WO2022179066A1 - 一种风机轮毂中心恒流式热线风速感测系统及方法 - Google Patents

一种风机轮毂中心恒流式热线风速感测系统及方法 Download PDF

Info

Publication number
WO2022179066A1
WO2022179066A1 PCT/CN2021/114601 CN2021114601W WO2022179066A1 WO 2022179066 A1 WO2022179066 A1 WO 2022179066A1 CN 2021114601 W CN2021114601 W CN 2021114601W WO 2022179066 A1 WO2022179066 A1 WO 2022179066A1
Authority
WO
WIPO (PCT)
Prior art keywords
constant
hot wire
wind speed
probe
sensing system
Prior art date
Application number
PCT/CN2021/114601
Other languages
English (en)
French (fr)
Inventor
林伟荣
蔡安民
许扬
李媛
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2022179066A1 publication Critical patent/WO2022179066A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention belongs to the technical field of wind power generation, and in particular relates to a wind speed sensing system and method for a constant-flow hot wire in the center of a fan hub.
  • the wind speed data of a single wind turbine mainly relies on an anemometer (such as a cup anemometer) installed above the nacelle, combined with the measurement of the wind direction for yaw and pitch control.
  • Accurate measurement of wind speed is the premise for efficient and stable operation of wind turbines.
  • the wind measuring device installed above the nacelle is inevitably affected by the fan blades: the rotating blades will generate wakes, which affect the immediate flow field distribution above the nacelle, leading to traditional measurement methods.
  • the measurement of the wind device will deviate from the true incoming flow in front of the rotor.
  • the larger blades have a greater impact on the wind speed measurement, which will have an impact on the evaluation of the generating capacity of the turbine.
  • the purpose of the present invention is to provide a constant flow hot wire wind speed sensing system and method in the center of the fan hub, which has a reasonable structure design, can accurately measure the wind speed, and effectively avoids the interference of the wind wheel rotation on the wind speed measurement.
  • the invention discloses a constant-flow hot-wire wind speed sensing system in the center of a fan hub, comprising a constant-flow hot-wire probe, a probe temperature sensor, a temperature signal collector, a current shunt, a constant current power supply and a signal conversion controller;
  • the constant flow hot wire probe is fixed on the front face of the fairing and exposes the front face of the fairing; the constant flow hot wire probe is connected with the probe temperature sensor, the probe temperature sensor is connected with the temperature signal collector, and the constant flow hot wire
  • the probe and the temperature signal collector are respectively connected with the current shunt, the current shunt is respectively connected with the constant current power supply and the signal conversion controller, and the signal conversion controller is connected with the SCADA system.
  • the constant flow hot wire probe is fixed in the center of the front face of the fairing.
  • the length of the constant-flow hot wire probe exposed from the surface of the front end face of the fairing is 1-2 cm.
  • the constant flow hot wire probe includes a hot wire wire, a fork rod and a connecting rod; the two fork rods are vertically arranged on the front end surface of the fairing, and the hot wire wire is fixedly connected with the two fork rods; one fork rod is connected by One rod is connected to the current shunt and the other is grounded through the connecting rod.
  • the two fork rods are symmetrical with respect to the center of the front end face of the cowl.
  • a protective cover is wrapped outside the two fork rods.
  • the protective cover is filled with insulating material.
  • the material of the fork rod and the connecting rod is copper.
  • the grounding end of the constant current power supply is grounded after passing through the wheel hub, the nacelle and the tower in sequence.
  • the method disclosed by the present invention adopts the above-mentioned fan hub center constant flow hot wire wind speed sensing system for wind speed sensing, including:
  • the current shunt outputs the constant current from the constant current power supply to the constant current hot wire probe.
  • the constant current hot wire probe heats up after the current is applied.
  • the temperature signal collector processes the probe temperature data measured by the probe temperature sensor. Send to the temperature signal collector, the temperature signal collector sends the temperature value of the constant current hot wire probe to the signal conversion controller, and the signal conversion controller feeds back the temperature signal to the current shunt to adjust the value of the constant current; at the same time, the temperature
  • the signal is converted into wind speed data and sent to the SCADA system to measure the wind speed and correct the deviation of the anemometer.
  • the present invention has the following beneficial technical effects:
  • the invention discloses a constant-flow hot-wire wind speed sensing system in the center of a fan hub, which utilizes a constant-flow hot-wire probe arranged on the front end of the fairing.
  • the thermal equilibrium temperature of the hot-wire probe corresponds to the ambient air flow. It is only necessary to accurately monitor the temperature of the hot wire wire to output the incoming wind speed at the location where the hot wire probe is installed (such as at the height of the center of the wheel hub).
  • the interference of the setting position of the constant-flow hot-wire probe to the flow field at the front end of the fairing and the downstream of the blade is negligible, and has no effect on the operation of the fan, and the influence of the relatively slow-rotating hub on the heat balance of the constant-flow hot-wire probe is negligible.
  • the system has a reasonable structure design, low overall cost, and simple installation method; it fully utilizes the small geometric size, small thermal inertia, high response frequency, continuous measurement, high spatial resolution, and little interference to the measurement flow field of the hot wire anemometer.
  • the hot wire probe is arranged in the center of the front end face of the fairing, and the value is more accurate.
  • connection rod is used as a connecting wire, and the connection is reliable.
  • a protective cover is wrapped on the outside of the fork rod, which can improve the stability of the structure.
  • the insulating material filled inside can play a good insulating role.
  • copper with low resistivity is selected for the fork rod and the connecting rod, which can reduce the influence of the heating of the non-hot wire part on the temperature measurement of the hot wire wire, and further reduce the measurement error; meanwhile, the mechanical properties are good and the fixing is firm.
  • the grounding end of the constant current power supply is grounded after the wheel hub, the engine room and the tower in sequence, which improves the safety and stability of the system.
  • the method for wind speed measurement using the above-mentioned fan hub center constant-flow hot wire wind speed sensing system disclosed in the present invention fully utilizes the advantages of the hot wire speed measurement technology, and can measure wind speed data accurately, in real time and continuously. Since the constant flow hot wire probe has been checked, its value is more accurate, and the output data of the anemometer can be corrected by using this data; It can be continuously measured and output at a higher frequency to ensure that there is a sufficient quantity for data verification of the anemometer.
  • FIG. 1 is a schematic diagram of the system structure arranged at the front end of the fairing according to the present invention.
  • Fig. 2 is the structural representation of the constant flow hot wire probe of the present invention
  • FIG. 3 is a circuit diagram of the constant flow hot wire probe of the present invention.
  • hot wire wind speed sensing technology (also known as hot wire sensing technology) has significant advantages in measuring fluid velocity.
  • the basic principle is to flow the heating current through the hot wire wire in the hot wire probe, based on the energy balance of the hot wire wire (including self-heating, convection heat transfer and radiation heat transfer, etc.) to establish the hot wire current, temperature and wind speed and other variables. exact correspondence.
  • the working mode of the hot wire is divided into constant temperature and constant current, that is, the heating current and temperature of the hot wire probe are kept unchanged respectively.
  • constant flow hot wire anemometer after calibration, there is a corresponding relationship between the thermal equilibrium temperature of the wire and the ambient air flow when the wind speed changes. It is only necessary to accurately monitor the temperature of the hot wire wire to output the position where the hot wire probe is installed (such as The incoming wind speed at the height of the hub center).
  • the fan hub center constant flow hot wire wind speed sensing system of the present invention includes a constant flow hot wire probe 5, a probe temperature sensor 10, a temperature signal collector 11, a current shunt 12, a constant Stream power supply 13 and signal conversion controller 14;
  • the constant flow hot wire probe 5 is fixed on the front end face 4 of the fairing and exposes the surface of the fairing front face 4; the constant flow hot wire probe 5 is connected to the probe temperature sensor 10, and the probe temperature sensor 10 is connected to the temperature signal collector 11 is connected, the constant current hot wire probe 5 and the temperature signal collector 11 are respectively connected with the current shunt 12, the current shunt 12 is respectively connected with the constant current power supply 13 and the signal conversion controller 14, and the signal conversion controller 14 is connected to the SCADA system 15.
  • the constant current power supply 13 is installed inside the wheel hub 1, and the grounding end is grounded after the wheel hub, the engine room and the tower in sequence.
  • the constant flow hot wire probe 5 includes a hot wire wire 6, a fork rod 7 and a connecting rod 9;
  • the two fork rods 7 are symmetrical with respect to the center of the front end face 4 of the fairing.
  • One of the fork rods 7 is connected to the current shunt 12 through the connecting rod 9 , and the other is connected to the ground through the connecting rod 9 .
  • the length of the fork rod 7 is combined with the specific design of the fairing 3, etc., so that the wind speed at the position of the hot wire wire 6 is the same as the wind speed of the incoming flow.
  • the material of the fork rod 7 and the connecting rod 9 is copper metal with low resistivity, which takes into account the dual functions of fixation and conduction.
  • the current flowing through the hot wire wire 6 is provided and kept constant by the current shunt 12.
  • the current shunt 12 accepts the feedback information from the signal conversion controller 14 of the temperature measured by the hot wire probe 6, and optimally distributes the output of the constant current power supply 13 for use.
  • the current of the heating wire 6 is heated so that the current value is within a reasonable range.
  • the probe temperature sensor 10 is used to measure the temperature of the hot wire wire 6 , and the probe temperature sensor 10 is directly connected to the temperature signal collector 11 to digitize the received temperature signal and send it to the device installed in the hub 1 Signal conversion controller 14 .
  • the signal conversion controller 14 has two functions, one is to convert the received signal into a format that can be recognized by the SCADA system 15 for storage processing; The signal is fed back to the current shunt 12 downstream of the constant current power supply 13, so that the heating current of the heating wire 6 outputted by it is in a reasonable range.
  • the constant flow hot wire probe 5 is fixed at the center of the front end surface 4 of the fairing, that is, the exposed part of the constant flow hot wire probe 5 is perpendicular to the sweeping surface of the wind rotor, and the rest
  • the accessories and the control system are arranged inside the hub 1 through the connecting wires 17 and in the blade mounting holes 2 on the hub 1 .
  • the length of the constant current hot wire probe 5 exposed from the surface of the front end face 4 of the fairing is 1-2 cm.
  • the constant flow hot wire probe 5 can also be fixed on the tip section of the wheel hub 1 .
  • the two fork rods 7 are wrapped with a protective cover 8 outside, and the protective cover 8 is filled with insulating material.
  • the method for measuring the wind speed using the above-mentioned constant flow hot wire wind speed sensing system in the center of the fan hub includes:
  • the current shunt 12 outputs the constant current from the constant current power supply 13 to the constant current hot wire probe 5, the constant current hot wire probe 5 generates heat after passing the current, and the temperature signal collector 11 measures the temperature measured by the probe temperature sensor 10.
  • the probe temperature data is processed and sent to the temperature signal collector 11.
  • the temperature signal collector 11 sends the temperature value of the constant current hot wire probe 5 to the signal conversion controller 14, and the signal conversion controller 14 feeds back the temperature signal to the current shunt.
  • the device 12 is used to adjust the value of the constant current; at the same time, the temperature signal is converted into wind speed data and sent to the SCADA system 15 to measure the wind speed and correct the deviation of the anemometer 16 .
  • the SCADA system 15 of the wind turbine receives the wind speed at the center of the hub 1, which is measured and converted based on the temperature of the hot wire wire 6 output from the signal conversion controller 14, and also records the wind speed of the wind measuring devices such as the anemometer 16 arranged above the nacelle. Measure wind speed. Since the constant flow hot wire probe 5 has been checked, its value is more accurate, and the output data of the anemometer can be corrected by using this data; at the same time, the equilibrium response between the wind speed and the temperature of the constant flow hot wire probe 5 is relatively Fast, can be continuously measured and output at a higher frequency to ensure that there is a sufficient quantity for data verification of the anemometer.
  • the corresponding relationship between the two can be obtained, which can be directly applied to the correction and correction of the output wind speed of the anemometer of the wind turbine without the installation of the hot-wire wind speed measurement device, so as to realize the performance evaluation of the wind turbine and the wind farm and the prediction of power generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种风机轮毂中心恒流式热线风速感测系统,包括恒流式热线探针(5),恒流式热线探针(5)固定在整流罩前端面(4)并且露出整流罩前端面(4)表面,恒流式热线探针(5)与探针温度感应器(10)连接,探针温度感应器(10)与温度信号采集器(11)连接,恒流式热线探针(5)和温度信号采集器(11)分别与电流分流器(12)连接,电流分流器(12)分别与恒流电源(13)和信号转化控制器(14)连接,信号转化控制器(14)连接至SCADA系统(15);还公开了采用风机轮毂中心恒流式热线风速感测系统进行风速测量的方法;设计合理,总体成本较低,且安装简单;能够准确测量风速,有效避免了风轮转动对风速测量的干扰;测得的数据可对传统风速仪进行校核。

Description

一种风机轮毂中心恒流式热线风速感测系统及方法 技术领域
本发明属于风力发电技术领域,具体涉及一种风机轮毂中心恒流式热线风速感测系统及方法。
背景技术
在现阶段,单个风电机组的风速数据主要依靠安装于机舱上方的风速仪(例如风杯式风速仪),结合风向的测量进行偏航与变桨控制。风速的准确测量是风电机组高效稳定运行的前提。
但是,对于上风向运行的风电机组,装在机舱上方的测风装置不可避免地受到了风机叶片的影响:旋转的叶片会产生尾流,影响了机舱上方的即时流场分布,导致传统的测风装置的测量结果与风轮前方的真实来流将出现偏差。随着风电机组的大型化,叶片变大对风速测量影响亦变大,从而会对机组发电量的评估等方面产生影响。
发明内容
为了解决上述问题,本发明的目的在于提供一种风机轮毂中心恒流式热线风速感测系统及方法,结构设计合理,能够准确测量风速,有效避免了风轮转动对风速测量的干扰。
本发明通过以下技术方案来实现:
本发明公开了一种风机轮毂中心恒流式热线风速感测系统,包括恒流式热线探针、探针温度感应器、温度信号采集器、电流分流器、恒流电源和信号转化控制器;
恒流式热线探针固定在整流罩前端面并且露出整流罩前端面表面;恒流式热线探针与探针温度感应器连接,探针温度感应器与温度信号采集器连接,恒流式热线探针和温度信号采集器分别与电流分流器连接,电流分流器分别与恒流电源和信号转化控制器连接,信号转化控制器连接至SCADA系统。
优选地,恒流式热线探针固定在整流罩前端面的中心。
优选地,恒流式热线探针露出整流罩前端面表面的长度为1~2cm。
优选地,恒流式热线探针包括热线金属丝、叉杆和连接杆;两根叉杆垂直设在整流罩前端面上,热线金属丝与两根叉杆固定连接;一根叉杆通过连接杆与电流分流器连接,另一根通过连接杆接地。
进一步优选地,两根叉杆关于整流罩前端面的中心对称。
进一步优选地,两根叉杆外部包裹有保护罩。
进一步优选地,保护罩内填充有绝缘材料。
进一步优选地,叉杆与连接杆的材质为铜。
优选地,恒流电源的接地端依次经轮毂、机舱和塔筒后接地。
本发明公开的采用上述风机轮毂中心恒流式热线风速感测系统进行风速感测的方法,包括:
电流分流器将来自恒流电源的恒定电流输出至恒流式热线探针,恒流式热线探针通电流后发热,温度信号采集器将探针温度感应器测得的探针温度数据处理后发送至温度信号采集器,温度信号采集器将恒流式热线探针的温度值发送至信号转化控制器,信号转化控制器将温度信号反馈至电流分流器用于调节恒定电流的数值;同时,温度信号转化为风速数据后发送至SCADA系统,实现风速的测量和对风速仪的校正纠偏。
与现有技术相比,本发明具有以下有益的技术效果:
本发明公开的一种风机轮毂中心恒流式热线风速感测系统,利用设置在整流罩前端面的恒流式热线探针,在风速变化时,热线探针的热平衡温度与环境气流间具有对应关系,只需要准确监测热线金属丝的温度,便可输出热线探针安装位置处(如轮毂中心高度处)的来流风速。恒流式热线探针的设置位置对整流罩前端面及叶片下游流场的干扰可忽略,对风机运行无影响,且恒流式热线探针的热平衡受相对缓慢旋转的轮毂的影响可忽略。该系统结构设计合理,总体成本较低,且安装方法较为简易;充分发挥了热线风速仪几何尺寸小、热惯性小、响应频率高、可连续测量、空间分辨率高、对测量流场干扰小等优点,能够准确测量风速,有效避免了风轮转动对风速测量的干扰;同时测得的数据可输入SCADA系 统,对传统风速仪数据进行修正校核,对于风机来流的测量、现有测风系统的更新与支持、风机与风电场的性能评估与发电量提升等方面具有明显的作用与意义。
进一步地,热线探针设置在整流罩前端面的中心,数值更加准确。
进一步地,热线金属丝通过叉杆进行固定,并通过连接杆作为连接导线,连接可靠。
更进一步地,叉杆外部包裹有保护罩,能够提高结构的稳定性。
更进一步地,内部填充的绝缘材料能够起到良好的绝缘作用。
更进一步地,叉杆与连接杆选用电阻率较小的铜,能够减小非热线部分的导线发热对热线金属丝温度测量的影响,进一步减小测量误差;同时力学性能良好,固定牢固。
进一步地,恒流电源的接地端依次经轮毂、机舱和塔筒后接地,提高系统的安全性和稳定性。
本发明公开的采用上述风机轮毂中心恒流式热线风速感测系统进行风速测量的方法,充分发挥了热线测速技术的优势,能够精确、实时和连续的测得风速数据。由于恒流式热线探针已经过校核,其数值更为准确,使用该数据可对风速仪的输出数据进行校正;同时,恒流式热线探针的风速/温度间的平衡响应较为快速,可以较高的频率连续测量并输出,确保有足够的数量能用于风速仪的数据核验。从而得到二者的对应关系,可直接应用于未安装热线风速测量装置的风电机组的风速仪输出风速的校正纠偏,实现风机及风电场的性能评估与发电量预测等用途,具有良好的应用前景。
附图说明
图1为本发明的布置于整流罩前端面处的系统结构示意图;
图2为本发明的恒流式热线探针的结构示意图;
图3为本发明的恒流式热线探针的电路系统图。
图中:1-轮毂;2-叶片安装孔;3-整流罩;4-整流罩前端面;5-恒流式热线探针;6-热线金属丝;7-叉杆;8-保护罩;9-连接杆;10-探针温度感应器;11-温度信号采集器;12-电流分流器;13-恒流电源;14-信号转化控制器;15-SCADA系统;16-风速仪;17-连接导线。
具体实施方式
相比传统的测风装置,热线风速感测技术(也称为热线感测技术)在测量流体速度上具有显著优势。其基本原理是将加热电流流经热线探针中的热线金属丝,基于热线金属丝的能量平衡(包括自身发热、对流换热与辐射换热等)建立起热线电流、温度与风速等变量的准确对应关系。热线在工作方式上有恒温与恒流之分,即分别保持热线探针的加热电流与温度不变。对于恒流式热线风速仪,经校准后,在风速变化时金属丝的热平衡温度与环境气流间具有对应关系,只需要准确监测热线金属丝的温度,便可输出热线探针安装位置处(如轮毂中心高度处)的来流风速。
下面结合附图和具体实施例对本发明做进一步详细描述,其内容是对本发明的解释而不是限定:
如图1和图3,本发明的风机轮毂中心恒流式热线风速感测系统,包括恒流式热线探针5、探针温度感应器10、温度信号采集器11、电流分流器12、恒流电源13和信号转化控制器14;
恒流式热线探针5固定在整流罩前端面4并且露出整流罩前端面4表面;恒流式热线探针5与探针温度感应器10连接,探针温度感应器10与温度信号采集器11连接,恒流式热线探针5和温度信号采集器11分别与电流分流器12连接,电流分流器12分别与恒流电源13和信号转化控制器14连接,信号转化控制器14连接至SCADA系统15。
恒流电源13安装于轮毂1内部,接地端依次经轮毂、机舱和塔筒后接地。
如图2,恒流式热线探针5包括热线金属丝6、叉杆7和连接杆9;两根叉杆7垂直设在整流罩前端面4上,热线金属丝6与两根叉杆7固定焊接,优选地,两根叉杆7关于整流罩前端面4的中心对称。一根叉杆7通过连接杆9与电流分流器12连接,另一根通过连接杆9接地。叉杆7的长度结合整流罩3等具体设计,实现热线金属丝6所处位置风速与来流风速相同。叉杆7与连接杆9的材料选用小电阻率的铜金属,兼顾固定和导电的双重作用。
流经热线金属丝6的电流由电流分流器12提供并保持恒定,电流分流器12接受来自热线探针6测量温度的信号转化控制器14的反馈信息,优化分配恒流电源13输出的用于加热热线金属丝6的电流,使电流值处于合理范围。
探针温度感应器10,用以测量热线金属丝6的温度,探针温度感应器10直接连接温度信号采集器11,用以数字化处理所接受的温度信号,并发送至安装在轮毂1中的信号转化控制器14。信号转化控制器14具备两个功能,一是将接受到的信号转化为SCADA系统15可接收识别的格式,做存储处理,二是基于恒流式热线探针5的设计与校核,将温度信号反馈至恒流电源13下游的电流分流器12,使其输出的热线金属丝6加热电流处于合理范围。
在本发明的一个较优的实施例中,恒流式热线探针5固定在整流罩前端面4的中心,即恒流式热线探针5的外露部分垂直于风轮的扫掠面,其余附件与控制系统通过连接导线17布置于轮毂1内部,轮毂1上的叶片安装孔2内。优选地,恒流式热线探针5露出整流罩前端面4表面的长度为1~2cm。在本发明的一个实施例中,恒流式热线探针5也可以固定在轮毂1的尖端断面。
在本发明的一个较优的实施例中,两根叉杆7外部包裹有保护罩8,保护罩8内填充有绝缘材料。
采用上述风机轮毂中心恒流式热线风速感测系统进行风速测量的方法,包括:
电流分流器12将来自恒流电源13的恒定电流输出至恒流式热线探针5,恒流式热线探针5通电流后发热,温度信号采集器11将探针温度感应器10测得的探针温度数据处理后发送至温度信号采集器11,温度信号采集器11将恒流式热线探针5的温度值发送至信号转化控制器14,信号转化控制器14将温度信号反馈至电流分流器12用于调节恒定电流的数值;同时,温度信号转化为风速数据后发送至SCADA系统15,实现风速的测量和对风速仪16的校正纠偏。
风电机组的SCADA系统15接收了来自信号转化控制器14输出的基于热线金属丝6温度测量并转化后的轮毂1中心处的风速,也记录了布置于机舱上方的风速仪16等测风装置的测量风速。由于恒流式热线探针5已经过校核,其数值更为准确,使用该数据可对风速仪的输出数据进行校正;同时,恒流式热线探针5的风速/温度间的平衡响应较为快速,可以较高的频率连续测量并输出,确保有足够的数量能用于风速仪的数据核验。从而得到二者的对应关系,可直接应用于未安装热线风速测量装置的风电机组的风速仪输出风速的校正纠偏,实现风机及风电场的性能评估与发电量预测等用途。
需要说明的是,以上所述仅为本发明实施方式的一部分,根据本发明所描述的系统所做的等效变化,均包括在本发明的保护范围内。本发明所属技术领域的技术人员可以对所描述的具体实例做类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均属于本发明的保护范围。

Claims (10)

  1. 一种风机轮毂中心恒流式热线风速感测系统,其特征在于,包括恒流式热线探针(5)、探针温度感应器(10)、温度信号采集器(11)、电流分流器(12)、恒流电源(13)和信号转化控制器(14);
    恒流式热线探针(5)固定在整流罩前端面(4)并且露出整流罩前端面(4)表面;恒流式热线探针(5)与探针温度感应器(10)连接,探针温度感应器(10)与温度信号采集器(11)连接,恒流式热线探针(5)和温度信号采集器(11)分别与电流分流器(12)连接,电流分流器(12)分别与恒流电源(13)和信号转化控制器(14)连接,信号转化控制器(14)连接至SCADA系统(15)。
  2. 根据权利要求1所述的风机轮毂中心恒流式热线风速感测系统,其特征在于,恒流式热线探针(5)固定在整流罩前端面(4)的中心。
  3. 根据权利要求1所述的风机轮毂中心恒流式热线风速感测系统,其特征在于,恒流式热线探针(5)露出整流罩前端面(4)表面的长度为1~2cm。
  4. 根据权利要求1所述的风机轮毂中心恒流式热线风速感测系统,其特征在于,恒流式热线探针(5)包括热线金属丝(6)、叉杆(7)和连接杆(9);两根叉杆(7)垂直设在整流罩前端面(4)上,热线金属丝(6)与两根叉杆(7)固定连接;一根叉杆(7)通过连接杆(9)与电流分流器(12)连接,另一根通过连接杆(9)接地。
  5. 根据权利要求4所述的风机轮毂中心恒流式热线风速感测系统,其特征在于,两根叉杆(7)关于整流罩前端面(4)的中心对称。
  6. 根据权利要求4所述的风机轮毂中心恒流式热线风速感测系统,其特征在于,两根叉杆(7)外部包裹有保护罩(8)。
  7. 根据权利要求6所述的风机轮毂中心恒流式热线风速感测系统,其特征在于,保护罩(8)内填充有绝缘材料。
  8. 根据权利要求4所述的风机轮毂中心恒流式热线风速感测系统,其特征在于,叉杆(7)与连接杆(9)的材质为铜。
  9. 根据权利要求1所述的风机轮毂中心恒流式热线风速感测系统,其特征在于,恒流电源(13)的接地端依次经轮毂、机舱和塔筒后接地。
  10. 采用权利要求1~9任意一项所述风机轮毂中心恒流式热线风速感测系统进行风速测量的方法,其特征在于,包括:
    电流分流器(12)将来自恒流电源(13)的恒定电流输出至恒流式热线探针(5),恒流式热线探针(5)通电流后发热,温度信号采集器(11)将探针温度感应器(10)测得的探针温度数据处理后发送至温度信号采集器(11),温度信号采集器(11)将恒流式热线探针(5)的温度值发送至信号转化控制器(14),信号转化控制器(14)将温度信号反馈至电流分流器(12)用于调节恒定电流的数值;同时,温度信号转化为风速数据后发送至SCADA系统(15),实现风速的测量和对风速仪(16)的校正纠偏。
PCT/CN2021/114601 2021-02-26 2021-08-25 一种风机轮毂中心恒流式热线风速感测系统及方法 WO2022179066A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110218180.0 2021-02-26
CN202110218180.0A CN112761903A (zh) 2021-02-26 2021-02-26 一种风机轮毂中心恒流式热线风速感测系统及方法

Publications (1)

Publication Number Publication Date
WO2022179066A1 true WO2022179066A1 (zh) 2022-09-01

Family

ID=75704265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114601 WO2022179066A1 (zh) 2021-02-26 2021-08-25 一种风机轮毂中心恒流式热线风速感测系统及方法

Country Status (2)

Country Link
CN (1) CN112761903A (zh)
WO (1) WO2022179066A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112761903A (zh) * 2021-02-26 2021-05-07 中国华能集团清洁能源技术研究院有限公司 一种风机轮毂中心恒流式热线风速感测系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493068A (zh) * 2007-10-09 2009-07-29 通用电气公司 风力涡轮机计量系统
EP3467517A1 (en) * 2016-09-12 2019-04-10 Korea Aerospace Research Institute Wind direction and wind velocity measuring apparatus for wind turbine, and device and method for controlling yaw angle of wind turbine by using same
WO2021001389A1 (de) * 2019-07-04 2021-01-07 Wobben Properties Gmbh Verfahren zum bestimmen einer windgeschwindigkeit im bereich einer windenergieanlage sowie windenergieanlage zum ausführen des verfahrens
CN112255428A (zh) * 2020-11-13 2021-01-22 中国华能集团清洁能源技术研究院有限公司 一种基于热线风速感测的风电机组风速测量系统及方法
CN112326998A (zh) * 2020-11-13 2021-02-05 中国华能集团清洁能源技术研究院有限公司 一种利用恒温式热线风速仪的风速测量系统及方法
CN112761903A (zh) * 2021-02-26 2021-05-07 中国华能集团清洁能源技术研究院有限公司 一种风机轮毂中心恒流式热线风速感测系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100005051U (ko) * 2008-11-07 2010-05-17 한국에너지기술연구원 풍력발전기의 풍속 측정 장치
CN204255975U (zh) * 2014-10-24 2015-04-08 北京检测仪器有限公司 风速测量装置、多功能测量装置以及热球式风速采集部件
CN105863952A (zh) * 2016-05-16 2016-08-17 北京玻钢院复合材料有限公司 导流罩、叶轮组件及风力发电装置
CN107656092A (zh) * 2017-09-08 2018-02-02 中车山东机车车辆有限公司 一种风电机组风速风向测量装置及方法
CN111089703A (zh) * 2020-01-20 2020-05-01 北京航空航天大学 一种测量轮毂外壁附面层二维稳态流场的全参数探针
CN214366549U (zh) * 2021-02-26 2021-10-08 中国华能集团清洁能源技术研究院有限公司 一种风机轮毂中心恒流式热线风速感测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493068A (zh) * 2007-10-09 2009-07-29 通用电气公司 风力涡轮机计量系统
EP3467517A1 (en) * 2016-09-12 2019-04-10 Korea Aerospace Research Institute Wind direction and wind velocity measuring apparatus for wind turbine, and device and method for controlling yaw angle of wind turbine by using same
WO2021001389A1 (de) * 2019-07-04 2021-01-07 Wobben Properties Gmbh Verfahren zum bestimmen einer windgeschwindigkeit im bereich einer windenergieanlage sowie windenergieanlage zum ausführen des verfahrens
CN112255428A (zh) * 2020-11-13 2021-01-22 中国华能集团清洁能源技术研究院有限公司 一种基于热线风速感测的风电机组风速测量系统及方法
CN112326998A (zh) * 2020-11-13 2021-02-05 中国华能集团清洁能源技术研究院有限公司 一种利用恒温式热线风速仪的风速测量系统及方法
CN112761903A (zh) * 2021-02-26 2021-05-07 中国华能集团清洁能源技术研究院有限公司 一种风机轮毂中心恒流式热线风速感测系统及方法

Also Published As

Publication number Publication date
CN112761903A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN101493068B (zh) 风力涡轮机计量系统
CN101334423B (zh) 风速计的校准方法和风力涡轮机
CN214366549U (zh) 一种风机轮毂中心恒流式热线风速感测系统
GB2477968A (en) Method of operating a wind turbine to provide a corrected power curve
WO2022179066A1 (zh) 一种风机轮毂中心恒流式热线风速感测系统及方法
CN201497751U (zh) 一种风电机组运行时的风速测量装置
CN109186815B (zh) 一种低温高马赫数测试用探针温度标定装置
CN112326998A (zh) 一种利用恒温式热线风速仪的风速测量系统及方法
US20180320660A1 (en) Adjustment Factor for Aerodynamic Performance Map
CN219369796U (zh) 一种机械风向标的零位校正装置
CN105138845B (zh) 获得风力发电机风速值的方法
CN102305875B (zh) 风力发电机组有效风速的测量方法及实现该方法的测量装置
CN103399169B (zh) 一种用于风力机的风速测量装置
CN105986960A (zh) 一种用于风力发电机控制系统的风速估算方法
CN107656092A (zh) 一种风电机组风速风向测量装置及方法
Lihua et al. Study of anemometer for wind power generation
CN108691727B (zh) 一种风力机导流罩
CN112255428B (zh) 一种基于热线风速感测的风电机组风速测量系统及方法
CN206990630U (zh) 风机风向标及其矫正系统
CN207336561U (zh) 一种基于压力传感器的风机变速变桨距控制系统
CN208596176U (zh) 一种用于高湿度环境的轮式风速计
CN213275651U (zh) 一种利用恒温式热线风速仪的风速测量系统
CN216082808U (zh) 一种热线风速风向测速仪
WO2022127209A1 (zh) 风力机气象数据测量装置
WO2020127324A1 (en) A method and a system for determining the wind speed or the wind direction experienced by a wind turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927494

Country of ref document: EP

Kind code of ref document: A1