一种低轨卫星被动对月定标时机计算方法和系统

Publications (1)

Publication Number Publication Date
WO2022179160A1 true WO2022179160A1 (zh) 2022-09-01

Family

ID=76172413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127951 WO2022179160A1 (zh) 2021-02-26 2021-11-01 一种低轨卫星被动对月定标时机计算方法和系统

Country Status (3)

Country Link
EP (1) EP4300346A1 (zh)
CN (1) CN112926208B (zh)
WO (1) WO2022179160A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115675919A (zh) * 2022-10-31 2023-02-03 北京控制工程研究所 一种用于卫星主动指向超静平台的在轨标定方法
CN116502399A (zh) * 2023-03-02 2023-07-28 北京理工大学 基于stk和matlab联合仿真的卫星轨道生成方法和生成器
CN116559917A (zh) * 2023-05-10 2023-08-08 四川大学 一种定位海面动目标的被动电侦卫星编队构型设计方法
CN116626386A (zh) * 2023-05-11 2023-08-22 中国科学院国家空间科学中心 一种基于地月锥时空剖分的频谱信息表征方法及系统
EP4344092A1 (de) * 2022-09-22 2024-03-27 Tesat Spacecom GmbH & Co. KG Kalibrieren von ausrichtungsfehlern einer kommunikationseinheit mit hilfe des mondes
CN115675919B (zh) * 2022-10-31 2024-05-31 北京控制工程研究所 一种用于卫星主动指向超静平台的在轨标定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112926208B (zh) * 2021-02-26 2023-12-12 航天东方红卫星有限公司 一种低轨卫星被动对月定标时机计算方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105446346A (zh) * 2015-11-26 2016-03-30 航天东方红卫星有限公司 遥感卫星对月相对定标姿态调整方法
CN105486315A (zh) * 2015-11-26 2016-04-13 航天东方红卫星有限公司 遥感卫星对月绝对定标姿态调整方法
CN106556822A (zh) * 2016-11-09 2017-04-05 上海卫星工程研究所 星载滑动聚束sar瞄准精度在轨测试方法
CN110489851A (zh) * 2019-08-14 2019-11-22 上海卫星工程研究所 基于光线追迹理论的光学有效载荷外部杂散光抑制方法
CN112926208A (zh) * 2021-02-26 2021-06-08 航天东方红卫星有限公司 一种低轨卫星被动对月定标时机计算方法和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426025B (zh) * 2011-08-19 2014-02-19 航天东方红卫星有限公司 遥感卫星姿态机动时偏流修正角的仿真分析方法
CN104462776B (zh) * 2014-11-06 2017-07-28 中国空间技术研究院 一种低轨道地球观测卫星对月球绝对辐射定标方法
CN105928525B (zh) * 2016-04-25 2018-08-07 航天东方红卫星有限公司 一种卫星对月定标的姿态确定方法
US10583939B2 (en) * 2017-04-02 2020-03-10 Richard Williams Deployed electromagnetic radiation deflector shield (DERDS) which creates a zone of minimum radiation and magnetic/plasma effects for spacecraft and extra-planetary base station protection
CN110220492B (zh) * 2019-06-06 2020-09-29 北京千乘探索科技有限公司 一种卫星星下点太阳高度角仿真分析方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105446346A (zh) * 2015-11-26 2016-03-30 航天东方红卫星有限公司 遥感卫星对月相对定标姿态调整方法
CN105486315A (zh) * 2015-11-26 2016-04-13 航天东方红卫星有限公司 遥感卫星对月绝对定标姿态调整方法
CN106556822A (zh) * 2016-11-09 2017-04-05 上海卫星工程研究所 星载滑动聚束sar瞄准精度在轨测试方法
CN110489851A (zh) * 2019-08-14 2019-11-22 上海卫星工程研究所 基于光线追迹理论的光学有效载荷外部杂散光抑制方法
CN112926208A (zh) * 2021-02-26 2021-06-08 航天东方红卫星有限公司 一种低轨卫星被动对月定标时机计算方法和系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4344092A1 (de) * 2022-09-22 2024-03-27 Tesat Spacecom GmbH & Co. KG Kalibrieren von ausrichtungsfehlern einer kommunikationseinheit mit hilfe des mondes
CN115675919A (zh) * 2022-10-31 2023-02-03 北京控制工程研究所 一种用于卫星主动指向超静平台的在轨标定方法
CN115675919B (zh) * 2022-10-31 2024-05-31 北京控制工程研究所 一种用于卫星主动指向超静平台的在轨标定方法
CN116502399A (zh) * 2023-03-02 2023-07-28 北京理工大学 基于stk和matlab联合仿真的卫星轨道生成方法和生成器
CN116502399B (zh) * 2023-03-02 2024-01-23 北京理工大学 基于stk和matlab联合仿真的卫星轨道生成方法和生成器
CN116559917A (zh) * 2023-05-10 2023-08-08 四川大学 一种定位海面动目标的被动电侦卫星编队构型设计方法
CN116559917B (zh) * 2023-05-10 2023-12-12 四川大学 一种定位海面动目标的被动电侦卫星编队构型设计方法
CN116626386A (zh) * 2023-05-11 2023-08-22 中国科学院国家空间科学中心 一种基于地月锥时空剖分的频谱信息表征方法及系统
CN116626386B (zh) * 2023-05-11 2023-12-15 中国科学院国家空间科学中心 一种基于地月锥时空剖分的频谱信息表征方法及系统

Also Published As

Publication number Publication date
EP4300346A1 (en) 2024-01-03
CN112926208B (zh) 2023-12-12
CN112926208A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2022179160A1 (zh) 一种低轨卫星被动对月定标时机计算方法和系统
CN100565105C (zh) 一种星载tdiccd相机积分时间计算及调整方法
US6023291A (en) Satellite camera attitude determination and image navigation by means of earth edge and landmark measurement
WO2017113567A1 (zh) 火星探测器自主导航方法
Furgale et al. Sun sensor navigation for planetary rovers: Theory and field testing
CN110077626B (zh) 一种三脉冲地月L2点Halo轨道的捕获方法
JPH065170B2 (ja) 衛星カメライメージ内のピクセルを位置決めする装置
Lee et al. East–West Station-Keeping maneuver strategy for COMS satellite using iterative process
Han et al. Rapid satellite-to-site visibility determination based on self-adaptive interpolation technique
US11142351B2 (en) Earth satellite attitude data fusion system and method thereof
CN112629543A (zh) 一种大椭圆轨道及小倾角圆轨道的轨道规划方法
CN112649006A (zh) 一种太阳同步圆轨道的轨道规划方法
CN112783183A (zh) 一种太阳同步圆回归轨道的轨道规划方法
CN110032203B (zh) 一种集群多星单目标凝视姿态协同控制方法及系统
Margot A Mercury orientation model including non-zero obliquity and librations
Zeitlhöfler Nominal and observation-based attitude realization for precise orbit determination of the Jason satellites
Cui et al. Real-time navigation for Mars final approach using X-ray pulsars
Somov et al. Guidance, navigation and control of a surveying satellite when an area imagery for disaster management.
Christian Optical navigation for a spacecraft in a planetary system
CN102129066B (zh) 一种宽幅星载sar快速地理编码方法
Ibrahim Attitude and orbit control of small satellites for autonomous terrestrial target tracking
CN114167710B (zh) 星上时间基准校验方法、可读存储介质及卫星系统
Zhou A study for orbit representation and simplified orbit determination methods
CN113486491B (zh) 一种卫星自主任务规划约束条件自完善方法及系统
Treder Space station GN&C overview for payloads

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927584

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021927584

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021927584

Country of ref document: EP

Effective date: 20230926