WO2022178902A1 - 一种操控微小物体的方法和装置 - Google Patents

一种操控微小物体的方法和装置 Download PDF

Info

Publication number
WO2022178902A1
WO2022178902A1 PCT/CN2021/078355 CN2021078355W WO2022178902A1 WO 2022178902 A1 WO2022178902 A1 WO 2022178902A1 CN 2021078355 W CN2021078355 W CN 2021078355W WO 2022178902 A1 WO2022178902 A1 WO 2022178902A1
Authority
WO
WIPO (PCT)
Prior art keywords
tiny
objects
charged particle
probe
electron beam
Prior art date
Application number
PCT/CN2021/078355
Other languages
English (en)
French (fr)
Inventor
田鹤
孙土来
任天星
张婉如
陈鑫铠
张泽
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to PCT/CN2021/078355 priority Critical patent/WO2022178902A1/zh
Publication of WO2022178902A1 publication Critical patent/WO2022178902A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/20Sample handling devices or methods

Definitions

  • the invention relates to the field of physics, in particular to a method and device for manipulating tiny objects, electronic tweezers.
  • the present invention proposes a method for manipulating tiny objects, including: providing one or more charged particle beams; forming one or more non-uniform charge distributions in a fluid medium, wherein The one or more non-uniform charge distributions apply one or more gradient forces to one or more portions of the tiny object; and controlling one or more of the one or more gradient forces alters the size of the tiny object state of motion.
  • At least one of the probes or probe scanning regions comprises a beam neck region configured to apply a gradient force in the vertical direction to the whole or part of the micro-objects .
  • the method as described above further comprising: changing the gradient force of at least one of the charged particle beams by changing the dose rate thereof.
  • the method as described above further comprising: changing the gradient force by changing the shape of at least one of the charged particle beam probes or probe scanning regions.
  • the method as described above further comprising: changing the gradient force by changing the position of the charged particle beam probe or the probe scanning area relative to the tiny object.
  • the method as described above further comprising: moving the tiny object horizontally by adjusting the horizontal position of one or more of the charged particle beam probes or the probe scanning area.
  • the method as described above further comprising: adjusting the height of the tiny object by adjusting the vertical position of one or more of the charged particle beam probes or the probe scanning area.
  • an apparatus for manipulating tiny objects comprising: one or more charged particle guns configured to provide one or more charged particle beams; one or more conditioning devices configured to condition the one or more charged particle beams; and a fluid medium chamber configured to contain a fluid medium and tiny objects, wherein the conditioned one or more charged particle beams are formed in the fluid medium one or more non-uniform charge distributions to apply one or more gradient forces to one or more portions of the tiny object; wherein the one or more adjustment devices are configured to adjust the one or more The charged particle beams control one or more of one or more gradient forces to change the state of motion of the tiny objects.
  • the charged particle gun comprises an electron gun.
  • the fluid medium chamber comprises a liquid cell.
  • the adjustment device comprises an electromagnetic lens.
  • the adjustment means comprises a diaphragm.
  • the conditioning device comprises a vortex beam device configured to generate a charged particle beam carrying orbital angular momentum.
  • adjustment means is configured to change the gradient force of at least one of the charged particle beams by changing the dose rate thereof.
  • adjustment means is configured to change the gradient force by changing the shape of at least one of the charged particle beam probes or probe scanning regions.
  • adjustment means is configured to change the gradient force by changing the position of the charged particle beam probe or probe scanning area relative to the tiny object.
  • adjustment means is configured to move the minute objects horizontally by adjusting the horizontal position of one or more of the charged particle beam probes or probe scanning areas.
  • the adjustment means is configured to adjust the height of the minute objects by adjusting the vertical position of one or more of the charged particle beam probes or probe scanning areas.
  • adjustment means is configured to rotate the minute object by adjusting the relative position between one or more of the charged particle beam probes or probe scanning areas.
  • the invention not only extends the manipulation to the nanometer scale, but also can be applied to various microscopic objects such as conductors, non-conductors, living or non-living biological cells or organelles, etc. Huge progress.
  • FIG. 1 and 2 are schematic diagrams of the working principle of electronic tweezers according to an embodiment of the present invention
  • 3 and 4 are schematic diagrams of the working principle of electronic tweezers according to another embodiment of the present invention.
  • 5A-5C are embodiments of metal palladium (Pd) particle manipulation using a vortex electron beam according to an embodiment of the present invention
  • Fig. 6A-Fig. 6C show the theoretical calculation results of the electric potential distribution of Pd particles at different center deviation positions in the embodiment of Fig. 5A-Fig. 5C
  • Fig. 6D shows the density distribution and electric potential distribution of EVB electron eddy current
  • Fig. 6E shows The change of Coulomb force in the horizontal direction is shown;
  • FIGS. 7A-7D illustrate different shapes of electron beam probes or probe scanning regions according to embodiments of the present invention.
  • FIGS. 8A and 8B are schematic diagrams of moving the height of tiny objects according to an embodiment of the present invention.
  • Fig. 9 is the influence of different factors on Coulomb force according to an embodiment of the present invention.
  • 10A is a schematic diagram of changing the angle of a tiny object according to an embodiment of the present invention.
  • 10B is a schematic diagram of changing the angle of a tiny object according to another embodiment of the present invention.
  • 10C is a schematic diagram of rotating the angle of a tiny object according to an embodiment of the present invention.
  • Figure 11 is an example of nanoparticle manipulation and assembly according to one embodiment of the present invention.
  • Figure 12 is a photograph of the nanoparticle manipulation and assembly process of the letter "J" in the embodiment shown in Figure 11;
  • FIG. 13 is a schematic structural diagram of a device for manipulating tiny objects according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of manipulating tiny objects according to another embodiment of the present invention.
  • FIG. 15 is a schematic diagram of manipulating tiny objects according to another embodiment of the present invention.
  • 16 is a schematic diagram of an apparatus for manipulating tiny objects according to an embodiment of the present invention.
  • 17A-17C illustrate schematic diagrams of fabricating a microdevice according to an embodiment of the present invention
  • FIG. 18 shows a flowchart of a method of manufacturing a microdevice according to an embodiment of the present invention
  • FIG. 19 shows a schematic diagram of a device structure for manufacturing a microdevice according to an embodiment of the present invention.
  • 20A-20C are schematic diagrams of a microdevice fabrication process according to an embodiment of the present invention.
  • the present invention proposes a solution for using charged particle beams, such as electron beams, to realize high-precision manipulation of microscopic objects, which can not only realize nano-scale three-dimensional plus rotation 4D high-precision manipulation, but also achieve higher-scale (such as micron)
  • the high-precision manipulation of scale or above will become a basic tool in the fields of physics, chemistry, biology, etc., thus bringing about revolutionary progress in the entire field of science and technology.
  • charged particles include electrons, protons, and other charged particles, such as alpha particles, Ga + or Xe + , and the like. Although electrons are mostly described in the following description as examples of charged particles, it is understood that proton beams formed by accelerated protons may also be used in the present invention, and theoretically higher resolution can be obtained . Of course, as the mass of charged particles increases, higher energy is required to accelerate those particles. Therefore, the charged particles of the present invention are not limited to electrons, and other charged particles, such as protons, alpha particles (He + ), Ga + or Xe + , can also be applied in the present invention.
  • a "charged particle beam” refers to a beam of accelerated charged particles.
  • the energy of a single charged particle in a charged particle beam can characterize the degree to which the charged particle is accelerated.
  • the dose rate of a charged particle beam represents the number of charges passing through a unit area in a unit time, and can reflect the density of charged particles in a charged particle beam.
  • electron beam refers to a beam formed by accelerated electrons, which has been widely used in transmission electron microscopy and scanning electron microscopy, electron beam lithography, electron beam exposure, electron beam welding and many other fields .
  • probe refers to the portion of the charged particle beam that is proximate to the target area.
  • shape of the probe can be controlled by adjusting the focus position and beam configuration of the charged particle beam by adjusting means such as an electromagnetic lens, a diaphragm, or the like.
  • scanning area of the charged particle beam ie the scanning area of the probe, can be controlled by adjustment means such as a scanning coil.
  • microscopic objects refer to three-dimensional dimensions in the sub-angstrom, 1/10 nanometer, 1/4 nanometer, 1/2 nanometer or 1 nanometer scale, several nanometer scale, tens of nanometer scale , objects on the scale of hundreds of nanometers, micrometers, or above; Objects on the scale of ten nanometers, hundreds of nanometers, micrometers, or more; or, in one dimension, sub-angstrom, 1/10 nanometer, 1/4 nanometer, 1/2 nanometer or 1 nanometer, several nanometers in size , tens of nanometers, hundreds of nanometers, micrometers or above.
  • fluid medium refers to a substance with fluidity, which includes liquids, colloids, gases, and the like.
  • the fluidity of the fluid medium can reduce the resistance when manipulating tiny objects, and on the other hand, the density of the fluid medium also enables the existence of a sufficient amount of fluid medium to interact with the charged particles to produce the required manipulation of tiny objects. force.
  • the fluid medium may be an aqueous solution of water or other substances.
  • the fluid medium can also be an organic solvent or a solution formed by dissolving other substances in the organic solvent.
  • the fluid medium may also be a suspension, emulsion or colloid.
  • charge distribution refers to the distribution of positive and negative charges in space. Since the charged particle beam passing through and interacting with the fluid medium is a continuous process, the charge distribution in the fluid medium and on the manipulated tiny objects is the apparent result of the charge dynamic balance. The configuration and position of the charged particle beam in the fluid medium can be designed and controlled with high precision to create a charge distribution in a designated area.
  • gradient force refers to the force effect on a charged tiny object due to uneven distribution of electric charge.
  • Different charge distributions and electrical properties can generate different gradient forces.
  • the charge distribution created by a beam of charged particles in the area around a tiny charged object can create a pulling or pushing force.
  • a ring-shaped or roughly ring-shaped charge distribution can form a "force well” of gradient forces.
  • “manipulation” refers to changing the relative position, relative angle, and either of the two objects.
  • the two objects each have their own orientation. If the relative angle of the respective directions between the two changes, the relative angle can be considered to have changed. In other words, the relative angle may change even if the relative position does not change.
  • FIG. 1 and 2 are schematic views of the working principle of electronic tweezers according to an embodiment of the present invention; wherein FIG. 1 is a cross-sectional view parallel to the surface of the fluid medium layer, and FIG. 2 is a top view perpendicular to the surface of the fluid medium layer.
  • the tiny objects are conductors, such as metals.
  • a controlled electron beam 101 passes through a layer of fluid medium (ie, fluid medium) 102 .
  • the portion of the electron beam 101 passing through the fluid medium layer 102 is approximately an annular region 103 .
  • the minute objects 104 are located in the annular region 102 of the electron beam 101 in the fluid medium layer.
  • the electron beam 101 passes through the fluid medium layer 102 , some of the incident electrons interact with the fluid medium to excite secondary electrons 105 . Most of the incident electrons do not stay in the fluid medium layer 102 but continue to pass through the fluid medium layer 102 even after inelastic collision. Therefore, the region 103 of the fluid medium layer 102 through which the electron beam passes becomes a positively charged region due to the loss of electrons.
  • the excited secondary electrons 105 can enter into the fine objects 104 .
  • the secondary electrons 105 may further undergo inelastic scattering in the tiny objects 104 to generate low-energy cascaded secondary electrons, and their own energy will also be further reduced. Due to the limitation of the work function of the conductor, some low-energy secondary electrons and cascaded secondary electrons cannot escape from the tiny objects 104 . Therefore, the minute objects 104 are negatively charged due to the addition of electrons. Thereby, the negatively charged minute objects 104 are surrounded by the positively charged annular region 103 and are bound therein. As shown in FIG.
  • the resultant force Fc of the Coulomb force between the fine objects 104 and the annular region 103 is directed to the center of the annular region 103 . If the position of the negatively charged tiny objects 104 deviates from the center of the annular region 103 , the Coulomb force Fc will push the tiny objects 104 back to the center of the annular region 103 .
  • the non-uniform charge distribution (ie, the positively charged annular region 103 ) in the fluid medium layer 102 creates a gradient force, the Coulomb force, which provides the basis for the manipulation of tiny objects.
  • FIG. 3 and 4 are schematic diagrams of the working principle of electronic tweezers according to another embodiment of the present invention; wherein FIG. 3 is a cross-sectional view parallel to the surface of the fluid medium layer, and FIG. 4 is a top view perpendicular to the surface of the fluid medium layer.
  • the tiny objects are non-conductors, such as insulators.
  • the interaction between the electron beam 301 and the fluid medium layer 302 is the same as that of the embodiment shown in FIG. 1 and FIG. 2 , and will not be repeated here.
  • the excited secondary electrons 305 can enter into the tiny objects 304 to generate cascaded secondary electrons and part of the cascaded secondary electrons will escape from the tiny objects 304 so that the tiny objects 304 are positively charged.
  • the positively charged minute objects 304 are surrounded by the positively charged annular region 303 and are bound therein.
  • the resultant force Fc of the Coulomb force between the fine objects 304 and the annular region 303 also points to the center of the annular region 303 .
  • the Coulomb force Fc will cause the position of the tiny object 304 to change accordingly and move to the new center position of the annular area 303 . It appears as if the tiny object 304 is picked up by invisible “tweezers" and moved from its original position to a new position.
  • the electron beam is a plane wave or a spherical wave.
  • the configuration of the electron beam can be adjusted by adjusting devices such as apertures to define the shape of the electron beam probe.
  • a non-uniform charge distribution is formed in the fluid medium.
  • the shape of the electron beam probe defines an area of non-uniform charge distribution.
  • the electron beam is a vortex wave, ie, a vortex electron beam (Electron Vortex Beam, EVB).
  • Vortex waves are also known as waves with topological charges or waves with phase singularities. Vortex waves were first discovered in radio waves, which carry orbital angular momentum (OAM), and the topological charge m is a non-zero integer, such as +1 or -1. Electron waves have very short wavelengths (on the order of picometers) and are suitable for creating atomic-scale vortex waves. At present, the application of EVB has been relatively mature in related technologies such as electron microscopy and electron energy loss spectroscopy (EELS).
  • EELS electron energy loss spectroscopy
  • a non-uniform charge distribution is produced by rapidly scanning a region of the fluid medium with an electron beam. Because the speed of the electron beam scanning is much higher than the rate of change of the charge distribution in the fluid medium, the non-uniform charge distribution created by scanning an area in the fluid medium is the same as that created by the electron beam probe transmitted through the same area in the fluid medium. There is no essential difference in the charge distribution.
  • the shape of the electron beam probe scan defines an area of non-uniform charge distribution.
  • Figures 5A-5C are embodiments of metal palladium (Pd) particle manipulation using a vortex electron beam according to one embodiment of the present invention.
  • an aqueous layer comprising multiple nanoscale Pd particles was enclosed in a K-kit liquid cell and placed in a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • a high-energy electron beam of about 200keV is generated by an electron gun, and then EVB is generated through a holographic aperture.
  • Manipulation of nanoscale Pd particles is achieved using EVB to form a ring-shaped inhomogeneous charge distribution in the water layer.
  • FIG. 5A shows a schematic diagram of EVB forming a positively charged annular region in an aqueous layer. Similar to the case of Fig. 2, the Pd particles to be moved are enclosed in the annular region formed by the EVB.
  • Fig. 5C shows a schematic diagram of the whole process of EVB moving Pd particles at different times.
  • ⁇ f represents the charge density of the free charge
  • ⁇ pf represents the charge density of the polarized charge near the free charge
  • ⁇ p represents the charge density of the polarized charge on the interface
  • ⁇ 0 represents the dielectric constant in vacuum
  • represents the dielectric constant of the medium.
  • ⁇ p -en ⁇ (P 2 -P 1 );
  • en represents the unit normal vector at the interface from the sample to the fluid medium
  • P 2 represents the polarization intensity of the sample side near the interface
  • P 1 represents the polarization intensity of the fluid medium side near the interface.
  • the polarized charge in the region around the free charge is:
  • Figures 6A-6C show the theoretical calculation results of the potential distribution of Pd particles at different off-center positions.
  • the potential of the Pd particles changes significantly, which is caused by the reduction of electrons deposited in the Pd particles.
  • the deviation of the center is 10 nm in Figure 6A
  • the inhomogeneity of the potential distribution is the highest, and the Coulomb force is at a higher level
  • the deviation of the center is 20 nm
  • the Pd particles are close to the charge area formed by the EVB, and the inhomogeneity of the potential distribution Significantly reduced, the Coulomb force decreased significantly
  • Figure 6C when the Pd particles entered the charge region formed by the EVB, the inhomogeneity of the potential distribution was very low, and the Coulomb force was at the lowest level. Since Coulomb force is the basis for manipulating tiny objects, it is not difficult to see from Fig. 6A-Fig. 6C that the optimal range for manipulation is the annular region formed by EVB in water.
  • Figure 6D shows the density distribution and the potential distribution of the EVB electron eddy current, with the density distribution at the top and the potential distribution at the bottom.
  • the case of the Coulomb force in the horizontal direction is shown in Fig. 6E, where the Coulomb force reaches an extreme value at about 10 nm from the center and then gradually decreases. The direction of the Coulomb force always points towards the center.
  • 6D and 6E illustrate the relationship between the gradient force and the charge distribution due to the inhomogeneity of the charge distribution and the "force trap” formed by the gradient force.
  • the tiny objects to be moved are bound in the "force trap” and can change their position with the movement of the "force trap", thereby realizing precise manipulation of the tiny objects.
  • the electron beam probe or the area scanned by the probe can also have other shapes.
  • Figures 7A-7D illustrate different shapes of electron beam probes or probe scanning areas.
  • the electron beam probe or the probe scanning area can be in the shape of a ring, an arc, or the like.
  • any reference to a shape herein includes a shape that is generally or irregular.
  • the electron beam probe or probe scanning area surrounds or at least partially surrounds the tiny object.
  • the electron beam probe or the scanning area of the probe is a semi-circular shape, and in the case of the Coulomb force being the attractive force, the tiny objects can still be easily manipulated.
  • the electron beam probe or probe scanning area is in a deep arc shape, and tiny objects are accommodated in the arc-shaped semi-enclosed area. Whether Coulomb force is attractive or repulsive, it can be well used to manipulate tiny objects.
  • the electron beam probe or probe scanning area is a discontinuous semi-circular shape, and such a shape does not affect manipulation.
  • the electron beam probe or the probe scanning area may only be close to tiny objects. In this way, the Coulomb force can also be applied to tiny objects.
  • the electron beam probe or probe scanning area is close to the tiny object, thereby applying a Coulomb force to the tiny object.
  • the shape of the electron beam probe or the scanning area of the probe corresponds to the shape of the tiny object.
  • the volume of the minute object extends in the length direction.
  • the electron beam probe or probe scanning area also extends lengthwise and approaches tiny objects from a direction perpendicular to the lengthwise direction to exert sufficient Coulomb force.
  • the tiny objects do not extend beyond or enter the range of the electron beam probe or probe scanning area.
  • the charge distribution changes significantly, and the gradient forces used to manipulate the tiny object are greatly reduced. Therefore, typically, tiny objects do not touch the electron beam probe or the probe scanning area.
  • the present invention does not completely exclude this situation.
  • FIGS. 8A and 8B are schematic diagrams of moving the height of a tiny object according to an embodiment of the present invention.
  • the shape of the electron beam probe or probe scanning region in the vertical direction includes a neck region as shown by the dashed line in the figure.
  • the electron beam has a higher dose rate in the beam neck region formed by the electron beam cross-over.
  • a gradient force can be applied in the vertical direction.
  • the gradient force in the horizontal direction also still exists. Therefore, in this embodiment, after "capturing" the tiny object, free manipulation in three dimensions can be realized.
  • Fig. 9 shows different influencing factors of Coulomb force according to an embodiment of the present invention.
  • a represents the influence of different EVB electron beam dose rates (dose rate) on Coulomb force, as shown in the figure, as the electron beam dose rate increases increases, the Coulomb force gradually increases, which is in good agreement with the theoretical calculation.
  • b Represents the relationship between the electron beam dose rate and the Coulomb force in the case of a non-EVB annular electron beam. As shown in the figure, the annular electron beam of non-EVB has little effect on the experimental results.
  • c Indicates the effect of the ratio of probe to particle size on the Coulomb force.
  • the Coulomb force used to manipulate tiny objects can be tuned by adjusting the size and shape of the probe.
  • d. Represents the relationship between electron beam dose rate and Coulomb force for non-metallic silica SiO 2 particles. As shown in the figure, for non-conductive tiny objects, the solution of the present invention can also achieve precise manipulation, although the Coulomb force used for manipulation is slightly smaller than that of conductor tiny objects.
  • the magnitude of the gradient force is varied by varying the dose rate of the electron beam probe or the probe scanning area. The higher the dose rate, the greater the Coulomb force.
  • the gradient force is changed by changing the position of the electron beam probe or probe scanning area relative to the tiny object. In the case where the electron beam probe or the probe scanning area is spaced from the minute object, the closer the electron beam probe or the probe scanning area is, the greater the Coulomb force.
  • the magnitude of the gradient force is changed by changing the shape of the charged particle beam probe or the scanning area of the probe. The higher the degree of matching between the shape of the charged particle beam probe or the scanning area of the probe and the shape of the tiny object, the larger the relative area and the greater the Coulomb force.
  • the dose rate of the electron beam probe or the probe scanning area, the shape and position of the scanning area can be flexibly adjusted, so as to obtain the required force and realize the manipulation of tiny objects with high precision.
  • the horizontal position and height of the minute objects are adjusted by adjusting the horizontal and vertical positions of the electron beam probe or the probe scanning area.
  • the electron beam can also be used to rotate tiny objects.
  • FIG. 10A is a schematic diagram of changing the angle of a tiny object according to an embodiment of the present invention.
  • the semi-circular electron beam probe or the probe scanning area surrounds the tiny object with the tip of the tiny object pointing in the first direction.
  • the tips of the tiny objects also change from pointing in the first direction to pointing in the second direction.
  • FIG. 10B is a schematic diagram of changing the angle of a tiny object according to another embodiment of the present invention.
  • the electron beam probe or the probe scanning area approaches the minute object in a first direction, and the tip of the minute object points in the first direction.
  • the tips of the tiny objects also change from pointing in the first direction to pointing in the second direction.
  • FIG. 10C is a schematic diagram of rotating the angle of a tiny object according to an embodiment of the present invention. As shown in the figure, the EVB acts directly on the tiny objects, and the interaction between the EVB and the tiny objects transfers the carried angular momentum, so that the tiny objects rotate.
  • Figure 11 is an example of nanoparticle manipulation and assembly according to one embodiment of the invention. As shown in the figure, multiple nano-scale metal Pd particles were captured by EVB, and the pattern of the English abbreviation "ZJU” of "Zhejiang University” was formed through high-precision manipulation and assembly.
  • Figure 12 is a photograph of some of the nanoparticle manipulation and assembly processes of the letter "J" in the embodiment shown in Figure 11 . As shown by the embodiments shown in Figures 11 and 12, the high-precision manipulation and assembly capabilities of the technical solution of the present invention in the nanometer field are not asserted, but have been confirmed by experiments, which will become many possible applications of the present invention in the future The basics.
  • FIG. 13 is a schematic structural diagram of an apparatus for manipulating tiny objects according to an embodiment of the present invention.
  • the apparatus for manipulating tiny objects includes: an electron gun 1301, which is configured to provide an electron beam; and a fluid medium chamber 1302, which is configured to contain the fluid medium and the tiny objects.
  • the electron beam forms a non-uniform charge distribution in the fluid medium within the fluid medium chamber; such that a gradient force is applied to the tiny objects.
  • the apparatus of this embodiment also includes one or more conditioning devices 1303-1305 configured to condition the electron beam generated from the electron gun.
  • the electron gun 1301 may be a thermal emission electron gun or a field emission electron gun. As will be understood by those skilled in the art, other electron guns may also be employed in the present invention to provide the electron beam.
  • the fluid medium chamber 1302 may be a closed chamber in which the fluid medium and minute objects are contained.
  • the fluid medium chamber 1302 may comprise a liquid cell.
  • a non-closed or open chamber can also be used to contain the fluid medium and tiny objects.
  • the bottom surface carries a fluid medium layer.
  • other types of enclosed or non-enclosed chambers capable of containing fluid media may also be employed in the present invention.
  • the adjustment device includes electromagnetic lenses, such as first and second condenser mirrors 1303 and 1304 .
  • electromagnetic lenses such as first and second condenser mirrors 1303 and 1304 .
  • the adjustment device includes a diaphragm, such as diaphragm 1305 at second condenser lens 1304 . Electron beams with different configurations, focus positions and orbital angular momentum can be obtained through different apertures.
  • the stop 1305 may be one of a computational stop, an annular stop, and an arc stop.
  • the conditioning device includes a vortex beam device configured to generate a vortex electron beam (EVB) carrying orbital angular momentum.
  • EVB vortex electron beam
  • h Planck's constant
  • p momentum
  • wavelength
  • l the eigenvalue of orbital angular momentum (ie topological charge)
  • J 1 is the l-th cylindrical Poisson equation
  • k ⁇ is the lateral momentum of the vortex electron beam.
  • the topological charge number directly depends on the phase of the electron. Therefore, by adjusting the phase of the electron beam by calculating the aperture, vortex electron beam EVBs with different topological charges (ie, different orbital angular momentum) can be obtained.
  • the horizontal position, vertical position, and/or the angle relative to the tiny object of the probe of the electron beam or the probe scanning area can be adjusted by the adjusting device to move horizontally, vertically Move in a straight direction, rotate the position of the tiny object, or implement a combination of the above manipulations.
  • the angular momentum transfer of the electron beam to the tiny objects can be adjusted by the adjusting device, so that the tiny objects are rotated.
  • the Coulomb force is a very strong force. Moreover, since it is related to the number of electric charges, the magnitude of the Coulomb force has a wide adjustment range, which provides the basis for the complex manipulation of tiny objects. Moreover, not only limited to nanoscale, it is obvious that the solutions in some embodiments of the present invention can also be applied to the manipulation of micro-scale or higher-scale tiny objects. If combined with microscopic object manipulation techniques at other scales, there is an opportunity to achieve more practical and flexible microscopic manipulations.
  • the technical solution of the present invention not only realizes high-precision manipulation of 4D tiny objects, but also is a non-contact manipulation, which is not easy to cause damage to the manipulated tiny objects. Further, the technical solution of the present invention not only extends the manipulation to the nanometer scale, but can also be applied to various microscopic objects such as conductors, non-conductors, living or non-living biological cells or organelles, etc. The great progress made in the fields of science and medicine, thus changing the entire historical process of human science and technology.
  • the present invention also includes a technical solution for realizing more complex manipulation of tiny objects.
  • FIG. 14 is a schematic diagram of manipulating tiny objects according to another embodiment of the present invention.
  • the fluid medium includes a first electron beam probe or probe scanning region 1401 and a second electron beam probe or probe scanning region 1402 .
  • the non-uniform charge distribution formed by the first electron beam probe or the probe scanning area 1401 applies the first gradient force F C1 to the tiny objects; the non-uniform charge distribution formed by the second electron beam probe or the probe scanning area 1401 is applied to the tiny objects A second gradient force F C2 is applied.
  • the motion state of the tiny object changes from rest to a uniform motion at a speed v (considering resistance).
  • the tiny objects are partially charged.
  • a charge corresponding to the first electron beam probe or probe scanning area 1401 appears in the first portion 1403 of the minute object; charge corresponding to the second electron beam probe or probe scanning area 1402 appears in the second portion 1404 .
  • This localized electrification occurs regardless of whether tiny objects are conductors or non-conductors. This makes the manipulation of the present invention finer than the overall manipulation of tiny objects. Likewise, if the tiny objects are larger in size, the manipulation through multiple electron beam probes or the probe scanning area is equally convenient and less expensive. Therefore, such an approach gives greater flexibility to the manipulation of tiny objects.
  • FIG. 15 is a schematic diagram of manipulating tiny objects according to another embodiment of the present invention.
  • the fluid medium includes a first electron beam probe or probe scanning region 1501 and a second electron beam probe or probe scanning region 1502 .
  • the fine objects 1503 are substantially rod-shaped and extend in the longitudinal direction thereof.
  • the first electron beam probe or probe scanning area 1501 is close to one end of the tiny object 1503; and the second electron beam probe or probe scanning area 1502 also extends along the length direction and approaches the rod body from a direction perpendicular to the length direction .
  • a charge 1504 appears at the end of the tiny object 1503 close to the first electron beam probe or the probe scanning area 1501
  • a charge 1505 appears at the end of the rod body close to the second electron beam probe or the probe scanning area 1502 . While the first electron beam probe or probe scanning area 1501 remains stationary, the second electron beam probe or probe scanning area 1502 pushes the rod-shaped minute object 1503 to rotate at an angular velocity w with its end as an axis.
  • the electron beam probe or the area scanned by the probe is as close as possible to the tiny object to apply a larger gradient force; but remains spaced from the tiny object.
  • the electron beam probe or probe scanning area has a corresponding shape to the surface of the tiny object. For example, if the surface of a tiny object is arc-shaped, the electron beam probe or the area scanned by the probe may also be arc-shaped.
  • at least one of the probe or probe scanning regions in the vertical direction may include a beam neck region that will apply a gradient force to a portion of the micro-object in the vertical direction, thereby controlling the micro-object or a portion thereof the height of.
  • the gradient force may be changed by changing the dose rate of at least one of the charged particle beams; the gradient force may be changed by changing the shape of at least one of the charged particle beam probes or probe scanning regions; Alternatively, the gradient force is changed by changing the position of the charged particle beam probe or probe scanning area relative to the tiny object.
  • a combination of the above methods for changing the magnitude of the gradient force can also be used, and an optimal method can be selected to obtain the required gradient force for manipulation.
  • the tiny objects may be "captured" by a plurality of gradient forces, keeping the tiny objects in a relatively stationary state. In this state, if the horizontal position of the electron beam probe or the probe scanning area is changed, the position of the tiny object or a part thereof can be moved horizontally; if the vertical position of the probe or the probe scanning area is changed, the Adjust the height of the tiny object or a part thereof; rotate the tiny object if the relative position between the electron beam probe or the probe scanning area is changed.
  • FIG. 16 is a schematic diagram of an apparatus for manipulating tiny objects according to an embodiment of the present invention.
  • the device of this embodiment includes: a first electron gun 1601 and a second electron gun 1602, and a first group of condenser lenses 1603 and 1605 and a second group of condenser lenses 1604 and 1606 corresponding to the two respectively, wherein the condenser lenses 1605 and 1606 can be Place the calculation diaphragm.
  • the first set of condensers 1603 and 1605 and the second set of condensers 1604 and 1606 respectively direct two different electron beams to the fluid medium chamber 1610, which contains the fluid medium and the tiny objects to be manipulated.
  • the two sets of adjustment devices represented by the first group of condenser lenses 1603 and 1605 and the second group of condenser lenses 1604 and 1606 can independently adjust the electron beams from different electron guns 1601 and 1602 to achieve independent control of different gradient forces, which can be more convenient Flexible control of the motion state of tiny objects.
  • FIG. 13 and FIG. 16 are merely illustrative embodiments of the apparatus for manipulating tiny objects of the present invention. Since the electron beam manipulation technology has been quite mature, various improvements and variants emerge in an endless stream. All of these improvements and modifications can be applied to the present invention to obtain a micro-object manipulation device with more precise and flexible manipulation.
  • the present invention includes not only capturing and moving tiny objects, but also a method and apparatus for connecting tiny objects to fabricate microdevices.
  • connecting refers to bringing two objects into an associated unity. After the connection, changes in the motion state of one object may affect the other object. In some embodiments, the two connected objects will become a whole; in some embodiments, the two connected objects may still retain partial independence.
  • contacting refers to two objects that are sufficiently close together that, although there may still be a distance between the two, it has substantially the same effect as two objects touching each other. In other words, even if two tiny objects touch, there may still be a distance between them that is smaller than their size.
  • electron beam welding can be used directly to connect two tiny objects together.
  • the scope of application of tiny objects includes: metals and low-melting organic materials such as resins, plastics, etc.
  • electron beams may be used to heat two first and second minute objects in contact, so that the first and second minute objects are completely or partially melted. Since electron beam heating is very controllable, electron beam heating can highly selectively weld two desired tiny objects together.
  • laser heating can also be used to connect two tiny objects.
  • the laser will melt all or part of tiny objects of metal in an area and weld them together.
  • two contacting first tiny objects and second tiny objects can be placed in a selected area, and the laser can be adjusted to focus on the selected area, so that the first tiny object and the second tiny object in the area can be adjusted.
  • Two tiny objects are welded together.
  • the method of laser heating is able to connect multiple tiny objects in contact at one time to improve efficiency.
  • tiny objects that are not suitable for connection by welding such as high melting point materials (such as SiO 2 , etc.) or tiny objects including materials that are prone to high temperature decomposition or direct volatilization
  • other methods can be used to connect.
  • the surface of the tiny objects can be coated with a thermally cured material or a radiation cured material, and then these tiny objects are connected by means of electron beam or laser heating or irradiation.
  • an adhesive is included between the two minute objects, and the minute objects are connected together by curing of the adhesive after the two minute objects come into contact.
  • the surfaces of the first minute objects and the second minute objects may be coated with a film layer including phenolic resin and hexamethylenetetramine.
  • the electron beam is directly used to heat the two contacted first and second tiny objects, and the films of the two contacted tiny objects are melted Then, a thermal curing reaction further occurs, so that the first minute objects and the second minute objects are connected together.
  • the laser is adjusted to focus on the selected area, so that the The first minute objects and the second minute objects are connected together by a thermal curing reaction between the film layers.
  • the above embodiments are merely illustrative embodiments in which the surface of the minute object includes a thermally curable material.
  • the tiny objects may themselves be thermally cured materials.
  • other types of thermosetting resins and the like can also be used in the scheme of the present invention.
  • the surface coating of the tiny objects includes a film layer of a radiation-curable material, such as a surface layer including a UV curing agent and starch.
  • a radiation-curable material such as a surface layer including a UV curing agent and starch.
  • the first minute objects and the second minute objects are moved to a certain selected area by using an electron beam, and the selected area is irradiated with ultraviolet light, so that the first minute objects and the second minute objects in the area are irradiated.
  • the two tiny objects are linked together by a radiation curing reaction.
  • the above embodiments are merely illustrative embodiments in which the surface of the minute object includes a layer of radiation-cured material. Other types of radiation curable materials may also be used in the context of the present invention.
  • a plurality of binder particles are included in the fluid medium layer.
  • An electron beam is used to move the adhesive particles between the first minute objects and the second minute objects and contact with both, and the electron beam is directly used to heat the adhesive to soften the adhesive so that the two minute objects pass through the adhesive.
  • the mixtures are brought into contact with each other; then, the adhesive is cured so that the first minute objects and the second minute objects are connected together.
  • the bonding of tiny objects through adhesive can also be achieved by means of laser heating. Radiation curing is also possible for certain types of adhesives.
  • the tiny objects may be partly metals or low melting point materials and partly other materials.
  • the part used to connect with other tiny objects is the metal or low melting material part, and the other parts are not affected.
  • connection methods can be used in combination according to actual needs.
  • the horizontal contact position of the first minute object and the second minute object can be defined by adjusting the horizontal position of one or more of the charged particle beam probes or the probe scanning area; by adjusting The vertical position of one or more of the charged particle beam probes or the probe scanning area can define the height contact position of the first minute object and the second minute object; further, by adjusting one or more of the The relative position between the charged particle beam probe or the probe scanning area and the first minute object defines the contact angle between the first minute object and the second minute object.
  • the mutually connected first minute objects and the second minute objects can be connected to each other at an arbitrary position and at an arbitrary angle. This provides the basis for the fabrication of complex microdevices.
  • FIG. 17A-17C show schematic diagrams of fabricating microdevices according to embodiments of the present invention.
  • a plurality of minute objects are provided.
  • the tiny objects are scattered and do not touch each other.
  • the plurality of minute objects are moved and brought into contact with each other using one or more electron beams.
  • the arrangement of the individual minute objects is approximately the same as that of the desired microdevice.
  • the micro objects are connected by the connection method described above, thereby obtaining the desired micro device, that is, the rod-shaped micro objects extending in the length direction.
  • 17B and 17C show the connection of the rod-shaped minute objects and other minute objects and the connection between the rod-shaped minute objects, respectively.
  • rod-shaped microscopic objects may be composed of smaller microscopic objects as shown in FIG. 17A.
  • the apparatus of FIG. 13 or FIG. 16 for manipulating tiny objects may also be used to fabricate microdevices that include electron guns configured to enable connections between tiny objects in a fluid medium chamber.
  • the apparatus for fabricating a microdevice may further include a laser device configured to heat an area including the location of the two or more microscopic objects. In some embodiments, the apparatus for fabricating a microdevice may further include an irradiation device configured to irradiate an area including the locations where the two or more microscopic objects are located.
  • the above embodiments are merely illustrative examples showing the fabrication of microdevices. Since the present invention extends the manipulation of tiny objects to the nanometer scale, the method of the present invention can realize the fabrication of nanometer or above-scale micro-devices; further, due to the high precision and flexibility of the present invention, the method of the present invention can be used Enables the fabrication of complex microdevices. These are huge advancements in technology.
  • the present invention also includes solutions for the automated or at least partially automated fabrication of microdevices.
  • Figure 18 shows a flowchart of a method of fabricating a microdevice according to one embodiment of the present invention.
  • the method includes the following steps: in step 1810, the positions of a plurality of tiny objects are acquired.
  • images of the microdevice fabrication area are acquired.
  • the microdevice fabrication area may be all or a portion of the fluid medium chamber.
  • TEM transmission electron microscopy
  • SEM scanning electron microscopy
  • the method further includes identifying the type and location of the plurality of tiny objects in the image of the microdevice fabrication area.
  • identifying the types and positions of existing tiny objects in the micro-device manufacturing area and establishing a resource library to facilitate the use of subsequent algorithms, the automatic manufacturing of micro-devices can be realized.
  • the micro-device fabrication area may include multiple tiny objects of different sizes, materials, and shapes; and these tiny objects may touch or overlap with each other, in some embodiments, deep learning artificial intelligence algorithms are used to identify different kinds of tiny objects.
  • the types of tiny objects are known, and a picture set of a micro-device manufacturing area including a plurality of tiny objects is used as training data, wherein the plurality of tiny objects included in the picture set are manually annotated.
  • the recognition model is created by CNN or other artificial intelligence neural network with supervised learning, and the recognition results and positions of different kinds of tiny objects are output.
  • supervised or unsupervised algorithms based on other artificial intelligence neural networks can also be applied to this, and the present invention does not make any limitation.
  • a resource library is established to manage the identified tiny objects by category.
  • a resource table can be created to accomplish this. Table 1 below is an example of such a resource table.
  • block 1 and block 2 respectively represent block-shaped tiny objects with different diameters, (X11/Y11/Z11) and (X21/Y21/Z21) respectively represent their positions in the micro-device manufacturing area (such as the position of the center) ;
  • Rod 1 and Rod 2 respectively represent rod-shaped tiny objects with the same diameter but different lengths, (X11/Y11/Z11, A11/B11/C11) and (X21/Y21/Z21, A21/B21/C21) represent their The position of the microdevice fabrication area (eg, where the center is) and the direction of extension (eg, the projection angle of the extension direction in three directions).
  • the assembly steps of the microdevice are obtained.
  • the fabrication process for the microdevices desired to be fabricated is broken down into multiple assembly steps. These assembling steps include: a step of forming an intermediate part based on the kind and/or number of minute objects; a step of connecting the intermediate part with the minute objects or other intermediate parts, and the like.
  • the assembling step includes moving the two or more tiny objects; moving the connected two or more tiny objects; connecting the contacted two or more tiny objects; connecting the connected two or more tiny objects with Reconnecting another microscopic object; reconnecting two or more connected microscopic objects; and simultaneously connecting two contacting microscopic objects, two connected microscopic objects, or a combination of both.
  • microdevice may correspond to a number of different assembly steps. Obtaining these assembly steps relevant to the fabrication of microdevices can provide the basis for subsequent automated assembly.
  • the assembly steps of the microdevice are adjusted based, at least in part, on the type of the plurality of tiny objects. Taking into account the existing micro-object resources in the micro-device manufacturing area displayed in the resource library and the micro-object resources required by each assembly step, adjusting the assembly steps can complete the assembly of the micro device more efficiently.
  • the step of assembling the microdevice is adjusted based at least in part on the positions of the plurality of tiny objects.
  • the different positions of tiny objects determine the energy and time required to move these tiny objects.
  • the assembly steps of the microdevice can also be adjusted according to the positions of the plurality of tiny objects. For example, if some tiny objects are close together, and they are suitable for processing into an intermediate part required by an assembly step, the assembly step can be adjusted to process the intermediate part as close as possible, and then the subsequent assembly can be performed.
  • the manner in which one or more of the plurality of minute objects is moved using the one or more charged particle beams is determined based at least in part on the type of the plurality of minute objects.
  • either one electron beam probe or its probe scanning area can be used to "capture” tiny objects, or multiple electron beam probes or its probe scanning areas can be used to "capture” tiny objects.
  • the manner of moving the plurality of fine objects or the intermediate parts can be rationally arranged according to the kinds of the plurality of fine objects and the kinds of the intermediate parts and/or the moving distance.
  • the order and route for moving one or more of the plurality of tiny objects using the one or more charged particle beams is planned based at least on the positions of the plurality of tiny objects.
  • the positions of the plurality of tiny objects may vary, as may the positions of the intermediate components. Therefore, which tiny objects or intermediate components to move and the sequence and route of the movement can be reasonably arranged, thereby improving the manufacturing efficiency of the microdevice.
  • the sequence and route of moving one or more of the plurality of microscopic objects using the one or more charged particle beams is planned based at least in part on the assembly steps of the microdevice.
  • the sequence of assembly steps can also have an impact on the movement of tiny objects. Therefore, which tiny objects or intermediate parts to move and the sequence and route of the movement can be reasonably arranged according to the assembly steps, thereby improving the manufacturing efficiency of the microdevice.
  • one or more charged particle beams are utilized to move the plurality of microscopic objects and form the microdevice according to the assembly step, at least in part automatically.
  • each assembly step can be decomposed into multiple actions, and then the multiple actions can be converted into control instructions for the electron beam probe or the probe scanning area.
  • These control commands can automatically or at least partially automatically operate the electron beam conditioning device, perform the various actions of each assembly step, and complete the various assembly steps to obtain the desired microdevice.
  • FIG. 19 shows a schematic diagram of a device structure for manufacturing a microdevice according to an embodiment of the present invention.
  • the apparatus for manufacturing a microdevice of this embodiment includes: an electron gun 1901 configured to provide an electron beam; a fluid medium chamber 1902 configured to contain a fluid medium and a plurality of tiny objects; including a condenser lens 1903 and 1904 and one or more adjustment devices of the computational aperture 1905; a processor 1910; an imaging device 1920 configured to acquire images of a plurality of tiny objects in the fluid medium chamber; wherein the processor 1902 is configured to obtaining an image of the fluid medium chamber from the imaging device to obtain the position of the plurality of microscopic objects; obtaining an assembly step of the microdevice, depending on the desired microdevice; and controlling one or more adjustment devices to at least partially automatically utilize one or more A charged particle beam moves the plurality of minute objects and forms the microdevice in the assembly step.
  • the processor 1910 may also be configured to perform the functions of: identifying the type and location of the
  • the device of this embodiment further includes a laser device
  • the processor 1910 is further configured to control the laser device to simultaneously connect two or more contacting tiny objects, two or more contacting connected two or more tiny objects object or a combination of both.
  • the device of this embodiment further includes an irradiation device
  • the processor 1910 is further configured to control the irradiation device to simultaneously connect two or more contacting tiny objects, two or more contacting connected two The above tiny objects or a combination of both.
  • FIGS. 20A-20C are schematic diagrams of a microdevice fabrication process according to an embodiment of the present invention.
  • the microdevice desired to be fabricated is a plug-in device comprising a socket and a plug.
  • FIG. 20A a plurality of tiny objects are scattered in the micro-device manufacturing area, including a plurality of block-shaped tiny objects and a plurality of rod-shaped tiny objects. After an image of the microdevice fabrication area is obtained and identified, a plurality of tiny object resources included in the microdevice fabrication area can be obtained.
  • the assembly steps are obtained: (1) forming a socket with scattered bulk micro-objects; (2) forming a plug with two rod-shaped micro-objects; (3) simultaneously connecting to form a socket. tiny objects of the slot and plug; and (4) inserting the plug into the slot.
  • FIG. 20B a plurality of block-shaped minute objects are moved and placed to form an approximate shape of a socket; and two rod-shaped minute objects are moved to form an approximate shape of a plug.
  • FIG. 20C after laser heating the entire microdevice fabrication area, a plurality of block-shaped micro-objects are connected to form a slot, wherein the opening width of the slot is approximately equal to the diameter of the rod-shaped micro-object. Two rod-shaped tiny objects are connected to form a plug. Then, the plug is moved to be inserted into the slot. Thereby, fabrication of the desired microdevice is achieved. As will be understood, all steps in this embodiment can be performed automatically.
  • the automatic or at least partial automatic assembly of the microdevice of the present invention can greatly improve the manufacturing efficiency of the microdevice, provide conditions for large-scale manufacturing of the microdevice in an assembly line, and also provide a basis for the industrial application of the present invention.

Abstract

本发明涉及一种操控微小物体的方法,包括:提供一个或多个荷电粒子束;在流体介质中形成一个或多个非均匀的电荷分布,其中所述一个或多个非均匀的电荷分布向微小物体的一个或多个部分施加一个或多个梯度力;以及控制所述一个或多个梯度力中一者或多者改变所述微小物体的运动状态。本发明的不但将操控扩展到纳米尺度,能够应用于导体、非导体、活体或非活体的生物细胞或细胞器等各种微观世界的微小物体,必将推动物理学、化学、生物学、医学领域取得巨大进步。

Description

一种操控微小物体的方法和装置 技术领域
本发明涉及物理领域,特别地涉及一种操控微小物体的方法和装置电子镊子。
背景技术
对于微观物体的操控一直以来是人类的梦想。无数的科幻书籍和电影为人们勾画出了很多想象的完美画面,例如通过微机械制造便携式设备,利用纳米机器人治疗疾病等。这样的场景也正一步一步地变为现实。1970年,阿希金(Ashikin)观测到利用光学力能够捕获微米级颗粒。在此之后,光镊被发明出来并发展成为许多研究领域的强大的工具。“光镊”也因此获得2018年诺贝尔物理学奖。其他方法也被开发出来用于微观物体的操控。例如,原子力显微镜(AFM)可以操控单个原子。利用声表面波的声镊可以捕获大于几百纳米的颗粒。
纳米材料的量子效应和表面/界面效应引发了物理学、化学、生物学等领域的一系列革命。然而,纳米尺度物体的精准操控却缺少有效的方法。人们一直期待新的操控技术能够解决这一问题。
发明内容
针对现有技术中存在的技术问题,本发明提出了一种操控微小物体的方法,包括:提供一个或多个荷电粒子束;在流体介质中形成一个或多个非均匀的电荷分布,其中所述一个或多个非均匀的电荷分布向微小物体的一个或多个部分施加一个或多个梯度力;以及控制所述一个或多个梯度力中一者或多者改变所述微小物体的运动状态。
如上所述的方法,其中所述梯度力为库仑力。
如上所述的方法,其中所述一个或多个荷电粒子束使得所述微小物体的所述一个或多个部分带电。
如上所述的方法,其中所述一个或多个非均匀的电荷分布是一个或多个荷电粒子束的探针穿过和/或扫描所述流体介质中的一个或多个区域形成的。
如上所述的方法,其中至少一个所述荷电粒子束的探针或探针扫描的区域间隔并靠近所述微小物体。
如上所述的方法,其中至少一个所述探针或探针扫描区域与所述微小物体表面具有对应的形状。
如上所述的方法,其中在竖直方向上至少一个所述探针或探针扫描区域包括束颈区域,其经配置以将在竖直方向上对所述微小物体的整体或一部分施加梯度力。
如上所述的方法,其中所述一个或多个梯度力捕获所述微小物体。
如上所述的方法,进一步包括:通过改变至少一个所述荷电粒子束的剂量率改变其梯度力。
如上所述的方法,进一步包括:通过改变至少一个所述荷电粒子束探针或探针扫描区域的形状改变所述梯度力。
如上所述的方法,进一步包括:通过改变所述荷电粒子束探针或探针扫描区域相对所述微小物体的位置改变所述梯度力。
如上所述的方法,进一步包括:通过调整一个或多个所述荷电粒子束探针或探针扫描区域的水平位置水平移动所述微小物体。
如上所述的方法,进一步包括:通过调整一个或多个所述荷电粒子束探针或探针扫描区域的竖直位置调整所述微小物体的高度。
如上所述的方法,进一步包括:通过调整一个或多个所述荷电粒子束探针或探针扫描区域之间的相对位置转动所述微小物体。
根据本发明的另一个方面,提供一种操控微小物体的装置,包括:一个或多个荷电粒子枪,其经配置以提供一个或多个荷电粒子束;一个或多个调节装置,其经配置以调节所述一个或多个荷电粒子束;以及流体介质腔室,其经配置以容纳流体介质和微小物体,其中,经调节的一个或多个荷电粒子束在流体介质中形成一个或多个非均匀的电荷分布,从而向所述微小物体的一个或多个部分施加一个或多个梯度力;其中,所述一个或多个调节装置经配置以通过调节所述一个或多个荷电粒子束控制一个或多个梯度力中一者或多者改变所述微小物体的运动状态。
如上所述的装置,其中所述荷电粒子枪包括电子枪。
如上所述的装置,其中所述流体介质腔室包括液体胞室(liquid cell)。
如上所述的装置,其中所述调节装置包括电磁透镜。
如上所述的装置,其中所述调节装置包括光阑。
如上所述的装置,其中所述调节装置包括涡旋束装置,其经配置以产生携带轨道角动量的荷电粒子束。
如上所述的装置,其中所述调节装置经配置以通过改变至少一个所述荷电粒子束的剂量率改变其梯度力。
如上所述的装置,其中所述调节装置经配置以通过改变至少一个所述荷电粒子束探针或探针扫描区域的形状改变所述梯度力。
如上所述的装置,其中所述调节装置经配置以通过改变所述荷电粒子束探针或探针扫描区域相对所述微小物体的位置改变所述梯度力。
如上所述的装置,其中所述调节装置经配置以通过调整一个或多个所述荷电粒子束探针或探针扫描区域的水平位置水平移动所述微小物体。
如上所述的装置,其中所述调节装置经配置以通过调整一个或多个所述荷电粒子束探针或探针扫描区域的竖直位置调整所述微小物体的高度。
如上所述的装置,其中所述调节装置经配置以通过调整一个或多个所述荷 电粒子束探针或探针扫描区域之间的相对位置转动所述微小物体。
本发明的不但将操控扩展到纳米尺度,能够应用于导体、非导体、活体或非活体的生物细胞或细胞器等各种微观世界的微小物体,必将推动物理学、化学、生物学、医学领域取得巨大进步。
附图说明
下面,将结合附图对本发明的优选实施方式进行进一步详细的说明,其中:
图1和图2是根据本发明一个实施例的电子镊子工作原理的示意图;
图3和图4是根据本发明另一个实施例的电子镊子工作原理的示意图;
图5A-图5C是根据本发明一个实施例利用涡旋电子束实施金属钯(Pd)颗粒操控的实施例;
图6A-图6C示出了图5A-图5C实施例中Pd粒子位于不同中心偏离位置处的电势分布的理论计算结果,图6D示出了EVB电子涡流的密度分布以及电势分布,图6E示出了水平方向上库仑力的变化情况;
图7A-图7D示出了根据本发明的实施例不同形状的电子束探针或探针扫描区域;
图8A和图8B是根据本发明一个实施例移动微小物体高度的示意图;
图9是根据本发明的实施例不同因素对库仑力的影响;
图10A是根据本发明一个实施例改变微小物体角度的示意图;
图10B是根据本发明另一个实施例改变微小物体角度的示意图;
图10C是根据本发明一个实施例旋转微小物体角度的示意图;
图11是根据本发明一个实施例的纳米粒子操控和装配实例;
图12是图11所示实施例中字母“J”的纳米粒子操控和装配过程的照片;
图13是根据本发明一个实施例的操控微小物体装置的结构示意图;
图14是根据本发明另一个实施例的操控微小物体的示意图;
图15是根据本发明另一个实施例的操控微小物体的示意图;
图16是根据本发明一个实施例的操控微小物体的装置的示意图;
图17A-图17C示出了根据本发明实施例的制造微装置的示意图;
图18示出根据本发明一个实施例的制造微装置方法的流程图;
图19示出根据本发明一个实施例的制造微装置的装置结构示意图;以及
图20A-图20C是根据本发明一个实施例的微装置制造过程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在以下的详细描述中,可以参看作为本申请一部分用来说明本申请的特定实施例的各个说明书附图。在附图中,相似的附图标记在不同图式中描述大体上类似的组件。本申请的各个特定实施例在以下进行了足够详细的描述,使得具备本领域相关知识和技术的普通技术人员能够实施本申请的技术方案。应当理解,还可以利用其它实施例或者对本申请的实施例进行结构、逻辑或者电性的改变。
本发明提出了一种利用荷电粒子束,例如电子束,实现高精度操控微观物体的解决方案,不仅能够实现纳米尺度三维加旋转的4D高精度操控,而且也能够实现更高尺度(例如微米尺度或以上)的高精度操控,将成为一种物理学、化学、生物学等领域的基础工具,从而带来整个科技领域的革命性进步。
如本文中所定义的,“荷电粒子”包括电子、质子以及其他带电粒子,如α粒子、Ga +或Xe +等。虽然在以下的描述中多数情况下以电子作为荷电粒子 的实例进行描述,如所理解的,经加速的质子形成的质子束也可能应用于本发明,并且理论上能够获得更高的分辨率。当然,随着荷电粒子质量的增加,加速这些粒子也需要更高的能量。因此,本发明的荷电粒子将不限于电子,其他的荷电粒子,例如质子、α粒子(He +)、Ga +或Xe +等也能够应用于本发明之中。
如本文中所定义的,“荷电粒子束”所指为荷电粒子经加速而形成的束流。荷电粒子束中单个荷电粒子的能量能够表征荷电粒子经加速的程度。荷电粒子束的剂量率(dose rate)表征单位时间内通过单位面积的电荷数量,能够反映荷电粒子束中荷电粒子的密度。
如本文中所定义的,“电子束”所指为电子经加速后形成的束流,其已经被广泛应用于透射电镜与扫描电镜、电子束光刻、电子束曝光、电子束焊接等诸多领域。
如本文中所定义的,“探针”所指为荷电粒子束接近目标区域的部分。在一些实施例中,通过例如电磁透镜、光阑等调节装置能够调整荷电粒子束的聚焦位置以及波束构型,从而控制探针的形状。在一些实施例中,通过例如扫描线圈等调节装置能够控制荷电粒子束的扫描区域,即探针的扫描区域。
如本文中所定义的,“微小物体”所指为三个维度的尺寸在亚埃、1/10纳米、1/4纳米、1/2纳米或1纳米尺度、数纳米尺度、数十纳米尺度、数百纳米尺度、微米尺度或微米尺度以上的物体;或者,两个维度的尺寸在亚埃、1/10纳米、1/4纳米、1/2纳米或1纳米尺度、数纳米尺度、数十纳米尺度、数百纳米尺度、微米尺度或微米尺度以上的物体;或者,一个维度的尺寸在亚埃、1/10纳米、1/4纳米、1/2纳米或1纳米尺度、数纳米尺度、数十纳米尺度、数百纳米尺度、微米尺度或微米尺度以上的物体。
如本文中所定义的,“流体介质”所指为具有流动性的物质,其包括液体、胶体、气体等。当荷电粒子束经过流体介质时,一部分荷电粒子会与流体介质 发生相互作用。一方面,流体介质的流动性能够减少操控微小物体时的阻力,另一方面,流体介质的密度也使得存在足够数量与荷电粒子发生相互作用的流体介质,以产生操作微小物体时所需的力。在一些实施例中,流体介质可以为水或者其他物质的水溶液。在一些实施例中,流体介质也可以为有机溶剂或者其他物质溶解于有机溶剂中形成的溶液。在某些实施例中,流体介质也可以为悬浊液,乳浊液或者胶体。
如本文中所定义的,“电荷分布”所指为正负电荷在空间中的散布位置。由于荷电粒子束经过流体介质并与流体介质发生相互作用是一个持续的过程,在流体介质中以及被操控微小物体上的电荷分布是电荷动态平衡形成的表观结果。荷电粒子束的构型和在流体介质中的位置能够经设计和高精度控制,从而在指定的区域形成电荷分布。
如本文中所定义的,“梯度力”所指为电荷分布不均匀而对带电微小物体产生的力效应。不同的电荷分布和电性能够产生不同的梯度力。例如,带电微小物体周围区域中荷电粒子束形成的电荷分布能够产生拉力或者推力。环形或大致呈环形形状的电荷分布可以形成梯度力的“力阱”。当带电微小物体位于“力阱”中时,带电微小物体能够被束缚于“力阱”中而被“捕获”。
如本文中所定义的,“操控”所指为改变物体的相对位置、相对角度和两者中的任意一种情况。两个物体分别具有各自的方向。如果两者之间各自方向的相对角度发生改变即可认为相对角度发生改变。换言之,即使相对位置不变,相对角度也可能发生变化。
以下以“电子镊子”的实施例为例,详细说明本发明的技术方案。
图1和图2是根据本发明一个实施例的电子镊子工作原理的示意图;其中图1是平行于流体介质层表面的剖视图,图2是垂直于流体介质层表面的俯视图。在本实施例中,微小物体为导体,例如金属。如图所示,受控的电子束101 从流体介质层(即流体介质)102中穿过。电子束101穿过流体介质层102的部分大致为一个环形区域103。微小物体104位于电子束101在流体介质层中的环形区域102之中。在电子束101穿过流体介质层102的过程中,部分入射电子与流体介质发生相互作用激发出二次电子105。大部分入射电子即使发生非弹性碰撞后也未停留在流体介质层102中而是仍然继续从流体介质层102中穿出。因此,流体介质层102中电子束穿过的区域103由于损失电子而成为带正电的区域。
另一方面,由于微小物体104本身为导体,经激发的二次电子105能够进入微小物体104之中。二次电子105可能在微小物体104中进一步发生非弹性散射而产生低能的级联二次电子,而本身的能量也会进一步降低。由于导体逸出功的限制,部分低能的二次电子和级联二次电子并不会脱离微小物体104。因此,微小物体104由于增加电子而带负电。由此,带负电的微小物体104被带正电的环形区域103包围,并且被束缚于其中。如图2所示,微小物体104与环形区域103之间库伦力的合力Fc指向环形区域103的中心。如果带负电的微小物体104的位置偏离环形区域103的中心,库伦力Fc将会将微小物体104推回到环形区域103的中心。在流体介质层102中非均匀的电荷分布(即,带正电的环形区域103)形成了梯度力,即库仑力,从而为微小物体的操纵提供了基础。
这样,当电子束101经控制而发生位置改变时,环形区域103的中心位置也发生改变,库伦力Fc将使得微小物体104的位置也随之改变并移动到环形区域103新的中心位置。看起来,就好像微小物体104被无形的“镊子”夹起,从原来的位置移动到了新位置。
图3和图4是根据本发明另一个实施例的电子镊子工作原理的示意图;其中图3是平行于流体介质层表面的剖视图,图4是垂直于流体介质层表面的俯视图。在本实施例中,微小物体为非导体,例如绝缘体。电子束301与流体介 质层302的相互作用与图1和图2所示实施例的情况相同,这里不再赘述。经激发的二次电子305能够进入微小物体304之中产生级联二次电子并且部分级联二次电子将脱离微小物体304而使得微小物体304带正电。带正电的微小物体304被带正电的环形区域303包围,并且被束缚于其中。如图4所示,微小物体304与环形区域303之间库伦力的合力Fc也同样指向环形区域303的中心。这样,当环形区域103的中心位置也发生改变时,库伦力Fc将使得微小物体304的位置也随之改变并移动到环形区域303新的中心位置。看起来,就好像微小物体304被无形的“镊子”夹起,从原来的位置移动到了新位置。
以上仅仅是为了方便理解非限制性地对本发明可能的原理进行了表述,实际发生的过程可能更为复杂。因此,本发明并不限于上述描述,也不限于上述描述中的物理理论。
在一些实施例中,电子束为平面波或球面波。通过光阑等调节装置能够调整电子束的构型,从而定义电子束探针的形状。当电子束透射穿过流体介质时,在流体介质中形成非均匀的电荷分布。电子束探针的形状即定义了非均匀的电荷分布的区域。
在一些实施例中,电子束为涡旋波,即涡旋电子束(Electron Vortex Beam,EVB)。涡旋波也被称为具有拓扑电荷的波或具有相位奇点的波。涡旋波首先是在无线电波中发现的,其携带轨道角动量(OAM),拓扑电荷m是非零整数,例如+1或-1。电子波的波长很短(皮米量级),适于创建原子尺度的涡旋波。目前EVB的应用在电镜和电子能量损失谱学(EELS)等相关技术中已经比较成熟。当EVB透射穿过流体介质时,在流体介质中形成环形或大致呈环形的非均匀电荷分布。这样的探针形状能够方便地用于捕获微小物体。现有技术中已有多种产生EVB的方法,这些都在本发明的范围之中。
在一些实施例中,利用电子束快速扫描流体介质的一个区域产生非均匀的电荷分布。因为电子束扫描的速度远远高于流体介质中电荷分布的变化速度, 通过扫描流体介质中区域而形成的非均匀的电荷分布与电子束探针透射穿过流体介质中同样区域形成的非均匀的电荷分布并没有本质区别。电子束探针扫描的形状即定义了非均匀的电荷分布的区域。
图5A-图5C是根据本发明一个实施例利用涡旋电子束实施金属钯(Pd)颗粒操控的实施例。在本实施例中,包括多个纳米尺度Pd颗粒的水层被封闭在K-kit液体胞室(liquid cell)并放入透射电镜(TEM)中。通过电子枪产生大约200keV的高能电子束,再经过全息光阑产生EVB。利用EVB在水层中形成环形的不均匀电荷分布实现纳米尺度Pd颗粒的操纵。
图5A示出了在水层中EVB形成带正电的环形区域的示意图。与图2的情况类似,待移动的Pd颗粒被包围在EVB形成的环形区域之中。图5B示出了使用EVB移动Pd颗粒全过程的电镜照片。被移动的Pd颗粒的尺寸大约在20nm左右。t=0s时刻,待移动的Pd颗粒位于右上方,左下方的两个颗粒作为移动的目标位置和参考物。如图所示,从t=0s到t=25s时刻,右上方的Pd颗粒从远离左下方两个颗粒的位置移动到靠近左下方两个颗粒的位置。为了方便理解,图5C示出了不同时刻EVB移动Pd颗粒整个过程的示意图。
根据电磁理论,自由电荷的存在会产生极化。所有电荷的分布满足泊松方程:
Figure PCTCN2021078355-appb-000001
其中,ρ f代表自由电荷的电荷密度;ρ p-f代表自由电荷附近极化电荷的电荷密度;ρ p代表界面上极化电荷的电荷密度;ε 0代表真空中的介电常数。合并前两项,以上方程为:
Figure PCTCN2021078355-appb-000002
其中,ε代表介质的介电常数。
假定待移动Pd颗粒为球形,那么自由电荷的电势为:
Figure PCTCN2021078355-appb-000003
接下来,通过电场来获得界面处的极化电荷:
Figure PCTCN2021078355-appb-000004
其中,E表示金属表面极化电场。极化电荷的密度可以通过以下方程给出:
ρ p=-e n·(P 2-P 1);
P=(ε-ε 0)E,
其中,e n表示界面处由样品指向流体介质的单位法向量,P 2表示界面附近样品一侧的极化强度,P 1表示界面附近流体介质一侧的极化强度。
根据高斯定理,自由电荷周围区域的极化电荷为:
Q p-f=-(1-ε 0/ε)∫ρ f(r)dr
由此,由于极化而产生的极化电势为:
Figure PCTCN2021078355-appb-000005
其中,ρ代表极化电荷在界面出的分布。最终,能够得出所有电荷的分布满足如下公式:
Figure PCTCN2021078355-appb-000006
图6A-图6C示出了Pd粒子位于不同中心偏离位置处的电势分布的理论计算结果。随着偏置距离的增大,Pd颗粒的电势发生了显著的变化,这是由于沉积在Pd颗粒中的电子减少引起的。其中在图6A中偏离中心10nm时,电势分布的不均匀性最高,库仑力处于较高的水平;在图6B中偏离中心20nm时,Pd粒子贴近EVB形成的电荷区域,电势分布的不均匀性显著降低,库仑 力大幅下降;在图6C中偏离中心30nm时,Pd粒子进入EVB形成的电荷区域,电势分布的不均匀性很低,库仑力处于最低的水平。由于库仑力是操纵微小物体的基础,从图6A-图6C中不难看出,操纵的较佳范围是EVB在水中所形成环形区域内。如果超过这一范围,用于操纵微小物体的力将大幅度下降。
图6D示出了EVB电子涡流的密度分布以及电势分布,其中位于上方的是密度分布而位于下方的是电势分布。图6E中示出了水平方向上库仑力的情况,其中库仑力在中心偏离大约10nm处达到极值然后逐渐下降。库伦力的方向始终指向中心。图6D和图6E说明了由于电荷分布的不均匀性所形成的梯度力与电荷分布的关系以及梯度力形成的“力阱”。待移动微小物体被束缚于“力阱”中并能够随着“力阱”的位置移动而改变位置,从而实现微小物体的精确操控。
电子束探针或探针扫描的区域还可以有其他形状。图7A-图7D示出了不同形状的电子束探针或探针扫描区域。如图所示,电子束探针或探针扫描区域可以为环形、弧形等形状。如所理解的,本文中所指的形状都包括大致呈或者不规则的某一形状。
在一些实施例中,电子束探针或探针扫描区域围绕或至少部分围绕所述微小物体。在图7A中,电子束探针或探针扫描区域为半环形,在库仑力为吸引力的情况下,仍能够很方便的操控微小物体。在图7B中,电子束探针或探针扫描区域为深弧形,微小物体被容纳于弧形半封闭的区域之中。无论库仑力为吸引力还是排斥力,都能够很好的用于操控微小物体。在图7C中,电子束探针或探针扫描区域为间断的半环形,这样的形状并不影响操控。在一些实施例中,电子束探针或探针扫描区域可以仅仅是靠近微小物体。这样,同样能够向微小物体施加库伦力。在图7D中,电子束探针或探针扫描区域靠近微小物体,从而向微小物体施加库仑力。电子束探针或探针扫描区的形状与微小物体的形状相对应。在图7E中,微小物体的体积沿长度方向延伸。电子束探针或探针 扫描区域同样沿长度方向延伸,并从与长度方向垂直的方向上靠近微小物体,以施加足够的库仑力。
在一些实施例中,所述微小物体不超出或进入电子束探针或探针扫描区域的范围。当电子束探针或探针扫描与微小物体重叠时,电荷分布将发生明显改变,用于操控微小物体的梯度力会大幅度减小。因此,通常情况下,微小物体并不接触电子束探针或探针扫描区域。当然,本发明也并不完全排除这种情况。
图8A和图8B是根据本发明一个实施例移动微小物体高度的示意图。如图所示,在竖直方向上电子束探针或探针扫描区域的形状包括如图中虚线所示的束颈区域(neck region)。如所理解的,在由于电子束交叉(cross-over)形成的束颈区域中,电子束具有更高的剂量率。当束颈区域与微小物体足够接近时,能够在竖直方向上施加梯度力。当然,水平方向上的梯度力也是仍存在的。由此,在本实施例中,在“捕获”微小物体后,能够实现3个维度的自由操控。如图8B所示,在第一次移动中,微小物体在X-Y平面的投影并未发生变化,高度从第一高度升到第二高度;接下来,在第二次移动中,从水平位置和高度都不同的第一位置移动到第二位置,微小物体在X-Y平面的投影和高度都发生变化。本领域技术人员理解,还存在其他改变微小物体高度的方式。实际上,以本发明的任何方式“捕获”微小物体后,改变电子束探针或探针扫描区域的聚焦位置的高度都可能改变微小物体的竖直位置。
图9是根据本发明的实施例库仑力的不同影响因素;其中,a.表示不同的EVB电子束剂量率(dose rate)对于库仑力的影响,如图所示,随着电子束剂量率的增加,库仑力逐渐上升,与理论计算非常符合。b.表示非EVB的环形电子束的情况下电子束剂量率与库仑力之间的关系。如图所示,非EVB的环形电子束对实验结果影响不大。c.表示探针与颗粒尺寸之比对于库仑力的影响,如图所示,随着探针,即电子束在流体介质中形成的环形区域,的尺寸逐渐增加,库仑力快速增加并在接近1.5倍时到达极值,然后逐渐下降并在大约2倍 之后减小到非常小的幅度并随后基本保持不变。有趣的是,如果将待移动微小物体假定为正方形而探针的形状为圆形,那么微小物体大约为圆形区域内出现的最大正方形时,库仑力达到极值。由此,可以说明保证待移动的物体不进入探针区域的最小探针尺寸对应库仑力的极值。因此,可以通过调整探针的尺寸和形状来调节用于操控微小物体的库仑力。d.表示对于非金属的二氧化硅SiO 2颗粒,电子束剂量率与库仑力之间的关系。如图所示,对于非导体微小物体,本发明的方案同样能够实现精确操控,虽然用于操控的库仑力相比于导体的微小物体稍小。
在一些实施例中,通过改变电子束探针或探针扫描区域的剂量率改变所述梯度力的大小。剂量率越高,库仑力也越大。在一些实施例中,通过改变电子束探针或探针扫描区域相对所述微小物体的位置改变所述梯度力。在电子束探针或探针扫描区域与微小物体间隔的情况下,电子束探针或探针扫描区域越接近,库仑力也越大。在一些实施例中,通过改变所述荷电粒子束探针或探针扫描区域的形状改变所述梯度力的大小。所述荷电粒子束探针或探针扫描区域的形状与微小物体的外形匹配度越高,相对的面积越大,库仑力也越大。在一些实施例中,根据操控操作不同,可以灵活地调整电子束探针或探针扫描区域的剂量率、扫描区域的形状和位置,从而获得所需力,实现高精细度的微小物体操控。
在以上的实施例中,已经说明了通过调整电子束探针或探针扫描区域的水平位置和竖直位置调整所述微小物体的水平位置和高度。在一些实施例中,还可以利用电子束转动微小物体。
图10A是根据本发明一个实施例改变微小物体角度的示意图。如图所示,在初始位置,半环形的电子束探针或探针扫描区域围绕微小物体,微小物体的尖端指向第一方向。通过调整电子束探针或探针扫描区域,将其从微小物体的第一方向移动至与第一方向垂直的第二方向,微小物体的尖端也从指向第一方 向改变为指向第二方向。
图10B是根据本发明另一个实施例改变微小物体角度的示意图。如图所示,在初始位置,电子束探针或探针扫描区域在第一方向上接近微小物体,微小物体的尖端指向第一方向。通过调整电子束探针或探针扫描区域,将其从微小物体的第一方向移动至与第一方向垂直的第二方向,微小物体的尖端也从指向第一方向改变为指向第二方向。
图10C是根据本发明一个实施例旋转微小物体角度的示意图。如图所示,EVB直接作用于微小物体上,EVB与微小物体之间发生相互作用并转移携带的角动量,从而使得微小物体发生旋转。
图11是根据本发明一个实施例的纳米粒子操控和装配实例。如图所示,利用EVB捕获多个纳米尺度的金属Pd粒子,通过高精度的操控和装配形成了“浙江大学”的英文缩写“ZJU”的图案。图12是图11所示实施例中字母“J”的一些纳米粒子操控和装配过程的照片。如图11和图12所示实施例所展示的,本发明的技术方案在纳米领域高精度的操控和组装能力并不是断言的,而是已被实验所证实,将成为本发明未来众多可能应用的基础。
图13是根据本发明一个实施例的操控微小物体装置的结构示意图。如图所示,操控微小物体的装置,包括:电子枪1301,其经配置以提供电子束;流体介质腔室1302,其经配置以容纳流体介质和微小物体。电子束在流体介质腔室内的流体介质中形成非均匀的电荷分布;以使得将梯度力施加于所述微小物体。如图所示,本实施例的装置还包括一个或多个调节装置1303-1305,其经配置以调节来自所述电子枪产生的电子束。
在一些实施例中,电子枪1301可以为热发射电子枪或者场发射电子枪。如本领域技术人员所理解的,其他的电子枪也可以应用于本发明中以提供电子束。
在一些实施例中,流体介质腔室1302可以为封闭的腔室,流体介质和微 小物体容纳于腔室中。例如,流体介质腔室1302可以包括液体胞室(liquid cell)。在一些实施例中,对于挥发度非常小的流体介质,也可以采用非封闭的或者敞口的腔室容纳流体介质和微小物体,例如,流体介质腔室1302可以包括桶体,在桶体的底面上承载流体介质层。如本领域技术人员所理解的,其他类型的封闭或非封闭的能够容纳流体介质的腔室也可以应用于本发明中。
在一些实施例中,调节装置包括电磁透镜,例如第一和第二聚光镜1303和1304。通过调节电磁透镜能够调整电子束聚焦位置、束斑大小、电子束强度、单色性等诸多属性。在一些实施例中,调节装置包括光阑,例如在第二聚光镜1304处的光阑1305。通过不同的光阑能够得到不同构型、聚焦位置和轨道角动量的电子束。例如,光阑1305可以为计算光阑、环形光阑、弧形光阑中的一者。
如本领域技术人员所理解的,现有技术中有关电子束调节的方法以及调节装置还有其他各种各样的方式。这些电子束的调节方法和调节装置都可以应用于本发明中以获得所需的电子束探针或探针扫描区域。这些都在本发明的范围内,在此不再赘述。
在一些实施例中,调节装置包括涡旋束装置,其经配置以产生携带轨道角动量的涡旋电子束(EVB)。如前所述,现有技术中已有多种产生EVB的方法。以下仅以计算全息光阑举例说明,通过调控电子束的相位,形成螺旋相位结构而获得涡旋电子束。但本发明的方案并不局限于此。
根据量子力学波函数的概念,结合德布罗意de Broglie物质波的概念与薛定谔方程推导出涡旋电子束的最简洁的物理表达形式:
de Broglie物质波:
Figure PCTCN2021078355-appb-000007
(h:普朗克常量;p:动量。λ:波长)
薛定谔方程:
Figure PCTCN2021078355-appb-000008
(H:哈密顿算符)
涡旋电子束的表达式:
Figure PCTCN2021078355-appb-000009
其中:h是普朗克常量;p是动量;λ是波长;r,
Figure PCTCN2021078355-appb-000010
z是涡旋电子束的三维坐标;l是轨道角动量特征值(即拓扑荷数);J 1是l次圆柱形泊松方程;k⊥是涡旋电子束的横向动量。
根据上述理论,拓扑荷数直接取决于电子的相位。因此,通过计算光阑来调控电子束的相位,可获得具有不同拓扑荷数(即不同轨道角动量)的涡旋电子束EVB。
在本发明的一些实施例中,通过调节装置能够调整所述电子束的探针或探针扫描区域的水平位置、竖直位置、和/或相对于所述微小物体的角度从而水平移动、竖直方向上移动、转动所述微小物体的位置或者实现以上操控的组合。在一些实施例中,通过调节装置能够调整所述电子束针对所述微小物体的角动量转移,从而使得所述微小物体旋转。
在微观的力相互作用中,库仑力是很强的力。而且,由于与电荷的数量有关,库仑力的大小具有很宽调整范围,这为完成微小物体的复杂操控提供了基础。而且,不仅仅限于纳米尺度,显然本发明一些实施例中的方案也能够应用于微米或更高尺度微小物体的操控。如果与其他尺度的微观物体操控技术相结合,那么有机会实现更具实用性和灵活性的微观操作。
通过以上实施例不难看出,本发明的技术方案不但实现了4D的微小物体的高精度操控,而且是一种非接触式的操控,不容易对被操控的微小物体造成损伤。进一步地,本发明的技术方案不但将操控扩展到纳米尺度,能够应用于导体、非导体、活体或非活体的生物细胞或细胞器等各种微观世界的微小物体,必将推动物理学、化学、生物学、医学领域取得的巨大进步,从而改变整个人 类科技的历史进程。
本发明还包括针对微小物体实现更为复杂操控的技术方案。
图14是根据本发明另一个实施例的操控微小物体的示意图。如图所示,流体介质中包括了第一电子束探针或探针扫描区域1401和第二电子束探针或探针扫描区域1402。第一电子束探针或探针扫描区域1401形成的非均匀电荷分布向微小物体施加第一梯度力F C1;第二电子束探针或探针扫描区域1401形成的非均匀电荷分布向微小物体施加第二梯度力F C2。在第一梯度力和第二梯度力共同作用下,微小物体的运动状态从静止转变为以速度v匀速运动(考虑阻力)。
在本实施例中,如图所示,微小物体出现了局部带电的情况。在微小物体的第一部分1403出现了与第一电子束探针或探针扫描区域1401对应的电荷;在第二部分1404出现了与第二电子束探针或探针扫描区域1402对应的电荷。无论微小物体是导体还是非导体都会出现这种局部带电的情况。这使得本发明的操控相比于对微小物体的整体操控更为精细。同样地,如果微小物体的体积较大,通过多个电子束探针或探针扫描区域的操控也同样增加方便,而且成本也更低。因此,这样的方式赋予了微小物体操纵更大的灵活性。
图15是根据本发明另一个实施例的操控微小物体的示意图。如图所示,流体介质中包括了第一电子束探针或探针扫描区域1501和第二电子束探针或探针扫描区域1502。微小物体1503大致呈棒状,沿其长度方向延伸。第一电子束探针或探针扫描区域1501靠近微小物体1503的一端;而第二电子束探针或探针扫描区域1502也同样沿长度方向延伸,并从与长度方向垂直的方向靠近棒体。微小物体1503与第一电子束探针或探针扫描区域1501接近的端部出现电荷1504,与第二电子束探针或探针扫描区域1502接近的棒体一段出现了电荷1505。当第一电子束探针或探针扫描区域1501保持不动,而第二电子束 探针或探针扫描区域1502推动棒状的微小物体1503以其端部为轴以角速度w旋转。
在一些实施例中,电子束探针或探针扫描的区域尽可能靠近所述微小物体,以施加更大的梯度力;但仍保持与微小物体相间隔。在一些实施例中,电子束探针或探针扫描区域与所述微小物体表面具有对应的形状。例如,微小物体表面是弧形,电子束探针或探针扫描的区域也可以为弧形。同样地,在竖直方向上至少一个所述探针或探针扫描区域可以包括束颈区域,其将在竖直方向上对所述微小物体的一部分施加梯度力,从而控制微小物体或其一部分的高度。
控制梯度力大小的方式也可以与之前的实施例相同。在一些实施例中,可以通过改变至少一个所述荷电粒子束的剂量率改变其梯度力;通过改变至少一个所述荷电粒子束探针或探针扫描区域的形状改变所述梯度力;或者,通过改变所述荷电粒子束探针或探针扫描区域相对所述微小物体的位置改变所述梯度力。当然,也可以采用以上改变梯度力大小方式的组合,选取最优的方式来获得所需的用于操控的梯度力。
在一些实施例中,可以通过多个梯度力“捕获”所述微小物体,将微小物体保持在相对静止的状态。在此状态下,如果改变电子束探针或探针扫描区域的水平位置,就能够水平移动所述微小物体或其一部分的位置;如果改变探针或探针扫描区域的竖直位置,就能够调整所述微小物体或其一部分的高度;如果改变电子束探针或探针扫描区域之间的相对位置转动所述微小物体。
图14和图15的实施例所示的操控方法,如果以电子束探针扫描区域来施加梯度力,那么类似于图13所示的实施例的装置即可以实施。然而,在一些情况下,为了实施更为复杂的操控,也可以采用多电子枪以及多套调节装置的方式来实施。
图16是根据本发明一个实施例的操控微小物体的装置的示意图。如图所 示,本实施例的装置包括:第一电子枪1601和第二电子枪1602以及与二者分别对应的第一组聚光镜1603和1605和第二组聚光镜1604和1606,其中聚光镜1605和1606可以放置计算光阑。第一组聚光镜1603和1605和第二组聚光镜1604和1606分别将两个不同的电子束导向到流体介质腔室1610,其容纳流体介质和待操控的微小物体。以第一组聚光镜1603和1605和第二组聚光镜1604和1606为代表的两组调节装置能够各自独立地调节来自不同电子枪1601和1602的电子束,实现不同梯度力的独立控制,从而能够更加方便灵活地控制微小物体的运动状态。
如本领域技术人员所理解的,图13和图16的实施例仅仅是本发明用于操控微小物体的装置说明性的实施例。由于电子束的操控技术已经相当成熟,各种各样的改进和变型层出不穷。这些改进和变型都可以应用于本发明中从而获得操控更为精确和灵活的微小物体操控装置。
本发明不仅包括捕获和移动微小物体,还包括连接微小物体以制造微装置的方法和装置。
如本文中所定义的,“连接”所指为使两个物体成为关联的一体。在连接后,其中一个物体运动状态的改变将可能影响到另一个物体。在一些实施例中,连接后的两个物体将成为一个整体;在一些实施例中,连接后的两个物体仍可以保留部分的独立性。
如本文所定义的,“接触”所指为两个物体之间的距离足够接近,以使得虽然二者之间可能仍存在距离,但是其与两个物体相互碰触的效果大致相同。换言之,两个微小物体即使接触,二者之间可能仍存在相比其尺寸而言更小的距离。
对于包括纳米尺度在内的微小物体而言,可以采用多种方法将其连接。在一些实施例中,可以直接采用电子束焊接的方式将两个微小物体连接在一起。微小物体的适用范围包括:金属和低熔点有机材料如树脂、塑料等。例如,可 以使用电子束加热两个接触的第一微小物体与第二微小物体,使得第一微小物体与第二微小物体全部或部分融化。由于电子束加热可控性非常高,电子束加热能够高度可选择地将希望的两个微小物体焊接在一起。
在一些实施例中,也可以采用激光加热的方法来连接两个微小物体。然而,受激光波长的限制,激光将会使得某个区域中金属的微小物体全部或部分融化并焊接在一起。例如,可以将两个接触的第一微小物体与第二微小物体置于某个选定的区域中,调节激光使其聚焦在选定的区域,从而将该区域中的第一微小物体和第二微小物体焊接在一起。在一些实施例中,激光加热的方法能够一次连接多个接触的微小物体,以提高效率。
对于不适于采用焊接方式连接的微小物体,例如高熔点材料(如SiO 2等)或者包括容易出现高温分解或直接挥发的材料的微小物体,则可以采用其他方式来进行连接。在一些实施例中,可以在微小物体的表面包覆热固化材料或辐照固化材料,然后在使用电子束或激光加热的方式或辐照方式将这些微小物体连接。再或者,在两个微小物体之间包括粘接剂,在两个微小物体接触后通过粘结剂的固化将这些微小物体连接在一起。
在一些实施例中,第一微小物体和第二微小物体的表面可以包覆包括酚醛树脂以及六亚甲基四胺的膜层。利用电子束将第一微小物体和/或第二微小物体移动并相互接触后,直接使用电子束加热两个接触的第一微小物体和第二微小物体,两个接触的微小物体的膜层融化后并进一步发生热固化反应,从而使得第一微小物体和第二微小物体连接在一起。再例如,利用电子束将第一微小物体和/或第二微小物体移动到某个选定的区域中并相互接触后,调节激光使其聚焦在该选定的区域,从而将该区域中的第一微小物体和第二微小物体通过膜层之间的热固化反应连接在一起。如所理解的,以上的实施例仅仅是微小物体表面包括热固化材料的说明性实施例。在一些实施例中,微小物体可能本身即为热固化材料。或者,在一些实施例中,其他类型的热固化树脂等也可以应 用于本发明的方案之中。
在一些实施例中,微小物体的表面包覆包括辐照固化材料的膜层,例如包括UV固化剂和淀粉的表面层。同样地,利用电子束将第一微小物体和第二微小物体移动到某个选定的区域中,使用紫外光UV辐照该选定的区域,从而将该区域中的第一微小物体和第二微小物体通过辐照固化反应连接在一起。如所理解的,以上的实施例仅仅是微小物体表面包括辐照固化材料层的说明性实施例。其他类型的辐照固化材料也可以应用于本发明的方案之中。
在一些实施例中,流体介质层中包括多个粘合剂颗粒。利用电子束将粘合剂颗粒移动到第一微小物体和第二微小物体之间并与二者都相互接触,直接使用电子束加热粘合剂使得粘合剂软化从而将两个微小物体通过粘合剂相互接触;然后,再使得粘合剂固化从而第一微小物体和第二微小物体连接在一起。同样地,也可以通过激光加热的方式实现通过粘合剂的微小物体粘合。对于某些类型的粘合剂,辐照固化的方式也同样可行。
在一些实施例中,微小物体可能部分是金属或低熔点材料而部分是其他材料。用于与其他微小物体连接的部分是金属或低熔点材料部分,而其他部分不受影响。
以上的多种连接方式可以根据实际需求组合使用。
进一步地,如所理解的,通过调整一个或多个所述荷电粒子束探针或探针扫描区域的水平位置能够定义第一微小物体和所述第二微小物体的水平接触位置;通过调整一个或多个所述荷电粒子束探针或探针扫描区域的竖直位置能够定义第一微小物体和所述第二微小物体的高度接触位置;再进一步,通过调整一个或多个所述荷电粒子束探针或探针扫描区域与所述第一微小物体之间的相对位置定义所述第一微小物体和所述第二微小物体之间的接触角度。由此,相互连接的第一微小物体和第二微小物体能够在任意位置以任意角度相互连接。这为复杂微装置的制造提供了基础。
图17A-图17C示出了根据本发明实施例的制造微装置的示意图。在图17A中,在第一时刻,提供了多个微小物体。各个微小物体时分散的,相互并不接触。在第二时刻,利用一个或多个电子束移动多个微小物体并且使它们相互接触。此时,各个微小物体的排列与希望的微装置大致相同。在第三时刻,通过以上介绍的连接方式将各个微小物体连接,从而得到了希望的微装置,即沿长度方向延伸的棒状微小物体。在图17B和图17C中分别示出了棒状的微小物体与其他微小物体的连接以及棒状微小物体之间的连接。如所理解的,棒状的微小物体可能如图17A所示由更小的微小物体所组成的。
在一些实施例中,如所理解的,图13或图16的操控微小物体的装置也可以用于制造微装置,其包括的电子枪经配置能够在流体介质腔室完成微小物体之间的连接。
在一些实施例中,用于制造微装置的装置可以进一步包括激光装置,其经配置以加热包括两个以上微小物体所在位置的区域。在一些实施例中,用于制造微装置的装置可以进一步包括辐照装置,其经配置以辐照包括两个以上微小物体所在位置的区域。
如所理解的,以上的实施例仅仅是示出了制造微装置的说明性实例。由于本发明将微小物体的操控延伸到了纳米尺度,因此利用本发明的方法能够实现纳米或以上尺度微装置的制造;进一步地,由于本发明的高精确性和灵活性,使得利用本发明的方法能够实现复杂微装置的制造。这些都是技术领域的巨大进步。
进一步地,本发明还包括了自动或至少部分自动地制造微装置的方案。
图18示出了根据本发明一个实施例的制造微装置方法的流程图。如图所示,该方法包括如下步骤:在步骤1810,获取多个微小物体的位置。在一些实施例中,获取微装置制造区域的图像。微装置制造区域可以为流体介质腔室的全部或一部分。使用透射电镜(TEM)或扫描电镜(SEM)的原理及装置,通 过透射电子或者扫描产生的二次电子都能够方便地对微装置制造区域成像,从而获得微装置制造区域的图像。
在一些实施例中,该方法进一步包括:识别微装置制造区域图像中多个微小物体的种类和位置。通过识别能够了解微装置制造区域已有的微小物体的种类和位置,并建立资源库以方便后续算法的使用,从而实现微装置的自动制造。由于微装置制造区域可能包括大小、材料、形状不同的多个微小物体;而且,这些微小物体之间可能相互接触或者相互重叠的,在一些实施例中,通过深度学习的人工智能算法来识别不同种类的微小物体。
举例而言,已知微小物体的种类,将包括多个微小物体的微装置制造区域的图片集作为训练数据,其中图片集中所包括的多个微小物体是经过人工标注的。通过CNN或者其他有监督学习的人工智能神经网络来创建识别模型,输出不同种类的微小物体的识别结果和位置。当然,以上仅仅是一种举例说明,基于其他人工智能神经网络的有监督或无监督的算法也可以应用于此,本发明并不做任何限制。
在一些实施例中,识别微装置制造区域图像中多个微小物体的种类和位置后,建立资源库来分类管理经识别的微小物体。例如,可以建立资源表来实现这一目的。如下表1是一个这样的资源表的实例。
表1
Figure PCTCN2021078355-appb-000011
其中,块1和块2分别代表直径不同的块状微小物体,(X11/Y11/Z11)和(X21/Y21/Z21)分别代表了它们在微装置制造区域的位置(例如中心所在的位置);棒1和棒2分别代表直径相同但长度不同的棒状微小物体,(X11/Y11/Z11,A11/B11/C11)和(X21/Y21/Z21,A21/B21/C21)分别代表了它们在微装置制造区域的位置(例如中心所在的位置)和延伸的方向(例如延伸方向在三个方向的投影角度)。
在步骤1820,获取微装置的装配步骤。在一些实施例中,对于希望制造的微装置,将其制造过程分解为多个装配步骤。这些装配步骤包括:基于微小物体的种类和/或数量形成中间部件的步骤;以及将中间部件与微小物体或其他中间部件连接的步骤等。
在一些实施例中,装配步骤包括将两个以上微小物体移动位置;将经连接的两个以上微小物体移动位置;将接触的两个以上微小物体连接;将连接后的两个以上微小物体与另一微小物体再连接;将两个以上经连接的两个以上微小物体再连接;以及同时连接两个接触的微小物体、两个经连接的两个以上微小物体或者两者组合。
如所理解的,同样的微装置可能对应多个不同的装配步骤。获取与微装置的制造有关的这些装配步骤能够为后续的自动装配提供基础。
在一些实施例中,至少部分基于多个微小物体的种类调整该微装置的装配步骤。综合考虑资源库中所展示的微装置制造区域中已有的微小物体资源以及各个装配步骤要求的微小物体资源,对装配步骤进行调整能够更加高效地完成微装置的装配。
在一些实施例中,至少部分基于多个微小物体的位置调整所述微装置的所述装配步骤。不同的微小物体位置决定了移动这些微小物体所需的能量和时间。为了更加高效地进行微装置的制造,也可以根据多个微小物体的位置调整所述微装置的所述装配步骤。例如,如果某几个微小物体距离较近,而且它们 适于加工成某个装配步骤所需的中间部件,那么可以调整装配步骤就近加工该中间部件,然后再进行后续装配。
进一步地,由于电子束探针或其探针扫描区域是数量有限的,也有必要合理规划以充分利用电子束资源,提高微装置的制造效率。
在一些实施例中,至少部分基于多个微小物体的种类确定利用一个或多个荷电粒子束移动多个微小物体中一者或多者的方式。如所理解的,既可以使用一个电子束探针或其探针扫描区域“捕获”微小物体,也可以使用多个电子束探针或其探针扫描区域“捕获”微小物体。根据多个微小物体的种类以及中间部件的种类和/或移动的距离可以合理地安排移动多个微小物体或中间部件的方式。
在一些实施例中,至少基于多个微小物体的位置规划利用一个或多个荷电粒子束移动多个微小物体中一者或多者的顺序和路线。如所理解的,多个微小物体的位置不同,中间部件的位置也可能不同。因此,可以合理地安排移动哪些微小物体或中间部件以及移动的顺序和路线,提高微装置的制造效率。
在一些实施例中,至少部分基于微装置的装配步骤规划利用一个或多个荷电粒子束移动多个微小物体中一者或多者的顺序和路线。如所理解,装配步骤的先后顺序也会对微小物体的移动产生影响。因此,可以根据装配步骤合理地安排移动哪些微小物体或中间部件以及移动的顺序和路线,提高微装置的制造效率。
如所理解的,本领域技术人员能够综合考虑以上或其他因素,组合地使用上述方法或其他方法,获得适合的经优化的微装置步骤。
在步骤1830,至少部分自动地利用一个或多个荷电粒子束移动所述多个微小物体并且按所述装配步骤形成所述微装置。在获得了装配步骤后,可以将每个装配步骤再分解为多个动作,再将多个动作转换成对于电子束探针或者探针扫描区域的控制指令。这些控制指令能够自动或至少部分自动地操控电子束 调节装置,执行每个装配步骤的各个动作,完成各个装配步骤,从而获得希望的微装置。
图19示出了根据本发明一个实施例的制造微装置的装置结构示意图。如图所示,本实施例的制造微装置的装置,包括:电子枪1901,其经配置以提供电子束;流体介质腔室1902,其经配置以容纳流体介质和多个微小物体;包括聚光镜1903和1904以及计算光阑1905的一个或多个调节装置;处理器1910;成像装置1920,其经配置以获取多个微小物体在流体介质腔室中的图像;其中,处理器1902经配置以根据成像装置获得的流体介质腔室中的图像获取所述多个微小物体的位置;根据希望的微装置,获取微装置的装配步骤;以及控制一个或多个调节装置至少部分自动地利用一个或多个荷电粒子束移动所述多个微小物体并且按所述装配步骤形成所述微装置。如所理解的,处理器1910还可以经配置执行以下功能:识别所述图像中所述多个微小物体的种类和位置;以及,调整微装置的装配步骤。
在一些实施例中,本实施例的装置还包括激光装置,处理器1910还经配置以控制所述激光装置同时连接两个以上接触的微小物体、两个以上接触的经连接的两个以上微小物体或者两者组合。
在一些实施例中,本实施例的装置还包括辐照装置,处理器1910还经配置以控制所述辐照装置同时连接两个以上接触的微小物体、两个以上接触的经连接的两个以上微小物体或者两者组合。
图20A-图20C是根据本发明一个实施例的微装置制造过程示意图。如图所示,希望制造的微装置是一个插合装置,包括插槽和插头。在图20A中,微装置制造区域中散布着多个微小物体,其中既包括多个块状微小物体,也包括多个棒状的微小物体。在获得微装置制造区域的图像并经识别后,能够获得微装置制造区域中包括的多个微小物体资源。
进一步地,根据希望制造的微装置的结果,获取其装配步骤:(1)利用分 散的块状微小物体形成插槽;(2)利用两个棒状微小物体形成插头;(3)同时连接形成插槽和插头的微小物体;以及(4)将插头插入到插槽中。
在图20B中,多个块状微小物体被移动并放置以形成大致插槽的形状;以及两个棒状微小物体被移动以形成大致插头的形状。
在图20C中,经过激光加热整个微装置制造区域,多个块状微小物体被连接形成插槽,其中插槽的开口宽度与棒状微小物体的直径大致相当。两个棒状微小物体被连接形成插头。然后,插头被移动以插入到插槽中。由此,实现希望的微装置的制造。如所理解的,本实施例中全部步骤都可以自动地执行。
本发明的微装置的自动或者至少部分自动装配能够极大地提高微装置的制造效率,为以流水线方式大规模地进行微装置的制造提供了条件,也为本发明的工业化应用提供了基础。
上述实施例仅供说明本发明之用,而并非是对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明范围的情况下,还可以做出各种变化和变型,因此,所有等同的技术方案也应属于本发明公开的范畴。

Claims (26)

  1. 一种操控微小物体的方法,包括:
    提供一个或多个荷电粒子束;
    在流体介质中形成一个或多个非均匀的电荷分布,其中所述一个或多个非均匀的电荷分布向微小物体的一个或多个部分施加一个或多个梯度力;以及控制所述一个或多个梯度力中一者或多者改变所述微小物体的运动状态。
  2. 根据权利要求1所述的方法,其中所述梯度力为库仑力。
  3. 根据权利要求1所述的方法,其中所述一个或多个荷电粒子束使得所述微小物体的所述一个或多个部分带电。
  4. 根据权利要求1所述的方法,其中所述一个或多个非均匀的电荷分布是一个或多个荷电粒子束的探针穿过和/或扫描所述流体介质中的一个或多个区域形成的。
  5. 根据权利要求4所述的方法,其中至少一个所述荷电粒子束的探针或探针扫描的区域间隔并靠近所述微小物体。
  6. 根据权利要求4所述的方法,其中至少一个所述探针或探针扫描区域与所述微小物体表面具有对应的形状。
  7. 根据权利要求4所述的方法,其中在竖直方向上至少一个所述探针或探针扫描区域包括束颈区域,其经配置以将在竖直方向上对所述微小物体的整体或一部分施加梯度力。
  8. 根据权利要求1所述的方法,其中所述一个或多个梯度力捕获所述微小物体。
  9. 根据权利要求1所述的方法,进一步包括:通过改变至少一个所述荷电粒子束的剂量率改变其梯度力。
  10. 根据权利要求1所述的方法,进一步包括:通过改变至少一个所述荷电粒子束探针或探针扫描区域的形状改变所述梯度力。
  11. 根据权利要求1所述的方法,进一步包括:通过改变所述荷电粒子束探针或探针扫描区域相对所述微小物体的位置改变所述梯度力。
  12. 根据权利要求1所述的方法,进一步包括:通过调整一个或多个所述荷电粒子束探针或探针扫描区域的水平位置水平移动所述微小物体。
  13. 根据权利要求1所述的方法,进一步包括:通过调整一个或多个所述荷电粒子束探针或探针扫描区域的竖直位置调整所述微小物体的高度。
  14. 根据权利要求1所述的方法,进一步包括:通过调整一个或多个所述荷电粒子束探针或探针扫描区域之间的相对位置转动所述微小物体。
  15. 一种操控微小物体的装置,包括:
    一个或多个荷电粒子枪,其经配置以提供一个或多个荷电粒子束;
    一个或多个调节装置,其经配置以调节所述一个或多个荷电粒子束;以及
    流体介质腔室,其经配置以容纳流体介质和微小物体,其中,经调节的一个或多个荷电粒子束在流体介质中形成一个或多个非均匀的电荷分布,从而向所述微小物体的一个或多个部分施加一个或多个梯度力;
    其中,所述一个或多个调节装置经配置以通过调节所述一个或多个荷电粒子束控制一个或多个梯度力中一者或多者改变所述微小物体的运动状态。
  16. 根据权利要求15所述的装置,其中所述荷电粒子枪包括电子枪。
  17. 根据权利要求15所述的装置,其中所述流体介质腔室包括液体胞室(liquid cell)。
  18. 根据权利要求15所述的装置,其中所述调节装置包括电磁透镜。
  19. 根据权利要求15所述的装置,其中所述调节装置包括光阑。
  20. 根据权利要求15所述的装置,其中所述调节装置包括涡旋束装置,其经配置以产生携带轨道角动量的荷电粒子束。
  21. 根据权利要求15所述的装置,其中所述调节装置经配置以通过改变至少一个所述荷电粒子束的剂量率改变其梯度力。
  22. 根据权利要求15所述的装置,其中所述调节装置经配置以通过改变至少一个所述荷电粒子束探针或探针扫描区域的形状改变所述梯度力。
  23. 根据权利要求15所述的装置,其中所述调节装置经配置以通过改变所述荷电粒子束探针或探针扫描区域相对所述微小物体的位置改变所述梯度力。
  24. 根据权利要求15所述的装置,其中所述调节装置经配置以通过调整一个或多个所述荷电粒子束探针或探针扫描区域的水平位置水平移动所述微小物体。
  25. 根据权利要求15所述的装置,其中所述调节装置经配置以通过调整一个或多个所述荷电粒子束探针或探针扫描区域的竖直位置调整所述微小物体的高度。
  26. 根据权利要求15所述的装置,其中所述调节装置经配置以通过调整一个或多个所述荷电粒子束探针或探针扫描区域之间的相对位置转动所述微小物体。
PCT/CN2021/078355 2021-02-28 2021-02-28 一种操控微小物体的方法和装置 WO2022178902A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/078355 WO2022178902A1 (zh) 2021-02-28 2021-02-28 一种操控微小物体的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/078355 WO2022178902A1 (zh) 2021-02-28 2021-02-28 一种操控微小物体的方法和装置

Publications (1)

Publication Number Publication Date
WO2022178902A1 true WO2022178902A1 (zh) 2022-09-01

Family

ID=83047724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078355 WO2022178902A1 (zh) 2021-02-28 2021-02-28 一种操控微小物体的方法和装置

Country Status (1)

Country Link
WO (1) WO2022178902A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292496A (zh) * 2000-12-01 2001-04-25 清华大学 纳米近场光钳方法
CN101788571A (zh) * 2010-01-28 2010-07-28 哈尔滨工业大学 一种激光近场光镊与afm探针相复合的纳米操作方法
CN110687142A (zh) * 2019-09-30 2020-01-14 南京大学 一种实现低电子剂量高分辨成像的光阑、装置及方法
WO2020100077A1 (en) * 2018-11-14 2020-05-22 Indian Institute Of Science An optical nano-manipulator for particles in a fluid
CN211293469U (zh) * 2019-11-25 2020-08-18 华南师范大学 一种在散焦非线性介质中约束粒子的装置
CN111816344A (zh) * 2020-07-01 2020-10-23 浙江大学 同时操纵多个瑞利区低折射率微粒且高捕获效率的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292496A (zh) * 2000-12-01 2001-04-25 清华大学 纳米近场光钳方法
CN101788571A (zh) * 2010-01-28 2010-07-28 哈尔滨工业大学 一种激光近场光镊与afm探针相复合的纳米操作方法
WO2020100077A1 (en) * 2018-11-14 2020-05-22 Indian Institute Of Science An optical nano-manipulator for particles in a fluid
CN110687142A (zh) * 2019-09-30 2020-01-14 南京大学 一种实现低电子剂量高分辨成像的光阑、装置及方法
CN211293469U (zh) * 2019-11-25 2020-08-18 华南师范大学 一种在散焦非线性介质中约束粒子的装置
CN111816344A (zh) * 2020-07-01 2020-10-23 浙江大学 同时操纵多个瑞利区低折射率微粒且高捕获效率的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG HAIMEI, MIRSAIDOV UTKUR M., WANG LIN-WANG, MATSUDAIRA PAUL: "Electron Beam Manipulation of Nanoparticles", NANO LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 12, no. 11, 14 November 2012 (2012-11-14), US , pages 5644 - 5648, XP055962456, ISSN: 1530-6984, DOI: 10.1021/nl302788g *

Similar Documents

Publication Publication Date Title
Jung et al. Three-dimensional nanoprinting via charged aerosol jets
Lin et al. Opto-thermophoretic assembly of colloidal matter
Donato et al. Optical trapping, optical binding, and rotational dynamics of silicon nanowires in counter-propagating beams
US10603685B2 (en) Methods and systems for assembly of particle superstructures
Fujita et al. Tip-enhanced Raman scattering microscopy: Recent advance in tip production
Nito et al. Quantitative evaluation of optical forces by single particle tracking in slit-like microfluidic channels
Kim et al. Deterministic assembly of metamolecules by atomic force microscope-enabled manipulation of ultra-smooth, super-spherical gold nanoparticles
Liu et al. Multi-scale structure patterning by digital-mask projective lithography with an alterable projective scaling system
Castillo-Orozco et al. Laser-induced subwavelength structures by microdroplet superlens
Miao et al. Trapping and manipulation of biological particles through a plasmonic platform
Shiloh et al. 3D shaping of electron beams using amplitude masks
CN104900291B (zh) 一种spp光镊系统
Zhang et al. Distributed force control for microrobot manipulation via planar multi‐spot optical tweezer
WO2022178902A1 (zh) 一种操控微小物体的方法和装置
WO2022178901A1 (zh) 电子镊子
WO2022178903A1 (zh) 一种制造微装置的方法和装置
WO2022178904A1 (zh) 一种微装置的制造方法及装置
US20240136149A1 (en) Electronic tweezers
Korobtsov et al. Optical trap formation with a four-channel liquid crystal light modulator
Yi et al. Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres
KR101301969B1 (ko) 플라즈몬 나노안테나를 이용한 광학 트랩 형성 장치
CN204760056U (zh) Spp光镊系统
Oleshko et al. Electron tweezers as a tool for high-precision manipulation of nanoobjects
Yang et al. Effects of light size and intensity on photoconductive effect-based optically-induced dielectrophoresis for three-dimensional manipulation
KR20140009878A (ko) 나노입자로 조립된 3차원 구조물 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927337

Country of ref document: EP

Kind code of ref document: A1