WO2022178699A1 - 细菌纤维素热塑性高分子复合发泡材料及其制法和应用 - Google Patents

细菌纤维素热塑性高分子复合发泡材料及其制法和应用 Download PDF

Info

Publication number
WO2022178699A1
WO2022178699A1 PCT/CN2021/077587 CN2021077587W WO2022178699A1 WO 2022178699 A1 WO2022178699 A1 WO 2022178699A1 CN 2021077587 W CN2021077587 W CN 2021077587W WO 2022178699 A1 WO2022178699 A1 WO 2022178699A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacterial cellulose
thermoplastic polymer
pore
preparation
foamed
Prior art date
Application number
PCT/CN2021/077587
Other languages
English (en)
French (fr)
Inventor
钟宇光
钟春燕
Original Assignee
海南光宇生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南光宇生物科技有限公司 filed Critical 海南光宇生物科技有限公司
Priority to CN202180092863.4A priority Critical patent/CN116806236A/zh
Priority to PCT/CN2021/077587 priority patent/WO2022178699A1/zh
Publication of WO2022178699A1 publication Critical patent/WO2022178699A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose

Definitions

  • the invention belongs to the technical field of composite materials, and relates to a bacterial cellulose thermoplastic polymer composite foamed material and a preparation method and application thereof.
  • porous materials Due to its special hole structure, porous materials have a very wide range of uses in various industries, and have the functions of light weight, buffering, sound blocking, and heat insulation.
  • PS polystyrene
  • the polystyrene (PS) foam cushioning packaging material which is widely used in the packaging of household appliances, precision instruments, electronic computers, electronic components, etc., is a polymer chemical compound.
  • Packaging waste cannot be naturally degraded and fully recycled.
  • the application of these cushioning packaging materials that cannot be naturally degraded and recycled will be more and more restricted and will eventually be eliminated.
  • Cellulose fiber porous material has good biodegradability and environmental coordination. It can be completely decomposed and decomposed. It can be recycled as feed, and can be used as fertilizer in the soil, so its waste will not pollute the environment. At the same time, in the production process, It will not pollute the atmosphere and the environment. Moreover, cellulose is the most abundant natural polymer and a renewable organic resource. Therefore, in recent years, with the increasing attention and attention of various countries to the problem of environmental pollution, cellulose porous buffer materials have become a hot spot in the research and development of countries around the world.
  • the ideal structure of the cellulose fiber-based porous buffer material should be a three-dimensional network structure, and the strength of this structure depends on the strength of the fiber bundle itself and the bonding strength between the fiber bundles.
  • the "three-dimensional network" structure formed by this connection also needs to add other chemical substances such as reinforcing agents to improve its strength to meet the requirements of industrial applications.
  • Bacterial cellulose is a source of cellulose fibers in nature, with a natural three-dimensional network structure; it is also the only nanocellulose fiber that can be produced on a large scale.
  • bacterial cellulose is obtained by bacterial fermentation and is a biopolymer formed by connecting glucose with ⁇ -1,4-glycosidic chains, and has its unique physical and chemical properties.
  • Bacterial cellulose has a natural three-dimensional nano-network structure, which is composed of 40-60 nanometer thick fiber bundles composed of microfibers with a diameter of 3 to 4 nanometers, and intertwined to form a developed ultra-fine network structure.
  • the Chinese invention patent with publication number CN106191165A discloses a stable foam prepared by using a foaming agent and a stabilizer, and further co-cultivating bacteria and foam to obtain a bacterial Cellulose foam.
  • the foam stabilization time of this method is difficult to control, and the fermentation time is short (10-12 h), so it is difficult to obtain foamed materials with good mechanical properties and controllable pore structure.
  • the Chinese invention patent with publication number CN102276876A discloses a method of immersing normally cultured bacterial cellulose in a foaming solution, and foaming to obtain a bacterial cellulose porous material.
  • this method uses pure gas foaming to cause pores, which faces problems such as difficult control of pore size structure, small pore size, uneven pore size distribution, and poor mechanical strength.
  • the first purpose of the present invention is to provide a method for preparing a bacterial cellulose thermoplastic polymer composite foam material;
  • the second purpose of the present invention is to provide a bacterial cellulose thermoplastic polymer composite foam material prepared by the method;
  • the present invention The third object of the present invention is to provide the application of the bacterial cellulose thermoplastic polymer composite foam material in building thermal insulation, sound-proof material or buffer packaging material.
  • the present invention provides a preparation method of bacterial cellulose thermoplastic polymer composite foam material, which comprises the following steps:
  • the surface of the foamed pore-forming microspheres is activated by using a biopolymer compound
  • the foamed pore-forming microspheres after surface activation treatment are subjected to static fermentation culture in the strain culture solution.
  • the liquid level of the strain culture solution is 1-5 mm higher than the stacking surface of the foamed pore-forming microspheres.
  • the fermentation product is purified and dried to obtain a
  • the bacterial cellulose-foamed pore-forming microsphere composite with a microporous structure is further heated and immersed in a melt of thermoplastic polymer material for processing, and cooled to obtain a bacterial cellulose thermoplastic polymer composite foamed material;
  • the foamed pore-forming microspheres have a core-shell structure, the inner core of which is a foaming agent, and the outer shell is a thermoplastic polymer material.
  • the invention creatively combines the porogen method and the foaming method effectively, and firstly utilizes the space occupancy effect of the foamed pore-forming microspheres to place the foamed pore-forming microspheres and the strain culture solution together in a fermentation vessel for static fermentation.
  • the surface of the foamed porosity microspheres is activated to improve the affinity between the strain and the surface of the foamed porosity microspheres.
  • the liquid level of the strain culture liquid is 1-5 mm higher than the accumulation surface of the foamed pore-forming microspheres. This design can ensure that the bacterial cellulose hydrocoagulant generated during the fermentation process of the strain can wrap the foamed pore-forming microspheres.
  • the fermented product When the fermented product is freeze-dried or critically carbon dioxide-dried, it can form a bacterial cellulose-foamed pore-forming microsphere complex with a microporous structure.
  • the dried fermentation product When the dried fermentation product is immersed in the thermoplastic polymer melt, due to the high temperature of the melt, during this process: (1) the external thermoplastic polymer melt enters the system through the above-mentioned bacterial cellulose micropores (2)
  • the foamed porosity microsphere of the present invention has a core-shell structure, the inner core of which is a foaming agent, and the outer shell is a thermoplastic polymer material; due to heat conduction, the thermoplastic polymer of the foamed porosity microsphere shell is gradually melted, and Enter into the interior of the microporous bacterial cellulose that wraps the surface; (3)
  • the foaming agent in the inner core of the foamed pore-forming microspheres generates a large amount of gas under the action of heat to form foaming.
  • a bacterial cellulose thermoplastic polymer composite foamed material with a porous structure is obtained.
  • the method of the invention can obtain a composite porous foamed material with a porous structure while maintaining the original nanofiber three-dimensional structure of bacterial cellulose, so that the mechanical properties of the composite material are significantly improved, and it is used as a porous foamed material. It can be widely used in the fields of building heat insulation, sound blocking materials, buffer packaging materials and so on.
  • the foaming agent comprises 2,2'-azobisisobutyronitrile, benzenesulfonylhydrazide, p-toluenesulfonylhydrazide, N,N'-dimethyl-N,N '-Dinitrosoterephthalamide, 1,3-benzenedisulfonylhydrazide, 3,3'-disulfonylhydrazide, diphenylsulfone, azoaminobenzene, 4,4'-oxobisbenzenesulfone One or more of hydrazide, azodicarbonamide and barium azodicarboxylate, but not limited thereto.
  • the foaming agent used in the present invention is in the form of powder, the specific gravity is greater than that of water, and is decomposed to release gas when heated.
  • the thermoplastic polymer material includes polycaprolactone (PCL), polyurethane (PU), polybutylene succinate (PBS), polylactic acid (PLA), polyhydroxybutylene One or more of acid ester (PHA), nylon (PA) and polytrimethylene terephthalate (PTT), but not limited thereto.
  • the thermoplastic polymer material used in the present invention is a biodegradable thermoplastic polymer material.
  • the particle size of the foamed pore-forming microspheres is 200-5000 ⁇ m; wherein, the mass of the foaming agent accounts for 1-30 wt % of the mass of the foamed pore-forming microspheres.
  • the preparation method of the foamed pore-forming microspheres comprises:
  • thermoplastic polymer material is processed into a thermoplastic hollow microsphere-shell structure by the existing template method or microfluidic method, and then the foaming agent is injected into the hollow interior of the microsphere-shell structure by using a microneedle to obtain a core-shell structure.
  • Foam-forming microspheres The preparation process of the hollow microsphere shell structure of the present invention is a conventional operation in the art.
  • the biopolymer compound includes one or more of gelatin, hyaluronic acid, alginic acid, pectin and silk protein, but is not limited thereto.
  • the process of using a biopolymer compound to activate the surface of the foamed pore-forming microspheres includes:
  • the foamed pore-forming microspheres are immersed in an aqueous solution of a biopolymer compound, taken out and then naturally dried, and a layer of the biopolymeric compound is uniformly covered on the surface of the foamed pore-forming microspheres.
  • the invention creatively uses the foamed pore-forming microspheres, especially by dipping on the surface thereof, and coated with a
  • the layer of biopolymers with good affinity and compatibility with fermentation strains activates and modifies the surface of the foamed pore-forming microspheres.
  • the concentration of the aqueous solution of the biopolymer compound is 0.5-3wt%;
  • the time of dipping treatment can be controlled to 1-5min.
  • the soaking treatment temperature can be controlled to normal temperature.
  • the bacterial strain culture solution is composed of a bacterial strain capable of fermenting to obtain bacterial cellulose and a fermentation medium;
  • the strains capable of obtaining bacterial cellulose by fermentation include one or more of Acetobacter xylinum, Rhizobium, Sarcinus, Pseudomonas, Achromobacter, Alcaligenes, Aerobacter and Azotobacter.
  • the strain culture solution is a conventional culture solution for obtaining bacterial cellulose by culturing in the art.
  • the process that the foamed pore-forming microspheres after the surface activation treatment are subjected to static fermentation culture in the bacterial culture liquid includes:
  • the surface-activated foamed pore-forming microspheres Place the surface-activated foamed pore-forming microspheres in a petri dish, pour the strain culture solution into the petri dish until the liquid level of the strain culture solution is 1-5 mm higher than the stacking surface of the foamed pore-forming microspheres, and statically culture for 1 ⁇ 7d, the fermentation temperature is 30 ⁇ 40 °C.
  • the height of the stacking surface of the foamed pore-forming microspheres which can be set conventionally according to actual needs; in addition, the height difference of 1 to 5 mm is to ensure that the foamed pore-forming microspheres will not be damaged by the volatilization of the culture medium under normal fermentation conditions. Exposure to ensure that all foamed pore-forming microspheres are complexed in the bacterial cellulose fermentation product.
  • the height of the culture dish used in the fermentation process of the present invention is 10-50 cm, which is a glass or metal container with an open top, and there are pads on the bottom edge, and the height of the feet is 0.5-1 cm; wherein, the bottom of the fermentation culture dish is in the shape of a porous mesh. design, and there is a layer of silicon oxide film on the surface of the bottom. Since the strains that can obtain bacterial cellulose by fermentation are all aerobic bacteria, they need to consume oxygen in the process of fermenting and producing bacterial cellulose. Generally, if the liquid level of the culture system is too high, it can only form on the upper surface of the petri dish. Bacterial cellulose; the purpose of the design of the petri dish of the present invention is to increase the oxygen content at the bottom of the fermentation petri dish during the static culture process, so that the bacterial cellulose at the bottom can grow normally.
  • the process of purifying and drying the fermentation product comprises:
  • the fermentation product is immersed in absolute ethanol and hydrogen peroxide and pressed repeatedly, and the residue of the culture solution is washed away to obtain a purified product, and then the purified product is subjected to freeze-drying or critical carbon dioxide drying to obtain bacterial cellulose with a microporous structure- Foamed pore-forming microsphere composite;
  • the microporous structure is a microporous structure composed of bacterial cellulose nanofibers of 20 to 50 nm with an average pore diameter of 1 to 10 m.
  • the purified product is dried by freeze drying or critical carbon dioxide to form a microporous structure.
  • the process of further heating the bacterial cellulose-foamed pore-forming microsphere composite and immersing it in the melt of the thermoplastic polymer material includes:
  • the bacterial cellulose-foamed pore-forming microsphere composite is heated to 60-220 ° C, and when the foaming agent in the foamed pore-forming microsphere begins to release gas, the bacterial cellulose-foamed pore-forming microsphere composite is heated.
  • Immerse into thermoplastic polymer material melt the melt temperature is determined by the melting temperature of the material itself), take it out after immersion for 10-30 minutes, keep the temperature at 60-220°C for 20-30 minutes, and gradually cool it to room temperature to obtain porous Structured bacterial cellulose thermoplastic polymer composite foam material.
  • the thermoplastic polymer material is made of the same material as the thermoplastic polymer material in the foamed pore-forming microspheres.
  • the present invention also provides a bacterial cellulose thermoplastic polymer composite foam material, which is prepared by the above-mentioned preparation method.
  • the porous pore diameter of the bacterial cellulose thermoplastic polymer composite foamed material is 0.5-6 mm, and the pores are interconnected.
  • the present invention also provides the application of the above-mentioned bacterial cellulose thermoplastic polymer composite foam material in building thermal insulation, sound insulation material or buffer packaging material.
  • filling the bacterial cellulose thermoplastic polymer composite foam material into building materials to make high-performance sound insulation and heat insulation building materials filling the bacterial cellulose thermoplastic polymer composite foam material into buffer packaging materials It is made into a high-performance buffer packaging material.
  • the invention adopts the preparation method combining the porogen method and the foaming method, and while maintaining the three-dimensional network structure of bacterial cellulose, the bacterial cellulose thermoplastic polymer composite foaming material with controllable and uniform pore size is prepared;
  • the thermoplastic polymer materials significantly improve the mechanical properties of porous composites.
  • the bacterial cellulose thermoplastic polymer composite foaming material prepared by the invention is an environment-friendly foaming material, and can be widely used as a porous foaming material in the fields of building heat insulation, sound blocking material, buffer packaging material and the like.
  • Example 1 is a 50-times electron microscope image of the bacterial cellulose thermoplastic polymer composite foam material prepared in Example 4 of the present invention.
  • Example 2 is a 200-times electron microscope image of the bacterial cellulose thermoplastic polymer composite foam material prepared in Example 1 of the present invention.
  • the following embodiment provides the preparation method of bacterial cellulose thermoplastic polymer composite foam material, which comprises the following steps:
  • the structure of the foamed pore-forming microspheres is a core-shell structure
  • the inner core is a foaming agent
  • the outer shell is a thermoplastic polymer material.
  • the preparation method of the foamed pore-forming microspheres is as follows: using the existing template method or microfluidic method to process the thermoplastic polymer material into a thermoplastic hollow microsphere shell structure (a conventional method in the field), and then using microneedles to The foaming agent is injected into the hollow interior of the microsphere-shell structure to obtain foamed pore-forming microspheres of the core-shell structure.
  • Table 1 is a table of parameters such as foaming agent, thermoplastic polymer material, particle size of the microspheres, and dosage used to prepare the foamed pore-forming microspheres in each example.
  • biopolymer compounds to activate the surface of the foamed pore-forming microspheres including:
  • the foamed pore-forming microspheres of the above examples 1 to 9 were immersed in a gelatin aqueous solution with a mass concentration of 2 wt % for 5 min respectively, taken out and naturally dried to obtain a layer of gelatin evenly covered on the surface of the foamed pore-forming microspheres.
  • the foamed pore-forming microspheres after the surface activation treatment in the above-mentioned examples 1 to 9 were placed in a petri dish, and the strain culture solution was poured into the petri dish until the liquid level of the strain culture solution was higher than the foamed pore-forming microspheres.
  • the surface was 5 mm, and the static fermentation was cultured for 7 days, and the fermentation temperature was controlled at 30 °C.
  • the petri dish used for the above-mentioned fermentation is a metal petri dish with a height of 50cm and an open upper end, with feet on the bottom edge and a height of 1cm; the bottom of the petri dish is a porous mesh-like design, and there is a layer of silicon oxide on the bottom surface. film.
  • the strain culture liquid is composed of Acetobacter xylinum strains capable of fermenting bacterial cellulose and fermentation medium, the strain concentration of Acetobacter xylinum is about 1 ⁇ 10 6 /ml, and the fermentation medium is conventional fermentation medium in the field.
  • the fermentation products obtained in the above examples 1 to 9 were respectively immersed in absolute ethanol and hydrogen peroxide and pressed repeatedly for 3 to 5 minutes, then put into distilled water for washing 3 to 5 times, and repeated 3 to 7 times to wash away the residue of the culture solution. , to obtain the purified product; then the purified product was freeze-dried at -20°C for 24 hours to obtain the bacterial cellulose-foamed pore-forming microsphere composites with microporous structure corresponding to each of Examples 1 to 9; wherein, The microporous structure is a microporous structure with an average pore diameter of 1 to 10 ⁇ m composed of bacterial cellulose nanofibers of 20 to 50 nm.
  • the bacterial cellulose-foamed pore-forming microsphere composites prepared in Examples 1 to 9 were placed in an oven, and the temperature set in the oven was the high-temperature treatment temperature corresponding to Examples 1 to 9 in Table 1.
  • the foaming agent in the pore-forming microspheres begins to release gas
  • the bacterial cellulose-cellular pore-forming microspheres composites are then dipped into the melts of the respective thermoplastic polymer materials corresponding to Examples 1 to 9 in Table 1.
  • the porous pore diameter of the bacterial cellulose thermoplastic polymer composite foaming material is 0.5-6 mm, and the pores are connected with each other.
  • Fig. 1 is the electron microscope image of the bacterial cellulose thermoplastic polymer composite foam material prepared in Example 4 of the present invention. It can be seen from Fig. 1 that the average pore diameter of the pores is 2.5 mm, and the pore walls of the holes can be clearly observed in the figure. There are interconnected pores, and the external thermoplastic polymer melt has been integrated with the nanofibers of bacterial cellulose, and the nanofibers are basically not observed.
  • the mechanical strength of the bacterial cellulose thermoplastic polymer composite foamed material was measured, and the sample breaking strength was 80MPa and the modulus was 600MPa; while the comparative pure bacterial cellulose film (preparation method was to soak the fermented product in 3wt% ⁇ 6wt%) % sodium hydroxide solution for 1 to 3 hours, and then washed with distilled water until neutral and dried), the breaking strength is 40 MPa, and the modulus is about 300 MPa; in contrast, the bacterial cellulose thermoplastic polymer composite foaming of the present invention The material has better mechanical properties.
  • Figure 2 is an electron microscope image of the bacterial cellulose thermoplastic polymer composite foam material prepared in Example 1 of the present invention. It can be seen from Figure 2 that the average pore diameter of the pores is 530 ⁇ m, and it can be clearly observed in the figure that the pore walls of the pores have The pores are connected to each other, and the outer thermoplastic polymer melt has been integrated with the nanofibers of bacterial cellulose, and the nanofibers are basically not observed.
  • the mechanical strength of the bacterial cellulose thermoplastic polymer composite foamed material was measured, and the breaking strength of the sample was 200 MPa and the modulus was 800 MPa; while the comparative pure bacterial cellulose film had a breaking strength of 40 MPa and a modulus of about 300 MPa; compared with In other words, the bacterial cellulose thermoplastic polymer composite foam material of the present invention has better mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

一种细菌纤维素热塑性高分子复合发泡材料及其制法和应用,其制备方法包括:表面活化处理后的发泡致孔微球于菌株培养液中进行静态发酵培养,菌株培养液的液面高于发泡致孔微球堆积面1~5mm,发酵产物经纯化、干燥后得到具有微孔结构的细菌纤维素-发泡致孔微球复合物,对其进一步加热并浸渍于热塑性高分子材料的熔体中处理,冷却得到细菌纤维素热塑性高分子复合发泡材料;其中,发泡致孔微球为核壳结构,其内核为发泡剂,外壳为热塑性高分子材料。该材料环境友好、力学性能优良,能够作为多孔发泡材料广泛应用于建筑隔热、阻音材料,缓冲包装材料等领域。

Description

细菌纤维素热塑性高分子复合发泡材料及其制法和应用 技术领域
本发明属于复合材料技术领域,涉及一种细菌纤维素热塑性高分子复合发泡材料及其制法和应用。
背景技术
多孔材料由于其特殊的孔洞结构,因此其在各行业领域中有着非常广泛的用途,具有轻质、缓冲、阻音、隔热等作用。以包装领域为例,目前在家用电器、精密仪器、电子计算机、电子元器件等包装中大量使用的聚苯乙烯(PS)类发泡缓冲包装材料,其是一种高分子化学合成物,该包装废弃物不能自然降解和完全回收。随着全球贸易的一体化及各国对环境问题的高度重视,这些不能自然降解和回收利用的缓冲包装材料的应用将受到越来越大的限制,最终将被淘汰。
纤维素纤维多孔材料具有很好生物可降解性、环境协调性,它能完全降解腐烂,可回收做饲料,入土可作肥料,因而其废弃物不会对环境造成污染,同时在生产过程中,也不会对大气及环境造成污染。而且纤维素是资源最为丰富的天然高分子,是可再生的有机资源。所以近年来,随着各国对环境污染问题的日益关注和重视,纤维素多孔缓冲材料成为世界各国竞相研究和开发的热点。
已有的研究表明,理想的纤维素纤维基多孔缓冲材料的结构应为立体网状结构,这一结构的强度取决于纤维束自身的强度和纤维束之间的联结强度。同时,这种联结形成的“立体网”结构,还需要添加增强剂等其它化学物质以提高其强度,以达到工业应用的要求。而细菌纤维素是自然界中纤维素纤维来源的一种,具有天然的立体网状结构;同时也是目前唯一能够大规模生产的纳米纤维素纤维。
具体来说,细菌纤维素是由细菌发酵得到的,由葡萄糖以β-1,4-糖苷链连接而成的生物高聚物,具有其独特的物理、化学性能。细菌纤维素具有天然的三维纳米网络结构,是由直径3~4纳米的微纤组合成的40~60纳米粗的纤维束,并相互交织形成发达的超精细网络结构。具有高抗张强度和弹性模量;良好的透气、吸水、透水性能,非凡的持水性和高湿强度。
细菌纤维素基多孔材料的制备一直是研究的热点:公开号为CN106191165A的中国发明专利公开了一种利用发泡剂与稳定剂制备得到稳定的泡沫,进一步将细菌与泡沫共 培养得到一种细菌纤维素发泡材料。然而该方法泡沫稳定时间难以控制,同时发酵时间较短(10~12h),很难得到力学性能良好,孔洞结构可控的发泡材料。公开号为CN102276876A的中国发明专利公开了一种将正常培养后的细菌纤维素浸入发泡溶液中,发泡得到细菌纤维素多孔材料。然而该方法利用的是单纯的气体发泡膨胀致孔,其面临孔径结构不易控制,孔径较小,孔径分布不均匀现象,且力学强度不佳等问题。
因此,实际应用中亟待寻求一种在保持细菌纤维素原有的三维立体结构的基础上进行发泡的方法,并且能够与适当的材料复合,从而提高发泡材料的力学强度,以达到各类工业应用的要求。
发明内容
本发明的第一目的在于提供一种细菌纤维素热塑性高分子复合发泡材料的制备方法;本发明的第二目的在于提供该方法制备得到的细菌纤维素热塑性高分子复合发泡材料;本发明的第三目的在于提供该细菌纤维素热塑性高分子复合发泡材料在建筑隔热、阻音材料或缓冲包装材料中的应用。
本发明的目的通过以下技术方案得以实现:
一方面,本发明提供一种细菌纤维素热塑性高分子复合发泡材料的制备方法,其包括以下步骤:
采用生物高分子化合物对发泡致孔微球的表面进行活化处理;
表面活化处理后的发泡致孔微球于菌株培养液中进行静态发酵培养,菌株培养液的液面高于发泡致孔微球堆积面1~5mm,发酵产物经纯化、干燥后得到具有微孔结构的细菌纤维素-发泡致孔微球复合物,对其进一步加热并浸渍于热塑性高分子材料的熔体中处理,冷却得到细菌纤维素热塑性高分子复合发泡材料;
其中,所述发泡致孔微球为核壳结构,其内核为发泡剂,外壳为热塑性高分子材料。
本发明创造性地将致孔剂法与发泡法有效结合,首先利用发泡致孔微球的空间占位效应,将发泡致孔微球与菌株培养液一同放置在发酵容器中静态发酵。发酵前,对发泡致孔微球的表面进行活化处理,以提高菌株与发泡致孔微球表面的亲和力。静态发酵过程中,菌株培养液的液面高于发泡致孔微球堆积面的1~5mm,此种设计能够保证菌株发酵过程中生成的细菌纤维素水凝剂能够包裹发泡致孔微球,当发酵产物冷冻干燥或临界二氧化碳干燥后,能够形成具有微孔结构的细菌纤维素-发泡致孔微球复合物。当干燥后的发酵产物浸入到热塑性高分子熔体中时,由于熔体的温度较高,在此过程中:(1) 外部的热塑性高分子熔体通过上述的细菌纤维素微孔进入体系内部;(2)本发明发泡致孔微球为核壳结构,其内核为发泡剂,外壳为热塑性高分子材料;由于热量传导,发泡致孔微球外壳的热塑性高分子逐渐熔融,并进入包裹其表面的微孔细菌纤维素内部;(3)发泡致孔微球内核的发泡剂在热量作用下产生大量气体,形成发泡。最终冷却后,得到具有多孔结构的细菌纤维素热塑性高分子复合发泡材料。本发明的方法在保持细菌纤维素原有的纳米纤维立体结构的同时,能够获得多孔结构的复合型多孔发泡材料,使得该复合材料的力学性能得到了显著提高,将其作为多孔发泡材料能够广泛应用于建筑隔热、阻音材料,缓冲包装材料等领域。
上述的制备方法中,优选地,所述发泡剂包括2,2’-偶氮二异丁腈、苯磺酰肼、对甲苯磺酰肼、N,N’-二甲基-N,N’-二亚硝基对苯二甲酰胺、1,3-苯二磺酰肼、3,3’-二磺酰肼二苯砜、偶氮氨基苯、4,4’-氧代双苯磺酰肼、偶氮二甲酰胺和偶氮二甲酸钡中的一种或多种,但不限于此。本发明所采用的发泡剂为粉末状,比重大于水,受热分解放出气体。
上述的制备方法中,优选地,所述热塑性高分子材料包括聚己内酯(PCL)、聚氨酯(PU)、聚丁二酸丁二醇酯(PBS)、聚乳酸(PLA)、聚羟基丁酸酯(PHA)、尼龙(PA)和聚对苯二甲酸丙二醇酯(PTT)中的一种或多种,但不限于此。本发明所采用的热塑性高分子材料为可生物降解热塑性高分子材料。
上述的制备方法中,优选地,所述发泡致孔微球的粒径为200~5000μm;其中,所述发泡剂的质量占所述发泡致孔微球质量的1~30wt%。
上述的制备方法中,优选地,所述发泡致孔微球的制备方法包括:
采用现有模板法或微流体法将热塑性高分子材料加工成热塑型中空的微球壳结构,然后采用微针将发泡剂注入到微球壳结构的中空内部,得到核壳结构的发泡致孔微球。本发明的中空微球壳结构的制备过程为本领域常规操作。
上述的制备方法中,优选地,所述生物高分子化合物包括明胶、透明质酸、海藻酸、果胶和蚕丝蛋白中的一种或多种,但不限于此。
上述的制备方法中,优选地,采用生物高分子化合物对发泡致孔微球的表面进行活化处理的过程包括:
将生物高分子化合物溶于水中配制成生物高分子化合物水溶液;
将发泡致孔微球浸渍于生物高分子化合物水溶液中,取出后自然干燥,于发泡致孔微球的表面均匀覆盖一层生物高分子化合物。
由于发泡致孔微球外壳为热塑性高分子,一般情况下与菌株的亲和力较差,本发明 创造性地在使用发泡致孔微球时,特别的在其表面采用浸泡法,涂覆了一层与发酵菌株亲和力好、相容性好的生物高分子,对发泡致孔微球表面进行活化修饰,这种方式保证了细菌纤维素纤维在发泡致孔微球的表面密度较高,当加热发泡时,在发泡气体与较高密度细菌纤维素纤维的双重作用下,不会因为发泡致孔微球外壳受热熔融而使多孔结构坍塌。
上述的制备方法中,优选地,所述生物高分子化合物水溶液的浓度为0.5~3wt%;
浸渍处理的时间可以控制为1~5min。浸泡处理温度控制为常温即可。
上述的制备方法中,优选地,所述菌株培养液是由能够发酵获得细菌纤维素的菌株和发酵培养基组成;
其中,所述能够发酵获得细菌纤维素的菌株包括木醋杆菌、根瘤菌、八叠球菌、假单胞菌、无色杆菌、产碱菌、气杆菌和固氮菌中的一种或多种。所述菌株培养液为本领域培养获得细菌纤维素的常规培养液。
上述的制备方法中,优选地,表面活化处理后的发泡致孔微球于菌株培养液中进行静态发酵培养的过程包括:
将表面活化后的发泡致孔微球置于培养皿中,将菌株培养液倒入培养皿中至菌株培养液的液面高于发泡致孔微球堆积面1~5mm,静态培养1~7d,发酵温度为30~40℃。
发泡致孔微球堆积面高度无特殊限定,根据实际需求进行常规设置;此外,高度差1~5mm是为了保证在正常发酵的条件下,发泡致孔微球不会因为培养液挥发而暴露,确保细菌纤维素发酵产物中复合了所有的发泡致孔微球。
本发明发酵过程中所采用的培养皿高度为10~50cm,其为上端开口的玻璃或金属容器,底部边缘有垫脚,垫脚高度为0.5~1cm;其中,发酵培养皿的底部为多孔筛网状设计,并且在底部的表面有一层硅氧薄膜。由于能够发酵获得细菌纤维素的菌株均为耗氧菌,其在发酵生产细菌纤维素的过程中需要消耗氧气,一般情况下如果培养体系液面过高时,只能在培养皿的上表面形成细菌纤维素;本发明培养皿设计的目的是为了在静态培养过程中增加发酵培养皿底部的氧气含量,使底部的细菌纤维素能够正常生长。
上述的制备方法中,优选地,所述发酵产物进行纯化、干燥的过程包括:
将发酵产物分别浸渍于无水乙醇、双氧水中反复按压,洗去培养液的残留,得到纯化的产物,然后将纯化的产物进行冷冻干燥或临界二氧化碳干燥,得到具有微孔结构的细菌纤维素-发泡致孔微球复合物;
其中,微孔结构是由20~50nm的细菌纤维素纳米纤维构成的平均孔径为1~10μm的 微孔结构。纯化的产物通过冷冻干燥或临界二氧化碳干燥以形成微孔结构。
上述的制备方法中,优选地,细菌纤维素-发泡致孔微球复合物进一步加热并浸渍于热塑性高分子材料的熔体中处理的过程包括:
将细菌纤维素-发泡致孔微球复合物加热到60~220℃,待发泡致孔微球中的发泡剂开始放出气体时,将细菌纤维素-发泡致孔微球复合物浸渍到热塑性高分子材料熔体(其熔体温度由材料本身熔化温度决定)中,浸渍10~30min后取出,保持60~220℃温度20~30min后,将其逐渐冷却至室温,得到具有多孔结构的细菌纤维素热塑性高分子复合发泡材料。
上述的制备方法中,优选地,所述热塑性高分子材料采用与发泡致孔微球中热塑性高分子材料相同的材质。
另一方面,本发明还提供一种细菌纤维素热塑性高分子复合发泡材料,其是采用上述的制备方法制备获得的。
上述的细菌纤维素热塑性高分子复合发泡材料,优选地,该细菌纤维素热塑性高分子复合发泡材料的多孔孔径为0.5~6mm,孔洞之间相互连通。
再一方面,本发明还提供上述的细菌纤维素热塑性高分子复合发泡材料在建筑隔热、阻音材料或缓冲包装材料中的应用。例如:将该细菌纤维素热塑性高分子复合发泡材料填充于建筑材料中,制作成高性能的隔音、隔热的建筑材料;将该细菌纤维素热塑性高分子复合发泡材料填充至缓冲包装材料中,制作成高性能的缓冲包装材料。
本发明的有益效果:
本发明采用致孔剂法与发泡法相结合的制备方法,在保持细菌纤维素三维网络结构的同时,制备得到了孔径可控、均匀的细菌纤维素热塑性高分子复合发泡材料;同时进一步引入的热塑性高分子材料显著提高了多孔复合材料的力学性能。本发明制备获得的细菌纤维素热塑性高分子复合发泡材料为环境友好型发泡材料,能够作为多孔发泡材料广泛应用于建筑隔热、阻音材料,缓冲包装材料等领域。
附图说明
图1为本发明实施例4制备的细菌纤维素热塑性高分子复合发泡材料50倍电镜图。
图2为本发明实施例1制备的细菌纤维素热塑性高分子复合发泡材料200倍电镜图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例:
以下实施例提供细菌纤维素热塑性高分子复合发泡材料的制备方法,其包括以下步骤:
1、发泡致孔微球的制备:
以下实施例中,发泡致孔微球的结构为核壳结构,其内核为发泡剂,外壳为热塑性高分子材料。该发泡致孔微球的制备方法为:采用现有模板法或微流体法将热塑性高分子材料加工成热塑型中空的微球壳结构(本领域常规方法),然后采用微针将发泡剂注入到微球壳结构的中空内部,得到核壳结构的发泡致孔微球。表1为各实施例中制备发泡致孔微球所采用的发泡剂、热塑性高分子材料、微球粒径、用量等参数表。
表1:
Figure PCTCN2021077587-appb-000001
2、采用生物高分子化合物对发泡致孔微球的表面进行活化处理,具体包括:
将上述实施例1~9的发泡致孔微球分别浸入到2wt%质量浓度的明胶水溶液中5min,取出后自然干燥得到于发泡致孔微球的表面均匀覆盖的一层明胶。
3、静态发酵培养:
将上述实施例1~9表面活化处理后的发泡致孔微球分别置于培养皿中,将菌株培养液倒入培养皿中至菌株培养液的液面高于发泡致孔微球堆积面5mm,静态发酵培养7d,发酵温度控制为30℃。
其中,上述发酵采用的培养皿为高度50cm且上端开口的金属培养皿,底部边缘有垫脚,高度为1cm;在培养皿的底部为多孔筛网状的设计,并且在底部的表面有一层硅氧薄膜。菌株培养液是由能够发酵获得细菌纤维素的木醋杆菌菌株和发酵培养基组成,木醋杆菌的菌株浓度约为1×10 6个/ml,发酵培养基为本领域常规发酵培养基。
4、发酵产物纯化、干燥:
将上述实施例1~9获得的发酵产物分别浸渍于无水乙醇、双氧水中反复按压3~5min,然后放入蒸馏水中清洗3~5次,如此反复3~7次,洗去培养液的残留,得到纯化的产物;然后将纯化的产物于-20℃条件下冷冻干燥24h,得到实施例1~9各自对应的具有微孔结构的细菌纤维素-发泡致孔微球复合物;其中,微孔结构是由20~50nm的细菌纤维素纳米纤维构成的平均孔径为1~10μm的微孔结构。
5、热塑性高分子材料熔体处理:
将实施例1~9分别制备的细菌纤维素-发泡致孔微球复合物分别置于烘箱中,烘箱设定的温度分别为表1中实施例1~9对应的高温处理温度,待发泡致孔微球中的发泡剂开始放出气体时,接着将细菌纤维素-发泡致孔微球复合物浸渍到表1中实施例1~9分别对应的各自热塑性高分子材料的熔体中10min,取出后继续放到实施例1~9各自对应的高温处理温度的烘箱中20min,随炉自然冷却至室温,得到实施例1~9各自的细菌纤维素热塑性高分子复合发泡材料,该细菌纤维素热塑性高分子复合发泡材料的多孔孔径为0.5~6mm,且孔洞之间相互连通。
图1为本发明实施例4制备的细菌纤维素热塑性高分子复合发泡材料的电镜图,由图1可以看出:多孔平均孔径为2.5mm,且图中可以明显观察到孔洞的孔壁上具有相互连通的孔,并且外部的热塑性高分子材料熔体已经与细菌纤维素的纳米纤维相互融合成整体,基本观察不到纳米纤维。对该细菌纤维素热塑性高分子复合发泡材料进行力学强度测量,样品断裂强度为80MPa,模量为600MPa;而对比的纯细菌纤维素膜(制备方法是将发酵的产物浸泡在3wt%~6wt%的氢氧化钠溶液中蒸煮1~3h,然后蒸馏水洗至中性干燥得到),断裂强度为40MPa,模量为300MPa左右;相比而言,本发明的细菌纤维素热塑性高分子复合发泡材料具有较佳力学性能。
图2为本发明实施例1制备的细菌纤维素热塑性高分子复合发泡材料的电镜图,由图2可以看出:多孔平均孔径为530μm,且图中可以明显观察到孔洞的孔壁上具有相互连通的孔,并且外部的热塑性高分子材料熔体已经与细菌纤维素的纳米纤维相互融合成整体,基本观察不到纳米纤维。对该细菌纤维素热塑性高分子复合发泡材料进行力学强度测量,样品断裂强度为200MPa,模量为800MPa;而对比的纯细菌纤维素膜,断裂强度为40MPa,模量为300MPa左右;相比而言,本发明的细菌纤维素热塑性高分子复合发泡材料具有较佳力学性能。

Claims (15)

  1. 一种细菌纤维素热塑性高分子复合发泡材料的制备方法,其包括以下步骤:
    采用生物高分子化合物对发泡致孔微球的表面进行活化处理;
    表面活化处理后的发泡致孔微球于菌株培养液中进行静态发酵培养,菌株培养液的液面高于发泡致孔微球堆积面1~5mm,发酵产物经纯化、干燥后得到具有微孔结构的细菌纤维素-发泡致孔微球复合物,对其进一步加热并浸渍于热塑性高分子材料的熔体中处理,冷却得到细菌纤维素热塑性高分子复合发泡材料;
    其中,所述发泡致孔微球为核壳结构,其内核为发泡剂,外壳为热塑性高分子材料。
  2. 根据权利要求1所述的制备方法,其中,所述发泡剂包括2,2’-偶氮二异丁腈、苯磺酰肼、对甲苯磺酰肼、N,N’-二甲基-N,N’-二亚硝基对苯二甲酰胺、1,3-苯二磺酰肼、3,3’-二磺酰肼二苯砜、偶氮氨基苯、4,4’-氧代双苯磺酰肼、偶氮二甲酰胺和偶氮二甲酸钡中的一种或多种。
  3. 根据权利要求1所述的制备方法,其中,所述热塑性高分子材料包括聚己内酯、聚氨酯、聚丁二酸丁二醇酯、聚乳酸、聚羟基丁酸酯、尼龙和聚对苯二甲酸丙二醇酯中的一种或多种。
  4. 根据权利要求1~3任一项所述的制备方法,其中,所述发泡致孔微球的粒径为200~5000μm;其中,所述发泡剂的质量占所述发泡致孔微球质量的1~30wt%。
  5. 根据权利要求1~4任一项所述的制备方法,其中,所述发泡致孔微球的制备方法包括:
    采用现有模板法或微流体法将热塑性高分子材料加工成热塑型中空的微球壳结构,然后采用微针将发泡剂注入到微球壳结构的中空内部,得到核壳结构的发泡致孔微球。
  6. 根据权利要求1所述的制备方法,其中,所述生物高分子化合物包括明胶、透明质酸、海藻酸、果胶和蚕丝蛋白中的一种或多种。
  7. 根据权利要求1或6所述的制备方法,其中,采用生物高分子化合物对发泡致孔微球的表面进行活化处理的过程包括:
    将生物高分子化合物溶于水中配制成生物高分子化合物水溶液;
    将发泡致孔微球浸渍于生物高分子化合物水溶液中,取出后自然干燥,于发泡致孔微球的表面均匀覆盖一层生物高分子化合物。
  8. 根据权利要求7所述的制备方法,其中,所述生物高分子化合物水溶液的浓度为0.5~3wt%;
    浸渍处理的时间为1~5min。
  9. 根据权利要求1所述的制备方法,其中,所述菌株培养液是由能够发酵获得细菌纤维素的菌株和发酵培养基组成;
    其中,所述能够发酵获得细菌纤维素的菌株包括木醋杆菌、根瘤菌、八叠球菌、假单胞菌、无色杆菌、产碱菌、气杆菌和固氮菌中的一种或多种。
  10. 根据权利要求1或9所述的制备方法,其中,表面活化处理后的发泡致孔微球于菌株培养液中进行静态发酵培养的过程包括:
    将表面活化后的发泡致孔微球置于培养皿中,将菌株培养液倒入培养皿中至菌株培养液的液面高于发泡致孔微球堆积面1~5mm,静态培养1~7d,发酵温度为30~40℃。
  11. 根据权利要求1或10所述的制备方法,其中,所述发酵产物进行纯化、干燥的过程包括:
    将发酵产物分别浸渍于无水乙醇、双氧水中反复按压,洗去培养液的残留,得到纯化的产物,然后将纯化的产物进行冷冻干燥或临界二氧化碳干燥,得到具有微孔结构的细菌纤维素-发泡致孔微球复合物;
    其中,微孔结构是由20~50nm的细菌纤维素纳米纤维构成的平均孔径为1~10μm的微孔结构。
  12. 根据权利要求1或11所述的制备方法,其中,细菌纤维素-发泡致孔微球复合物进一步加热并浸渍于热塑性高分子材料的熔体中处理的过程包括:
    将细菌纤维素-发泡致孔微球复合物加热到60~220℃,待发泡致孔微球中的发泡剂开始放出气体时,将细菌纤维素-发泡致孔微球复合物浸渍到热塑性高分子材料熔体中,浸渍10~30min后取出,保持60~220℃温度20~30min后,将其逐渐冷却至室温,得到具有多孔结构的细菌纤维素热塑性高分子复合发泡材料。
  13. 一种细菌纤维素热塑性高分子复合发泡材料,其是采用权利要求1~12任一项所述的制备方法制备获得的。
  14. 根据权利要求13所述的细菌纤维素热塑性高分子复合发泡材料,其中,该细菌纤维素热塑性高分子复合发泡材料的多孔孔径为0.5~6mm,且孔洞之间相互连通。
  15. 权利要求13或14所述的细菌纤维素热塑性高分子复合发泡材料在建筑隔热、阻音材料或缓冲包装材料中的应用。
PCT/CN2021/077587 2021-02-24 2021-02-24 细菌纤维素热塑性高分子复合发泡材料及其制法和应用 WO2022178699A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180092863.4A CN116806236A (zh) 2021-02-24 2021-02-24 细菌纤维素热塑性高分子复合发泡材料及其制法和应用
PCT/CN2021/077587 WO2022178699A1 (zh) 2021-02-24 2021-02-24 细菌纤维素热塑性高分子复合发泡材料及其制法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077587 WO2022178699A1 (zh) 2021-02-24 2021-02-24 细菌纤维素热塑性高分子复合发泡材料及其制法和应用

Publications (1)

Publication Number Publication Date
WO2022178699A1 true WO2022178699A1 (zh) 2022-09-01

Family

ID=83048605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077587 WO2022178699A1 (zh) 2021-02-24 2021-02-24 细菌纤维素热塑性高分子复合发泡材料及其制法和应用

Country Status (2)

Country Link
CN (1) CN116806236A (zh)
WO (1) WO2022178699A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032514A1 (en) * 2010-09-07 2012-03-15 Yissum Research And Development Company Of The Hebrew University Of Jerusalem Ltd. Cellulose-based composite materials
CN104014287A (zh) * 2014-06-12 2014-09-03 合肥工业大学 一种热膨胀型发泡微球及其制备方法
WO2015114630A1 (en) * 2014-01-29 2015-08-06 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd Porous nanocrystalline cellulose structures
CN104958782A (zh) * 2015-06-08 2015-10-07 东华大学 一种细菌纤维素多孔泡沫材料及其制备方法
CN107501599A (zh) * 2017-08-15 2017-12-22 成都新柯力化工科技有限公司 一种由膨胀微球发泡的晶须支撑聚丙烯塑料及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032514A1 (en) * 2010-09-07 2012-03-15 Yissum Research And Development Company Of The Hebrew University Of Jerusalem Ltd. Cellulose-based composite materials
WO2015114630A1 (en) * 2014-01-29 2015-08-06 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd Porous nanocrystalline cellulose structures
CN104014287A (zh) * 2014-06-12 2014-09-03 合肥工业大学 一种热膨胀型发泡微球及其制备方法
CN104958782A (zh) * 2015-06-08 2015-10-07 东华大学 一种细菌纤维素多孔泡沫材料及其制备方法
CN107501599A (zh) * 2017-08-15 2017-12-22 成都新柯力化工科技有限公司 一种由膨胀微球发泡的晶须支撑聚丙烯塑料及制备方法

Also Published As

Publication number Publication date
CN116806236A (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
Tu et al. Recent progress in high‐strength and robust regenerated cellulose materials
Chen et al. Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport
Lamm et al. Recent advances in functional materials through cellulose nanofiber templating
Ul-Islam et al. Comparative study of plant and bacterial cellulose pellicles regenerated from dissolved states
Qiao et al. Superhydrophobic, elastic and anisotropic cellulose nanofiber aerogels for highly effective oil/water separation
Sakuma et al. Mechanically strong, scalable, mesoporous xerogels of nanocellulose featuring light permeability, thermal insulation, and flame self-extinction
Yao et al. Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers
Yang et al. Preparation and applications of the cellulose nanocrystal
Muhd Julkapli et al. Nanocellulose as a green and sustainable emerging material in energy applications: a review
JP6786484B2 (ja) Cnf多孔性固体材料
Wu et al. Synthesis of flexible aerogel composites reinforced with electrospun nanofibers and microparticles for thermal insulation
Shen et al. Nanocellulose-based composite phase change materials for thermal energy storage: status and challenges
Zhang et al. Aerogel microspheres based on cellulose nanofibrils as potential cell culture scaffolds
Cao et al. Cellulose nanocrystals-based nanocomposites: fruits of a novel biomass research and teaching platform
CN105463603A (zh) 一种SiO2/纤维素韧性气凝胶纤维的制备方法
CN101288778A (zh) 多孔细菌纤维素海绵的制备方法
JP7255911B2 (ja) 溶媒の可塑化および発泡によるエアロゲル材料の製造方法
Yi et al. A waterproof and breathable nanofibrous membrane with thermal‐regulated property for multifunctional textile application
CN113527753A (zh) 一种常压制备的生物基泡沫材料及其制备方法和应用
CN107674406A (zh) 一种超临界co2发泡材料用生物基多孔碳材料
CN109232993A (zh) 一种纤维素/微米纤维素长丝多孔小球的制备方法
JP2023544541A (ja) バイオベースのカーボンフォーム
Sun et al. Controllable surficial and internal hierarchical structures of porous poly (L-lactic acid) membranes for hydrophobicity and potential application in oil-water separation
Zhang et al. Guiding cellular channels of artificial nanohybrid woods for anisotropic properties and solar-thermal evaporation
WO2022178699A1 (zh) 细菌纤维素热塑性高分子复合发泡材料及其制法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927144

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180092863.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927144

Country of ref document: EP

Kind code of ref document: A1