WO2022179141A1 - 谐波抑制装置、方法、控制单元、电器以及存储介质 - Google Patents

谐波抑制装置、方法、控制单元、电器以及存储介质 Download PDF

Info

Publication number
WO2022179141A1
WO2022179141A1 PCT/CN2021/125639 CN2021125639W WO2022179141A1 WO 2022179141 A1 WO2022179141 A1 WO 2022179141A1 CN 2021125639 W CN2021125639 W CN 2021125639W WO 2022179141 A1 WO2022179141 A1 WO 2022179141A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
current
relay
circuit module
connection line
Prior art date
Application number
PCT/CN2021/125639
Other languages
English (en)
French (fr)
Inventor
方小斌
郑嘉良
于洪涛
宋现义
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP21927565.8A priority Critical patent/EP4235998A1/en
Publication of WO2022179141A1 publication Critical patent/WO2022179141A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1892Arrangements for adjusting, eliminating or compensating reactive power in networks the arrangements being an integral part of the load, e.g. a motor, or of its control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4241Arrangements for improving power factor of AC input using a resonant converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/125Avoiding or suppressing excessive transient voltages or currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the present disclosure relates to the technical field of electric motors, and in particular, to a harmonic suppression device, method, control unit, power supply device, electrical equipment, and storage medium.
  • the European standard EN 61000-3-2 requires that the input current of each phase of the three-phase power air conditioning equipment is ⁇ 16A, and each harmonic of the input current of each phase is required to meet the requirements of THD ⁇ 5%.
  • the conventional design uses an active power factor correction circuit (APFC circuit) to achieve the 2-40th harmonic requirements.
  • APFC circuit active power factor correction circuit
  • the circuit is a related, typical three-phase APFC circuit, which uses an IPM module, a reactor, an AC input voltage, a current sampling conditioning circuit and a DSP control circuit to form a PWM controllable rectification scheme.
  • the present disclosure provides a harmonic suppression device, method, control unit, power supply device, electrical equipment, and storage medium.
  • a harmonic suppression device comprising: a tuning circuit module connected to a first live wire and a second live wire of a three-phase power supply, and configured to tune a first phase input through the first live wire Resonance adjustment processing is performed on the current and the second phase current input through the second live wire; the PI type resonant filter circuit module is respectively connected with the tuning circuit module and the third live wire of the three-phase power supply, and is used for The first phase current and the second phase current processed by the tuning circuit module, and the third phase current input through the third live wire are subjected to harmonic filtering processing; the rectifier circuit module, and the PI type resonant filter circuit module The connection is used for rectifying the first phase current, the second phase current and the third phase current processed by the PI type resonant filter circuit module to obtain direct current and output it through the direct current output bus to supply power to the load.
  • the tuning circuit module includes: a power-on soft-start unit, a detection unit, and a control unit; the power-on soft-start unit is connected to the first live wire and the second live wire; the detection unit Collect the voltage signal and the current signal on the DC output bus; the control unit is connected to the power-on soft start unit and the detection unit respectively, and is used for controlling the voltage signal and the current signal according to the The power-on soft-start unit performs resonance adjustment processing.
  • the power-on soft-start unit includes: a first relay, a second relay, a third relay, and a resistance-sensing unit; an input end of the first relay is connected to the first live wire, and an output end is connected to the first live wire.
  • the second live wire is connected with the input end of the second relay, and the second live wire is connected with the input end of the third relay through the resistance-inductance unit ;
  • the output end of the second relay is connected with the output end of the third relay, and this connection point is connected with the PI type resonant filter circuit module;
  • the control unit is respectively connected with the first relay, the third relay
  • the second relay is connected to the control end of the third relay, and is used to control the opening or closing of the first relay, the second relay and the third relay.
  • the detection unit includes: a current sampling circuit and a voltage sampling circuit; the control unit is respectively connected to the current sampling circuit and the voltage sampling circuit; the current sampling circuit is configured to collect the The current signal on the DC output bus; the voltage sampling circuit is used to collect the voltage signal on the DC output bus.
  • the PI-type resonant filter circuit module includes: a first reactor, a second reactor, a third reactor, a common mode inductor, a first capacitor, a second capacitor, a third capacitor, and a fourth capacitor , the fifth capacitor, the sixth capacitor, the seventh capacitor, the eighth capacitor and the ninth capacitor;
  • the input end of the first reactor is connected with the third live wire, and the output end is connected with the working mode through the first connection line
  • the first input end of the inductor is connected;
  • the input end of the second reactor is connected with the output end of the first relay, and the output end is connected with the second input end of the working mode inductor through a second connection line;
  • the The input end of the third reactor is connected with the connection point between the output end of the second relay and the output end of the third relay, and the output end is connected with the third input end of the working mode inductor through a third connection line;
  • the two ends of the first capacitor are respectively connected to the first connection line and the second connection line, the two ends
  • the fourth connection line between the rectifier circuit module and the rectifier circuit module is connected to the first end of the seventh capacitor, and the fifth connection line between the second output end of the working mode inductor and the rectifier circuit module is connected to the the first end of the eighth capacitor is connected, the sixth connection between the third output end of the working mode inductor and the rectifier circuit module is connected to the first end of the ninth capacitor; the seventh capacitor , the second ends of the eighth capacitor and the ninth capacitor are connected, and the connection point is grounded.
  • the rectifier circuit module includes: a three-phase rectifier bridge and a capacitor assembly; three bridge arms of the three-phase rectifier bridge are respectively connected to the fourth connection line, the fifth connection line and the The sixth connection line; the first output end of the three-phase rectifier bridge is connected with the positive end of the DC output bus, and the second output end is connected with the negative end of the DC output bus; the capacitor component is connected in parallel with the The first output end and the second output end of the three-phase rectifier bridge.
  • the capacitor component includes: a tenth capacitor, an eleventh capacitor, a twelfth capacitor and a thirteenth capacitor; the tenth capacitor and the twelfth capacitor are connected in series to form a first capacitor circuit , the two ends of the first capacitor circuit are respectively connected with the first output end and the second output end of the three-phase rectifier bridge; the eleventh capacitor and the thirteenth capacitor are connected in series to form a second capacitor circuit , the two ends of the second capacitor circuit are respectively connected to the first output end and the second output end of the three-phase rectifier bridge; wherein, the connection between the tenth capacitor and the twelfth capacitor is the same as the The connection line between the eleventh capacitor and the thirteenth capacitor is connected.
  • a harmonic suppression method based on the above harmonic suppression device, executed in a control unit; wherein the load includes a load motor, and the harmonic suppression method includes: according to the DC output Based on the voltage signal and power signal on the bus and the parameters of the load motor, the load frequency and the harmonic suppression current are calculated; the harmonic suppression processing is performed based on the load frequency and the harmonic suppression current.
  • the harmonic suppression current includes: a first shaft current; and the performing harmonic suppression processing based on the load frequency and the harmonic suppression current includes: acquiring an operating frequency of the load motor and a first shaft current. Two-axis current; perform a first comparison process between the operating frequency and the load frequency, and determine a third-axis current according to the result of the first comparison process; perform a third-axis current with the first-axis current A second comparison process is performed between the summation result and the second shaft current, and the shaft voltage of the load motor is determined according to the result of the second comparison process.
  • the determining the third shaft current according to the result of the first comparison process includes: calculating the third shaft current according to the result of the first comparison process and using a first PI control algorithm; the Determining the shaft voltage of the load motor according to the result of the second comparison process includes: calculating the shaft voltage of the load motor using a second PI control algorithm according to the result of the second comparison process.
  • the first shaft current, the second shaft current and the third shaft current comprise: q-axis current; and the shaft voltage of the load motor comprises: q-axis voltage.
  • calculating the load frequency is:
  • n is the sampling times
  • I(n) is the nth sampling current
  • U(n) is the nth sampling voltage
  • p is the number of pole pairs of the load motor
  • k t is the torque coefficient
  • Ld and id are the d-axis Inductance and current
  • Lq and iq are the q-axis inductance and current
  • is the operating frequency of the load motor.
  • the first relay, the second relay and the third relay are controlled to be opened or closed for resonance adjustment; wherein, when the operating frequency of the load motor is 0, the first relay is controlled The relay, the second relay and the third relay are turned off.
  • a control unit comprising: a memory; and a processor coupled to the memory, the processor configured to execute the above-described based on instructions stored in the memory Methods.
  • a computer-readable storage medium storing computer instructions, the instructions being executed by a processor to execute the method as described above.
  • a power supply device comprising: the harmonic suppression device as described above.
  • an electrical device comprising: the harmonic suppression device as described above.
  • the electrical equipment includes: an inverter air conditioner.
  • FIG. 1 is a schematic diagram of an APFC circuit in the related art
  • FIG. 2 is a schematic block diagram of some embodiments of the harmonic suppression apparatus provided according to the present disclosure.
  • FIG. 3 is a schematic block diagram of other embodiments of the harmonic suppression device provided according to the present disclosure.
  • FIG. 4 is a schematic circuit diagram of some embodiments of a harmonic suppression device provided according to the present disclosure.
  • FIG. 5 is a schematic flowchart of some embodiments of harmonic suppression methods provided according to the present disclosure.
  • FIG. 6 is a schematic diagram of the control principle of some embodiments of the harmonic suppression method provided according to the present disclosure.
  • FIG. 8 is a block diagram of some embodiments of a control unit according to the present disclosure.
  • the inventors of the present disclosure found the following problems in the above-mentioned related art: the software design of the PWM controllable rectification scheme of the APFC circuit is complicated, the technical difficulty is high, the power factor is high, and the three-phase APFC circuit has high cost and poor reliability. Therefore, how to design a harmonic suppression circuit with simple control and high reliability is a technical problem to be solved urgently in the industry.
  • the present disclosure proposes a harmonic suppression device, method, control unit, power supply device, electrical equipment and storage medium, so that the current of each phase of the three-phase power supply passes through the PI type adjustable resonance point filter circuit, and the input can be adjusted in real time Voltage, current phase, matching impedance and multi-resonance points, realize three-phase power factor correction, reactive power adjustment, so that the THD of the harmonics of each phase current meets the national standard requirements, and the standby power consumption meets the standard requirements; and the control is simple, Low cost and high reliability.
  • the present disclosure provides a harmonic suppression device including a tuning circuit module 10 , a PI-type resonance filter circuit module 20 and a rectification circuit module 30 .
  • the tuning circuit module 10 is connected to the first live wire S and the second live wire T of the three-phase power supply 01, and performs resonance adjustment processing on the first phase current input through the first live wire S and the second phase current input through the second live wire T.
  • the PI-type resonant filter circuit module 20 is respectively connected with the tuning circuit module 10 and the third live wire R of the three-phase power supply 01, and the first phase current and the second phase current processed by the tuning circuit module 10 are connected to the third live wire R through the tuning circuit module 10.
  • the input third-phase current is subjected to harmonic filtering.
  • the rectifier circuit module 30 is connected to the PI type resonant filter circuit module 20, and performs rectification processing on the first phase current, the second phase current and the third phase current processed by the PI type resonant filter circuit module 20 to obtain direct current and output through the direct current
  • the bus bar 50 is output for supplying power to the load 40 .
  • the load 40 may be various, for example, the load 40 is an inverter part and a variable frequency motor of a compressor.
  • the tuning circuit module includes a power-on soft-start unit 11 , a detection unit 13 and a control unit 12 .
  • the power-on soft start unit 11 is connected to the first live wire S and the second live wire T; the detection unit 13 collects the voltage signal and the current signal on the DC output bus 50 .
  • the control unit 12 is respectively connected with the power-on soft-start unit 11 and the detection unit 13, and controls the power-on soft-start unit 11 to perform resonance adjustment processing according to the voltage signal and the current signal.
  • the power-on soft start unit 11 includes: a first relay S1 , a second relay S2 , a third relay S3 and a resistance-inductance unit RL.
  • the input end of the first relay S1 is connected to the first live wire S, and the output end is connected to the PI type resonance filter circuit module.
  • the second live wire T is connected to the input end of the second relay S2, and the second live wire T is connected to the input end of the third relay S3 through the resistance-inductance unit RL.
  • the resistance-inductance unit RL can be of various types and has the characteristics of resistance and inductance .
  • the output end of the second relay S2 is connected to the output end of the third relay S3, and the connection point is connected to the PI type resonance filter circuit module.
  • the control unit 12 is respectively connected to the control terminals of the first relay S1, the second relay S2 and the third relay S3, and is used to control the opening or closing of the first relay S1, the second relay S2 and the third relay S3.
  • the control unit 12 can be implemented in various manners, such as a digital signal processing DSP module, a single-chip microcomputer, and the like.
  • the detection unit includes a current sampling circuit CM1 and a voltage sampling circuit VM1.
  • the current sampling circuit CM1 and the voltage sampling circuit VM1 can be implemented in various manners.
  • the current sampling circuit CM1 includes a current sensor and the like
  • the voltage sampling circuit VM1 includes a voltage sensor and the like.
  • the control unit 12 is respectively connected to the current sampling circuit CM1 and the voltage sampling circuit VM1.
  • the current sampling circuit CM1 collects the current signal on the DC output bus
  • the voltage sampling circuit VM1 collects the voltage signal on the DC output bus.
  • the control unit 12 can adjust the switching frequencies of the three relays S1 , S2 and S3 according to load changes.
  • the control unit 12 controls the first relay S1 to be closed, the second relay S2 to be opened, and the third relay S3 to be closed, the three-phase power supply and the resistance-inductance module RL form a closed loop, and the standby energy is consumed on the RL, so that the Power consumption is less than 15W.
  • the two live wires S and T of the three-phase power supply are respectively connected in series with the power-on soft-start unit 11 (reactive power tuning soft-start circuit).
  • the power-on soft-start unit 11 is composed of a resistance-inductance module RL and three relays S1, S2 and S3 , the control terminals g of the three relays S1, S2 and S3 are respectively connected to the control unit 12, and the B and C terminals of the three-phase power supply are respectively connected to the PI type resonant filter circuit module (inductor L2, L3) to realize the reactive power at the LC resonance point Adjustment control, standby power consumption is less than 15W and power-on soft-start function.
  • the PI-type resonant filter circuit module may be various.
  • the PI-type resonant filter circuit module includes a first reactor L1, a second reactor L2, a third reactor L3, Common mode inductor L4, first capacitor C1, second capacitor C2, third capacitor C3, fourth capacitor C4, fifth capacitor C5, sixth capacitor C6, seventh capacitor C7, eighth capacitor C8 and ninth capacitor C9.
  • the input end of the first reactor L1 is connected with the third live wire R, and the output end is connected with the first input end 1 of the working mode inductor L4 through the first connection line 21; the input end of the second reactor L2 is connected with the first input end of the first relay S1.
  • the output end is connected, and the output end is connected with the second input end 2 of the working mode inductor L4 through the second connection line 22; the input end of the third reactor L3 is connected with the output end of the second relay S2 and the output end of the third relay S3. point connection, the output end is connected to the third input end 3 of the working mode inductor L4 through the third connection line 23 .
  • the two ends of the first capacitor C1 are respectively connected to the first connection line 21 and the second connection line 22, the two ends of the second capacitor C2 are respectively connected to the first connection line 21 and the third connection line 23, and the two ends of the third capacitor C3 are respectively connected to the first connection line 21 and the third connection line 23.
  • the second connection line 22 and the third connection line 23 are connected.
  • the first ends of the fourth capacitor C4, the fifth capacitor C5 and the sixth capacitor C6 are connected, and the second ends of the fourth capacitor C4, the fifth capacitor C5 and the sixth capacitor C6 are respectively connected to the first connection line 21 and the second connection line 22 is connected to the third connection line 23 .
  • the fourth connection line 24 between the first output end 4 of the working mode inductor L4 and the rectifier circuit module is connected to the first end of the seventh capacitor C7, and the connection between the second output end 5 of the working mode inductor L4 and the rectifying circuit module is
  • the fifth connection line 25 is connected to the first end of the eighth capacitor C8, and the sixth connection line 26 between the third output end 6 of the working mode inductor L4 and the rectifier circuit module is connected to the first end of the ninth capacitor C9; Second ends of the seventh capacitor C7, the eighth capacitor C8 and the ninth capacitor C9 are connected, and the connection point is grounded.
  • the connection points of the live wire R of the three-phase power supply, the first relay S1, the second relay S2 and the third relay are directly connected in series with the PI type resonance filter circuit module.
  • the PI type resonance filter circuit module consists of three reactors L1 ⁇ L2 ⁇ L3, Common mode inductor L4, capacitors C1 ⁇ C2 ⁇ C3, C4 ⁇ C5 ⁇ C6, C7 ⁇ C8 ⁇ C9 are composed.
  • the three reactors L1 ⁇ L2 ⁇ L3 can be the same reactor, and the capacitance values of the capacitors C1 ⁇ C2 ⁇ C3, C4 ⁇ C5 ⁇ C6, and C7 ⁇ C8 ⁇ C9 can all be equal.
  • the PI-type resonance filter circuit module can realize PI-type resonance, impedance matching, and three-phase power factor correction.
  • the PI type resonant filter circuit filters out the power grid interference source, its LC resonates and presents an impedance state, filters out the 2-40th harmonic interference, and makes the THD (Total Harmonic Distortion, total harmonic) of the 2-40th harmonic of each phase current. wave distortion) ⁇ 5%, meeting the requirements of the national standard.
  • the rectifier circuit module includes a three-phase rectifier bridge and a capacitor assembly; the three bridge arms of the three-phase rectifier bridge are respectively connected to the fourth connection line 24, the fifth connection line 25 and the sixth connection line 26; The first output terminal of the phase rectifier bridge is connected to the positive terminal of the DC output bus, and the second output terminal is connected to the negative terminal of the DC output bus; the capacitor component is connected in parallel to the first output terminal and the second output terminal of the three-phase rectifier bridge.
  • the capacitor component includes a tenth capacitor C10, an eleventh capacitor C11, a twelfth capacitor C12 and a thirteenth capacitor C13; the tenth capacitor C10 and the twelfth capacitor C12 are connected in series to form a first capacitor circuit, and the two capacitors of the first capacitor circuit are connected in series.
  • the terminals are respectively connected with the first output terminal and the second output terminal of the three-phase rectifier bridge; the eleventh capacitor C11 and the thirteenth capacitor C13 are connected in series to form a second capacitor circuit, and both ends of the second capacitor circuit are respectively connected with the three-phase rectifier.
  • the first output end of the bridge is connected with the second output end; wherein, the connection between the tenth capacitor C10 and the twelfth capacitor C12 is connected with the connection between the eleventh capacitor C11 and the thirteenth capacitor C12.
  • a three-phase uncontrollable rectifier bridge is composed of six electrodes D1 ⁇ D2 ⁇ D3 ⁇ D4 ⁇ D5 ⁇ D6, and capacitors C10 ⁇ C11 ⁇ C12 ⁇ C14 form capacitor components for filtering and shaping. Satisfy the load operation.
  • the three-phase rectifier bridge (composed of diodes D1 ⁇ D2 ⁇ D3 ⁇ D4 ⁇ D5 ⁇ D6) and capacitor components (composed of capacitors C10 ⁇ C11 ⁇ C12 ⁇ C14) convert alternating current AC to direct current DC to realize the energy of the power factor correction circuit Convert the transport for use by the payload.
  • the harmonic suppression device in the above embodiment realizes three-phase power factor correction and reactive power adjustment, so that the THD of the 2-40th harmonic current of each phase current is less than 5%, which meets the requirements of international harmonic standards, and can Meet the standard requirement of standby power consumption less than 15W; lower cost than conventional APFC solutions, simple control and high reliability.
  • the present disclosure provides a harmonic suppression method based on the harmonic suppression device in the above embodiments, executed in a control unit; the load includes a load motor.
  • FIG. 5 is a schematic flowchart of some embodiments of harmonic suppression methods provided according to the present disclosure, as shown in FIG. 5 :
  • Step 501 Calculate the load frequency and the harmonic suppression current according to the voltage signal and the power signal on the DC output bus and the parameters of the load motor.
  • control unit receives the voltage signal and the power signal on the DC output bus collected by the voltage sampling circuit and the current sampling circuit, respectively.
  • the parameters of the load motor include the number of motor pole pairs, torque coefficient, inductance and current of d-axis and q-axis, and motor operating frequency.
  • Step 502 perform harmonic suppression processing based on the load frequency and the harmonic suppression current.
  • Harmonic suppression processing can be processed in a variety of ways. For example, by controlling the control terminal g of three relays, adjusting each resonance point, injecting power harmonic suppression current i' q , real-related power compensation, realizing power factor correction and adjustment, etc.
  • the harmonic suppression current includes a first shaft current; the operating frequency of the load motor and the second shaft current are obtained.
  • the control unit collects the running frequency and the second shaft current of the load motor, and can collect the running frequency and the second shaft current by using various related collection methods.
  • a first comparison process is performed between the operating frequency and the load frequency, and the third shaft current is determined according to the result of the first comparison process.
  • the third shaft current is calculated based on the result of the first comparison process and using the first PI control algorithm.
  • the first-axis current, the second-axis current, and the third-axis current may all be q-axis currents.
  • a second comparison process is performed on the result of summing the third shaft current and the first shaft current with the second shaft current, and the shaft voltage of the load motor is determined according to the result of the second comparison process.
  • the shaft voltage of the load motor is calculated using the second PI control algorithm based on the result of the second comparison process.
  • the shaft voltage of the load motor includes the q-axis voltage.
  • the load motor is a permanent magnet synchronous motor PMSM, and the functions in the dashed box in FIG. 6 can be implemented by the control unit of the present disclosure, or the control unit can also implement one or more functions outside the dashed box in FIG. 6 .
  • the control unit also includes an EMF calculation module, etc.
  • the load includes a load motor control device, and the remaining functions not implemented by the control unit can be implemented by the load motor control device.
  • the control unit of the present disclosure calculates the instantaneous power:
  • the load frequency is calculated based on the instantaneous power P1 as:
  • n is the sampling times, which can be obtained by the software counter; I(n) is the nth sampling current, which is sampled by the current sampling circuit; U(n) is the nth sampling voltage, which is sampled by the voltage sampling circuit; cos ⁇ is the power coefficient.
  • L d , L q , id , and i q are the inductance and current of the d and q axes of the load motor, respectively, where P, k t , Ld, Lq and parameters can be obtained from the motor specification book of the load motor and stored in advance .
  • id and iq are the currents of the d and q axes collected when the load motor is running, or the id and iq are obtained from the motor specification of the load motor and stored in advance.
  • is the motor running frequency, the actual running frequency of the load motor collected when the load motor is running.
  • ⁇ * is the predetermined frequency of the load motor, and ⁇ * or ⁇ ' and ⁇ can be used to perform the first comparison process, and the third shaft current can be calculated according to the result of the first comparison process and using the first PI control algorithm
  • the first comparison process is typically performed using ⁇ ' and ⁇ .
  • the third axis current The result of summing the first shaft current i′ q and the second shaft current iq is subjected to a second comparison process, and the shaft voltage uq of the load motor is calculated by using the second PI control algorithm according to the result of the second comparison process.
  • the fourth axis current A third comparison process is performed with the fifth shaft current id, and the shaft voltage ud of the load motor is calculated by using the third PI control algorithm according to the result of the third comparison process.
  • the first PI control algorithm, the second PI control algorithm, and the third PI control algorithm may be related PI control algorithms including P (proportional, proportional) control and I (intergral, integral) control, and may be implemented in software.
  • I_Park module and SVPWM Space Vector Pulse Width Modulation
  • IPM Intelligent Power Module
  • IPM Intelligent Power Module
  • the permanent magnet synchronous motor is controlled.
  • Collect iv and iw of PMSM, and perform Clark processing and Park transformation processing on iv and iw; EMF (back electromotive force) calculation module calculates ⁇ value according to uq, ud, id, and iq.
  • the I_Park module, the SVPWM module, the Clark module, the Park module, and the EMF calculation module can be implemented using relevant algorithms and methods to perform corresponding functions.
  • the first relay, the second relay and the third relay are controlled to open or close for resonance adjustment. Wherein, when the operating frequency of the load motor is 0, the first relay, the second relay and the third relay are controlled to be disconnected.
  • the first axis current i' q (harmonic suppression current) is calculated, and the i' q current is injected, that is, the i q axis in the vector control diagram of the load motor, so that the conduction angle of the rectifier bridge diode is ⁇
  • the rectifier bridge diode can be the rectifier bridge diode of the inverter component, or the diode in the three-phase rectifier bridge of the rectifier circuit module.
  • the conduction angle ⁇ of the diode can be adjusted by using the relevant method, so that the current waveform can follow the grid power supply.
  • the input voltage waveform is close to a sine wave, as shown in Figure 7, which is the voltage waveform displayed on the screen of a device such as an oscilloscope.
  • the harmonic suppression device and the harmonic suppression method in the above-mentioned embodiments enable the current of each phase of the three-phase power supply to be adjusted into the resonance point filter circuit through the PI type, and the input voltage, current phase, matching impedance and multi-resonance points can be adjusted in real time, Realize three-phase power factor correction and reactive power adjustment, so that the THD of the 2-40th harmonic of each phase current is less than 5%, which meets the requirements of the national standard, and the standby power consumption is less than 15W, which meets the standard requirements; simple control and low cost , high reliability.
  • Figure 8 is a block diagram of some embodiments of a control unit according to the present disclosure.
  • the apparatus may include a memory 81 , a processor 82 , a communication interface 83 and a bus 84 .
  • the memory 81 is used for storing instructions
  • the processor 82 is coupled to the memory 81, and the processor 82 is configured to execute the harmonic suppression method in any of the above-described embodiments based on the instructions stored in the memory 81 .
  • the memory 81 may be a high-speed RAM memory, a non-volatile memory, or the like, and the memory 81 may also be a memory array.
  • the memory 81 may also be divided into blocks, and the blocks may be combined into virtual volumes according to certain rules.
  • the processor 82 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the harmonic suppression method provided by the present disclosure.
  • the present disclosure provides a computer-readable storage medium storing computer instructions that, when executed by a processor, implement the harmonic suppression method in any of the above-mentioned embodiments.
  • the present disclosure provides a power supply device comprising the harmonic suppression device as in the above embodiments.
  • the power supply device is a three-phase power supply device or the like.
  • the present disclosure provides an electrical device including the harmonic suppression device in the above embodiments.
  • the electrical equipment can be of various types, such as inverter air conditioners and the like.
  • the harmonic suppression device, method, control unit, power supply device, electrical equipment, and storage medium allow the current of each phase of the three-phase power supply to pass through the PI-type adjustable resonance point filter circuit, and the input voltage and current phase can be adjusted in real time. , matching impedance and multiple resonance points, realize three-phase power factor correction and reactive power adjustment, so that the THD of the 2-40th harmonic of each phase current is less than 5%, which meets the requirements of the national standard, and the standby power consumption is less than 15W, which is in line with Standard requirements; simple control, low cost, high reliability, at least 200 yuan less cost than conventional APFC solutions.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein .
  • computer-usable non-transitory storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • the methods and systems of the present disclosure may be implemented in many ways.
  • the methods and systems of the present disclosure may be implemented in software, hardware, firmware, or any combination of software, hardware, and firmware.
  • the above order of steps for the described method is for illustration only, and the steps of the method of the present disclosure are not limited to the order specifically described above unless specifically stated otherwise.
  • the present disclosure can also be implemented as programs recorded in a recording medium, the programs including machine-readable instructions for implementing methods according to the present disclosure.
  • the present disclosure also covers a recording medium storing a program for executing the method according to the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

本公开提供了一种谐波抑制装置、方法、控制单元、电源装置、电器设备以及存储介质,涉及电机技术领域,其中的装置包括:调谐电路模块与三相电源的第一火线和第二火线连接,进行谐振调节处理;PI型谐振滤波电路模块分别与调谐电路模块和三相电源的第三火线连接,用于对经过调谐电路模块处理后的第一相电流和第二相电流,以及第三相电流进行谐波滤除处理;整流电路模块,与PI型谐振滤波电路模块连接,用于进行整流处理并对负载供电。本公开能够实时调节输入电压、电流相位、匹配阻抗以及多谐振点,实现三相电源功率因数校正,使各相电流的谐波的THD满足要求,并且待机功耗符合标准;控制简单,成本低,可靠性高。

Description

谐波抑制装置、方法、控制单元、电器以及存储介质
相关申请的交叉引用
本公开是以CN申请号为CN202110217616.4申请日为2021年2月26日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及电机技术领域,尤其涉及一种谐波抑制装置、方法、控制单元、电源装置、电器设备以及存储介质。
背景技术
欧洲标准EN 61000-3-2要求三相电源空调设备每相输入电流≤16A,强制每相输入电流各次谐波满足THD<5%的要求。常规设计采用有源功率因数校正电路(APFC电路)实现2-40次谐波要求。如图1所示,该电路为相关的、典型的三相APFC电路,该电路采用IPM模块、电抗器、交流输入电压、电流采样调理电路和DSP控制电路组成PWM可控整流方案。
发明内容
本公开提供一种谐波抑制装置、方法、控制单元、电源装置、电器设备以及存储介质。
根据本公开的第一方面,提供一种谐波抑制装置,包括:调谐电路模块,与三相电源的第一火线和第二火线连接,用于对通过所述第一火线输入的第一相电流和通过所述第二火线输入的第二相电流进行谐振调节处理;PI型谐振滤波电路模块,分别与所述调谐电路模块和所述三相电源的第三火线连接,用于对经过所述调谐电路模块处理后的第一相电流和第二相电流,以及通过所述第三火线输入的第三相电流进行谐波滤除处理;整流电路模块,与所述PI型谐振滤波电路模块连接,用于对经过所述PI型谐振滤波电路模块处理后的第一相电流、第二相电流和第三相电流进行整流处理,获得直流电并通过直流输出母线输出,用以对负载供电。
在一些实施例中,所述调谐电路模块包括:上电软启动单元、检测单元和控制单元;所述上电软启动单元与所述第一火线和所述第二火线连接;所述检测单元采集所 述直流输出母线上的电压信号和电流信号;所述控制单元,分别与所述上电软启动单元和所述检测单元连接,用于根据所述电压信号和所述电流信号控制所述上电软启动单元进行谐振调节处理。
在一些实施例中,所述上电软启动单元,包括:第一继电器、第二继电器、第三继电器和阻感单元;所述第一继电器的输入端与所述第一火线连接,输出端与所述PI型谐振滤波电路模块连接;所述第二火线与所述第二继电器的输入端连接,并且,所述第二火线通过所述阻感单元与所述第三继电器的输入端连接;所述第二继电器的输出端和所述第三继电器的输出端连接,此连接点与所述PI型谐振滤波电路模块连接;所述控制单元,分别与所述第一继电器、所述第二继电器和所述第三继电器的控制端连接,用于控制所述第一继电器、所述第二继电器和所述第三继电器断开或闭合。
在一些实施例中,所述检测单元包括:电流采样电路和电压采样电路;所述控制单元分别与所述电流采样电路和所述电压采样电路连接;所述电流采样电路,用于采集所述直流输出母线上的电流信号;所述电压采样电路,用于采集所述直流输出母线上的电压信号。
在一些实施例中,所述PI型谐振滤波电路模块包括:第一电抗器、第二电抗器、第三电抗器、共模电感、第一电容、第二电容、第三电容、第四电容、第五电容、第六电容、第七电容、第八电容和第九电容;所述第一电抗器的输入端与所述第三火线连接,输出端通过第一连线与所述工模电感的第一输入端连接;所述第二电抗器的输入端与所述第一继电器的输出端连接,输出端通过第二连线与所述工模电感的第二输入端连接;所述第三电抗器的输入端与所述第二继电器的输出端和所述第三继电器的输出端的连接点连接,输出端通过第三连线与所述工模电感的第三输入端连接;所述第一电容两端分别与所述第一连线和所述第二连线连接,所述第二电容两端分别与所述第一连线和所述第三连线连接,所述第三电容两端分别与所述第二连线和所述第三连线连接;所述第四电容、所述第五电容和所述第六电容的第一端相连接,所述第四电容、所述第五电容和所述第六电容的第二端分别与所述第一连线、所述第二连线和所述第三连线连接;所述工模电感的第一输出端和所述整流电路模块之间的第四连线与所述第七电容的第一端连接,所述工模电感的第二输出端和所述整流电路模块之间的第五连线与所述第八电容的第一端连接,所述工模电感的第三输出端和所述整流电路模块之间的第六连线与所述第九电容的第一端连接;所述第七电容、所述第八电容和所述第九电容的第二端相连接,并且此连接点接地。
在一些实施例中,所述整流电路模块包括:三相整流桥和电容组件;所述三相整流桥的三个桥臂分别连接所述第四连线、所述第五连线和所述第六连线;所述三相整流桥的第一输出端与所述直流输出母线的正端连接,第二输出端与所述直流输出母线的负端连接;所述电容组件并接在所述三相整流桥的第一输出端和第二输出端。
在一些实施例中,所述电容组件包括:第十电容、第十一电容、第十二电容和第十三电容;所述第十电容和所述第十二电容串联,形成第一电容电路,所述第一电容电路的两端分别与所述三相整流桥的第一输出端和第二输出端连接;所述第十一电容和所述第十三电容串联,形成第二电容电路,所述第二电容电路的两端分别与所述三相整流桥的第一输出端和第二输出端连接;其中,所述第十电容和所述第十二电容之间的连线与所述第十一电容和所述第十三电容之间的连线相连接。
根据本公开的第二方面,提供一种基于如上所述的谐波抑制装置的谐波抑制方法,执行于控制单元中;其中,负载包括负载电机,所述谐波抑制方法包括:根据直流输出母线上的电压信号和电源信号以及所述负载电机的参数,计算负载频率和谐波抑制电流;基于所述负载频率和所述谐波抑制电流进行谐波抑制处理。
在一些实施例中,所述谐波抑制电流包括:第一轴电流;所述基于所述负载频率和所述谐波抑制电流进行谐波抑制处理包括:获取所述负载电机的运行频率和第二轴电流;将所述运行频率和所述负载频率进行第一比较处理,根据所述第一比较处理的结果确定第三轴电流;将所述第三轴电流和所述第一轴电流进行求和的结果与所述第二轴电流进行第二比较处理,根据所述第二比较处理的结果确定所述负载电机的轴电压。
在一些实施例中,所述根据所述第一比较处理的结果确定第三轴电流包括:根据所述第一比较处理的结果并利用第一PI控制算法计算所述第三轴电流;所述根据所述第二比较处理的结果确定所述负载电机的轴电压包括:根据所述第二比较处理的结果并利用第二PI控制算法计算所述负载电机的轴电压。
在一些实施例中,所述第一轴电流、所述第二轴电流和所述第三轴电流包括:q轴电流;所述负载电机的轴电压包括:q轴电压。
在一些实施例中,计算所述负载频率为:
Figure PCTCN2021125639-appb-000001
计算所述第一轴电流为:
Figure PCTCN2021125639-appb-000002
其中,n为采样次数,I(n)为第n次采样电流,U(n)为第n次采样电压,p为负载电机的极对数,k t为扭矩系数,Ld和id为d轴电感和电流,Lq和iq为q轴电感和电流,ω为负载电机的运行频率。
在一些实施例中,控制第一继电器、第二继电器和第三继电器断开或闭合,用于进行谐振调节;其中,在所述负载电机的运行频率为0的情况下,控制所述第一继电器、所述第二继电器和所述第三继电器断开。
根据本公开的第三方面,提供一种控制单元,包括:存储器;以及耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器中的指令,执行如上所述的方法。
根据本公开的第四方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行如上所述的方法。
根据本公开的第五方面,提供一种电源装置,包括:如上所述的谐波抑制装置。
根据本公开的第六方面,提供一种电器设备,包括:如上所述的谐波抑制装置。
在一些实施例中,所述电器设备包括:变频空调。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中的APFC电路的示意图;
图2为根据本公开提供的谐波抑制装置的一些实施例的模块示意图;
图3为根据本公开提供的谐波抑制装置的另一些实施例的模块示意图;
图4为根据本公开提供的谐波抑制装置的一些实施例的电路示意图;
图5为根据本公开提供的谐波抑制方法的一些实施例的流程示意图;
图6为根据本公开提供的谐波抑制方法的一些实施例的控制原理示意图;
图7为使用本公开提供的谐波抑制方法的效果示意图;
图8为根据本公开的控制单元的一些实施例的模块示意图。
具体实施方式
为了使本公开所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
由此,本说明书中所指出的一个特征将用于说明本公开的一个实施方式的其中一个特征,而不是暗示本公开的每个实施方式必须具有所说明的特征。此外,应当注意的是本说明书描述了许多特征。尽管某些特征可以组合在一起以示出可能的系统设计,但是这些特征也可用于其他的未明确说明的组合。由此,除非另有说明,所说明的组合并非旨在限制。
下面结合附图以及实施例对本公开的原理及结构进行详细说明。
下文中的“第一”、“第二”等仅用于描述上相区别,并没有其他特殊的含义。
本公开的发明人发现上述相关技术中存在如下问题:APFC电路的PWM可控整流方案的软件设计复杂,技术难度大,功率因素高,并且此三相APFC电路成本高、可靠性差。因此,如何设计一种控制简单、可靠性高的谐波抑制电路,是业界亟待解决的技术问题。
鉴于此,本公开提出了一种谐波抑制装置、方法、控制单元、电源装置、电器设备以及存储介质,使三相电源的各相电流通过PI型可调谐振点滤波电路,可以实时调节输入电压、电流相位、匹配阻抗以及多谐振点,实现三相电源功率因数校正,无功功率调节,使各相电流的谐波的THD满足国标要求,并且待机功耗符合标准要求;并且控制简单,成本低,可靠性高。
在一些实施例中,如图2所示,本公开提供了一种谐波抑制装置,包括调谐电路模块10、PI型谐振滤波电路模块20和整流电路模块30。调谐电路模块10与三相电源01的第一火线S和第二火线T连接,对通过第一火线S输入的第一相电流和通过第二火线T输入的第二相电流进行谐振调节处理。
PI型谐振滤波电路模块20分别与调谐电路模块10和三相电源01的第三火线R连接,对经过调谐电路模块10处理后的第一相电流和第二相电流,以及通过第三火线R输入的第三相电流进行谐波滤除处理。整流电路模块30与PI型谐振滤波电路模块20连接,对经过PI型谐振滤波电路模块20处理后的第一相电流、第二相电流和 第三相电流进行整流处理,获得直流电并通过直流输出母线50输出,用以对负载40供电。负载40可以有多种,例如,负载40为逆变部分以及压缩机的变频电机等。
在一些实施例中,如图3所示,调谐电路模块包括上电软启动单元11、检测单元13和控制单元12。上电软启动单元11与第一火线S和第二火线T连接;检测单元13采集直流输出母线50上的电压信号和电流信号。控制单元12分别与上电软启动单元11和检测单元13连接,根据电压信号和电流信号控制上电软启动单元11进行谐振调节处理。
在一些实施例中,如图4所示,上电软启动单元11包括:第一继电器S1、第二继电器S2、第三继电器S3和阻感单元RL。第一继电器S1的输入端与第一火线S连接,输出端与PI型谐振滤波电路模块连接。第二火线T与第二继电器S2的输入端连接,并且,第二火线T通过阻感单元RL与第三继电器S3的输入端连接,阻感单元RL可以有多种,具有电阻和电感的特性。第二继电器S2的输出端和第三继电器S3的输出端连接,此连接点与PI型谐振滤波电路模块连接。
控制单元12分别与第一继电器S1、第二继电器S2和第三继电器S3的控制端连接,用于控制第一继电器S1、第二继电器S2和第三继电器S3断开或闭合。控制单元12可以有多种实现方式,例如为数字信号处理DSP模块、单片机等。
检测单元包括电流采样电路CM1和电压采样电路VM1。电流采样电路CM1和电压采样电路VM1可以有多种实现方式,例如,电流采样电路CM1包括电流传感器等,电压采样电路VM1包括电压传感器等。控制单元12分别与电流采样电路CM1和电压采样电路VM1连接,电流采样电路CM1采集直流输出母线上的电流信号,电压采样电路VM1采集直流输出母线上的电压信号。
通过调节阻感模块RL可以控制电流的幅值和相位,控制单元12可以根据负载变化调整三个继电器S1、S2和S3的开关频率。在控制单元12控制第一继电器S1闭合、第二继电器S2断开并且第三继电器S3闭合的情况下,使三相电源和阻感模块RL形成闭合回路,待机能量在RL上消耗掉,可以使功耗小于15W。
三相电源的两根火线S、T分别串接上电软启动单元11(无功功率调谐软启动电路),上电软启动单元11由阻感模块RL和三个继电器S1、S2和S3组成,三个继电器S1、S2和S3的控制端g分别连接控制单元12,三相电源的B、C端分别连接PI型谐振滤波电路模块(电感器L2,L3),实现LC谐振点无功功率调节控制,待机功耗小于15W和上电软启动功能。
在一些实施例中,PI型谐振滤波电路模块可以有多种,例如,如图4所示,PI型谐振滤波电路模块包括第一电抗器L1、第二电抗器L2、第三电抗器L3、共模电感L4、第一电容C1、第二电容C2、第三电容C3、第四电容C4、第五电容C5、第六电容C6、第七电容C7、第八电容C8和第九电容C9。
第一电抗器L1的输入端与第三火线R连接,输出端通过第一连线21与工模电感L4的第一输入端1连接;第二电抗器L2的输入端与第一继电器S1的输出端连接,输出端通过第二连线22与工模电感L4的第二输入端2连接;第三电抗器L3的输入端与第二继电器S2的输出端和第三继电器S3的输出端的连接点连接,输出端通过第三连线23与工模电感L4的第三输入端3连接。
第一电容C1两端分别与第一连线21和第二连线22连接,第二电容C2两端分别与第一连线21和第三连线23连接,第三电容C3两端分别与第二连线22和第三连线23连接。第四电容C4、第五电容C5和第六电容C6的第一端连接,第四电容C4、第五电容C5和第六电容C6的第二端分别与第一连线21、第二连线22和第三连线23连接。
工模电感L4的第一输出端4和整流电路模块之间的第四连线24与第七电容C7的第一端连接,工模电感L4的第二输出端5和整流电路模块之间的第五连线25与第八电容C8的第一端连接,工模电感L4的第三输出端6和整流电路模块之间的第六连线26与第九电容C9的第一端连接;第七电容C7、第八电容C8和第九电容C9的第二端连接,并且此连接点接地。
三相电源的火线R、第一继电器S1、第二继电器S2和第三继电器的连接点直接串接PI型谐振滤波电路模块,PI型谐振滤波电路模块由三个电抗器L1\L2\L3、共模电感L4、电容C1\C2\C3,C4\C5\C6,C7\C8\C9组成。三个电抗器L1\L2\L3可以为相同的电抗器,电容C1\C2\C3,C4\C5\C6,C7\C8\C9的电容值可以都相等。PI型谐振滤波电路模块能够实现PI型谐振、阻抗匹配、三相电源功率因数校正。PI型谐振滤波电路滤除电网干扰源,其LC发生谐振,呈现阻抗状态,滤除2-40次谐波干扰,使各相电流的2-40次谐波的THD(Total Harmonic Distortion,总谐波失真)<5%,满足国标要求。
在一些实施例中,整流电路模块可以有多种。例如,如图4所示,整流电路模块包括三相整流桥和电容组件;三相整流桥的三个桥臂分别连接第四连线24、第五连线25和第六连线26;三相整流桥的第一输出端与直流输出母线的正端连接,第二输出 端与直流输出母线的负端连接;电容组件并接在三相整流桥的第一输出端和第二输出端。
电容组件包括第十电容C10、第十一电容C11、第十二电容C12和第十三电容C13;第十电容C10和第十二电容C12串联,形成第一电容电路,第一电容电路的两端分别与三相整流桥的第一输出端和第二输出端连接;第十一电容C11和第十三电容C13串联,形成第二电容电路,第二电容电路的两端分别与三相整流桥的第一输出端和第二输出端连接;其中,第十电容C10和第十二电容C12之间的连线与第十一电容C11和第十三电容C12之间的连线相连接。
三相整流桥可以有多种,例如,由六个电极D1\D2\D3\D4\D5\D6组成三相不可控整流桥,电容C10\C11\C12\C14组成电容组件,进行滤波整形,满足负载运行。三相整流桥(由二极管D1\D2\D3\D4\D5\D6组成)和电容组件(由电容C10\C11\C12\C14组成)将交流电AC转换为直流电DC,实现功率因数校正电路的能量转换传输,供负载使用。
上述实施例中的谐波抑制装置,实现三相电源功率因数校正,无功功率调节,使各相电流的2-40次谐波电流的THD<5%,满足国际谐波标准要求,并能满足待机功耗小于15W标准要求;较常规APFC方案成本更低,控制简单,可靠性高。
在一些实施例中,本公开提供一种基于如上实施例中的谐波抑制装置的谐波抑制方法,执行于控制单元中;负载包括负载电机。图5为根据本公开提供的谐波抑制方法的一些实施例的流程示意图,如图5所示:
步骤501,根据直流输出母线上的电压信号和电源信号以及负载电机的参数,计算负载频率和谐波抑制电流。
在一些实施例中,控制单元接收电压采样电路和电流采样电路分别采集的直流输出母线上的电压信号和电源信号。负载电机的参数包括电机极对数、扭矩系数、d轴和q轴的电感和电流以及电机运行频率等。
步骤502,基于负载频率和谐波抑制电流进行谐波抑制处理。
谐波抑制处理可以有多种处理方法。例如,通过控制三个继电器的控制端g,调节各谐振点,注入功率谐波抑制电流i′ q,实相关功功率补偿,实现功率因数校正调节等。
在一些实施例中,谐波抑制电流包括第一轴电流;获取负载电机的运行频率和第二轴电流。控制单元在负载电机运行时,采集负载电机的运行频率和第二轴电流,可以采用相关的多种采集方法采集运行频率和第二轴电流。
将运行频率和负载频率进行第一比较处理,根据第一比较处理的结果确定第三轴电流。例如,根据第一比较处理的结果并利用第一PI控制算法计算第三轴电流。第一轴电流、第二轴电流和第三轴电流可以都为q轴电流。
将第三轴电流和第一轴电流进行求和的结果与第二轴电流进行第二比较处理,根据第二比较处理的结果确定负载电机的轴电压。例如,根据第二比较处理的结果并利用第二PI控制算法计算负载电机的轴电压。负载电机的轴电压包括q轴电压。
如图6所示,负载电机为永磁同步电机PMSM,图6中的虚线框内的功能可以由本公开的控制单元实现,或者,控制单元也可以实现图6中的虚线框外的一个或多个功能,例如,控制单元也包括EMF计算模块等。负载包括负载电机控制装置,控制单元未实现的其余功能可以由负载电机控制装置实现。
本公开的控制单元计算瞬时功率:
Figure PCTCN2021125639-appb-000003
基于根据瞬时功率P1计算负载频率为:
Figure PCTCN2021125639-appb-000004
计算第一轴电流为:
Figure PCTCN2021125639-appb-000005
其中,n为采样次数,可以由软件计数器得到;I(n)为第n次采样电流,由电流采样电路采样得到;U(n)为第n次采样电压,由电压采样电路采样得到;cosθ为功率系数。
p为负载电机的极对数,k t为扭矩系数,Ld和id为d轴电感和电流,Lq和iq为q轴电感和电流,ω为负载电机的运行频率。L d、L q、i d、i q分别为负载电机d,q轴的电感和电流,其中,P、k t、Ld、Lq、参数由可以通过负载电机的电机规格书获得,并预先存储。id、iq为在负载电机运行时采集的d、q轴的电流,或者通过负载电机的电机规格书获得id、iq,并预先存储。ω为电机运行频率,在负载电机运行时采集的负载电机实际运行频率。
如图6所示,ω*为负载电机的预定频率,可以使用ω*或者ω′和ω进行第一比 较处理,根据第一比较处理的结果并利用第一PI控制算法计算第三轴电流
Figure PCTCN2021125639-appb-000006
通常使用ω′和ω进行第一比较处理。将第三轴电流
Figure PCTCN2021125639-appb-000007
和第一轴电流i′ q进行求和的结果与第二轴电流iq进行第二比较处理,根据第二比较处理的结果并利用第二PI控制算法计算负载电机的轴电压uq。将第四轴电流
Figure PCTCN2021125639-appb-000008
和第五轴电流id进行第三比较处理,根据第三比较处理的结果并利用第三PI控制算法计算负载电机的轴电压ud。
第一PI控制算法、第二PI控制算法、第三PI控制算法可以为相关的包括P(proportional,比例)控制和I(intergral,积分)控制的PI控制算法,可以采用软件的方式实现。
通过I_Park模块、SVPWM(Space Vector Pulse Width Modulation,空间矢量脉冲宽度调制)模块对uq和ud依次进行I-Park变换、SVPWM处理后,发送给IPM(Intelligent Power Module,智能功率模块),IPM对PMSM永磁同步电机进行控制。采集PMSM的iv和iw,对iv和iw进行Clark处理、Park变换处理;EMF(反电势)计算模块根据uq、ud、id、iq计算ω值。I_Park模块、SVPWM模块、Clark模块、Park模块以及EMF计算模块等可以采用相关的算法以及方法实现,执行相应的功能。
在一些实施例中,控制第一继电器、第二继电器和第三继电器断开或闭合,用于进行谐振调节。其中,在负载电机的运行频率为0的情况下,控制第一继电器、第二继电器和第三继电器断开。
计算瞬时功率P1,根据瞬时功率P1计算负载频率ω′;在负载频率大小稳定后,通过控制第二继电器和第三继电器的控制端g,调节阻感模块的R,L值,调节谐振点,使电路谐振,呈现阻抗。谐振点调节稳定后,计算第一轴电流i′ q(谐波抑制电流),注入i′ q电流,即注入到负载电机的矢量控制图中的i q轴,使整流桥二极管导通角β变小;整流桥二极管可以为逆变部件的整流桥二极管,也可以为整流电路模块的三相整流桥中的二极管,可以使用相关的方法调整二极管导通角β,能够使电流波形跟随电网电源输入电压波形,接近正弦波,如图7所示,为在示波器等设备屏幕上显示的电压波形。
上述实施例中的谐波抑制装置以及谐波抑制方法,使三相电源的各相电流通过PI型可调入谐振点滤波电路,可以实时调节输入电压、电流相位、匹配阻抗以及多谐振点,实现三相电源功率因数校正,无功功率调节,使各相电流的2-40次谐波的THD<5%,满足国标要求,并且待机功耗小于15W,符合标准要求;控制简单,成本 低,可靠性高。
在一些实施例中,图8为根据本公开的控制单元的一些实施例的模块示意图。如图8所示,该装置可包括存储器81、处理器82、通信接口83以及总线84。存储器81用于存储指令,处理器82耦合到存储器81,处理器82被配置为基于存储器81存储的指令执行实现上述任一实施例中的谐波抑制方法。
存储器81可以为高速RAM存储器、非易失性存储器(non-volatile memory)等,存储器81也可以是存储器阵列。存储器81还可能被分块,并且块可按一定的规则组合成虚拟卷。处理器82可以为中央处理器CPU,或专用集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本公开提供的谐波抑制方法的一个或多个集成电路。
在一些实施例中,本公开提供一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如上任一些实施例中的谐波抑制方法。
在一些实施例中,本公开提供一种电源装置,包括如上实施例中的谐波抑制装置。电源装置为三相电源装置等。
在一些实施例中,本公开提供一种电器设备,包括如上实施例中的谐波抑制装置。电器设备可以为多种,例如为变频空调等。
上述实施例提供的谐波抑制装置、方法、控制单元、电源装置、电器设备以及存储介质,使三相电源的各相电流通过PI型可调谐振点滤波电路,可以实时调节输入电压、电流相位、匹配阻抗以及多谐振点,实现三相电源功率因数校正,无功功率调节,使各相电流的2-40次谐波的THD<5%,满足国标要求,并且待机功耗小于15W,符合标准要求;控制简单,成本低,可靠性高,较常规APFC方案成本减少至少200元。
本领域内的技术人员应当明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
可能以许多方式来实现本公开的方法和系统。例如,可通过软件、硬件、固件或者软件、硬件、固件的任何组合来实现本公开的方法和系统。用于所述方法的步骤的上述顺序仅是为了进行说明,本公开的方法的步骤不限于以上具体描述的顺序,除非 以其它方式特别说明。此外,在一些实施例中,还可将本公开实施为记录在记录介质中的程序,这些程序包括用于实现根据本公开的方法的机器可读指令。因而,本公开还覆盖存储用于执行根据本公开的方法的程序的记录介质。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。

Claims (18)

  1. 一种谐波抑制装置,包括:
    调谐电路模块,与三相电源的第一火线和第二火线连接,用于对通过所述第一火线输入的第一相电流和通过所述第二火线输入的第二相电流进行谐振调节处理;
    PI型谐振滤波电路模块,分别与所述调谐电路模块和所述三相电源的第三火线连接,用于对经过所述调谐电路模块处理后的第一相电流和第二相电流,以及通过所述第三火线输入的第三相电流进行谐波滤除处理;
    整流电路模块,与所述PI型谐振滤波电路模块连接,用于对经过所述PI型谐振滤波电路模块处理后的第一相电流、第二相电流和第三相电流进行整流处理,获得直流电并通过直流输出母线输出,用以对负载供电。
  2. 如权利要求1所述的装置,其中,所述调谐电路模块包括:上电软启动单元、检测单元和控制单元;
    所述上电软启动单元与所述第一火线和所述第二火线连接;所述检测单元采集所述直流输出母线上的电压信号和电流信号;
    所述控制单元,分别与所述上电软启动单元和所述检测单元连接,用于根据所述电压信号和所述电流信号控制所述上电软启动单元进行谐振调节处理。
  3. 如权利要求2所述的装置,其中,所述上电软启动单元,包括:第一继电器、第二继电器、第三继电器和阻感单元;
    所述第一继电器的输入端与所述第一火线连接,输出端与所述PI型谐振滤波电路模块连接;
    所述第二火线与所述第二继电器的输入端连接,并且,所述第二火线通过所述阻感单元与所述第三继电器的输入端连接;所述第二继电器的输出端和所述第三继电器的输出端连接,此连接点与所述PI型谐振滤波电路模块连接;
    所述控制单元,分别与所述第一继电器、所述第二继电器和所述第三继电器的控制端连接,用于控制所述第一继电器、所述第二继电器和所述第三继电器断开或闭合。
  4. 如权利要求3所述的装置,其中,所述检测单元包括:电流采样电路和电压采样电路;所述控制单元分别与所述电流采样电路和所述电压采样电路连接;
    所述电流采样电路,用于采集所述直流输出母线上的电流信号;
    所述电压采样电路,用于采集所述直流输出母线上的电压信号。
  5. 如权利要求3或4所述的装置,其中,所述PI型谐振滤波电路模块包括:第一电抗器、第二电抗器、第三电抗器、共模电感、第一电容、第二电容、第三电容、第四电容、第五电容、第六电容、第七电容、第八电容和第九电容;
    所述第一电抗器的输入端与所述第三火线连接,输出端通过第一连线与所述工模电感的第一输入端连接;所述第二电抗器的输入端与所述第一继电器的输出端连接,输出端通过第二连线与所述工模电感的第二输入端连接;所述第三电抗器的输入端与所述第二继电器的输出端和所述第三继电器的输出端的连接点连接,输出端通过第三连线与所述工模电感的第三输入端连接;
    所述第一电容两端分别与所述第一连线和所述第二连线连接,所述第二电容两端分别与所述第一连线和所述第三连线连接,所述第三电容两端分别与所述第二连线和所述第三连线连接;所述第四电容、所述第五电容和所述第六电容的第一端相连接,所述第四电容、所述第五电容和所述第六电容的第二端分别与所述第一连线、所述第二连线和所述第三连线连接;
    所述工模电感的第一输出端和所述整流电路模块之间的第四连线与所述第七电容的第一端连接,所述工模电感的第二输出端和所述整流电路模块之间的第五连线与所述第八电容的第一端连接,所述工模电感的第三输出端和所述整流电路模块之间的第六连线与所述第九电容的第一端连接;所述第七电容、所述第八电容和所述第九电容的第二端相连接,并且此连接点接地。
  6. 如权利要求5所述的装置,其中,所述整流电路模块包括:三相整流桥和电容组件;
    所述三相整流桥的三个桥臂分别连接所述第四连线、所述第五连线和所述第六连线;所述三相整流桥的第一输出端与所述直流输出母线的正端连接,第二输出端与所述直流输出母线的负端连接;所述电容组件并接在所述三相整流桥的第一输出端和第二输出端。
  7. 如权利要求6所述的装置,其中,所述电容组件包括:第十电容、第十一电容、第十二电容和第十三电容;
    所述第十电容和所述第十二电容串联,形成第一电容电路,所述第一电容电路的两端分别与所述三相整流桥的第一输出端和第二输出端连接;所述第十一电容和所述第十三电容串联,形成第二电容电路,所述第二电容电路的两端分别与所述三相整流桥的第一输出端和第二输出端连接;其中,所述第十电容和所述第十二电容之间的连 线与所述第十一电容和所述第十三电容之间的连线相连接。
  8. 一种基于权利要求3至7中任一项所述的谐波抑制装置的谐波抑制方法,执行于控制单元中;其中,负载包括负载电机,所述谐波抑制方法包括:
    根据直流输出母线上的电压信号和电源信号以及所述负载电机的参数,计算负载频率和谐波抑制电流;
    基于所述负载频率和所述谐波抑制电流进行谐波抑制处理。
  9. 如权利要求8所述的方法,所述谐波抑制电流包括:第一轴电流;所述基于所述负载频率和所述谐波抑制电流进行谐波抑制处理包括:
    获取所述负载电机的运行频率和第二轴电流;
    将所述运行频率和所述负载频率进行第一比较处理,根据所述第一比较处理的结果确定第三轴电流;
    将所述第三轴电流和所述第一轴电流进行求和的结果与所述第二轴电流进行第二比较处理,根据所述第二比较处理的结果确定所述负载电机的轴电压。
  10. 如权利要求9所述的方法,所述根据所述第一比较处理的结果确定第三轴电流包括:
    根据所述第一比较处理的结果并利用第一PI控制算法计算所述第三轴电流;
    所述根据所述第二比较处理的结果确定所述负载电机的轴电压包括:
    根据所述第二比较处理的结果并利用第二PI控制算法计算所述负载电机的轴电压。
  11. 如权利要求9或10所述的方法,其中,
    所述第一轴电流、所述第二轴电流和所述第三轴电流包括:q轴电流;所述负载电机的轴电压包括:q轴电压。
  12. 如权利要求11所述的方法,包括:
    计算所述负载频率为:
    Figure PCTCN2021125639-appb-100001
    计算所述第一轴电流为:
    Figure PCTCN2021125639-appb-100002
    其中,n为采样次数,I(n)为第n次采样电流,U(n)为第n次采样电压,p为负载电机的极对数,k t为扭矩系数,Ld和id为d轴电感和电流,Lq和iq为q轴电感和电流,ω为负载电机的运行频率。
  13. 如权利要求8至12任一项所述的方法,还包括:
    控制第一继电器、第二继电器和第三继电器断开或闭合,用于进行谐振调节;
    其中,在所述负载电机的运行频率为0的情况下,控制所述第一继电器、所述第二继电器和所述第三继电器断开。
  14. 一种控制单元,包括:
    存储器;以及耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器中的指令,执行如权利要求8至13中任一项所述的方法。
  15. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行如权利要求8至13中任一项所述的方法。
  16. 一种电源装置,包括:
    如权利要求1至7任一项所述的谐波抑制装置。
  17. 一种电器设备,包括:
    如权利要求1至7任一项所述的谐波抑制装置。
  18. 如权利要求17所述的电器设备,其中,
    所述电器设备包括:变频空调。
PCT/CN2021/125639 2021-02-26 2021-10-22 谐波抑制装置、方法、控制单元、电器以及存储介质 WO2022179141A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21927565.8A EP4235998A1 (en) 2021-02-26 2021-10-22 Harmonic suppression apparatus and method, control unit, electrical appliance, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110217616.4A CN112821401A (zh) 2021-02-26 2021-02-26 谐波抑制装置、方法、控制单元、电器以及存储介质
CN202110217616.4 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022179141A1 true WO2022179141A1 (zh) 2022-09-01

Family

ID=75864085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125639 WO2022179141A1 (zh) 2021-02-26 2021-10-22 谐波抑制装置、方法、控制单元、电器以及存储介质

Country Status (3)

Country Link
EP (1) EP4235998A1 (zh)
CN (1) CN112821401A (zh)
WO (1) WO2022179141A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116318267A (zh) * 2023-05-18 2023-06-23 中关村芯海择优科技有限公司 电力线载波通信系统及其谐波抑制方法系统
CN116599345A (zh) * 2022-11-28 2023-08-15 中煤平朔集团有限公司 用于增强大功率储能双向dc-dc变换器稳定性的方法和系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112821401A (zh) * 2021-02-26 2021-05-18 珠海格力电器股份有限公司 谐波抑制装置、方法、控制单元、电器以及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110080102A1 (en) * 2009-10-01 2011-04-07 Liangan Ge High efficiency constant current led driver
CN102882286A (zh) * 2012-09-25 2013-01-16 重庆大学 一种基于电场耦合的无线电能传输系统
CN107294407A (zh) * 2017-06-20 2017-10-24 南京航空航天大学 一种ac‑dc变换系统
CN110336458A (zh) * 2019-05-10 2019-10-15 珠海格力电器股份有限公司 谐波治理电路、具有该电路的电源和空调器
CN110752760A (zh) * 2019-10-31 2020-02-04 广州市凯辉电子有限公司 一种开关电源电路及其开关电源
CN112821401A (zh) * 2021-02-26 2021-05-18 珠海格力电器股份有限公司 谐波抑制装置、方法、控制单元、电器以及存储介质
CN214314575U (zh) * 2021-02-26 2021-09-28 珠海格力电器股份有限公司 谐波抑制装置、电源装置以及电器设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110080102A1 (en) * 2009-10-01 2011-04-07 Liangan Ge High efficiency constant current led driver
CN102882286A (zh) * 2012-09-25 2013-01-16 重庆大学 一种基于电场耦合的无线电能传输系统
CN107294407A (zh) * 2017-06-20 2017-10-24 南京航空航天大学 一种ac‑dc变换系统
CN110336458A (zh) * 2019-05-10 2019-10-15 珠海格力电器股份有限公司 谐波治理电路、具有该电路的电源和空调器
CN110752760A (zh) * 2019-10-31 2020-02-04 广州市凯辉电子有限公司 一种开关电源电路及其开关电源
CN112821401A (zh) * 2021-02-26 2021-05-18 珠海格力电器股份有限公司 谐波抑制装置、方法、控制单元、电器以及存储介质
CN214314575U (zh) * 2021-02-26 2021-09-28 珠海格力电器股份有限公司 谐波抑制装置、电源装置以及电器设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116599345A (zh) * 2022-11-28 2023-08-15 中煤平朔集团有限公司 用于增强大功率储能双向dc-dc变换器稳定性的方法和系统
CN116599345B (zh) * 2022-11-28 2024-01-05 中煤平朔集团有限公司 用于增强大功率储能双向dc-dc变换器稳定性的方法和系统
CN116318267A (zh) * 2023-05-18 2023-06-23 中关村芯海择优科技有限公司 电力线载波通信系统及其谐波抑制方法系统
CN116318267B (zh) * 2023-05-18 2023-08-18 中关村芯海择优科技有限公司 电力线载波通信系统及其谐波抑制方法系统

Also Published As

Publication number Publication date
EP4235998A1 (en) 2023-08-30
CN112821401A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2022179141A1 (zh) 谐波抑制装置、方法、控制单元、电器以及存储介质
KR102546001B1 (ko) 모터 가변 주파수 구동 시스템 및 다중 분할 중앙 에어컨
CN106330039B (zh) 一种小容量薄膜电容变频器系统的永磁同步电机控制算法
CN106655947B (zh) 一种提高小容量直流母线电容电压暂态稳定性的永磁同步电机控制算法
CN107689761B (zh) 无电解电容永磁同步电机空调驱动系统中的阻尼控制方法
CN110266229B (zh) 无电解电容永磁同步电机空调驱动系统的谐振抑制方法
CN113098365B (zh) 一种无电解电容电机驱动系统网侧电流谐波抑制方法及系统
CN108493937A (zh) 抑制并网逆变器电网背景谐波的方法、装置及控制系统
CN111464103B (zh) 一种无电解电容网侧电流谐波抑制方法与系统
CN106982022A (zh) 一种无电解电容逆变器永磁同步电机的起动方法
CN110943469A (zh) 一种单级式储能变流器及其控制方法
CN111865182B (zh) 基于lc滤波器与自适应陷波器的高速pmsm谐波抑制控制方法
CN110513846B (zh) 一种无电解电容空调压缩机控制方法
CN108809177B (zh) 无电解电容电机驱动方法、装置、电子设备及存储介质
CN214314575U (zh) 谐波抑制装置、电源装置以及电器设备
CN107959458A (zh) 直流母线小容量电容变频控制电路和变频设备
CN106787673B (zh) 一种变频空调pfc控制方法
CN117081446A (zh) 永磁同步电机的直流母线薄膜电容的电压谐振抑制方法
CN116707375A (zh) 一种无电解电容电机驱动系统主动阻尼控制及过调制方法
Takahashi et al. Inverter control method of IPM motor to improve power factor of diode rectifier
CN105633969A (zh) 一种有源滤波器电源谐波补偿系统及方法
Haruna et al. Behavior of a matrix converter with a feed back control in an input side
US20240136911A1 (en) Harmonic Suppression Apparatus, Method, Control Unit, Electrical Appliance, and Storage Medium
Jiang et al. An Inverter Input Current Closed-loop Control Scheme for IPMSM Drives Fed by Electrolytic Capacitorless Converter
CN109962659A (zh) 电机驱动控制方法、装置、电路及变频空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021927565

Country of ref document: EP

Effective date: 20230526

WWE Wipo information: entry into national phase

Ref document number: 18269378

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE