WO2022179042A1 - 可自组网的立柱控制系统、方法、装置、处理器及其计算机可读存储介质 - Google Patents

可自组网的立柱控制系统、方法、装置、处理器及其计算机可读存储介质 Download PDF

Info

Publication number
WO2022179042A1
WO2022179042A1 PCT/CN2021/107527 CN2021107527W WO2022179042A1 WO 2022179042 A1 WO2022179042 A1 WO 2022179042A1 CN 2021107527 W CN2021107527 W CN 2021107527W WO 2022179042 A1 WO2022179042 A1 WO 2022179042A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
bus
columns
control
control handle
Prior art date
Application number
PCT/CN2021/107527
Other languages
English (en)
French (fr)
Inventor
尤小东
林高波
Original Assignee
尤小东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尤小东 filed Critical 尤小东
Publication of WO2022179042A1 publication Critical patent/WO2022179042A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/21Pc I-O input output
    • G05B2219/21063Bus, I-O connected to a bus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to the technical field of intelligent desks and chairs, in particular to the technical field of self-organized intelligent desks and chairs, and in particular to a self-organized column control system, method, device, processor and computer-readable storage medium thereof.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art, and to provide a self-splitting and self-expanding column control system, method, device, processor and computer-readable storage medium thereof that can be self-organized.
  • the self-organizing column control system, method, device, processor and computer-readable storage medium thereof of the present invention are as follows:
  • the main feature of the self-organizing column control system is that the system includes at least three or more columns, each of the columns includes a control circuit, and the control circuit is provided with at least one control handle interface and at least two CAN bus interfaces, the control handle interface is connected with the control handle, the CAN bus interface is connected with the CAN bus, and each of the columns is connected to each other through the power supply and the CAN bus.
  • control handle is connected with any column through the control handle interface; wherein,
  • the column connected with the control handle realizes the parallel connection of the CAN bus interface through the power supply and the CAN bus and other columns; or
  • the system described is a chain topology connection structure, specifically:
  • the column connected with the control handle is connected in series with the CAN bus interface through the power supply and the CAN bus and other columns.
  • the CAN bus automatically verifies the configuration parameters of each column, and the configuration parameters include the column number and column position data, and specifically include the following operations:
  • the system automatically enters the self-organized network state, and reconfigures the configuration parameters of the columns for the second verification, otherwise directly enter operation d;
  • the system automatically sends the networking failure fault code to the control handle and displays it, and returns to operation a;
  • each of the uprights transmits their respective working status information to the CAN bus in real time, and each of the uprights monitors the working states of other uprights, and adjusts their own operating states in real time, so as to achieve each Working status synchronization between columns.
  • the working status information includes running information, synchronization information and fault information.
  • the system when the system detects that the CAN bus has a column offline or a new column is connected, it automatically sends a bus abnormal fault code to the control handle and displays it.
  • the user intervenes in the system and resets the number of columns or checks whether the CAN bus is abnormally connected, and confirms the current state of the system through the control handle. Enter the ad hoc network state and verify the configuration parameters of each column.
  • the system enters a ready state
  • the system automatically sends a networking failure fault code to the control handle and displays it.
  • the user operates the control handle, and sends the operation information to the column connected with the control handle, and the column automatically sends the received operation information to the CAN bus,
  • Each column connected to the CAN bus receives the operation information to perform synchronous operation.
  • the operation information includes position lift information and position memory information.
  • the main feature of the method for implementing ad hoc network control for the above-mentioned control system is that the method includes the following steps:
  • each column realizes the parallel connection of CAN bus interface through CAN bus and other columns, thereby forming a star topology connection structure; or, each column realizes CAN bus interface serial connection through CAN bus and other columns connected to form a chain topology connection structure;
  • the step (2) specifically includes the following steps:
  • step (2.2) If the number of the columns is inconsistent with the setting value of the control handle, the system automatically enters the self-organized network state, and reconfigures the configuration parameters of the columns for the second verification, otherwise Go directly to step (2.5);
  • step (2.4) If the second verification of the number of columns is successful, continue to verify whether the column position data of each column is consistent, if the column position data of each column is inconsistent, the system will report to the The control handle sends the position reset fault code and displays it, otherwise go directly to step (2.5);
  • the step (3) specifically includes the following steps:
  • Each column connected to the CAN bus receives the operation information to perform synchronous operation.
  • the operation information includes position lift information and position memory information.
  • the system when the system detects that the CAN bus has a column offline or a new column is connected, it will automatically send a bus abnormal fault code to the control handle and display it.
  • the user intervenes in the system and resets the number of columns or checks whether the CAN bus is abnormally connected, and confirms the current state of the system through the control handle. Enter the ad hoc network state and verify the configuration parameters of each column.
  • the system enters a ready state
  • the system automatically sends a networking failure fault code to the control handle and displays it.
  • the main feature of the device for realizing self-organized network control for a column control system is that the device includes:
  • a processor configured to execute computer-executable instructions
  • the memory stores one or more computer-executable instructions, and when the computer-executable instructions are executed by the processor, each step of the above-mentioned ad hoc network control method is implemented.
  • the main feature of the processor for implementing ad hoc network control for a column control system is that the processor is configured to execute computer-executable instructions, and when the computer-executable instructions are executed by the processor , to implement each step of the above-mentioned ad hoc network control method.
  • the main feature of the computer-readable storage medium is that a computer program is stored thereon, and the computer program can be executed by a processor to implement each step of the above-mentioned method for controlling an ad hoc network.
  • the columns are modularized, and each column is connected through the power supply and CAN bus interface.
  • the control of any number of columns within the range of 1 to 16 can be flexibly realized. After the user purchases the system, it can be disassembled and expanded by itself, and it can also be used in combination with the existing column. Users save costs.
  • FIG. 1 is a schematic diagram of a column interface of the self-organizing column control system of the present invention.
  • FIG. 2 is a schematic diagram of a star topology of the self-organizing column control system of the present invention.
  • FIG. 3 is a schematic diagram of a chain topology structure of the self-organizing column control system of the present invention.
  • FIG. 4 is a flow chart of a method for realizing an ad hoc network column control according to the present invention.
  • the self-organizing column control system wherein the system includes at least three or more columns, each of the columns includes a control circuit, and the control circuit is provided with at least one A control handle interface and at least two CAN bus interfaces, the control handle interface is connected with the control handle, the CAN bus interface is connected with the CAN bus, and each of the columns is realized by the power supply and the CAN bus connected to each other.
  • control handle is connected to any column through the control handle interface;
  • the column connected with the control handle realizes the parallel connection of the CAN bus interface through the power supply and the CAN bus and other columns; or
  • the system described is a chain topology connection structure, specifically:
  • the column connected with the control handle is connected in series with the CAN bus interface through the power supply and the CAN bus and other columns.
  • the CAN bus automatically verifies the configuration parameters of each column, and the configuration parameters include the column number and column position data, and specifically include the following operations:
  • the system automatically enters the self-organized network state, and reconfigures the configuration parameters of the columns for the second verification, otherwise directly enter operation d;
  • the system automatically sends the networking failure fault code to the control handle and displays it, and returns to operation a;
  • each of the columns sends their respective working status information to the CAN bus in real time, and each of the columns monitors the working status of other columns and adjusts their own running status in real time. , in order to realize the synchronization of the working status between each column.
  • the working status information includes running information, synchronization information and fault information.
  • the system when the system detects that the CAN bus has a column offline or a new column is connected, it automatically sends a bus abnormal fault code to the control handle and displays it.
  • the user intervenes in the system and resets the number of columns or checks whether the CAN bus is abnormally connected, and confirms the current state of the system through the control handle.
  • the system described above enters the ad hoc network state again and verifies the configuration parameters of each column.
  • the system if the verification is successful, the system enters a ready state;
  • the system automatically sends a networking failure fault code to the control handle and displays it.
  • the user operates the control handle, and sends operation information to a column connected to the control handle, and the column automatically sends the received operation information to the
  • the CAN bus each column connected to the CAN bus receives the operation information to perform synchronous operation.
  • the operation information includes position lift information and position memory information.
  • the method for implementing ad hoc network control for the above-mentioned control system includes the following steps:
  • each column realizes the parallel connection of CAN bus interface through CAN bus and other columns, thereby forming a star topology connection structure; or, each column realizes CAN bus interface serial connection through CAN bus and other columns connected to form a chain topology connection structure;
  • the step (2) specifically includes the following steps:
  • step (2.2) If the number of the columns is inconsistent with the setting value of the control handle, the system automatically enters the self-organized network state, and reconfigures the configuration parameters of the columns for the second verification, otherwise Go directly to step (2.5);
  • step (2.4) If the second verification of the number of columns is successful, continue to verify whether the column position data of each column is consistent, if the column position data of each column is inconsistent, the system will report to the The control handle sends the position reset fault code and displays it, otherwise go directly to step (2.5);
  • the step (3) specifically includes the following steps:
  • Each column connected to the CAN bus receives the operation information to perform synchronous operation.
  • the operation information includes position lift information and position memory information.
  • the system when the system detects that the CAN bus has a column offline or a new column is connected, it automatically sends a bus abnormal fault code to the control handle and displays it.
  • the user intervenes in the system and resets the number of columns or checks whether the CAN bus is abnormally connected, and confirms the current state of the system through the control handle.
  • the system described above enters the ad hoc network state again and verifies the configuration parameters of each column.
  • the system if the verification is successful, the system enters a ready state;
  • the system automatically sends a networking failure fault code to the control handle and displays it.
  • the device for realizing self-organized network control for a column control system includes:
  • a processor configured to execute computer-executable instructions
  • the memory stores one or more computer-executable instructions, and when the computer-executable instructions are executed by the processor, each step of the above-mentioned ad hoc network control method is implemented.
  • the processor for implementing ad hoc network control for a column control system, wherein the processor is configured to execute computer-executable instructions, and when the computer-executable instructions are executed by the processor, the above-mentioned Various steps of the method for ad hoc network control.
  • the computer-readable storage medium wherein a computer program is stored thereon, and the computer program can be executed by a processor to implement each step of the above-mentioned method for controlling an ad hoc network.
  • the column control system is mainly composed of a power supply, a control handle, a bus and a column, wherein the number of columns can be arbitrarily set in the range of 1 to 16, and each column contains an independent control circuit,
  • the software, hardware and structure are exactly the same.
  • the modular design is adopted.
  • the columns are combined and connected to each other through the bus.
  • the control handle can be connected to any column.
  • the power supply is also connected to the bus to supply power to the entire column control system.
  • FIG. 1 is a schematic diagram of an interface of a column.
  • Each column includes a control handle interface and two power supply and CAN bus interfaces. The two bus interfaces are connected in parallel inside the column.
  • FIG. 2 and FIG. 3 are two preferred topological structures of the column control system, which are star topology and chain topology, respectively.
  • the power supply, the control handle and the N columns are connected to each other through a bus.
  • the control handle can be connected to any column, so that the installation of the control handle has great flexibility, and the control handle can set the number of columns currently connected to the system.
  • the configuration parameters of all columns are automatically verified through the bus, and the configuration parameters mainly include column quantity and position data. If the number of verification columns is inconsistent with the setting value of the control handle, the system will automatically enter the self-organizing network state, reconfigure the column parameters and verify, if the verification still fails, it will automatically send the network failure fault code to the control handle and display it. After passing the verification, the position data is inconsistent, and the system automatically sends the position reset fault code to the control handle and displays it. If the verification is passed, the system enters the ready state.
  • the column connected to the control handle when the user operates the control handle, the column connected to the control handle will automatically send the operation information to the bus, and all the columns will receive the operation information, so as to realize position lifting, position memory, etc. Synchronous operation.
  • each column will send its own working status to the bus in real time, and the working status includes running information, synchronization information, fault information, etc. Monitor the working status of other columns, and adjust its own running status in real time, so as to realize the status synchronization of all columns.
  • the column control system when a column on the bus is offline or a new column is connected, the column control system will automatically send a bus abnormal fault code to the control handle and display it. At this time, user intervention is required to reset the number of columns Or check whether the bus connection is abnormal. After the user confirms through the control handle, the system will automatically enter the self-organized network state, reconfigure the column parameters and verify, if the verification is passed, it will enter the ready state, otherwise it will automatically send the network failure fault code to the control handle and It is shown that in this way, the system realizes the function that the column can be split and expanded.
  • the above-mentioned storage medium may be a read-only memory, a magnetic disk or an optical disk, and the like.
  • the columns are modularized, and each column is connected through the power supply and CAN bus interface.
  • the control of any number of columns within the range of 1 to 16 can be flexibly realized. After the user purchases the system, it can be disassembled and expanded by itself, and it can also be used in combination with the existing column. Users save costs.

Abstract

一种可自组网的立柱控制系统,包括至少三个以上立柱,各个的立柱均包括控制电路,控制电路上设置有至少1个控制手柄接口和至少2个CAN总线接口,控制手柄接口与控制手柄相连接,CAN总线接口与CAN总线相连接,立柱通过电源和CAN总线实现相互连接。用户可根据需要对自组网立柱自行拆分,也可自行扩展,具有很高的灵活度。

Description

可自组网的立柱控制系统、方法、装置、处理器及其计算机可读存储介质
相关申请的交叉引用
本申请主张2021年2月26日提交的申请号为202110214046.3的中国发明专利申请的优先权,其内容通过引用的方式并入本申请中。
技术领域
本发明涉及智能桌椅技术领域,尤其涉及可自组网的智能桌椅技术领域,具体是指一种可自组网的立柱控制系统、方法、装置、处理器及其计算机可读存储介质。
背景技术
目前市场上的电动升降桌、电动支架等大多都采取单立柱、双立柱或三立柱结构,同时配备专用的控制盒和控制手柄,实现单立柱、双立柱或三立柱控制系统。这种立柱控制系统可控制的立柱数量是固定的,即不可拆分也不可扩展(比如1台双立柱控制系统无法拆分成2台单立柱控制系统使用,1台双立柱控制系统也无法扩展成1台三立柱控制系统使用),造成用户无法灵活有效地处理现有的立柱控制系统,同时又需要更多的成本去购买不同品类的立柱控制系统。
发明内容
本发明的目的是克服了上述现有技术的缺点,提供了一种可自行拆分和自行拓展的可自组网的立柱控制系统、方法、装置、处理器及其计算机可读存储介质。
为了实现上述目的,本发明的可自组网的立柱控制系统、方法、装置、处理器及其计算机可读存储介质如下:
该可自组网的立柱控制系统,其主要特点是,所述的系统包括至少三个以上立柱,各个所述的立柱均包括控制电路,所述的控制电路上设置有至少1个控制手柄接口和至少2个CAN总线接口,所述的控制手柄接口与控制手柄相连接,所述的CAN总线接口与CAN总线相连接,各个所述的立柱通过电源和所述的CAN总线实现相互连接。
较佳地,所述的控制手柄与任意一个立柱通过所述的控制手柄接口相连接;其中,
所述的系统为星型拓扑连接结构,具体为:
与所述的控制手柄相连接的立柱通过所述的电源和CAN总线和其他立柱实现CAN总线接口并联连接;或者
所述的系统为链型拓扑连接结构,具体为:
与所述的控制手柄相连接的立柱通过所述的电源和CAN总线和其他立柱实现CAN总线接口串联连接。
更佳地,所述的CAN总线自动对各个立柱的配置参数进行验证,所述的配置参数包括立柱数量和立柱位置数据,具体包括以下操作:
a、如果所述的立柱数量与所述的控制手柄的设置值不一致,则所述的系统自动进入自组网状态,并重新配置所述的各个立柱的配置参数进行第二次验证,否则直接进入操作d;
b、如果所述的第二次验证失败,则所述的系统自动向所述的控制手柄发送组网失败故障码并进行显示,并返回操作a;
c、如果所述的立柱数量第二次验证成功,则继续验证所述的各个立柱的立柱位置数据是否一致,若所述的各个立柱的立柱位置数据不一致,则所述的系统向所述的控制手柄发送位置复位故障码并进行显示,否则直接进入操作d;
d、所述的系统进入就绪状态。
较佳的,所述的各个立柱实时将各自的工作状态信息发送至所述的CAN总线,且所述的各个立柱之间互相监测其他立柱的工作状态,实时调整自身的运行状态,以实现各个立柱之间工作状态同步。
较佳地,所述的工作状态信息包括运行信息、同步信息和故障信息。
较佳地,所述的系统监测到所述的CAN总线有立柱离线或新的立柱接入时,则自动向所述的控制手柄发送总线异常故障码并进行显示。
较佳地,用户介入所述的系统并重新设置所述的立柱数量或检查所述的CAN总线是否连接异常,并通过所述的控制手柄确认所述的系统的当前状态后所述的系统再次进入自组网状态,并验证各个立柱的配置参数。
较佳地,如果验证成功,所述的系统进入就绪状态;
如果验证失败,所述的系统自动向所述的控制手柄发送组网失败故障码并进行显示。
较佳地,用户操作所述的控制手柄,并将操作信息发送至与所述的控制手柄相连接的立柱上,该立柱自动将接收到的所述的操作信息发送至所述的CAN总线,连接在所述的CAN总线上的各个立柱都接收到所述的操作信息以执行同步操作。
较佳地,所述的操作信息包括位置升降信息以及位置记忆信息。
该针对上述控制系统实现自组网控制的方法,其主要特点是,所述的方法包括以下步骤:
(1)所述的系统连接上电后,各个立柱通过CAN总线和其他立柱实现CAN总线接口并联连接,从而形成星型拓扑连接结构;或者,各个立柱通过CAN总线和其他立柱实现CAN总线接口串联连接,从而形成链型拓扑连接结构;
(2)所述的CAN总线对所述的各个立柱的配置参数是否一致进行验证及配置,使所述的系统进入就绪状态;
(3)用户操作所述的控制手柄,以控制各个立柱的工作状态。
较佳地,所述的步骤(2)具体包括以下步骤:
(2.1)对各个立柱的立柱数量和立柱位置数据进行验证;
(2.2)如果所述的立柱数量与所述的控制手柄的设置值不一致,则所述的系统自动进入自组网状态,并重新配置所述的各个立柱的配置参数进行第二次验证,否则直接进入步骤(2.5);
(2.3)如果所述的第二次验证失败,则所述的系统自动向所述的控制手柄发送组网失败故障码并进行显示,程序运行结束;
(2.4)如果所述的立柱数量第二次验证成功,则继续验证所述的各个立柱的立柱位置数据是否一致,若所述的各个立柱的立柱位置数据不一致,则所述的系统向所述的控制手柄发送位置复位故障码并进行显示,否则直接进入步骤(2.5);
(2.5)所述的系统进入就绪状态。
较佳地,所述的步骤(3)具体包括以下步骤:
(3.1)用户操作所述的控制手柄,并将操作信息发送至与所述的控制手柄相连接的立柱上;
(3.2)与所述的控制手柄相连接的立柱将接收到的所述的操作信息发送至所述的CAN总线;
(3.3)连接在所述的CAN总线上的各个立柱都接收到所述的操作信息以执行同步操作。
较佳地,所述的操作信息包括位置升降信息以及位置记忆信息。
较佳地,系统监测到所述的CAN总线有立柱离线或新的立柱接入时,则自动向所述的控制手柄发送总线异常故障码并进行显示。
较佳地,用户介入所述的系统并重新设置所述的立柱数量或检查所述的CAN总线是否连接异常,并通过所述的控制手柄确认所述的系统的当前状态后所述的系统再次进入自组网状态,并验证各个立柱的配置参数。
较佳地,如果验证成功,所述的系统进入就绪状态;
如果验证失败,所述的系统自动向所述的控制手柄发送组网失败故障码并进行显示。
该用于针对立柱控制系统实现自组网控制的装置,其主要特点是,所述的装置包括:
处理器,被配置成执行计算机可执行指令;
存储器,存储一个或多个计算机可执行指令,所述计算机可执行指令被所述处理器执行时,实现上述自组网控制的方法的各个步骤。
该用于针对立柱控制系统实现自组网控制的处理器,其主要特点是,所述的处理器被配置成执行计算机可执行指令,所述的计算机可执行指令被所述的处理器执行时,实现上述自组网控制的方法的各个步骤。
该计算机可读存储介质,其主要特点是,其上存储有计算机程序,所述的计算机程序可被处理器执行以实现上述自组网控制的方法的各个步骤。
采用了本发明的可自组网的立柱控制系统、方法、装置、处理器及其计算机可读存储介质,通过在每个立柱中埋入控制电路,并留出电源、CAN总线和手柄接口,使立柱模块化,同时每个立柱之间通过电源、CAN总线接口相连,配合专门设计的自动组网和数据交互功能,可灵活实现1至16范围内任意数量立柱的控制。用户购买该系统后,可自行拆分,可自行扩展,也可与现有立柱随意组合使用,具有很高的灵活度,避免了不同品类立柱控制系统不兼容需要重复购买的问题,较大地为用户节约了成本。
附图说明
图1为本发明的可自组网的立柱控制系统的立柱接口示意图。
图2为本发明的可自组网的立柱控制系统的星型拓扑结构示意图。
图3为本发明的可自组网的立柱控制系统的链型拓扑结构示意图。
图4为本发明的实现可自组网的立柱控制方法的流程图。
具体实施方式
为了能够更清楚地描述本发明的技术内容,下面结合具体实施例来进行进一步的描述。
在详细说明根据本发明的实施例前,应该注意到的是,在下文中,术语“包括”、“包含”或任何其他变体旨在涵盖非排他性的包含,由此使得包括一系列要素的过程、方法、物品或者设备不仅包含这些要素,而且还包含没有明确列出的其他要素,或者为这种过程、方法、物品或者设备所固有的要素。
请参阅图1所示,该可自组网的立柱控制系统,其中,所述的系统包括至少三个以上立柱,各个所述的立柱均包括控制电路,所述的控制电路上设置有至少1个控制手柄接口和至少2个CAN总线接口,所述的控制手柄接口与控制手柄相连接,所述的CAN总线接口与CAN总线相连接,各个所述的立柱通过电源和所述的CAN总线实现相互连接。
请参阅图2和图3所示,作为本发明的优选实施方式,所述的控制手柄与任意一个立柱通过所述的控制手柄接口相连接;其中,
所述的系统为星型拓扑连接结构,具体为:
与所述的控制手柄相连接的立柱通过所述的电源和CAN总线和其他立柱实现CAN总线接口并联连接;或者
所述的系统为链型拓扑连接结构,具体为:
与所述的控制手柄相连接的立柱通过所述的电源和CAN总线和其他立柱实现CAN总线接口串联连接。
作为本发明的优选实施方式,所述的CAN总线自动对各个立柱的配置参数进行验证,所述的配置参数包括立柱数量和立柱位置数据,具体包括以下操作:
a、如果所述的立柱数量与所述的控制手柄的设置值不一致,则所述的系统自动进入自组网状态,并重新配置所述的各个立柱的配置参数进行第二次验证,否则直接进入操作d;
b、如果所述的第二次验证失败,则所述的系统自动向所述的控制手柄发送组网失败故障码并进行显示,并返回操作a;
c、如果所述的立柱数量第二次验证成功,则继续验证所述的各个立柱的立柱位置数据是否一致,若所述的各个立柱的立柱位置数据不一致,则所述的系统向所述的控制手柄发送位置复位故障码并进行显示,否则直接进入操作d;
d、所述的系统进入就绪状态。
作为本发明的优选实施方式,所述的各个立柱实时将各自的工作状态信息发送至所述的CAN总线,且所述的各个立柱之间互相监测其他立柱的工作状态,实时调整自身的运行状态,以实现各个立柱之间工作状态同步。
作为本发明的优选实施方式,所述的工作状态信息包括运行信息、同步信息和故障信息。
作为本发明的优选实施方式,所述的系统监测到所述的CAN总线有立柱离线或新的立柱接入时,则自动向所述的控制手柄发送总线异常故障码并进行显示。
作为本发明的优选实施方式,用户介入所述的系统并重新设置所述的立柱数量或检查所述的CAN总线是否连接异常,并通过所述的控制手柄确认所述的系统的当前状态后所述的 系统再次进入自组网状态,并验证各个立柱的配置参数。
作为本发明的优选实施方式,如果验证成功,所述的系统进入就绪状态;
如果验证失败,所述的系统自动向所述的控制手柄发送组网失败故障码并进行显示。
作为本发明的优选实施方式,用户操作所述的控制手柄,并将操作信息发送至与所述的控制手柄相连接的立柱上,该立柱自动将接收到的所述的操作信息发送至所述的CAN总线,连接在所述的CAN总线上的各个立柱都接收到所述的操作信息以执行同步操作。
作为本发明的优选实施方式,所述的操作信息包括位置升降信息以及位置记忆信息。
请参阅图4所示,该针对上述控制系统实现自组网控制的方法,其中,所述的方法包括以下步骤:
(1)所述的系统连接上电后,各个立柱通过CAN总线和其他立柱实现CAN总线接口并联连接,从而形成星型拓扑连接结构;或者,各个立柱通过CAN总线和其他立柱实现CAN总线接口串联连接,从而形成链型拓扑连接结构;
(2)所述的CAN总线对所述的各个立柱的配置参数是否一致进行验证及配置,使所述的系统进入就绪状态;
(3)用户操作所述的控制手柄,以控制各个立柱的工作状态。
作为本发明的优选实施方式,所述的步骤(2)具体包括以下步骤:
(2.1)对各个立柱的立柱数量和立柱位置数据进行验证;
(2.2)如果所述的立柱数量与所述的控制手柄的设置值不一致,则所述的系统自动进入自组网状态,并重新配置所述的各个立柱的配置参数进行第二次验证,否则直接进入步骤(2.5);
(2.3)如果所述的第二次验证失败,则所述的系统自动向所述的控制手柄发送组网失败故障码并进行显示,程序运行结束;
(2.4)如果所述的立柱数量第二次验证成功,则继续验证所述的各个立柱的立柱位置数据是否一致,若所述的各个立柱的立柱位置数据不一致,则所述的系统向所述的控制手柄发送位置复位故障码并进行显示,否则直接进入步骤(2.5);
(2.5)所述的系统进入就绪状态。
作为本发明的优选实施方式,所述的步骤(3)具体包括以下步骤:
(3.1)用户操作所述的控制手柄,并将操作信息发送至与所述的控制手柄相连接的立柱上;
(3.2)与所述的控制手柄相连接的立柱将接收到的所述的操作信息发送至所述的CAN 总线;
(3.3)连接在所述的CAN总线上的各个立柱都接收到所述的操作信息以执行同步操作。
作为本发明的优选实施方式,所述的操作信息包括位置升降信息以及位置记忆信息。
作为本发明的优选实施方式,系统监测到所述的CAN总线有立柱离线或新的立柱接入时,则自动向所述的控制手柄发送总线异常故障码并进行显示。
作为本发明的优选实施方式,用户介入所述的系统并重新设置所述的立柱数量或检查所述的CAN总线是否连接异常,并通过所述的控制手柄确认所述的系统的当前状态后所述的系统再次进入自组网状态,并验证各个立柱的配置参数。
作为本发明的优选实施方式,如果验证成功,所述的系统进入就绪状态;
如果验证失败,所述的系统自动向所述的控制手柄发送组网失败故障码并进行显示。
该用于针对立柱控制系统实现自组网控制的装置,其中,所述的装置包括:
处理器,被配置成执行计算机可执行指令;
存储器,存储一个或多个计算机可执行指令,所述计算机可执行指令被所述处理器执行时,实现上述自组网控制的方法的各个步骤。
该用于针对立柱控制系统实现自组网控制的处理器,其中,所述的处理器被配置成执行计算机可执行指令,所述的计算机可执行指令被所述的处理器执行时,实现上述自组网控制的方法的各个步骤。
该计算机可读存储介质,其中,其上存储有计算机程序,所述的计算机程序可被处理器执行以实现上述自组网控制的方法的各个步骤。
在本发明的一具体实施方式中,本立柱控制系统主要由电源、控制手柄、总线和立柱组成,其中立柱数量可以在1至16范围内任意设置,每个立柱内部含有独立的控制电路,立柱软件、硬件和结构都是一模一样的,采用模块化设计,立柱通过总线互相组合连接,控制手柄可以和任意一个立柱相连,电源也和总线相连,为整个立柱控制系统供电。
在本发明的一具体实施方式中,理论上只要没达到CAN总线通信带宽上限,可控制的立柱数量还可增加,但为了控制软件设计方便,本技术方案将可自组网的立柱数量上限设定为16。
在本发明的一具体实施方式中,图1为立柱的接口示意图,每个立柱包括1个控制手柄接口和2个电源、CAN总线接口,2个总线接口在立柱内部是并联的。
在本发明的一具体实施方式中,图2和图3为本立柱控制系统优选的两种拓扑结构,分别是星型拓扑和链型拓扑。
在本发明的一具体实施方式中,参看图2、图3,电源、控制手柄和N个立柱通过总线互相连接。控制手柄可以接入任意一个立柱上,使控制手柄的安装具有很大的灵活度,同时控制手柄可以对当前接入系统的立柱数量进行设置。
在本发明的一具体实施方式中,立柱控制系统连接上电后,通过总线自动对所有立柱的配置参数进行验证,配置参数主要包括立柱数量和位置数据。若验证立柱数量与控制手柄的设置值不一致,则系统自动进入自组网状态,重新配置立柱参数并验证,若还是验证失败则自动向控制手柄发送组网失败故障码并显示,若验证立柱数量通过后,验证位置数据不一致,则系统自动向控制手柄发送位置复位故障码并显示,若验证通过则系统进入就绪状态。
在本发明的一具体实施方式中,当用户操作控制手柄时,连接控制手柄的立柱会自动将操作信息发送至总线上,所有的立柱都会收到这个操作信息,从而实现位置升降、位置记忆等同步操作。
在本发明的一具体实施方式中,在立柱控制系统运行过程中,每个立柱都会实时将各自的工作状态发送至总线上,工作状态包括运行信息、同步信息、故障信息等,每个立柱都会监测其它立柱的工作状态,实时调整自身的运行状态,从而实现所有立柱的状态同步。
在本发明的一具体实施方式中,当总线上有立柱离线或者有新的立柱接入时,立柱控制系统会自动向控制手柄发送总线异常故障码并显示,此时需要用户介入重新设置立柱数量或检查总线是否连接异常,用户通过控制手柄确认后,系统会自动进入自组网状态,重新配置立柱参数并验证,若验证通过则进入就绪状态,否则自动向控制手柄发送组网失败故障码并显示,系统以此方式实现了立柱可拆分可扩展的功能。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行装置执行的软件或固件来实现。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成的,程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一实施例”、“一些实施例”、“示例”、“具体示例”、或“实施例”、“实施方式”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
采用了本发明的可自组网的立柱控制系统、方法、装置、处理器及其计算机可读存储介质,通过在每个立柱中埋入控制电路,并留出电源、CAN总线和手柄接口,使立柱模块化,同时每个立柱之间通过电源、CAN总线接口相连,配合专门设计的自动组网和数据交互功能,可灵活实现1至16范围内任意数量立柱的控制。用户购买该系统后,可自行拆分,可自行扩展,也可与现有立柱随意组合使用,具有很高的灵活度,避免了不同品类立柱控制系统不兼容需要重复购买的问题,较大地为用户节约了成本。
在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。

Claims (20)

  1. 一种可自组网的立柱控制系统,其特征在于,所述的系统包括至少三个以上立柱,各个所述的立柱均包括控制电路,所述的控制电路上设置有至少1个控制手柄接口和至少2个CAN总线接口,所述的控制手柄接口与控制手柄相连接,所述的CAN总线接口与CAN总线相连接,各个所述的立柱通过电源和所述的CAN总线实现相互连接。
  2. 根据权利要求1所述的可自组网的立柱控制系统,其特征在于,所述的控制手柄与任意一个立柱通过所述的控制手柄接口相连接;其中,
    所述的系统为星型拓扑连接结构,具体为:
    与所述的控制手柄相连接的立柱通过所述的电源和CAN总线和其他立柱实现CAN总线接口并联连接;或者
    所述的系统为链型拓扑连接结构,具体为:
    与所述的控制手柄相连接的立柱通过所述的电源和CAN总线和其他立柱实现CAN总线接口串联连接。
  3. 根据权利要求1所述的可自组网的立柱控制系统,其特征在于,所述的CAN总线自动对各个立柱的配置参数进行验证,所述的配置参数包括立柱数量和立柱位置数据,具体包括以下操作:
    a、如果所述的立柱数量与所述的控制手柄的设置值不一致,则所述的系统自动进入自组网状态,并重新配置所述的各个立柱的配置参数进行第二次验证,否则直接进入操作d;
    b、如果所述的第二次验证失败,则所述的系统自动向所述的控制手柄发送组网失败故障码并进行显示,并返回操作a;
    c、如果所述的立柱数量第二次验证成功,则继续验证所述的各个立柱的立柱位置数据是否一致,若所述的各个立柱的立柱位置数据不一致,则所述的系统向所述的控制手柄发送位置复位故障码并进行显示,否则直接进入操作d;
    d、所述的系统进入就绪状态。
  4. 根据权利要求3所述的可自组网的立柱控制系统,其特征在于,所述的各个立柱实时将各自的工作状态信息发送至所述的CAN总线,且所述的各个立柱之间互相监测其他立柱的工作状态,实时调整自身的运行状态,以实现各个立柱之间工作状态同步。
  5. 根据权利要求4所述的可自组网的立柱控制系统,其特征在于,所述的工作状态信息包括运行信息、同步信息和故障信息。
  6. 根据权利要求1~5中任一项所述的可自组网的立柱控制系统,其特征在于,所述的系统监测到所述的CAN总线有立柱离线或新的立柱接入时,则自动向所述的控制手柄发送总线异常故障码并进行显示。
  7. 根据权利要求6所述的可自组网的立柱控制系统,其特征在于,用户介入所述的系统并重新设置所述的立柱数量或检查所述的CAN总线是否连接异常,并通过所述的控制手柄确认所述的系统的当前状态后所述的系统再次进入自组网状态,并验证各个立柱的配置参数。
  8. 根据权利要求7所述的可自组网的立柱控制系统,其特征在于,
    如果验证成功,所述的系统进入就绪状态;
    如果验证失败,所述的系统自动向所述的控制手柄发送组网失败故障码并进行显示。
  9. 根据权利要求7所述的可自组网的立柱控制系统,其特征在于,用户操作所述的控制手柄,并将操作信息发送至与所述的控制手柄相连接的立柱上,该立柱自动将接收到的所述的操作信息发送至所述的CAN总线,连接在所述的CAN总线上的各个立柱都接收到所述的操作信息以执行同步操作。
  10. 根据权利要求9所述的可自组网的立柱控制系统,其特征在于,所述的操作信息包括位置升降信息以及位置记忆信息。
  11. 一种针对权利要求1所述的立柱控制系统实现自组网控制的方法,其特征在于,所述的方法包括以下步骤:
    (1)所述的系统连接上电后,各个立柱通过CAN总线和其他立柱实现CAN总线接口并联连接,从而形成星型拓扑连接结构;或者,各个立柱通过CAN总线和其他立柱实现CAN总线接口串联连接,从而形成链型拓扑连接结构;
    (2)所述的CAN总线对所述的各个立柱的配置参数是否一致进行验证及配置,使所述的系统进入就绪状态;
    (3)用户操作所述的控制手柄,以控制各个立柱的工作状态。
  12. 根据权利要求11所述的实现自组网控制的方法,其特征在于,所述的步骤(2)具体包括以下步骤:
    (2.1)对各个立柱的立柱数量和立柱位置数据进行验证;
    (2.2)如果所述的立柱数量与所述的控制手柄的设置值不一致,则所述的系统自动进入自组网状态,并重新配置所述的各个立柱的配置参数进行第二次验证,否则直接进入步骤(2.5);
    (2.3)如果所述的第二次验证失败,则所述的系统自动向所述的控制手柄发送组网失败 故障码并进行显示,程序运行结束;
    (2.4)如果所述的立柱数量第二次验证成功,则继续验证所述的各个立柱的立柱位置数据是否一致,若所述的各个立柱的立柱位置数据不一致,则所述的系统向所述的控制手柄发送位置复位故障码并进行显示,否则直接进入步骤(2.5);
    (2.5)所述的系统进入就绪状态。
  13. 根据权利要求12所述的实现自组网控制的方法,其特征在于,所述的步骤(3)具体包括以下步骤:
    (3.1)用户操作所述的控制手柄,并将操作信息发送至与所述的控制手柄相连接的立柱上;
    (3.2)与所述的控制手柄相连接的立柱将接收到的所述的操作信息发送至所述的CAN总线;
    (3.3)连接在所述的CAN总线上的各个立柱都接收到所述的操作信息以执行同步操作。
  14. 根据权利要求13所述的实现自组网控制的方法,其特征在于,所述的操作信息包括位置升降信息以及位置记忆信息。
  15. 根据权利要求11~14中任一项所述的实现自组网控制的方法,其特征在于,系统监测到所述的CAN总线有立柱离线或新的立柱接入时,则自动向所述的控制手柄发送总线异常故障码并进行显示。
  16. 根据权利要求15所述的实现自组网控制的方法,其特征在于,用户介入所述的系统并重新设置所述的立柱数量或检查所述的CAN总线是否连接异常,并通过所述的控制手柄确认所述的系统的当前状态后所述的系统再次进入自组网状态,并验证各个立柱的配置参数。
  17. 根据权利要求16所述的实现自组网控制的方法,其特征在于,
    如果验证成功,所述的系统进入就绪状态;
    如果验证失败,所述的系统自动向所述的控制手柄发送组网失败故障码并进行显示。
  18. 一种用于针对立柱控制系统实现自组网控制的装置,其特征在于,所述的装置包括:
    处理器,被配置成执行计算机可执行指令;
    存储器,存储一个或多个计算机可执行指令,所述计算机可执行指令被所述处理器执行时,实现权利要求11~14中任一项所述的实现自组网控制的方法的各个步骤。
  19. 一种用于针对立柱控制系统实现自组网控制的处理器,其特征在于,所述的处理器被配置成执行计算机可执行指令,所述的计算机可执行指令被所述的处理器执行时,实现权利要求11~14中任一项所述的实现自组网控制的方法的各个步骤。
  20. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述的计算机程序可被处理器执行以实现权利要求11~14中任一项所述的实现自组网控制的方法的各个步骤。
PCT/CN2021/107527 2021-02-26 2021-07-21 可自组网的立柱控制系统、方法、装置、处理器及其计算机可读存储介质 WO2022179042A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110214046.3 2021-02-26
CN202110214046.3A CN112965423A (zh) 2021-02-26 2021-02-26 可自组网的立柱控制系统、方法、装置、处理器及其计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022179042A1 true WO2022179042A1 (zh) 2022-09-01

Family

ID=76275737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107527 WO2022179042A1 (zh) 2021-02-26 2021-07-21 可自组网的立柱控制系统、方法、装置、处理器及其计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN112965423A (zh)
WO (1) WO2022179042A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965423A (zh) * 2021-02-26 2021-06-15 宁波沱沱河设计有限公司 可自组网的立柱控制系统、方法、装置、处理器及其计算机可读存储介质
CN114488916B (zh) * 2022-04-14 2022-06-28 常州市凯迪电器股份有限公司 基于集成桌推与can总线通讯的电动升降桌控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6874431B1 (en) * 2003-09-05 2005-04-05 Matthew G. Danna Computer desk with slidably extendible desktop
CN201197710Y (zh) * 2008-05-23 2009-02-25 北京宝利康医学工程公司 一种数字x线摄影设备中吊架和立柱的控制装置
CN106292422A (zh) * 2016-08-05 2017-01-04 浙江捷昌线性驱动科技股份有限公司 基于can总线的多个立柱升降控制系统
CN209874581U (zh) * 2019-04-02 2019-12-31 唐雄岸 一种电动升降活动舞台
CN210915104U (zh) * 2019-08-26 2020-07-03 浙江捷昌线性驱动科技股份有限公司 一种线缆内置式电动升降立柱
CN112965423A (zh) * 2021-02-26 2021-06-15 宁波沱沱河设计有限公司 可自组网的立柱控制系统、方法、装置、处理器及其计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6874431B1 (en) * 2003-09-05 2005-04-05 Matthew G. Danna Computer desk with slidably extendible desktop
CN201197710Y (zh) * 2008-05-23 2009-02-25 北京宝利康医学工程公司 一种数字x线摄影设备中吊架和立柱的控制装置
CN106292422A (zh) * 2016-08-05 2017-01-04 浙江捷昌线性驱动科技股份有限公司 基于can总线的多个立柱升降控制系统
CN209874581U (zh) * 2019-04-02 2019-12-31 唐雄岸 一种电动升降活动舞台
CN210915104U (zh) * 2019-08-26 2020-07-03 浙江捷昌线性驱动科技股份有限公司 一种线缆内置式电动升降立柱
CN112965423A (zh) * 2021-02-26 2021-06-15 宁波沱沱河设计有限公司 可自组网的立柱控制系统、方法、装置、处理器及其计算机可读存储介质

Also Published As

Publication number Publication date
CN112965423A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2022179042A1 (zh) 可自组网的立柱控制系统、方法、装置、处理器及其计算机可读存储介质
US20200267069A1 (en) Link switching method, link switching device, network communication system, and computer-readable storage medium
EP1763775B1 (en) Device management method for device management system
CN104281542B (zh) 多功能usb终端设备的适配方法、装置及系统
CN103595768B (zh) 一种实现虚拟化设备间配置同步的方法
JP6414834B2 (ja) Sasシステム、sasシステムトラバーサル方法および装置
CN103973487A (zh) 一种基于交互式脚本的配置备份系统及配置管理方法
US7925761B2 (en) System and method for implementing a dead man dependency technique for cluster resources
CN105635216A (zh) 分布式应用的升级方法、设备和分布式系统
CN106254114A (zh) 云主机故障迁移方法及系统
CN106713056A (zh) 一种分布式集群下备机选举切换的方法
CN105357057A (zh) 一种无中心的监控管理节点异地冗余方法
CN105338707B (zh) 路灯控制方法、装置及系统
CN104125079B (zh) 一种确定双机热备份配置信息的方法及装置
CN110069290A (zh) 一种多bmc的控制参数配置方法、系统及相关组件
CN102487332B (zh) 故障处理方法、装置和系统
CN105207824A (zh) 一种基于sdn的自动保护倒换的系统及其方法
CN109413626B (zh) 远程蓝牙设备白名单和非白名单自动回连兼容方法
WO2020034522A1 (zh) 连接网络的方法、装置、智能设备及用户终端
CN100488129C (zh) 处理批配置的方法和网管设备及网络系统
WO2023093323A1 (zh) 一种版本升级方法及装置
CN104572402B (zh) 一种服务器及实现服务器功耗管理的方法
CN102811470A (zh) 一种选择网关的方法和装置
CN110719205B (zh) 一种接入交换机及上线恢复方法、系统、计算机存储介质
WO2021017617A1 (zh) 网络设备的开通方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927471

Country of ref document: EP

Kind code of ref document: A1