WO2022178752A1 - 呼气代谢测定系统 - Google Patents

呼气代谢测定系统 Download PDF

Info

Publication number
WO2022178752A1
WO2022178752A1 PCT/CN2021/077865 CN2021077865W WO2022178752A1 WO 2022178752 A1 WO2022178752 A1 WO 2022178752A1 CN 2021077865 W CN2021077865 W CN 2021077865W WO 2022178752 A1 WO2022178752 A1 WO 2022178752A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
expiratory
air
breath
rod
Prior art date
Application number
PCT/CN2021/077865
Other languages
English (en)
French (fr)
Inventor
胡立刚
陶晨
江桂斌
Original Assignee
中国科学院生态环境研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院生态环境研究中心 filed Critical 中国科学院生态环境研究中心
Priority to PCT/CN2021/077865 priority Critical patent/WO2022178752A1/zh
Priority to US18/547,739 priority patent/US20240180444A1/en
Publication of WO2022178752A1 publication Critical patent/WO2022178752A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/082Evaluation by breath analysis, e.g. determination of the chemical composition of exhaled breath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/097Devices for facilitating collection of breath or for directing breath into or through measuring devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/40Animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/42Evaluating a particular growth phase or type of persons or animals for laboratory research
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • G01N33/4975Physical analysis of biological material of gaseous biological material, e.g. breath other than oxygen, carbon dioxide or alcohol, e.g. organic vapours

Definitions

  • the present disclosure relates to the field of biological experiments, and in particular, to a system for measuring exhalation metabolism.
  • the present disclosure provides a system for measuring breath metabolism to solve the above-mentioned technical problems.
  • a breath metabolism measurement system comprising:
  • Organic steam micro-injection module the outlet of which outputs organic steam
  • the first end of the air pump is connected with the outlet of the organic vapor micro-injection module; the second end of the air pump is connected with the first end of the liner;
  • a single breath imprint sampling module the experimental animals are placed in the single breath imprint sampling module, the air outlet of the single breath imprint sampling module is connected with the second end of the liner, and the liner A stirring bar adsorption extraction rod is set to sample the exhaled metabolites of the experimental animals;
  • an aerosol nozzle at least one nozzle interface is radially arranged; the nozzle interface is connected to the air outlet of the single breath imprint sampling module;
  • the gas solenoid valve is connected with the first end of the aerosol nozzle
  • a zero-stage air purifier the air outlet of the zero-stage air purifier is connected to the air inlet interface of the gas solenoid valve and/or the air inlet of the single breath imprint sampling module; the gas solenoid valve controls The zero-level air output by the zero-level air purifier enters the monomer expiratory imprint sampling module and simultaneously blocks the entry of inhaled exposed substances into the monomer expiratory imprint sampling module; and
  • the automatic solvent desorption module is used to detect the exhaled metabolites collected by the stirring bar adsorption extraction rod.
  • it further includes: an external standard module connected to the second end of the liner, the external standard module is used to simulate the exhalation process of the experimental animal, and an external standard method for target metabolites Quantitative; the organic vapor interface of the external standard module is connected to the air outlet of the zero-stage air purifier.
  • an air background module is further included, connected to the second end of the liner, and the air background module is used for detecting the air background in the expiratory metabolism measurement system.
  • the monomer breath blot sampling module includes:
  • a face mask, the cross section of the face mask is a double-layer lumen structure
  • an oral-nasal interface for an experimental animal the first end of the oral-nasal interface for the experimental animal is connected with the second end of the mask; the head of the experimental animal extends into the second end of the oral-nasal interface for the experimental animal, and is connected to the mask
  • the second end of the inner lumen is opposite;
  • the first end of the main pipe is spliced with the second end of the mask
  • the moisture-absorbing strip board the first end of the moisture-absorbing strip-shaped board is connected to the first end of the main pipe, the second end of the moisture-absorbing strip board is connected with the second end of the main pipe through a limit baffle, and the The hygroscopic strip was opposite the ventral surface of the experimental animal.
  • the main pipe and the moisture absorption strip are transparent structures
  • the single-body breath blot sampling module further includes:
  • the lens of the camera is opposite to the ventral surface of the experimental animal
  • a breathing video collector receiving the breathing video of the experimental animal captured by the camera.
  • it further includes: a multifunctional jet, a first end of the multifunctional jet is connected to a second end of the aerosol nozzle, and a second end of the multifunctional jet is connected to the zero
  • the air outlet of the air purifier is connected to the air purifier; the multifunctional jet includes:
  • Two-phase nozzle the first end of the two-phase nozzle extends into the ejector chamber, the second end of the two-phase nozzle is connected with the air outlet of the zero-stage air purifier, and the two-phase nozzle is opposite to
  • the fluid in the ejector chamber is pneumatically atomized and an aerosol is generated;
  • the turbulent flow cone is arranged in the ejector chamber, and the turbulent flow cone is arranged opposite to the first end of the two-phase nozzle, and impacts the aerosol in the ejector chamber.
  • the organic vapor microinjection module includes:
  • the cavity of the syringe is filled with organic steam
  • the syringe is inserted into the tank body of the constant temperature tank seat;
  • the injection rod is fixed on the thermostatic tank seat
  • a driving device drives the stress plate to move toward the thermostatic bath seat along the guide rod, and the stress plate presses the injection rod of the syringe, so that the organic vapor is output through the injection port of the syringe.
  • an expiratory imprint operation cabin for accommodating the air pump, the single unit expiratory imprint sampling module, an aerosol nozzle and a gas solenoid valve; the expiratory imprint
  • the operating cabin includes:
  • the air suction pump is passed through the top cover and is connected with the outlet of the organic vapor micro-injection module;
  • the second end of the aerosol nozzle is penetrated through the bottom cover;
  • the top cover and the bottom cover are embedded with inner rails and outer rails;
  • Two curved sliding doors are arranged between the top cover and the bottom cover, and the two curved sliding doors slide along the inner track and the outer track respectively through rollers;
  • a support frame two ends of the support frame are respectively connected to the top cover and the bottom cover;
  • a support plate is provided between the top cover and the bottom cover, and the support plate is penetrated on the support frame.
  • the automatic solvent desorption module includes:
  • the transmission rubber rod is arranged between the two smooth electromagnet rods, and the two ends of the smooth electromagnet rod and the transmission rubber rod are respectively penetrated in the accommodating cavity ;
  • the sample bottle is placed horizontally between the two smooth electromagnetic rods; the sample bottle is equipped with a solvent and the stirring rod adsorption extraction rod, and the stirring rod adsorption extraction rod has a magnetic core;
  • a stepping motor which electromagnetically drives the smooth electromagnetic rod to rotate
  • the desorption process controller controls the rotation direction, rotation speed and rotation time of the sample vial.
  • the automatic solvent desorption module further comprises: a sample vial magnetic tube holder, into which the desorbed sample vial is inserted vertically into the sample vial magnetic tube holder; each sample vial is magnetically
  • the two ends of the tube rack are provided with magnetic fields with opposite directions of magnetic fields, so that the agitator in the sample bottle is adsorbed and the extraction rod is attached to the inner wall of the sample bottle.
  • the expiratory metabolism measurement system provided by the present disclosure can realize the simultaneous operation of inhalation exposure and expiratory blotting for experimental animals.
  • the setting of the external standard module in the present disclosure can simulate the exhalation process of the experimental animal and the external standard method quantification of the target metabolite, which is beneficial to the research on the target.
  • the setting of the air background module in the present disclosure can detect the air background in the expiratory metabolic system, and plays an important role in studying the influence of the air background on the expiratory metabolic system.
  • the arrangement of the moisture absorption strip plate in the single breath imprint sampling module in the present disclosure ensures that the metabolites in the exhaled breath of the experimental animals entering the carrier gas are not disturbed by excreted substances, ie, feces and urine.
  • the breathing imprint operation cabin can be opened at any angle, which is more convenient for experimental operation.
  • the automatic solvent desorption module in the present disclosure keeps the solvent desorption operation process consistent, ensures a relatively stable desorption efficiency, and provides convenience for the pretreatment of samples during offline detection.
  • FIG. 1 is a schematic diagram of a system for measuring breath metabolism according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of another perspective of the exhalation metabolism measurement system according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic front view of a system for measuring breath metabolism according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic side view of a system for measuring breath metabolism according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of disassembly of the structure of FIG. 1 .
  • FIG. 6 is a schematic diagram of disassembly of the structure of FIG. 2 .
  • FIG. 7 is a schematic diagram of disassembly of the structure of FIG. 3 .
  • FIG. 8 is a schematic diagram of disassembly of the structure of FIG. 4 .
  • FIG. 9 is a partial enlarged view of the automatic solvent desorption module in FIG. 1 .
  • Figure 10 is a schematic diagram of the structure of a single breath imprint sampling module.
  • Figure 11 is a schematic cross-sectional structure diagram of a single breath imprint sampling module.
  • Figure 12 is a schematic diagram of the structure of the external standard module.
  • FIG. 13 is a schematic structural diagram of a gas solenoid valve.
  • FIG. 14 is a schematic diagram of the structure of the multifunctional jet.
  • the present disclosure provides a breath metabolism measurement system, comprising: an organic vapor microinjection module, an air pump, a monomer breath imprint sampling module, an aerosol nozzle, a gas solenoid valve, a zero-stage air purifier and an automatic solvent desorption module;
  • the first end of the air pump is connected to the outlet of the organic vapor microinjection module, the second end of the air pump is connected to the first end of the liner;
  • the air outlet of the single breath imprint sampling module is connected to the second end of the liner, and the liner is equipped with
  • the stirring bar adsorption extraction rod samples the exhaled metabolites of the experimental animals;
  • the air outlet of the monomer exhaled imprint sampling module is connected with the nozzle interface of the aerosol nozzle, and the air inlet is connected with the air outlet of the zero-stage air purifier.
  • gas solenoid valve controls the entry of zero-level air into the monomer breath blot sampling module and synchronously blocks the entry of inhaled exposed substances into the monomer breath blot sampling module; the automatic solvent desorption module is used for the breath metabolism collected by the stirring bar adsorption extraction rod things are detected.
  • the present disclosure realizes the simultaneous operation of inhalation exposure and expiratory blotting on experimental animals.
  • inhalation exposure refers to a process in which a substance with an inhalation exposure route naturally or artificially forms an aerosol and is introduced into a living body through the respiratory tract during natural breathing of a living body.
  • breath blot refers to the collection and detection of metabolites (eg, volatile organic compounds) contained in exhaled aerosols, ie, the sampling and detection process in a breath metabolome study.
  • metabolites eg, volatile organic compounds
  • the research object of metabolomics is endogenous metabolites (intermediate or metabolic end products).
  • endogenous metabolites intermediate or metabolic end products.
  • metabolomes can be divided into blood, tissue, urine, exhaled metabolomes, etc.
  • the expiratory metabolome has the characteristics of continuous, non-invasive and convenient sampling in many metabolome studies. Substances in the blood that are directly excreted by the air-blood barrier or the respiratory tract's own metabolism are mixed with the air to form aerosols, including endogenous volatile organic compounds, non-volatile organic compounds, inorganic gases, etc. Among them, endogenous volatile organic compounds are respiratory The most studied substance in the gas metabolome. Comparing the differences in sampling methods determined by sample sources in different metabolomic studies, expiratory metabolomic studies have the advantage of being able to perform continuous sampling.
  • the metabolome not only reflects the metabolism of respiratory tract-related tissues, but also reflects secondary and systemic metabolism by presenting metabolites in the blood.
  • a breath metabolism assay system is provided. As shown in FIGS. 1 to 8 , before the first exemplary embodiment of the present disclosure is introduced in detail, it should be noted in advance that the first end to the second end are vertically top-to-bottom, and horizontal The direction is from right to left.
  • the breath metabolism measurement system of the present disclosure includes: an organic vapor microinjection module 1, an air pump 32, a monomer breath blot sampling module 36, an aerosol nozzle 311, a gas solenoid valve 35, a zero-stage air purifier 42 and an automatic solvent desorption module 2.
  • the first end of the air pump 32 is connected to the outlet of the organic vapor micro-injection module 1, and the outlet of the organic vapor micro-injection module 1 outputs organic steam; the second end of the air pump 32 is connected to the first end of the liner 33; the monomer exhales
  • the air outlet of the imprint sampling module 36 is connected to the second end of the liner 33, the air outlet of the single breath imprint sampling module 36 is connected to the nozzle interface of the aerosol nozzle 311, and the air inlet of the single breath imprint sampling module 36 is connected to the nozzle interface of the aerosol nozzle 311.
  • the air outlet of the zero-stage air purifier 42 is connected; the liner pipe 33 is also provided with a gas shunt solenoid valve 34;
  • the air port 351 is connected to the zero-level air purifier 42, controls the zero-level air to enter the monomer expiratory imprint sampling module 36 and simultaneously blocks the inhalation of exposed substances from entering the monomer expiratory imprint sampling module 36, and the liner 33 is provided with a stirrer for adsorption
  • the extraction rod samples the exhaled metabolites of the experimental animals, and then uses the automatic solvent desorption module 2 to detect exhaled metabolites collected by the stirring bar adsorption extraction rod.
  • the organic vapor microinjection module 1 includes: a syringe, a thermostatic bath seat 12, a guide rod, a stress plate 11 and a driving device.
  • the syringe is inserted into the tank of the constant temperature tank base 12 , the cavity of the syringe is filled with organic steam, and the constant temperature tank base 12 has the function of keeping heat or promoting evaporation of the organic vapor in the syringe cavity.
  • the guide rod is fixed on the constant temperature tank seat 12, the stress plate 11 is sleeved on the guide rod, the driving device drives the stress plate 11 to move along the guide rod to the constant temperature tank seat 12, and the stress plate 11 presses the syringe injection rod, so that the organic
  • the steam is output through the injection port of the syringe.
  • the zero-stage air purifier 42 is connected to the cavity of the syringe to provide it with pure air.
  • hydraulic push rods or mechanical push rods of stepping motors can be selected for the driving device.
  • the bottom of the zero-stage air purifier 42 is provided with a shock-absorbing foot post 41 to reduce the mechanical vibration of the zero-stage air purifier 42 during operation.
  • the automatic solvent desorption module 2 includes: a housing cavity, a cover 21, a cover snap 25, two smooth electromagnetic rods 22, a transmission rubber rod 23, a sample vial, a sample vial magnetic tube holder 24, Stepper motor 26 and desorption process controller 27.
  • the transmission rubber rod 23 is arranged between the two smooth electromagnet rods 22, and both ends of the smooth electromagnet rod 22 and the transmission rubber rod 23 are respectively connected with the wall surface of the accommodating cavity.
  • the sample bottle is placed horizontally between the two smooth electromagnetic rods 22 , and the sample bottle is equipped with a solvent and the stirring bar adsorption extraction rod, and the stirring bar adsorption extraction rod has a magnetic core.
  • the stepping motor 26 electromagnetically drives the smooth electromagnetic rod 22 to rotate.
  • the desorption process controller 27 controls the rotation direction, rotation speed and rotation time of the sample vial.
  • the sample vial containing the solvent and stirring bar adsorption extraction rod (with magnetic core) horizontally between the smooth electromagnetic rod 22 and the transmission rubber rod 23.
  • the magnetic field direction is the same as the magnetic field direction of the smooth electromagnetic rod 22 after electrification.
  • the stirring bar will absorb the extraction rod and bounce off the solvent.
  • the transmission rubber rod 23 continuously rolls the sample bottle through friction, and the stirring bar adsorption extraction rod is continuously dipped in the solvent.
  • the stepping motor 26 drives the transmission rubber rod 23 to rotate, and the rotation direction, rotation speed and rotation time of the transmission rubber rod 23 are adjusted by the desorption process controller 27 .
  • the desorption process controller 27 automatically turns on the power supply of the smooth electromagnetic rod 22, the stirring rod adsorbs the extraction rod and bounces up, and the automatic desorption process ends.
  • the stirring bar in the sample bottle is attached to the inner wall of the bottle, which is convenient for transferring the desorbed solution from the bottle mouth through the pipette.
  • the gas flow controller 43 is selected to control the gas flow rate of the above-mentioned gas path part.
  • an expiratory imprint operation cabin 3 for accommodating the air pump 32 , the monomer exhalation imprint sampling module 36 , the aerosol nozzle 311 and the gas solenoid valve 35 .
  • the expiratory imprint operation cabin 3 will be further introduced below.
  • the expiratory print operation cabin 3 includes: a top cover 30 , a bottom cover 313 , two curved sliding doors 31 , a support frame 310 and a support plate 39 .
  • the air pump 32 is passed through the top cover 30 and is connected to the outlet of the organic vapor micro-injection module 1; the second end of the aerosol nozzle 311 is passed through the bottom cover 313; the top cover 30 and the bottom cover 313 are both embedded with internal Track and outer track; two curved sliding doors 31 are respectively arranged between the top cover 30 and bottom cover 313, and the two curved sliding doors 31 slide along the inner track and the outer track respectively through rollers; both ends of the support frame 310 are respectively connected to the top cover 30 and the bottom cover 313 ; the support plate 39 is arranged between the top cover 30 and the bottom cover 313 , and the support plate 39 passes through the support frame 310 .
  • the curved sliding door 31 is half-moon-shaped and has rollers.
  • the two curved sliding doors 31 with different curvatures can slide at any angle along the inner track and the outer track of the top cover 30 and the bottom cover 313 respectively, which is convenient for exhalation imprinting in the operation cabin 3 experimental operation of
  • the single breath blot sampling module 36 includes: a mask 360 , an air inlet 3601 , an air outlet 3602 , a laboratory animal mouth-nose interface 3603 , a main pipe 366 , and a moisture absorption strip plate 365 .
  • the cross-section of the mask 360 is a double-lumen tube structure.
  • the air inlet 3601 communicates with the first end of the inner lumen 3604 of the mask 360 .
  • the air outlet 3602 communicates with the outer wall surface of the outer lumen of the mask 360 .
  • the experimental animal oral-nasal interface 3603 is a hollow conical tube where the mask 360 contacts the experimental animal's head. When the head of the experimental animal is inserted into the mouth and nose interface 3603, the mouth and nose end of the experimental animal extends out of the mouth and nose interface 3603 and faces the inner layer lumen 3604 of the mask, and the air in the double lumen of the mask 360 can pass from the air inlet 3601 to the air outlet 3602 One-way flow.
  • the mask 360 can be spliced with the main pipe 366 , the protrusion at the bottom of the mask 360 is facing the slot of the main pipe 366 , and the slot communicates with the fixing screw holes 362 , and the mask 360 is fastened with screws through the fixing screw holes 362 The protrusions on the bottom hold the mask 360 to the main tube 366.
  • a limit pin 361 can be inserted into the opening of the main pipe 366 near the mask 360, and used together with the mask 360 to limit the free movement of the head of the experimental animal, the size of the opening of the limit pin 361 is smaller than The size of the head measured by the experimental animal is larger than the size of the neck to ensure that the upper respiratory tract of the experimental animal is not compressed when the head movement is restricted.
  • the tip of the limiting plug 361 has a hemispherical protrusion, which can prevent the limiting plug 361 from slipping out of the transparent tube 366 .
  • a limit pin 361 can be inserted into the opening of the main pipe 366 away from the mask 360 to ensure that the experimental animal cannot escape from the transparent tube 366 even if it is separated from the mask during the operation.
  • those skilled in the art can specifically customize the inner diameter of the main pipe 366 according to the body shape of the experimental animal, so as to achieve the effect of preventing the experimental animal from turning around, which is not specifically limited here, thereby further reducing the experimental animal. Possibility of escaping supervisor 366.
  • the first end of the moisture-absorbing strip plate 365 is connected to the first end of the main pipe 366, and the second end of the moisture-absorbing strip plate 365 is inserted into the position of the main pipe 366 away from the opening of the mask 360.
  • the latch 361 is fixed, and the hygroscopic strip plate 365 is opposite to the ventral surface of the experimental animal for absorbing urine and keeping the inside of the main pipe 366 dry.
  • it further includes: a camera fixing ring 363 , a camera 364 and a breathing video collector 44 .
  • the camera fixing ring 363 can be sleeved on the main pipe 366, the bottom of the camera fixing ring 363 is connected with the camera 364, the lens of the camera 364 points to the chest and abdomen of the experimental animal, and is used to shoot the breathing video, and the camera 364 is connected with the breathing video collector 44 through a data cable , to receive the breathing video of the experimental animal captured by the camera 364 .
  • the video data saved in the breathing video collector 44 can also be used to reflect the physiological state of breathing of experimental animals in the expiratory trace.
  • the main tube 366, the moisture absorption strip 365 and the camera fixing ring 363 can all be transparent structures, such as fully transparent structures, partially transparent structures with transparent main shooting positions, etc.
  • the expiratory metabolism measurement system further includes: a multifunctional jet 312, the first end of the multifunctional jet 312 is connected to the second end of the aerosol nozzle 311, and the second end of the multifunctional jet 312 is connected to the zero-order The air outlet of the air purifier 42 is connected.
  • the multifunctional jet 312 is further described below, as shown in FIG. 14 .
  • the multifunctional ejector 312 includes an ejector chamber 3125 , a liquid level sensor 3124 , a gas-liquid interface 3122 , a two-phase nozzle 3123 and a turbulent cone 3121 .
  • the ejector chamber 3125 is connected to the first end of the gas-liquid interface 3122 .
  • the second end of the gas-liquid interface 3122 is respectively connected to the organic vapor microinjection module 1 and/or an external supplementary device. After the gas-liquid interface 3122 is connected to the organic vapor microinjection module 1, it can be used for both inhalation exposure of organic vapors and for exposure to organic vapors. Internal standard quantification of target metabolites.
  • external supplementary devices such as optional gas cylinders, fluid replacement devices, etc. are used.
  • the liquid level sensor 3124 is connected to an externally connected liquid replenishing device for controlling the liquid replenishing process.
  • the first end of the two-phase nozzle 3123 extends into the ejector chamber 3125, and the second end of the two-phase nozzle 3123 is connected to the air outlet of the zero-stage air purifier 42.
  • the two-phase nozzle 3123 conducts liquid in the ejector chamber 3125. Pneumatically atomizes and produces an aerosol.
  • the turbulent flow cone 3121 is arranged in the ejector chamber 3125, and the turbulent flow cone 3121 is arranged opposite to the first end of the two-phase nozzle 3123, and impacts the aerosol in the ejector chamber 3125, which can eliminate the larger particle size in the aerosol particles to facilitate inhalation exposure.
  • the two-phase nozzle 3123 cooperates with the turbulent cone 3121 to dilute and mix the organic vapor, gas or aerosol in the ejector chamber 3125.
  • the expiratory metabolism measurement system further includes: an external standard module 37 .
  • the external standard module 37 is used to simulate the exhalation process of experimental animals and the external standard method quantification of target metabolites. As shown in FIG. 12 , the external standard module 37 is connected to the second end of the liner 33 .
  • the organic vapor interface 371 of the external standard module 37 is connected to the air outlet of the zero-stage air purifier 42 .
  • the breath metabolism measurement system further includes: an air background module 38 .
  • the air background module 38 is used to detect the air background in the expiratory metabolism measurement system.
  • the air background module 38 is connected to the second end of the liner 33 .
  • the present disclosure provides an expiratory metabolism measurement system capable of synchronizing inhalation exposure and expiratory imprinting on experimental animals, which solves the problem that the current inhalation exposure and expiratory imprinting are difficult to combine in real time.
  • the real-time response of expiratory metabolome changes to inhalation exposure plays an irreplaceable role in revealing the immediate health effects of exogenous substances entering the organism through inhalation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Obesity (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种呼气代谢测定系统,包括:有机蒸汽微量注射模块(1)、抽气泵(32)、单体呼气印迹采样模块(36)、气溶胶喷嘴(311)、气体电磁阀(35)、零级空气纯化仪(42)和自动溶剂解吸模块(2);抽气泵(32)第一端与有机蒸汽微量注射模块(1)的出射口连接,抽气泵(32)第二端与衬管(33)第一端连接;单体呼气印迹采样模块(36)的出气口与衬管(33)第二端连接,衬管(33)内设搅拌子吸附萃取棒对实验动物的呼气印迹进行采样;单体呼气印迹采样模块(36)的出气口与气溶胶喷嘴(311)的喷嘴接口连接,其进气口与零级空气纯化仪(42)的出气口连接;气体电磁阀(35)控制零级空气进入单体呼气印迹采样模块(36)并同步阻断吸入暴露物质进入单体呼气印迹采样模块(36);自动溶剂解吸模块(2)用于对搅拌子吸附萃取棒采集的呼气代谢物进行检测。

Description

呼气代谢测定系统 技术领域
本公开涉及生物实验领域,尤其涉及一种呼气代谢测定系统。
背景技术
在传统的呼气代谢组乃至其他代谢组研究中,已实现对吸入暴露后的时间点代谢进行检测,但目前尚缺乏吸入暴露与呼气印迹实时结合的技术。
在生物学、医学、药学等领域的研究中,呼气代谢组变化对吸入暴露的实时响应在揭示外源物质通过吸入途径进入生物体后的即时健康效应方面具有不可替代的作用。
因此,亟需提供一种能够实时地将自然吸入暴露与呼气印迹技术结合的呼气代谢测定系统。
发明内容
(一)要解决的技术问题
本公开提供了一种呼气代谢测定系统,以解决以上所提出的技术问题。
(二)技术方案
根据本公开的一个方面,提供了一种呼气代谢测定系统,包括:
有机蒸汽微量注射模块,其出射口输出有机蒸汽;
抽气泵,所述抽气泵第一端与所述有机蒸汽微量注射模块的出射口连接;所述抽气泵第二端与衬管的第一端连接;
单体呼气印迹采样模块,实验动物置于所述单体呼气印迹采样模块内,所述单体呼气印迹采样模块的出气口与所述衬管的第二端连接,所述衬管内设置搅拌子吸附萃取棒,对所述实验动物的呼气代谢物进行采样;
气溶胶喷嘴,呈辐射状设置至少一个喷嘴接口;所述喷嘴接口与所述单体呼气印迹采样模块的出气口连接;
气体电磁阀,与气溶胶喷嘴第一端连接;
零级空气纯化仪,所述零级空气纯化仪的出气口与所述气体电磁阀的进气接口和/或所述单体呼气印迹采样模块的进气口连接;所述气体电磁阀控制所述零级空气纯化仪输出的零级空气进入单体呼气印迹采样模块并同步阻断吸入暴露物质进入单体呼气印迹采样模块;以及
自动溶剂解吸模块,用于对所述搅拌子吸附萃取棒采集的呼气代谢物进行检测。
在本公开的一些实施例中,还包括:外标模块,与所述衬管第二端连接,所述外标模块用于模拟所述实验动物呼气过程,以及目标代谢物的外标法定量;所述外标模块的有机蒸汽接口与所述零级空气纯化仪的出气口连接。
在本公开的一些实施例中,还包括:空气背景模块,与所述衬管第二端连接,所述空气背景模块用于对所述呼气代谢测定系统中的空气背景进行检测。
在本公开的一些实施例中,所述单体呼气印迹采样模块包括:
面罩,所述面罩的截面呈双层腔管结构;
进气口,与所述面罩内层腔管第一端相连通;
出气口,与所述面罩外层腔管的外壁面相连通;
实验动物口鼻接口,所述实验动物口鼻接口第一端与所述面罩第二端相连;所述实验动物的头部伸入所述实验动物口鼻接口第二端,且与所述面罩内层腔管第二端相对;
主管,所述主管第一端与所述面罩第二端拼插连接;以及
吸湿条形板,所述吸湿条形板第一端与所述主管第一端拼插连接,所述吸湿条形板第二端与所述主管第二端通过限位挡板连接,所述吸湿条形板与所述实验动物的腹面相对。
在本公开的一些实施例中,所述主管和所述吸湿条形板为透明结构,所述单体呼气印迹采样模块还包括:
摄像头固定环,套设于所述主管外壁上;
摄像头,与所述摄像头固定环连接;所述摄像头的镜头与所述实验动物的腹面相对;以及
呼吸视频采集器,接收所述摄像头拍摄的所述实验动物呼吸视频。
在本公开的一些实施例中,还包括:多功能射流器,所述多功能射流器第一端与所述气溶胶喷嘴第二端连接,所述多功能射流器第二端与所述零级空气纯化仪的出气口连接;所述多功能射流器包括:
射流器腔室,与所述气液接口的第一端连接;
气液接口,所述气液接口的第二端分别与所述机蒸汽微量注射模块连接;
两相喷嘴,所述两相喷嘴的第一端伸入所述射流器腔室内,所述两相喷嘴的第二端与所述零级空气纯化仪的出气口连接,所述两相喷嘴对所述射流器腔室中液体进行气动雾化并产生气溶胶;以及
湍流锥,设置在所述射流器腔室内,且所述湍流锥与所述两相喷嘴的第一端相对设置,对所述射流器腔室内的气溶胶进行撞击。
在本公开的一些实施例中,所述有机蒸汽微量注射模块包括:
注射器,所述注射器腔体内充入有机蒸汽;
恒温槽座,所述注射器插设在所述恒温槽座的槽体内;
导杆,所述推注杆固定在所述恒温槽座上;
应力板,套设在所述导杆上;以及
驱动装置,驱动所述应力板沿所述导杆向所述恒温槽座移动,所述应力板压动所述注射器推注杆,使所述有机蒸汽通过所述注射器注射口输出。
在本公开的一些实施例中,还包括:呼气印迹操作舱,用于容置所述抽气泵、所述单体呼气印迹采样模块、气溶胶喷嘴和气体电磁阀;所述呼气印迹操作舱包括:
顶盖,所述抽气泵穿设于所述顶盖,且与所述有机蒸汽微量注射模块的出射口连接;
底盖,所述气溶胶喷嘴第二端穿设于所述底盖;所述顶盖和所述底盖均内嵌设有内轨道和外轨道;
两块曲面滑动门,设置在所述顶盖和所述底盖间,且两块曲面滑动门通过滚轮分别沿所述内轨道和所述外轨道滑动;
支撑架,所述支撑架两端分别连接所述顶盖和所述底盖;以及
支撑盘,所述支撑盘设置在所述顶盖和所述底盖间,且所述支撑盘穿设在所述支撑架上。
在本公开的一些实施例中,所述自动溶剂解吸模块包括:
容置腔体,
两个光滑电磁棒和一个传动橡胶棒,所述传动橡胶棒设置在两个所述光滑电磁棒间,且所述光滑电磁棒和所述传动橡胶棒的两端分别穿设于容置腔体;
样品瓶,水平放置在两个所述光滑电磁棒间;所述样品瓶内装有溶剂和所述搅拌子吸附萃取棒,所述搅拌子吸附萃取棒带有磁芯;
步进电机,电磁驱动所述光滑电磁棒转动;以及
解吸过程控制器,控制所述样品瓶的转动方向、转动速度和转动时间。
在本公开的一些实施例中,所述自动溶剂解吸模块还包括:样品瓶磁性管架,将完成解吸的所述样品瓶竖直插入所述样品瓶磁性管架;每个所述样品瓶磁性管架两端设置有磁场方向相反的磁场,使所述样品瓶内的所述搅拌子吸附萃取棒贴附在所述样品瓶内壁上。
(三)有益效果
从上述技术方案可以看出,本公开呼气代谢测定系统至少具有以下有益效果其中之一或其中一部分:
(1)本公开提供的呼气代谢测定系统能够实现对实验动物进行吸入暴露和呼气印迹的同步操作。
(2)本公开中外标模块的设置能够模拟所述实验动物呼气过程以及目标代谢物的外标法定量,利于进行靶向的研究。
(3)本公开中空气背景模块的设置能够对呼气代谢系统中的空气背景进行检测,在研究空气背景对呼气代谢系统的影响有重要作用。
(4)本公开中单体呼气印迹采样模块中吸湿条形板的设置使进入载气的实验动物呼出气中的代谢物不受排遗物质,即粪便和尿液的干扰。
(5)本公开中单体呼气印迹采样模块中对实验动物胸腹区域的开放式的透明设计结合呼吸视频采集,提供了对实验动物非密闭的、相对友好的呼吸生理监测环境。
(6)本公开中多功能射流器和有机蒸汽微量注射模块的结合使用,支持混合气体、液体气溶胶、有机蒸汽对实验动物的吸入暴露操作。
(7)本公开中呼吸印迹操作舱能够任意角度开放,更加便于实验操作。
(8)本公开中自动溶剂解吸模块使溶剂解吸操作过程保持一致,保证了相对稳定的解吸效率,为离线检测时样品的前处理提供了便利。
附图说明
图1为本公开实施例呼气代谢测定系统示意图。
图2为本公开实施例呼气代谢测定系统的另一角度示意图。
图3为本公开实施例呼气代谢测定系统正视示意图。
图4为本公开实施例呼气代谢测定系统侧视示意图。
图5为图1的结构拆解示意图。
图6为图2的结构拆解示意图。
图7为图3的结构拆解示意图。
图8为图4的结构拆解示意图。
图9为图1中自动溶剂解吸模块局部放大图。
图10为单体呼气印迹采样模块的结构示意图。
图11为单体呼气印迹采样模块的剖面结构示意图。
图12为外标模块的结构示意图。
图13为气体电磁阀的结构示意图。
图14为多功能射流器的结构示意图。
具体实施方式
本公开提供了一种呼气代谢测定系统,包括:有机蒸汽微量注射模块、抽气泵、单体呼气印迹采样模块、气溶胶喷嘴、气体电磁阀、零级空气纯化仪和自动溶剂解吸模块;抽气泵第一端与有机蒸汽微量注射模块的出射口连接,抽气泵第二端与衬管第一端连接;单体呼气印迹采样模块的出气口与衬管第二端连接,衬管内设搅拌子吸附萃取棒对所述实验动物的呼气代谢物进行采样;单体呼气印迹采样模块的出气口与气溶胶喷嘴的喷嘴接口连接,其进气口与零级空气纯化仪的出气口连接;气体电磁阀控制零级空气进入单体呼气印迹采样模块并同步阻断吸入暴露物质进入单体呼气印迹采样模块;自动溶剂解吸模块用于对搅拌子吸附萃取棒采集的呼气代谢物进行检测。本公开实现了对实验动物进行吸入暴露与呼气印迹的同步操作。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
本公开某些实施例于后方将参照所附附图做更全面性地描述,其中一些但并非全部的实施例将被示出。实际上,本公开的各种实施例可以许多不同形式实现,而不应被解释为限于此数所阐述的实施例;相对地,提供这些实施例使得本公开满足适用的法律要求。
在描述问题的解决方案之前,先定义一些特定词汇是有帮助的。
本文中所述的“吸入暴露”指存在吸入暴露途径的物质天然地或人为地形成气溶胶并在活体自然呼吸的过程中通过呼吸道向生物体内输入的过程。
本文中所述的“呼气印迹”指对呼出气溶胶中所包含的代谢物(如挥发性有机物)进行收集和检测,即呼气代谢组研究中的采样和检测过程。
关于代谢组学的研究对象是内源性代谢物质(中间或代谢终产物),通过分析这些代谢物质在体液及组织内的变化规律,可以从生物整体分析基因表达,蛋白质调节等内外因素对机体状态的影响,机体内任何生理、病理或其他因素的变化都会影响代谢物的浓度或使代谢流发生改变,因此代谢组学技术能更真实地反映机体的实际情况。依据代谢物的样品来源,代谢组可以分为血液、组织、尿液、呼气代谢组等。
呼气代谢组在众多代谢组研究中具有采样可连续、无创、便捷的特点。血液中直接经气血屏障或呼吸道自身代谢排出的物质与空气混合形成气溶胶,包含内源性的挥发性有机物、非挥发性有机物、无机气体等,其中,内源性的挥发性有机物是呼气代谢组研究最多的物质。比较不同代谢组研究中样品来源所决定的采样方式的差异,呼气代谢组研究具有可进行连续采样的优势。基于生物体气血屏障的半透性、呼吸过程中可观的气液交换面积、水汽蒸发和下呼吸道(细支气管、呼吸性细支气管、肺泡管等)内表面液膜的气动雾化,呼气代谢组不 仅反映呼吸道相关组织代谢,还可以通过呈现血液中代谢物来反映继发性和全身性代谢。
在本公开的第一个示例性实施例中,提供了一种呼气代谢测定系统。如图1至图8所示,在具体介绍本公开第一个示例性实施例前,需要预先说明的是,第一端至第二端,在竖直方向上为自上而下,在水平方向上为自右向左。
本公开呼气代谢测定系统包括:有机蒸汽微量注射模块1、抽气泵32、单体呼气印迹采样模块36、气溶胶喷嘴311、气体电磁阀35、零级空气纯化仪42和自动溶剂解吸模块2。
抽气泵32第一端与有机蒸汽微量注射模块1的出射口连接,有机蒸汽微量注射模块1的出射口输出有机蒸汽;抽气泵32第二端与衬管33第一端连接;单体呼气印迹采样模块36的出气口与衬管33第二端连接,单体呼气印迹采样模块36的出气口与气溶胶喷嘴311的喷嘴接口连接,单体呼气印迹采样模块36的进气口与零级空气纯化仪42的出气口连接;衬管33上还设置有气体分流电磁阀34;气体电磁阀35与气溶胶喷嘴311第一端连接,结合图13所示,气体电磁阀35的进气接口351与零级空气纯化仪42连接,控制零级空气进入单体呼气印迹采样模块36并同步阻断吸入暴露物质进入单体呼气印迹采样模块36,衬管33内设搅拌子吸附萃取棒对实验动物的呼气代谢物进行采样,再使用自动溶剂解吸模块2用于对搅拌子吸附萃取棒采集的呼气代谢物进行检测。
以下分别对呼气代谢测定系统的各个组成部分进行详细描述。
关于有机蒸汽微量注射模块1,其包括:注射器、恒温槽座12、导杆、应力板11和驱动装置。注射器插设在恒温槽座12的槽体内,注射器腔体内充入有机蒸汽,恒温槽座12对注射器腔体内的有机蒸汽具有保温或促进蒸发的作用。导杆固定在恒温槽座12上,应力板11套设在导杆上,驱动装置驱动所述应力板11沿导杆向恒温槽座12移动,应力板11压动注射器推注杆,使有机蒸汽通过注射器注射口输出。在制备有机蒸汽时,将零级空气纯化仪42与注射器腔体对接,为其提供纯净空气。其中,关于驱动装置可选液压推杆或步进电机的机械推杆。零级空气纯化仪42底部有减震脚柱41,以减少零级空气纯化仪42工作时的机械振动。
如图9所示,关于自动溶剂解吸模块2包括:容置腔体、盖子21、盖子卡扣25、两个光滑电磁棒22、一个传动橡胶棒23、样品瓶、样品瓶磁性管架24、步进电机26和解吸过程控制器27。传动橡胶棒23设置在两个光滑电磁棒22间,且光滑电磁棒22和传动橡胶棒23的两端分别与容置腔体的壁面连接。样品瓶水平放置在两个所述光滑电磁棒22间,样品瓶内装有溶剂和所述搅拌子吸附萃取棒,所述搅拌子吸附萃取棒带有磁芯。步进电机26电磁驱动光滑电磁棒22转动。解吸过程控制器27控制样品瓶的转动方向、转动速度和转动时间。
将装有溶剂和搅拌子吸附萃取棒(带磁芯)的样品瓶水平放置在光滑电磁棒22与传动橡胶棒23之间,在自动溶剂解吸开始之前,通过调整样品瓶的方向使磁芯的磁场方向与通电后 光滑电磁棒22的磁场方向相同,当关闭盖子21和盖子卡扣25时,搅拌子吸附萃取棒弹起并脱离溶剂。传动橡胶棒23通过摩擦力使样品瓶连续滚动,其中的搅拌子吸附萃取棒不断被溶剂浸洗,光滑电磁棒22在样品瓶滚动过程中不通电,仅起到支撑作用。步进电机26驱动传动橡胶棒23转动,传动橡胶棒23的转动方向、转动速度和转动时间受解吸过程控制器27调节。当转动结束后,解吸过程控制器27自动接通光滑电磁棒22的电源,搅拌子吸附萃取棒弹起,自动解吸过程结束。每个样品瓶磁性管架24的两侧具有磁场方向相反的磁铁,无需调整样品瓶中搅拌子吸附萃取棒(带磁芯)的方向,当结束解吸过程的样品瓶插入样品瓶磁性管架24中时,样品瓶内的搅拌子吸附萃取棒贴在瓶内壁上,便于通过移液枪从瓶口转移解吸后的溶液。选用气体流量控制器43控制以上涉及气路部分的气体流速。
在可选的本实施例中,还包括:呼气印迹操作舱3,用于容置所述抽气泵32、所述单体呼气印迹采样模块36、气溶胶喷嘴311和气体电磁阀35。
以下对呼气印迹操作舱3作进一步介绍。
呼气印迹操作舱3包括:顶盖30、底盖313、两块曲面滑动门31、支撑架310和支撑盘39。抽气泵32穿设于顶盖30,且与有机蒸汽微量注射模块1的出射口连接;气溶胶喷嘴311第二端穿设于底盖313;顶盖30和底盖313均内嵌设有内轨道和外轨道;两块曲面滑动门31分别设置在顶盖30和底盖313间,且两块曲面滑动门31通过滚轮分别沿内轨道和外轨道滑动;支撑架310两端分别连接顶盖30和底盖313;支撑盘39设置在顶盖30和底盖313间,且支撑盘39穿设在支撑架310上。曲面滑动门31呈半月形并带有滚轮,两块曲率不同的曲面滑动门31可分别沿顶盖30和底盖313的内轨道和外轨道进行任意角度滑动,便于呼气印迹操作舱3中的实验操作
如图10、图11所示,关于单体呼气印迹采样模块36,其包括:面罩360、进气口3601、出气口3602、实验动物口鼻接口3603、主管366、吸湿条形板365。
在可选的实施例中,面罩360的截面呈双层腔管结构。进气口3601与面罩360的内层腔管3604第一端相连通。出气口3602与面罩360外层腔管的外壁面相连通。实验动物口鼻接口3603是面罩360与实验动物头部接触的空心锥形管,需要说明的是,实验动物口鼻接口3603不与面罩360的内层腔管3604直接连接。当实验动物头部插入口鼻接口3603后,实验动物口鼻端伸出口鼻接口3603并正对面罩内层腔管3604,面罩360双层腔管内的空气可从进气口3601向出气口3602单向流动。
在可选的本实施例中,面罩360可与主管366拼接,面罩360底部的突起正对主管366的插槽,插槽与固定螺孔362相通,通过固定螺孔362用螺丝紧固面罩360底部的突起可将面罩360与主管366固定。
在可选的本实施例中,主管366上靠近面罩360的开孔处可插入限位插销361,与面罩360共同使用可限制实验动物头部的自由活动,限位插销361的开孔尺寸小于实验动物体测得到的头部尺寸并大于颈部尺寸,保证在限制头部活动时避免对实验动物上呼吸道形成压迫。其中,限位插销361的尖端有半球状凸起,可以防止限位插销361从透明管366中滑落。
在可选的本实施例中,主管366上远离面罩360的开孔处可插入限位插销361,确保操作过程中实验动物即使脱离面罩也无法逃逸出透明管366。在具体实施例中,本领域技术人员可以根据实验动物的体型具体定制主管366的内径,以能够实现使实验动物无法掉头的效果即可,这里不再进行具体限定,由此进一步降低了实验动物逃逸出主管366的可能性。
其中,关于吸湿条形板365,吸湿条形板365第一端与主管366第一端拼插连接,吸湿条形板365第二端被主管366上远离面罩360的开孔处插入的限位插销361固定,且吸湿条形板365与实验动物的腹面相对,用于吸收尿液并保持主管366内部的干燥。
在可选的本实施例中,还包括:摄像头固定环363、摄像头364和呼吸视频采集器44。
摄像头固定环363可套在主管366上,摄像头固定环363的底部与摄像头364连接,摄像头364镜头指向实验动物的胸腹部,用于拍摄呼吸视频,摄像头364与呼吸视频采集器44通过数据线连接,接收所述摄像头364拍摄的所述实验动物呼吸视频。呼吸视频采集器44中保存的视频数据经过进一步的图像处理与机器视觉分析,还可以用于反映实验动物在呼气印迹中呼吸生理状态。
进一步地,为更好的拍摄实验动物呼吸视频,主管366、吸湿条形板365和摄像头固定环363均可以选用透明结构,例如全透明结构、主要拍摄位置为透明的局部透明结构等。
在可选实施例中,呼气代谢测定系统还包括:多功能射流器312,多功能射流器312第一端与气溶胶喷嘴311第二端连接,多功能射流器312第二端与零级空气纯化仪42的出气口连接。
以下对多功能射流器312作进一步介绍,如图14所示。
多功能射流器312包括:射流器腔室3125、液位传感器3124、气液接口3122、两相喷嘴3123和湍流锥3121。射流器腔室3125与气液接口3122的第一端连接。气液接口3122的第二端分别与机蒸汽微量注射模块1和/或外接补充装置连接,气液接口3122与有机蒸汽微量注射模块1连接后,既可用于有机蒸汽的吸入暴露,也可用于目标代谢物的内标法定量。这里对外接补充装置例如可选气瓶、补液装置等。当气液接口3122向射流器腔室3125中通入溶液或悬浊液时,液位传感器3124与外接的补液装置连接,用于控制补液过程。两相喷嘴3123的第一端伸入射流器腔室3125内,两相喷嘴3123的第二端与零级空气纯化仪42的出气口连接,两相喷嘴3123对射流器腔室3125中液体进行气动雾化并产生气溶胶。湍流锥3121 设置在射流器腔室3125内,且湍流锥3121与两相喷嘴3123的第一端相对设置,对射流器腔室3125内的气溶胶进行撞击,可消除气溶胶中粒径较大的颗粒以便于吸入暴露。两相喷嘴3123与湍流锥3121协同对射流器腔室3125中的有机蒸汽、气体或气溶胶进行稀释与混合。
在可选实施例中,呼气代谢测定系统还包括:外标模块37。外标模块37用于模拟实验动物呼气过程以及目标代谢物的外标法定量。如图12所示,外标模块37与衬管33第二端连接。外标模块37的有机蒸汽接口371与零级空气纯化仪42的出气口连接。
在可选实施例中,呼气代谢测定系统还包括:空气背景模块38。空气背景模块38用于对所述呼气代谢测定系统中的空气背景进行检测。空气背景模块38与衬管33第二端连接。
至此,已经结合附图对本公开实施例进行了详细描述。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。
依据以上描述,本领域技术人员应当对本公开呼气代谢测定系统有了清楚的认识。
综上所述,本公开提供一种能够对对实验动物进行吸入暴露与呼气印迹的同步操作的呼气代谢测定系统,解决了目前吸入暴露与呼气印迹难以实时结合的问题,在生物学、医学、药学等领域的研究中,呼气代谢组变化对吸入暴露的实时响应在揭示外源物质通过吸入途径进入生物体后的即时健康效应方面具有不可替代的作用。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种呼气代谢测定系统,包括:
    有机蒸汽微量注射模块,其出射口输出有机蒸汽;
    抽气泵,所述抽气泵第一端与所述有机蒸汽微量注射模块的出射口连接;所述抽气泵第二端与衬管的第一端连接;
    单体呼气印迹采样模块,实验动物置于所述单体呼气印迹采样模块内,所述单体呼气印迹采样模块的出气口与所述衬管的第二端连接,所述衬管内设置搅拌子吸附萃取棒,对所述实验动物的呼气代谢物进行采样;
    气溶胶喷嘴,呈辐射状设置至少一个喷嘴接口;所述喷嘴接口与所述单体呼气印迹采样模块的出气口连接;
    气体电磁阀,与气溶胶喷嘴第一端连接;
    零级空气纯化仪,所述零级空气纯化仪的出气口与所述气体电磁阀的进气接口和/或所述单体呼气印迹采样模块的进气口连接;所述气体电磁阀控制所述零级空气纯化仪输出的零级空气进入单体呼气印迹采样模块并同步阻断吸入暴露物质进入单体呼气印迹采样模块;以及
    自动溶剂解吸模块,用于对所述搅拌子吸附萃取棒采集的呼气代谢物进行检测。
  2. 根据权利要求1所述的呼气代谢测定系统,还包括:
    外标模块,与所述衬管第二端连接,所述外标模块用于模拟所述实验动物呼气过程,以及目标代谢物的外标法定量;所述外标模块的有机蒸汽接口与所述零级空气纯化仪的出气口连接。
  3. 根据权利要求1所述的呼气代谢测定系统,还包括:
    空气背景模块,与所述衬管第二端连接,所述空气背景模块用于对所述呼气代谢测定系统中的空气背景进行检测。
  4. 根据权利要求1所述的呼气代谢测定系统,其中,所述单体呼气印迹采样模块包括:
    面罩,所述面罩的截面呈双层腔管结构;
    进气口,与所述面罩内层腔管第一端相连通;
    出气口,与所述面罩外层腔管的外壁面相连通;
    实验动物口鼻接口,所述实验动物口鼻接口第一端与所述面罩第二端相连;所述实验动 物的头部伸入所述实验动物口鼻接口第二端,且与所述面罩内层腔管第二端相对;
    主管,所述主管第一端与所述面罩第二端拼插连接;以及
    吸湿条形板,所述吸湿条形板第一端与所述主管第一端拼插连接,所述吸湿条形板第二端与所述主管第二端通过限位挡板连接,所述吸湿条形板与所述实验动物的腹面相对。
  5. 根据权利要求4所述的呼气代谢测定系统,其中,所述主管和所述吸湿条形板为透明结构,所述单体呼气印迹采样模块还包括:
    摄像头固定环,套设于所述主管外壁上;
    摄像头,与所述摄像头固定环连接;所述摄像头的镜头与所述实验动物的腹面相对;以及
    呼吸视频采集器,接收所述摄像头拍摄的所述实验动物呼吸视频。
  6. 根据权利要求1所述的呼气代谢测定系统,还包括:
    多功能射流器,所述多功能射流器第一端与所述气溶胶喷嘴第二端连接,所述多功能射流器第二端与所述零级空气纯化仪的出气口连接;所述多功能射流器包括:
    射流器腔室,与所述气液接口的第一端连接;
    气液接口,所述气液接口的第二端分别与所述机蒸汽微量注射模块连接;
    两相喷嘴,所述两相喷嘴的第一端伸入所述射流器腔室内,所述两相喷嘴的第二端与所述零级空气纯化仪的出气口连接,所述两相喷嘴对所述射流器腔室中液体进行气动雾化并产生气溶胶;以及
    湍流锥,设置在所述射流器腔室内,且所述湍流锥与所述两相喷嘴的第一端相对设置,对所述射流器腔室内的气溶胶进行撞击。
  7. 根据权利要求1所述的呼气代谢测定系统,其中,所述有机蒸汽微量注射模块包括:
    注射器,所述注射器腔体内充入有机蒸汽;
    恒温槽座,所述注射器插设在所述恒温槽座的槽体内;
    导杆,所述推注杆固定在所述恒温槽座上;
    应力板,套设在所述导杆上;以及
    驱动装置,驱动所述应力板沿所述导杆向所述恒温槽座移动,所述应力板压动所述注射器推注杆,使所述有机蒸汽通过所述注射器注射口输出。
  8. 根据权利要求1所述的呼气代谢测定系统,其中,还包括:呼气印迹操作舱,用于容置所述抽气泵、所述单体呼气印迹采样模块、气溶胶喷嘴和气体电磁阀;所述呼气印迹操作舱包括:
    顶盖,所述抽气泵穿设于所述顶盖,且与所述有机蒸汽微量注射模块的出射口连接;
    底盖,所述气溶胶喷嘴第二端穿设于所述底盖;所述顶盖和所述底盖均内嵌设有内轨道和外轨道;
    两块曲面滑动门,设置在所述顶盖和所述底盖间,且两块曲面滑动门通过滚轮分别沿所述内轨道和所述外轨道滑动;
    支撑架,所述支撑架两端分别连接所述顶盖和所述底盖;以及
    支撑盘,所述支撑盘设置在所述顶盖和所述底盖间,且所述支撑盘穿设在所述支撑架上。
  9. 根据权利要求1所述的呼气代谢测定系统,其中,所述自动溶剂解吸模块包括:
    容置腔体,
    两个光滑电磁棒和一个传动橡胶棒,所述传动橡胶棒设置在两个所述光滑电磁棒间,且所述光滑电磁棒和所述传动橡胶棒的两端分别穿设于容置腔体;
    样品瓶,水平放置在两个所述光滑电磁棒间;所述样品瓶内装有溶剂和所述搅拌子吸附萃取棒,所述搅拌子吸附萃取棒带有磁芯;
    步进电机,电磁驱动所述光滑电磁棒转动;以及
    解吸过程控制器,控制所述样品瓶的转动方向、转动速度和转动时间。
  10. 根据权利要求9所述的呼气代谢测定系统,其中,所述自动溶剂解吸模块还包括:
    样品瓶磁性管架,将完成解吸的所述样品瓶竖直插入所述样品瓶磁性管架;每个所述样品瓶磁性管架两端设置有磁场方向相反的磁场,使所述样品瓶内的所述搅拌子吸附萃取棒贴附在所述样品瓶内壁上。
PCT/CN2021/077865 2021-02-25 2021-02-25 呼气代谢测定系统 WO2022178752A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/077865 WO2022178752A1 (zh) 2021-02-25 2021-02-25 呼气代谢测定系统
US18/547,739 US20240180444A1 (en) 2021-02-25 2021-02-25 System of measuring exhalation metabolism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077865 WO2022178752A1 (zh) 2021-02-25 2021-02-25 呼气代谢测定系统

Publications (1)

Publication Number Publication Date
WO2022178752A1 true WO2022178752A1 (zh) 2022-09-01

Family

ID=83047603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077865 WO2022178752A1 (zh) 2021-02-25 2021-02-25 呼气代谢测定系统

Country Status (2)

Country Link
US (1) US20240180444A1 (zh)
WO (1) WO2022178752A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257373A (ja) * 2004-03-10 2005-09-22 Yokohama Tlo Co Ltd 呼気採取装置
CN201426710Y (zh) * 2009-07-09 2010-03-24 杨华明 多功能动物呼吸代谢分析系统
CN102389339A (zh) * 2011-07-06 2012-03-28 天津开发区合普工贸有限公司 啮齿类动物只鼻式吸入毒性暴露实验设备
CN203988482U (zh) * 2014-05-22 2014-12-10 北京慧荣和科技有限公司 组合式多浓度动物口鼻吸入暴露系统
WO2015125323A1 (ja) * 2014-02-19 2015-08-27 株式会社 東芝 呼気診断装置
CN105796105A (zh) * 2016-05-03 2016-07-27 兰州大学 一种肺气体交换功能光电式检测装置
CN106175975A (zh) * 2016-07-11 2016-12-07 中国环境科学研究院 一种粉末气溶胶动式经口鼻吸入染毒装置
CN207366281U (zh) * 2017-09-13 2018-05-15 北京师范大学 动物呼气收集装置
CN110269721A (zh) * 2018-03-15 2019-09-24 北京慧荣和科技有限公司 大动物口鼻暴露系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257373A (ja) * 2004-03-10 2005-09-22 Yokohama Tlo Co Ltd 呼気採取装置
CN201426710Y (zh) * 2009-07-09 2010-03-24 杨华明 多功能动物呼吸代谢分析系统
CN102389339A (zh) * 2011-07-06 2012-03-28 天津开发区合普工贸有限公司 啮齿类动物只鼻式吸入毒性暴露实验设备
WO2015125323A1 (ja) * 2014-02-19 2015-08-27 株式会社 東芝 呼気診断装置
CN203988482U (zh) * 2014-05-22 2014-12-10 北京慧荣和科技有限公司 组合式多浓度动物口鼻吸入暴露系统
CN105796105A (zh) * 2016-05-03 2016-07-27 兰州大学 一种肺气体交换功能光电式检测装置
CN106175975A (zh) * 2016-07-11 2016-12-07 中国环境科学研究院 一种粉末气溶胶动式经口鼻吸入染毒装置
CN207366281U (zh) * 2017-09-13 2018-05-15 北京师范大学 动物呼气收集装置
CN110269721A (zh) * 2018-03-15 2019-09-24 北京慧荣和科技有限公司 大动物口鼻暴露系统

Also Published As

Publication number Publication date
US20240180444A1 (en) 2024-06-06

Similar Documents

Publication Publication Date Title
US7503323B2 (en) Multiple output anesthesia system
KR20160047565A (ko) 범용 호흡 분석 샘플링 장치
JP2005519272A (ja) 呼気収集システム
JP6034392B2 (ja) 副流システムにおける、ディスポーザブルなサンプリングチャンバを用いた、組成を監視するシステム及び方法。
WO2015155606A2 (en) Devices and methods for controlled drug delivery of wet aerosols
US20200132671A1 (en) Exposure system
US20220051592A1 (en) Respiratory system simulator systems and methods
CN113009125B (zh) 呼气代谢测定系统
WO2022178752A1 (zh) 呼气代谢测定系统
CN110226931A (zh) 一种呼气分析装置及使用方法
CN208447842U (zh) 一种用于呼吸给药的呼吸暴露装置及呼吸暴露系统
CN1281345A (zh) 对流体进行操控的装置
WO2017143739A1 (zh) 一种红细胞寿命测定方法及装置
WO2014017825A1 (ko) 영장류에 대한 나노 입자 흡입 독성 평가 시험용 노출 챔버 장치
KR20180037350A (ko) 호기 분석을 통한 질병진단장치
JPH0320856Y2 (zh)
CN218038346U (zh) 一种用于在体外模拟体内co2释放的co2供应装置
JP4598628B2 (ja) ガス定量測定装置
CN218739785U (zh) 辅助呼吸管理装置
CN109142549A (zh) 一种用于气体质谱仪的微藻代谢率测量腔
CN217390957U (zh) 小动物动态暴露吸入笑气实验系统
CN221180471U (zh) 一种无创套头式呼气收集分析装置
CN212234447U (zh) 肺功能仪测试头、肺功能仪及肺通气测试单元
Snipes et al. A method for measuring nasal and lung uptake of inhaled vapor
JP4528518B2 (ja) 薬剤を製造するための方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 18547739

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 21927193

Country of ref document: EP

Kind code of ref document: A1