WO2022177815A1 - Administration par voie muqueuse de composés pour modifier l'iâge - Google Patents

Administration par voie muqueuse de composés pour modifier l'iâge Download PDF

Info

Publication number
WO2022177815A1
WO2022177815A1 PCT/US2022/016098 US2022016098W WO2022177815A1 WO 2022177815 A1 WO2022177815 A1 WO 2022177815A1 US 2022016098 W US2022016098 W US 2022016098W WO 2022177815 A1 WO2022177815 A1 WO 2022177815A1
Authority
WO
WIPO (PCT)
Prior art keywords
iage
mig
ifng
eotaxin
groa
Prior art date
Application number
PCT/US2022/016098
Other languages
English (en)
Inventor
David Furman
Bryan Cox
David Vigerust
Original Assignee
Edifice Health, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edifice Health, Inc. filed Critical Edifice Health, Inc.
Publication of WO2022177815A1 publication Critical patent/WO2022177815A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid, pantothenic acid
    • A61K31/198Alpha-aminoacids, e.g. alanine, edetic acids [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41881,3-Diazoles condensed with other heterocyclic ring systems, e.g. biotin, sorbinil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/455Nicotinic acids, e.g. niacin; Derivatives thereof, e.g. esters, amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/32Manganese; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/52Assays involving cytokines
    • G01N2333/521Chemokines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/52Assays involving cytokines
    • G01N2333/521Chemokines
    • G01N2333/522Alpha-chemokines, e.g. NAP-2, ENA-78, GRO-alpha/MGSA/NAP-3, GRO-beta/MIP-2alpha, GRO-gamma/MIP-2beta, IP-10, GCP-2, MIG, PBSF, PF-4 or KC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/52Assays involving cytokines
    • G01N2333/555Interferons [IFN]
    • G01N2333/57IFN-gamma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70575NGF/TNF-superfamily, e.g. CD70, CD95L, CD153 or CD154
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • Biomarkers are needed both before and during treatment to enable identification of patients likely to respond to immunotherapy treatment in order to reduce inappropriate drug use. Objective clinical responses are defined as a reduction in tumor size during the course of treatment. Multiple baseline factors associated with disease prognosis have been linked to response rates. For example, patients with small-sized tumors or low baseline levels of serum lactate dehydrogenase (LDH) are more likely to respond to anti -PD- 1 treatment. Circulating tumor DNA (ctDNA) that can be released by dead tumor cells and detected in the serum of some patients correlate strongly with tumor progression.
  • LDH serum lactate dehydrogenase
  • Response to anti -PD- 1 treatment can partially be predicted by the expression of the ligand PD-L1 within the tumor microenvironment.
  • PD-L1 expression is correlated with treatment efficacy in melanoma patients, it is not in patients with other cancers such as squamous cell carcinoma, non-small cell lung cancer and Merkel cell carcinoma.
  • a number of post-treatment immune biomarkers have also been suggested to be associated with improved responses to cancer immunotherapy. For instance, patients who were more likely to respond to anti-CTLA-4 treatment had increased counts of inducible co-stimulatory molecule (ICOS)(+) T cells and lower neutrophil/lymphocyte ratios.
  • ICOS inducible co-stimulatory molecule
  • the disclosure describes compounds and methods for modifying iAge (or cAge) of a subject.
  • the iAge (or cAge) modification can reclassify the cohort of a subject undergoing cancer treatment, immunotherapy, or cardiovascular disease treatment.
  • the compounds and methods can modify one or more markers involved in the iAge determination.
  • These compounds can be administered to a subject by a mucosal route of delivery.
  • the compounds and compositions can be formulated for delivery via inhalation administration (e.g., pulmonary), buccal administration, sublingual administration, and/or nasal administration (e.g., intranasal).
  • compositions which can be used to improve the iAge of individuals within certain immunotypes can include, for example, combinations of components that can alter the level of an iAge marker to healthier levels (lowers iAge) for one or more of the iAge markers: TRAIL, GroA, IFNg, MIG, or Eotaxin.
  • Such combinations can include a combination of one or more of the following: iron bisglycinate, iron, biotin, caffeine, manganese chloride, niacin, carrageenan, beta-carotene, leutin, zinc-sulfate, vitamin D2, guar gum, kawain, L- methionine, indole-3 -carbinol, and/or picetannol.
  • the disclosure describes a method for treating cancer patients with immunotherapy whereby subjects can be stratified based on their inflammatory age levels; and can receive individualized interventions to reduce inflammatory age and improve clinical and immune responses to cancer immunotherapy treatments.
  • An inflammatory age scoring system can be used to classify cancer patients into those who will mount an objective clinical response to immunotherapy versus those who will not.
  • the inflammatory age scoring system can be used to guide initial therapy targeting inflammation to enable optimal objective responses in those patients who were classified as non-responders.
  • a cytokine response score can be used to classify cancer patients into those who will mount an objective clinical response to immunotherapy versus those who will not.
  • the disclosure also describes a method for treating cardiovascular disease patients or patients at risk of cardiovascular disease whereby subjects can be stratified based on risk for cardiovascular disease based on their inflammatory factor level; and can receive individualized interventions to treat and/or reduce the inflammatory factors and improve their risk profile, cardiovascular health, and response to cardiovascular treatments.
  • the disclosure also describes methods of improving health, well being and longevity of patients by reducing the iAge score of certain markers so that the patients iAge score is lowered.
  • immunotypes that can be used to stratify patients into groups with similar iAge characteristics. Described herein are ten (10) different immunotypes. Four of the immunotypes subclassify those patients who have a significant decrease in iAge from their chronological age. The other six (6) immunotypes classify the remainder of the patients. Subjects in each immunotype can receive similar interventions to improve iAge of any subject with that immunotype. Thus, patients of the same immunotype can be provided with a treatment based upon their immunotype. Each immunotype treatment reduces the iAge score for patients in that immunotype which improves patient health, well-being and longevity.
  • An inflammatory age scoring system can be used to classify patients into those who have higher risk for cardiovascular disease versus those who have a low risk.
  • the inflammatory age scoring system can be used to guide initial therapy targeting inflammation to improve outcomes of patients receiving treatment for cardiovascular disease, and to reduce risk of cardiovascular disease in asymptomatic patients (e.g., prophylactic treatment).
  • MIG, EOTAXIN, Mip-la, LEPTIN, IL-Ib, IL-5, IFN-a and IL-4 (positive contributors) and TRAIL, IFN-g, CXCL1, IL-2, TGF- a, PAI-1 and LIF (negative contributors) are related to iAge and can be used to make up the iAge score.
  • MIG, LIF and Sirtuin-3 are strongly related to cardiac aging and risk for cardiovascular disease and can be used alone or combination with other factors to define the risk level of a patient.
  • the disclosure describes a method for treating subjects with immunotherapy (e.g., cancer patients), vaccines (e.g., subjects who will benefit from vaccination), and antipathogen therapeutics (e.g., antibiotics, antivirals, antifungals, etc.) whereby subjects can be stratified based on their inflammatory age levels; and can receive individualized interventions to reduce inflammatory age and improve clinical and immune responses to the therapeutic treatment (e.g., cancer immunotherapy, vaccination, anti-pathogen therapeutic).
  • immunotherapy e.g., cancer patients
  • vaccines e.g., subjects who will benefit from vaccination
  • antipathogen therapeutics e.g., antibiotics, antivirals, antifungals, etc.
  • An inflammatory age scoring system can be used to classify subjects (e.g., cancer patients, vaccination subjects, subjects with an infectious disease) into those who have an immune system that can mount an effective response (e.g., mount an objective clinical response to immunotherapy, produce a protective response to a vaccine, or mount an immune response against a pathogen) versus those who will not.
  • the inflammatory age scoring system can be used to guide initial therapy targeting inflammation to enable optimal objective responses in those patients who were classified as non-responders.
  • the iAge can also be used to stratify subjects for different courses of vaccines or antipathogen therapy.
  • a cytokine response score CRM can also be used to classify cancer patients into those who will mount an objective clinical response to immunotherapy versus those who will not.
  • iAge iAge, CRS, and/or Jak-STAT responses
  • the subject can be classified as a responder or a nonresponder for the immunotherapy.
  • Patients who are classified as nonresponders can be treated to lower their iAge, increase their CRS, and/or increase their Jak-STAT response so that the subject moves into a responder category.
  • Classifications are made by comparing the subjects iAge, CRS, and/or Jak- STAT response to those of patients of similar chronological age.
  • iAge, CRS, and/or Jak-STAT response places them at a younger iAge for their age cohort, or a more responsive CRS and/or Jak-STAT score the subject can be a responder for immunotherapy.
  • Subjects with older iAge for their age cohort, and/or lower scores for CRS and/or Jak-STAT can be treated to lower their iAge and/or increase their CRS and/or Jak-STAT score so that they move into a responder group for immunotherapy.
  • a subject Based on a subject’s iAge, CRS, Jak-STAT responses, cardiac age (cAge), and/or levels of MIG, LIF and/or SIRT3 the subject can be classified as high risk or low risk for cardiovascular disease. Patients who are classified as high risk can be treated to lower their iAge, increase their CRS, increase their Jak-STAT response, lower cAge, lower MIG, raise LIF and/or raise SIRT3 so that the subject moves into the low risk category. Classifications are made by comparing the subject’s iAge, CRS, Jak-STAT responses, cAge, and/or levels of MIG, LIF and/or SIRT3 to those of patients of similar chronological age.
  • iAge When a subject’s iAge, CRS, Jak-STAT responses, cAge, and/or levels of MIG, LIF and/or SIRT3 places them at a younger iAge for their age cohort, or a more responsive CRS and/or Jak-STAT score, a lower cAge, a lower MIG, a higher LIF, and/or a higher SIRT3 the subject is less at risk for cardiovascular disease.
  • Subjects with older iAge for their age cohort, lower scores for CRS and/or Jak-STAT, older cAge, a higher MIG, a lower LIF, and/or a lower SIRT3 can be treated to lower their iAge, increase their CRS and/or Jak-STAT score, lower cAge, lower MIG, increase LIF, and/or increase SIRT3 so that they move into the lower risk cohort of patients.
  • a subject’s MIG, LIF, and Sirtuin-3 levels can also be used to classify risk for cardiovascular disease.
  • Patients can be classified by their levels of MIG, Sirtuin-3, LIF, and optionally other factors. For example, the patients can be assigned a cardiac age based on these factors with or without other factors.
  • cardiac age a patient’s levels of MIG, SIRT3, LIF, and/or cardiac age (cAge) places them in a younger quartile, quintile, decile (or other quantile) for their age cohort the subject is less at risk for cardiovascular disease.
  • Subjects with older levels of MIG, SIRT3, LIF, and/or cAge for their age cohort can be treated to lower their levels of MIG, SIRT3, LIF, and/or cAge so that they move into the lower risk cohort of patients.
  • the disclosure describes diagnosing cardiovascular disease, monitoring cardiovascular disease progression, monitoring the treatment of cardiovascular disease, prognosing cardiovascular disease, treating cardiovascular disease, alleviating symptoms of cardiovascular disease, inhibiting progression of cardiovascular disease, and preventing cardiovascular disease, in a mammal using the markers, combinations of markers, treatments, prophylactic treatments, and/or agents provided herein.
  • FIG. 1A, IB and 1C show graphs of iAge, naive CD8(+) T-cells, and Jak STAT signaling responses.
  • FIG. 2 shows the stratification of cancer patients by iAge and CRS into responders and nonresponders.
  • FIG. 3 shows the stratification of cancer patients using iAge.
  • FIG. 4 depicts the fold change in MIG mRNA and SIRT3 mRNA after passage of cells following differentiation into endothelial cells from hiPSCs.
  • FIG. 5 is a bar graph showing the relative expression levels of CXCR3 in different cell types.
  • FIG. 6 shows the four immunotypes of the super-healthy group of patients.
  • FIG. 7 shows the six immunotypes of the normal group of patients.
  • FIG. 8 shows the average levels of Eotaxin, TRAIL, GroA, IFNg, and MIG (after normalization of the data as discussed below) for each the super-healthy immunotypes (SHI -4).
  • FIG. 9 shows the average levels of Eotaxin, TRAIL, GroA, IFNg, and MIG (after normalization of the data as discussed below) for each the normal immunotypes (Nl-6).
  • activation is defined to be a physiological condition upon exposure to a substance, allergen, drug, protein, chemical, or other stimulus, or upon removal of a substance, allergen, drug, protein, chemical or other stimulus.
  • an “antibody” is defined to be a protein functionally defined as a ligand-binding protein and structurally defined as comprising an amino acid sequence that is recognized by one of skill as being derived from the variable region of an immunoglobulin.
  • An antibody can consist of one or more polypeptides substantially encoded by immunoglobulin genes, fragments of immunoglobulin genes, hybrid immunoglobulin genes (made by combining the genetic information from different animals), or synthetic immunoglobulin genes.
  • the recognized, native, immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon and mu constant region genes, as well as myriad immunoglobulin variable region genes and multiple D-segments and J-segments.
  • Light chains are classified as either kappa or lambda.
  • Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively.
  • Antibodies exist as intact immunoglobulins, as a number of well characterized fragments produced by digestion with various peptidases, or as a variety of fragments made by recombinant DNA technology. Antibodies can derive from many different species (e.g., rabbit, sheep, camel, human, or rodent, such as mouse or rat), or can be synthetic. Antibodies can be chimeric, humanized, or humaneered. Antibodies can be monoclonal or polyclonal, multiple or single chained, fragments or intact immunoglobulins.
  • an “antibody fragment” is defined to be at least one portion of an intact antibody, or recombinant variants thereof, and refers to the antigen binding domain, e.g., an antigenic determining variable region of an intact antibody, that is sufficient to confer recognition and specific binding of the antibody fragment to a target, such as an antigen.
  • antibody fragments include, but are not limited to, Fab, Fab', F(ab')2, and Fv fragments, scFv antibody fragments, linear antibodies, single domain antibodies such as sdAb (either VL or VH), camelid VHH domains, and multi-specific antibodies formed from antibody fragments.
  • scFv is defined to be a fusion protein comprising at least one antibody fragment comprising a variable region of a light chain and at least one antibody fragment comprising a variable region of a heavy chain, wherein the light and heavy chain variable regions are contiguously linked via a short flexible polypeptide linker, and capable of being expressed as a single chain polypeptide, and wherein the scFv retains the specificity of the intact antibody from which it is derived.
  • an scFv may have the VL and VH variable regions in either order, e.g., with respect to the N-terminal and C-terminal ends of the polypeptide, the scFv may comprise VL-linker-VH or may comprise VH-linker-VL.
  • an “antigen” is defined to be a molecule that provokes an immune response. This immune response may involve either antibody production, or the activation of specific immunologically-competent cells, or both.
  • any macromolecule including, but not limited to, virtually all proteins or peptides, including glycosylated polypeptides, phosphorylated polypeptides, and other post-translation modified polypeptides including polypeptides modified with lipids, can serve as an antigen.
  • antigens can be derived from recombinant or genomic DNA.
  • any DNA which comprises a nucleotide sequences or a partial nucleotide sequence encoding a protein that elicits an immune response therefore encodes an “antigen” as that term is used herein.
  • an antigen need not be encoded solely by a full length nucleotide sequence of a gene. It is readily apparent that the present invention includes, but is not limited to, the use of partial nucleotide sequences of more than one gene and that these nucleotide sequences are arranged in various combinations to encode polypeptides that elicit the desired immune response.
  • an antigen need not be encoded by a “gene” at all.
  • an antigen can be synthesized or can be derived from a biological sample, or can be a macromolecule besides a polypeptide.
  • a biological sample can include, but is not limited to a tissue sample, a tumor sample, a cell or a fluid with other biological components.
  • CAR Chimeric Antigen Receptor
  • a “CAR” is defined to be a fusion protein comprising antigen recognition moieties and cell-activation elements.
  • CAR T-cell or “CAR T-lymphocyte” are used interchangeably, and are defined to be a T-cell containing the capability of producing CAR polypeptide, regardless of actual expression level.
  • a cell that is capable of expressing a CAR is a T-cell containing nucleic acid sequences for the expression of the CAR in the cell.
  • an “effective amount” or “therapeutically effective amount” are used interchangeably, and defined to be an amount of a compound, formulation, material, or composition, as described herein effective to achieve a particular biological result.
  • an “epitope” is defined to be the portion of an antigen capable of eliciting an immune response, or the portion of an antigen that binds to an antibody.
  • Epitopes can be a protein sequence or subsequence that is recognized by an antibody.
  • an “expression vector” and an “expression construct” are used interchangeably, and are both defined to be a plasmid, virus, or other nucleic acid designed for protein expression in a cell.
  • the vector or construct is used to introduce a gene into a host cell whereby the vector will interact with polymerases in the cell to express the protein encoded in the vector/construct.
  • the expression vector and/or expression construct may exist in the cell extrachromosomally or integrated into the chromosome. When integrated into the chromosome the nucleic acids comprising the expression vector or expression construct will be an expression vector or expression construct.
  • heart failure often called congestive heart failure (CHF) or congestive cardiac failure (CCF), means a condition that occurs when the heart is unable to provide sufficient pump action to maintain blood flow to meet the needs of the body.
  • CHF congestive heart failure
  • CCF congestive cardiac failure
  • Heart failure can cause a number of symptoms including shortness of breath, leg swelling, and exercise intolerance. The condition is typically diagnosed by patient physical examination and confirmed with echocardiography. Common causes of heart failure include myocardial infarction and other forms of ischemic heart disease, hypertension, valvular heart disease, and cardiomyopathy.
  • the term heart failure is sometimes incorrectly used for other cardiac-related illnesses, such as myocardial infarction (heart attack) or cardiac arrest, which can cause heart failure but are not equivalent to heart failure.
  • heterologous is defined to mean the nucleic acid and/or polypeptide is not homologous to the host cell.
  • heterologous means that portions of a nucleic acid or polypeptide that are joined together to make a combination where the portions are from different species, and the combination is not found in nature.
  • the term “impaired immune function” is defined to be any reduction in immune function in an individual, as compared to a fully healthy individual. Individuals with an impaired immune function are readily identifiable by substantially increased abundance of CD8+ CD28- cells or more broadly by reduced cytokine responses, increased baseline phosphoprotein levels and other co-occurring measure.
  • inflammasome is defined as cytosolic multiprotein complexes that are composed of an inflammasome-initiating sensor, apoptosis- associated speck-like protein containing a CARD (Caspase Activation and Recruitment Domain) acts as an adaptor protein and the protease-caspase-1.
  • Inflammasome-initiating sensors include members of the NLRs the pyrin and HIN domain-containing (also known as PYHIN, Aim 2-like receptors, or ALRs; e.g., Aim2), or the TRIM (e.g., pyrin) family.
  • Complex assembly leads to caspase-1- dependent cleavage of cytokines pro-interleukin 1b (pro-IL-Ib) and pro-IL-18 into secreted mature forms.
  • pro-IL-Ib pro-interleukin 1b
  • pro-IL-18 pro-IL-18 into secreted mature forms.
  • inflammasomes initiate pyroptotic
  • scFv single chain antibody
  • An antibody in scFv (single chain fragment variable) format consists of variable regions of heavy (V H ) and light (V L ) chains, which are joined together by a flexible peptide linker.
  • the Jak/STAT signaling pathway is critical for meeting the multiple challenges encountered by the immune system, from fighting infections to maintaining immune tolerance.
  • Clearly STATs are also involved in the development and function of the immune system in humans and play a key role in maintaining immune surveillance of cancer (Nature. 2007; 450(7171):903-7; Nat Rev Cancer (2009) 9:798-809).
  • the Jak-STAT pathway can be profoundly altered with aging and this is one major cause of immune dysfunction in older adults.
  • a cytokine response score (CRS) can be used to predict immune decline and reduction in immune surveillance of cancer.
  • An inflammatory age scoring system can also be used to predict age- associated multimorbidity and mortality.
  • iAge can be extremely sensitive as a biomarker of cardiovascular health since elevated levels predict left ventricular remodeling and arterial stiffness even in very healthy older subject with no clinical or laboratory cardiovascular risk factors.
  • iAge can also identify subclinical immunodeficient young patients (10% of subjects 16-35 years old) who cannot mount responses to any strain of the influenza vaccine in any of the years studied (up to 6 years follow-up). These subjects are characterized by having an older-like immunological phenotype with regards to their immune cell composition, ex vivo responses to multiple acute stimuli, and expression of gene modules associated with advanced age.
  • cytokine response score CRS and iAge are independent measures of inflammation, diminished Jak-STAT signaling pathway in T cells, and low naive CD8(+) T cell counts (FIG. 1 A-C) these measures can be used to stratify cancer patients with respect to their clinical responses to immunotherapy.
  • the methods described herein use blood inflammatory markers CRS and iAge to stratify cancer patients into responder and nonresponders groups for immunotherapy.
  • the nonresponders can be treated to reduce their iAge and/or increase their CRS (and/or Jak-STAT score) so that the nonresponders obtain iAge and/or CRS (and/or Jak- STAT score) that places them into a responder group.
  • the procedure involves the extraction of peripheral blood samples by venipuncture, or by any appropriate method, from candidate cancer patients prior to infusion with immunotherapy treatment (FIG. 2).
  • Immunotherapy treatment may comprise the use of certain molecules including antibodies, small molecules, etc. against inhibitory immune receptors. Blood serum is separated from blood cells by centrifugation of clotted blood, or by any other appropriate method (FIG. 2).
  • iAge For serum protein determination, the resulting sera can be mixed with antibody -linked magnetic beads on 96-well filter-bottom plates and can be incubated at room temperature for 2 h followed by overnight incubation at 4°C. Room temperature incubation steps can be performed on an orbital shaker at 500-600 rpm. Plates can be vacuum filtered and washed twice with wash buffer, then incubated with biotinylated detection antibody for 2 h at room temperature. Samples can be then filtered and washed twice as above and re-suspended in streptavidin-PE. After incubation for 40 minutes at room temperature, two additional vacuum washes can be performed, and the samples can be re-suspended in Reading Buffer. Each sample can be measured in duplicate or triplicate. Plates can be read using a Luminex 200 instrument with a lower bound of 100 beads per sample per cytokine and mean fluorescence intensity (MFI) is recorded.
  • MFI mean fluorescence intensity
  • iAge inflammatory age
  • TRAIL -0.3760
  • IFNG -0.3235
  • EOTAXIN 0.2912
  • GROA -0.2723, IL2: -0.2063, TGFA: -0.1978
  • PAI1 -0.1587
  • LIF -0.1587
  • LEPTIN 0.1549
  • MIP1A 0.1547
  • IL1B 0.1471.
  • the MFI can be multiplied by the regression coefficient for the protein, and these numbers can be all added together to give the iAge of the subject. Table 1 below lists the ranges of iAge within chronological age decades.
  • iAge can also be derived from using 4, 5, 6, 7, 8, 9, 10, or 11 of the markers EOTAXIN, GROA, IFNG, MIG, ILIB, IL2, LEPTIN, LIF, MIP1A, PAI1, TRAIL, and/or TGFA.
  • Regression coefficients for these markers can be, for example, EOTAXIN (e.g., 0.79, 1.9, 2.3, 2.0, 2.1, 1.6, 2.2, 1.4, 1.2, 1.5, 1.7, 1.0, 1.3, -1.2), GROA (e.g., -0.47, -0.84, -0.43, -0.24, -0.99, -0.98, -0.46, -0.18, -0.56, -0.36, 2.0, 0.051, -0.48, -0.39, -0.8, -0.13, -0.15, -0.16, -0.2, -0.45, -0.04, -0.7, -0.61, -0.86, -1.1, -0.44, -0.11, -0.27, -0.68, -0.51, -0.34, -0.92, -1.0, -1.2), IFNG (e.g., -0.26, -0.98, - 0.97, -0.64, -0.56, -0.46, -0.31, -0.66, -
  • IL1B e.g., -0.4, 0.45, 0.42, 0.62, 0.35, 0.49, -0.5, -0.39, -0.68, -0.33, -0.75, - 0.58, 0.0071, 0.5, -0.91, 0.6, -0.083, -0.73, -0.81, 0.36, 0.53, -0.47, -0.38, -0.88, 0.29, -0.46, -0.17, 0.098, 0.46, 0.13, -0.059, 0.3, 0.55, -0.61, -0.36, -0.44, 0.31, -0.19, -0.05, 0.082, -0.043, -0.52, -0.43, -0.34, -0.84, -1.0), IL2 (e.g., -0.6, -2.9, -2.4, -1.4, -1.9, - 1.3, -1.8, -3.2, -2.7, -2.8, -2.3, -2.2, -1.7, -1.2,
  • LIF (-0.31, 1.7, 0.52, -0.32, 1.3, 1.2, -0.61, 1.6, 2.1, -0.14, 1.8, 1.5, 2.0, 0.59, - 0.91, -0.25, 0.35, 1.1, -1.3, -0.21, -0.22, 0.13, -1.7, -1.2, -0.7, -1.1, -0.048, -0.27, 1.9, - 0.35, -0.0056, -0.59, -1.5, -0.42, -1.8), MIP1A (e.g., 0.38, 0.51, 0.48, 0.59, 0.36, 0.4, 0.5, 0.27, 0.28, -0.47, 0.26, 0.18, -0.65, -0.4, 0.35, -0.073, 0.52, -0.084, 0.11, 0.86, - 0.39, -0.025, 0.53, 0.45, -0.13, 0.29, 0.22, 0.1, 0.15, -0.16, 0.094, 0.0
  • iAge can be derived from EOTAXIN, GROA, IFNG, and MIG, or EOTAXIN, GROA, IFNG, and IL1B, or EOTAXIN, GROA, IFNG, and IL2, or EOTAXIN, GROA, IFNG, and LEPTIN, or EOTAXIN, GROA, IFNG, and LIF, or EOTAXIN, GROA, IFNG, and MIPIA, or EOTAXIN, GROA, IFNG, and PAI1, or EOTAXIN, GROA, IFNG, and TRAIL, or EOTAXIN, GROA, IFNG, and TGFA, or EOTAXIN, GROA, MIG, and IL1B, or EOTAXIN, GROA, MIG, and IL1B, or EOTAXIN, GROA, MIG, and IL2, or EOTAXIN, GROA, MIG, and LEPTIN, EOTAXIN,
  • iAge can also be derived, for example, from EOTAXIN, GROA, IFNG, MIG, and ILIB, or EOTAXIN, GROA, IFNG, MIG, and IL2, or EOTAXIN, GROA, IFNG, MIG, and LEPTIN, or EOTAXIN, GROA, IFNG, MIG, and LIF, or EOTAXIN, GROA, IFNG, MIG, and MIPIA, or EOTAXIN, GROA, IFNG, MIG, and PAI1, or EOTAXIN, GROA, IFNG, MIG, and TRAIL, or EOTAXIN, GROA, IFNG, MIG, and TGFA, or EOTAXIN, GROA, IFNG, ILIB, and LEPTIN, or EOTAXIN, GROA, IFNG, ILIB, and LIF, or EOTAXIN, GROA, IFNG, ILIB, and MIPIA,
  • iAge can also be derived from, for example, EOTAXIN, GROA, IFNG, MIG, IL1B, and IL2, or EOTAXIN, GROA, IFNG, MIG, IL1B, and LEPTIN, or EOTAXIN, GROA, IFNG, MIG, IL1B, and LIF, or EOTAXIN, GROA, IFNG, MIG, IL1B, and MIP1A, or EOTAXIN, GROA, IFNG, MIG, IL1B, and PAI1, or EOTAXIN, GROA, IFNG, MIG, IL1B, and TRAIL, or EOTAXIN, GROA, IFNG, MIG, IL1B, and TGFA, or EOTAXIN, GROA, IFNG, MIG, IL2, and LEPTIN, or EOTAXIN, GROA, IFNG, MIG, IL2 and LIF, or EOTAXIN
  • GROA, IFNG, MIG, MIPIA, and TRAIL or EOTAXIN, GROA, IFNG, MIG, MIPIA, and TGFA, or EOTAXIN, GROA, IFNG, MIG, PAI1, and TRAIL, or EOTAXIN, GROA, IFNG, MIG, PAI1, and TGFA, or EOTAXIN, GROA, IFNG, MIG, TRAIL, and TGFA.
  • iAge can also be derived from, for example, EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, and LEPTIN, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, and LIF, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, and MIPIA, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, and PAI1, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, and TRAIL, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, and TGFA, or EOTAXIN, GROA, IFNG, MIG, IL1B, LEPTIN, and LIF, or EOTAXIN, GROA, IFNG, MIG, IL1B, LEPTIN, and MIPIA
  • iAge can also be derived from, for example, EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LEPTIN and LIF, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LEPTIN and MIP1A, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LEPTIN and PAI1, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LEPTIN and TRAIL, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LEPTIN and TGFA, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LIF and MIPIA, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LIF and MIPIA, or EOTAXIN, GROA, IFNG
  • EOTAXIN LIF and PAI1, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LIF and TRAIL, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LIF and TGFA, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, MIPIA and PAI1, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, MIPIA and TRAIL, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, MIPIA and TGFA, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, PAI1 and TRAIL, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, PAI1 and TRAIL, or EOTAXIN, GROA, IFNG, MIG
  • iAge can also be derived from, for example, EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LEPTIN, LIF and MIPIA, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LEPTIN, LIF and PAI1, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LEPTIN,
  • iAge can also be derived from, for example, EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LEPTIN, LIF, MIPIA and PAI1, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LEPTIN, LIF, MIPIA and TRAIL, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LEPTIN, LIF, MIPIA and TGFA, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LEPTIN, LIF, PAI1, and TRAIL, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LEPTIN, LIF, PAI1, and TRAIL, or EOTAXIN, GROA, IFNG, MIG, IL1B, IL2, LEPTIN, LIF, PAI1, and TGFA, or E
  • IL1B IL1B
  • IL2 IL2
  • LEPTIN LIF
  • TRAIL TRAIL
  • Examples of combination of markers for calculating iAge with coefficients are: EOTAXIN (e.g., 0.79, 1.9, 2.3, 2.0, 2.1, 1.6, 2.2, 1.4, 1.2, 1.5, 1.7, 1.0, 1.3, -1.2), GROA (e.g., -0.47, -0.84, -0.43, -0.24, -0.99, -0.98, -0.46, -0.18, -0.56, -0.36, 2.0, 0.051, -0.48, -0.39, -0.8, -0.13, -0.15, -0.16, -0.2, -0.45, -0.04, -0.7, -0.61, -0.86, -1.1, -0.44, -0.11, -0.27, -0.68, -0.51, -0.34, -0.92, -1.0, -1.2), IL1B (e.g., -0.4, 0.45, 0.42, 0.62, 0.35, 0.49, -0.5, -0.39
  • EOTAXIN e.g. 0.79, 1.9, 2.3, 2.0, 2.1, 1.6, 2.2, 1.4, 1.2, 1.5, 1.7, 1.0, 1.3, -1.2
  • GROA e.g., -0.47, -0.84, -0.43, -0.24, -0.99, -0.98, -0.46, -0.18, -0.56, -0.36, 2.0, 0.051, -0.48, -0.39, -0.8, -0.13, -0.15, -0.16, -0.2, -0.45, -0.04, -0.7, -0.61, - 0.86, -1.1, -0.44, -0.11, -0.27, -0.68, -0.51, -0.34, -0.92, -1.0, -1.2), IFNG (e.g., -0.26, -0.98, -0.97, -0.64, -0.56, -0.46, -0.31, -0.66, -0.9,
  • TRAIL e.g., 0.81, 0.71, -0.92, -0.2, -0.77, -0.48, -0.37, 0.74, 0.47, 0.33, 1.2, 0.42, 0.5, 0.76, -0.74, 0.85, -0.084, 0.52, -1.8, 0.62, -0.46, -0.23, 0.034, -0.71, - 0.17, 0.1, -1.7, 0.3, -0.78, -1.6, -1.1, 1.9, -0.6, 0.82, -0.68, -0.85, -0.76, 0.91, -1.5, -1.0, -1.4); or EOTAXIN (e.g., 0.79, 1.9, 2.3, 2.0, 2.1, 1.6, 2.2, 1.4, 1.2, 1.5, 1.7, 1.0, 1.3, - 1.2), GROA (e.g., -0.47, -0.84, -0.43, -0.24, -0.99, -0.98,
  • MIG e.g., 0.21, 1.9, 2.3, 2.0, 2.1, 2.2, 1.8, 1.6, 1.2, 1.7, 1.5, 1.1
  • IL2 e.g., -0.6, -2.9, -2.4, -1.4, -1.9, -1.3, -1.8, -3.2, -2.7, -2.8, -2.3, -2.2, -1.7, - 1.2, -3.1, -2.1, -1.6, -2.5, -2.0, -3.0, -2.6, -1.5
  • TRAIL e.g., 0.81, 0.71, -0.92, - 0.2, -0.77, -0.48, -0.37, 0.74, 0.47
  • IFNG e.g., -0.26, -0.98, -0.97, -0.64, -0.56, -0.46, -0.31, -0.66, -0.9, -0.2, - 0.25, -1.4, -0.085, -0.73, -0.8, -0.38, -0.086, -0.16, -0.22, -1.2, -0.53, -0.28, -0.86, - 0.61, -1.1, -1.6, -0.36, -0.52, 0.012, -0.68, -1.5, -1.0, -1.3), MIG (e.g., 0.21, 1.9, 2.3, 2.0, 2.1, 2.2, 1.8, 1.6, 1.2, 1.7, 1.5, 1.1), IL
  • TRAIL e.g., 0.81, 0.71, -0.92, -0.2, -0.77, - 0.48, -0.37, 0.74, 0.47, 0.33, 1.2, 0.42, 0.5, 0.76, -0.74, 0.85, -0.084, 0.52, -1.8, 0.62, - 0.46, -0.23, 0.034, -0.71, -0.17, 0.1, -1.7, 0.3, -0.78, -1.6,
  • TRAIL e.g., 0.81, 0.71, -0.92, -0.2, -0.77, - 0.48, -0.37, 0.74, 0.47, 0.33, 1.2, 0.42, 0.5, 0.76, -0.74, 0.85, -0.084, 0.52, -1.8, 0.62, - 0.46, -0.23, 0.034, -0.71, -0.17, 0.1, -1.7, 0.3, -0.78, -1.6,
  • GROA e.g, -0.47, -0.84, -0.43, -0.24, -0.99, - 0.98, -0.46, -0.18, -0.56, -0.36, 2.0, 0.051, -0.48, -0.39, -0.8, -0.13, -0.15, -0.16, -0.2, - 0.45, -0.04, -0.7, -0.61, -0.86, -1.1, -0.44, -0.11, -0.27, -0.68, -0.51, -0.34, -0.92, -1.0, -1.2), IFNG (e.g., -0.26, -0.98, -0.97, -0.64, -0.56, -0.46, -0.31, -0.66, -0.9, -0.2, -0.25, -1.4, -0.085, -0.73, -0.8, -0.38, -0.086, -0.16,
  • IFNG e.g., -0.26, -0.98, -0.97
  • MIG e.g. 0.21, 1.9, 2.3, 2.0, 2.1,
  • TGFa e.g., -0.069, -0.58, -0.43, 0.39, -0.79, -0.52, - 0.44, -0.14, -0.7, 0.41, -0.25, 0.34, 0.057, -0.24, 0.33, 0.18, 0.27, 0.15, -0.3, -0.00047, 0.21, -0.17, -0.1, -0.21, 0.09, -0.15, -0.092, 0.22, 0.16, 0.46, -0.099, -0.041, -0.53, - 0.36, -0.61, -0.11, -0.77, 0.013, -0.18, -0.22, -0.51, -3.0, -0.59, -0.42, -1.4), LIF (e.g., - 0.31, 1.7, 0.52, -0.32, 1.3, 1.2, -0.61, 1.6, 2.1, -0.14, 1.8,
  • LIF e.g., - 0.31, 1.7,
  • TGFa e.g., -0.069, -0.58, -0.43, 0.39, -0.79, -0.52, -0.44, -0.14, -0.7, 0.41, -0.25, 0.34, 0.057, -0.24, 0.33, 0.18, 0.27, 0.15, -0.3, -0.00047, 0.21, -0.17, -0.1, -0.21, 0.09, -0.15, -0.092, 0.22, 0.16, 0.46, -0.099, -0.041, -0.53, -0.36, -0.61, -0.11, -0.77, 0.013, - 0.18, -0.22, -0.51, -3.0, -0.59, -0.42, -1.4), LIF (e.g., -0.31, 1.7, 0.52, -0.32, 1.3, 1.2, - 0.61, 1.6, 2.1, -0.14, 1.8, 1.5, 2.0, 0.59, -0.91, -0.25, 0.35,
  • PAI-1 e.g., -0.28, -0.31, -0.13, -0.25, -0.26, - 0.064, -0.14, -0.33, -0.066, -0.067, -0.009, -0.076, -0.079, -0.078, -0.02, -0.15, -0.22, - 0.21, -0.091, -0.03, -0.16, -0.17, -0.092, -0.096, -0.12, -0.032, 0.0038, -0.042, -0.065, -0.045, -0.068, -0.056, -0.051, -0.098), and TRAIL (e.g., 0.81, 0.71, -0.92, -0.2, -0.77, -0.48, -0.37, 0.74, 0.47, 0.33, 1.2, 0.42, 0.5, 0.76, -0.74,
  • PAI-1 e.g., -0.28, -0.31, -0.13, -0.25,
  • MIG e.g., 0.21, 1.9, 2.3, 2.0, 2.1, 2.2, 1.8, 1.6, 1.2, 1.7, 1.5, 1.1
  • TGFa e.g., -0.069, -0.58, -0.43, 0.39, -0.79, -0.52, -0.44, - 0.14, -0.7, 0.41, -0.25, 0.34, 0.057, -0.24, 0.33, 0.18, 0.27, 0.15, -0.3, -0.00047, 0.21, - 0.17, -0.1, -0.21, 0.09, -0.15, -0.092, 0.22, 0.16, 0.46, -0.099, -0.041, -0.53, -0.36, - 0.61, -0.11, -0.77, 0.013, -0.18, -0.22, -0.51, -3.0, -0.59,
  • MIG e.g., 0.21, 1.9, 2.3, 2.0, 2.1, 2.2, 1.8,
  • IL2 e.g., -0.6, -2.9, -2.4, -1.4, -1.9, -1.3, -1.8, -3.2, -2.7, -2.8, - 2.3, -2.2, -1.7, -1.2, -3.1, -2.1, -1.6, -2.5, -2.0, -3.0, -2.6, -1.5
  • PAI-1 e.g., -0.28, - 0.31, -0.13, -0.25, -0.26, -0.064, -0.14, -0.33, -0.066, -0.067, -0.009, -0.076, -0.079, -
  • LEPTIN e.g., 0.46, 0.39, 0.41, 0.42, 0.4, 0.43, 0.44, 0.37, 0.45, 0.38, 0.36, 0.77
  • TRAIL e.g., 0.81, 0.71, -0.92, -0.2, -0.77, -0.48, -0.37, 0.74, 0.47, 0.33, 1.2, 0.42, 0.5, 0.76, -0.74, 0.85, -0.084, 0.52, -1.8, 0.62, -0.46, -0.23, 0.034, -0.71, -0.17, 0.1, -1.7, 0.3, -0.78, - 1.6, -1.1, 1.9, -0.6, 0.82, -0.68, -0.85, -0.76, 0.91, -1.5, -1.0, -1.4).
  • MIG (monokine induced by gamma interferon) is a small cytokine belonging to the CXC chemokine family. MIG is one of the chemokines which plays a role to induce chemotaxis, promote differentiation and multiplication of leukocytes, and cause tissue extravasation. MIG regulates immune cell migration, differentiation, and activation. Tumor-infiltrating lymphocytes are a key for clinical outcomes and prediction of the response to checkpoint inhibitors. In vivo studies suggest the axis plays a tumorigenic role by increasing tumor proliferation and metastasis. MIG predominantly mediates lymphocytic infiltration to the focal sites and suppresses tumor growth. MIG binds to C-X-C motif chemokine 3 of the CXCR3 receptor.
  • TRAIL TNF -related apoptosis-inducing ligand
  • CD253 cluster of differentiation 253
  • TNFSF-IO tumor necrosis factor (ligand) superfamily, member 10
  • IFNG (otherwise known as interferon gamma, IFNy or type II interferon) is a dimerized soluble cytokine that is the only member of the type II class of interferons.
  • IFNG is critical for innate and adaptive immunity against viral, some bacterial and protozoan infections.
  • IFNG is an important activator of macrophages and inducer of Class II major histocompatibility complex (MHC) molecule expression.
  • MHC major histocompatibility complex
  • Eotaxin also known as C-C motif chemokine 11 or eosinophil chemotactic protein
  • C-C motif chemokine 11 or eosinophil chemotactic protein is a small cytokine belonging to the CC chemokine family. Eotaxin selectively recruits eosinophils by inducing their chemotaxis, and therefore, is implicated in allergic responses. The effects of eotaxin is mediated by its binding to a G-protein-linked receptor known as a chemokine receptor.
  • Chemokine receptors for which CCLI I is a ligand include CCR2, CCR3 and CCR5.
  • GROA also known as CXCLI, the GROI oncogene, GROa, KC, neutrophil activating protein 3 (NAP-3) and melanoma growth stimulating activity, alpha (MSGA-a)
  • CXCLI the GROI oncogene
  • GROa the GROI oncogene
  • KC neutrophil activating protein 3
  • melanoma growth stimulating activity, alpha (MSGA-a) is secreted by human melanoma cells, has mitogenic properties and is implicated in melanoma pathogenesis.
  • GROA is expressed by macrophages, neutrophils and epithelial cells, and has neutrophil chemoattractant activity.
  • IL-2 is one of the key cytokines with pleiotropic effects on the immune system. It is a 15.5 - 16 kDa protein that regulates the activities of white blood cells (leukocytes, often lymphocytes) that are responsible for immunity.
  • the major sources of IL-2 are activated CD4+ T cells, activated CD8+ T cells, NK cells, dendritic cells and macrophages.
  • IL-2 is an important factor for the maintenance of CD4+ regulatory T cells and plays a critical role in the differentiation of CD4+ T cells into a variety of subsets. It can promote CD8+ T-cell and NK cell cytotoxicity activity, and modulate T-cell differentiation programs in response to antigen, promoting naive CD4+ T-cell differentiation into T helper-1 (Thl) and T helper-2 (Th2) cells while inhibiting T helper- 17 (Thl 7) differentiation.
  • Thl T helper-1
  • Th2 T helper-2
  • TGFA transforming growth factor alpha
  • TGFA is a polypeptide of 5.7 kDa that is partially homologous to EGF.
  • TGFA is a growth factor that is a ligand for the epidermal growth factor receptor, which activates a signaling pathway for cell proliferation, differentiation and development.
  • TGFA also is a potent stimulator of cell migration.
  • TGFA can be produced in macrophages, brain cells, and keratinocytes.
  • TGFA can induce epithelial development.
  • TGFA can also upregulate TLR expression and function augmenting host cell defense mechanisms at epithelial surfaces.
  • TGFA may act as either a transmembrane-bound ligand or a soluble ligand.
  • TGFA has been associated with many types of cancers, and it may also be involved in some cases of cleft lip/palate. Alternatively spliced transcript variants encoding different isoforms have been found for this gene.
  • PAI1 plasminogen activator inhibitor-1
  • serpin serine proteinase inhibitor
  • PAI1 is the principal inhibitor of tissue plasminogen activator (tPA) and urokinase (uPA), and hence is an inhibitor of fibrinolysis.
  • PAI1 is also a regulator of cell migration.
  • PAI1 can play a role in a number of age-related, conditions including, for example, inflammation, atherosclerosis, insulin resistance, obesity, comorbidities, and Werner syndrome.
  • PAI1 can play a host protective role during the acute phase of infection by regulating interferon gamma release.
  • IFNG regulates PAI-1 expression, which suggests an intricate interplay between PAI-1 and IFNG.
  • PAI1 can also activate macrophages through Toll-like receptor 4 (TLR4) and can promote migration of pro-cancer M2 macrophages into tumors.
  • TLR4 Toll-like receptor 4
  • LIF leukemia inhibitory factor
  • LIF is interleukin 6 class cytokine with pleiotropic effects impacting several different systems. When LIF levels drop, cells differentiate. LIF has the capacity to induce terminal differentiation in leukemic cells. Its activities include the induction of hematopoietic differentiation in normal and myeloid leukemia cells, the induction of neuronal cell differentiation, and the stimulation of acute-phase protein synthesis in hepatocytes.
  • the protein encoded by this gene is a pleiotropic cytokine with roles in several different systems.
  • LIF functions through both autocrine and paracrine manners. LIF binds to its specific receptor LIFR, then recruits gpl30 to form a high affinity receptor complex to induce the activation of the downstream signal pathways including JAK/STAT3, PI3K/AKT, ERK1/2 and mTOR signaling.
  • LIF is a multifunctional protein which has a broad biological functions in neuronal, hepatic, endocrine, inflammatory and immune systems. LIF regulates the embryonic stem cell self-renewal and is an indispensable factor to maintain mouse embryonic stem cell pluripotency. The expression of LIF is induced under inflammatory stress as an anti-inflammatory agent.
  • LEPTIN is secreted by white adipocytes into the circulation and plays a major role in the regulation of energy homeostasis. LEPTIN binds to the leptin receptor in the brain, which activates downstream signaling pathways that inhibit feeding and promote energy expenditure. LEPTIN also has several endocrine functions, and is involved in the regulation of immune and inflammatory responses, hematopoiesis, angiogenesis, reproduction, bone formation and wound healing. LEPTIN can directly link nutritional status and pro-inflammatory T helper 1 immune responses, and a decrease of LEPTIN plasma concentration during food deprivation can lead to an impaired immune function.
  • LEPTIN is associated with the pathogenesis of chronic inflammation, and elevated circulating LEPTIN levels in obesity appear to contribute to low-grade inflammation which makes obese individuals more susceptible to increased risk of developing cardiovascular diseases, type II diabetes, and degenerative disease including autoimmunity and cancer.
  • Reduced levels of LEPTIN such as those found in malnourished individuals have been linked to increased risk of infection and reduced cell-mediated immune responses. Mutations in this gene and its regulatory regions cause severe obesity and morbid obesity with hypogonadism in human patients. A mutation in this gene has also been linked to type 2 diabetes mellitus development.
  • MIP1 A macrophage inflammatory protein
  • MIP1 A is a member of the CC or beta chemokine subfamily. MIPIA regulates leukocyte activation and trafficking. MIP1A acts as a chemoattractant to a variety of cells including monocytes, T cells, B cells and eosinophils. MIPIA plays a role in inflammatory responses through binding to the receptors CCR1, CCR4 and CCR5.
  • IL-1B Interleukin- 1 beta
  • IL-1B is a member of the interleukin 1 cytokine family.
  • IL-1B is an important mediator of the inflammatory response, and is involved in a variety of cellular activities, including cell proliferation, differentiation, and apoptosis.
  • LI-1B is produced by activated macrophages as a proprotein, which is proteolytically processed to its active form by caspase 1 (CASP 1/ICE).
  • iAge predicts pulse-wave velocity (a measure of arterial stiffness, or the rate at which pressure waves move down the vessel) which correlates with cardiovascular health.
  • Separation of immune cells may comprise the use of differential centrifugation of blood by density gradient (FIG. 2).
  • the resulting cell pellet can be suspended in warm media, wash twice and resuspended at 0.5c10 L 6 viable cells/mL.
  • 200 uL of cell sample can be plated per well in 96-well deep-well plates. After resting for 1 hour at 37°C, cells can be stimulated by adding 50 ul of cytokine (IFNa, IFNg, IL-6, IL-7, IL-10, IL-2, or IL-21) (FIG. 2) and incubated at 37°C for 15 minutes.
  • cytokine IFNa, IFNg, IL-6, IL-7, IL-10, IL-2, or IL-21
  • the cells can be fixed with paraformaldehyde, permeabilized with methanol, and kept at -80C overnight. Each well can then be bar-coded using a combination of Pacific Orange and Alexa-750 dyes (Invitrogen, Carlsbad, CA) and pooled in tubes.
  • the cells can be washed with FACS buffer (PBS supplemented with 2% FBS and 0.1% soium azide), and stained with the following antibodies (all from BD Biosciences, San Jose, CA): CD3 Pacific Blue, CD4 PerCP-Cy5.5, CD20 PerCp- Cy5.5, CD33 PE-Cy7, CD45RA Qdot 605, pSTAT-1 AlexaFluor488, pSTAT-3 AlexaFluor647, pSTAT-5 PE.
  • the samples can be washed and resuspended in FACS buffer. 100,000 cells per stimulation condition are collected using DIVA 6.0 software on an LSRII flow cytometer (BD Biosciences). Data analysis can be performed using FlowJo v9.3 by gating on live cells based on forward versus side scatter profiles, then on singlets using forward scatter area versus height, followed by cell subset-specific gating.
  • Fold-change difference due to stimulation can be computed as the ratio of the cell, cytokine stimulation, phosphoprotein measure to the raw, un-normalized, cell- phosphoprotein matching baseline that was measured on the same plate.
  • the data can be normalized by scaling individuals by the average of the assay on the day in which they were measured.
  • CRS Cytokine Response Score
  • CD8+ cells stimulate with IFNa and measure pSTATl, 3 and 5
  • CD8+ cells stimulate with IL6 and measure pSTATl, 3 and 5,
  • CD8+ cells stimulate with IFNg and measure pSTATl
  • CD8+ cells stimulate with IL21 and measure pSTATl
  • CD4+ cells stimulate with IFNa and measure pSTAT5, CD4+ cells, stimulate with IL6 and measure pSTAT5, CD20+ cells, stimulate with IFNa and measure pSTATl
  • Monocytes stimulate with IL10 and measure pSTAT3, Monocytes stimulate with IFNg and measure pSTAT3, Monocytes stimulate with IFNa and measure pSTAT3, and Monocytes stimulate with IL6 and measure pSTAT3.
  • IFNA Interferon alpha
  • IFNA is a member of the type I interferon class. And has thirteen (13) variants in humans.
  • IFNA is secreted by hematopoietic cells, predominately plasmacytoid dendritic cells.
  • IFNA can have either protective or deleterious roles.
  • IFNA can be induced by ssRNA, dsRNA, and cytosolic DNA from viruses or bacteria.
  • IFNA can induce caspase-11 expression, which contributes to activation of non-canonical inflammasome.
  • Use of recombinant IFNA has been shown to be effective in reducing the symptoms and duration of the common cold.
  • IFNG Interferon gamma
  • the encoded protein is secreted by cells of both the innate and adaptive immune systems.
  • the active protein is a homodimer that binds to the interferon gamma receptor which triggers a cellular response to viral and microbial infections. Mutations in this gene are associated with an increased susceptibility to viral, bacterial and parasitic infections and to several autoimmune diseases.
  • IL6 is a cytokine with pleiotropic effects on inflammation, immune response, and hematopoiesis. IL6 is promptly and transiently produced in response to infections and tissue injuries, contributes to host defense through the stimulation of acute phase responses, hematopoiesis, and immune reactions. IL6 functions in inflammation and the maturation of B cells. In addition, IL6 has been shown to be an endogenous pyrogen capable of inducing fever in people with autoimmune diseases or infections. IL6 is primarily produced at sites of acute and chronic inflammation, where it is secreted into the serum and induces a transcriptional inflammatory response through interleukin 6 receptor, alpha.
  • IL6 is implicated in a wide variety of inflammation- associated disease states, including susceptibility to diabetes mellitus and systemic juvenile rheumatoid arthritis. Dysregulated, continual synthesis of IL-6 plays a pathological effect on chronic inflammation and autoimmunity. Alternative splicing results in multiple transcript variants.
  • IL10 is a cytokine with pleiotropic effects in immunoregulation and inflammation.
  • IL-10 is an anti-inflammatory cytokine and during infection it inhibits the activity of Thl cells, NK cells, and macrophages, all of which are required for optimal pathogen clearance but also contribute to tissue damage.
  • ILIO can directly regulate innate and adaptive Thl and Th2 responses by limiting T cell activation and differentiation in the lymph nodes as well as suppressing proinflammatory responses in tissues. It also enhances B cell survival, proliferation, and antibody production.
  • This cytokine can block NF-kappa B activity, and is involved in the regulation of the JAK-STAT signaling pathway. Knockout studies in mice suggested the function of this cytokine as an essential immunoregulator in the intestinal tract.
  • IL21 is a member of the common-gamma chain family of cytokines with immunoregulatory activity. IL21 plays a role in both the innate and adaptive immune responses by inducing the differentiation, proliferation and activity of multiple target cells including macrophages, natural killer cells, B cells, cytotoxic T cells, and epithelial cells. IL21 is important to anti-tumor and antiviral responses and also exerts major effects on inflammatory responses that promote the development of autoimmune diseases and inflammatory disorders.
  • pSTATl phosphorylated signal transducer and activator of transcription 1
  • IFNs interferons
  • cytokine KITLG/SCF cytokine KITLG/SCF
  • other cytokines and other growth factors cytokines and other growth factors.
  • type I IFN IFN-alpha and IFN-beta
  • signaling via protein kinases leads to activation of Jak kinases (TYK2 and JAK1) and to tyrosine phosphorylation of STAT1 and STAT2.
  • the phosphorylated STATs dimerize and associate with ISGF3G/IRF-9 to form a complex termed ISGF3 transcription factor, that enters the nucleus (PubMed:28753426).
  • ISGF3 binds to the IFN stimulated response element (ISRE) to activate the transcription of IFN-stimulated genes (ISG), which drive the cell in an antiviral state.
  • IFN-gamma type II IFN
  • STAT1 is tyrosine- and serine-phosphorylated (PubMed:26479788). It then forms a homodimer termed IFN- gamma-activated factor (GAF), migrates into the nucleus and binds to the IFN gamma activated sequence (GAS) to drive the expression of the target genes, inducing a cellular antiviral state.
  • GAF IFN- gamma-activated factor
  • pSTAT 3 phosphorylated signal transducer and activator of transcription 3 mediates cellular responses to interleukins, KITLG/SCF, LEP and other growth factors. Once activated, recruits coactivators, such as NCOA1 or MED1, to the promoter region of the target gene. Binds to the interleukin-6 (IL-6)-responsive elements identified in the promoters of various acute-phase protein genes. Activated by IL31 through IL3 IRA.
  • coactivators such as NCOA1 or MED1
  • T-helper Thl7 or regulatory T-cells Acts as a regulator of inflammatory response by regulating differentiation of naive CD4+ T-cells into T-helper Thl7 or regulatory T-cells (Treg): deacetylation and oxidation of lysine residues by LOXL3, disrupts STAT3 dimerization and inhibits its transcription activity.
  • pSTAT 5 phosphorylated signal transducer and activator of transcription 5
  • JNK Janus-activated kinases
  • STAT5 proteins are activated by a wide variety of hematopoietic and nonhematopoietic cytokines and growth factors, all of which use the JAK-STAT signaling pathway as their main mode of signal transduction.
  • STAT5 proteins critically regulate vital cellular functions such as proliferation, differentiation, and survival.
  • STAT5 plays an important role in the maintenance of normal immune function and homeostasis, both of which are regulated by specific members of IL-2 family of cytokines, which share a common gamma chain (y(c)) in their receptor complex.
  • STAT5 critically mediates the biological actions of members of the y(c) family of cytokines in the immune system.
  • STAT5 plays a critical role in the function and development of Tregs, and consistently activated STAT5 is associated with a suppression in antitumor immunity and an increase in proliferation, invasion, and survival of tumor cells.
  • the five markers which are significant contributors to iAge were used in deriving immunotypes.
  • the five markers are Eotaxin, GroA, INFg, MIG, and TRAIL.
  • the levels of these markers were subjected to a Principal Component Analysis.
  • the levels of the five (5) markers can be standardized so that each contributes equally. This standardized data can then be subject to a covariance matrix computation to see if some of the variables are behaving in a correlated fashion.
  • Eigenvectors and Eigenvalues can be calculated for the covariance matrix to identify the Principle Components.
  • Principal components are new variables that are constructed as linear combinations or mixtures of the initial variables.
  • Principal Components represent the directions of the data that explain a maximal amount of variance, that is to say, the lines that capture most information of the data. Components of lesser value can be discarded and more significant components can be kept (reducing the dimensionality of the data set). This data can be recast along the Principal Component axes.
  • the PCA of the patient data produced two groups: a super-healthy group and a normal health group.
  • the super healthy group was divided into four immunotypes 1- 4 which are shown in FIG. 6.
  • Immunotype SHI had low iAge score levels for Eotaxin, GroA, IFNg, and MIG (indicating a lower contribution to iAge), but high iAge score levels of TRAIL (indicating a higher contribution to iAge).
  • Immunotype SH2 had low iAge scores for Eotaxin and TRAIL, high iAge score levels of GroA and INFg, and moderate iAge score levels for MIG.
  • Immunotype SH3 had low iAge score levels for all five markers (Eotaxin, GroA, IFNg, MIG, TRAIL).
  • Immunotype SH4 had low iAge scores for GroA, IFNg, and TRAIL, high iAge score levels of MIG, and moderate iAge score levels for Eotaxin.
  • the normal group was divided into six Immunotypes 1-6 which are shown in FIG. 7.
  • two additional components were added for the PC A of the normal group: number of markers in the minus direction (low iAge), and the difference between iAge and chronological age.
  • Immunotype N1 had negative iAge score levels for Eotaxin and TRAIL, and high iAge score levels for GroA, IFNg and MIG.
  • Immunotype N2 had moderate iAge score levels for Eotaxin, GroA, IFNg, and MIG, and high iAge score levels for TRAIL.
  • Immunotype N3 had moderate iAge score levels for MIG and TRAIL, and high iAge score levels for Eotaxin, GroA, and IFNg.
  • Immunotype N4 had moderate iAge score levels for Eotaxin and MIG, and high iAge score levels for GroA, IFNg, and TRAIL.
  • Immunotype N4 had moderate iAge score levels for MIG and TRAIL, and high iAge score levels for Eotaxin, GroA, and IFNg.
  • Immunotype N5 had low iAge score levels for TRAIL, and high iAge score levels for GroA, IFNg, MIG, and TRAIL.
  • Immunotype N6 had moderate iAge score levels for GroA and IFNg, and high iAge score levels for Eotaxin, MIG, and TRAIL.
  • a common treatment of each immunotype can be provided to members of the immunotype to lower the iAge of any member of the immunotype which will lower iAge and improve the patients health, well-being and longevity.
  • cardiac age To derive Cardiac age (cAge), patient samples are obtained and processed similar to the description above for iAge.
  • the mean fluorescence intensity can be normalized and used for multiple regression analysis.
  • the levels of MIG, LIF and SIRT3 are diagnostic for risk of cardiovascular health.
  • Other parameters that can be used to compute cardiac age include, for example, aortic pulse wave velocity, a measure of vascular stiffness; relative wall thickness (RWT), a measure of ventricular remodeling, and early diastolic mitral annular velocities (e’), a measure of ventricular relaxation.
  • Still other parameters include, for example, sex, BMI, heart rate, systolic blood pressure, fasting glucose and total cholesterol to HDL ratio.
  • the levels of MIG, LIF, SIRT3, and/or other measurements for a subject can be compared to those of other subjects of the same age and/or different ages to determine the quantile of the subject for each factor, or for the factors of subjects of different ages.
  • Low quantile rank for MIG is diagnostic for low risk of cardiovascular disease
  • high quantile rank for MIG is diagnostic for a higher risk of cardiovascular disease.
  • High quantile rank for LIF and/or SIRT3 are diagnostic for low risk of cardiovascular disease
  • high quantile rank for LIF and/or SIRT3 are diagnostic for a higher risk of cardiovascular disease.
  • Other parameters can also be included in the analysis and, for example, high quantile rank for pulse wave velocity are diagnostic for a higher risk of cardiovascular disease, high quantile rank for abnormal RWT are diagnostic for a higher risk of cardiovascular disease, and lower quantile early diastolic mitral annular velocities are also diagnostic for higher risk of cardiovascular disease.
  • Multiple parameters and/or factors can be combined to compute cardiac age, for example, MIG, LIF and SIRT3 can be used to derive cardiac age, or these factors can be combined with other parameters (e.g., aortic pulse wave velocity, RWT, and/or early diastolic mitral annular velocities) to derive cardiac age.
  • Quantile ranks can include, for example, quartiles, quintiles or deciles.
  • SIRT3 (Situin-3, a NAD-dependent deacetylase) is member of the mammalian sirtuin family of proteins, which are homologs to the yeast Sir2 protein. SIRT3 exhibits NAD+-dependent deacetylase activity. SIRT3 is a regulator of the mitochondrial adaptive response to stress, such as metabolic reprogramming and antioxidant defense mechanisms. SIRT3 mediates cellular resistance toward various forms of stress by maintaining genomic stability and mitochondrial integrity. SIRT3 is central to the maintenance of appropriate mitochondrial function by limiting oxidative stress, and reducing reactive oxygen species (ROS) production with a decrease in mitochondrial membrane potential. SIRT3 has cardio-protective properties involved in mitochondrial homeostasis, stem cell and tissue maintenance during aging, and linked to the beneficial effects of diet, caloric restriction and exercise in maintaining cardiovascular health and longevity.
  • ROS reactive oxygen species
  • Subclinical cardiac tissue remodeling and increased arterial stiffness can be found in otherwise healthy individuals with elevated levels of MIG and low levels of LIF.
  • Patients with subclinical cardiac tissue remodeling and increased arterial stiffness can be otherwise healthy individuals who have elevated levels of MIG and low levels of SIRT-3 and LIF. Cardiac tissue remodeling and increased arterial stiffness are risk factors associated with poorer outcomes in cardiovascular disease.
  • the inflammatory clock (iAge) can also be used as an early molecular marker for cardiovascular malfunctioning.
  • MIG-mediated inflammation can ensue with aging based on our findings; one that is age-intrinsic and observed in aging endothelia, and one independent of age (likely as a response to cumulative exposure to environmental insults).
  • BMI disease risk factors
  • MIG overproduction can be caused by cellular aging per-se, which triggers metabolic dysfunction with production of damage-associated molecular patterns (DAMPs) such as adenine and N4-acetylcytidine.
  • DAMPs damage-associated molecular patterns
  • NLRC4 damage-associated molecular patterns
  • Endothelium has a critical role in the etiology of hypertension and arterial stiffness, and more advanced signs of cardiovascular aging such as tissue remodeling and cardiac hypertrophy are often preceded and may be initiated by malfunctioning of aged endothelia.
  • Endothelial cells show a time-dependent increase in MIG transcript levels, which was concomitant with a drop in SIRT3 expression, and with a decrease in the number of vascular networks formed by the endothelial cells.
  • Young endothelia is a target of MIG from other sources, and MIG can down-regulate SIRT3 expression in the endothelial cells.
  • endothelia cells made from hiPSC human, induced pluripotent stem cells
  • cardiomyocytes made from hiPSC express CXCR3 he receptor for MIG.
  • MIG can act both in a paracrine fashion, wherein increasing levels of this chemokine from immune sources affect endothelial cell function, and in an autocrine fashion on endothelial cells likely producing a positive feedback loop where increasing doses of MIG and expression of its receptor in these cells leads to cumulative deterioration of endothelial function in aging.
  • Exposure of endothelial cells to MIG can also reduce the endothelial cell’s capacity for forming tubular networks, and MIG can reduce vasorelaxation in the aorta.
  • Immunosenescence impacts both the innate and adaptive arms of the immune system and major features of immunosenescence include alteration in immune cell subset frequencies, defective antigen presentation, reduced cytotoxic function, and restricted T cell repertoire (Pawelec G, Larbi A. (2008), Immunity and ageing in man: Annual Review 2006/2007. Exper Gerontol 43:34-38; Weiskopf D, Weinberger B, GrubeckLoebenstein B. (2009), The aging of the immune system. Transpl Int.
  • Immunosenescence impacts both the host's capacity to respond to infections and the development of long-term immune memory, especially by vaccination. Immunosenescence is associated with the accumulation of memory and effector cells as a result of repeated infections and by continuous exposure to antigens (inhalant allergens, food, etc.). This chronic inflammation characterizes immunosenescence and can have a significant impact on survival and fragility. Immunosenescence can also be associated with remodeling of the immune system caused by oxidative stress. [0104] Immunosenescence can occur from an imbalance between inflammatory and anti-inflammatory mechanisms producing chronic inflammation. This chronic inflammation can be due to chronic antigen stimulation occurring over the course of life and to the oxidative stress that involves the production of oxygen free radicals and toxic products. These factors are able to modify the potential of apoptotic lymphocytes, and this remodeling of the lymphocyte compartment and the chronic expression of proinflammatory cytokines are implicated in the processes of longevity and diseases related to immunosenescence.
  • the responses to four independent stimuli were measured in a total of 818 individuals and the fold-increase in phospho-STATl, -STAT3 and -STAT5 in B cells, total CD4 (+) T cells (and the CD45RA(+) and CD45RA(-) subsets), total CD8 (+) T cells (and the CD45RA(+) and CD45RA(-) subsets), and in monocytes were determined.
  • Immunosenescence is associated with lowered ability of the immune system to kill cancer cells, protect against infections from pathogenic organisms, and produce efficacious response to vaccines. Treating a subject to lower their iAge can reduce the immunosenescence in the subject and improve the ability of the subject’s immune system to kill cancer cells, protect against infections from pathogenic organisms, and produce efficacious responses to vaccines. Agents and methods for lowering iAge and thereby reducing immunosenescence are described below.
  • This three E’s theory is still the theory accepted worldwide as the basis to understand the interaction of cancer cells with the immune system.
  • Immunotherapy for cancer boosts the body's natural defenses to fight cancer.
  • Cancer immunotherapies include, for example, monoclonal antibodies, immune checkpoint inhibitors, cancer vaccines, immune cells modified with, for example, chimeric antigen receptors, and other nonspecific immunotherapies that boost the immune system function or action by, for example, specifically targeting cancer cells, overcoming inhibition of the immune system (e.g., by myeloid suppressor cells), etc.
  • Monoclonal antibodies for treating cancer include, for example, anti-CD20 antibody (e.g., Bexxar®, Zevalin®, Rituxan®, Gazyvaro®, Arzerra®), anti-Her2 antibody (e.g., Herceptin®, Kadcyla®, Perjeta®), anti-CD30 antibody (e.g., Adcetris®), anti-CD19 and anti-CD3 bispecific antibody (e.g., Blincyto®), anti-VegF antibody (e.g., Avastin®, Cyramza®), anti-EGFR antibody (e.g., Erbitux®, Portrazza®, Vectibix®), anti-PDGFR-a antibody (e.g., Lartruvo®), anti-CD38 antibody (e.g., Darzalex®), antiSLAMF7 antibody (e.g., Empliciti®), anti-GD2 antibody (e.g., Unituxin®), anti-CD19 antibody (e.g., B
  • Checkpoint inhibitors for treating cancer include, for example, Nivolumab (Opdivo), Pembrolizumab (Keytruda), Atezolizumab (Tecentriq), Ipilimumab (Yervoy), Durvalumab (Imfinzi®), Avelumab (Bavencio®), Lirilumab, and BMS- 986016 (Relatlimab).
  • Nivolumab, Atezolizumab, Pembrolizumab, Durvalumab, and Avelumab act at the checkpoint protein PD-1/PD-L1 and inhibit apoptosis of anti tumor immune cells.
  • Ipilimumab acts at CTLA4 and prevents CTLA4 from downregulating activated Tcells in the tumor.
  • Lirilumab acts at KIR and facilitates activation of Natural Killer cells.
  • BMS-986016 acts at LAG3 and activates antigen- specific T-lymphocytes and enhances cytotoxic T cell-mediated lysis of tumor cells.
  • Chimeric Antigen Receptors for treating cancer include, for example, an antiCD19 CAR in T-cells (e.g., Kymriah® and Yescarta®).
  • CAR therapy can also be directed at a variety of tumor-associated antigens including, for example, 4- IBB, 5T4, adenocarcinoma antigen, alpha-fetoprotein, BAFF, B-lymphoma cell, C242 antigen, CA125, carbonic anhydrase 9 (CA-IX), C-MET, CCR4, CD152, CD19, CD20, CD21, CD22, CD23 (IgE receptor), CD28, CD30 (TNFRSF8), CD33, CD4, CD40, CD44 v6, CD51, CD52, CD56, CD74, CD80, CEA, CNT0888, CTLA-4, DR5, EGFR,
  • tumor-associated antigens including, for example, 4- IBB, 5T4, adenocarcinoma antigen, alpha-fetoprotein, BAFF, B-lymphoma cell, C242 antigen, CA125, carbonic anhydrase 9 (CA-IX), C-MET, CCR4, CD152,
  • MAGE MART-l/melan-A, MART -2/Ski, MC1R, myosin/m, MUM-1, MUM-2, MUM-3, NA88-A, PAP, proteinase-3, pl90 minor bcr-abl, Pml/RARa, PRAME,
  • PSA PSA, PSM, PSMA, RAGE, RU1 orRU2, SAGE, SART-1 or SART-3, survivin, TPI/m, TRP-1, TRP-2, TRP-2/INT2, WT1, NY-Eso-1 orNY-Eso-B or vimentin.
  • Cancer vaccines include, for example, human papilloma virus (HPV) vaccine, dendritic cell vaccines (e.g., Provenge® for prostate cancer), tumor cell vaccines, antigen vaccines, oncolytic virus vaccines (e.g., ImlygicTM), Non-Hodgkin’s lymphoma and mantle cell lymphoma vaccine (e.g., BioVaxIDTM), breast cancer vaccine (e.g., NeuvaxTM), brain cancer vaccine (e.g., DCVaxTM, CDX-110TM), pancreatic cancer vaccine (e.g., GVAX Pancreas, HyperAcuteTM Pancreas), colorectal cancer vaccine (e.g., Imprime PGG®), bladder cancer vaccine (e.g., BCGTM), solid tumor vaccine (e.g., OK432TM), lung cancer and gastrointestinal cancer vaccine (e.g., PSKTM), cervical cancer vaccine (e.g., SchizophyllanTM), and stomach cancer
  • low iAge for an age cohort indicates improved immunocompetence for fighting disease (e.g., cancer, infectious diseases, etc.)
  • a subject can mount an acute immune response to the disease and lower iAge minus cAge for an age cohort indicates improved outcomes with therapy against the disease.
  • patients with an iAge-chAge of -21 or less and MIG levels of about 25-35 pg/ml or more can proceed to immunotherapy treatment.
  • Patients with an iAge-chAge of -10 or more, and MIG levels of 5 pg/ml or less can receive treatments to lower their iAge-chAge, and increase the level of MIG, priming the patient for immunotherapy.
  • Patients with an iAge-chAge of -20 to -11 and MIG levels of 5 to 20 pg/ml can also receive treatments to lower their iAge and raise their MIG levels.
  • the iAge - chAge score indicates the immunocompetence of the subjects immune system.
  • a lower score indicates a healthier immune system that can respond to an immunological challenge in acute disease.
  • a higher iAge - chAge score indicates that the subjects immune system has been degraded, likely from chronic, systemic, low-grade inflammation.
  • High MIG levels in the patient can be indicative of an active acute immune response to the disease state of the subject (e.g., immune response to the cancer). Both these scores together show patients that are immunocompetent and have immune systems that can work with a therapy (e.g., immunotherapy) to combat a cancer.
  • a therapy e.g., immunotherapy
  • iAge or iAge - chAge and higher levels of EOTAXIN and/or MIG are indicative of improved response to adjuvant immunotherapy after primary treatment of a cancer (e.g., surgery or radiation). If a subject has lower iAge or iAge - chAge, and/or lower levels of EOTAXIN and/or MIG, the subject can be treated to raise iAge, iAge - chAge, EOTAXIN, and/or MIG prior to adjuvant immunotherapy.
  • Patients with an iAge of 61 or more, and/or EOTAXIN levels of 21-23 pg/ml or more and/or MIG levels of 5 pg/ml or more, can proceed to adjuvant treatment with immunotherapy after a primary treatment.
  • Patients with an iAge of 50 or less and/or EOTAXIN levels of 14 pg/ml or less and/or MIG levels of 1 pg/ml or less can receive treatments to raise their iAge, increase their EOTAXIN levels, and/or increase their MIG levels.
  • Patients with an iAge score of 51-59, and/or EOTAXIN levels of 14-20 pg/ml, and/or MIG levels of 1-4 pg/ml can also receive treatments to raise their iAge, increase their EOTAXIN levels, and/or increase their MIG levels.
  • the iAge and iAge - cAge scores indicates the immunocompetence of the subjects immune system.
  • the higher baseline scores after primary treatment can indicate that the subject is having a robust immune response to the cancer cells and antigens released by the primary treatment. Combining this robust response with adjuvant immunotherapy produces better outcomes in subjects.
  • a similar relationship is reflected in the higher EOTAXIN and MIG levels which both indicate a robust response by the immune system (e.g., EOTAXIN relates to action by eosinophils and MIG promotes chemotaxis by leukocytes and differentiation into cytotoxic lymphocytes and natural killer cells).
  • EOTAXIN relates to action by eosinophils and MIG promotes chemotaxis by leukocytes and differentiation into cytotoxic lymphocytes and natural killer cells.
  • Immunotherapy or biological therapy include, for example, the treatment of disease by activating or suppressing the immune system.
  • Immunotherapies can be designed to elicit or amplify an immune response, and immunotherapies can be designed to reduce or suppress the immune system.
  • Immunotherapies include, for example, checkpoint inhibitors, immune cell therapies (e.g., adoptive cell therapies, T-cell therapies andNK cell therapies), chimeric antigen receptors, engineered T-cell receptors, antibody therapies (e.g., naked antibodies and antibody drug conjugates), vaccines, adjuvant immunotherapy, and immune system modulators (e.g., cytokines).
  • Checkpoint inhibitors include agents that act at immune checkpoints including, for example, cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), programmed cell death protein (PD-1), Killer-cell Immunoglobulin-like Receptors (KIR), and Lymphocyte Activation Gene-3 (LAG3).
  • CTL4 cytotoxic T-lymphocyte-associated antigen 4
  • PD-1 programmed cell death protein
  • KIR Killer-cell Immunoglobulin-like Receptors
  • LAG3 Lymphocyte Activation Gene-3
  • checkpoint inhibitors examples include, for example, Nivolumab (Opdivo®), Pembrolizumab (Keytruda®), Cemiplimab (Libtayo®), Atezolizumab (Tecentriq®), Avelumab (Bavencio®), Durvalumab (Imfinzi®), Ipilimumab (Yervoy®), Lirilumab, and BMS-986016.
  • Nivolumab, Atezolizumab and Pembrolizumab act at the checkpoint protein PD-1 and inhibit apoptosis of anti -tumor immune cells.
  • Ipilimumab acts at CTLA4 and prevents CTLA4 from downregulating activated T-cells in the tumor.
  • Lirilumab acts at KIR and facilitates activation of Natural Killer cells.
  • BMS-986016 acts at LAG3 and activates antigen- specific T-lymphocytes and enhances cytotoxic T cell-mediated lysis of tumor cells.
  • Antibodies or cell therapies can target tumor associated antigens including, for example, mesothelin, disialoganglioside (GD2), Her-2, MUC1, GPC3, EGFRVIII, CEA, CD19, EGFR, PSMA, GPC2, folate receptor b, IgG Fc receptor, PSCA, PD-L1, EPCAM, Lewis Y Antigen, LI CAM, FOLR, CD30, CD20, EPHA2, PD-1, C-MET, ROR1, CLDN18.2, NKG2D, CD133, TSHR, CD70, ERBB, AXL, Death Receptor 5, VEGFR-2, CD123, CD80, CD86, TSHR, ROR2, CD 147, kappa IGG, IL-13, MUC16, IL-13R, NY-ESO-1, IL13RA2, DLL3, FAP, LMP1, TSHR, BCMA, NECTIN-4, MG
  • CD 10 PD-L1, CD44V6, EBV, CD5, GPC3, CD56, integrin B7, CD70, MUCL,
  • CKIT CLDN18.2, TRBCl, TAC1, CD56, CD4, CD2, CD18, CD27, CD37, CD72, CD79A, CD79B, CD83, CD117, CD172, ERBB3, ERBB4, DR5, HER2, CS1, IL- lRAP, ITGB7, SLC2A14, SLC4A1, SLC6A11, SLC7A3, SLC13A5, SLC19A1, SLC22A12, SLC34A1, slc45A3, SLC46A2, Fra, IL-13Ra2, ULBP3, ULBP1,
  • Adoptive cell therapies include, for example, Kymriah® (tisagenlecleucel), Abecma® (idecabtagene vicleucel), Yescarta® (axicabtagene ciloleucel), Breyanzi® (lisocabtagene maraleucel), and Tecartus® (brexucabtagene autoleucel).
  • Cancers that can be treated with the methods described herein include, for example, the approved indications for the FDA approved immunotherapies, such as melanoma, non-small cell lung cancer, Head and Neck squamous cell cancer, classical Hodgkin’s lymphoma, primary mediastinal large B-cell lymphoma, urothelial carcinoma, microsatellite instability-high cancer, gastric cancer, cervical cancer, hepatocellular carcinoma, Merkel Cell carcinoma, renal cell carcinoma (Keytruda®); advanced or metastatic urothelial carcinoma, unresectable, stage III non-small cell lung cancer (Imfinzi®); unresectable or metastatic melanoma, metastatic non-small cell lung cancer, advanced renal cell carcinoma, classical Hodgkin’s lymphoma, recurrent or metastatic squamous cell carcinoma, advanced or metastatic urothelial carcinoma, microsatellite instability high, or mismatch repair deficient metastatic colorectal cancer, hepatocellular carcinoma
  • Cancers that can be treated with the methods described herein also include, for example the indications under development such as, acute myeloid leukemia, bladder cancer, squamous cell carcinoma of the head and neck, chronic lymphocytic leukemia, multiple myeloma, metastatic solid malignancies (LirilumabTM); or melanoma, advanced colorectal cancer, advanced Chordoma, metastatic melanoma, gastro/esophageal cancer, solid tumors, gastric cancer, advanced renal cell cancer, advanced non-small cell lung cancer (RelatlimabTM).
  • the indications under development such as, acute myeloid leukemia, bladder cancer, squamous cell carcinoma of the head and neck, chronic lymphocytic leukemia, multiple myeloma, metastatic solid malignancies (LirilumabTM); or melanoma, advanced colorectal cancer, advanced Chordoma, metastatic melanoma, gastro/esophageal cancer, solid tumor
  • cancers that can be treated with the methods herein include, for example, sarcoma, carcinoma, melanoma, chordoma, malignant histiocytoma, mesothelioma, glioblastoma, neuroblastoma, medulloblastoma, malignant meningioma, malignant schwannoma, leukemia, lymphoma, myeloma, myelodysplastic syndrome, myeloproliferative disease.
  • the cancer is a leukemia, lymphoma, myeloma, myelodysplastic syndrome, and/or myeloproliferative disease.
  • Vaccines can be substances used to stimulate a protective immune response in a subject (e.g., an antibody response or a cell mediated response) and provide immunity against one or several diseases. Vaccines protect against more than many debilitating or life-threatening diseases/infectious agents, including for example, adenovirus, anthrax, cervical cancer, chicken pox, cholera, dengue, diphtheria, Haemophilus influenza, hepatitis A, hepatitis B, hepatitis E, HPV, influenza, Japanese encephalitis, malaria, measles, meningitis, meningococcal (MenACWY), serogroup B meningococcal, mumps, pneumococcus, polio, rabies, rotavirus, rubella, shingles, small pox, tetanus, tuberculosis, typhoid, varicella, whooping cough, and yellow fever.
  • adenovirus anth
  • Vaccines can be prepared from the causative agent of a disease, its products, or a synthetic substitute, treated to act as an antigen without inducing the disease.
  • vaccine types include, for example, live or attenuated vaccines (e.g., measles, mumps, rubella, varicella, influenza, coronavirus, rotavirus, zoster, yellow fever), inactivated or killed vaccines (e.g., polio, hepatitis A, rabies), toxoid (inactivated toxoid) vaccines (e.g., diphtheria, and tetanus), and subuni t/conjugate vaccines (e.g., hepatitis B, influenza, coronavirus, Haemophilus influenza type b, pertussis, pneumococcal, meningococcal, HPV).
  • live or attenuated vaccines e.g., measles, mumps, rub
  • Attenuated vaccines can be made in several different ways. Some of the most common methods involve passing the disease-causing virus through a series of cell cultures or animal embryos (typically chick embryos). Using chick embryos as an example, the virus is grown in different embryos in a series. With each passage, the virus becomes better at replicating in chick cells, but loses its ability to replicate in human cells. A virus targeted for use in a vaccine may be grown through — “passaged” through — upwards of 200 different embryos or cell cultures. Eventually, the attenuated virus will be unable to replicate well (or at all) in human cells, and can be used in a vaccine.
  • Killed or inactivated vaccines can be created by inactivating a pathogen, typically using heat or chemicals such as formaldehyde or formalin. This destroys the pathogen’s ability to replicate, but keeps it “intact” so that the immune system can still recognize it. (“Inactivated” is generally used rather than “killed” to refer to viral vaccines of this type, as viruses are generally not considered to be alive.) Because killed or inactivated pathogens can’t replicate at all, they can’t revert to a more virulent form capable of causing disease (as discussed above with live, attenuated vaccines). However, these vaccines tend to provide a shorter length of protection than live vaccines, and are more likely to require boosters to create long-term immunity.
  • Toxoids Immunizations created using inactivated toxins are called toxoids. Toxoids can actually be considered killed or inactivated vaccines, but are sometimes given their own category to highlight the fact that they contain an inactivated toxin, and not an inactivated form of bacteria.
  • Both subunit and conjugate vaccines contain only pieces of the pathogens they protect against.
  • Subunit vaccines use only part of a target pathogen to provoke a response from the immune system. This may be done by isolating a specific protein from a pathogen and presenting it as an antigen on its own.
  • the acellular pertussis vaccine and influenza vaccine (in shot form) are examples of subunit vaccines.
  • Another type of subunit vaccine can be created via genetic engineering.
  • Conjugate vaccines can be made using a combination of two different components. Conjugate vaccines, however, are made using pieces from the coats of bacteria. These coats are chemically linked to a carrier protein, and the combination is used as a vaccine.
  • Pathogens are examples of the pathogens.
  • Pathogenic organisms are capable of causing disease in a subject.
  • a human pathogen is capable of causing illness in humans.
  • pathogenic organisms include specific strains of bacteria such as, for example, Actinomyces israelii, Bacillus anthracis, Bacteroides fragilis, Bordetella pertussis, Borrelia, Brucella, Campylobacter jejuni, Chlamydophila psittaci, Cory neb acterium diphtheria, Ehrlichia, Enterococcus, Francisella tularensis, Haemophilus influenza, Helicobacter pylori, Klebsiella pneumoniae, Legionella pneumophila, Leptospira species, Listeria monocytogenes, Mycobacterium, Mycoplasma pneumoniae, Pseudomonas aeruginosa, Nocardia asteroids, Rickettsia rickettsia, Salmonella, Shigella, Treponem
  • Pathogenic organisms also include viruses such as, for example, adenoviruses, herpesviruses, influenza, coronavirus, hepatitis, poxviruses, papovaviruses, paramyxoviruses, coronaviruses, picornaviruses, Reoviruses, togaviruses, flaviviruses, arenaviruses, rhabdoviruses, retroviruses, hepadnaviruses, Cryptosporidium.
  • viruses such as, for example, adenoviruses, herpesviruses, influenza, coronavirus, hepatitis, poxviruses, papovaviruses, paramyxoviruses, coronaviruses, picornaviruses, Reoviruses, togaviruses, flaviviruses, arenaviruses, rhabdoviruses, retroviruses, hepadnaviruses, Cryptosporidium.
  • Pathogenic organisms include fungi such as, for example, Candida, Aspergillus, Cryptococcus, Histoplasma, Pneumocystis, and Stachybotrys.
  • Pathogens also include the above organisms which are the target of vaccines.
  • Anti-pathogen therapies can include, for example, antibiotics for bacterial pathogens, anti-viral therapies for viral pathogens, and anti-fungal therapies for fungal pathogens. Antibodies can also be administered for the treatment of certain infectious diseases caused by bacteria, viruses or fungi.
  • Subjects with cancer who are candidates for immunotherapy have their blood drawn and an iAge and CRS are calculated as described above. If the subject’s iAge places them in the youngest iAge quartile for their age group (see Table 1) they can be classified as responders and move forward with the immunotherapy. If the subject’s iAge places them in the middle two quartiles, the subject’s blood cells (e.g., CD4+ and CD8+ cells) are stimulated and Jak-STAT activity is measured (see, e.g., Example 1 below). Subject’s whose Jak-STAT activity places them in the highest quartile can be classified as responders and can be treated with the immunotherapy.
  • iAge places them in the youngest iAge quartile for their age group (see Table 1) they can be classified as responders and move forward with the immunotherapy. If the subject’s iAge places them in the middle two quartiles, the subject’s blood cells (e.g., CD4+ and CD8+ cells
  • Subjects whose Jak-STAT activity places them in the lower three quartiles can be classified as nonresponders and are treated to lower iAge (and increase their Jak-STAT score) into a responder group. If the subject’s iAge places them in the oldest quartile, they can be classified as nonresponders and are treated to lower their iAge (see below) into a responder group of a younger iAge quartile.
  • the subject’s iAge places them in the youngest iAge quintile for their age group (see Table 1) they can be classified as responders and move forward with the immunotherapy. If the subject’s iAge places them in the middle three quintiles, the subject’s blood cells (e.g., CD4+ and CD8+ cells) are stimulated and Jak-STAT activity is measured (see, e.g., Example 1 below). Subject’s whose Jak-STAT activity places them in the highest quartile can be classified as responders and can be treated with the immunotherapy.
  • blood cells e.g., CD4+ and CD8+ cells
  • Subjects whose Jak-STAT activity places them in the lower three quartiles can be classified as nonresponders and are treated to lower iAge (and increase their Jak-STAT score) into a responder group. If the subject’s iAge places them in the oldest quintile, they can be classified as nonresponders and are treated to lower their iAge (see below) into a responder group of a younger iAge quintile.
  • the subject’s iAge places them in the youngest iAge tertile for their age group (see Table 1) they can be classified as responders and move forward with the immunotherapy. If the subject’s iAge places them in the middle tertile, the subject’s blood cells (e.g., CD4+ and CD8+ cells) are stimulated and Jak- STAT activity is measured (see, e.g., Example 1 below). Subject’s whose Jak-STAT activity places them in the highest quartile can be classified as responders and can be treated with the immunotherapy.
  • blood cells e.g., CD4+ and CD8+ cells
  • Subjects whose Jak-STAT activity places them in the lower three quartiles can be classified as nonresponders and are treated to lower iAge (and increase their Jak-STAT score) into a responder group. If the subject’s iAge places them in the oldest tertile, they can be classified as nonresponders and are treated to lower their iAge (see below) into a responder group of a younger iAge tertile.
  • Subjects who are candidates for vaccinations can have their blood drawn and an iAge and CRS are calculated as described above. If the subject’s iAge places them in the youngest iAge quartile for their age group (see Table 1) they can be classified as responders and move forward with the vaccination. If the subject’s iAge places them in the middle two quartiles, the subject’s blood cells (e.g., CD4+ and CD8+ cells) are stimulated and Jak-STAT activity is measured (see, e.g., Example 1 below). Subject’s whose Jak-STAT activity places them in the highest quartile can be classified as responders and can be vaccinated.
  • iAge places them in the youngest iAge quartile for their age group (see Table 1) they can be classified as responders and move forward with the vaccination. If the subject’s iAge places them in the middle two quartiles, the subject’s blood cells (e.g., CD4+ and CD8+ cells) are stimulated
  • Subjects whose Jak- STAT activity places them in the lower three quartiles can be classified as nonresponders and are treated to lower iAge (and increase their Jak-STAT score) into a responder group. If the subject’s iAge places them in the oldest quartile, they can be classified as nonresponders and are treated to lower their iAge (see below) into a responder group of a younger iAge quartile. Subjects classified as nonresponders can also be treated with higher doses of vaccines and/or more aggressive vaccine formulations (e.g., cocktails of antigens, adjuvants, and/or immunostimulants) to account for the immunosenescence in the subject.
  • more aggressive vaccine formulations e.g., cocktails of antigens, adjuvants, and/or immunostimulants
  • the subject’s iAge places them in the youngest iAge quintile for their age group (see Table 1) they can be classified as responders and move forward with the vaccination. If the subject’s iAge places them in the middle three quintiles, the subject’s blood cells (e.g., CD4+ and CD8+ cells) are stimulated and Jak-STAT activity is measured (see, e.g., Example 1 below). Subject’s whose Jak- STAT activity places them in the highest quartile can be classified as responders and can be vaccinated.
  • blood cells e.g., CD4+ and CD8+ cells
  • Subjects whose Jak-STAT activity places them in the lower three quartiles can be classified as nonresponders and are treated to lower iAge (and increase their Jak-STAT score) into a responder group. If the subject’s iAge places them in the oldest quintile, they can be classified as nonresponders and are treated to lower their iAge (see below) into a responder group of a younger iAge quintile. Subjects classified as nonresponders can also be treated with higher doses of vaccines and/or more aggressive vaccine formulations (e.g., cocktails of antigens, adjuvants, and/or immunostimulants) to account for the immunosenescence in the subject.
  • more aggressive vaccine formulations e.g., cocktails of antigens, adjuvants, and/or immunostimulants
  • the subject’s iAge places them in the youngest iAge tertile for their age group (see Table 1) they can be classified as responders and move forward with the vaccination. If the subject’s iAge places them in the middle tertile, the subject’s blood cells (e.g., CD4+ and CD8+ cells) are stimulated and Jak-STAT activity is measured (see, e.g., Example 1 below). Subject’s whose Jak-STAT activity places them in the highest quartile can be classified as responders and can be vaccinated.
  • blood cells e.g., CD4+ and CD8+ cells
  • Subjects whose Jak-STAT activity places them in the lower three quartiles can be classified as nonresponders and are treated to lower iAge (and increase their Jak-STAT score) into a responder group. If the subject’s iAge places them in the oldest tertile, they can be classified as nonresponders and are treated to lower their iAge (see below) into a responder group of a younger iAge tertile.
  • Subjects classified as nonresponders can also be treated with higher doses of vaccines and/or more aggressive vaccine formulations (e.g., cocktails of antigens, adjuvants, and/or immunostimulants) to account for the immunosenescence in the subject.
  • more aggressive vaccine formulations e.g., cocktails of antigens, adjuvants, and/or immunostimulants
  • Subjects who have been exposed to a pathogenic organism, are infected with a pathogenic organism, and/or are susceptible to infection by a pathogenic organism can have their blood drawn and an iAge and CRS are calculated as described above.
  • the subject’s iAge places them in the youngest iAge quartile for their age group (see Table 1) they can be classified as responders and move forward with standard treatment for the pathogenic organism. If the subject’s iAge places them in the middle two quartiles, the subject’s blood cells (e.g., CD4+ and CD8+ cells) are stimulated and Jak-STAT activity is measured (see, e.g., Example 1 below).
  • blood cells e.g., CD4+ and CD8+ cells
  • Subjects whose Jak-STAT activity places them in the highest quartile can be classified as responders and can move forward with standard treatment for the pathogenic organism. Subjects whose Jak-STAT activity places them in the lower three quartiles can be classified as nonresponders and are treated to lower iAge (and increase their Jak-STAT score) into a responder group. If the subject’s iAge places them in the oldest quartile, they can be classified as nonresponders and are treated to lower their iAge (see below) into a responder group of a younger iAge quartile. Subjects classified as nonresponders can also be treated with more aggressive therapies and/or higher doses of therapeutics to account for the immunosenescence in the subject.
  • the subject’s iAge places them in the youngest iAge quintile for their age group (see Table 1) they can be classified as responders and move forward with standard treatment for the pathogenic organism. If the subject’s iAge places them in the middle three quintiles, the subject’s blood cells (e.g., CD4+ and CD8+ cells) are stimulated and Jak-STAT activity is measured (see, e.g., Example 1 below). Subject’s whose Jak-STAT activity places them in the highest quartile can be classified as responders and can move forward with standard treatment for the pathogenic organism.
  • blood cells e.g., CD4+ and CD8+ cells
  • Subjects whose Jak-STAT activity places them in the lower three quartiles can be classified as nonresponders and are treated to lower iAge (and increase their Jak-STAT score) into a responder group. If the subject’s iAge places them in the oldest quintile, they can be classified as nonresponders and are treated to lower their iAge (see below) into a responder group of a younger iAge quintile. Subjects classified as nonresponders can also be treated with more aggressive therapies and/or higher doses of therapeutics to account for the immunosenescence in the subject.
  • the subject’s iAge places them in the youngest iAge tertile for their age group (see Table 1) they can be classified as responders and move forward with standard treatment for the pathogenic organism. If the subject’s iAge places them in the middle tertile, the subject’s blood cells (e.g., CD4+ and CD8+ cells) are stimulated and Jak-STAT activity is measured (see, e.g., Example 1 below). Subject’s whose JakSTAT activity places them in the highest quartile can be classified as responders and can move forward with standard treatment for the pathogenic organism.
  • blood cells e.g., CD4+ and CD8+ cells
  • Subjects whose JakSTAT activity places them in the lower three quartiles can be classified as nonresponders and are treated to lower iAge (and increase their Jak-STAT score) into a responder group. If the subject’s iAge places them in the oldest tertile, they can be classified as nonresponders and are treated to lower their iAge (see below) into a responder group of a younger iAge tertile.
  • Subjects classified as nonresponders can also be treated with more aggressive therapies and/or higher doses of therapeutics to account for the immunosenescence in the subject.
  • Cardiovascular disease include a class of diseases that involve the heart, the blood vessels (arteries, capillaries, and veins) or both. Cardiovascular disease refers to any disease that affects the cardiovascular system, principally cardiac disease including cardiomyopathies, vascular diseases of the brain and kidney, and peripheral arterial disease. Cardiovascular disease can refer to a disease that primarily affects the heart, and can be referred to as cardiac disease. Cardiovascular disease can refer to a disease in which the pathology begins with cardiac damage, malfunction, or malformation, as opposed to disease in which cardiac damage, malfunction, or malformation is a result of a primary pathology present at a site remote from the heart (e.g., cardiovascular disease as a comorbidity to another disease or condition).
  • cardiovascular disease as a comorbidity to another disease or condition.
  • heart failure cardiac dysrhythmias (abnormalities of heart rhythm including increased QT duration and atrial flutter and/or fibrillation), inflammatory heart disease including endocarditis (inflammation of the inner layer of the heart, the endocardium, most commonly the heart valves); inflammatory cardiomegaly (enlarged heart, cardiac hypertrophy); myocarditis (inflammation of the myocardium); valvular heart disease; congenital heart disease; and rheumatic heart disease (heart muscle and valve damage due to rheumatic fever caused by streptococcal bacteria infections) are examples of cardiac damage, malfunction, or malformation in which the primary pathology can be or is present in the heart, and subsequently can result in vascular or other systemic disease.
  • endocarditis inflammation of the inner layer of the heart, the endocardium, most commonly the heart valves
  • inflammatory cardiomegaly enlarged heart, cardiac hypertrophy
  • myocarditis inflammation of the myocardium
  • coronary heart disease also ischaemic heart disease or coronary artery disease
  • hypertensive heart disease diseases of the heart secondary to high blood pressure
  • cor pulmonale failure at the right side of the heart with respiratory system involvement
  • cerebrovascular disease disease of blood vessels that supplies to the brain such as stroke
  • peripheral arterial disease disease of blood vessels that supplies to the arms and legs
  • atherosclerosis are a result of pathology present initially at a site remote from the heart.
  • Cardiovascular disease initiated either at the heart or at a site remote from the heart can result in heart failure.
  • Cardiovascular disease can include disease in which the initial pathology is at a site remote from the heart.
  • Cardiovascular disease also includes conditions affecting the heart, heart valves, and vasculature (e.g., arteries and veins) of the body and encompasses diseases and conditions including, but not limited to arteriosclerosis, atherosclerosis, myocardial infarction, acute coronary syndrome, angina, congestive heart failure, aortic aneurysm, aortic dissection, iliac or femoral aneurysm, pulmonary embolism, primary hypertension, atrial fibrillation, stroke, transient ischemic attack, systolic dysfunction, diastolic dysfunction, myocarditis, atrial tachycardia, ventricular fibrillation, endocarditis, arteriopathy, vasculitis, atherosclerotic plaque, vulnerable plaque, acute coronary syndrome, acute ischemic attack, sudden cardiac death, peripheral vascular disease, coronary artery disease (CAD), peripheral artery disease (PAD), and cerebrovascular disease.
  • diseases and conditions including, but not limited to ar
  • Cardiomyopathy includes one or more conditions (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more of) selected from the group consisting of increased QT duration, arrhythmias, myocardial ischemia, hypertension and thromboembolic complications, myocardial dysfunction, cardiomyopathy, heart failure, atrial fibrillation, cardiomyopathy and heart failure, heart failure and LV dysfunction, atrial flutter and fibrillation, and, heart valve damage and heart failure.
  • cardiomyopathy does not include cardiomyopathy as a comorbidity to another disease or condition.
  • Heart failure often called congestive heart failure (CHF) or congestive cardiac failure (CCF), includes conditions that occur when the heart is unable to provide sufficient pump action to maintain blood flow to meet the needs of the body.
  • CHF congestive heart failure
  • CCF congestive cardiac failure
  • Heart failure can cause a number of symptoms including shortness of breath, leg swelling, and exercise intolerance. The condition is typically diagnosed by patient physical examination and confirmed with echocardiography. Common causes of heart failure include myocardial infarction and other forms of ischemic heart disease, hypertension, valvular heart disease, and cardiomyopathy.
  • Cardiovascular disease includes atherosclerosis a chronic disease process characterized by lipid deposits and fibrosis of the intima, irregularly distributed in large and medium sized arteries. The disease is progressive and most often becomes clinically manifest in the middle-aged and elderly. When severe, the atherosclerotic plaque causes a reduction of the cross-sectional area of the arterial lumen, with and without thrombosis.
  • Atherosclerotic plaques can occur in essentially any or all of the blood vessels of the body, resulting in cardiovascular diseases involving the heart (e.g., acute coronary syndrome, heart failure, and myocardial infarction), the brain (e.g., stroke, transient ischemic attack, and brain infarction), the kidney (e.g., acute and chronic kidney disease, hypertension), and the extremities (e.g., peripheral vascular disease, lower and/or upper extremity claudication, and lower and/or upper extremity ischemia).
  • Resultant ischemic manifestations include: angina pectoris, rayocardial infarction, stroke, intermittent claudication, gangrene of the lower extremities, and renovascular hypertension.
  • Atherosclerosis can be considered to be an inflammatory disease.
  • the lesions of atherosclerosis appear to represent a series of highly-specific cellular and molecular responses that can be described as an inflammatory disease. See, e.g., Ross, "Atherosclerosis— An inflammatory disease” N Engl J Med (1999), 340: 115-126; the publications cited in Ross (1999); and subsequent publications that cite Ross (1999); each of which is incorporated herein in reference in its entirety.
  • a subject can be identified as having cardiovascular disease by the presence of any one of: documented coronary artery disease, documented cerebrovascular disease, documented carotid disease, documented peripheral arterial disease, or combinations thereof.
  • a subject can also be identified as having cardiovascular disease if the subject is at least 45 years old and: (a) has one or more stenosis of greater than 50% in two major epicardial coronary arteries; (b) has had a documented prior MI; (c) has been hospitalized for high-risk NSTE ACS with objective evidence of ischemia (e.g., ST-segment deviation and/or biomarker positivity); (d) has a documented prior ischemic stroke; (e) has symptomatic artery disease with at least 50% carotid arterial stenosis; (0 has asymptomatic carotid artery disease with at least 70% carotid arterial stenosis per angiography or duplex ultrasound; (g) has an ankle-brachial index ("ABI”) of less than 0.9 with symptoms of intermittent cla
  • iAge cardiovascular disease
  • CRS cardiac marker levels
  • MIG, LIF, SIRT3 cardiac marker levels
  • cAge places them in the youngest quartile for their age group they can be classified as low risk for cardiovascular disease and move forward with the standard therapy (CVD patients) or no therapy (patients at risk but no CVD at the time).
  • the subject’s can be tested for Jak-STAT activity (see, e.g., Example 1 below).
  • Subject’s whose Jak-STAT activity places them in the highest quartile can be classified as low risk and move forward with standard therapy (CVD patients) or no therapy (patients at risk but no CVD at the time).
  • Subjects whose Jak-STAT activity places them in the lower three quartiles can be classified as higher risk for cardiovascular disease and can be treated to lower iAge , CRS, cardiac marker levels (MIG, LIF, SIRT3), and/or cAge (and increase their Jak-STAT score) into a low risk group. If the subject’s iAge, CRS, cardiac marker levels (MIG, LIF, SIRT3), and/or cAge places them in the oldest quartile, they can be classified as higher risk patients and can be treated to lower their iAge, CRS, cardiac marker levels (MIG, LIF,
  • iAge, CRS, cardiac marker levels (MIG, LIF, SIRT3), and/or cAge places them in the youngest iAge, CRS, cardiac marker levels (MIG, LIF, SIRT3), and/or cAge quintile for their age group (see Table 1) they can be classified as low risk and move forward with the standard therapy (CVD patients) or no therapy (patients with no CVD at the time).
  • the subject If the subject’s iAge, CRS, cardiac marker levels (MIG, LIF, SIRT3), and/or cAge places them in the middle three quintiles, the subject’s blood cells (e.g., CD4+ and CD8+ cells) are stimulated and Jak-STAT activity is measured (see, e.g., Example 1 below). Subject’s whose Jak- STAT activity places them in the highest quartile can be classified as low risk and move forward with the standard therapy (CVD patients) or no therapy (patients at risk but no CVD at the time).
  • Subjects whose Jak-STAT activity places them in the lower three quartiles can be classified as higher risk and can be treated to lower iAge, CRS, cardiac marker levels (lower MIG, raise LIF, raise SIRT3), and/or cAge (and increase their Jak-STAT score) into a low risk group. If the subject’s iAge places them in the oldest quintile, they can be classified as higher risk and can be treated to lower their iAge, CRS, cardiac marker levels (lower MIG, increase LIF, increase SIRT3), and/or cAge (see above) into a low risk group of a younger iAge quintile. [0156] Still alternatively, if the subject’s iAge, CRS, cardiac marker levels (MIG,
  • LIF, SIRT3), and/or cAge places them in the youngest iAge tertile for their age group (see Table 1) they can be classified as low risk and move forward with the standard therapy (CVD patients) or no therapy (patients at risk but no CVD at the time). If the subject’s iAge, CRS, cardiac marker levels (MIG, LIF, SIRT3), and/or cAge places them in the middle tertile, the subject’s blood cells (e.g., CD4+ and CD8+ cells) are stimulated and Jak-STAT activity is measured (see, e.g., Example 1 below).
  • blood cells e.g., CD4+ and CD8+ cells
  • Subjects whose Jak-STAT activity places them in the highest quartile can be classified as low risk and move forward with the standard therapy (CVD patients) or no therapy (patients at risk but no CVD at the time).
  • Subjects whose Jak-STAT activity places them in the lower three quartiles can be classified as higher risk and can be treated to lower iAge, CRS, cardiac marker levels (lower MIG, increase LIF, increase SIRT3), and/or cAge (and increase their Jak-STAT score) into a low risk group.
  • iAge, CRS, cardiac marker levels (MIG, LIF, SIRT3), and/or cAge places them in the oldest tertile, they can be classified as higher risk and are treated to lower their iAge, CRS, cardiac marker levels (lower MIG, increase LIF, increase SIRT3), and/or cAge (see above) into a low risk group of a younger iAge, CRS, cardiac marker levels (MIG, LIF, SIRT3), and/or cAge tertile.
  • iAge to classify patients
  • cAge to classify patients
  • these can be used to derive individual inflammatory profiles by comparing subject’s individual protein levels with those of a population (e.g., of similar chronological age).
  • the resulting signatures (or barcodes) are used for protein- compound association (PCI) analysis using the drugbank database (www.drugbank.caJ and a personalized initial therapy to reduce iAge can be generated (FIG. 3).
  • Patients following personalized recommendations can be monitored weekly for changes in iAge and/or cAge until they reach optimal levels (below group average for a given age bracket) and they convert into a responder treatment phenotype (FIG. 3) and/or lower risk for cardiovascular disease.
  • the patient is then classified as a responder and is suitable for immunotherapy treatment, or lower risk for CVD.
  • a subject may reduce their iAge with treatments that lower the levels of TRAIL, IFNG, GROA, IL2, TGFA, PAI1, and/or LIF to their optimal levels for a person’s chronological age.
  • a subject may reduce their cAge with treatments that raise the levels of LIF or SIRT3
  • a subject may also reduce their iAge with treatments that raise the levels of MIG, EOTAXIN, LEPTIN, IL-IB, or MGR1 A to their optimal levels for a person’s age.
  • a subject may also reduce their cAge with treatments that lower the levels of MIG.
  • a subject’s iAge can be modified by administering TRAIL, IFNG, GROA, IL2, TGFA, PAI1, and/or LIF (lowers iAge) or administering MIG, EOTAXIN, LEPTIN, IL-IB, and/or MIP1 A (raises iAge) to the subject.
  • the TRAIL, IFNG, GROA, IL2, TGFA, PAI1, LIF, MIG, EOTAXIN, LEPTIN, IL-IB, and/or MIP1 A can be recombinantly produced, or can be purified from blood or other natural sources.
  • any of the foregoing can also be modified to enhance the plasma residence time or the half-life of the protein in the body using any number of methods that are known in the art.
  • such methods can include derivatizing the protein with human serum albumin (HAS) or a portion thereof, the neonatal Fc receptor (FcRn), an unstructured polypeptide, a carboxy -terminal peptide, a synthetic polymer (e.g., PEG), or a natural water soluble polymer (e.g., dextran, hyaluronic acid, etc.).
  • HAS human serum albumin
  • FcRn neonatal Fc receptor
  • an unstructured polypeptide e.g., a carboxy -terminal peptide
  • a synthetic polymer e.g., PEG
  • a natural water soluble polymer e.g., dextran, hyaluronic acid, etc.
  • a subject’s iAge can be modified by administering anti-TRAIL antibody, anti- IFNG antibody, anti-GROA antibody, anti-IL2 antibody, anti-TGFA antibody, anti- PAI1 antibody, and/or anti-LIF antibody (raises iAge) or administering anti-MIG antibody, anti -EOTAXIN antibody, anti -LEPTIN antibody, anti -IL-IB antibody, and/or anti-MIPlA antibody (lowers iAge) to the subject.
  • the anti-TRAIL antibody, anti-IFNG antibody, anti-GROA antibody, anti-IL2 antibody, anti-TGFA antibody, anti-PAIl antibody, anti-LIF antibody, anti-MIG antibody, anti-EOTAXIN antibody, anti-LEPTIN antibody, anti-IL-lB antibody, and/or anti-MIPl A antibody can be recombinantly produced.
  • a antibody can be neutralizing antibody and/or can have an appropriate constant region(s) that allow the antibody-antigen complex to be cleared from the subject. Constant regions that promote clearance are well-known in the art and include, for example, IgG format antibodies (IgGl, IgG2, IgG3, and/or IgG4), IgM format antibodies, etc. that are species matched to the subject.
  • a subject may also reduce their iAge and/or cAge by reducing any systemic chronic inflammation, using any of the following, whether alone or in combination: (1) pharmacological treatment, including without limitation anti-inflammatory drugs (NS AIDs such as, for example, aspirin, ibuprofen, naproxen, diclofenac, celecoxib, oxaprozin, piroxicam, indomethacin, meloxicam, fenoprofen, diflunisal, etodolac, ketorolac, meclofenamate, nabumetone) or corticosteroids (e.g., glucocorticoids, mineralocorticoids); (2) neutraceuticals or nutritional supplements, including without limitation fish oil, lipoic acid, and curcumin, or spices/herbs such as ginger, garlic, turmeric, hyssop, cannabis, Harpagophytum procumbens, and cayenne; (3) dietary change, including without limitation anti-
  • Cardiac markers can be improved by providing a subject with treatments that improve the level of the cardiac marker (lowering cAge).
  • a subject’s cardiac marker score (cAge) can be lowered by reducing the MIG in a patient, increasing Sirtuin-3 in the patient, increasing LIF in the patient, and/or reducing cell signaling from CXCR3 (the receptor for MIG).
  • CXCR3 the receptor for MIG
  • agents are known which can reduce MIG expression, increase Sirtuin-3 expression, increase LIF activity (or LIF like activity), and/or act as antagonists for CXCR3 (the receptor for MIG).
  • Agents that can lower MIG include, for example arsenic trioxide, Roxarsone, Selenium, and/or a variety of antibodies.
  • Antibodies include, for example, MIG-2F5.5 (anti -human CXCL9 antibody, BioLegend Cat.
  • AS2O3 Arsenic tri oxide
  • APL acute promyelocytic leukemia
  • AS2O3 is of potential therapeutic value for the treatment of other promyelocytic malignancies and some solid tumors including breast cancer.
  • As 2 O 3 treatment changed the expression level of several genes that involved in cell cycle regulation, signal transduction, and apoptosis. Notably, As 2 O 3 treatment increased the mRNA and protein levels of the cell cycle inhibitory proteins, p21 and p27.
  • Roxarsone is an organoarsonic acid where the organyl group is 4-hydroxy-3- nitrophenyl. It has a role as a coccidiostat, an antibacterial drug, an agrochemical and an animal growth promotant. It is an organoarsonic acid and a member of 2- nitrophenols. Roxarsone was found to exhibit a higher angiogenic index than As III at lower concentrations. Increased endothelial nitric oxide synthase (eNOS) activity was observed for roxarsone but not for As III -induced angiogenesis. However, As III caused more rapid and pronounced phosphorylation of eNOS.
  • eNOS endothelial nitric oxide synthase
  • Se is a potential anticarcinogenic nutrient, and the essential role of Se in cell growth is well recognized but certain cancer cells appear to have acquired a survival advantage under conditions of Se-deficiency. Se can exert its effects through increasing the expression of a humoral defense gene (A2M) and tumor suppressor- related genes (IGFBP3, HHIP) while decreasing pro-inflammatory gene (MIG, HSPB2) expression.
  • A2M humoral defense gene
  • IGFBP3, HHIP tumor suppressor-related genes
  • MIG pro-inflammatory gene
  • Agents that can raise MIG include, for example, 3-Fucosyllactose, Ascorbyl palmitate, Cellulose acetate, Ethyl cellulose, Gelatin, Ozone, Propylene glycol alginate, Rebaudioside D, Rebaudioside E, Starch acetate, Starch, pregelatinized, Sucrose acetate isobutyrate, Acetyl tributyl citrate, Ammonium alginate, Ascorbic Acid, Calcium alginate, Calcium ascorbate, Caramel, Cellulose, Dextrin, Ethyl acetate, Ethyl butyrate, Ethyl formate, Ethyl vanillin, Ferrous ascorbate, Inulin, Iron octanoate, Lacto-N-neotetraose, Lacto-N-tetraose, Maltodextrin, Natamycin, Olestra, Phosphatidylserine, Polydextrose
  • Agents that can raise EOTAXIN include, for example, 3-Fucosyllactose, Acetyl tributyl citrate, Ascorbyl palmitate, Cellulose acetate, Dextran, Ethyl cellulose, Gelatin, Glyceryl behenate, Invert sugar, Ozone, Potassium glycerophosphate, Propylene glycol alginate, quercetin, Rebaudioside D, Rebaudioside E, Starch acetate, Starch, pregelatinized, Sucrose acetate isobutyrate, and/or zinc chloride.
  • Agents that raise Sirtuin-3 levels include, for example, Berberine and Resveratrol.
  • Berberine molecular formula C 20 H 19 NO 5 and molecular weight of 353.36
  • OTC Over-the-Counter
  • Berberine has been shown to regulate glucose and lipid metabolism in vitro and in vivo.
  • Berberine is also a potent oral hypoglycemic agent with beneficial effects on lipid metabolism.
  • Resveratrol (3,5,4'-trihydroxy-trans-stilbene) belongs to polyphenols’ stilbenoids group, possessing two phenol rings linked to each other by an ethylene bridge. This natural polyphenol has been detected in more than 70 plant species, especially in grapes’ skin and seeds, and was found in discrete amounts in red wines and various human foods. It is a phytoalexin that acts against pathogens, including bacteria and fungi. As a natural food ingredient, numerous studies have demonstrated that resveratrol possesses a very high antioxidant potential. Resveratrol also exhibit antitumor activity, and is considered a potential candidate for prevention and treatment of several types of cancer.
  • resveratrol anticancer properties have been confirmed by many in vitro and in vivo studies, which shows that resveratrol is able to inhibit all carcinogenesis stages (e.g., initiation, promotion and progression). Even more, other bioactive effects, namely as anti-inflammatory, anticarcinogenic, cardioprotective, vasorelaxant, phytoestrogenic and neuroprotective have also been reported.
  • Agents that raise LIF levels include Aminodarone, arsenic tri oxide, Azathioprine, Estradiol, Chlorambucil, Clomiphene, Coumaphos, Cyclosporine, decitabine, Cisplatin, Vincristine, Formaldehyde, Glucose, Hydrogen Peroxide, letrozole, Lindane, Methotrexate, Quercetin, Oxyquinoline, resorcinol, resveratrol, Silicon Dioxide, Tretinoin, and troglitazone.
  • the expression of LIF is regulated by many cytokines.
  • IL-la In normal human bone marrow stromal cells, IL-la, IL-Ib, TGF-b and tumor necrosis factor-a (TNF-a) can all increase the transcription of LIF mRNA.
  • TNF-a tumor necrosis factor-a
  • LIF expression by other cytokines has been observed in different cell types, including airway smooth-muscles and MT-2 cells.
  • the expression of LIF can also be inhibited by some factors, including la, 25- dihydroxyvitamin D3 and dexamethasone.
  • the analysis of the LIF promoter revealed that transcription factor STAT5 can bind to the LIF promoter and induce its expression in myeloid cell lines.
  • the LIF promoter region contains several ETS binding sites. The binding of ETS transcription factors to the LIF promoter is critical for the induction of LIF in response to T cell activators.
  • Amiodarone is a primarily a class III anti arrhythmic and is one of the most commonly used anti-arrhythmic drugs. While the United States FDA has labeled amiodarone for the treatment of life-threatening ventricular arrhythmias, the drug is commonly used off-label to treat supraventricular tachyarrhythmias such as atrial fibrillation as well as for the prevention of ventricular tachyarrhythmias (VTs) in high-risk patients. Like other antiarrhythmic drugs of this class, amiodarone works primarily by blocking potassium rectifier currents that are responsible for repolarization of the heart during phase 3 of the cardiac action potential. This potassium channel-blocking effect results in increased action potential duration and a prolonged effective refractory period in cardiac myocytes. Unlike other class III agents, amiodarone also interferes with beta-adrenergic receptors, calcium channels, and sodium channels.
  • Clomiphene is an ovulatory stimulant designated chemically as 2-[p-(2- chloro-l,2-diphenylvinyl)phenoxy]triethylamine citrate (1:1). It has the molecular formula of C26H28C1NO ⁇ C6H807 and a molecular weight of 598.09. Clomiphene is capable of interacting with estrogen-receptor-containing tissues, including the hypothalamus, pituitary, ovary, endometrium, vagina, and cervix. It may compete with estrogen for estrogen-receptor-binding sites and may delay replenishment of intracellular estrogen receptors.
  • Clomiphene initiates a series of endocrine events culminating in a preovulatory gonadotropin surge and subsequent follicular rupture.
  • the first endocrine event in response to a course of clomiphene therapy is an increase in the release of pituitary gonadotropins.
  • Coumaphos is an organothiophosphate insecticide, an organic thiophosphate and an organochlorine compound. It has a role as an agrochemical, an acaricide, an antinematodal drug, an avicide and an EC 3.1.1.8 (cholinesterase) inhibitor.
  • Coumaphos is used for control of a wide variety of insects on cattle and parasitic mites (Varroa jacobson) on bees.
  • Lindane also known as gamma-hexachlorocyclohexane (g-HCH), gammaxene, and Gammallin is an organochlorine chemical and an isomer of hexachlorocyclohexane that has been used both as an agricultural insecticide and as a pharmaceutical treatment for lice and scabies.
  • Lindane is a neurotoxin that interferes with GABA neurotransmitter function by interacting with the GAB AA receptor- chloride channel complex at the picrotoxin binding site.
  • lindane affects the nervous system, liver, and kidneys, and may well be a carcinogen.
  • Oxy quinoline is a heterocyclic phenol and Oxy quinoline Sulfate is its salt, both of which are described as cosmetic biocides for use in cosmetic formulations.
  • Oxyquinoline can be used as an antiseptic, disinfectant, and has pesticide properties.
  • Oxy quinoline is also a chelating agent which has been used for the quantitative determination of metal ions.
  • Decitabine (5-aza-2'-deoxycytidine or 5-Aza-Cdr) is a cytosine analogue that was first synthesized in the early 1960s by Pliml and Sorm and is currently marketed as Dacogen® by Eisai (Tokyo, Japan). It differs from deoxycytidine by the substitution of nitrogen for carbon at the 5-position of the pyrimidine ring. It was noted to have an antileukemic effect in cell lines, with more potency in vitro than cytarabine. Initially, its cytotoxicity was attributed to its ability to impair DNA synthesis and cause DNA damage similar to other antimetabolites.
  • decitabine induces differentiation by reversing DNA methylation-induced gene silencing.
  • decitabine is phosphorylated and activated by the enzyme deoxycytidine kinase to its triphosphate form aza-dCTP. It then competes with and replaces cytosine in the CpG (cytosine-guanosine dinucleotide) islands that occur in clusters in promoter regions.
  • aza-dCTP inhibits methylation of the promoter by forming a covalent bond with the enzyme DNA methyltransferase (DNMT), and thereby traps and contributes to degradation of the enzyme.
  • DNMT DNA methyltransferase
  • Chlorambucil and Cisplatin are alkylating agents used to treat cancer.
  • Chlorambucil is in the class of nitrogen mustards, and Cisplatin is a platinum based- agent.
  • Chlorambucil produces its anti-cancer effects by interfering with DNA replication and damaging the DNA in a cell. The DNA damage induces cell cycle arrest and cellular apoptosis via the accumulation of cytosolic p53 and subsequent activation of Bcl-2-associated X protein, an apoptosis promoter.
  • Cisplatin crosslinks DNA in several different ways, interfering with cell division by mitosis. The damaged DNA elicits DNA repair mechanisms and activates apoptosis.
  • Vincristine is a chemotherapy drug that belongs to a group of drugs called vinca alkaloids. Vincristine works by stopping the cancer cells from separating into 2 new cells. Vincristine works partly by binding to the tubulin protein, stopping the tubulin dimers from polymerizing to form microtubules, causing the cell to be unable to separate its chromosomes during the metaphase. The cell then undergoes apoptosis.
  • Letrozole is an aromatase inhibitor which is used in the treatment of hormonally -responsive breast cancer after surgery. Letrozole is also for ovulation induction. Letrozole blocks the production of estrogens in this way by competitive, reversible binding to the heme of its cytochrome P450 unit. Letrozole has shown to reduce estrogen levels by 98 percent while raising testosterone levels.
  • Tretinoin is a derivative of vitamin A. It is used on the skin (topically) in the treatment of mild to moderate acne and on skin that has been damaged by excessive exposure to the sun. Tretinoin irritates the skin and causes the cells of the skin to grow (divide) and die more rapidly, increasing the turnover of cells. Tretinoin can also induce acute promyelocytic leukemia cells to differentiate and stops them from proliferating; in people there is evidence that it forces the primary cancerous promyelocytes to differentiate into their final form.
  • Estradiol is the main circulating oestrogen in women and reaches a plasma concentration of 30-400 pg/mL before menopause. Estradiol regulates growth and the development of the reproductive system, also, helps to maintain the osseous tissue, the central nervous system and the vasodilatation in the vascular tissue. The protective effect of Estradiol in the vasculature and against cardiovascular disease (CVD) has been demonstrated in several hormone replacement studies. Estradiol activates BK channels via a process that requires the presence of the b ⁇ subunit. Valverde et al.
  • Estradiol affected BK channels by binding to b ⁇ , but it is still a matter of debate whether the agonistic action of Estradiol on BK channels is caused by its binding to the b ⁇ subunit or to the a/b ⁇ complex. Moreover, the molecular nature of the Estradiol binding site and the mode of action of the hormone are at present unknown. Acute application of Estradiol (100 nM) decreases smooth muscle excitability by activating BK channels. Notably, Estradiol or its membrane-impermeant form (E2-BSA) can induce a fast increase in BK channel activity in MCF-7 breast epithelial cancer cells with an EC50 of 80 pM reaching a maximal effect at 10 nM34.
  • E2-BSA membrane-impermeant form
  • Estradiol Rapid effects of Estradiol have also been reported in neurons of the area postrema where nanomolar concentrations of E2 can decrease the firing rate most probably by increasing BK current35. All these examples underscore the physiological importance of the regulation of BK channels by E2 and made worthwhile efforts in determining the molecular nature of the interaction between this hormone and the BK channel.
  • Cyclosporine has been a core component of immunosuppression in both immune dysregulatory disorders and organ transplantation.
  • immune disorders involving ophthalmologic, dermatologic, hematologic, gastroenterologic, neurologic, or musculoskeletal systems cyclosporine has demonstrated marked efficacy in relieving clinical symptoms and reversing pathological developments. Additionally, after the drug’s implementation in transplantation medicine, rates of acute rejection and one-year graft survival have improved dramatically.
  • Methotrexate is a chemotherapy agent and immune system suppressant. It is used to treat cancer, autoimmune diseases, ectopic pregnancy, and for medical abortions. Types of cancers it is used for include breast cancer, leukemia, lung cancer, lymphoma, and osteosarcoma. Types of autoimmune diseases it is used for include psoriasis, rheumatoid arthritis, and Crohn's disease. It can be given by mouth or by injection. Methotrexate is an antimetabolite of the antifolate type. It is thought to affect cancer and rheumatoid arthritis by two different pathways.
  • methotrexate competitively inhibits dihydrofolate reductase (DHFR), an enzyme that participates in the tetrahydrofolate synthesis.
  • DHFR dihydrofolate reductase
  • the affinity of methotrexate for DHFR is about 1000-fold that of folate.
  • DHFR catalyses the conversion of dihydrofolate to the active tetrahydrofolate.
  • Folic acid is needed for the de novo synthesis of the nucleoside thymidine, required for DNA synthesis.
  • folate is essential for purine and pyrimidine base biosynthesis, so synthesis will be inhibited. Methotrexate, therefore, inhibits the synthesis of DNA, RNA, thymidylates, and proteins.
  • Troglitazone is an anti diabetic and anti-inflammatory drug, and a member of the drug class of the thiazolidinediones.
  • Troglitazone is an oral antihyperglycemic agent which acts primarily by decreasing insulin resistance.
  • Troglitazone is used in the management of type II diabetes.
  • Troglitazone binds to nuclear receptors (PPAR) that regulate the transcription of a number of insulin responsive genes critical for the control of glucose and lipid metabolism.
  • PPAR nuclear receptors
  • Troglitazone decrease nuclear factor kappa- B (NF-KB) and increase its inhibitor (IKB).
  • Azathioprine is a purine analogue with cytotoxic and immunosuppressive activity.
  • Azathioprine is a prodrug that is converted by hepatic xanthine oxidase to its active metabolite 6-mercaptopurine (6-MP).
  • 6-MP is further metabolized by hypoxanthine-guanine phosphoribosyltransferase (HGPRT) into 6-thioguanosine-5'- phosphate (6-thio-GMP) and 6-thioinosine monophosphate (6-thio-IMP), both inhibit nucleotide conversions and de novo purine synthesis.
  • HGPRT hypoxanthine-guanine phosphoribosyltransferase
  • 6-thio-GMP 6-thioguanosine-5'- phosphate
  • IMP 6-thioinosine monophosphate
  • Quercetin a flavonoid found in fruits and vegetables, has unique biological properties that may improve mental/physical performance and reduce infection risk. These properties form the basis for potential benefits to overall health and disease resistance, including anti-carcinogenic, anti-inflammatory, antiviral, antioxidant, and psychostimulant activities, as well as the ability to inhibit lipid peroxidation, platelet aggregation and capillary permeability, and to stimulate mitochondrial biogenesis. Quercetin is a naturally occurring polar auxin transport inhibitor. Quercetin inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor a (TNF-a) production in macrophages and LPS-induced IL-8 production in lung A549 cells.
  • LPS lipopolysaccharide
  • TNF-a tumor necrosis factor a
  • quercetin can inhibit LPS-induced mRNA levels of TNF-a and interleukin IL-la, this effect of quercetin resulted in a diminished apoptotic neuronal cell death induced by microglial activation. Quercetin inhibits production of inflammation-producing enzymes (cyclooxygenase (COX) and lipoxygenase (LOX)).
  • COX cyclooxygenase
  • LOX lipoxygenase
  • PI3K phosphatidylinositol-3 -Kinase
  • TLR4 Toll Like Receptor 4
  • MyD88/PI3K complex formation limits activation of downstream signaling pathways in RAW 264.7 cells.
  • It can also inhibit FceRI-mediated release of pro-inflammatory cytokines, tryptase and histamine from human umbilical cord blood-derived cultured mast cells (hCBMCs); this inhibition appears to involve in inhibition of calcium influx, as well as phospho- protein kinase C (PKC).
  • hCBMCs human umbilical cord blood-derived cultured mast cells
  • Resorcinol is an organic compound with the formula C6H4(OH)2. Resorcinol is used as an antiseptic and disinfectant in topical pharmaceutical products in the treatment of skin disorders and infections such as acne, seborrheic dermatitis, eczema, psoriasis, corns, calluses, and warts. It is also used to treat corns, calluses, and warts. It exerts a keratolytic activity.
  • Agents that reduce expression of CXCR3 include, for example, formaldehyde and taurine.
  • Agents that are antagonists for CXCR3 include, for example, piperazinyl-piperi dines (e.g., SCH546738), 8-azaquinazolinones (e.g., AMG487), 3-phenyl-3H-quinazolin-4-ones, aryl piperazine, 4-aryl-5- piperazinylthiazoles, arylpiperazines, benzetimide derivatives, imidazolidines, imidazolium, lysergic acid derivative, diaminocyclobutenediones, zinc phthalocyanine, and NBI-74330.
  • any of the foregoing antibodies or fragments thereof can include a protracting moiety that extends a half-life (T1/2) or/and the duration of action of the antibody.
  • the protracting moiety can extend the circulationT1/2, blood T1/2, plasma T1/2, serum T1/2, terminal T1/2, biological T1/2, elimination T1/2 or functional T1/2, or any combination thereof, of the antibody.
  • One or more protracting moieties can be combined (covalently or noncovalently) with an antibody.
  • Protracting moieties include, for example, hydrophilic polymers (e.g., PEG, dextran, etc.), a synthetic polymer, glycosylation, human serum albumin (HSA) or a portion thereof (e.g., domain III) that binds to the neonatal Fc receptor (FcRn), or a carboxy- terminal peptide (CTP).
  • hydrophilic polymers e.g., PEG, dextran, etc.
  • HSA human serum albumin
  • FcRn neonatal Fc receptor
  • CTP carboxy- terminal peptide
  • Additional agents that can alter iAge by affecting genes involved in systemic chronic inflammation comprising MIG, TNFSF10, IFNg, CCL11 or CXCL1 are listed below in Tables 2, 3 and 4. These molecules were obtained using methods described below with a combined confidence score >500 (q value of ⁇ 0.05, nominal p value of ⁇ 0.005)
  • Table 2 shows drugs and other molecules that can change iAge by interacting with immune genes involved in the inflammatory response including MIG, TNFSFIO, IFNg, CCL11 or CXCL1 and changing the levels of these proteins in the subject.
  • Table 3 shows food compounds and other molecules that can change iAge by interacting with immune genes involved in the inflammatory response including MIG, TNFSF10, IFNg, CCL11 or CXCL1 and changing the levels of these proteins in the subject.
  • Table 4 shows drugs that can upregulate or downregulate MIG, TNFSFIO, IFNg, CCL11 or CXCL1, and whether the up- or down-regulation is beneficial (lowers) or detrimental (raises) to iAge.
  • Other drugs and other molecules that interact with genes/proteins involved in inflammation and/or the inflammatory response can be used to reduce the iAge of the subject through indirect effects on the levels of the iAge markers which are described above.
  • Other food compounds or other molecules that interact with genes/proteins involved in inflammation and/or the inflammatory response can be used to reduce the iAge of the subject through indirect effects on the levels of the iAge markers which are described above.
  • Compounds that can modify iAge are identified from DrugBank and FooDB using a compound-gene interaction database, machine learning for drug repurposing and food compound mapping for anti-inflammatory activity, and medication usage studies from the 1KIP cohort.
  • the STITCH database v. 5.0 can be used as the compound-gene interaction database to find immune genes with which a drug or food compound interacts. Compound-protein interactions are extracted from the STITCH database v5.0 by matching the InChl keys of drugs/food compounds. STITCH collects information from multiple sources and individual scores from each source are combined into an overall confidence score.
  • the immune gene set is then matched with the two compound - gene interaction datasets above to extract immune genes that interact with drugs or food compounds.
  • All interactions with a combined confidence score of less than 500 are removed.
  • the Ensemble peptide identifiers for protein are then converted to HGNC gene symbols using Biomart (version 2.42.0). As a result, there are 1617 immune genes interact with drugs and 1774 immune genes interact with food compounds.
  • This set of drugs will be used as a training set to train machine learning models.
  • Compound-protein interactions are extracted from the STITCH database v5.0 by matching the InChl keys of drugs/food compounds.
  • STICH collects information from multiple sources and individual scores from each source are combined into an overall confidence score.
  • the threshold for the significant score is not set at a fixed value and considered as an adjustable parameter for ML model optimization.
  • the restart parameter ‘c’ is considered as an adjustable parameter for ML model optimization.
  • ML can use Linear SVM as a classifier for optimization.
  • the interaction score threshold can be set at 600
  • the restart parameter ‘c’ for network propagation can be set at 0.1.
  • Linear SVM can be used to identify anti-inflammatory drugs based on their genome-wide profile obtained from network propagation.
  • the regularization parameter ‘C; can be optimized during the model training using a nested cross- validation strategy.
  • the F-score that balances sensitivity and specificity, is used to evaluate the outcome of each model. The best model is defined as a model with the highest F-score.
  • the anti-inflammatory ‘likeness’ of drugs is calculated using the selected model. These values are used to identify potential drugs for anti-inflammatory repurposing. Similarly, the selected model is applied to the food compound dataset. The probability estimates for the anti-inflammatory activity of each food compound are calculated. Food compounds with high anti-inflammatory probability (i.e, > 0.8) are selected for validation.
  • Medication usage is represented as a sparse matrix, in which ‘ 1 ’ indicates the patient took at least one of the drugs in that group and ‘0’ indicates none of the drugs in that group was not taken.
  • Additional ways to find agents that can lower iAge include a deep neural network approach implemented using DeepCOP (Woo et. al. 2019, Bioinformatics 36(3):813-818, which is incorporated by reference in its entirety for all purposes).
  • Level 5 expression scores from the LINCS L1000 study can be used to label genes as up- or down- regulated if scores were more than a 50% perturbation above the top- threshold.
  • Compounds in LINCS LI 000 and compounds from FooDB were represented using calculated Morgan Fingerprints from SMILES using RDkit. Genes were represented as commonly occurring gene ontologies (at least three times).
  • the deep neural network was trained on LINCS L1000 compounds on CD34 and HUVEC cells, independently, using the target genes plus the imputed expression for the genes that encode the Inflammatory Age proteins. Predicted expression probabilities for the compounds in FooDB were used to score these interventions. Compounds that only upregulate anti-inflammatory markers and downregulate pro-inflammatory markers are considered as possible interventions.
  • the network propagation algorithm can be implemented using the method in (Veselkov., et al, 2019, Scientific Reports (9) 9237). The assumption is that compounds with similar network profiles would have similar effect of regulation of a certain gene.
  • Compound-gene interactions can be extracted from the STITCH database v5.0. STITCH collects information from multiple sources and individual scores from each source are combined into an overall confidence score. Gene-gene interactions can be extracted from public sources including STRING, UniProt, COSMIC, BioPlex, and NCBI Gene as previously described in Veselkov et al, 2019. This results in a gene-gene interactome dataset containing 20,256 genes with ⁇ 11 million interactions.
  • the gene profile for each compound can be represented as a sparse matrix, in which a ‘ V indicates genes that directly interact with the compound and a ‘O’ for all other genes.
  • the network propagation ( Random Walk with Restart ) algorithm can then applied to spread this gene profile onto the gene-gene interactome. As a result, a genome-wide profile of gene scores can be obtained for each compound.
  • the restart parameter ‘c’ can be considered as an adjustable parameter for ML model optimization.
  • the LINCS compounds that are already known the regulation direction for a certain gene can be used to train a linear SVM classification model using network propagation profile as features.
  • the regularization parameter ‘C; can be optimized during the model training using a nested cross-validation strategy.
  • the F-score that balances sensitivity and specificity, can be used to evaluate the outcome of each model.
  • the best model can be defined as a model with the highest F-score.
  • the selected model can then be applied to the FooDB compound dataset.
  • the probability estimates for the desired regulation direction of each food compound can be calculated and can be used as a score to determine the probability of each intervention.
  • Table 2 below lists the protein markers that can have their levels changed to improve the iAge for patients in the different immunotypes.
  • Table 3 below shows GRAS (generally regarded as safe) compounds that can be used to lower each of the five protein markers in the Immunotypes.
  • the level of one or more of the five protein markers can be improved for iAge by providing a patient with one or more of the GRAS compounds listed in Table 3.
  • Table 2 above lists the proteins markers to improve for each immunotype.
  • Table 3 identifies GRAS compounds that can be used for each protein marker to improve iAge.
  • a patient in Immunotype SHI can be administered one or more of iron, biotin and/or caffeine.
  • Table 4 below shows the GRAS compounds that can be used to improve iAge for the ten immunotypes.
  • Table 4 shows other agents that can be administered to patients to improve the levels of Eotaxin, GroaA, IFNg, MIG, and/or TRAIL and lower the patient’s iAge.
  • the agents to be used can depend upon the patient’s immunotype (see Table 2, 3 and 4). Combinations of agents can be made (e.g., see Table 4) for individual immunotypes using agents from Table 3.
  • Additional agents that can be used to improve the levels of Eotaxin, GroaA, IFNg, MIG, and/or TRAIL and lower the patient’s iAge are in Table 5.
  • the agents in Table 5 can be used as described above to improve the levels of Eotaxin, GroaA, IFNg, MIG, and/or TRAIL and lower the iAge of patients in certain immunotypes.
  • combinations of one or more of these agents in Table 5 can be used to improve the levels of Eotaxin, GroA, IFNg, MIG, and/or TRAIL and lower the iAge of patients in certain immunotypes.
  • compositions for modifying iAge and/or Immunotype can be administered by any suitable delivery route including, for example, mucosal, nasal, bucal, sublingual, by intratracheal instillation, bronchial instillation, and/or inhalation; and/or as an oral spray or powder, nasal spray or powder, and/or aerosol; parenteral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, subcutaneous, intraventricular, transdermal, interdermal, rectal, intravaginal, intraperitoneal, topical (as by powders, ointments, creams, and/or drops).
  • suitable delivery route including, for example, mucosal, nasal, bucal, sublingual, by intratracheal instillation, bronchial instillation, and/or inhalation; and/or as an oral spray or powder, nasal spray or powder, and/or aerosol; parenteral, intravenous, intramuscular, intra-arterial, intramedull
  • composition described herein can be, for example, formulated for intrapulmonary delivery, intranasal delivery, buccal delivery, or sublingual delivery.
  • compositions described herein can be formulated for delivery by dry powder inhalers (DPI), nebulizer inhalers, or metered-dose inhalers (MDI).
  • DPI dry powder inhalers
  • MDI metered-dose inhalers
  • DPI devices typically administer a therapeutic agent in the form of a free- flowing powder that can be dispersed in a patient's air-stream during inspiration.
  • the composition can be formulated with a suitable excipient (e.g., lactose, sorbitol, sucrose, or mannitol).
  • a suitable excipient e.g., lactose, sorbitol, sucrose, or mannitol.
  • the formulation can be loaded into a dry powder dispenser, or into inhalation cartridges or capsules for use with a dry powder delivery device.
  • Examples of DPI devices sold commercially include Diskhaler (GlaxoSmithKline, Research Triangle Park, N.C.) (see, e.g., U.S. Pat. No.
  • Diskus (GlaxoSmithKline) (see, e.g., U.S. Pat. No. 6,378,519; Turbuhaler (AstraZeneca, Wilmington, Del.) (see, e.g., U.S. Pat. No. 4,524,769, which is incorporated by reference for all purposes in its entirety); and Rotahaler (GlaxoSmithKline) (see, e.g., U.S. Pat. No. 4,353,365, which is incorporated by reference for all purposes in its entirety). Further examples of suitable DPI devices are described in U.S. Pat. Nos.
  • Nebulizer devices can produce a stream of high velocity air that causes a liquid formulation to spray as a mist.
  • the compounds and/or compositions can be formulated in a liquid form such as a solution or a suspension of particles of suitable size for administration with a nebulizer.
  • MDI devices discharge a measured amount of composition using a compressed propellant gas.
  • Formulations for MDI administration include a solution or suspension of the composition in a liquefied propellant.
  • propellants examples include hydrofluoroalklanes (HFA), such as 1,1,1,2-tetrafluoroethane (HFA 134a) and 1,1,1,2,3,3,3-heptafluoro-n-propane, (HFA 227), and chlorofluorocarbons, such as CChF.
  • HFA hydrofluoroalklanes
  • HFA 134a 1,1,1,2-tetrafluoroethane
  • HFA 227 1,1,1,2,3,3,3-heptafluoro-n-propane
  • chlorofluorocarbons such as CChF.
  • MDI devices developed specifically for use with HFA propellants are provided in U.S. Pat. Nos. 6,006,745 and 6,143,227, which are incorporated by reference for all purposes in their entirety.
  • the compounds described herein can also be formulated onto a crystalline microparticle surface.
  • Adsorbing compounds to the surface of a crystalline microparticle can involve altering the properties of the compound in a solution or fluid suspension under various solution conditions, thereby promoting adsorption to the microparticle surface and reducing the amount of compound remaining in solution. Alteration or modifications to the compound may occur with the use of modifiers such as, but not limited to, chaotropes and kosmotropes, salts, organics such as, but not limited to, alcohols, osmolytes, and surfactants.
  • modifiers such as, but not limited to, chaotropes and kosmotropes, salts, organics such as, but not limited to, alcohols, osmolytes, and surfactants.
  • compositions can be administered intranasally.
  • the compositions can be administered locally to the nasopharyngeal area. It can be desirable to use an intranasal delivery device which delivers the formulation to the nasopharyngeal area, without or substantially without it entering the lungs. Suitable devices for intranasal administration of the compositions described herein are spray devices that are well-known in the art.
  • the compositions can also be administered buccally or sublingually.
  • compositions can be formulated as buccal formulations, sublingual formulations, orodispersible tablets (ODT), orodispersible films (ODF), orodispersible granules (micro-pellets), fast oral trans-mucosal (FOT), rapid film, and other suitable capsules dosage form known in the pharmaceutical formulation arts.
  • ODT orodispersible tablets
  • ODF orodispersible films
  • micro-pellets orodispersible granules
  • FOT fast oral trans-mucosal
  • rapid film and other suitable capsules dosage form known in the pharmaceutical formulation arts.
  • Example 1 iAge correlates with naive T cells and with the ex vivo Jak-STAT signaling responses to stimulation
  • FIG. IB volcano plot, result of a multiple regression analysis with permutation tests to estimate false discovery rates (Benjamini-Hochberg FDR) (y-axis) as a function of the regression coefficients obtained for iAge after adjusting for Age, Gender and cytomegalovirus status.
  • FIG. 1C normalized ex vivo CD8(+) T cell phosphor-STAT-1 responses to Interleukin-6. The lower tertile for iAge shows significantly more robust responses than the higher tertile for iAge (C).
  • iAge is negatively correlated with naive CD8(+) T cells and with the ex vivo Jak-STAT signaling responses to stimulation.
  • Example 2 Stratification of cancer patients using iAge and CRS
  • a blood sample is obtained from patients prior to immunotherapy treatment.
  • Serum and immune cells are separated by standard methods. Serum samples are used to measure protein concentration for inflammatory age (iAge) determination; and cells are cytokine-stimulated ex vivo to measure phosphorylation of intracellular signal transducer and activator of transcription (STAT) proteins to derive a cytokine response score (CRS). iAge and CRS can independently predict patient’s response to immunotherapy treatment.
  • FIG. 2 shows a flow diagram of this process.
  • iAge and CRS can be used to stratify cancer patients prior to treatment as responders versus non-responder for immunotherapy.
  • Example 3 Stratification of cancer patients using iAge
  • iAge can be used to classify cancer patients into responder and non-responders to immunotherapy treatment (A), and to derive iAge individual inflammatory protein signature (barcode), which is fed to iAge personalized recommendation engine to create an individualized initial therapy aimed to reduce iAge, inform medical decision and hence, convert those non-responder patients into responder patients (suitable for immunotherapy) (B).
  • barcode individual inflammatory protein signature
  • FIG. 3 shows a flow diagram of this process.
  • iAge is used to stratify patients for cancer immunotherapy and help convert non-responders into responder for immunotherapy.
  • Human induced pluripotent stem cells were made as described in Example 4. Expression of the MIG receptor, CXCR3, was measured in young cardiomyocytes derived from hiPSCs (hiPSC-CM) as well as in hiPSC-ECs (endothelial cells derived from hiPSC), HUVEC cells, freshly isolated fibroblasts and hiPSCs.
  • hiPSC-CM young cardiomyocytes derived from hiPSCs
  • hiPSC-ECs endothelial cells derived from hiPSC
  • HUVEC cells freshly isolated fibroblasts and hiPSCs.
  • FIG. 6 shows a line graph of percent relaxation of mouse thoracic aortic sections to Acetylcholine after exposure to different amounts of MIG.
  • FIG. 6 shows impaired vascular reactivity with increasing concentrations of MIG.
  • MIG causes a dose-dependent effect on vasorelaxation in treated aortas demonstrating that MIG impairs vascular function, and can contribute to arterial stiffness and premature aging of the cardiovascular system.
  • Example 7 Compositions for Treating Immunotvpes
  • Tables 2 to 4 show agents that can be used to lower iAge by improving the levels of the markers Eotaxin, GroA, IFNg, MIG, and/or TRAIL.
  • Table 3 shows how the treatment of certain markers correlates to immunotype, and Table 4 shows combinations of agents that can administer to patients in the different immunotypes to improve their iAge.
  • Table 6 shows dosages that can be used in formulating the agents into compositions that can be administered to patients of certain immunotypes. Table 6. Dose of Agents for Improving Levels of an iAge Marker in a Patient
  • a composition for improving GroA can have iron bisglycinate, manganese chloride, and niacin. The dose of each of these per day is 245 mg iron bisglycinate, 9 mg manganese chloride, and 250 mg niacin.
  • a composition for improving IFNg can have manganese chloride, beta carotene, leutin, and zinc sulfate. The dose of each of these is 15 mg beta-carotene, 20 mg leutin, 220 mg zinc sulfate, and the manganese chloride doses is the same as for GroA.
  • a composition for improving MIG can have vitamin d2, niacin, and guar gum.
  • the dose of each of these is 0.05 mg vitamin d2, 1000 mg guar gum, and dose of niacin is the same as for GroA.
  • These compositions can be combined into one dosage form, placed in separate dosage forms, or the components of each can be mixed and matched into separate dosage forms for administering to a patient.
  • Example 8 iAge MIG and Response to Immunotherapy
  • iAge, chAge, and the levels of MIG, EOTAXIN, GroA, IFNg and Trail were measured in patients who received immunotherapy (anti -PD 1 antibodies or anti -PD 1 antibodies + anti-CTLA4 antibodies) for cancer (e.g., melanoma, bladder cancer, renal cancer and non-small cell lung cancer).
  • cancer e.g., melanoma, bladder cancer, renal cancer and non-small cell lung cancer.
  • Patients who had a complete or partial response to immunotherapy had an average iAge-chAge score of about -21, and patients who did not respond to immunotherapy had an average iAge-chAge score of about -10.
  • patients who had a complete or partial response to immunotherapy had average MIG levels of about 25-35 pg/ml, and patients who did not respond to immunotherapy had average MIG levels of about 5 pg/ml.
  • Example 9 iAge MIG and Response to Adjuvant Therapy [0243] iAge, chAge, and the levels of MIG, EOTAXIN, GroA, IFNg and Trail were measured in patients who received adjuvant immunotherapy after primary therapy for their cancer (e.g., surgery). Patients who had no cancer recurrence had an average iAge score of about 61 and patients who had cancer recurrence had an average iAge score of about 50. In addition, patients who had no cancer recurrence had an average EOTAXIN level of about 22-24 pg/ml, and patients who had cancer recurrence had an average EOTAXIN level of about 14 pg/ml. Patients who had no cancer recurrence also had an average MIG level of about 5 pg/ml, and patients who had cancer recurrence had an average MIG level of about 1 pg/ml.
  • EOTAXIN levels are measured at about 1, 3, 5, 7, 9, 11, 13, and 15 months patients no recurrence of cancer had higher levels of EOTAXIN than patients with recurring cancer until the cancer recurs. After cancer recurrence these patients had rising levels of EOTAXIN.
  • MIG levels are measured at 1, 3, 5, 7, 9, 11,
  • Tatridin_B 0.000473125 0.01244933 CXCL9 900
  • Gallocatechin_3-gallate 2.62E-11 3.01E-09 CXCL1 629 ent-Gallocatechin_3-gallate 2.62E-11 3.01E-09 CXCL1 629 ent-Epigallocatechin_3-gallate 2.62E-11 3.01E-09 CXCL1 629
  • Leukotriene_E4 6.45E-05 0.002647045 CXCL1 900 leukotriene-C4 0.000124578 0.004473114 CXCL1 900
  • Tatridin_B 0.000473125 0.01244933 CXCL1 900
  • Acetaminophen TNFSF10 downregulated Detrimenta
  • Acetylcysteine TNFSF10 downregulated Detrimenta
  • Ciclosporin TNFSF10 downregulated Detrimenta
  • Ciclosporin TNFSF10 upregulated Beneficial
  • Cisplatin TNFSF10 upregulated Beneficial
  • Vorinostat TNFSF10 upregulated Beneficial Alitretinoin IFNG downregulated Detrimenta
  • Gadolinium IFNG upregulated Beneficial
  • Tacrolimus CCL11 downregulated Beneficial
  • Methylprednisolone CXCL1 downregulated Detrimenta

Abstract

La présente invention concerne des composés et procédés pouvant améliorer l'iÂge (âge inflammatoire) de patients ayant un immunotype spécifique. Les composés de la présente invention sont administrés à un patient via les muqueuses (par exemple buccales, sublinguales, nasales ou pulmonaires). Par exemple, l'iÂge d'un patient peut être déplacé dans une cohorte de répondeurs depuis une cohorte de non-répondeurs pour une immunothérapie. Les composés et les procédés décrits peuvent également améliorer les résultats cardiovasculaires du patient à l'aide du cÂge pour stratifier des patients CVD dans des cohortes à risque à des fins de traitement et de surveillance. Des patients CVD à haut risque peuvent être convertis en patients à risque inférieur en traitant les patients avec des molécules qui réduisent leur cÂge.
PCT/US2022/016098 2021-02-19 2022-02-11 Administration par voie muqueuse de composés pour modifier l'iâge WO2022177815A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163151280P 2021-02-19 2021-02-19
US63/151,280 2021-02-19
US202163239200P 2021-08-31 2021-08-31
US63/239,200 2021-08-31

Publications (1)

Publication Number Publication Date
WO2022177815A1 true WO2022177815A1 (fr) 2022-08-25

Family

ID=82931081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2022/016098 WO2022177815A1 (fr) 2021-02-19 2022-02-11 Administration par voie muqueuse de composés pour modifier l'iâge

Country Status (1)

Country Link
WO (1) WO2022177815A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027951A1 (fr) * 2021-08-21 2023-03-02 Edifice Health, Inc. Traitement d'une maladie à l'aide de l'iage et du mig

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170189447A1 (en) * 2016-01-05 2017-07-06 NIS Clinical Research Formulation for increasing energy
US20180133194A1 (en) * 2015-06-26 2018-05-17 University Of Florida Research Foundation, Incorporated Method of treating inflammation using natural compounds and/or diet
WO2019165145A1 (fr) * 2018-02-21 2019-08-29 Iuve, Inc. Méthode de mesure de vieillissement dû à une inflammation chronique systémique
WO2019178650A1 (fr) * 2018-03-23 2019-09-26 The University Of Western Australia Procédé de traitement par médicament d'immunothérapie
US20200354443A1 (en) * 2017-10-02 2020-11-12 Humanigen, Inc. Methods of treating immunotherapy-related toxicity using a gm-csf antagonist
WO2021211382A1 (fr) * 2020-04-13 2021-10-21 Edifice Health, Inc. Composés et procédés de modification de l'iage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180133194A1 (en) * 2015-06-26 2018-05-17 University Of Florida Research Foundation, Incorporated Method of treating inflammation using natural compounds and/or diet
US20170189447A1 (en) * 2016-01-05 2017-07-06 NIS Clinical Research Formulation for increasing energy
US20200354443A1 (en) * 2017-10-02 2020-11-12 Humanigen, Inc. Methods of treating immunotherapy-related toxicity using a gm-csf antagonist
WO2019165145A1 (fr) * 2018-02-21 2019-08-29 Iuve, Inc. Méthode de mesure de vieillissement dû à une inflammation chronique systémique
WO2019178650A1 (fr) * 2018-03-23 2019-09-26 The University Of Western Australia Procédé de traitement par médicament d'immunothérapie
WO2021211382A1 (fr) * 2020-04-13 2021-10-21 Edifice Health, Inc. Composés et procédés de modification de l'iage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK JEAN SOON; CHYUN JONG HEE; KIM YOO KYUNG; LINE LARRY L; CHEW BOON P: "Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans", NUTRITION & METABOLISM, BIOMED CENTRAL. LONDON, GB, vol. 7, no. 1, 5 March 2010 (2010-03-05), GB , pages 18, XP021069108, ISSN: 1743-7075 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027951A1 (fr) * 2021-08-21 2023-03-02 Edifice Health, Inc. Traitement d'une maladie à l'aide de l'iage et du mig

Similar Documents

Publication Publication Date Title
Peng et al. Dendritic cell function in allostimulation is modulated by C5aR signaling
JP6457940B2 (ja) 単純ヘルペスウイルスおよび免疫チェックポイント阻害薬を使用して、メラノーマを治療するための方法
US11376272B2 (en) Methods of modulating immune activity
Anani et al. Targeting myeloid-derived suppressor cells in cancer
Bapsy et al. Open-label, multi-center, non-randomized, single-arm study to evaluate the safety and efficacy of dendritic cell immunotherapy in patients with refractory solid malignancies, on supportive care
US20220403006A1 (en) A Precision Medicine Method for Immunotherapy
US20200323905A1 (en) Methods and compositions for modulating the immune system
US20160250292A1 (en) In Vivo Individualized Systemic Immunotherapeutic Method and Device
JP2022066448A (ja) 可溶性腫瘍壊死因子を阻害することによるがんの予防および治療
US20210380672A1 (en) Treatment and Prevention of Cardiovascular Disease
Hahn et al. Use of anti-cancer drugs, mitocans, to enhance the immune responses against tumors
KR20210035805A (ko) 세포후 신호전달 인자의 조절을 통한 면역 활성의 증가
JP2023509359A (ja) 鉄依存性細胞分解の誘導物質との併用抗癌療法
WO2022177815A1 (fr) Administration par voie muqueuse de composés pour modifier l'iâge
Yao et al. Factors affecting tumor responders and predictive biomarkers of toxicities in cancer patients treated with immune checkpoint inhibitors
US20210315921A1 (en) Compounds and Methods for Modifying iAge
WO2023027951A1 (fr) Traitement d'une maladie à l'aide de l'iage et du mig
WO2022187087A1 (fr) Âge inflammatoire d'expression génique et ses utilisations
US20200371103A1 (en) Precision Medicine Method for Cancer Immunotherapy
US20210188933A1 (en) Methods of treating pancytopenia
Hajibabaie et al. The molecular perspective on the development of melanoma and genome engineering of T-cells in targeting therapy
Taghipour et al. Modulatory effects of metformin alone and in combination with cimetidine and ibuprofen on T cell-related parameters in a breast cancer model
US20220119523A1 (en) Treatment of cutaneous t cell lymphoma with targeting of cd47 pathway
WO2022093763A1 (fr) Méthodes et compositions pour diagnostiquer et traiter une fragilité
Prenen et al. CYAD-101: An innovative non-gene edited allogeneic CAR-T for solid tumor cancer therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756730

Country of ref document: EP

Kind code of ref document: A1