WO2022177173A1 - Transistor-based non-enzymatic glucose sensor and preparation method thereof - Google Patents
Transistor-based non-enzymatic glucose sensor and preparation method thereof Download PDFInfo
- Publication number
- WO2022177173A1 WO2022177173A1 PCT/KR2022/000789 KR2022000789W WO2022177173A1 WO 2022177173 A1 WO2022177173 A1 WO 2022177173A1 KR 2022000789 W KR2022000789 W KR 2022000789W WO 2022177173 A1 WO2022177173 A1 WO 2022177173A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive member
- microneedle
- transistor
- electrode
- based non
- Prior art date
Links
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 title claims abstract description 29
- 239000008103 glucose Substances 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 230000002255 enzymatic effect Effects 0.000 title abstract description 18
- 239000010410 layer Substances 0.000 claims abstract description 50
- 239000012792 core layer Substances 0.000 claims abstract description 47
- 239000002184 metal Substances 0.000 claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims description 43
- 239000000758 substrate Substances 0.000 claims description 42
- 238000004519 manufacturing process Methods 0.000 claims description 31
- 108090000790 Enzymes Proteins 0.000 claims description 25
- 102000004190 Enzymes Human genes 0.000 claims description 25
- 238000005520 cutting process Methods 0.000 claims description 9
- 238000004544 sputter deposition Methods 0.000 claims description 6
- 238000002207 thermal evaporation Methods 0.000 claims description 5
- 239000002861 polymer material Substances 0.000 claims description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 13
- 239000008280 blood Substances 0.000 description 13
- 210000004369 blood Anatomy 0.000 description 13
- 229940088598 enzyme Drugs 0.000 description 13
- 210000003722 extracellular fluid Anatomy 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 6
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 102000004877 Insulin Human genes 0.000 description 3
- 108090001061 Insulin Proteins 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 206010012601 diabetes mellitus Diseases 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229940125396 insulin Drugs 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000019420 glucose oxidase Nutrition 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010241 blood sampling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 208000016097 disease of metabolism Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000000245 forearm Anatomy 0.000 description 1
- 235000012209 glucono delta-lactone Nutrition 0.000 description 1
- 229960003681 gluconolactone Drugs 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4141—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
- G01N27/4143—Air gap between gate and channel, i.e. suspended gate [SG] FETs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4145—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
Definitions
- the present invention relates to a transistor-based non-enzymatic glucose sensor and a method for manufacturing the same, and more particularly, to a transistor-based non-enzymatic glucose sensor that is easy to manufacture and manage, and a method for manufacturing the same.
- Diabetes mellitus is a metabolic disease characterized by prolonged high blood sugar levels, affecting more than 500 million people worldwide. Diabetes occurs when the pancreas does not make enough insulin or when cells do not respond properly to insulin.
- a commercially available blood sugar sensor measures blood sugar by intermittently collecting blood through a finger blood sampler.
- the measurement principle is to use an electrochemical oxidation-reduction reaction of glucose oxidase enzyme and sugar.
- an invasive continuous blood glucose measurement sensor using a micro needle has been developed.
- the microneedle has a micro-hole, and when it is inserted to the depth of contact with the interstitial fluid in a region with less pain, such as the stomach, forearm, or thigh, the interstitial fluid can be sucked through the micro-pore by osmotic pressure.
- the interstitial fluid comes in contact with the working electrode to which the glycooxidase is fixed, so that blood glucose can be measured.
- microneedles and working electrodes with micropores are manufactured using complex semiconductor process technology, they are not easy to manufacture and lack reproducibility. There is a problem due to deterioration of the properties of the enzyme.
- an object of the present invention is to provide a transistor-based non-enzymatic glucose sensor and a method for manufacturing the same, which are easy to manufacture and easy to manage because glucose oxidase is not required for blood glucose measurement. have.
- a source electrode spaced apart from the source electrode; a conductive member connecting the source electrode and the drain electrode; a microneedle having a metal core layer connected to the conductive member and an oxide layer formed on a surface of one end of the core layer; and a gate electrode spaced apart from the source electrode and the drain electrode and connected to the other end of the core layer.
- the microneedle may pass through the conductive member and be disposed to cross the conductive member.
- One end of the microneedle may be sharply formed.
- the core layer may be formed of a metal wire.
- a plurality of the microneedles may be provided.
- the source electrode, the drain electrode, and the conductive member may be formed on a flat substrate.
- the substrate may be made of a polymer material.
- the transistor-based non-enzyme glucose sensor according to the present invention may further include an insulating layer formed on the conductive member.
- An electrode forming step of forming a gate electrode connected to an end thereof is provided.
- the microneedle preparation step may include a metal wire preparation step of preparing a metal wire as the core layer, and an oxide layer forming step of forming an oxide layer on the surface of one end of the metal wire.
- the microneedle preparation step which is performed after the oxide layer forming step, may further include a metal wire cutting step of obliquely cutting one end of the metal wire.
- the electrode forming step includes a conductive member forming step of forming the conductive member to intersect the microneedle, a source forming the source electrode at one end of the conductive member and the drain electrode at the other end of the conductive member - It may include a drain electrode forming step, an insulating layer forming step of forming an insulating layer on the conductive member, and a gate electrode forming step of forming the gate electrode on the insulating layer.
- the method for manufacturing a transistor-based non-enzyme glucose sensor according to the present invention which proceeds between the microneedle preparation step and the electrode formation step, further comprises a substrate forming step of forming a substrate disposed to intersect the microneedle, In the electrode forming step, the source electrode, the drain electrode, and the conductive member may be formed on the substrate.
- the substrate forming step may include a hole forming step of forming a hole in the substrate, and a microneedle insertion step of inserting the microneedle into the hole.
- the conductive member, the source electrode, the drain electrode, and the gate electrode may be formed by a printing method, a thermal evaporation method, or a sputtering method.
- the transistor-based non-enzymatic sugar sensor according to the present invention can measure the sugar concentration by the reaction of the oxidized layer on the surface of the microneedle with the sugar without a glycooxidase, so that it is possible to continuously and accurately measure the sugar concentration.
- the microneedle can directly act as a working electrode, it is possible to configure the sugar sensor simply. Accordingly, it is easy to manufacture the sugar sensor, and there is little risk of malfunction of the sugar sensor.
- microneedles can be formed using a metal wire, and there is no need to form a conductive member through a complicated process such as a semiconductor manufacturing process, so it is very easy It is possible to manufacture
- FIG. 1 is a schematic cross-sectional view of a transistor-based non-enzymatic glucose sensor according to the present invention
- FIG. 2 is a state diagram of a transistor-based non-enzymatic glucose sensor according to the present invention.
- FIG. 3 is a schematic cross-sectional view of a transistor-based non-enzymatic glucose sensor according to another embodiment of the present invention.
- FIG. 4 is a flowchart of a method for manufacturing a transistor-based non-enzyme sugar sensor according to the present invention
- FIG. 5 is a step-by-step explanatory diagram of a method for manufacturing a transistor-based non-enzyme sugar sensor according to the present invention.
- source electrode 20 drain electrode
- FIG. 1 is a schematic cross-sectional view of a transistor-based non-enzymatic glucose sensor 1 according to the present invention.
- the transistor-based non-enzyme glucose sensor 1 includes a source electrode 10 , a drain electrode 20 , a conductive member 30 , a microneedle 40 , and a gate electrode 50 .
- the source electrode 10 and the drain electrode 20 are spaced apart from each other and may be made of, for example, a conductive material such as Ag, Al, Cu, Pt, Au, or carbon.
- the conductive member 30 serves to connect the source electrode 10 and the drain electrode 20 spaced apart from each other, and for example, Ag, Al, Cu, Pt, Au, ZnO, TiO 2 or a conductive material such as carbon. It may be made of material.
- the source electrode 10 , the drain electrode 20 , and the conductive member 30 may form a closed circuit by a wire connecting the source electrode 10 and the drain electrode 20 .
- the microneedle 40 is a needle-shaped member, and includes a metal core layer 41 positioned at the center of the cross-section, and an oxide layer 42 formed on the surface of one end of the core layer 41 .
- the core layer 41 may be electrically connected to the conductive member 30 .
- the core layer 41 may have, for example, a diameter of 0.01 to 1 mm and a length of 0.5 to 2.0 mm, and may be made of a material such as Cu, Ni, Fe, Al, Ag, Au, Pt, or W.
- the oxide layer 42 may be made of a material such as CuO, NiO, Fe 2 O 3 or WO 3 .
- the gate electrode 50 is connected to the other end of the core layer 41 of the microneedle 40 , and is spaced apart from the source electrode 10 and the drain electrode 20 .
- the gate electrode 50 and the source electrode 10 may be connected by an electric wire, and a power source may be located in the middle of the electric wire, so that a voltage may be applied to the core layer 41 connected to the gate electrode 50 by the electric power source.
- the transistor-based non-enzyme glucose sensor 1 according to the present invention can be used by inserting the microneedle 40 to a depth in contact with the interstitial fluid, as shown in FIG. It is possible to measure blood sugar by operating similarly to a transistor.
- FIG. 2(b) shows a wiring diagram during operation of the sugar sensor 1 according to the present invention and an electric flow in the wiring diagram
- FIG. 2(c) is a diagram shown in FIG. 2(b). The equivalent circuit diagram of the wiring diagram is shown.
- the concentration of sugar in the interstitial fluid When the concentration of sugar in the interstitial fluid is high, the amount of hydrogen peroxide generated during the oxidation of sugar increases, and accordingly, the amount of electrons generated during the decomposition of hydrogen peroxide increases, resulting in a strong current between the source electrode 10 and the drain electrode 20 will occur Conversely, when the concentration of sugar in the interstitial fluid is low, the amount of hydrogen peroxide generated during the oxidation of sugar is reduced, and accordingly, the amount of electrons generated during the decomposition of hydrogen peroxide is reduced between the source electrode 10 and the drain electrode 20 . A weak current is generated.
- the intensity of the current generated between the source electrode 10 and the drain electrode 20 varies depending on the concentration of sugar in the interstitial fluid, it is possible to measure the concentration of sugar through the intensity of the current.
- the transistor-based non-enzymatic glucose sensor 1 is capable of measuring the concentration of sugar by the reaction of the oxidation layer 42 on the surface of the microneedle 40 with the sugar without a glycooxidase. Unlike glycooxidase, the oxidized layer ( 42) is not degraded by the environment or time, so it is possible to continuously and accurately measure the sugar concentration.
- the transistor-based non-enzyme glucose sensor according to the present invention (1)
- the microneedle 40 can directly act as a working electrode, it is possible to configure the sugar sensor 1 simply. Accordingly, it is easy to manufacture the sugar sensor 1, and it is possible to prevent the problem that the sugar sensor does not work properly because the micro-hole is clogged in the center of the cross-section of the microneedle.
- the microneedle 40 may pass through the conductive member 30 and be disposed to cross the conductive member 30 .
- the microneedle 40 since the microneedle 40 is positioned in a shape that protrudes from the conductive member 30 while forming perpendicular to the conductive member 30, the microneedle 40 can be easily inserted into the skin as well as conduction.
- the member 30 may be spread over the outer surface of the skin to prevent the microneedle 40 from being inserted too deeply into the skin.
- One end of the micro-needle 40 is formed to be sharp, so that the micro-needle 40 can be more easily inserted into the skin, and pain can be reduced during insertion.
- the core layer 41 of the microneedle 40 may be made of a metal wire. That is, it is possible to manufacture the sugar sensor 1 according to the present invention by using a ready-made metal wire as the microneedle 40 .
- the microneedle 40 in the sugar sensor 1 of the present invention does not have a fine hole in the center of the cross-section, it is possible to use a ready-made metal wire as the microneedle 40, and accordingly, It is possible to form the microneedle 40 very easily, unlike the microneedle having the hole, which is manufactured through a complicated semiconductor manufacturing process.
- the transistor-based non-enzyme sugar sensor 1 may include a plurality of microneedles 40 .
- a plurality of micro-needles 40 may be positioned side by side with each other.
- the source electrode 10 , the drain electrode 20 , and the conductive member 30 may be formed on the flat substrate 60 .
- the substrate 60 supports the conductive member 30 and the like so that the conductive member 30 and the like can maintain a stable connection state, and the conductive member on the substrate 60 when the sugar sensor 1 according to the present invention is manufactured. (30) and the like can be formed, so that the arrangement relationship of the conductive member 30 and the like can be easily formed.
- the substrate 60 may be made of, for example, a polymer material such as polyimide (PI), polyethylene naphthahalate (PEN), polyethylene terephthalate (PET), polyethersulfone (PES), or polycarbonate (PC).
- PI polyimide
- PEN polyethylene naphthahalate
- PET polyethylene terephthalate
- PES polyethersulfone
- PC polycarbonate
- the microneedle 40 When the microneedle 40 penetrates the conductive member 30 and is disposed to intersect the conductive member 30, one end of the microneedle 40 protrudes to the outside of the body of the sensor 1 by the conductive member 30 ), etc., should also be formed to pass through the substrate 60 , and if the substrate 60 is made of a polymer material, it is possible to easily form the microneedle 40 to penetrate the substrate 60 . That is, the microneedle 40 is inserted into the hole of the substrate 60 in a state in which a hole is punched in the substrate 60, or the microneedle 40 is passed through the substrate 60 in an uncured state. The needle 40 may be formed in a state that penetrates the substrate 60 .
- the transistor-based non-enzyme glucose sensor 1 according to the present invention may further include an insulating layer 70 .
- the insulating layer 70 is formed on the conductive member 30 to cover the conductive member 30 .
- the other end of the microneedle 40 penetrates the insulating layer 70 and protrudes from the insulating layer 70 so that the other end of the core layer 41 of the microneedle 40 can be connected to the gate electrode 50 . is formed
- the insulating layer 70 protects the conductive member 30 and the gate electrode 50 connected to the other end of the core layer 41 is spaced apart from the source electrode 10 and the drain electrode 20 . to be stably supported in
- the insulating layer 70 is, for example, polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), polyvinyl alcohol (PVA), polystyrene (PS), polymethyl methacrylate (PMMA) or polyurethane (PU). It may be made of a material such as
- FIG. 4 is a flowchart of a method for manufacturing a transistor-based non-enzymatic glucose sensor according to the present invention
- FIG. 5 is a step-by-step explanatory diagram of a method for manufacturing a transistor-based non-enzymatic glucose sensor according to the present invention.
- the transistor-based non-enzyme sugar sensor manufacturing method according to the present invention largely consists of a microneedle preparation step (S10) and an electrode formation step (S30).
- microneedle preparation step (S10) a microneedle 40 having a metal core layer 41 and an oxide layer 42 formed on one end surface of the core layer 41 is prepared.
- the microneedle preparation step (S10) may include a metal wire preparation step (S11) and an oxide layer forming step (S12).
- the metal wire W as the core layer 41 is prepared.
- the metal wire W may be made by cutting a ready-made metal wire having a diameter of 0.01 to 1 mm to a length of 0.5 to 2.0 mm. As such, by using a ready-made metal wire, it is possible to easily manufacture the microneedle 40 .
- an oxide layer 42 is formed on the surface of one end of the metal wire.
- the oxide layer 42 may be formed by, for example, a thermal oxidation method under an oxygen atmosphere, a sol-gel method, an anodization method, a chemical vapor deposition method, an atomic vapor deposition method, or a sputtering method.
- the microneedle preparation step (S10) may further include a metal wire cutting step (S13).
- the metal wire cutting step (S13) is performed after the oxide layer forming step (S12), and is a process of obliquely cutting one end of the metal wire. Accordingly, one end of the microneedle 40 is formed to be sharp, so that it can be easily inserted into the skin when measuring the sugar concentration.
- the metal wire cutting step (S13) may be formed between the metal wire preparation step (S11) and the oxide layer forming step (S12). In this case, since the oxide layer 42 is formed after one end of the metal wire is cut, the core layer 41 is not exposed at one end of the microneedle 40 .
- the conductive member 30 the source electrode 10 , the drain electrode 20 , and the gate electrode 50 are formed.
- the conductive member 30 is formed to be electrically connected to the core layer 41 , the source electrode 10 is connected to one end of the conductive member 30 , and the drain electrode 20 is the other end of the conductive member 30 . formed to be connected to In addition, the gate electrode 50 is formed to be electrically connected to the other end of the core layer 41 while being spaced apart from the source electrode 10 and the drain electrode 20 .
- a voltage may be applied to the core layer 41 of the microneedle 40 electrically connected to the gate electrode 50 by a power source connected to the gate electrode 50, and accordingly, sugar is oxidized in the oxide layer 42
- the generated hydrogen peroxide is reduced by a voltage to generate electrons, and the generated electrons move along the core layer 41 and are electrically connected to the core layer 41 through the conductive member 30 through the source electrode 10 and the drain.
- a current may be generated between the electrodes 20 .
- the substrate forming step ( S20 ) may further proceed.
- the substrate 60 is disposed to cross the microneedle (40). Thereby, one end of the microneedle 40 protrudes to the lower portion of the substrate 60 and the other end is positioned to protrude to the upper portion of the substrate 60 .
- the source electrode 10 , the drain electrode 20 , and the conductive member 30 are formed on the substrate 60 . Accordingly, when the conductive member 30 is formed, the material forming the conductive member 30 and the like can be supported by the substrate 60 , so that it is possible to easily form the conductive member 30 and the like in a state of being connected to each other. . In addition, while forming the conductive member 30 and the like, it is possible to prevent the material such as the conductive member 30 from approaching one end of the microneedle 40 .
- the substrate forming step (S20) may include, more specifically, a hole forming step (S21) and a microneedle insertion step (S22).
- a hole is formed in the middle of the substrate 60 made of a flat plate shape.
- the hole is formed to have a diameter corresponding to the diameter of the microneedle 40 .
- the microneedle 40 is inserted into the hole formed in the middle of the substrate 60, as shown in FIG. 5(d). Thereby, the microneedle 40 is fixed to the substrate 60 in the form of passing through the substrate 60 , and the space where one end of the microneedle 40 is positioned and the space where the other end is positioned by the substrate 60 . This will be distinguished
- the electrode forming step S30 may include a conductive member forming step S31 , a source-drain electrode forming step S32 , an insulating layer forming step S33 , and a gate electrode forming step S34 .
- the conducting member 30 is formed so as to intersect the microneedle 40, as shown in FIG. 5(e).
- the conductive member 30 may be formed in a plate shape having a portion surrounding the core layer 41 of the microneedle 40, for example, a thin film such as a printing method, thermal evaporation method, or sputtering method. It can be formed by any method.
- the conducting member 30 is formed on the substrate 60 .
- the source electrode 10 is formed on one end of the conductive member 30 and the drain electrode 20 is formed on the other end of the conductive member 30 . do.
- the source electrode 10 and the drain electrode 20 are electrically connected to the conductive member 30 , respectively.
- the source electrode 10 and the drain electrode 20 may be formed by any method capable of forming a thin film, such as a printing method, a thermal evaporation method, or a sputtering method.
- the source electrode 10 and the drain electrode 20 are formed of the same material as the conductive member 30 through a single process, and the source electrode 10 and the drain electrode 20 are separated from the conductive member 30. It can be formed to be thicker to be distinguished from the conductive member 30 portion.
- the insulating layer 70 is formed on the conductive member 30 as shown in FIG. 5 ( g ).
- the insulating layer 70 is formed to cover the conductive member 30 and not to cover the source electrode 10 and the drain electrode 20 .
- the microneedle 40 is formed to surround the periphery of the core layer 41, but not surround the other end of the other end of the core layer 41, so that the other end of the core layer 41 protrudes onto the leading edge layer.
- the insulating layer 70 may be formed by, for example, a printing method or a coating method.
- the gate electrode 50 connected to the other end of the core layer 41 of the microneedle 40 on the insulating layer 70 is formed to form
- the gate electrode 50 may be spaced apart from the source electrode 10 , the drain electrode 20 , and the conductive member 30 by the insulating layer 70 .
- the gate electrode 50 may be formed by any method capable of forming a thin film, such as a printing method, a thermal evaporation method, or a sputtering method.
- the microneedle 40 can be formed using a metal wire, and the conductive member 30, the source electrode 10, the drain electrode 20, Since it is not necessary to form the gate electrode 50 and the insulating layer 70 through a complicated process such as a semiconductor manufacturing process, it is possible to manufacture the sugar sensor 1 very easily.
- the performance of the manufactured sugar sensor 1 is excellent as well as Reproducibility is also excellent.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Food Science & Technology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Micromachines (AREA)
Abstract
The present invention relates to a transistor-based non-enzymatic glucose sensor and a preparation method thereof. The transistor-based non-enzymatic glucose sensor according to the present invention comprises: a source electrode; a drain electrode disposed away from the source electrode; a conductive member connecting the source electrode and the drain electrode; a microneedle having a metal core layer, which is connected to the conductive member, and an oxide layer which is formed on the surface of one end part of the core layer; and a gate electrode positioned away from the source electrode and the drain electrode and connected to the other end part of the core layer. Therefore, the glucose sensor is easily prepared and managed.
Description
본 발명은 트랜지스터 기반 비효소 당센서 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 제조 및 관리가 용이한 트랜지스터 기반 비효소 당센서 및 이의 제조방법에 관한 것이다.The present invention relates to a transistor-based non-enzymatic glucose sensor and a method for manufacturing the same, and more particularly, to a transistor-based non-enzymatic glucose sensor that is easy to manufacture and manage, and a method for manufacturing the same.
당뇨병은 높은 혈당 수치가 오랜 기간 지속되는 대사 질환으로, 전 세계에서 5억명 이상이 앓고 있다. 당뇨병은 췌장이 충분한 인슐린을 만들어내지 못하거나 세포가 인슐린에 적절하게 반응하지 못하는 경우에 발생한다.Diabetes mellitus is a metabolic disease characterized by prolonged high blood sugar levels, affecting more than 500 million people worldwide. Diabetes occurs when the pancreas does not make enough insulin or when cells do not respond properly to insulin.
이러한 당뇨병을 효과적으로 치료하기 위해서는 혈당 수치를 측정하고 인슐린 공급을 조정해야 하는데, 이를 위해서는 혈당을 측정할 수 있는 혈당 센서가 필요하다.In order to effectively treat such diabetes, it is necessary to measure the blood sugar level and adjust the insulin supply. For this, a blood sugar sensor capable of measuring blood sugar is required.
시판중인 혈당 센서는 손가락 채혈기를 통해서 간헐적으로 채혈하여 혈당을 측정하는데, 측정 원리는 당산화효소(glucose oxidase enzyme)와 당의 전기화학적 산화-환원 반응을 이용하는 것이다.A commercially available blood sugar sensor measures blood sugar by intermittently collecting blood through a finger blood sampler. The measurement principle is to use an electrochemical oxidation-reduction reaction of glucose oxidase enzyme and sugar.
그러나 이 방법은 채혈기로 손가락을 찔러야하기 때문에 거부감이 크고, 시간이 경과함에 따라 당산화효소의 특성이 저하되는 문제점 때문에 여러 번 사용이 어려워 경제적으로 부담이 될 수 있다. 또한, 연속적으로 혈당을 측정할 수 없는 문제점을 갖는다.However, this method is difficult to use multiple times because of the problem of high rejection because it requires a finger prick with a blood sampling device, and the degradation of glycooxidase properties over time, which can be economically burdensome. In addition, there is a problem in that blood sugar cannot be continuously measured.
이러한 문제점을 해결하기 위하여 마이크로 니들(micro meedle)을 이용한 침습식 연속혈당측정센서가 개발되었다. 마이크로 니들은 미세 구멍을 구비하여, 이를 배, 팔뚝 또는 허벅지 등과 같이 통증이 덜한 부위에 세포 간질액과 접촉하는 깊이까지 삽입하면 삼투압에 의해 미세 구멍을 통해 간질액을 빨아들일 수 있으며, 이렇게 빨아들여진 간질액은 당산화효소가 고정된 작업전극과 접하여 혈당을 측정할 수 있게 된다.In order to solve this problem, an invasive continuous blood glucose measurement sensor using a micro needle has been developed. The microneedle has a micro-hole, and when it is inserted to the depth of contact with the interstitial fluid in a region with less pain, such as the stomach, forearm, or thigh, the interstitial fluid can be sucked through the micro-pore by osmotic pressure. The interstitial fluid comes in contact with the working electrode to which the glycooxidase is fixed, so that blood glucose can be measured.
그러나 미세 구멍을 갖는 마이크로 니들과 작업전극 등은 복잡한 반도체 공정 기술을 이용하여 제조되기 때문에 제조가 용이하지 않고 재현성이 부족하며, 혈당의 측정에 여전히 당산화효소가 필요하기 때문에 시간 경과에 의해 당산화효소의 특성 저하에 의한 문제점을 갖는다.However, since microneedles and working electrodes with micropores are manufactured using complex semiconductor process technology, they are not easy to manufacture and lack reproducibility. There is a problem due to deterioration of the properties of the enzyme.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 제조가 용이하고 혈당 측정을 위해 당산화효소가 필요하지 않아 관리가 용이한 트랜지스터 기반 비효소 당센서 및 이의 제조방법을 제공함에 있다.Accordingly, an object of the present invention is to provide a transistor-based non-enzymatic glucose sensor and a method for manufacturing the same, which are easy to manufacture and easy to manage because glucose oxidase is not required for blood glucose measurement. have.
본 발명이 해결하고자 하는 과제는 위에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 목적은, 본 발명에 따라, 소스 전극; 상기 소스 전극에서 이격되어 배치되는 드레인 전극; 상기 소스 전극과 상기 드레인 전극을 연결하는 전도 부재; 상기 전도 부재에 연결되는 금속 재질의 코어층과 상기 코어층의 일단부 표면에 형성되는 산화층을 구비하는 마이크로 니들; 및 상기 소스 전극과 상기 드레인 전극으로부터 이격되어 상기 코어층의 타단부에 연결되는 게이트 전극;을 포함하는 트랜지스터 기반 비효소 당센서에 의해 달성된다.The above object, according to the present invention, a source electrode; a drain electrode spaced apart from the source electrode; a conductive member connecting the source electrode and the drain electrode; a microneedle having a metal core layer connected to the conductive member and an oxide layer formed on a surface of one end of the core layer; and a gate electrode spaced apart from the source electrode and the drain electrode and connected to the other end of the core layer.
상기 마이크로 니들은, 상기 전도 부재를 관통하여 상기 전도 부재와 교차하도록 배치될 수 있다.The microneedle may pass through the conductive member and be disposed to cross the conductive member.
상기 마이크로 니들의 일단부는, 뾰족하게 형성될 수 있다.One end of the microneedle may be sharply formed.
상기 코어층은, 금속 와이어로 이루어질 수 있다.The core layer may be formed of a metal wire.
상기 마이크로 니들은, 다수 개가 구비될 수 있다.A plurality of the microneedles may be provided.
상기 소스 전극, 상기 드레인 전극 및 상기 전도 부재는, 평평한 기판 상에 형성될 수 있다.The source electrode, the drain electrode, and the conductive member may be formed on a flat substrate.
상기 기판은, 폴리머 재질로 이루어질 수 있다.The substrate may be made of a polymer material.
본 발명에 의한 트랜지스터 기반 비효소 당센서는, 상기 전도 부재 상에 형성되는 절연층을 더 포함할 수 있다.The transistor-based non-enzyme glucose sensor according to the present invention may further include an insulating layer formed on the conductive member.
본 발명의 또 다른 실시예에 의하면, 금속 재질의 코어층과 상기 코어층의 일단부 표면에 형성된 산화층을 구비하는 마이크로 니들을 준비하는 마이크로 니들 준비단계; 및 상기 코어층에 연결되는 전도 부재, 상기 전도 부재의 일단부에 연결되는 소스 전극, 상기 전도 부재의 타단부에 연결되는 드레인 전극, 및 상기 소스 전극과 상기 드레인 전극으로부터 이격되어 상기 코어층의 타단부에 연결되는 게이트 전극을 형성하는 전극 형성단계;를 포함하는 트랜지스터 기반 비효소 당센서 제조방법이 제공된다.According to another embodiment of the present invention, a microneedle preparation step of preparing a microneedle having a metal core layer and an oxide layer formed on the surface of one end of the core layer; and a conductive member connected to the core layer, a source electrode connected to one end of the conductive member, a drain electrode connected to the other end of the conductive member, and the other portion of the core layer spaced apart from the source electrode and the drain electrode. An electrode forming step of forming a gate electrode connected to an end thereof is provided.
상기 마이크로 니들 준비단계는, 상기 코어층으로서의 금속 와이어를 준비하는 금속 와이어 준비단계, 및 상기 금속 와이어의 일단부 표면에 산화층을 형성하는 산화층 형성단계를 포함할 수 있다.The microneedle preparation step may include a metal wire preparation step of preparing a metal wire as the core layer, and an oxide layer forming step of forming an oxide layer on the surface of one end of the metal wire.
상기 마이크로 니들 준비단계는, 상기 산화층 형성단계 후에 진행되는 것으로서, 상기 금속 와이어의 일단부를 비스듬하게 절단하는 금속 와이어 절단단계를 더 포함할 수 있다.The microneedle preparation step, which is performed after the oxide layer forming step, may further include a metal wire cutting step of obliquely cutting one end of the metal wire.
상기 전극 형성단계는, 상기 마이크로 니들과 교차하도록 상기 전도 부재를 형성하는 전도 부재 형성단계, 상기 전도 부재의 일단부에 상기 소스 전극을 형성하고 상기 전도 부재의 타단부에 상기 드레인 전극을 형성하는 소스-드레인 전극 형성단계, 상기 전도 부재 상에 절연층을 형성하는 절연층 형성단계, 및 상기 절연층 상에 상기 게이트 전극을 형성하는 게이트 전극 형성단계를 포함할 수 있다.The electrode forming step includes a conductive member forming step of forming the conductive member to intersect the microneedle, a source forming the source electrode at one end of the conductive member and the drain electrode at the other end of the conductive member - It may include a drain electrode forming step, an insulating layer forming step of forming an insulating layer on the conductive member, and a gate electrode forming step of forming the gate electrode on the insulating layer.
본 발명에 의한 트랜지스터 기반 비효소 당센서 제조방법은, 상기 마이크로 니들 준비단계와 상기 전극 형성단계 사이에 진행되는 것으로서, 상기 마이크로 니들과 교차하도록 배치되는 기판을 형성하는 기판 형성단계를 더 포함하고, 상기 전극 형성단계에서는, 상기 소스 전극, 상기 드레인 전극 및 상기 전도 부재를 상기 기판 상에 형성할 수 있다.The method for manufacturing a transistor-based non-enzyme glucose sensor according to the present invention, which proceeds between the microneedle preparation step and the electrode formation step, further comprises a substrate forming step of forming a substrate disposed to intersect the microneedle, In the electrode forming step, the source electrode, the drain electrode, and the conductive member may be formed on the substrate.
상기 기판 형성단계는, 상기 기판에 구멍을 형성하는 구멍 형성단계, 및 상기 구멍에 상기 마이크로 니들을 삽입하는 마이크로 니들 삽입단계를 포함할 수 있다.The substrate forming step may include a hole forming step of forming a hole in the substrate, and a microneedle insertion step of inserting the microneedle into the hole.
상기 전극 형성단계에서, 상기 전도 부재, 상기 소스 전극, 상기 드레인 전극 및 상기 게이트 전극은 프린팅 방법, 열증발법 또는 스퍼터링법에 의해 형성될 수 있다.In the electrode forming step, the conductive member, the source electrode, the drain electrode, and the gate electrode may be formed by a printing method, a thermal evaporation method, or a sputtering method.
본 발명에 의한 트랜지스터 기반 비효소 당센서는 당산화효소 없이도 마이크로 니들 표면의 산화층과 당의 반응에 의해 당의 농도를 측정하는 것이 가능하여, 당의 농도를 지속적으로 정확하게 측정하는 것이 가능하다.The transistor-based non-enzymatic sugar sensor according to the present invention can measure the sugar concentration by the reaction of the oxidized layer on the surface of the microneedle with the sugar without a glycooxidase, so that it is possible to continuously and accurately measure the sugar concentration.
또한, 마이크로 니들이 직접 작업전극과 같은 역할을 할 수 있으므로, 당센서를 간단하게 구성하는 것이 가능하다. 이에 따라, 당센서의 제조가 용이하며, 당센서에 고장이 발생할 염려가 적다.In addition, since the microneedle can directly act as a working electrode, it is possible to configure the sugar sensor simply. Accordingly, it is easy to manufacture the sugar sensor, and there is little risk of malfunction of the sugar sensor.
본 발명의 트랜지스터 기반 비효소 당센서 제조방법에 의하면, 금속 와이어를 이용하여 마이크로 니들을 형성할 수 있고, 전도 부재 등을 반도체 제조 공정과 같은 복잡한 공정을 통해 형성할 필요가 없으므로, 매우 쉽게 당센서를 제조하는 것이 가능하다.According to the transistor-based non-enzyme sugar sensor manufacturing method of the present invention, microneedles can be formed using a metal wire, and there is no need to form a conductive member through a complicated process such as a semiconductor manufacturing process, so it is very easy It is possible to manufacture
그리고 균질한 품질을 가지는 기성의 금속 와이어를 이용하고, 프린팅 방법 등을 통해 전도 부재를 설계한 규격으로 정확하게 형성하는 것이 가능하므로, 제조되는 당센서의 성능이 우수할 뿐만 아니라 재현성 또한 우수하다.And since it is possible to use a ready-made metal wire having a homogeneous quality, and to accurately form the conductive member according to the designed standard through a printing method, etc., not only the performance of the manufactured sugar sensor is excellent, but also the reproducibility is excellent.
도 1은 본 발명에 의한 트랜지스터 기반 비효소 당센서의 개략적인 단면도,1 is a schematic cross-sectional view of a transistor-based non-enzymatic glucose sensor according to the present invention;
도 2는 본 발명에 의한 트랜지스터 기반 비효소 당센서의 사용 상태도,2 is a state diagram of a transistor-based non-enzymatic glucose sensor according to the present invention;
도 3은 본 발명의 다른 실시예에 의한 트랜지스터 기반 비효소 당센서의 개략적인 단면도,3 is a schematic cross-sectional view of a transistor-based non-enzymatic glucose sensor according to another embodiment of the present invention;
도 4는 본 발명에 의한 트랜지스터 기반 비효소 당센서 제조방법의 순서도,4 is a flowchart of a method for manufacturing a transistor-based non-enzyme sugar sensor according to the present invention;
도 5는 본 발명에 의한 트랜지스터 기반 비효소 당센서 제조방법의 단계별 설명도이다.5 is a step-by-step explanatory diagram of a method for manufacturing a transistor-based non-enzyme sugar sensor according to the present invention.
1 : 트랜지스터 기반 비효소 당센서1: Transistor-based non-enzymatic glucose sensor
10 : 소스 전극 20 : 드레인 전극10: source electrode 20: drain electrode
30 : 전도 부재 40 : 마이크로 니들30: conductive member 40: microneedle
41 : 코어층 42 : 산화층41: core layer 42: oxide layer
50 : 게이트 전극 60 : 기판50: gate electrode 60: substrate
70 : 절연층70: insulating layer
이하에서는 본 발명의 구체적인 실시예에 대하여 도면을 참고하여 자세하게 설명하도록 한다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
도 1에는 본 발명에 의한 트랜지스터 기반 비효소 당센서(1)의 개략적인 단면도가 도시되어 있다.1 is a schematic cross-sectional view of a transistor-based non-enzymatic glucose sensor 1 according to the present invention.
본 발명에 의한 트랜지스터 기반 비효소 당센서(1)는 소스 전극(10), 드레인 전극(20), 전도 부재(30), 마이크로 니들(40) 및 게이트 전극(50)을 포함하여 이루어진다.The transistor-based non-enzyme glucose sensor 1 according to the present invention includes a source electrode 10 , a drain electrode 20 , a conductive member 30 , a microneedle 40 , and a gate electrode 50 .
소스 전극(10)과 드레인 전극(20)은 서로 이격되어 배치되며, 예를 들어 Ag, Al, Cu, Pt, Au 또는 카본 등과 같은 전도성 재질로 이루어질 수 있다.The source electrode 10 and the drain electrode 20 are spaced apart from each other and may be made of, for example, a conductive material such as Ag, Al, Cu, Pt, Au, or carbon.
전도 부재(30)는 서로 이격된 소스 전극(10)과 드레인 전극(20)을 연결하는 역할을 하는 것으로서, 예를 들어 Ag, Al, Cu, Pt, Au, ZnO, TiO2 또는 카본 등과 같은 전도성 재질로 이루어질 수 있다. 소스 전극(10), 드레인 전극(20) 및 전도 부재(30)는, 소스 전극(10)과 드레인 전극(20)을 연결하는 전선에 의해, 폐쇄 회로를 형성할 수 있다.The conductive member 30 serves to connect the source electrode 10 and the drain electrode 20 spaced apart from each other, and for example, Ag, Al, Cu, Pt, Au, ZnO, TiO 2 or a conductive material such as carbon. It may be made of material. The source electrode 10 , the drain electrode 20 , and the conductive member 30 may form a closed circuit by a wire connecting the source electrode 10 and the drain electrode 20 .
마이크로 니들(40)은 바늘 형상의 부재로서, 횡단면 중심에 위치하는 금속 재질의 코어층(41), 그리고 코어층(41)의 일단부 표면에 형성되는 산화층(42)으로 이루어진다. 코어층(41)은 전도 부재(30)와 전기적으로 연결될 수 있다. 코어층(41)은 예를 들어, 직경 0.01 ~ 1mm, 길이 0.5 ~ 2.0mm로 형성될 수 있으며, Cu, Ni, Fe, Al, Ag, Au, Pt 또는 W 등의 재질로 이루어질 수 있다. 산화층(42)은 예를 들어, CuO, NiO, Fe2O3 또는 WO3 등의 재질로 이루어질 수 있다.The microneedle 40 is a needle-shaped member, and includes a metal core layer 41 positioned at the center of the cross-section, and an oxide layer 42 formed on the surface of one end of the core layer 41 . The core layer 41 may be electrically connected to the conductive member 30 . The core layer 41 may have, for example, a diameter of 0.01 to 1 mm and a length of 0.5 to 2.0 mm, and may be made of a material such as Cu, Ni, Fe, Al, Ag, Au, Pt, or W. The oxide layer 42 may be made of a material such as CuO, NiO, Fe 2 O 3 or WO 3 .
게이트 전극(50)은 마이크로 니들(40)의 코어층(41) 타단부에 연결되되, 소스 전극(10) 및 드레인 전극(20)으로부터는 이격되어 배치된다. 게이트 전극(50)과 소스 전극(10)은 전선에 의해 연결될 수 있고 전선 중간에는 전원이 위치하여, 전원에 의해 게이트 전극(50)에 연결된 코어층(41)에 전압이 가해질 수 있다.The gate electrode 50 is connected to the other end of the core layer 41 of the microneedle 40 , and is spaced apart from the source electrode 10 and the drain electrode 20 . The gate electrode 50 and the source electrode 10 may be connected by an electric wire, and a power source may be located in the middle of the electric wire, so that a voltage may be applied to the core layer 41 connected to the gate electrode 50 by the electric power source.
이러한 본 발명에 의한 트랜지스터 기반 비효소 당센서(1)는 도 2의 (a)에 도시되어 있는 바와 같이, 마이크로 니들(40)을 세포 간질액과 접촉하는 깊이까지 삽입하여 사용할 수 있으며, 전계효과 트랜지스터와 유사하게 동작하여 혈당을 측정하는 것이 가능하다. 참고로, 도 2의 (b)는 본 발명에 의한 당센서(1) 동작시의 배선도와 상기 배선도 내에서의 전기 흐름을 나타내고, 도 2의 (c)는 도 2의 (b)에 도시된 배선도의 등가회로도를 나타낸다.The transistor-based non-enzyme glucose sensor 1 according to the present invention can be used by inserting the microneedle 40 to a depth in contact with the interstitial fluid, as shown in FIG. It is possible to measure blood sugar by operating similarly to a transistor. For reference, FIG. 2(b) shows a wiring diagram during operation of the sugar sensor 1 according to the present invention and an electric flow in the wiring diagram, and FIG. 2(c) is a diagram shown in FIG. 2(b). The equivalent circuit diagram of the wiring diagram is shown.
구체적으로, 마이크로 니들(40)이 간질액과 접촉하면 마이크로 니들(40) 표면의 산화층(42)에서 간질액 중의 당과 산화-환원 반응이 일어나는데, 이때 당은 산화되어 글루코노락톤(Gluconolactone)이 되고 반응 부산물로서 과산화수소(H2O2)가 생성된다. 그리고 게이트 전극(50)에 연결된 전원에 의해 코어층(41)에 예를 들어 0.4 ~ 0.6V의 전압이 가해지면 과산화수소가 환원되면서 전자가 발생하고, 발생한 전자는 코어층(41)을 따라 전도 부재(30)로 이동하여 소스 전극(10)과 드레인 전극(20) 사이에서 전류를 발생시킨다.Specifically, when the microneedle 40 comes into contact with the interstitial fluid, an oxidation-reduction reaction occurs with the sugar in the interstitial fluid in the oxidized layer 42 on the surface of the microneedle 40. At this time, the sugar is oxidized to form Gluconolactone. and hydrogen peroxide (H 2 O 2 ) is produced as a by-product of the reaction. And when a voltage of, for example, 0.4 to 0.6 V is applied to the core layer 41 by the power connected to the gate electrode 50 , hydrogen peroxide is reduced and electrons are generated, and the generated electrons are conducted along the core layer 41 by the conductive member Moving to 30 , a current is generated between the source electrode 10 and the drain electrode 20 .
간질액 내 당의 농도가 높은 경우, 당의 산화시 생성되는 과산화수소의 양이 많아지고, 이에 따라 과산화수소의 분해시 발생하는 전자의 양이 많아져 소스 전극(10)과 드레인 전극(20) 사이에서 강한 전류가 발생하게 된다. 반대로, 간질액 내 당의 농도가 낮은 경우에는 당의 산화시 생성되는 과산화수소의 양이 적어지고, 이에 따라 과산화수소의 분해시 발생하는 전자의 양이 적어져 소스 전극(10)과 드레인 전극(20) 사이에서 약한 전류가 발생하게 된다.When the concentration of sugar in the interstitial fluid is high, the amount of hydrogen peroxide generated during the oxidation of sugar increases, and accordingly, the amount of electrons generated during the decomposition of hydrogen peroxide increases, resulting in a strong current between the source electrode 10 and the drain electrode 20 will occur Conversely, when the concentration of sugar in the interstitial fluid is low, the amount of hydrogen peroxide generated during the oxidation of sugar is reduced, and accordingly, the amount of electrons generated during the decomposition of hydrogen peroxide is reduced between the source electrode 10 and the drain electrode 20 . A weak current is generated.
결과적으로, 간질액 내 당의 농도에 의해 소스 전극(10)과 드레인 전극(20) 사이에서 발생하는 전류의 세기가 달라지게 되므로, 전류의 세기를 통해 당의 농도를 측정하는 것이 가능하다.As a result, since the intensity of the current generated between the source electrode 10 and the drain electrode 20 varies depending on the concentration of sugar in the interstitial fluid, it is possible to measure the concentration of sugar through the intensity of the current.
이러한 본 발명에 의한 트랜지스터 기반 비효소 당센서(1)는 당산화효소 없이도 마이크로 니들(40) 표면의 산화층(42)과 당의 반응에 의해 당의 농도를 측정하는 것이 가능한데, 당산화효소와 달리 산화층(42)은 환경이나 시간 경과에 의해 특성이 저하되지 않으므로 당의 농도를 지속적으로 정확하게 측정하는 것이 가능하다.The transistor-based non-enzymatic glucose sensor 1 according to the present invention is capable of measuring the concentration of sugar by the reaction of the oxidation layer 42 on the surface of the microneedle 40 with the sugar without a glycooxidase. Unlike glycooxidase, the oxidized layer ( 42) is not degraded by the environment or time, so it is possible to continuously and accurately measure the sugar concentration.
또한, 기존의 마이크로 니들을 이용한 당센서가 마이크로 니들 단면 중앙의 미세 구멍을 통해 간질액을 빨아들여 간질액이 작업전극 등과 접하도록 하였던 것과는 달리, 본 발명에 의한 트랜지스터 기반 비효소 당센서(1)에서는 마이크로 니들(40)이 직접 작업전극과 같은 역할을 할 수 있으므로, 당센서(1)를 간단하게 구성하는 것이 가능하다. 이에 따라, 당센서(1)의 제조가 용이하며, 마이크로 니들의 단면 중앙에 미세 구멍이 막히어 당센서가 제대로 작동하지 못하게 되는 문제를 방지할 수 있다.Also, unlike the existing glucose sensor using a microneedle, which sucked the interstitial fluid through a micro hole in the center of the cross section of the microneedle so that the interstitial fluid came into contact with the working electrode, etc., the transistor-based non-enzyme glucose sensor according to the present invention (1) In this case, since the microneedle 40 can directly act as a working electrode, it is possible to configure the sugar sensor 1 simply. Accordingly, it is easy to manufacture the sugar sensor 1, and it is possible to prevent the problem that the sugar sensor does not work properly because the micro-hole is clogged in the center of the cross-section of the microneedle.
마이크로 니들(40)은 전도 부재(30)를 관통하여 전도 부재(30)와 교차하도록 배치될 수 있다.The microneedle 40 may pass through the conductive member 30 and be disposed to cross the conductive member 30 .
이 경우, 마이크로 니들(40)이 전도 부재(30)와 수직을 이루면서 전도 부재(30)로부터 돌출되는 형상으로 위치하기 때문에, 마이크로 니들(40)을 피부 내로 용이하게 삽입할 수 있을 뿐만 아니라, 전도 부재(30) 부분이 피부 외측 표면에 걸쳐지게 되어 마이크로 니들(40)이 너무 깊숙이 피부 내로 삽입되는 것을 방지할 수 있다.In this case, since the microneedle 40 is positioned in a shape that protrudes from the conductive member 30 while forming perpendicular to the conductive member 30, the microneedle 40 can be easily inserted into the skin as well as conduction. The member 30 may be spread over the outer surface of the skin to prevent the microneedle 40 from being inserted too deeply into the skin.
마이크로 니들(40)의 일단부는 뾰족하게 형성되어, 마이크로 니들(40)을 피부 내로 보다 용이하게 삽입할 수 있고, 삽입시 통증을 줄일 수 있다.One end of the micro-needle 40 is formed to be sharp, so that the micro-needle 40 can be more easily inserted into the skin, and pain can be reduced during insertion.
마이크로 니들(40)의 코어층(41)은 금속 와이어로 이루어질 수 있다. 즉, 기성의 금속 와이어를 마이크로 니들(40)로 하여 본 발명에 의한 당센서(1)를 제조하는 것이 가능하다.The core layer 41 of the microneedle 40 may be made of a metal wire. That is, it is possible to manufacture the sugar sensor 1 according to the present invention by using a ready-made metal wire as the microneedle 40 .
상기했던 바와 같이, 본 발명의 당센서(1)에서 마이크로 니들(40)은 단면 중앙에 미세한 구멍이 없기 때문에 기성의 금속 와이어를 마이크로 니들(40)로 사용하는 것이 가능하며, 이에 따라 기존에 미세 구멍을 구비한 마이크로 니들을 복잡한 반도체 제조 공정을 통해 제조하였던 것과는 달리, 마이크로 니들(40)을 매우 쉽게 형성하는 것이 가능하다.As described above, since the microneedle 40 in the sugar sensor 1 of the present invention does not have a fine hole in the center of the cross-section, it is possible to use a ready-made metal wire as the microneedle 40, and accordingly, It is possible to form the microneedle 40 very easily, unlike the microneedle having the hole, which is manufactured through a complicated semiconductor manufacturing process.
도 3에 도시되어 있는 바와 같이, 본 발명에 의한 트랜지스터 기반 비효소 당센서(1)는 마이크로 니들(40)을 다수 개 구비할 수 있다. 다수 개의 마이크로 니들(40)은 서로 나란하게 위치할 수 있다.As shown in FIG. 3 , the transistor-based non-enzyme sugar sensor 1 according to the present invention may include a plurality of microneedles 40 . A plurality of micro-needles 40 may be positioned side by side with each other.
이 경우, 보다 넓은 면적에서 당의 산화가 이루어지면서 소스 전극(10)과 드레인 전극(20) 사이의 전류가 증폭되는 효과가 발휘되기 때문에, 당의 농도를 보다 정확하게 측정하는 것이 가능하다.In this case, since the effect of amplifying the current between the source electrode 10 and the drain electrode 20 is exhibited while the sugar is oxidized in a larger area, it is possible to measure the sugar concentration more accurately.
소스 전극(10), 드레인 전극(20) 및 전도 부재(30)는 평평한 기판(60) 상에 형성될 수 있다.The source electrode 10 , the drain electrode 20 , and the conductive member 30 may be formed on the flat substrate 60 .
기판(60)은 전도 부재(30) 등을 지지하여 전도 부재(30) 등이 안정적인 연결 상태를 유지할 수 있도록 하고, 본 발명에 의한 당센서(1)의 제조시 기판(60) 상에 전도 부재(30) 등을 형성할 수 있으므로 전도 부재(30) 등의 배치 관계를 쉽게 형성할 수 있도록 한다.The substrate 60 supports the conductive member 30 and the like so that the conductive member 30 and the like can maintain a stable connection state, and the conductive member on the substrate 60 when the sugar sensor 1 according to the present invention is manufactured. (30) and the like can be formed, so that the arrangement relationship of the conductive member 30 and the like can be easily formed.
기판(60)은 예를 들어, 폴리이미드(PI), 폴리에틸렌 나프타할레이트(PEN), 폴리에틸렌 테레프탈레이트(PET), 폴리에테르술폰(PES) 또는 폴리카보네이트(PC) 등과 같은 폴리머 재질로 이루어질 수 있다.The substrate 60 may be made of, for example, a polymer material such as polyimide (PI), polyethylene naphthahalate (PEN), polyethylene terephthalate (PET), polyethersulfone (PES), or polycarbonate (PC). .
마이크로 니들(40)이 전도 부재(30)를 관통하여 전도 부재(30)와 교차하도록 배치되는 경우, 마이크로 니들(40)의 일단부가 당센서(1) 본체의 외측으로 돌출되기 위해서는 전도 부재(30) 등을 지지하는 기판(60) 또한 관통하도록 형성되어야 할 것인데, 기판(60)이 폴리머 재질로 이루어지면 쉽게 마이크로 니들(40)이 기판(60)을 관통하도록 형성하는 것이 가능하다. 즉, 기판(60)에 구멍을 뚫은 상태에서 마이크로 니들(40)을 기판(60)의 구멍에 삽입하거나 기판(60)이 경화되지 않은 상태에서 마이크로 니들(40)을 통과시키는 방법 등을 통해 마이크로 니들(40)이 기판(60)을 관통하는 상태로 형성할 수 있다.When the microneedle 40 penetrates the conductive member 30 and is disposed to intersect the conductive member 30, one end of the microneedle 40 protrudes to the outside of the body of the sensor 1 by the conductive member 30 ), etc., should also be formed to pass through the substrate 60 , and if the substrate 60 is made of a polymer material, it is possible to easily form the microneedle 40 to penetrate the substrate 60 . That is, the microneedle 40 is inserted into the hole of the substrate 60 in a state in which a hole is punched in the substrate 60, or the microneedle 40 is passed through the substrate 60 in an uncured state. The needle 40 may be formed in a state that penetrates the substrate 60 .
본 발명에 의한 트랜지스터 기반 비효소 당센서(1)는 절연층(70)을 더 포함할 수 있다. The transistor-based non-enzyme glucose sensor 1 according to the present invention may further include an insulating layer 70 .
절연층(70)은 전도 부재(30) 상에 전도 부재(30)를 덮는 형태로 형성된다. 마이크로 니들(40)의 코어층(41) 타단부가 게이트 전극(50)과 연결될 수 있도록 마이크로 니들(40)의 타단부는 절연층(70)을 관통하여 절연층(70) 상에서 돌출된 상태로 형성된다.The insulating layer 70 is formed on the conductive member 30 to cover the conductive member 30 . The other end of the microneedle 40 penetrates the insulating layer 70 and protrudes from the insulating layer 70 so that the other end of the core layer 41 of the microneedle 40 can be connected to the gate electrode 50 . is formed
이러한 절연층(70)은 전도 부재(30)를 보호할 뿐만 아니라, 코어층(41)의 타단부에 연결되는 게이트 전극(50)이 소스 전극(10)과 드레인 전극(20)으로부터 이격된 상태에서 안정적으로 지지될 수 있도록 한다.The insulating layer 70 protects the conductive member 30 and the gate electrode 50 connected to the other end of the core layer 41 is spaced apart from the source electrode 10 and the drain electrode 20 . to be stably supported in
절연층(70)은 예를 들어, 폴리디메틸실록산(PDMS), 폴리에틸렌 테레프탈레이트(PET), 폴리비닐알콜(PVA), 폴리스티렌(PS), 폴리메틸메타크릴레이트(PMMA) 또는 폴리우레탄(PU) 등의 재질로 이루어질 수 있다.The insulating layer 70 is, for example, polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), polyvinyl alcohol (PVA), polystyrene (PS), polymethyl methacrylate (PMMA) or polyurethane (PU). It may be made of a material such as
이하에서는 본 발명에 의한 트랜지스터 기반 비효소 당센서 제조방법에 대하여 설명하도록 한다. 본 발명에 의한 트랜지스터 기반 비효소 당센서 제조방법에 대해 설명하면서 본 발명에 의한 트랜지스터 기반 비효소 당센서(1)의 설명시 언급한 부분에 대해서는 자세한 설명을 생략할 수 있다.Hereinafter, a method for manufacturing a transistor-based non-enzymatic glucose sensor according to the present invention will be described. While describing the method for manufacturing the transistor-based non-enzymatic glucose sensor according to the present invention, detailed descriptions of the parts mentioned in the description of the transistor-based non-enzymatic glucose sensor 1 according to the present invention may be omitted.
도 4에는 본 발명에 의한 트랜지스터 기반 비효소 당센서 제조방법의 순서도가 도시되어 있고, 도 5에는 본 발명에 의한 트랜지스터 기반 비효소 당센서 제조방법의 단계별 설명도가 도시되어 있다.4 is a flowchart of a method for manufacturing a transistor-based non-enzymatic glucose sensor according to the present invention, and FIG. 5 is a step-by-step explanatory diagram of a method for manufacturing a transistor-based non-enzymatic glucose sensor according to the present invention.
본 발명에 의한 트랜지스터 기반 비효소 당센서 제조방법은 크게, 마이크로 니들 준비단계(S10)와 전극 형성단계(S30)로 이루어진다.The transistor-based non-enzyme sugar sensor manufacturing method according to the present invention largely consists of a microneedle preparation step (S10) and an electrode formation step (S30).
마이크로 니들 준비단계(S10)에서는 금속 재질의 코어층(41), 및 코어층(41)의 일단부 표면에 형성된 산화층(42)을 구비하는 마이크로 니들(40)을 준비한다.In the microneedle preparation step (S10), a microneedle 40 having a metal core layer 41 and an oxide layer 42 formed on one end surface of the core layer 41 is prepared.
마이크로 니들 준비단계(S10)는 보다 구체적으로, 금속 와이어 준비단계(S11) 및 산화층 형성단계(S12)를 포함할 수 있다.More specifically, the microneedle preparation step (S10) may include a metal wire preparation step (S11) and an oxide layer forming step (S12).
금속 와이어 준비단계(S11)에서는 도 5의 (a)에 도시되어 있는 바와 같이, 코어층(41)으로서의 금속 와이어(W)를 준비한다. 금속 와이어(W)는 0.01 ~ 1mm 직경의 기성품 금속 와이어를 0.5 ~ 2.0mm의 길이로 절단하여 만들어질 수 있다. 이처럼 기성의 금속 와이어를 이용하면, 마이크로 니들(40)을 쉽게 제조하는 것이 가능하다.In the metal wire preparation step ( S11 ), as shown in FIG. 5 ( a ), the metal wire W as the core layer 41 is prepared. The metal wire W may be made by cutting a ready-made metal wire having a diameter of 0.01 to 1 mm to a length of 0.5 to 2.0 mm. As such, by using a ready-made metal wire, it is possible to easily manufacture the microneedle 40 .
산화층 형성단계(S12)에서는 도 5의 (b)에 도시되어 있는 바와 같이, 금속 와이어의 일단부 표면에 산화층(42)을 형성한다. 산화층(42)은 예를 들어, 산소 분위기 하의 열산화법, 졸-겔법, 양극산화법, 화학 증착법, 원자 증착법 또는 스퍼터링법 등을 통해 형성될 수 있다.In the oxide layer forming step (S12), as shown in Fig. 5 (b), an oxide layer 42 is formed on the surface of one end of the metal wire. The oxide layer 42 may be formed by, for example, a thermal oxidation method under an oxygen atmosphere, a sol-gel method, an anodization method, a chemical vapor deposition method, an atomic vapor deposition method, or a sputtering method.
마이크로 니들 준비단계(S10)는 금속 와이어 절단단계(S13)를 더 포함할 수 있다.The microneedle preparation step (S10) may further include a metal wire cutting step (S13).
금속 와이어 절단단계(S13)는 산화층 형성단계(S12) 후에 진행되는 것으로서, 금속 와이어의 일단부를 비스듬하게 절단하는 과정이다. 이에 의해, 마이크로 니들(40)의 일단부는 뾰족하게 형성되어 당 농도 측정시 피부 내로 쉽게 삽입될 수 있다.The metal wire cutting step (S13) is performed after the oxide layer forming step (S12), and is a process of obliquely cutting one end of the metal wire. Accordingly, one end of the microneedle 40 is formed to be sharp, so that it can be easily inserted into the skin when measuring the sugar concentration.
금속 와이어 절단단계(S13)는 금속 와이어 준비단계(S11)와 산화층 형성단계(S12) 사이에 형성되는 것도 가능하다. 이 경우, 금속 와이어의 일단부가 절단된 후에 산화층(42)이 형성되기 때문에 마이크로 니들(40) 일단부에서 코어층(41)이 노출되지 않는다.The metal wire cutting step (S13) may be formed between the metal wire preparation step (S11) and the oxide layer forming step (S12). In this case, since the oxide layer 42 is formed after one end of the metal wire is cut, the core layer 41 is not exposed at one end of the microneedle 40 .
전극 형성단계(S30)에서는, 전도 부재(30), 소스 전극(10), 드레인 전극(20) 및 게이트 전극(50)을 형성한다.In the electrode forming step S30 , the conductive member 30 , the source electrode 10 , the drain electrode 20 , and the gate electrode 50 are formed.
전도 부재(30)는 코어층(41)과 전기적으로 연결되도록 형성되고, 소스 전극(10)은 전도 부재(30)의 일단부에 연결되며 드레인 전극(20)은 전도 부재(30)의 타단부에 연결되도록 형성된다. 그리고 게이트 전극(50)은 소스 전극(10)과 드레인 전극(20)으로부터 이격된 상태에서 코어층(41)의 타단부에 전기적으로 연결되도록 형성된다.The conductive member 30 is formed to be electrically connected to the core layer 41 , the source electrode 10 is connected to one end of the conductive member 30 , and the drain electrode 20 is the other end of the conductive member 30 . formed to be connected to In addition, the gate electrode 50 is formed to be electrically connected to the other end of the core layer 41 while being spaced apart from the source electrode 10 and the drain electrode 20 .
게이트 전극(50)과 전기적으로 연결되는 마이크로 니들(40)의 코어층(41)에는 게이트 전극(50)과 연결되는 전원에 의해 전압이 가해질 수 있고, 이에 따라 산화층(42)에서 당이 산화되면서 생성된 과산화수소는 전압에 의해 환원되어 전자를 발생시키며, 이렇게 발생한 전자는 코어층(41)을 따라 이동하여 전도 부재(30)를 통해 코어층(41)과 전기적으로 연결된 소스 전극(10)과 드레인 전극(20) 사이에서 전류를 발생시킬 수 있다.A voltage may be applied to the core layer 41 of the microneedle 40 electrically connected to the gate electrode 50 by a power source connected to the gate electrode 50, and accordingly, sugar is oxidized in the oxide layer 42 The generated hydrogen peroxide is reduced by a voltage to generate electrons, and the generated electrons move along the core layer 41 and are electrically connected to the core layer 41 through the conductive member 30 through the source electrode 10 and the drain. A current may be generated between the electrodes 20 .
마이크로 니들 준비단계(S10)와 전극 형성단계(S30) 사이에는 기판 형성단계(S20)가 더 진행될 수 있다.Between the microneedle preparation step ( S10 ) and the electrode forming step ( S30 ), the substrate forming step ( S20 ) may further proceed.
기판 형성단계(S20)에서는 기판(60)을 마이크로 니들(40)과 교차하도록 배치한다. 이에 의해, 마이크로 니들(40)의 일단부는 기판(60)의 하부로 돌출되고 타단부는 기판(60)의 상부로 돌출되게 위치하게 된다.In the substrate forming step (S20), the substrate 60 is disposed to cross the microneedle (40). Thereby, one end of the microneedle 40 protrudes to the lower portion of the substrate 60 and the other end is positioned to protrude to the upper portion of the substrate 60 .
기판 형성단계(S20)가 더 포함되는 경우, 전극 형성단계(S30)에서는 소스 전극(10), 드레인 전극(20) 및 전도 부재(30)를 기판(60) 상에 형성한다. 이에 따라, 전도 부재(30) 등의 형성시 전도 부재(30) 등을 형성하는 재료가 기판(60)에 의해 지지될 수 있어 전도 부재(30) 등을 서로 연결된 상태로 쉽게 형성하는 것이 가능하다. 그리고 전도 부재(30) 등을 형성하면서 전도 부재(30) 등의 재료가 마이크로 니들(40)의 일단부로 접근하게 되는 것을 방지할 수 있다.When the substrate forming step S20 is further included, in the electrode forming step S30 , the source electrode 10 , the drain electrode 20 , and the conductive member 30 are formed on the substrate 60 . Accordingly, when the conductive member 30 is formed, the material forming the conductive member 30 and the like can be supported by the substrate 60 , so that it is possible to easily form the conductive member 30 and the like in a state of being connected to each other. . In addition, while forming the conductive member 30 and the like, it is possible to prevent the material such as the conductive member 30 from approaching one end of the microneedle 40 .
기판 형성단계(S20)는 보다 구체적으로, 구멍 형성단계(S21)와 마이크로 니들 삽입단계(S22)를 포함할 수 있다.The substrate forming step (S20) may include, more specifically, a hole forming step (S21) and a microneedle insertion step (S22).
구멍 형성단계(S21)에서는 도 5의 (c)에 도시되어 있는 바와 같이, 평평한 판 형상으로 이루어진 기판(60)의 중간에 구멍을 형성한다. 구멍은 마이크로 니들(40)의 직경에 대응되는 직경을 갖도록 형성된다.In the hole forming step (S21), as shown in Fig. 5 (c), a hole is formed in the middle of the substrate 60 made of a flat plate shape. The hole is formed to have a diameter corresponding to the diameter of the microneedle 40 .
마이크로 니들 삽입단계(S22)에서는 도 5의 (d)에 도시되어 있는 바와 같이, 기판(60)의 중간에 형성된 구멍에 마이크로 니들(40)을 삽입한다. 이에 의해, 마이크로 니들(40)은 기판(60)을 통과하는 형태로 기판(60)에 고정되며, 기판(60)에 의해 마이크로 니들(40)의 일단부가 위치하는 공간과 타단부가 위치하는 공간이 구분되게 된다.In the microneedle insertion step (S22), the microneedle 40 is inserted into the hole formed in the middle of the substrate 60, as shown in FIG. 5(d). Thereby, the microneedle 40 is fixed to the substrate 60 in the form of passing through the substrate 60 , and the space where one end of the microneedle 40 is positioned and the space where the other end is positioned by the substrate 60 . This will be distinguished
전극 형성단계(S30)는 보다 구체적으로, 전도 부재 형성단계(S31), 소스-드레인 전극 형성단계(S32), 절연층 형성단계(S33) 및 게이트 전극 형성단계(S34)를 포함할 수 있다.More specifically, the electrode forming step S30 may include a conductive member forming step S31 , a source-drain electrode forming step S32 , an insulating layer forming step S33 , and a gate electrode forming step S34 .
전도 부재 형성단계(S31)에서는 도 5의 (e)에 도시되어 있는 바와 같이, 마이크로 니들(40)과 교차하도록 전도 부재(30)를 형성한다. 전도 부재(30)는 마이크로 니들(40)의 코어층(41)을 둘러싸는 부분을 갖는 판 형상으로 형성될 수 있으며, 예를 들어, 프린팅 방법, 열증발법 또는 스퍼터링법 등 박막을 형성할 수 있는 모든 방법에 의해 형성될 수 있다.In the conducting member forming step (S31), the conducting member 30 is formed so as to intersect the microneedle 40, as shown in FIG. 5(e). The conductive member 30 may be formed in a plate shape having a portion surrounding the core layer 41 of the microneedle 40, for example, a thin film such as a printing method, thermal evaporation method, or sputtering method. It can be formed by any method.
전도 부재 형성단계(S31) 전에 기판 형성단계(S20)가 진행된 경우, 기판(60) 위에 전도 부재(30)를 형성한다.When the substrate forming step S20 is performed before the conducting member forming step S31 , the conducting member 30 is formed on the substrate 60 .
소스-드레인 전극 형성단계(S32)에서는 도 5의 (f)에 도시되어 있는 바와 같이, 전도 부재(30)의 일단부에 소스 전극(10)을 형성하고 타단부에는 드레인 전극(20)을 형성한다. 소스 전극(10)과 드레인 전극(20)은 각각 전도 부재(30)와 전기적으로 연결된다. 소스 전극(10)과 드레인 전극(20)은 전도 부재(30)와 마찬가지로 프린팅 방법, 열증발법 또는 스퍼터링법 등 박막을 형성할 수 있는 모든 방법에 의해 형성될 수 있다.In the source-drain electrode forming step S32, as shown in FIG. 5(f) , the source electrode 10 is formed on one end of the conductive member 30 and the drain electrode 20 is formed on the other end of the conductive member 30 . do. The source electrode 10 and the drain electrode 20 are electrically connected to the conductive member 30 , respectively. Like the conductive member 30 , the source electrode 10 and the drain electrode 20 may be formed by any method capable of forming a thin film, such as a printing method, a thermal evaporation method, or a sputtering method.
소스 전극(10)과 드레인 전극(20)은 전도 부재(30)는 서로 동일한 재질로 한 번의 공정을 통해 형성되되, 소스 전극(10)과 드레인 전극(20) 부분을 전도 부재(30) 부분보다 더 두껍게 형성되어 전도 부재(30) 부분과 구분되게 할 수 있다.The source electrode 10 and the drain electrode 20 are formed of the same material as the conductive member 30 through a single process, and the source electrode 10 and the drain electrode 20 are separated from the conductive member 30. It can be formed to be thicker to be distinguished from the conductive member 30 portion.
절연층 형성단계(S33)에서는 도 5의 (g)에 도시되어 있는 바와 같이, 전도 부재(30) 상에 절연층(70)을 형성한다. 절연층(70)은 전도 부재(30)는 덮고, 소스 전극(10)과 드레인 전극(20)은 덮지 않도록 형성된다. 그리고 마이크로 니들(40)의 코어층(41)의 둘레부를 둘러싸되 코어층(41)의 타단의 최단부는 둘러싸지 않도록 형성되어, 전연층 상으로 코어층(41)의 타단부가 돌출된 부분을 갖도록 한다. 절연층(70)은 예를 들어, 프린팅 방법 또는 코팅 방법 등에 의해 형성될 수 있다.In the insulating layer forming step ( S33 ), the insulating layer 70 is formed on the conductive member 30 as shown in FIG. 5 ( g ). The insulating layer 70 is formed to cover the conductive member 30 and not to cover the source electrode 10 and the drain electrode 20 . And the microneedle 40 is formed to surround the periphery of the core layer 41, but not surround the other end of the other end of the core layer 41, so that the other end of the core layer 41 protrudes onto the leading edge layer. to have The insulating layer 70 may be formed by, for example, a printing method or a coating method.
게이트 전극 형성단계(S34)에서는 도 5의 (h)에 도시되어 있는 바와 같이, 절연층(70) 상에 마이크로 니들(40)의 코어층(41) 타단부에 연결되는 게이트 전극(50)을 형성한다. 절연층(70)에 의해 게이트 전극(50)은 소스 전극(10), 드레인 전극(20) 및 전도 부재(30)와 이격된 상태로 위치할 수 있다. 게이트 전극(50)은 예를 들어, 프린팅 방법, 열증발법 또는 스퍼터링법 등 박막을 형성할 수 있는 모든 방법에 의해 형성될 수 있다.In the gate electrode forming step (S34), as shown in FIG. 5 (h), the gate electrode 50 connected to the other end of the core layer 41 of the microneedle 40 on the insulating layer 70 is formed to form The gate electrode 50 may be spaced apart from the source electrode 10 , the drain electrode 20 , and the conductive member 30 by the insulating layer 70 . The gate electrode 50 may be formed by any method capable of forming a thin film, such as a printing method, a thermal evaporation method, or a sputtering method.
위와 같은 본 발명의 트랜지스터 기반 비효소 당센서 제조방법에 의하면, 금속 와이어를 이용하여 마이크로 니들(40)을 형성할 수 있고, 전도 부재(30), 소스 전극(10), 드레인 전극(20), 게이트 전극(50), 절연층(70)을 반도체 제조 공정과 같은 복잡한 공정을 통해 형성할 필요가 없으므로, 매우 쉽게 당센서(1)를 제조하는 것이 가능하다.According to the transistor-based non-enzyme sugar sensor manufacturing method of the present invention as described above, the microneedle 40 can be formed using a metal wire, and the conductive member 30, the source electrode 10, the drain electrode 20, Since it is not necessary to form the gate electrode 50 and the insulating layer 70 through a complicated process such as a semiconductor manufacturing process, it is possible to manufacture the sugar sensor 1 very easily.
그리고 균질한 품질을 가지는 기성의 금속 와이어를 이용하고, 프린팅 방법 등을 통해 전도 부재(30)를 설계한 규격으로 정확하게 형성하는 것이 가능하므로, 제조되는 당센서(1)의 성능이 우수할 뿐만 아니라 재현성 또한 우수하다.And since it is possible to precisely form the conductive member 30 to the designed standard by using a ready-made metal wire having a homogeneous quality, and the like through a printing method, the performance of the manufactured sugar sensor 1 is excellent as well as Reproducibility is also excellent.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.The scope of the present invention is not limited to the above-described embodiments, but may be implemented in various forms within the scope of the appended claims. Without departing from the gist of the present invention claimed in the claims, it is considered to be within the scope of the claims of the present invention to the extent that various modifications can be made by anyone skilled in the art to which the invention pertains.
Claims (15)
- 소스 전극;source electrode;상기 소스 전극에서 이격되어 배치되는 드레인 전극;a drain electrode spaced apart from the source electrode;상기 소스 전극과 상기 드레인 전극을 연결하는 전도 부재;a conductive member connecting the source electrode and the drain electrode;상기 전도 부재에 연결되는 금속 재질의 코어층과 상기 코어층의 일단부 표면에 형성되는 산화층을 구비하는 마이크로 니들; 및a microneedle having a metal core layer connected to the conductive member and an oxide layer formed on a surface of one end of the core layer; and상기 소스 전극과 상기 드레인 전극으로부터 이격되어 상기 코어층의 타단부에 연결되는 게이트 전극;을 포함하는 트랜지스터 기반 비효소 당센서.and a gate electrode spaced apart from the source electrode and the drain electrode and connected to the other end of the core layer.
- 제1항에 있어서,According to claim 1,상기 마이크로 니들은, 상기 전도 부재를 관통하여 상기 전도 부재와 교차하도록 배치되는 것을 특징으로 하는 트랜지스터 기반 비효소 당센서.The microneedle passes through the conductive member and is disposed to cross the conductive member.
- 제1항에 있어서,According to claim 1,상기 마이크로 니들의 일단부는, 뾰족하게 형성되는 것을 특징으로 하는 트랜지스터 기반 비효소 당센서.Transistor-based non-enzyme sugar sensor, characterized in that one end of the microneedle is sharply formed.
- 제1항에 있어서,According to claim 1,상기 코어층은, 금속 와이어인 것을 특징으로 하는 트랜지스터 기반 비효소 당센서.The core layer is a transistor-based non-enzyme sugar sensor, characterized in that the metal wire.
- 제1항에 있어서,According to claim 1,상기 마이크로 니들은, 다수 개가 구비되는 것을 특징으로 하는 트랜지스터 기반 비효소 당센서.The microneedle, a transistor-based non-enzyme sugar sensor, characterized in that provided with a plurality.
- 제1항에 있어서,According to claim 1,상기 소스 전극, 상기 드레인 전극 및 상기 전도 부재는, 평평한 기판 상에 형성되는 것을 특징으로 하는 트랜지스터 기반 비효소 당센서.The source electrode, the drain electrode, and the conductive member, a transistor-based non-enzyme sugar sensor, characterized in that formed on a flat substrate.
- 제6항에 있어서,7. The method of claim 6,상기 기판은, 폴리머 재질로 이루어지는 것을 특징으로 하는 트랜지스터 기반 비효소 당센서.The substrate is a transistor-based non-enzyme sugar sensor, characterized in that made of a polymer material.
- 제1항에 있어서,According to claim 1,상기 전도 부재 상에 형성되는 절연층을 더 포함하는 것을 특징으로 하는 트랜지스터 기반 비효소 당센서.Transistor-based non-enzyme glucose sensor, characterized in that it further comprises an insulating layer formed on the conductive member.
- 금속 재질의 코어층과 상기 코어층의 일단부 표면에 형성된 산화층을 구비하는 마이크로 니들을 준비하는 마이크로 니들 준비단계; 및A microneedle preparation step of preparing a microneedle having a metal core layer and an oxide layer formed on one end surface of the core layer; and상기 코어층에 연결되는 전도 부재, 상기 전도 부재의 일단부에 연결되는 소스 전극, 상기 전도 부재의 타단부에 연결되는 드레인 전극, 및 상기 소스 전극과 상기 드레인 전극으로부터 이격되어 상기 코어층의 타단부에 연결되는 게이트 전극을 형성하는 전극 형성단계;를 포함하는 트랜지스터 기반 비효소 당센서 제조방법.A conductive member connected to the core layer, a source electrode connected to one end of the conductive member, a drain electrode connected to the other end of the conductive member, and the other end of the core layer spaced apart from the source electrode and the drain electrode An electrode forming step of forming a gate electrode connected to a transistor-based non-enzyme sugar sensor manufacturing method comprising a.
- 제9항에 있어서,10. The method of claim 9,상기 마이크로 니들 준비단계는,The microneedle preparation step is,상기 코어층으로서의 금속 와이어를 준비하는 금속 와이어 준비단계, 및A metal wire preparation step of preparing a metal wire as the core layer, and상기 금속 와이어의 일단부 표면에 산화층을 형성하는 산화층 형성단계를 포함하는 것을 특징으로 하는 트랜지스터 기반 비효소 당센서 제조방법.Transistor-based non-enzyme sugar sensor manufacturing method comprising the step of forming an oxide layer on the surface of one end of the metal wire.
- 제10항에 있어서,11. The method of claim 10,상기 마이크로 니들 준비단계는,The microneedle preparation step is,상기 산화층 형성단계 후에 진행되는 것으로서, 상기 금속 와이어의 일단부를 비스듬하게 절단하는 금속 와이어 절단단계를 더 포함하는 것을 특징으로 하는 트랜지스터 기반 비효소 당센서 제조방법.Transistor-based non-enzyme sugar sensor manufacturing method, which proceeds after the oxide layer forming step, further comprising a metal wire cutting step of cutting one end of the metal wire obliquely.
- 제9항에 있어서,10. The method of claim 9,상기 전극 형성단계는,The electrode forming step is상기 마이크로 니들과 교차하도록 상기 전도 부재를 형성하는 전도 부재 형성단계,A conductive member forming step of forming the conductive member to cross the microneedle;상기 전도 부재의 일단부에 상기 소스 전극을 형성하고 상기 전도 부재의 타단부에 상기 드레인 전극을 형성하는 소스-드레인 전극 형성단계,A source-drain electrode forming step of forming the source electrode on one end of the conductive member and forming the drain electrode on the other end of the conductive member;상기 전도 부재 상에 절연층을 형성하는 절연층 형성단계, 및an insulating layer forming step of forming an insulating layer on the conductive member; and상기 절연층 상에 상기 게이트 전극을 형성하는 게이트 전극 형성단계를 포함하는 것을 특징으로 하는 트랜지스터 기반 비효소 당센서 제조방법.and a gate electrode forming step of forming the gate electrode on the insulating layer.
- 제9항에 있어서,10. The method of claim 9,상기 마이크로 니들 준비단계와 상기 전극 형성단계 사이에 진행되는 것으로서, 상기 마이크로 니들과 교차하도록 배치되는 기판을 형성하는 기판 형성단계를 더 포함하고,It proceeds between the microneedle preparation step and the electrode forming step, further comprising a substrate forming step of forming a substrate disposed to intersect the microneedle,상기 전극 형성단계에서는, 상기 소스 전극, 상기 드레인 전극 및 상기 전도 부재를 상기 기판 상에 형성하는 것을 특징으로 하는 트랜지스터 기반 비효소 당센서 제조방법.In the electrode forming step, the transistor-based non-enzyme sugar sensor manufacturing method, characterized in that the source electrode, the drain electrode and the conductive member are formed on the substrate.
- 제13항에 있어서,14. The method of claim 13,상기 기판 형성단계는,The substrate forming step is상기 기판에 구멍을 형성하는 구멍 형성단계, 및A hole forming step of forming a hole in the substrate, and상기 구멍에 상기 마이크로 니들을 삽입하는 마이크로 니들 삽입단계를 포함하는 것을 특징으로 하는 트랜지스터 기반 비효소 당센서 제조방법.Transistor-based non-enzyme sugar sensor manufacturing method comprising the step of inserting the micro-needle into the hole.
- 제9항에 있어서,10. The method of claim 9,상기 전극 형성단계에서,In the electrode forming step,상기 전도 부재, 상기 소스 전극, 상기 드레인 전극 및 상기 게이트 전극은 프린팅 방법, 열증발법 또는 스퍼터링법에 의해 형성되는 것을 특징으로 하는 트랜지스터 기반 비효소 당센서 제조방법.The conductive member, the source electrode, the drain electrode and the gate electrode are a transistor-based non-enzyme sugar sensor manufacturing method, characterized in that formed by a printing method, thermal evaporation method or sputtering method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210023041A KR102455443B1 (en) | 2021-02-22 | 2021-02-22 | Nonenzymatic glucose sensor based on transistor and manufacturing method thereof |
KR10-2021-0023041 | 2021-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022177173A1 true WO2022177173A1 (en) | 2022-08-25 |
Family
ID=82930901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/000789 WO2022177173A1 (en) | 2021-02-22 | 2022-01-17 | Transistor-based non-enzymatic glucose sensor and preparation method thereof |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102455443B1 (en) |
WO (1) | WO2022177173A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100227382A1 (en) * | 2005-05-25 | 2010-09-09 | President And Fellows Of Harvard College | Nanoscale sensors |
KR100984603B1 (en) * | 2000-12-11 | 2010-09-30 | 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 | Nanosensors |
US20130337567A1 (en) * | 2010-12-03 | 2013-12-19 | The Regents Of The University Of California | Nanowire field-effect transistor biosensor with improved sensitivity |
KR20160063900A (en) * | 2014-11-27 | 2016-06-07 | 아이오틴 주식회사 | Sensor for Measuring blood glucose and Manufacturing Methods thereof |
KR20200110746A (en) * | 2017-12-15 | 2020-09-25 | 주식회사 유엑스엔 | Nanoporous structure and inactive element glucose sensing device and system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140132869A (en) | 2013-05-08 | 2014-11-19 | 동국대학교 산학협력단 | Bio-sensor array for measuring glucose, glycated protein and total albumin |
-
2021
- 2021-02-22 KR KR1020210023041A patent/KR102455443B1/en active IP Right Grant
-
2022
- 2022-01-17 WO PCT/KR2022/000789 patent/WO2022177173A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100984603B1 (en) * | 2000-12-11 | 2010-09-30 | 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 | Nanosensors |
US20100227382A1 (en) * | 2005-05-25 | 2010-09-09 | President And Fellows Of Harvard College | Nanoscale sensors |
US20130337567A1 (en) * | 2010-12-03 | 2013-12-19 | The Regents Of The University Of California | Nanowire field-effect transistor biosensor with improved sensitivity |
KR20160063900A (en) * | 2014-11-27 | 2016-06-07 | 아이오틴 주식회사 | Sensor for Measuring blood glucose and Manufacturing Methods thereof |
KR20200110746A (en) * | 2017-12-15 | 2020-09-25 | 주식회사 유엑스엔 | Nanoporous structure and inactive element glucose sensing device and system |
Also Published As
Publication number | Publication date |
---|---|
KR102455443B1 (en) | 2022-10-18 |
KR20220119788A (en) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4180771A (en) | Chemical-sensitive field-effect transistor | |
Matsuo et al. | An integrated field-effect electrode for biopotential recording | |
DE69915850T2 (en) | SMALL VOLUME IN VITRO SENSOR WITH DIFFUSIONABLE OR NON-WASHABLE REDOX MEDIUM | |
US4020830A (en) | Selective chemical sensitive FET transducers | |
US4354308A (en) | Method for manufacture of a selective chemical sensitive FET transducer | |
US9678034B2 (en) | Analyte sensors and systems including retention tab and methods of manufacturing same | |
CN113125537B (en) | Wearable sweat monitoring sensor and preparation method thereof | |
US11945164B2 (en) | Method for manufacturing microneedle biosensor | |
BRPI1003687A2 (en) | multianalite test strip with aligned working electrodes and shared reference electrode / counter | |
CN112864324B (en) | Construction of organic grid electrochemical transistor biosensor | |
CN104160035A (en) | Test strip with stacked unidirectional contact | |
WO2017160014A1 (en) | Ion channel pressure sensor and method for manufacturing same | |
WO2022177173A1 (en) | Transistor-based non-enzymatic glucose sensor and preparation method thereof | |
Rezali et al. | Design strategies and prospects in developing wearable glucose monitoring system using printable organic transistor and microneedle: A review | |
WO2014046318A1 (en) | Sample recognition method and biosensor using same | |
US6198954B1 (en) | Urine sugar detecting device and method of fabricating the same | |
JPH11125618A (en) | Biosensor | |
JP3979574B2 (en) | Array electrode for biological sample and production method thereof | |
JP3117103U (en) | Electrochemical biological specimen that can be sampled in a small amount | |
WO2021033870A1 (en) | Biosensor | |
WO2009125930A1 (en) | Bio-sensor | |
JP4586210B2 (en) | Needle integrated biosensor | |
WO2013133459A1 (en) | Reagent composition for biosensors and biosensor comprising reagent layer formed of the same | |
CN210871604U (en) | Microneedle electrode for glucose sensor and microneedle glucose sensor | |
KR101448243B1 (en) | Method to recognze sample and bio sensor using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22756378 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22756378 Country of ref document: EP Kind code of ref document: A1 |