WO2022177045A1 - Device and method for classifying presence of heart disease - Google Patents

Device and method for classifying presence of heart disease Download PDF

Info

Publication number
WO2022177045A1
WO2022177045A1 PCT/KR2021/002630 KR2021002630W WO2022177045A1 WO 2022177045 A1 WO2022177045 A1 WO 2022177045A1 KR 2021002630 W KR2021002630 W KR 2021002630W WO 2022177045 A1 WO2022177045 A1 WO 2022177045A1
Authority
WO
WIPO (PCT)
Prior art keywords
heart disease
input data
layer
disease classification
heart
Prior art date
Application number
PCT/KR2021/002630
Other languages
French (fr)
Korean (ko)
Inventor
장혁재
홍영택
장영걸
이지나
맹신희
Original Assignee
연세대학교 산학협력단
주식회사 온택트헬스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단, 주식회사 온택트헬스 filed Critical 연세대학교 산학협력단
Publication of WO2022177045A1 publication Critical patent/WO2022177045A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Definitions

  • the present invention relates to an apparatus and method for classifying the presence or absence of a heart disease.
  • Heart sound which can be easily heard through a stethoscope, is the first basic test method performed in diagnosing heart disease.
  • a phonocardiogram (PCG) is a recording of heart sounds during several cardiac cycles through an electronic stethoscope, and is used for visualization of auscultation and for diagnosing heart disease.
  • the heart sound diagram is divided into four states: S1, Systole, S2, and Diastole, and the four states are sequentially connected to form one cycle.
  • S1, Systole, S2, and Diastole there is little noise in the signal in a normal heart tone, but in the heart tone of a patient with heart disease as in FIG. 6 (b), a lot of noise is mixed throughout the signal.
  • the heart sound chart it is possible to analyze the abnormality of the sound of the valve opening and closing by the heartbeat, thereby enabling early diagnosis of valve-related diseases.
  • it has the advantage of being able to easily analyze heartbeat in a non-invasive method, it is a formal procedure because it requires specialized training to perform accurate analysis and the opinions of different specialists may vary.
  • Korean Patent Registration No. 10- 1524226 discloses a method and apparatus for determining heart disease using a neural network.
  • An object of the present invention is to provide a heart disease classification apparatus and method for classifying the presence or absence of heart disease through a one-dimensional convolutional neural network (CNN)-based heart disease classification model suitable for PCG feature analysis.
  • CNN convolutional neural network
  • Another object of the present invention is to provide a heart disease classification apparatus and method for generating input data by converting a PCG signal into a meaningful phonetic feature based on a Mel-Frequency Cepstral Coefficient (MFCC).
  • MFCC Mel-Frequency Cepstral Coefficient
  • an embodiment of the present invention includes a convolutional block layer, a one-dimensional pooling layer, a global pooling layer, and a fully connected layer, and a phonocardiogram (PCG) of a preset length.
  • a convolutional block layer a one-dimensional pooling layer, a global pooling layer, and a fully connected layer
  • PCG phonocardiogram
  • a model generator that generates a convolutional neural network (CNN)-based heart disease classification model that classifies heart disease, and the input from the heart sound diagram through a Mel spectrum-based feature extraction technique
  • CNN convolutional neural network
  • a heart disease classification apparatus including an input data generating unit for generating data and a heart disease classifying unit for classifying the heart disease by inputting the input data into the heart disease classification model.
  • another embodiment of the present invention includes a convolutional block layer, a one-dimensional pooling layer, a global pooling layer, and a fully connected layer, and a CNN-based method that receives heart sound-based input data of a preset length and classifies heart diseases.
  • creating a heart disease classification model of A method for classifying heart disease may be provided.
  • FIG. 1 is a block diagram of a heart disease classification apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a heart disease classification apparatus according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a network structure of a CNN-based heart disease classification model according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of a convolutional block layer according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a heart disease classification method according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a normal heart tone and an abnormal heart tone.
  • a "part" includes a unit realized by hardware, a unit realized by software, and a unit realized using both.
  • one unit may be implemented using two or more hardware, and two or more units may be implemented by one hardware.
  • Some of the operations or functions described as being performed by the terminal or device in this specification may be instead performed by a server connected to the terminal or device. Similarly, some of the operations or functions described as being performed by the server may also be performed in a terminal or device connected to the corresponding server.
  • FIG. 1 is a block diagram of a heart disease classification apparatus according to an embodiment of the present invention
  • FIG. 2 is a block diagram of a heart disease classification apparatus according to an embodiment of the present invention
  • FIG. 3 is an embodiment of the present invention It is a diagram showing a network structure of a CNN-based heart disease classification model according to the present invention
  • FIG. 4 is a configuration diagram of a convolutional block layer according to an embodiment of the present invention.
  • the heart disease classification apparatus 1 may include a model generation unit 100 , an input data generation unit 110 , and a heart disease classification unit 120 .
  • the input data generator 110 may include a preprocessor 112 and a feature extractor 114 .
  • the heart disease classification apparatus 1 may perform the classification 240 after segmenting 220 on the received heart sound signal 210 .
  • the heart disease classification apparatus 1 may generate a label of the heart sound signal 210 through the segmentation 220 .
  • the heart disease classification apparatus 1 may perform label analysis after downsampling to 1 Khz to generate a label, and then upsampling again to perform learning.
  • the present disclosure it is possible to improve the performance of the network by encapsulating data based on the label for the segmentation 220 of the heart sound signal. Through this, it is assumed that a higher level of learning is possible because it is possible to check which part of the data was viewed and diagnosed a disease by learning the disease diagnosis network.
  • the heart disease classification apparatus 1 may remove noise and outliers in the signal through the data preprocessing 230 .
  • the heart disease classification apparatus 1 may separate the preprocessed data in units of 3 cycles, and generate input data of the network through MFCC analysis.
  • An example of the heart disease classification apparatus 1 may include not only a personal computer such as a desktop or a notebook computer, but also a mobile terminal capable of wired/wireless communication.
  • a mobile terminal is a wireless communication device that guarantees portability and mobility, and includes not only smartphones, tablet PCs, and wearable devices, but also Bluetooth (BLE, Bluetooth Low Energy), NFC, RFID, Ultrasonic, infrared, and Wi-Fi ( WiFi) and Li-Fi (LiFi) may include various devices equipped with a communication module.
  • BLE Bluetooth Low Energy
  • NFC NFC
  • RFID RFID
  • Ultrasonic ultrasonic
  • infrared WiFi
  • Li-Fi Li-Fi
  • the heart disease classification device 1 is not limited to the form shown in FIG. 1 or those exemplified above.
  • the model generator 100 may receive input data based on heart sound and generate a CNN-based heart disease classification model for classifying heart diseases.
  • the heart disease classification model 320 may include a convolutional block layer 332 , a one-dimensional pooling layer 334 , a global pooling layer 342 , and a fully connected layer 350 .
  • the heart disease classification model 320 includes four first sub-layers 330 including a convolutional block layer 332 and a one-dimensional pooling layer 334 , and a convolutional block layer 332 and global pooling. It may include one second sub-layer 340 including a layer 342 .
  • the heart disease classification model 320 may be configured to be connected in the order of the first sub-layer 330 , the second sub-layer 340 , and the fully connected layer 350 .
  • the heart disease classification model 320 includes a global pooling layer 342 between the last convolutional block layer 332 and the fully connected layer 350 .
  • the global pooling layer 342 may improve the performance of the network by calculating it according to the actual effective length rather than calculating the average for the entire size.
  • the convolution block layer 332 may include two sets of one-dimensional convolution operations and activation functions.
  • the activation function may be a Rectified Linear Unit (ReLU).
  • the number of filters in the convolutional block layer 332 is doubled starting from 32, so that 512 can be maximally.
  • the hyperparameters of the heart disease classification model 320 may be depth (the number of layers) 5, the number of filters 32, and the batch size 64.
  • the model generator 100 may train the heart disease classification model to classify heart diseases by inputting heart sound-based learning data to the heart disease classification model.
  • the input data generator 110 may generate the input data from the heart sound diagram through a Mel spectrum-based feature extraction technique.
  • the input data generator 110 may generate input data of a preset length by applying zero padding to the effective length of the input data.
  • the input data generator 110 applies zero padding according to the maximum size of the cycle of the heart sound according to the reversible heartbeat range of a human so that the length is 720 in all. can do.
  • the processed input data may be in the form of final 13 ⁇ 720 data.
  • the global pooling layer of the heart disease classification model may extract an effective feature of the input data by calculating an average of the valid lengths of the input data.
  • the preprocessor 112 may determine a range of a signal of a heart tone of a preset number of cycles based on a Butterworth filter.
  • the preprocessor 112 may determine the signal range by using the Butterworth filter to effectively extract the heart sound.
  • the preprocessor 112 may correct noise (bouncing value) in the signal of the heart tone through the spike removal method.
  • the pre-processor 112 may divide the heart sound chart into three periods of heart tone data that may include sufficient information by dividing the heart sound chart in order to improve accuracy through the data ensemble.
  • a division technique based on a Hidden Markov Model (HMM) may be used for the division of the heart tone.
  • the feature extractor 114 may generate input data by extracting a preset number of feature components from the heart sound diagram based on MFCC as a Mel spectrum-based feature extraction technique.
  • MFCC is a feature extraction technique that reflects the way humans hear sounds, and the feature extraction unit 114 may use 13 Mel coefficient values for heart tone analysis in a frequency band of less than 700 Hz.
  • the signal of the heart sound diagram is converted into meaningful phonetic features by the MFCC method and used as input data.
  • the heart disease classification unit 120 may classify the heart disease by inputting the input data into the heart disease classification model.
  • the heart disease classification unit 120 converts the input data to normal, aortic stenosis, mitral regurgitation, aortic regurgitation, and mitral valve stenosis ( Mitral stenosis) and patency of the ductus arteriosus (Patent ductus arteriosus) can be classified as either.
  • the present applicant conducted an experiment comparing the performance of the Example according to the present application and the comparative example using 3240 heart sound data publicly provided in PhysioNet Challenge 2016.
  • the network of the heart disease classification model of the present application showed excellent heart disease diagnosis performance compared to other techniques proposed in the PhysioNet Challenge 2016.
  • Potes' technique was a technique using CNN and Adaboost, one of the ensemble techniques, Zabihi's technique is an ensemble form of several support vector machines, and Kay & agarwal's technique is a technique learned using a regularized neural network.
  • the regularized neural network is a technique to prevent overfitting by regulating weights and to have characteristics suitable for generalization.
  • the heart disease classification method according to the embodiment shown in FIG. 5 includes the steps of time-series processing in the heart disease classification apparatus shown in FIG. 1 . Therefore, even if omitted below, it is also applied to the heart disease classification method performed according to the embodiment shown in FIG. 5 .
  • the heart disease classification apparatus may receive heart sound-based input data and generate a CNN-based heart disease classification model that classifies heart diseases.
  • the heart disease classification model may include a convolutional block layer, a one-dimensional pooling layer, a global pooling layer, and a fully connected layer.
  • the heart disease classification apparatus may generate input data from the heart sound diagram through a Mel spectrum-based feature extraction technique.
  • the heart disease classification apparatus may classify the heart disease by inputting the input data into the heart disease classification model.
  • the heart disease classification method described with reference to FIG. 5 may be implemented in the form of a computer program stored in the medium, or may be implemented in the form of a recording medium including instructions executable by a computer, such as a program module executed by a computer.
  • Computer-readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media.
  • Computer-readable media may include computer storage media.
  • Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Acoustics & Sound (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Fuzzy Systems (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

Provided is a heart disease classification device, comprising: a model generator for generating a CNN-based heart disease classification model comprising a convolution block layer, a one-dimensional pooling layer, a global pooling layer, and a fully connected layer, receives input data based on a phonocardiogram of a preset length and classifies a heart disease; an input data generator for generating the input data from the phonocardiogram through a Mel spectrum-based feature extraction technique; and a heart disease classifier for inputting the input data to the heart disease classification model and classifying the heart disease.

Description

심장질환의 유무를 분류하는 장치 및 방법Apparatus and method for classifying the presence or absence of heart disease
본 발명은 심장질환의 유무를 분류하는 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for classifying the presence or absence of a heart disease.
청진기를 통해 쉽게 들을 수 있는 심장음은 심장질환 진단에 있어 가장 먼저 수행되는 기본적인 검사방법이다. 심음도(PCG: Phonocardiogram)는 전자 청진기를 통해 여러 심장주기 동안의 심장음을 기록한 것으로 청진의 시각화 및 심장질환 진단 목적으로 사용된다. Heart sound, which can be easily heard through a stethoscope, is the first basic test method performed in diagnosing heart disease. A phonocardiogram (PCG) is a recording of heart sounds during several cardiac cycles through an electronic stethoscope, and is used for visualization of auscultation and for diagnosing heart disease.
도 6을 참조하면, 심음도는 S1, Systole, S2, Diastole의 총 4가지의 상태로 구분되어 있으며, 4가지 상태를 순차적으로 연결해 하나의 주기를 형성한다. 도 6의 (a)와 같이 정상적인 심음도에는 신호에 잡음이 거의 없지만 도 6의 (b)와 같이 심장질환을 가지고 있는 환자의 심음도의 경우 신호 전반에 걸쳐 잡음이 많이 섞여 있다.Referring to FIG. 6 , the heart sound diagram is divided into four states: S1, Systole, S2, and Diastole, and the four states are sequentially connected to form one cycle. As shown in (a) of FIG. 6 , there is little noise in the signal in a normal heart tone, but in the heart tone of a patient with heart disease as in FIG. 6 (b), a lot of noise is mixed throughout the signal.
이와 같이, 심음도를 활용하면 심장박동에 의해 판막이 열리고 닫히는 소리의 이상을 분석해 판막 관련 질환 초기 진단이 가능해진다. 비침습적인 방법으로 쉽게 심장박동음 분석이 가능하다는 장점이 있지만, 정확한 분석을 수행하기까지 전문적 수련을 필요로 하고 전문의 마다 소견이 다를 수 있어 형식적인 절차로 수행되고 있다. In this way, if the heart sound chart is used, it is possible to analyze the abnormality of the sound of the valve opening and closing by the heartbeat, thereby enabling early diagnosis of valve-related diseases. Although it has the advantage of being able to easily analyze heartbeat in a non-invasive method, it is a formal procedure because it requires specialized training to perform accurate analysis and the opinions of different specialists may vary.
최근에는 컴퓨터 단층 촬영, 자기 공명영상, 초음파 영상 검사 등 정밀 검사 방법들이 표준으로 자리 잡으면서 PCG의 활용도는 점차 낮아지고 있는 상황이다.Recently, as precision inspection methods such as computed tomography, magnetic resonance imaging, and ultrasound imaging have become the standard, the utilization of PCG is gradually decreasing.
최근 인공지능 기술의 발전과 함께 PCG 분석을 위한 다양한 기법들이 제안되었다. 대표적으로, 심장음 신호에 1차원 합성곱 신경망(convolutional neural network, CNN)을 이용한 방법과 은닉 마르코프 모델(hidden markov models, HMM)을 활용한 방법이 있다. 다른 방법으로는 장단기 기억(long short-term memory, LSTM) 기반 인공신경망 네트워크를 활용한 분석, 신호의 스펙트럼을 분석해 이미지 형태로 분석하는 2D CNN방법이 있다.With the recent development of artificial intelligence technology, various techniques for PCG analysis have been proposed. Representatively, there are a method using a one-dimensional convolutional neural network (CNN) and a method using a hidden markov model (HMM) for a heart sound signal. Other methods include analysis using an artificial neural network based on long short-term memory (LSTM), and a 2D CNN method that analyzes the spectrum of a signal and analyzes it in the form of an image.
이와 관련하여, 한국등록특허 제10- 1524226호는 신경망을 이용한 심장질환판별 방법 및 그 장치를 개시하고 있다.In this regard, Korean Patent Registration No. 10- 1524226 discloses a method and apparatus for determining heart disease using a neural network.
본 발명은 PCG 특징 분석에 적합한 1차원 CNN(Convolutional Neural Network) 기반의 심장질환 분류 모델을 통해 심장질환의 유무를 분류하는 심장질환 분류 장치 및 방법을 제공하고자 한다.An object of the present invention is to provide a heart disease classification apparatus and method for classifying the presence or absence of heart disease through a one-dimensional convolutional neural network (CNN)-based heart disease classification model suitable for PCG feature analysis.
또한, 본 발명은 PCG 신호를 MFCC(Mel-Frequency Cepstral Coefficient)에 기초하여 유의미한 음성학적 특징으로 변환하여 입력 데이터를 생성하는 심장질환 분류 장치 및 방법을 제공하고자 한다.Another object of the present invention is to provide a heart disease classification apparatus and method for generating input data by converting a PCG signal into a meaningful phonetic feature based on a Mel-Frequency Cepstral Coefficient (MFCC).
다만, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.However, the technical problems to be achieved by the present embodiment are not limited to the technical problems described above, and other technical problems may exist.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 일 실시예는 합성곱 블록층, 1차원 풀링층, 글로벌 풀링층 및 완전 연결층을 포함하고, 기설정된 길이의 심음도(PCG: Phonocardiogram) 기반의 입력 데이터를 입력받고 심장질환을 분류하는 CNN(Convolutional Neural Network) 기반의 심장질환 분류 모델을 생성하는 모델 생성부, 멜 스펙트럼(Mel spectrum) 기반 특징 추출 기법을 통해 상기 심음도로부터 상기 입력 데이터를 생성하는 입력 데이터 생성부 및 상기 입력 데이터를 상기 심장질환 분류 모델에 입력하여 상기 심장질환을 분류하는 심장질환 분류부를 포함하는 심장질환 분류 장치를 제공할 수 있다.As a technical means for achieving the above-described technical problem, an embodiment of the present invention includes a convolutional block layer, a one-dimensional pooling layer, a global pooling layer, and a fully connected layer, and a phonocardiogram (PCG) of a preset length. )-based input data and a model generator that generates a convolutional neural network (CNN)-based heart disease classification model that classifies heart disease, and the input from the heart sound diagram through a Mel spectrum-based feature extraction technique It is possible to provide a heart disease classification apparatus including an input data generating unit for generating data and a heart disease classifying unit for classifying the heart disease by inputting the input data into the heart disease classification model.
또한, 본 발명의 다른 실시예는 합성곱 블록층, 1차원 풀링층, 글로벌 풀링층 및 완전 연결층을 포함하고, 기설정된 길이의 심음도 기반의 입력 데이터를 입력받고 심장질환을 분류하는 CNN 기반의 심장질환 분류 모델을 생성하는 단계, 멜 스펙트럼 기반 특징 추출 기법을 통해 상기 심음도로부터 상기 입력 데이터를 생성하는 단계 및 상기 입력 데이터를 상기 심장질환 분류 모델에 입력하여 상기 심장질환을 분류하는 단계를 포함하는 심장질환 분류 방법을 제공할 수 있다.In addition, another embodiment of the present invention includes a convolutional block layer, a one-dimensional pooling layer, a global pooling layer, and a fully connected layer, and a CNN-based method that receives heart sound-based input data of a preset length and classifies heart diseases. creating a heart disease classification model of A method for classifying heart disease may be provided.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본 발명을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 기재된 추가적인 실시예가 존재할 수 있다.The above-described problem solving means are merely exemplary, and should not be construed as limiting the present invention. In addition to the exemplary embodiments described above, there may be additional embodiments described in the drawings and detailed description.
전술한 본 발명의 과제 해결 수단 중 어느 하나에 의하면, RNN(Recurrent Neural Network)기반 모델을 사용하지 않고 1차원 CNN만 이용하여 시간에 따른 신호변화를 모델링 함으로써 연산 시간과 네트워크의 복잡도를 크게 줄일 수 있다.According to any one of the above-described problem solving means of the present invention, it is possible to significantly reduce computation time and network complexity by modeling signal changes over time using only a one-dimensional CNN without using a Recurrent Neural Network (RNN)-based model. have.
도 1은 본 발명의 일 실시예에 따른 심장질환 분류 장치의 블록도이다.1 is a block diagram of a heart disease classification apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 심장질환 분류 장치의 구성도이다.2 is a block diagram of a heart disease classification apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 CNN 기반 심장질환 분류 모델의 네트워크 구조를 도시한 도면이다.3 is a diagram illustrating a network structure of a CNN-based heart disease classification model according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 합성곱 블록층의 구성도이다.4 is a block diagram of a convolutional block layer according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 심장질환 분류 방법의 흐름도이다.5 is a flowchart of a heart disease classification method according to an embodiment of the present invention.
도 6은 정상 심음도와 비정상 심음도를 도시한 도면이다.6 is a diagram illustrating a normal heart tone and an abnormal heart tone.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention. However, the present invention may be embodied in several different forms and is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미하며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. Throughout the specification, when a part is "connected" with another part, this includes not only the case of being "directly connected" but also the case of being "electrically connected" with another element interposed therebetween. . Also, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated, and one or more other features However, it is to be understood that the existence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded in advance.
본 명세서에 있어서 '부(部)'란, 하드웨어에 의해 실현되는 유닛(unit), 소프트웨어에 의해 실현되는 유닛, 양방을 이용하여 실현되는 유닛을 포함한다. 또한, 1 개의 유닛이 2 개 이상의 하드웨어를 이용하여 실현되어도 되고, 2 개 이상의 유닛이 1 개의 하드웨어에 의해 실현되어도 된다.In this specification, a "part" includes a unit realized by hardware, a unit realized by software, and a unit realized using both. In addition, one unit may be implemented using two or more hardware, and two or more units may be implemented by one hardware.
본 명세서에 있어서 단말 또는 디바이스가 수행하는 것으로 기술된 동작이나 기능 중 일부는 해당 단말 또는 디바이스와 연결된 서버에서 대신 수행될 수도 있다. 이와 마찬가지로, 서버가 수행하는 것으로 기술된 동작이나 기능 중 일부도 해당 서버와 연결된 단말 또는 디바이스에서 수행될 수도 있다.Some of the operations or functions described as being performed by the terminal or device in this specification may be instead performed by a server connected to the terminal or device. Similarly, some of the operations or functions described as being performed by the server may also be performed in a terminal or device connected to the corresponding server.
이하 첨부된 도면을 참고하여 본 발명의 일 실시예를 상세히 설명하기로 한다. Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 심장질환 분류 장치의 블록도이고, 도 2는 본 발명의 일 실시예에 따른 심장질환 분류 장치의 구성도이고, 도 3은 본 발명의 일 실시예에 따른 CNN 기반 심장질환 분류 모델의 네트워크 구조를 도시한 도면이고, 도 4는 본 발명의 일 실시예에 따른 합성곱 블록층의 구성도이다.1 is a block diagram of a heart disease classification apparatus according to an embodiment of the present invention, FIG. 2 is a block diagram of a heart disease classification apparatus according to an embodiment of the present invention, and FIG. 3 is an embodiment of the present invention It is a diagram showing a network structure of a CNN-based heart disease classification model according to the present invention, and FIG. 4 is a configuration diagram of a convolutional block layer according to an embodiment of the present invention.
도 1 및 2를 참조하면, 심장질환 분류 장치(1)는 모델 생성부(100), 입력 데이터 생성부(110) 및 심장질환 분류부(120)를 포함할 수 있다. 입력 데이터 생성부(110)는 전처리부(112) 및 특징 추출부(114)를 포함할 수 있다.1 and 2 , the heart disease classification apparatus 1 may include a model generation unit 100 , an input data generation unit 110 , and a heart disease classification unit 120 . The input data generator 110 may include a preprocessor 112 and a feature extractor 114 .
심장질환 분류 장치(1)는 입력받은 심음도 신호(210)에 대해 세그멘테이션(220)한 후 분류(240)를 수행할 수 있다.The heart disease classification apparatus 1 may perform the classification 240 after segmenting 220 on the received heart sound signal 210 .
예를 들어, 심장질환 분류 장치(1)는 세그멘테이션(220)을 통해 심음도 신호(210)의 레이블을 생성할 수 있다.For example, the heart disease classification apparatus 1 may generate a label of the heart sound signal 210 through the segmentation 220 .
구체적으로, 심장질환 분류 장치(1)는 레이블을 생성하기 위해 1 Khz로 다운 샘플링 후 레이블 분석을 진행하고, 이 후 다시 업샘플링하여 학습을 진행할 수 있다.Specifically, the heart disease classification apparatus 1 may perform label analysis after downsampling to 1 Khz to generate a label, and then upsampling again to perform learning.
본원에 따르면, 심음도 신호의 세그멘테이션(220)에 대한 레이블을 기반으로 데이터를 앙상블 함으로써 네트워크의 성능을 향상시킬 수 있다. 이를 통해 질병 진단 네트워크 학습을 진행하여 데이터의 어떤 부분을 보고 질병을 진단했는지 확인할 수 있어 더욱 높은 수준의 학습이 가능해진 것으로 상정된다.According to the present disclosure, it is possible to improve the performance of the network by encapsulating data based on the label for the segmentation 220 of the heart sound signal. Through this, it is assumed that a higher level of learning is possible because it is possible to check which part of the data was viewed and diagnosed a disease by learning the disease diagnosis network.
또한, 심장질환 분류 장치(1)는 데이터 전처리(230)를 통해 신호의 잡음과 이상값을 제거할 수 있다. Also, the heart disease classification apparatus 1 may remove noise and outliers in the signal through the data preprocessing 230 .
또한, 심장질환 분류 장치(1)는 전처리된 데이터를 3 주기 단위로 분리하고, 이를 MFCC 분석을 통해 네트워크의 입력 데이터를 생성할 수 있다.In addition, the heart disease classification apparatus 1 may separate the preprocessed data in units of 3 cycles, and generate input data of the network through MFCC analysis.
심장질환 분류 장치(1)의 일예는 데스크탑, 노트북 등과 같은 퍼스널 컴퓨터(personal computer)뿐만 아니라 유무선 통신이 가능한 모바일 단말을 포함할 수 있다. 모바일 단말은 휴대성과 이동성이 보장되는 무선 통신 장치로서, 스마트폰(smartphone), 태블릿 PC, 웨어러블 디바이스뿐만 아니라, 블루투스(BLE, Bluetooth Low Energy), NFC, RFID, 초음파(Ultrasonic), 적외선, 와이파이(WiFi), 라이파이(LiFi) 등의 통신 모듈을 탑재한 각종 디바이스를 포함할 수 있다. 다만, 심장질환 분류 장치(1)는 도 1에 도시된 형태 또는 앞서 예시된 것들로 한정 해석되는 것은 아니다. An example of the heart disease classification apparatus 1 may include not only a personal computer such as a desktop or a notebook computer, but also a mobile terminal capable of wired/wireless communication. A mobile terminal is a wireless communication device that guarantees portability and mobility, and includes not only smartphones, tablet PCs, and wearable devices, but also Bluetooth (BLE, Bluetooth Low Energy), NFC, RFID, Ultrasonic, infrared, and Wi-Fi ( WiFi) and Li-Fi (LiFi) may include various devices equipped with a communication module. However, the heart disease classification device 1 is not limited to the form shown in FIG. 1 or those exemplified above.
모델 생성부(100)는 심음도 기반의 입력 데이터를 입력받고 심장질환을 분류하는 CNN 기반 심장질환 분류 모델을 생성할 수 있다. The model generator 100 may receive input data based on heart sound and generate a CNN-based heart disease classification model for classifying heart diseases.
도 3을 참조하면, 심장질환 분류 모델(320)은 합성곱 블록층(332), 1차원 풀링층(334), 글로벌 풀링층(342) 및 완전 연결층(350)을 포함할 수 있다.Referring to FIG. 3 , the heart disease classification model 320 may include a convolutional block layer 332 , a one-dimensional pooling layer 334 , a global pooling layer 342 , and a fully connected layer 350 .
예를 들어, 심장질환 분류 모델(320)은 합성곱 블록층(332) 및 1차원 풀링층(334)을 포함하는 4개의 제 1 서브층(330) 및 합성곱 블록층(332) 및 글로벌 풀링층(342)을 포함하는 1개의 제 2 서브층(340)을 포함할 수 있다. 여기서, 심장질환 분류 모델(320)은 제 1 서브층(330), 제 2 서브층(340) 및 완전 연결층(350)의 순서로 연결되도록 구성될 수 있다.For example, the heart disease classification model 320 includes four first sub-layers 330 including a convolutional block layer 332 and a one-dimensional pooling layer 334 , and a convolutional block layer 332 and global pooling. It may include one second sub-layer 340 including a layer 342 . Here, the heart disease classification model 320 may be configured to be connected in the order of the first sub-layer 330 , the second sub-layer 340 , and the fully connected layer 350 .
즉, 심장질환 분류 모델(320)은 마지막 합성곱 블록층(332)과 완전 연결층(350) 사이에 글로벌 풀링층(342)을 포함한다. 이때, 글로벌 풀링층(342)에서는 전체 크기에 대하여 평균을 구하는 것이 아니라 실제 유효 길이에 맞게 계산하여 네트워크의 성능을 개선시킬 수 있다.That is, the heart disease classification model 320 includes a global pooling layer 342 between the last convolutional block layer 332 and the fully connected layer 350 . In this case, the global pooling layer 342 may improve the performance of the network by calculating it according to the actual effective length rather than calculating the average for the entire size.
도 4를 참조하면, 합성곱 블록층(332)은 2세트의 1차원 합성곱 연산과 활성함수를 포함할 수 있다. 이 때, 활성함수는 렐루(Rectified Linear Unit, ReLU)일 수 있다.Referring to FIG. 4 , the convolution block layer 332 may include two sets of one-dimensional convolution operations and activation functions. In this case, the activation function may be a Rectified Linear Unit (ReLU).
여기서, 합성곱 블록층(332)의 필터 개수는 32개를 시작으로 두배씩 증가하여 512개를 최대로 할 수 있다.Here, the number of filters in the convolutional block layer 332 is doubled starting from 32, so that 512 can be maximally.
심장질환 분류 모델(320)의 하이퍼 파라미터는 깊이(층의 개수) 5, 필터 개수 32, 배치 사이즈 64일 수 있다.The hyperparameters of the heart disease classification model 320 may be depth (the number of layers) 5, the number of filters 32, and the batch size 64.
모델 생성부(100)는 심장질환 분류 모델에 심음도 기반의 학습 데이터를 입력하여 심장질환을 분류하도록 심장질환 분류 모델을 학습시킬 수 있다.The model generator 100 may train the heart disease classification model to classify heart diseases by inputting heart sound-based learning data to the heart disease classification model.
입력 데이터 생성부(110)는 멜 스펙트럼(Mel spectrum) 기반 특징 추출 기법을 통해 상기 심음도로부터 상기 입력 데이터를 생성할 수 있다.The input data generator 110 may generate the input data from the heart sound diagram through a Mel spectrum-based feature extraction technique.
또한, 입력 데이터 생성부(110)는 입력 데이터의 유효 길이에 제로 패딩(zero padding)을 적용하여 기설정된 길이의 입력 데이터를 생성할 수 있다.Also, the input data generator 110 may generate input data of a preset length by applying zero padding to the effective length of the input data.
예를 들어, 입력 데이터 생성부(110)는 샘플마다 심장박동 주기가 다를 수 있기 때문에 인간의 가역 심장박동 범위에 맞춰 심음도의 주기 중 최대 크기에 맞춰 제로 패딩을 적용해 길이가 모두 720이 되도록 할 수 있다. 이때, 처리가 완료된 입력 데이터는 최종 13×720의 데이터의 형태일 수 있다.For example, since the heartbeat cycle may be different for each sample, the input data generator 110 applies zero padding according to the maximum size of the cycle of the heart sound according to the reversible heartbeat range of a human so that the length is 720 in all. can do. In this case, the processed input data may be in the form of final 13×720 data.
심장질환 분류 모델의 글로벌 풀링층은 입력 데이터의 유효 길이에 대한 평균을 산출하여 입력 데이터의 유효 특징을 추출할 수 있다.The global pooling layer of the heart disease classification model may extract an effective feature of the input data by calculating an average of the valid lengths of the input data.
전처리부(112)는 버터워스 필터(Butterworth Filter)에 기초하여 기설정된 주기수의 심음도의 신호의 범위를 결정할 수 있다. The preprocessor 112 may determine a range of a signal of a heart tone of a preset number of cycles based on a Butterworth filter.
심장음 대부분의 정보는 저역대에 포함되어 있고 고역대로 갈수록 노이즈가 많이 분포한다. 따라서, 전처리부(112)는 효과적으로 심장음을 추출하기 위해 버터워스 필터를 사용해 신호의 범위를 결정할 수 있다.Most of the heart sound information is included in the low frequency band, and the noise increases as it goes up the high frequency band. Accordingly, the preprocessor 112 may determine the signal range by using the Butterworth filter to effectively extract the heart sound.
또한, 전처리부(112)는 spike removal 메소드를 통해 심음도의 신호에서 노이즈(튀는 값)을 보정할 수 있다.In addition, the preprocessor 112 may correct noise (bouncing value) in the signal of the heart tone through the spike removal method.
여기서, 전처리부(112)는 데이터 앙상블을 통한 정확도 향상을 위해 심음도의 분할을 진행하여 데이터를 충분한 정보를 포함할 수 있는 3개 주기의 심음도 데이터로 분할할 수 있다. 여기서, 심음도의 분할은 은닉 마르코프 모형(HMM: Hidden Markov Model)기반의 분할 기법이 이용될 수 있다.Here, the pre-processor 112 may divide the heart sound chart into three periods of heart tone data that may include sufficient information by dividing the heart sound chart in order to improve accuracy through the data ensemble. Here, for the division of the heart tone, a division technique based on a Hidden Markov Model (HMM) may be used.
특징 추출부(114)는 멜 스펙트럼 기반 특징 추출 기법으로서 MFCC에 기초하여 심음도로부터 기설정된 수의 특징 성분을 추출하여 입력 데이터를 생성할 수 있다.The feature extractor 114 may generate input data by extracting a preset number of feature components from the heart sound diagram based on MFCC as a Mel spectrum-based feature extraction technique.
MFCC란 인간이 소리를 듣는 방식을 반영한 특징 추출 기법으로서, 특징 추출부(114)는 700 Hz 미만의 주파수 대역으로 심음도의 분석을 위해 13개의 Mel 계수 값을 사용할 수 있다.MFCC is a feature extraction technique that reflects the way humans hear sounds, and the feature extraction unit 114 may use 13 Mel coefficient values for heart tone analysis in a frequency band of less than 700 Hz.
즉, 본원에서는 심음도의 신호를 MFCC 방법으로 유의미한 음성학적 특징으로 변환해 입력 데이터로 사용한다.That is, in the present application, the signal of the heart sound diagram is converted into meaningful phonetic features by the MFCC method and used as input data.
심장질환 분류부(120)는 입력 데이터를 심장질환 분류 모델에 입력하여 심장질환을 분류할 수 있다.The heart disease classification unit 120 may classify the heart disease by inputting the input data into the heart disease classification model.
예를 들어, 심장질환 분류부(120)는 입력 데이터를 정상(Normal), 대동맥 판막 협착증(Aortic stenosis), 승모 판막 폐쇄 부전증(Mitral regurgitation), 대동맥 판막 폐쇄 부전증(Aortic regurgitation), 승모판막 협착증(Mitral stenosis) 및 동맥관 개존증(Patent ductus arteriosus) 중 어느 하나로 분류할 수 있다.For example, the heart disease classification unit 120 converts the input data to normal, aortic stenosis, mitral regurgitation, aortic regurgitation, and mitral valve stenosis ( Mitral stenosis) and patency of the ductus arteriosus (Patent ductus arteriosus) can be classified as either.
본 출원인은 PhysioNet Challenge 2016에서 공개적으로 제공하는 3240개의 심장소리 데이터를 활용하여 본원에 따른 실시예와 비교예의 성능을 비교하는 실험을 수행하였다.The present applicant conducted an experiment comparing the performance of the Example according to the present application and the comparative example using 3240 heart sound data publicly provided in PhysioNet Challenge 2016.
네트워크의 성능을 측정하기 위해 층의 깊이와 필터 개수, 배치 사이즈를 조정하며 결과를 비교하였다. 오차 갱신을 위한 손실 함수로는 이진 교차 엔트로피를 사용하였고 모델의 성능을 평가하기 위한 지표로는 Acc(Accuracy), Ppv(Positive Predictive Value), Se(Sensitivity), Sp(Specificity), MAcc(Modified Accuracy)를 사용하였다. PhysioNet Challenge 2016와 동일한 비교를 위해 Sensitivity, Specificity, MAcc는 다음과 같이 정의하였다.To measure the performance of the network, the depth of the layer, the number of filters, and the batch size were adjusted and the results were compared. Binary cross entropy was used as a loss function for error update, and Acc (Accuracy), Ppv (Positive Predictive Value), Se (Sensitivity), Sp (Specificity), and MAcc (Modified Accuracy) were used as indicators to evaluate the performance of the model. ) was used. For the same comparison with PhysioNet Challenge 2016, Sensitivity, Specificity, and MAcc were defined as follows.
Figure PCTKR2021002630-appb-img-000001
Figure PCTKR2021002630-appb-img-000001
성능 비교 결과, 이하의 표 1과 같이 본원에서의 하이퍼 파라미터(4/32/64)가 정확도, 민감도, 특이도 등 다수의 지표에서 가장 높은 값을 갖는 것으로 확인되었다. 표 1에서 N은 층의 개수이고 F는 필터 개수이며 B는 배치 사이즈를 의미한다.As a result of the performance comparison, as shown in Table 1 below, it was confirmed that the hyperparameter (4/32/64) in the present application had the highest value in a number of indicators such as accuracy, sensitivity, and specificity. In Table 1, N is the number of layers, F is the number of filters, and B is the batch size.
N/F/BN/F/B ACCACC SeSe Sp Sp PPVPPV MAccMAcc
4/16/644/16/64 0.940.94 0.720.72 0.980.98 0.830.83 0.850.85
4/32/644/32/64 0.940.94 0.870.87 0.950.95 0.730.73 0.910.91
5/32/645/32/64 0.950.95 0.870.87 0.970.97 0.820.82 0.920.92
또한, 이하의 표 2와 같이 본원의 심장질환 분류 모델의 네트워크(본원의 실시예)가 PhysioNet Challenge 2016에서 제안된 다른 기법들과 비교해 우수한 심장질환 진단 성능을 보였다. 여기서, Potes의 기법은 CNN과 앙상블 기법 중 하나인 아다부스트를 사용한 기법이었으며 Zabihi의 기법은 support vector machine 여러 개를 앙상블한 형태이고 Kay & agarwal의 기법은 regularized neural network를 사용해 학습한 기법이다. 또한, Regularized neural network는 가중치를 규제를 통해 오버피팅을 막아주고 일반화에 적합한 특성을 갖도록 하는 기법이다.In addition, as shown in Table 2 below, the network of the heart disease classification model of the present application (the present example) showed excellent heart disease diagnosis performance compared to other techniques proposed in the PhysioNet Challenge 2016. Here, Potes' technique was a technique using CNN and Adaboost, one of the ensemble techniques, Zabihi's technique is an ensemble form of several support vector machines, and Kay & agarwal's technique is a technique learned using a regularized neural network. In addition, the regularized neural network is a technique to prevent overfitting by regulating weights and to have characteristics suitable for generalization.
SeSe SpSp MAccMAcc
Potes et al.Potes et al. 0.940.94 0.780.78 0.860.86
Zabihi et al.Zabihi et al. 0.870.87 0.850.85 0.860.86
Kay & AgarwalKay & Agarwal 0.870.87 0.830.83 0.850.85
본원의 실시예Examples of the present application 0.870.87 0.970.97 0.920.92
도 5는 본 발명의 일 실시예에 따른 심장질환 분류 방법의 흐름도이다. 도 5에 도시된 일 실시예에 따른 심장질환 분류 방법은 도 1에 도시된 심장질환 분류 장치에서 시계열적으로 처리되는 단계들을 포함한다. 따라서, 이하 생략된 내용이라고 하더라도 도 5에 도시된 일 실시예에 따라 수행되는 심장질환 분류 방법에도 적용된다.5 is a flowchart of a heart disease classification method according to an embodiment of the present invention. The heart disease classification method according to the embodiment shown in FIG. 5 includes the steps of time-series processing in the heart disease classification apparatus shown in FIG. 1 . Therefore, even if omitted below, it is also applied to the heart disease classification method performed according to the embodiment shown in FIG. 5 .
단계 S500에서 심장질환 분류 장치는 심음도 기반의 입력 데이터를 입력받고 심장질환을 분류하는 CNN 기반의 심장질환 분류 모델을 생성할 수 있다. 여기서, 심장질환 분류 모델은 합성곱 블록층, 1차원 풀링층, 글로벌 풀링층 및 완전 연결층을 포함할 수 있다.In step S500 , the heart disease classification apparatus may receive heart sound-based input data and generate a CNN-based heart disease classification model that classifies heart diseases. Here, the heart disease classification model may include a convolutional block layer, a one-dimensional pooling layer, a global pooling layer, and a fully connected layer.
단계 S510에서 심장질환 분류 장치는 멜 스펙트럼 기반 특징 추출 기법을 통해 심음도로부터 입력 데이터를 생성할 수 있다.In step S510, the heart disease classification apparatus may generate input data from the heart sound diagram through a Mel spectrum-based feature extraction technique.
단계 S520에서 심장질환 분류 장치는 입력 데이터를 심장질환 분류 모델에 입력하여 심장질환을 분류할 수 있다.In step S520 , the heart disease classification apparatus may classify the heart disease by inputting the input data into the heart disease classification model.
도 5를 통해 설명된 심장질환 분류 방법은 매체에 저장된 컴퓨터 프로그램의 형태로 구현되거나, 컴퓨터에 의해 실행되는 프로그램 모듈과 같은 컴퓨터에 의해 실행 가능한 명령어를 포함하는 기록 매체의 형태로도 구현될 수 있다. 컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한, 컴퓨터 판독가능 매체는 컴퓨터 저장 매체를 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함한다. The heart disease classification method described with reference to FIG. 5 may be implemented in the form of a computer program stored in the medium, or may be implemented in the form of a recording medium including instructions executable by a computer, such as a program module executed by a computer. . Computer-readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media. Also, computer-readable media may include computer storage media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다. The foregoing description of the present invention is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and likewise components described as distributed may also be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다. The scope of the present invention is indicated by the following claims rather than the above detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be interpreted as being included in the scope of the present invention. do.

Claims (16)

  1. 심장질환의 유무를 분류하는 장치에 있어서,In the device for classifying the presence or absence of heart disease,
    합성곱 블록층, 1차원 풀링층, 글로벌 풀링층 및 완전 연결층을 포함하고, 기설정된 길이의 심음도(PCG: Phonocardiogram) 기반의 입력 데이터를 입력받고 심장질환을 분류하는 CNN(Convolutional Neural Network) 기반의 심장질환 분류 모델을 생성하는 모델 생성부;Convolutional Neural Network (CNN) that includes a convolutional block layer, a one-dimensional pooling layer, a global pooling layer, and a fully connected layer, receives input data based on a phonocardiogram (PCG) of a preset length and classifies heart diseases a model generating unit that generates a heart disease classification model based on;
    멜 스펙트럼(Mel spectrum) 기반 특징 추출 기법을 통해 상기 심음도로부터 상기 입력 데이터를 생성하는 입력 데이터 생성부; 및an input data generator generating the input data from the heart sound diagram through a Mel spectrum-based feature extraction technique; and
    상기 입력 데이터를 상기 심장질환 분류 모델에 입력하여 상기 심장질환을 분류하는 심장질환 분류부A heart disease classification unit for classifying the heart disease by inputting the input data into the heart disease classification model
    를 포함하는 것인, 심장질환 분류 장치.That comprising a, heart disease classification device.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 심장질환 분류 모델은 상기 합성곱 블록층 및 상기 1차원 풀링층을 포함하는 4개의 제 1 서브층 및 상기 합성곱 블록층 및 상기 글로벌 풀링층을 포함하는 1개의 제 2 서브층을 포함하는 것인, 심장질환 분류 장치.The heart disease classification model includes four first sub-layers including the convolutional block layer and the one-dimensional pooling layer, and one second sub-layer including the convolutional block layer and the global pooling layer. Phosphorus, heart disease classification device.
  3. 제 2 항에 있어서,3. The method of claim 2,
    상기 심장질환 분류 모델은 상기 제 1 서브층, 상기 제 2 서브층 및 상기 완전 연결층의 순서로 연결되도록 구성된 것인, 심장질환 분류 장치.The heart disease classification model is configured to be connected in order of the first sub-layer, the second sub-layer, and the fully connected layer.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 합성곱 블록층은 2세트의 1차원 합성곱 연산과 활성함수를 포함하는 것인, 심장질환 분류 장치.The convolution block layer includes two sets of one-dimensional convolution operations and activation functions.
  5. 제 4 항에 있어서,5. The method of claim 4,
    상기 활성함수는 렐루(Rectified Linear Unit, ReLU)인 것인, 심장질환 분류 장치.The activation function is relu (Rectified Linear Unit, ReLU) will, heart disease classification device.
  6. 제 2 항에 있어서,3. The method of claim 2,
    상기 입력 데이터 생성부는,The input data generation unit,
    버터워스 필터(Butterworth Filter)에 기초하여 기설정된 주기수의 상기 심음도의 신호의 범위를 결정하는 전처리부; 및a pre-processing unit for determining a range of a signal of the heart tone with a predetermined number of cycles based on a Butterworth filter; and
    상기 멜 스펙트럼 기반 특징 추출 기법으로서 MFCC(Mel-Frequency Cepstral Coefficient)에 기초하여 상기 심음도로부터 기설정된 수의 특징 성분을 추출하여 상기 입력 데이터를 생성하는 특징 추출부A feature extraction unit that generates the input data by extracting a preset number of feature components from the heart sound diagram based on a Mel-Frequency Cepstral Coefficient (MFCC) as the Mel spectrum-based feature extraction technique
    를 포함하는 것인, 심장질환 분류 장치.That comprising a, heart disease classification device.
  7. 제 6 항에 있어서,7. The method of claim 6,
    상기 입력 데이터 생성부는 상기 입력 데이터의 유효 길이에 제로 패딩(zero padding)을 적용하여 기설정된 길이의 상기 입력 데이터를 생성하는 것인, 심장질환 분류 장치.The input data generating unit applies zero padding to an effective length of the input data to generate the input data of a preset length.
  8. 제 7 항에 있어서,8. The method of claim 7,
    상기 글로벌 풀링층은 상기 입력 데이터의 유효 길이에 대한 평균을 산출하여 상기 입력 데이터의 유효 특징을 추출하는 것인, 심장질환 분류 장치.The global pooling layer calculates an average of the effective lengths of the input data to extract effective features of the input data.
  9. 심장질환의 유무를 분류하는 방법에 있어서,In the method of classifying the presence or absence of heart disease,
    합성곱 블록층, 1차원 풀링층, 글로벌 풀링층 및 완전 연결층을 포함하고, 기설정된 길이의 심음도 기반의 입력 데이터를 입력받고 심장질환을 분류하는 CNN 기반의 심장질환 분류 모델을 생성하는 단계;Generating a CNN-based heart disease classification model that includes a convolutional block layer, a one-dimensional pooling layer, a global pooling layer, and a fully connected layer, and receives input data based on a heart sound of a preset length and classifies heart diseases ;
    멜 스펙트럼 기반 특징 추출 기법을 통해 상기 심음도로부터 상기 입력 데이터를 생성하는 단계; 및generating the input data from the heart sound diagram through a Mel spectrum-based feature extraction technique; and
    상기 입력 데이터를 상기 심장질환 분류 모델에 입력하여 상기 심장질환을 분류하는 단계classifying the heart disease by inputting the input data into the heart disease classification model
    를 포함하는 것인, 심장질환 분류 방법.That comprising a, heart disease classification method.
  10. 제 9 항에 있어서,10. The method of claim 9,
    상기 심장질환 분류 모델은 상기 합성곱 블록층 및 상기 1차원 풀링층을 포함하는 4개의 제 1 서브층 및 상기 합성곱 블록층 및 상기 글로벌 풀링층을 포함하는 1개의 제 2 서브층을 포함하는 것인, 심장질환 분류 방법.The heart disease classification model includes four first sub-layers including the convolutional block layer and the one-dimensional pooling layer, and one second sub-layer including the convolutional block layer and the global pooling layer. Phosphorus and heart disease classification method.
  11. 제 10 항에 있어서,11. The method of claim 10,
    상기 심장질환 분류 모델은 상기 제 1 서브층, 상기 제 2 서브층 및 상기 완전 연결층의 순서로 연결되도록 구성된 것인, 심장질환 분류 방법.Wherein the heart disease classification model is configured to be connected in the order of the first sub-layer, the second sub-layer and the fully connected layer.
  12. 제 9 항에 있어서,10. The method of claim 9,
    상기 합성곱 블록층은 2세트의 1차원 합성곱 연산과 활성함수를 포함하는 것인, 심장질환 분류 방법.Wherein the convolution block layer includes two sets of one-dimensional convolution operation and an activation function.
  13. 제 12 항에 있어서,13. The method of claim 12,
    상기 활성함수는 렐루인 것인, 심장질환 분류 방법.Wherein the activity function is relu, heart disease classification method.
  14. 제 10 항에 있어서,11. The method of claim 10,
    상기 입력 데이터를 생성하는 단계는,The step of generating the input data includes:
    버터워스 필터에 기초하여 기설정된 주기수의 상기 심음도의 신호의 범위를 결정하는 단계; 및determining a range of the signal of the heart tone of a preset number of cycles based on a Butterworth filter; and
    상기 멜 스펙트럼 기반 특징 추출 기법으로서 MFCC에 기초하여 상기 심음도로부터 기설정된 수의 특징 성분을 추출하여 상기 입력 데이터를 생성하는 단계를 포함하는 것인, 심장질환 분류 방법.As the Mel spectrum-based feature extraction technique, extracting a preset number of feature components from the heart sound diagram based on MFCC to generate the input data.
  15. 제 14 항에 있어서,15. The method of claim 14,
    상기 입력 데이터를 생성하는 단계는,The step of generating the input data includes:
    상기 입력 데이터의 유효 길이에 제로 패딩(zero padding)을 적용하여 기설정된 길이의 상기 입력 데이터를 생성하는 단계를 더 포함하는 것인, 심장질환 분류 방법.The method further comprising generating the input data of a preset length by applying zero padding to the effective length of the input data.
  16. 제 15 항에 있어서,16. The method of claim 15,
    상기 글로벌 풀링층은 상기 입력 데이터의 유효 길이에 대한 평균을 산출하는 것인, 심장질환 분류 방법.The global pooling layer is to calculate an average of the effective length of the input data, heart disease classification method.
PCT/KR2021/002630 2021-02-18 2021-03-03 Device and method for classifying presence of heart disease WO2022177045A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0021984 2021-02-18
KR1020210021984A KR102352859B1 (en) 2021-02-18 2021-02-18 Apparatus and method for classifying heart disease

Publications (1)

Publication Number Publication Date
WO2022177045A1 true WO2022177045A1 (en) 2022-08-25

Family

ID=80051989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002630 WO2022177045A1 (en) 2021-02-18 2021-03-03 Device and method for classifying presence of heart disease

Country Status (2)

Country Link
KR (2) KR102352859B1 (en)
WO (1) WO2022177045A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130015368A (en) * 2011-08-03 2013-02-14 충북대학교 산학협력단 Apparatus for diagnosing cardiac disorder by combining hidden markov model and murmur log-likelyhood
JP2019531792A (en) * 2016-09-07 2019-11-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Classifier ensemble for detection of abnormal heart sounds
KR20200068161A (en) * 2018-12-04 2020-06-15 건양대학교산학협력단 Cardiac Disease Prediction System Using Machine-learning Model
KR102186159B1 (en) * 2020-04-22 2020-12-03 가천대학교 산학협력단 Heart Sound Analysis Method and System Based on Pearson Correlation Coefficient and Neuro-fuzzy Network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130015368A (en) * 2011-08-03 2013-02-14 충북대학교 산학협력단 Apparatus for diagnosing cardiac disorder by combining hidden markov model and murmur log-likelyhood
JP2019531792A (en) * 2016-09-07 2019-11-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Classifier ensemble for detection of abnormal heart sounds
KR20200068161A (en) * 2018-12-04 2020-06-15 건양대학교산학협력단 Cardiac Disease Prediction System Using Machine-learning Model
KR102186159B1 (en) * 2020-04-22 2020-12-03 가천대학교 산학협력단 Heart Sound Analysis Method and System Based on Pearson Correlation Coefficient and Neuro-fuzzy Network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNG-JU YEONG; YOUNGTAEK HONG; YEONGGUL JANG; HACKJOON SHIM; HYUK-JAE CHANG: "Length Adaptive Deep Neural Network for Heart Sound Classification", PROCEEDINGS OF THE INSTITUTE OF ELECTRONICS AND INFORMATION ENGINEERS AUTUMN CONFERENCE 2020., KOREAN SOCIETY OF ELECTRONIC ENGINEERING, KOREA, 1 November 2020 (2020-11-01), Korea, pages 788 - 791, XP009539381 *

Also Published As

Publication number Publication date
KR102352859B1 (en) 2022-01-18
KR20220118302A (en) 2022-08-25

Similar Documents

Publication Publication Date Title
Lella et al. Automatic COVID-19 disease diagnosis using 1D convolutional neural network and augmentation with human respiratory sound based on parameters: cough, breath, and voice
Xiao et al. Follow the sound of children’s heart: a deep-learning-based computer-aided pediatric CHDs diagnosis system
CN107622797B (en) Body condition determining system and method based on sound
US20140313303A1 (en) Longitudinal dermoscopic study employing smartphone-based image registration
US20150003698A1 (en) Color correction arrangements for dermoscopy
WO2019103416A1 (en) Method for providing cardiovascular disease diagnostic information using smart device and cardiac sound application for same
WO2014172671A1 (en) Physiologic data acquisition and analysis
US20210338103A1 (en) Screening of individuals for a respiratory disease using artificial intelligence
US20230329646A1 (en) Classifying biomedical acoustics based on image representation
Zakaria et al. Three resnet deep learning architectures applied in pulmonary pathologies classification
CN107193378A (en) Emotion decision maker and method based on brain wave machine learning
Zakaria et al. VGG16, ResNet-50, and GoogLeNet deep learning architecture for breathing sound classification: a comparative study
KR20170064960A (en) Disease diagnosis apparatus and method using a wave signal
WO2022179645A2 (en) Electrocardiogram analysis method and apparatus, electronic device and storage medium
CN111789629A (en) Breath sound intelligent diagnosis and treatment system and method based on deep learning
Roy et al. Design of ear-contactless stethoscope and improvement in the performance of deep learning based on CNN to classify the heart sound
Gupta StrokeSave: a novel, high-performance mobile application for stroke diagnosis using deep learning and computer vision
Joshi et al. Ai-cardiocare: artificial intelligence based device for cardiac health monitoring
WO2022177045A1 (en) Device and method for classifying presence of heart disease
KR102186159B1 (en) Heart Sound Analysis Method and System Based on Pearson Correlation Coefficient and Neuro-fuzzy Network
Roy et al. Conv-Random Forest Based IoT: A Deep Learning Model Based on CNN and Random Forest for Classification and Analysis of Valvular Heart Diseases
Abhishek et al. ESP8266-based Real-time Auscultation Sound Classification
Khan et al. Deep Learning-based Decision Support System for classification of COVID-19 and Pneumonia patients
KR20230154380A (en) System and method for providing heath-care services fitting to emotion states of users by behavioral and speaking patterns-based emotion recognition results
Ahmed et al. DeepLung: Smartphone Convolutional Neural Network-Based Inference of Lung Anomalies for Pulmonary Patients.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926845

Country of ref document: EP

Kind code of ref document: A1