WO2022177038A1 - Hybrid engine and hybrid drone comprising same - Google Patents

Hybrid engine and hybrid drone comprising same Download PDF

Info

Publication number
WO2022177038A1
WO2022177038A1 PCT/KR2021/002110 KR2021002110W WO2022177038A1 WO 2022177038 A1 WO2022177038 A1 WO 2022177038A1 KR 2021002110 W KR2021002110 W KR 2021002110W WO 2022177038 A1 WO2022177038 A1 WO 2022177038A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
spark plug
cooling
hybrid
Prior art date
Application number
PCT/KR2021/002110
Other languages
French (fr)
Korean (ko)
Inventor
정동훈
Original Assignee
정동훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정동훈 filed Critical 정동훈
Priority to CN202180092855.XA priority Critical patent/CN116848315A/en
Publication of WO2022177038A1 publication Critical patent/WO2022177038A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/11Propulsion using internal combustion piston engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/04Cylinders; Cylinder heads  having cooling means for air cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/90Cooling
    • B64U20/96Cooling using air

Definitions

  • the present invention relates to a hybrid engine, and more particularly, to a hybrid engine having improved cooling performance and a hybrid drone including the same.
  • a multicopter known as a drone refers to an aircraft without a cockpit on which a person is boarded, and is controlled by a user by a remotor controller or a control device mounted on the multicopter.
  • multicopters are being used in various fields such as military, commercial, scientific, entertainment, agriculture, police, surveillance, product delivery, aerial photography, drone racing, disaster relief, and the like.
  • a general multicopter uses an electric battery as a power supply device.
  • the longest flight time of a multi-copter powered by an electric battery is only approximately 30 minutes, and when accessories such as lights and cameras are installed, the multi-copter's own weight reduces the flight time to less than 10 minutes. There is a problem with shortening.
  • a hybrid drone is provided with a battery for driving a propeller, an engine, and a generator.
  • the engine of the hybrid drone may be an engine for an internal combustion engine in which a piston reciprocates.
  • an engine is driven to operate a generator, and electricity generated from the generator is stored in a battery or supplied to a motor to be stored.
  • the hybrid drone is a combination of a battery, a motor, and an engine for an internal combustion engine, and electric energy generated by driving the engine is supplied to the motor and the battery connected in series or in parallel.
  • the engine for the internal combustion engine used in the hybrid drone performs a piston reciprocating motion, so that the temperature is very high.
  • the spark plug located in the head portion of the engine and the outside of the combustion chamber of the engine around the spark plug become the hottest. For this reason, in order to stably drive the hybrid drone, it is necessary to cool the spark plug and its surroundings.
  • the flow direction of external air introduced into the spark plug is configured to cross the engine head where the spark plug of the engine is not located or to face the engine block.
  • the plurality of cooling fins formed in the hybrid engine are configured to have a direction parallel to the flow direction of the external air, and the plurality of cooling fins for cooling the peripheral portion are perpendicular to the reciprocating motion direction of the piston provided in the combustion chamber of the engine. designed to face. Accordingly, the surface temperature of the front of the engine head and the engine block of the hybrid engine, that is, the surface in direct contact with the outside air, and the opposite surface, the rear surface, were inevitably different from each other.
  • the flow direction of the external air flowing into the engine from the outside is configured to be a direction crossing the engine head or an engine block direction, the cooling effect of the spark plug and the surrounding area by the inflow air is almost nonexistent.
  • the cooling fins formed in the conventional hybrid engine have an arrangement direction arranged along the longitudinal direction of the cooling fins. Accordingly, the cooling fins have an arrangement direction (horizontal direction) in a direction perpendicular to the reciprocating motion direction of the piston inside the engine.
  • the conventional hybrid engine has a problem in that it is difficult to cool the engine as a whole because the external air does not come into contact with the entire area of the engine even if it flows along the cooling fins.
  • the cooling effect and performance of the front and rear of the engine are not the same because the external air introduced into the engine is in contact with the front of the engine but hardly comes in contact with the rear of the engine. .
  • a combustion chamber having a spark plug disposed at an end thereof is provided therein and a plurality of cooling fins for increasing the contact area to external air are disposed, and is connected to the internal combustion engine part and at least one cooling fan for generating a generator and spark plug for generating electrical energy and wind for cooling the internal combustion engine, wherein a cooling fan is disposed on an upstream side of the spark plug with respect to an inflow direction of external air, the spark plug on the downstream side of which cooling fins are disposed along the flow direction of the outside air, which can be achieved by a hybrid engine.
  • the above object is connected to the internal combustion engine part and the internal combustion engine part in which a combustion chamber in which a spark plug is disposed at the end is provided therein and a plurality of cooling fins for increasing the contact area to the outside air are disposed to generate electric energy at least one piston reciprocating inside the combustion chamber is disposed in the internal combustion engine unit, the arrangement direction of the plurality of cooling fins is formed parallel to the movement direction of the piston, and the external which flows into the internal combustion engine unit Air may be achieved by the hybrid engine, which is provided to flow along the same direction as the arrangement direction of the plurality of cooling fins.
  • the above object is a housing having a hollow portion, one or more arms extending radially from the housing, a propeller driving motor provided at the end of one or more arms, a propeller coupled to the rotating shaft of the motor to generate thrust, a driving force to the motor
  • a hybrid engine provided in a battery and a housing that provides an electric energy generated by driving and provided to be supplied to a motor or a battery, wherein the hybrid engine has a combustion chamber having a spark plug provided at an end thereof provided therein, and is exposed to external air.
  • a hybrid drone that includes a cooling fan, wherein a cooling fan is disposed on the upstream side of the spark plug with respect to the inflow direction of the outside air, and cooling fins are disposed along the flow direction of the outside air on the downstream side of the spark plug.
  • the spark plug and the internal combustion engine unit are cooled by wind generated by the cooling fan. It has the effect of improving performance. Moreover, as the cooling performance of the spark plug and the internal combustion engine part is improved, there is an advantage in that it is possible to prevent malfunction of the hybrid drone due to overheating of the hybrid engine in advance.
  • the cooling fins of the hybrid engine of the present invention are radially formed around the spark plug of the internal combustion engine part or are formed in a grid shape, the cooling performance of the internal combustion engine part through the cooling fins by the wind generated by the cooling fan is further improved can do it Furthermore, since the external air flowing into the internal combustion engine part or the wind generated by the cooling fan is provided to flow along the radial or grid-shaped cooling fins, there is an advantage in that the internal combustion engine part can be cooled more effectively.
  • FIG. 1 is a view for explaining the driving of a hybrid engine according to a first embodiment of the present invention.
  • FIG. 2 is a view showing a hybrid engine except for the cowl shown in FIG. 1 .
  • FIG. 3 and 4 are views for explaining the cowl shown in FIG. 1 .
  • FIG. 5 is a view for explaining an example of the internal combustion engine unit shown in FIGS. 1 and 2 .
  • FIG. 6 is a view illustrating the internal combustion engine unit shown in FIG. 5 as viewed from above.
  • FIG. 7 is a view illustrating the internal combustion engine part shown in FIG. 5 as viewed from the bottom.
  • FIG. 8 is a view showing another example of the internal combustion engine unit shown in FIG. 5 .
  • FIG. 9 is a view illustrating the internal combustion engine unit shown in FIG. 8 as viewed from above.
  • FIG. 10 is a view illustrating the internal combustion engine unit shown in FIG. 9 as viewed from the bottom.
  • 11 to 13 are views for explaining the shape of the cooling fins shown in FIGS. 1 and 2 .
  • FIG. 14 is a view for explaining driving of a hybrid engine according to a second embodiment of the present invention.
  • FIG. 15 is a view showing a hybrid engine except for the cowl shown in FIG. 14 .
  • FIG. 16 is a view for explaining the cowl shown in FIG. 14 .
  • 17 and 18 are diagrams illustrating the flow velocity of wind flowing into the hybrid engine according to the second embodiment of the present invention including radial or grid-type cooling fins through a CFD analysis test.
  • FIG. 19 is a view showing a comparison of the temperature distribution of each of the internal combustion engine parts provided with radial and grid-type cooling fins in the conventional horizontal hybrid engine and the hybrid engine shown in FIG. 10 through a CFD analysis test.
  • the embodiments of the present invention specifically represent ideal embodiments of the present invention. As a result, various modifications of the drawings are expected. Accordingly, the embodiment is not limited to a specific shape of the illustrated area, and includes, for example, a shape modification by manufacturing.
  • hybrid engines 100 and 200 include a generator 110 and an internal combustion engine unit 120 .
  • hybrid engines 100 and 200 may be used for various purposes, such as automobiles, aircraft, two-wheeled vehicles, motorized bicycles, and unmanned aerial vehicles.
  • the hybrid engines 100 and 200 according to an embodiment of the present invention may be applied to, for example, a drone that is an unmanned aerial vehicle without a cockpit in which a person rides.
  • hybrid engines 100 and 200 according to an embodiment of the present invention are limited to those applied to the drone, but the present invention is not necessarily limited thereto.
  • the hybrid engines 100 and 200 according to embodiments of the present invention may be mounted on a hybrid drone.
  • Such a hybrid drone includes a housing having a hollow part, one or more arms extending radially from the housing, a propeller driving motor provided at an end of one or more arms, respectively, a propeller coupled to the rotation shaft of each motor to generate thrust, propeller driving It includes a battery for providing driving force to the motor and hybrid engines 100 and 200 provided in the housing and provided so that electric energy generated by driving is supplied to the propeller driving motor or the battery.
  • hybrid engines 100 and 200 included in the hybrid drone according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 16 .
  • the hybrid engine 100 includes a generator 110 , an internal combustion engine unit 120 , and a cooling fan 130 .
  • the hybrid engine 100 includes one internal combustion engine unit 120 .
  • the internal combustion engine unit 120 has a combustion chamber disposed therein in which at least one spark plug 122 is disposed at an end thereof.
  • the internal combustion engine unit 120 is provided with a plurality of cooling fins 127 to increase the contact area with respect to the external air flowing toward the internal combustion engine unit 120 .
  • the internal combustion engine unit 120 is driven by reciprocating motion of at least one piston 124 provided in an internal combustion chamber.
  • the internal combustion engine unit 120 is connected to the generator 110 .
  • the generator 110 is rotated by the driving force of the internal combustion engine unit 120 to generate electric energy.
  • electric energy generated by the generator 110 is supplied to and stored in a motor or a battery connected to the internal combustion engine unit 120 .
  • the generator 110 may be connected in series or parallel with a motor or a battery.
  • At least one cooling fan 130 for generating wind for cooling the spark plug 122 and the internal combustion engine unit 120 is provided.
  • spark plug 122 may be provided in the internal combustion engine unit 120 , or more than one spark plug 122 may be provided as needed.
  • the wind generated by the cooling fan 130 is directed toward the spark plug 122 so that the spark plug 122 is cooled.
  • the cooling fan 130 is rotated or moved. Accordingly, the wind generated by the cooling fan 130 may be directed toward the center of the upper end of the head of the internal combustion engine unit 120 to cool the plurality of spark plugs 122 .
  • the spark plug 122 is limited to being provided in the internal combustion engine unit 120 as one, but is not necessarily limited thereto.
  • At least one cooling fan 130 is provided on the inlet side of the spark plug 122 through which external air flows, and generates wind to cool the spark plug 122 and the internal combustion engine unit 120 .
  • the wind generated by the driving of the cooling fan 130 flows into the inlet 121 of the spark plug 122 .
  • the inlet 121 of the spark plug 122 is provided between the cooling fan 130 and the spark plug 122 , and the point at which the wind generated from the cooling fan 130 starts to flow into the spark plug 122 . can mean
  • the cooling fan 130 is provided on the upstream side of the spark plug 122 along the inflow direction of the external air based on the position of the spark plug 122 .
  • the cooling fins 127 are provided on the downstream side of the spark plug 122 along the inflow direction of the external air based on the position of the spark plug 122 .
  • the inflow direction of the external air flowing into the spark plug 122 may be the same as the flow direction of the wind generated by the cooling fan 130 .
  • the rotation shaft F of the cooling fan 130 and the central shaft S of the spark plug 122 are the rotation shaft F of the cooling fan 130 and the spark plug 122 . It is provided to be arranged coaxially on a virtual axis connecting the central axis (S).
  • the wind generated by the cooling fan 130 flows toward the spark plug 122 and comes into contact with the spark plug 122 to cool the spark plug 122 . Then, it comes into contact with the cooling fins 127 of the internal combustion engine part 120 to cool the internal combustion engine part 120 . After cooling the internal combustion engine unit 120 , it has a flow direction (refer to arrow directions in FIGS. 1 and 2 ) discharged to the outside through the generator 110 .
  • the flow direction of the wind generated by the cooling fan 130 is provided to be positioned on the same line as the spark plug 122 and the internal combustion engine unit 120 .
  • the wind generated by the cooling fan 130 first contacts the spark plug 122 to cool the spark plug 122 , and after cooling the spark plug 122 , the internal combustion engine unit 120 is cooled.
  • the internal combustion engine part 120 is cooled through the fins 127 .
  • the rotation axis F of the cooling fan 130 is not arranged on the same axis as the central axis S of the spark plug 122 . It may not be.
  • the spark plug 122 can be cooled only when the cooling fan 130 is disposed so that the flow direction of the wind generated by the cooling fan 130 faces the spark plug 122 .
  • the flow direction of the wind generated by the cooling fan 130 may be set to face the spark plug 122 .
  • the flow direction of the wind generated by the cooling fan 130 may be directed toward the spark plug 122 .
  • the flow direction of the wind generated by the cooling fan 130 is provided to have a predetermined angle with the drive shaft (G) of the generator (110).
  • an imaginary line connecting the upstream and downstream of the spark plug 122 and the driving shaft G of the generator 110 based on the inflow direction of the wind flowing from the cooling fan 130 toward the spark plug 122 is a predetermined It is inclined to have an angle of .
  • the flow direction of the wind generated by the cooling fan 130 and the driving shaft G of the generator 110 may be provided at a predetermined angle in the range of 70 to 110 degrees.
  • the generator 110 is positioned at a vertical position with respect to the horizontally arranged internal combustion engine unit 120 .
  • an imaginary line connecting the upstream and downstream of the spark plug 122 based on the inflow direction of the wind flowing from the cooling fan 130 toward the spark plug 122 and the driving shaft G of the generator 110 is It is preferable that they are provided to be orthogonal to each other, but is not necessarily limited thereto.
  • the internal combustion engine unit 120 arranged in the horizontal direction and the cooling fan 130 provided on the air inlet side of the internal combustion engine unit 120 are arranged in parallel in the horizontal direction, that is, in the transverse direction.
  • the spark plug 122 is also arranged in the same transverse direction as the internal combustion engine unit 120 .
  • the wind generated by the cooling fan 130 also flows in the lateral direction to come into contact with the spark plug 122 and the cooling fin 127 of the internal combustion engine unit 120 provided on the same line.
  • the internal combustion engine unit 120 and the cooling fan 130 arranged in parallel in the transverse direction are covered by the cowl 140 .
  • the cowl 140 is arranged in the same direction as the arrangement direction of the internal combustion engine unit 120 and the cooling fan 130 to surround the internal combustion engine unit 120 and the cooling fan 130 .
  • the cowl 140 is provided in a form having a transverse length in the transverse direction to surround the internal combustion engine unit 120 and the cooling fan 130 arranged in the transverse direction.
  • cowl 140 is formed in a form in which a portion is drawn inward.
  • the cowl 140 has a shape in which both ends at which the head of the internal combustion engine unit 120 on which the spark plug 122 is disposed are located are drawn inward.
  • the cowl 140 may be formed in the shape shown in FIG. 4 .
  • the shape of the cowl 140 is not limited to the first embodiment because the temperature drop of the internal combustion engine unit 120 may be affected depending on the shape of the cowl 140 .
  • a cooling fin ( 127) is provided.
  • the cooling fins 127 are provided on the downstream side of the spark plug 122 along the inflow direction of the external air based on the position of the spark plug 122 .
  • the cooling fins 127 and 127 - 1 may be formed in various shapes.
  • the cooling performance of the internal combustion engine parts 120 and 120 - 1 may vary depending on the shape of the cooling fins 127 and 127 - 1 .
  • the cooling fins 127 provided in the internal combustion engine unit 120 may be formed in a radial shape.
  • a plurality of cooling fins 127 are provided, and the plurality of cooling fins 127 are radially formed based on the spark plug 122 disposed at the center C of the internal combustion engine unit 120 .
  • the contact area between the wind generated by the cooling fan 130 and the cooling fins 127 is improved, and eventually the internal combustion engine unit ( 120) to improve the cooling performance.
  • the cooling fins 127 - 1 provided in the internal combustion engine unit 120 - 1 may be formed in a grid shape.
  • the cooling fins 127 - 1 are provided in plurality, and the plurality of cooling fins 127 - 1 are different from each other with respect to the spark plug 122 disposed at the center C of the internal combustion engine unit 120 . are provided to cross in the direction.
  • the plurality of cooling fins 127 - 1 may be provided to cross at least a portion of the plurality of cooling fins 127 - 1 while being spaced apart from each other by a predetermined distance with respect to the spark plug 122 .
  • the plurality of cooling fins 127 - 1 are formed in the first direction (vertical direction in FIG. 12 ) with respect to the center C of the internal combustion engine unit 120 - 1 , that is, the center of the spark plug 122 .
  • a plurality of first pin members 127-1a and a plurality of second pin members 127-1b formed in a second direction (horizontal direction in FIG. 10) different from the first pin member 127-1a include
  • the second pin member 127-1b may be provided such that at least a portion thereof crosses the first pin member 127-1a.
  • first pin member 127-1a and the second pin member 127-1b provided to cross each other is predetermined from the spark plug 122 disposed at the center C of the internal combustion engine unit 120 . They are provided in a spaced apart state.
  • some of the first fin members 127a of the cooling fins 127 are spark plugs ( 122) may be provided in a spaced apart state. At this time, the other part of the first pin member 127a is provided in a connected state to extend without being spaced apart.
  • the second pin member 127-1b is provided in an extended state with respect to the spark plug 122 disposed at the center C of the internal combustion engine unit 120-1. It may be provided in a spaced apart state by
  • an exhaust port 128 is formed on one side of the internal combustion engine parts 120 and 120 - 1 including the cooling fins 127 and 127 - 1 .
  • the shape of the cooling fins 127 and 127 - 1 may vary depending on the location and size of the exhaust port 128 .
  • the cooling fins 127 and 127 - 1 may be formed to cover all of the upper end of the exhaust port 128 , or may be formed to cover only a part of the exhaust port 128 . In addition, the cooling fins 127 and 127 - 1 may be formed so as not to cover the exhaust port 128 .
  • cooling fins 127 and 127 - 1 are formed to cover the exhaust port 128 or not to cover the exhaust port 128 depends on the position and shape of the exhaust port 128 and the cooling performance of the internal combustion engine parts 120 and 120 - 1 . may vary.
  • the bottom surfaces of the internal combustion engine units 120 and 120 - 1 may be formed flat.
  • At least one air contact part h may be formed in the cooling fins 127 and 127 - 1 .
  • the air contact part h is for improving the cooling effect of the internal combustion engine parts 120 and 120-1 by the wind generated by the cooling fan 130 and flowing into the internal combustion engine parts 120 and 120-1.
  • At least one or more air contact portions h are preferably formed in the cooling fins 127 and 127-1.
  • the air contact portions h may be formed in a circular shape.
  • the air contact part h may be formed in a polygonal shape such as a triangle or a rhombus.
  • the air contact portion (h) when the air contact portion (h) is formed in one of a plurality of circular, triangular or polygonal cooling fins (127, 127-1), the plurality of air contact portions (h) may all be formed in the same size or have different sizes. it might be
  • the air contact portion (h) formed in the cooling fins 127 and 127-1 is illustrated as being formed in one of a circle, a triangle, or a rhombus, but is not necessarily limited thereto. It may be formed in a different shape depending on the In addition, the shapes and sizes of the cooling fins 127 and 127 - 1 shown in FIGS. 11 to 13 may be modified, but are not necessarily limited thereto.
  • the air contact portion (h) may be formed in the form of at least one of a hole (hole) or a groove (groove).
  • the air contact part (h) is formed as a hole, but is not limited thereto, and the contact area of air (or wind) with respect to the cooling fins 127 and 127 - 1 It may be formed in other shapes to improve the
  • the weight of the cooling fins 127 and 127-1 can be reduced, and the weight of the internal combustion engine parts 120 and 120-1 is also reduced. has the effect of reducing it.
  • a plurality of air contact portions (h) are formed on the cooling fins (127, 127-1), and a vortex current near the cooling fins (127, 127-1) by the wind flowing from the cooling fan (130) toward the internal combustion engine part (120, 120-1). Since the vortex is generated, the cooling area of the internal combustion engine parts 120 and 120 - 1 is enlarged.
  • the internal combustion engine parts 120 and 120-1 itself by the wind flowing into the internal combustion engine parts 120 and 120-1 from the cooling fan 130 by the plurality of air contact parts h formed on the cooling fins 127 and 127-1. It will be possible to further improve the cooling effect.
  • the hybrid engine 200 according to the second embodiment of the present invention differs from the above-described first embodiment in that the number of the internal combustion engine unit 120 , the spark plug 122 and the cooling fan 130 is different. Since the cowl 240 is substantially the same as the first embodiment described above, except that the shape of the cowl 240 is different, the same names and reference numerals are given to the same components for the same components, and the description thereof is described above. The first embodiment will be applied mutatis mutandis.
  • the hybrid engine 200 may include one generator 110 , a plurality of internal combustion engine units 120 , and a plurality of cooling fans 130 .
  • the hybrid engine 200 may include two internal combustion engine units 120 and two cooling fans 130 .
  • the two internal combustion engine parts 120 are arranged in the transverse direction, that is, in a horizontal direction, and the two internal combustion engine parts 120 are provided to be connected to one generator 110 .
  • the two internal combustion engine units 120 may be symmetrically arranged around the generator 110 .
  • the two internal combustion engine units 120 are provided in a state in which their interiors communicate with each other, and the driving force generated by the two internal combustion engine units 120 is transmitted to the generator 110 .
  • at least one spark plug 122 is provided at each end of the internal combustion engine unit 120 in which two are horizontally arranged.
  • a cooling fan 130 is provided at the external air inlet 121 side of the spark plug 120 disposed at each end of the two horizontally arranged internal combustion engine units 120 .
  • At least one cooling fan 130 is provided in the inlet 121 through which external air flows into the spark plugs 122 disposed at each end of the two horizontally arranged internal combustion engine units 120 .
  • the spark plug 122 is provided in each of the two internal combustion engine parts 120 .
  • one cooling fan 130 is also provided at the inlet 121 side of each spark plug 122 provided in each of the two internal combustion engine units 120 .
  • the wind generated by the cooling fans 130 respectively provided at positions adjacent to each end of the two horizontally arranged internal combustion engine parts 120 is generated by the two horizontally arranged internal combustion engine parts (
  • the spark plugs 122 are cooled by being in contact with the spark plugs 122 disposed at each end of the 120 . Then, after contacting the cooling fins 127 of each internal combustion engine unit 120 to cool the internal combustion engine unit 120 , they are all discharged to the outside through the generator 110 .
  • the plurality of internal combustion engine units 120 and the plurality of cooling fans 130 arranged in the horizontal direction are covered by the cowl 240 .
  • the cowl 240 is formed to have a long length in the lateral direction in the same manner as in the arrangement direction of the plurality of internal combustion engine units 120 and the cooling fan 130 .
  • the cowl 240 is formed to have a long length in the transverse direction and is provided to surround the plurality of internal combustion engine units 120 and the cooling fan 130 .
  • the cowl 240 is formed in such a way that both ends of each end of the head portion of the internal combustion engine unit 120 are drawn inward.
  • the portion in which the head portion of the internal combustion engine unit 120 is located in the cowl 240 is formed to be drawn in, thereby increasing the flow speed of the wind generated by the cooling fan 130 .
  • the wind generated by the cooling fan 130 has a high flow speed, it is possible to more effectively cool the spark plug 122 and the internal combustion engine unit 120 .
  • the shape of the cowl 240 as described above is not limited to the embodiments of the present invention.
  • the hybrid engines 100 and 200 may include internal combustion engine parts 120 and 120 - 1 and a generator 110 connected to the internal combustion engine parts 120 and 120 - 1 .
  • the internal combustion engine parts 120 and 120 - 1 have a combustion chamber in which a spark plug 122 is disposed at an end thereof, and a plurality of cooling fins 127 and 127 - 1 are provided on the outside.
  • the cooling fins 127 of the internal combustion engine parts 120 and 120 - 1 are for increasing the contact area between the external air flowing into the internal combustion engine parts 120 and 120 - 1 and the internal combustion engine part 120 .
  • the external air flowing into the internal combustion engine parts 120 and 120 - 1 may include all of the air flowing into the internal combustion engine parts 120 and 120 - 1 from the outside.
  • the plurality of cooling fins 127 may be radially formed based on the spark plug 122 disposed at the center C of the internal combustion engine unit 120 .
  • the plurality of cooling fins 127 - 1 may be formed in a grid shape that crosses the spark plug 122 disposed at the center C of the internal combustion engine unit 120 - 1 in different directions.
  • the plurality of radial or grid-shaped cooling fins 127 and 127 - 1 are formed parallel to the reciprocating direction of the piston 124 provided inside the internal combustion engine parts 120 and 120 - 1 .
  • the plurality of cooling fins 127 and 127-1 are spaced apart from each other at a predetermined distance along the circumference of the internal combustion engine unit 127 and 127-1, and are formed to have an arrangement direction parallel to the reciprocating motion direction of the piston 124. do.
  • the arrangement direction of the plurality of cooling fins 127 and 127-1 is the plurality of internal combustion engine parts. It may be seen that the engine parts 120 and 120 - 1 are formed in the same transverse direction as the arrangement direction.
  • the external air flowing into the internal combustion engine parts 120 and 120-1 flows in the same direction as the arrangement direction of the plurality of cooling fins 127 and 127-1 and comes into contact with the internal combustion engine parts 120 and 120-1, and the internal combustion engine part It is provided to flow along (120, 120-1).
  • the external air introduced toward the internal combustion engine parts 120 and 120 - 1 first comes into contact with the spark plug 122 to cool the spark plug 122 .
  • external air is introduced between the plurality of cooling fins 127 and 127-1 to cool the internal combustion engine parts 120 and 120-1, and all of them are discharged to the outside through the generator 120.
  • the cooling fins have an arrangement direction (horizontal direction) perpendicular to the reciprocating direction of the piston of the internal combustion engine unit.
  • the cooling fins since external air does not flow through the internal combustion engine part along the cooling fins, the cooling effect and performance of the front and rear surfaces of the internal combustion engine part are changed, making it difficult to cool the internal combustion engine part as a whole.
  • the hybrid engine 100 and 200 includes the internal combustion engine parts 120 and 120-1. Since the incoming external air is formed to flow along the plurality of cooling fins 127 and 127 - 1 , it is possible to cool the internal combustion engine parts 120 and 120 - 1 as a whole. Moreover, since the external air introduced into the internal combustion engine parts 120 and 120-1 is provided to be in uniform contact with the front and rear surfaces of the internal combustion engine parts 120 and 120-1, the internal combustion engine parts 120 and 120-1 can be effectively cooled as a whole. there will be
  • the cooling fins have an arrangement direction (horizontal direction) in a direction perpendicular to the reciprocating direction of the piston of the internal combustion engine unit. Since the external air does not flow through the internal combustion engine part along the cooling fins in the conventional hybrid engine, the cooling effect and performance of the front and rear surfaces of the internal combustion engine part are changed, so that it is difficult to cool the internal combustion engine part as a whole.
  • 17 and 18 are views showing CFD test results for the flow velocity of the wind introduced into the hybrid engine 200 .
  • FIG. 17 shows the flow velocity of wind flowing into the hybrid engine 200 including the internal combustion engine unit 120 provided with the radial cooling fins 127 .
  • 18 shows the flow velocity of wind flowing into the hybrid engine 200 including the internal combustion engine unit 120-1 provided with the grid-type cooling fins 127-1.
  • wind is introduced from both sides of the internal combustion engine parts 120 and 120-1 and flows to the generator 110 located in the center of the internal combustion engine parts 120 and 120-1. has a flow direction.
  • the velocity streamline of FIGS. 17 and 18 shows that the closer to the upper side (H1, H2) of the velocity streamline bar, the faster the flow velocity of the wind flowing into the hybrid engine 200, and the lower side of the velocity streamline bar (L1, The closer to L2), the slower the flow speed of the wind introduced into the hybrid engine 200 is.
  • the inlet (a, e) of each end of the plurality of internal combustion engine units 120 through which air introduced from the outside has a flow velocity of L1 to L2, and the center (b.c) of the internal combustion engine unit 120 . ) has a flow rate of about H1 to H2, and the generator 110 side has a flow rate of H2.
  • the inlet (a, e) of each end of the plurality of internal combustion engine parts 120-1 of the externally introduced air has a flow velocity of about L1
  • the internal combustion engine part 120-1 is
  • the center (b, c) has a flow velocity of 0 to L1
  • the generator 110 side in the internal combustion engine unit 120-1 has a flow velocity of about L1.
  • the cooling fins 127 formed radially compared to the flow rate of the wind flowing into the hybrid engine 200 including the internal combustion engine unit 120-1 provided with the cooling fins 127-1 formed in a grid shape are provided. It can be seen that the flow velocity of the wind introduced into the hybrid engine 200 including the internal combustion engine unit 120 is greatly increased.
  • 19 is a view showing CFD test results for the temperature distribution of the internal combustion engine parts 120 and 120 - 1 of the hybrid engine 200 .
  • FIG. 19 shows a temperature distribution of an internal combustion engine including horizontal cooling fins formed in a horizontal direction along an outer circumferential surface of a conventional hybrid engine.
  • FIG. 19( a ) shows the temperature distribution of the internal combustion engine unit 120 including the radial cooling fins 127 of the hybrid engine 200 .
  • FIG. 19(b) shows the temperature distribution of the internal combustion engine unit 120-1 including the grid-type cooling fins 127-1 of the hybrid engine 200. As shown in FIG.
  • the temperature of the internal combustion engine part 120 of the hybrid engine 200 is higher, and as the temperature distribution result is closer to blue, the internal combustion engine part 120 of the hybrid engine 200 -1) means that the temperature is low.
  • the temperature near the spark plug P1 of the hybrid engine to which the conventional horizontal cooling fin is applied was found to be higher than that of the internal combustion engine part P2, and about 204 degrees was measured.
  • the temperature distribution (a') near the spark plug 122 of the hybrid engine 200 including the radial cooling fins 127 is the temperature distribution (a') near the cooling fins 127 ( a'').
  • the temperature in the vicinity of the spark plug 122 of the hybrid engine 200 including the radial cooling fins 127 was measured to be about 196.1 degrees.
  • the temperature distribution b′ near the spark plug 122 of the hybrid engine 200 including the cooling fins 127 - 1 formed in a grid shape is determined by the cooling fins 127 . -1) was found to be higher than the temperature distribution (b'') in the vicinity.
  • the temperature in the vicinity of the spark plug 122 of the hybrid engine 200 including the grid-type cooling fins 127 - 1 was measured to be about 199.6 degrees.
  • the spark plug ( 122) was found to be low.
  • the internal combustion engine part 120 including the radial cooling fins 127 and the internal combustion engine part including the grid cooling fins 127-1 ( 120-1) showed a large cooling effect.
  • the spark plug 122 in the internal combustion engine part 120 including the radial cooling fins 127 is located near the The cooling effect was found to be greater.
  • the cooling fan 130 is located in front of the spark plug 122 and the rotation shaft F of the cooling fan 130 and the central axis S of the spark plug 122 are located on the same axis.
  • the cooling performance of the hybrid engines 100 and 200 is improved compared to the conventional hybrid engine by forming the cooling fins 127 in radial and lattice shapes based on the spark plug 122 .
  • the cooling performance of the hybrid engines 100 and 200 can be further improved.
  • the rotation shaft F of the cooling fan 130 and the central shaft (F) of the spark plug 122 ( As S) is arranged coaxially on the virtual axis, there is an effect that the cooling performance of the spark plug 122 and the internal combustion engine unit 120 can be improved through the wind generated by the cooling fan 130 .
  • the cooling performance of the spark plug and the internal combustion engine unit may be improved through the inflowing external air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

A hybrid engine and a hybrid drone comprising same are disclosed. The hybrid engine, according to the present invention, comprises: an internal combustion engine part in which a combustion chamber having an ignition plug disposed at the end portion thereof is provided, and which has a plurality of cooling fins arranged for increasing contact area with external air; a power generator connected to the internal combustion engine part to generate electric energy; and at least one cooling fan, which generates wind for cooling the ignition plug and the internal combustion engine part, wherein the cooling fans are arranged at the upstream side of the ignition plug with respect to the inflow direction of the external air, and the cooling fins are arranged in the flow direction of the external air at the downstream side of the ignition plug.

Description

하이브리드 엔진 및 이를 포함하는 하이브리드 드론Hybrid engine and hybrid drone including same
본 발명은 하이브리드 엔진에 관한 것으로, 더욱 상세하게는 냉각 성능이 개선된 하이브리드 엔진 및 이를 포함하는 하이브리드 드론에 관한 것이다. The present invention relates to a hybrid engine, and more particularly, to a hybrid engine having improved cooling performance and a hybrid drone including the same.
일반적으로, 드론(Drone)으로 알려진 멀티 콥터(Multicopter)는 사람이 탑승하는 조종실이 없는 항공기를 의미하며, 사용자에 의해 리모터 컨트롤러나 멀티 콥터에 장착된 제어 장치에 의하여 조정된다. BACKGROUND ART In general, a multicopter known as a drone refers to an aircraft without a cockpit on which a person is boarded, and is controlled by a user by a remotor controller or a control device mounted on the multicopter.
이러한, 멀티 콥터는 군사적, 상업적, 과학적, 엔터테이먼트용, 농업용, 경찰, 감시용, 제품 배달, 항공 사진, 드론 레이싱, 재난 구호 등 다양한 분야에서 활용되고 있다. These, multicopters are being used in various fields such as military, commercial, scientific, entertainment, agriculture, police, surveillance, product delivery, aerial photography, drone racing, disaster relief, and the like.
한편, 통상 멀티 콥터는 전기 배터리를 전원 공급장치로 사용하고 있다. On the other hand, a general multicopter uses an electric battery as a power supply device.
이에 따라, 전기 배터리로 구동되는 멀티 콥터는 최장 비행 시간이 대략적으로 30분에 불과하며, 조명, 카메라 등의 액세서리가 장착되는 경우에는 멀티 콥터는 그 자체의 무게에 의해 비행 시간이 10분 이내로 더욱 짧아지는 문제점이 있다. Accordingly, the longest flight time of a multi-copter powered by an electric battery is only approximately 30 minutes, and when accessories such as lights and cameras are installed, the multi-copter's own weight reduces the flight time to less than 10 minutes. There is a problem with shortening.
이러한 문제점을 해결하기 위하여, 최근에는 하이브리드 드론이 많이 개발되고 있다. In order to solve this problem, a lot of hybrid drones have been recently developed.
일예로, 하이브리드 드론은 프로펠러 구동용 배터리, 엔진 및 발전기를 함께 구비한다. 이때 하이브리드 드론의 엔진은 피스톤 왕복 운동을 하는 내연기관용 엔진일 수 있다.For example, a hybrid drone is provided with a battery for driving a propeller, an engine, and a generator. In this case, the engine of the hybrid drone may be an engine for an internal combustion engine in which a piston reciprocates.
이러한, 하이브리드 드론은 엔진이 구동되어 발전기를 작동시키고, 발전기로부터 발생된 전기는 배터리에 저장되거나 모터로 공급되어 저장되게 된다. In such a hybrid drone, an engine is driven to operate a generator, and electricity generated from the generator is stored in a battery or supplied to a motor to be stored.
상기한 바와 같이, 하이브리드 드론은 배터리 및 모터와 내연기관용 엔진이 결합된 것으로써, 엔진의 구동에 의해 발생된 전기 에너지가 직렬 또는 병렬로 연결된 모터 및 배터리로 공급되게 된다. As described above, the hybrid drone is a combination of a battery, a motor, and an engine for an internal combustion engine, and electric energy generated by driving the engine is supplied to the motor and the battery connected in series or in parallel.
한편, 하이브리드 드론에 사용되는 내연기관용 엔진은 피스톤 왕복 운동을 수행하므로 매우 높은 온도가 된다. 특히, 엔진의 헤드 부분에 위치된 점화 플러그와 그 주위의 엔진의 연소실 외부가 가장 고열이 된다. 이러한 이유로, 하이브리드 드론을 안정적으로 구동하기 위해서는 점화 플러그와 그 주변부를 냉각시키는 것이 필요하다. On the other hand, the engine for the internal combustion engine used in the hybrid drone performs a piston reciprocating motion, so that the temperature is very high. In particular, the spark plug located in the head portion of the engine and the outside of the combustion chamber of the engine around the spark plug become the hottest. For this reason, in order to stably drive the hybrid drone, it is necessary to cool the spark plug and its surroundings.
점화 플러그와 엔진의 주변부의 냉각을 위해, 종래 하이브리드 엔진에서는 점화 플러그로 유입되는 외부 공기의 유동 방향을 엔진의 점화 플러그가 위치되지 않은 엔진 헤드를 가로지르거나 엔진 블럭을 향하도록 구성하였다. 또한, 하이브리드 엔진에 형성된 복수 개의 냉각핀은 외부 공기의 유동 방향과 평행한 방향을 가지도록 구성하였고, 주변부를 냉각시키기 위한 복수 개의 냉각핀은 엔진의 연소실 내에 마련된 피스톤의 왕복 운동 방향과 수직한 방향을 향하도록 구성하였다. 이에 따라, 하이브리드 엔진의 엔진 헤드 및 엔진 블럭의 전방, 즉 외부 공기와 직접 접촉하는 면과 및 그 반대 면인 후방의 표면 온도가 서로 다를 수밖에 없었다. In order to cool the spark plug and the periphery of the engine, in the conventional hybrid engine, the flow direction of external air introduced into the spark plug is configured to cross the engine head where the spark plug of the engine is not located or to face the engine block. In addition, the plurality of cooling fins formed in the hybrid engine are configured to have a direction parallel to the flow direction of the external air, and the plurality of cooling fins for cooling the peripheral portion are perpendicular to the reciprocating motion direction of the piston provided in the combustion chamber of the engine. designed to face. Accordingly, the surface temperature of the front of the engine head and the engine block of the hybrid engine, that is, the surface in direct contact with the outside air, and the opposite surface, the rear surface, were inevitably different from each other.
구체적으로, 외부에서 엔진으로 유입되는 외부 공기의 유동 방향을 엔진 헤드를 가로지르는 방향이나 엔진 블럭 방향으로 구성할 경우, 유입되는 공기에 의한 점화 플러그와 그 주변부의 냉각 효과가 거의 없게 된다. Specifically, when the flow direction of the external air flowing into the engine from the outside is configured to be a direction crossing the engine head or an engine block direction, the cooling effect of the spark plug and the surrounding area by the inflow air is almost nonexistent.
따라서, 하이브리드 엔진 헤드 및 연소실 부위의 전방 및 후방의 표면 온도가 서로 다르게 되면 엔진 전체를 냉각시키더라도 하이브리드 엔진의 중요 부위인 점화 플러그 및 연소실 주변의 냉각 성능 및 효과가 저하되는 문제점이 있었다. 더욱이, 점화 플러그 및 엔진 연소실 부위를 제대로 냉각시키지 못하게 되면 엔진 자체가 과열됨으로 인하여 하이브리드 엔진의 작동 이상이 유발될 수 있고, 결국은 하이브리드 드론 자체의 내구성이 저하되는 문제점이 있었다.Accordingly, when the surface temperatures of the front and rear surfaces of the hybrid engine head and the combustion chamber are different from each other, even when the entire engine is cooled, there is a problem in that the cooling performance and effectiveness around the spark plug and the combustion chamber, which are important portions of the hybrid engine, are deteriorated. Moreover, if the spark plug and the engine combustion chamber are not properly cooled, the hybrid engine may malfunction due to overheating of the engine itself, and eventually, the durability of the hybrid drone itself is deteriorated.
또한, 종래 하이브리드 엔진에 형성되는 냉각핀은 냉각핀의 종 방향을 따라 배열되는 배열 방향을 갖는다. 이에 따라, 냉각핀은 엔진의 내부에 피스톤의 왕복 운동 방향과 직교하는 방향의 배열 방향(수평 방향)을 가지게 된다.In addition, the cooling fins formed in the conventional hybrid engine have an arrangement direction arranged along the longitudinal direction of the cooling fins. Accordingly, the cooling fins have an arrangement direction (horizontal direction) in a direction perpendicular to the reciprocating motion direction of the piston inside the engine.
이에 따라, 종래 하이브리드 엔진은 외부 공기가 냉각핀을 따라 흐르더라도 엔진의 전체 면적에 대해 접촉되지 않기 때문에 엔진을 전체적으로 냉각시키는 것이 어려운 문제점이 있었다. 또한, 상기와 같은 경우, 엔진으로 유입된 외부 공기가 엔진의 전면과는 접촉되지만 엔진의 후면과는 거의 접촉되지 못하기 때문에 엔진의 전면 및 후면의 냉각 효과 및 성능이 동일하지 못하게 되는 문제점이 있었다. Accordingly, the conventional hybrid engine has a problem in that it is difficult to cool the engine as a whole because the external air does not come into contact with the entire area of the engine even if it flows along the cooling fins. In addition, in the above case, there is a problem that the cooling effect and performance of the front and rear of the engine are not the same because the external air introduced into the engine is in contact with the front of the engine but hardly comes in contact with the rear of the engine. .
이에, 상기와 같은 문제점을 해결할 수 있는 냉각 성능이 개선된 하이브리드 엔진 및 이를 포함하는 하이브리드 드론의 개발이 요구되는 실정이다. Accordingly, there is a need to develop a hybrid engine with improved cooling performance capable of solving the above problems and a hybrid drone including the same.
본 발명의 목적은 점화 플러그 및 내연 기관부의 냉각 성능이 개선된 하이브리드 엔진 및 이를 포함하는 하이브리드 드론을 제공하는 것이다. SUMMARY OF THE INVENTION It is an object of the present invention to provide a hybrid engine having improved cooling performance of a spark plug and an internal combustion engine, and a hybrid drone including the same.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다. The problems to be solved by the present invention are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기의 목적은, 본 발명에 따라, 단부에 점화 플러그가 배치되는 연소실이 내부에 마련되고 외부 공기에 대한 접촉 면적을 증가시키기 위한 복수 개의 냉각핀이 배치되는 내연 기관부, 내연 기관부와 연결되어 전기 에너지를 발생시키는 발전기 및 점화 플러그 및 내연 기관부를 냉각시키기 위한 바람을 발생시키는 적어도 하나의 냉각팬을 포함하며, 외부 공기의 유입 방향을 기준으로 점화 플러그의 상류 측에는 냉각팬이 배치되고, 점화 플러그의 하류 측에는 외부 공기의 유동 방향을 따라 냉각 핀이 배치되는, 하이브리드 엔진에 의해 달성될 수 있다. According to the present invention, a combustion chamber having a spark plug disposed at an end thereof is provided therein and a plurality of cooling fins for increasing the contact area to external air are disposed, and is connected to the internal combustion engine part and at least one cooling fan for generating a generator and spark plug for generating electrical energy and wind for cooling the internal combustion engine, wherein a cooling fan is disposed on an upstream side of the spark plug with respect to an inflow direction of external air, the spark plug on the downstream side of which cooling fins are disposed along the flow direction of the outside air, which can be achieved by a hybrid engine.
또한, 상기의 목적은, 단부에 점화 플러그가 배치되는 연소실이 내부에 마련되고 외부 공기에 대한 접촉 면적을 증가시키기 위한 복수 개의 냉각핀이 배치되는 내연 기관부 및 내연 기관부와 연결되어 전기 에너지를 발생시키는 발전기를 포함하며, 내연 기관부에는 연소실의 내부에서 왕복 운동하는 적어도 하나의 피스톤이 배치되고, 복수 개의 냉각핀의 배열 방향은 피스톤의 운동 방향과 평행하게 형성되며, 내연 기관부로 유입되는 외부 공기는 복수 개의 냉각핀의 배열 방향과 동일한 방향을 따라 흐르도록 마련된, 하이브리드 엔진에 의해 달성될 수 있다.In addition, the above object is connected to the internal combustion engine part and the internal combustion engine part in which a combustion chamber in which a spark plug is disposed at the end is provided therein and a plurality of cooling fins for increasing the contact area to the outside air are disposed to generate electric energy at least one piston reciprocating inside the combustion chamber is disposed in the internal combustion engine unit, the arrangement direction of the plurality of cooling fins is formed parallel to the movement direction of the piston, and the external which flows into the internal combustion engine unit Air may be achieved by the hybrid engine, which is provided to flow along the same direction as the arrangement direction of the plurality of cooling fins.
한편, 상기의 목적은, 중공부를 갖는 하우징, 하우징으로부터 방사상으로 연장되는 하나 이상의 암, 하나 이상의 암의 단부에 구비되는 프로펠러 구동용 모터, 모터의 회전축에 결합되어 추력을 발생시키는 프로펠러, 모터에 구동력을 제공하는 배터리 및 하우징에 구비되고 구동에 의해 발생된 전기 에너지가 모터 또는 배터리에 공급되도록 마련된 하이브리드 엔진을 포함하며, 하이브리드 엔진은, 단부에 점화 플러그가 마련되는 연소실이 내부에 마련되고 외부 공기에 대한 접촉 면적을 증가시키기 위한 복수 개의 냉각핀이 배치되는 적어도 하나의 내연 기관부, 내연 기관부와 연결되어 전기 에너지를 발생시키는 발전기 및 점화 플러그 및 내연 기관부를 냉각시키기 위한 바람을 발생시키는 적어도 하나의 냉각팬을 포함하고, 외부 공기의 유입 방향을 기준으로 점화 플러그의 상류 측에는 냉각팬이 배치되고, 점화 플러그의 하류 측에는 외부 공기의 유동 방향을 따라 냉각핀이 배치되는, 하이브리드 드론에 의해 달성될 수 있다. On the other hand, the above object is a housing having a hollow portion, one or more arms extending radially from the housing, a propeller driving motor provided at the end of one or more arms, a propeller coupled to the rotating shaft of the motor to generate thrust, a driving force to the motor It includes a hybrid engine provided in a battery and a housing that provides an electric energy generated by driving and provided to be supplied to a motor or a battery, wherein the hybrid engine has a combustion chamber having a spark plug provided at an end thereof provided therein, and is exposed to external air. At least one internal combustion engine part in which a plurality of cooling fins are disposed to increase a contact area with respect to the engine, a generator connected to the internal combustion engine part to generate electric energy, and a spark plug and at least one to generate wind for cooling the internal combustion engine part This can be achieved by a hybrid drone that includes a cooling fan, wherein a cooling fan is disposed on the upstream side of the spark plug with respect to the inflow direction of the outside air, and cooling fins are disposed along the flow direction of the outside air on the downstream side of the spark plug. have.
본 발명의 하이브리드 엔진 및 이를 포함하는 하이브리드 드론은, 냉각팬의 회전축과 점화 플러그의 중심축이 가상의 축 상에서 동축으로 배열됨에 따라, 냉각팬에 의해 발생된 바람을 통해 점화 플러그 및 내연 기관부의 냉각 성능을 향상시킬 수 있는 효과가 있다. 더욱이, 점화 플러그 및 내연 기관부의 냉각 성능이 향상됨에 따라 하이브리드 엔진의 과열로 인한 하이브리드 드론의 작동 이상을 미연에 방지할 수 있는 이점이 있다. In the hybrid engine of the present invention and the hybrid drone including the same, as the rotational axis of the cooling fan and the central axis of the spark plug are coaxially arranged on a virtual axis, the spark plug and the internal combustion engine unit are cooled by wind generated by the cooling fan. It has the effect of improving performance. Moreover, as the cooling performance of the spark plug and the internal combustion engine part is improved, there is an advantage in that it is possible to prevent malfunction of the hybrid drone due to overheating of the hybrid engine in advance.
또한, 본 발명의 하이브리드 엔진의 냉각핀은 내연 기관부의 점화 플러그를 중심으로 방사형으로 형성되거나 격자형으로 형성됨에 따라, 냉각팬에서 발생된 바람에 의해 냉각핀을 통한 내연 기관부의 냉각 성능을 더욱 향상시킬 수 있다. 더욱이, 내연 기관부로 유입되는 외부 공기 또는 냉각팬에서 발생된 바람이 방사형 또는 격자형의 냉각핀을 따라 흐르도록 마련되기 때문에 내연 기관부를 더욱 효과적으로 냉각시킬 수 있는 이점이 있다.In addition, as the cooling fins of the hybrid engine of the present invention are radially formed around the spark plug of the internal combustion engine part or are formed in a grid shape, the cooling performance of the internal combustion engine part through the cooling fins by the wind generated by the cooling fan is further improved can do it Furthermore, since the external air flowing into the internal combustion engine part or the wind generated by the cooling fan is provided to flow along the radial or grid-shaped cooling fins, there is an advantage in that the internal combustion engine part can be cooled more effectively.
도 1은 본 발명의 제1 실시예에 따른 하이브리드 엔진의 구동을 설명하기 위한 도면이다. 1 is a view for explaining the driving of a hybrid engine according to a first embodiment of the present invention.
도 2는 도 1에 도시한 카울을 제외하고 하이브리드 엔진을 나타낸 도면이다. FIG. 2 is a view showing a hybrid engine except for the cowl shown in FIG. 1 .
도 3 및 도 4는 도 1에 도시한 카울을 설명하기 위한 도면이다. 3 and 4 are views for explaining the cowl shown in FIG. 1 .
도 5는 도 1 및 도 2에 도시한 내연 기관부의 일예를 설명하기 위한 도면이다. FIG. 5 is a view for explaining an example of the internal combustion engine unit shown in FIGS. 1 and 2 .
도 6은 도 5에 도시한 내연 기관부를 상부에서 바라본 형태를 나타낸 도면이다. FIG. 6 is a view illustrating the internal combustion engine unit shown in FIG. 5 as viewed from above.
도 7은 도 5에 도시한 내연 기관부를 하부에서 바라본 형태를 나타낸 도면이다. FIG. 7 is a view illustrating the internal combustion engine part shown in FIG. 5 as viewed from the bottom.
도 8은 도 5에 도시한 내연 기관부의 다른 예를 나타낸 도면이다. FIG. 8 is a view showing another example of the internal combustion engine unit shown in FIG. 5 .
도 9는 도 8에 도시한 내연 기관부를 상부에서 바라본 형태를 나타낸 도면이다. 9 is a view illustrating the internal combustion engine unit shown in FIG. 8 as viewed from above.
도 10은 도 9에 도시한 내연 기관부를 하부에서 바라본 형태를 나타낸 도면이다. FIG. 10 is a view illustrating the internal combustion engine unit shown in FIG. 9 as viewed from the bottom.
도 11 내지 도 13은 도 1 및 도 2에 도시한 냉각핀의 형태를 설명하기 위한 도면이다.11 to 13 are views for explaining the shape of the cooling fins shown in FIGS. 1 and 2 .
도 14는 본 발명의 제2 실시예에 따른 하이브리드 엔진의 구동을 설명하기 위한 도면이다. 14 is a view for explaining driving of a hybrid engine according to a second embodiment of the present invention.
도 15는 도 14에 도시한 카울을 제외하고 하이브리드 엔진을 나타낸 도면이다. 15 is a view showing a hybrid engine except for the cowl shown in FIG. 14 .
도 16은 도 14에 도시한 카울을 설명하기 위한 도면이다. FIG. 16 is a view for explaining the cowl shown in FIG. 14 .
도 17 및 도 18은 CFD 해석 시험을 통해 방사형 또는 격자형의 냉각핀을 포함하는 본 발명의 제2 실시예에 따른 하이브리드 엔진으로 유입되는 바람의 유동 속도를 나타낸 도면이다. 17 and 18 are diagrams illustrating the flow velocity of wind flowing into the hybrid engine according to the second embodiment of the present invention including radial or grid-type cooling fins through a CFD analysis test.
도 19는 CFD 해석 시험을 통해 종래 수평형의 하이브리드 엔진과 도 10에 도시한 하이브리드 엔진에서 방사형 및 격자형의 냉각핀이 마련된 내연 기관부 각각의 온도 분포를 비교하여 나타낸 도면이다. 19 is a view showing a comparison of the temperature distribution of each of the internal combustion engine parts provided with radial and grid-type cooling fins in the conventional horizontal hybrid engine and the hybrid engine shown in FIG. 10 through a CFD analysis test.
이하, 첨부된 도면을 참고로 하여 본 발명의 실시예들에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다. Hereinafter, with reference to the accompanying drawings, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily carry out the present invention. The present invention may be embodied in many different forms and is not limited to the embodiments described herein.
도면들은 개략적이고 축적에 맞게 도시되지 않았다는 것을 일러둔다. 도면에 있는 부분들의 상대적인 치수 및 비율은 도면에서의 명확성 및 편의를 위해 그 크기에 있어 과장되거나 감소되어 도시되었으며 임의의 치수는 단지 예시적인 것이지 한정적인 것은 아니다. 그리고 둘 이상의 도면에 나타나는 동일한 구조물, 요소 또는 부품에는 동일한 참조 부호가 유사한 특징을 나타내기 위해 사용된다. It is noted that the drawings are schematic and not drawn to scale. Relative dimensions and proportions of parts in the drawings are shown exaggerated or reduced in size for clarity and convenience in the drawings, and any dimensions are illustrative only and not limiting. And the same reference numerals are used to denote like features for the same structure, element, or part appearing in two or more drawings.
본 발명의 실시예는 본 발명의 이상적인 실시예들을 구체적으로 나타낸다. 그 결과, 도면의 다양한 변형이 예상된다. 따라서 실시예는 도시한 영역의 특정 형태에 국한되지 않으며, 예를 들면 제조에 의한 형태의 변형도 포함한다.The embodiments of the present invention specifically represent ideal embodiments of the present invention. As a result, various modifications of the drawings are expected. Accordingly, the embodiment is not limited to a specific shape of the illustrated area, and includes, for example, a shape modification by manufacturing.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 하이브리드 엔진 및 이를 포함하는 하이브리드 드론을 설명한다. Hereinafter, a hybrid engine and a hybrid drone including the same according to an embodiment of the present invention will be described with reference to the accompanying drawings.
우선, 도 1, 도 2, 도 14 및 도 15를 참조하면, 본 발명의 실시예들에 따른 하이브리드 엔진(100,200)은 발전기(110)와 내연 기관부(120)를 포함한다.First, referring to FIGS. 1, 2, 14 and 15 , hybrid engines 100 and 200 according to embodiments of the present invention include a generator 110 and an internal combustion engine unit 120 .
이러한, 하이브리드 엔진(100,200)은 자동차, 항공기, 이륜차, 원동기장치자전거, 무인 비행체 등 다양한 용도로 사용될 수 있다. These hybrid engines 100 and 200 may be used for various purposes, such as automobiles, aircraft, two-wheeled vehicles, motorized bicycles, and unmanned aerial vehicles.
본 발명의 실시예에 따른 하이브리드 엔진(100,200)은 예를 들어 사람이 탑승하는 조종실이 없는 무인 비행체인 드론(Drone)에 적용될 수 있다. The hybrid engines 100 and 200 according to an embodiment of the present invention may be applied to, for example, a drone that is an unmanned aerial vehicle without a cockpit in which a person rides.
참고로, 하기에서는 본 발명의 일 실시예에 따른 하이브리드 엔진(100,200)이 드론에 적용되는 것으로 한정하여 설명하였으나, 반드시 이에 한정되는 것은 아니다. For reference, in the following description, the hybrid engines 100 and 200 according to an embodiment of the present invention are limited to those applied to the drone, but the present invention is not necessarily limited thereto.
한편, 도면에는 도시하지 않았지만, 본 발명의 실시예들에 따른 하이브리드 엔진(100,200)은 하이브리드 드론에 탑재될 수 있다. Meanwhile, although not shown in the drawings, the hybrid engines 100 and 200 according to embodiments of the present invention may be mounted on a hybrid drone.
이러한, 하이브리드 드론은 중공부를 갖는 하우징, 하우징으로부터 방사상으로 연장되는 하나 이상의 암, 하나 이상의 암의 단부에 각각 구비되는 프로펠러 구동용 모터, 각각의 모터의 회전축에 결합되어 추력을 발생시키는 프로펠러, 프로펠러 구동용 모터에 구동력을 제공하는 배터리 및 하우징에 구비되고 구동에 의해 발생된 전기 에너지가 프로펠러 구동용 모터 또는 배터리에 공급되도록 마련된 하이브리드 엔진(100,200)을 포함한다.Such a hybrid drone includes a housing having a hollow part, one or more arms extending radially from the housing, a propeller driving motor provided at an end of one or more arms, respectively, a propeller coupled to the rotation shaft of each motor to generate thrust, propeller driving It includes a battery for providing driving force to the motor and hybrid engines 100 and 200 provided in the housing and provided so that electric energy generated by driving is supplied to the propeller driving motor or the battery.
하기에서는 도 1 내지 도 16을 참조하여, 본 발명의 실시예에 따른 하이브리드 드론에 포함된 하이브리드 엔진(100,200)을 구체적으로 설명한다. Hereinafter, the hybrid engines 100 and 200 included in the hybrid drone according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 16 .
먼저, 도 1 내지 도 13을 참조하여, 본 발명의 제1 실시예에 따른 하이브리드 엔진(100)을 설명한다. First, a hybrid engine 100 according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 13 .
도 1 및 도 2를 참조하면, 본 발명의 제1 실시예에 따른 하이브리드 엔진(100)은 발전기(110), 내연 기관부(120) 및 냉각팬(130)을 포함한다. 1 and 2 , the hybrid engine 100 according to the first embodiment of the present invention includes a generator 110 , an internal combustion engine unit 120 , and a cooling fan 130 .
본 발명의 제1 실시예에 따른 하이브리드 엔진(100)은 하나의 내연 기관부(120)를 포함한다. The hybrid engine 100 according to the first embodiment of the present invention includes one internal combustion engine unit 120 .
내연 기관부(120)는 단부에 적어도 하나의 점화 플러그(122)가 배치되는 연소실이 내부에 마련된다. 또한, 내연 기관부(120)에는 내연 기관부(120) 쪽으로 유동되는 외부 공기에 대한 접촉 면적을 증가시키기 위한 복수 개의 냉각핀(127)이 마련된다. The internal combustion engine unit 120 has a combustion chamber disposed therein in which at least one spark plug 122 is disposed at an end thereof. In addition, the internal combustion engine unit 120 is provided with a plurality of cooling fins 127 to increase the contact area with respect to the external air flowing toward the internal combustion engine unit 120 .
내연 기관부(120)는 내부의 연소실에 마련된 적어도 하나의 피스톤(124)의 왕복 운동에 의해 구동된다. 이러한, 내연 기관부(120)는 발전기(110)와 연결된다. The internal combustion engine unit 120 is driven by reciprocating motion of at least one piston 124 provided in an internal combustion chamber. The internal combustion engine unit 120 is connected to the generator 110 .
발전기(110)는 내연 기관부(120)의 구동력에 의해 회전되어 전기 에너지를 발생시킨다.The generator 110 is rotated by the driving force of the internal combustion engine unit 120 to generate electric energy.
도면에는 도시하지 않았지만, 발전기(110)에서 발생된 전기 에너지는 내연 기관부(120)와 연결된 모터 또는 배터리로 공급되어 저장된다. Although not shown in the drawings, electric energy generated by the generator 110 is supplied to and stored in a motor or a battery connected to the internal combustion engine unit 120 .
참고로, 발전기(110)는 모터 또는 배터리와 직렬 또는 병렬로 연결될 수 있다. For reference, the generator 110 may be connected in series or parallel with a motor or a battery.
이때, 내연 기관부(120)의 피스톤(124)이 왕복 운동하게 되면 내연 기관부(120)는 고온이 된다. At this time, when the piston 124 of the internal combustion engine part 120 reciprocates, the internal combustion engine part 120 becomes high temperature.
예컨대, 내연 기관부(120)의 고온 상태가 지속되는 경우, 내연 기관부(120)의 과열로 인하여 하이브리드 엔진(100) 자체의 작동 이상이 발생하게 되는 문제점이 있다. For example, when the high temperature state of the internal combustion engine unit 120 continues, there is a problem in that an operation abnormality of the hybrid engine 100 itself occurs due to overheating of the internal combustion engine unit 120 .
이러한 문제점을 해결하기 위하여, 본 발명의 제1 실시예에 따른 하이브리드 엔진(100)에는 점화 플러그(122) 및 내연 기관부(120)를 냉각시키기 위한 바람을 발생시키는 적어도 하나의 냉각팬(130)이 마련된다. In order to solve this problem, in the hybrid engine 100 according to the first embodiment of the present invention, at least one cooling fan 130 for generating wind for cooling the spark plug 122 and the internal combustion engine unit 120 . this is provided
여기서, 본 발명의 제1 실시예에 따른 하이브리드 엔진(100)은 점화 플러그(122)가 내연 기관부(120)에 하나만 마련될 수도 있고, 필요에 따라 하나 이상으로 마련될 수도 있다.Here, in the hybrid engine 100 according to the first embodiment of the present invention, only one spark plug 122 may be provided in the internal combustion engine unit 120 , or more than one spark plug 122 may be provided as needed.
예컨대, 점화 플러그(122)가 하나만 마련되는 경우에는 냉각팬(130)에서 발생된 바람이 점화 플러그(122)를 향하도록 하여 점화 플러그(122)가 냉각되도록 한다. For example, when only one spark plug 122 is provided, the wind generated by the cooling fan 130 is directed toward the spark plug 122 so that the spark plug 122 is cooled.
반면, 점화 플러그(122)가 하나 이상으로 마련되는 경우에는 냉각팬(130)을 회전시키거나 이동시킨다. 이에 따라, 냉각팬(130)에서 발생된 바람이 내연 기관부(120)의 헤드 부분의 상단부 중심으로 향하게 되어 복수 개의 점화 플러그(122)가 냉각되도록 할 수도 있다. On the other hand, when one or more spark plugs 122 are provided, the cooling fan 130 is rotated or moved. Accordingly, the wind generated by the cooling fan 130 may be directed toward the center of the upper end of the head of the internal combustion engine unit 120 to cool the plurality of spark plugs 122 .
참고로, 본 발명의 제1 실시예에 따른 하이브리드 엔진(100)에서는 점화 플러그(122)가 내연 기관부(120)에 하나로 마련되는 것으로 한정하여 설명하고 있으나 반드시 이에 한정되는 것은 아니다. For reference, in the hybrid engine 100 according to the first embodiment of the present invention, the spark plug 122 is limited to being provided in the internal combustion engine unit 120 as one, but is not necessarily limited thereto.
냉각팬(130)은 외부 공기가 유입되는 점화 플러그(122)의 유입 측에 적어도 하나 이상으로 마련되며 바람을 발생시켜서 점화 플러그(122) 및 내연 기관부(120)를 냉각시키게 된다. At least one cooling fan 130 is provided on the inlet side of the spark plug 122 through which external air flows, and generates wind to cool the spark plug 122 and the internal combustion engine unit 120 .
도 1에 도시한 바와 같이, 점화 플러그(122)의 유입부(121)로는 냉각팬(130)의 구동에 의해 발생된 바람이 유입된다.As shown in FIG. 1 , the wind generated by the driving of the cooling fan 130 flows into the inlet 121 of the spark plug 122 .
점화 플러그(122)의 유입부(121)는 냉각팬(130)과 점화 플러그(122) 사이에 마련되는 것으로, 냉각팬(130)으로부터 발생된 바람이 점화 플러그(122)로 유입이 시작되는 지점을 의미할 수 있다. The inlet 121 of the spark plug 122 is provided between the cooling fan 130 and the spark plug 122 , and the point at which the wind generated from the cooling fan 130 starts to flow into the spark plug 122 . can mean
상기한 바와 같이, 냉각팬(130)이 구동되면 냉각팬(130)의 회전에 의해 바람이 발생되게 된다. 이때, 냉각팬(130)의 중심부, 즉 회전축(F)에서는 바람의 유동이 발생되지 않고, 냉각팬(130)의 블레이드(blade) 부분에서 바람이 유동이 발생된다. As described above, when the cooling fan 130 is driven, wind is generated by the rotation of the cooling fan 130 . At this time, no wind flow is generated in the center of the cooling fan 130 , that is, the rotation shaft F, but wind flow is generated in a blade portion of the cooling fan 130 .
이와 같이, 냉각팬(130)에서 발생된 바람은 블레이드를 통해 유입부(121)를 따라 점화 플러그(122) 쪽으로 흐르게 된다. In this way, the wind generated by the cooling fan 130 flows toward the spark plug 122 along the inlet 121 through the blade.
이러한, 냉각팬(130)은 점화 플러그(122)의 위치를 기준으로 외부 공기의 유입 방향을 따라 점화 플러그(122)의 상류 측에 마련된다. 냉각핀(127)은 점화 플러그(122)의 위치를 기준으로 외부 공기의 유입 방향을 따라 점화 플러그(122)의 하류 측에 마련된다. The cooling fan 130 is provided on the upstream side of the spark plug 122 along the inflow direction of the external air based on the position of the spark plug 122 . The cooling fins 127 are provided on the downstream side of the spark plug 122 along the inflow direction of the external air based on the position of the spark plug 122 .
이때, 점화 플러그(122)로 유입되는 외부 공기의 유입 방향은 냉각팬(130)에서 발생된 바람의 유동 방향과 동일하게 마련될 수 있다. In this case, the inflow direction of the external air flowing into the spark plug 122 may be the same as the flow direction of the wind generated by the cooling fan 130 .
한편, 도 1에 도시한 바와 같이, 냉각팬(130)의 회전축(F)과 점화 플러그(122)의 중심축(S)은 냉각팬(130)의 회전축(F)과 점화 플러그(122)의 중심축(S)을 연결한 가상의 축 상에서 동축으로 배열되도록 마련된다. Meanwhile, as shown in FIG. 1 , the rotation shaft F of the cooling fan 130 and the central shaft S of the spark plug 122 are the rotation shaft F of the cooling fan 130 and the spark plug 122 . It is provided to be arranged coaxially on a virtual axis connecting the central axis (S).
이에 따라, 냉각팬(130)에서 발생된 바람은 점화 플러그(122) 쪽으로 유동되고, 점화 플러그(122)와 접촉되어 점화 플러그(122)를 냉각시킨다. 그 다음, 내연 기관부(120)의 냉각핀(127)과 접촉되어 내연 기관부(120)를 냉각시킨다. 내연 기관부(120)를 냉각시킨 후에는 발전기(110)를 통해 외부로 배출되는 유동 방향(도 1 및 도 2의 화살표 방향 참조)을 가진다. Accordingly, the wind generated by the cooling fan 130 flows toward the spark plug 122 and comes into contact with the spark plug 122 to cool the spark plug 122 . Then, it comes into contact with the cooling fins 127 of the internal combustion engine part 120 to cool the internal combustion engine part 120 . After cooling the internal combustion engine unit 120 , it has a flow direction (refer to arrow directions in FIGS. 1 and 2 ) discharged to the outside through the generator 110 .
또한, 냉각팬(130)에서 발생된 바람의 유동 방향은 점화 플러그(122) 및 내연 기관부(120)와 동일 선상에 위치되도록 마련된다. In addition, the flow direction of the wind generated by the cooling fan 130 is provided to be positioned on the same line as the spark plug 122 and the internal combustion engine unit 120 .
이에 따라, 냉각팬(130)에서 발생된 바람은 점화 플러그(122)와 가장 먼저 접촉하여 점화 플러그(122)를 냉각시키고, 점화 플러그(122)를 냉각시킨 후에는 내연 기관부(120)의 냉각핀(127)을 통해 내연 기관부(120)를 냉각시킨다. Accordingly, the wind generated by the cooling fan 130 first contacts the spark plug 122 to cool the spark plug 122 , and after cooling the spark plug 122 , the internal combustion engine unit 120 is cooled. The internal combustion engine part 120 is cooled through the fins 127 .
참고로, 냉각팬(130)은 점화 플러그(122)와 동일선 상에 위치된 상태에서 냉각팬(130)의 회전축(F)은 점화 플러그(122)의 중심축(S)과 동축 상에 배열되지 않을 수도 있다. For reference, in a state in which the cooling fan 130 is positioned on the same line as the spark plug 122 , the rotation axis F of the cooling fan 130 is not arranged on the same axis as the central axis S of the spark plug 122 . It may not be.
이러한 경우, 냉각팬(130)에서 발생된 바람의 유동 방향이 점화 플러그(122)를 향하도록 냉각팬(130)을 배치해줘야만 점화 플러그(122)를 냉각시킬 수 있다. In this case, the spark plug 122 can be cooled only when the cooling fan 130 is disposed so that the flow direction of the wind generated by the cooling fan 130 faces the spark plug 122 .
예를 들어, 냉각팬(130)을 일 방향으로 틀어서 냉각팬(130)에서 발생된 바람의 유동 방향이 점화 플러그(122)를 향하도록 설정할 수도 있다. 또한, 냉각팬(130)의 블레이드(blade) 크기를 크게 하여 냉각팬(130)에서 발생된 바람의 유동 방향이 점화 플러그(122)를 향하도록 할 수도 있다. For example, by turning the cooling fan 130 in one direction, the flow direction of the wind generated by the cooling fan 130 may be set to face the spark plug 122 . In addition, by increasing the size of the blades of the cooling fan 130 , the flow direction of the wind generated by the cooling fan 130 may be directed toward the spark plug 122 .
또한, 냉각팬(130)에서 발생된 바람의 유동 방향은 발전기(110)의 구동축(G)과 소정의 각도를 가지도록 마련된다. In addition, the flow direction of the wind generated by the cooling fan 130 is provided to have a predetermined angle with the drive shaft (G) of the generator (110).
다시 말해서, 냉각팬(130)에서 점화 플러그(122) 쪽으로 유입되는 바람의 유입 방향을 기준으로 점화 플러그(122)의 상류 및 하류를 연결한 가상의 선과 발전기(110)의 구동축(G)은 소정의 각도를 가지도록 경사지게 형성된다. In other words, an imaginary line connecting the upstream and downstream of the spark plug 122 and the driving shaft G of the generator 110 based on the inflow direction of the wind flowing from the cooling fan 130 toward the spark plug 122 is a predetermined It is inclined to have an angle of .
냉각팬(130)에서 발생된 바람의 유동 방향과 발전기(110)의 구동축(G)은 70 내지 110도의 범위의 소정의 각도로 마련될 수 있다. The flow direction of the wind generated by the cooling fan 130 and the driving shaft G of the generator 110 may be provided at a predetermined angle in the range of 70 to 110 degrees.
도 1 및 도 2를 참조하면, 발전기(110)는 수평 배열된 내연 기관부(120)를 기준으로 수직한 위치에 위치된다. 1 and 2 , the generator 110 is positioned at a vertical position with respect to the horizontally arranged internal combustion engine unit 120 .
예를 들어, 냉각팬(130)에서 점화 플러그(122) 쪽으로 유입되는 바람의 유입 방향을 기준으로 점화 플러그(122)의 상류 및 하류를 연결한 가상의 선과 발전기(110)의 구동축(G)은 서로 직교하도록 마련되는 것이 바람직하나, 반드시 이에 한정되는 것은 아니다. For example, an imaginary line connecting the upstream and downstream of the spark plug 122 based on the inflow direction of the wind flowing from the cooling fan 130 toward the spark plug 122 and the driving shaft G of the generator 110 is It is preferable that they are provided to be orthogonal to each other, but is not necessarily limited thereto.
한편, 수평 방향으로 배열되는 내연 기관부(120) 및 내연 기관부(120)의 공기 유입 측에 마련된 냉각팬(130)은 수평 방향, 즉 횡 방향으로 평행하게 배열된다. Meanwhile, the internal combustion engine unit 120 arranged in the horizontal direction and the cooling fan 130 provided on the air inlet side of the internal combustion engine unit 120 are arranged in parallel in the horizontal direction, that is, in the transverse direction.
여기서, 내연 기관부(120) 및 냉각팬(130)의 횡 방향으로 배열됨에 따라 점화 플러그(122)도 내연 기관부(120)와 동일한 횡 방향으로 배치되게 된다. Here, as the internal combustion engine unit 120 and the cooling fan 130 are arranged in the transverse direction, the spark plug 122 is also arranged in the same transverse direction as the internal combustion engine unit 120 .
이에 따라, 냉각팬(130)에서 발생된 바람도 횡 방향으로 유동되어 동일한 선상에 마련된 점화 플러그(122) 및 내연 기관부(120)의 냉각핀(127)과 접촉되게 된다. Accordingly, the wind generated by the cooling fan 130 also flows in the lateral direction to come into contact with the spark plug 122 and the cooling fin 127 of the internal combustion engine unit 120 provided on the same line.
이때, 도 1을 참조하면, 횡 방향으로 평행하게 배열된 내연 기관부(120) 및 냉각팬(130)은 카울(140)에 의해 덮히게 된다.At this time, referring to FIG. 1 , the internal combustion engine unit 120 and the cooling fan 130 arranged in parallel in the transverse direction are covered by the cowl 140 .
카울(140)은 내연 기관부(120) 및 냉각팬(130)의 배열 방향과 동일한 방향으로 배열되어 내연 기관부(120) 및 냉각팬(130)을 둘러싸도록 마련된다. 다시 말해서, 카울(140)은 횡 방향으로 배열된 내연 기관부(120) 및 냉각팬(130)을 둘러싸도록 횡 방향으로 가로 길이를 가지는 형태로 마련된다.The cowl 140 is arranged in the same direction as the arrangement direction of the internal combustion engine unit 120 and the cooling fan 130 to surround the internal combustion engine unit 120 and the cooling fan 130 . In other words, the cowl 140 is provided in a form having a transverse length in the transverse direction to surround the internal combustion engine unit 120 and the cooling fan 130 arranged in the transverse direction.
이러한, 카울(140)은 일부분이 내측으로 인입되는 형태로 형성된다. This, the cowl 140 is formed in a form in which a portion is drawn inward.
도 3을 참고하면, 카울(140)은 점화 플러그(122)가 배치된 내연 기관부(120)의 헤드 부분이 위치되는 양 단부가 내측으로 인입되는 형태를 갖는다. Referring to FIG. 3 , the cowl 140 has a shape in which both ends at which the head of the internal combustion engine unit 120 on which the spark plug 122 is disposed are located are drawn inward.
카울(140)의 내연 기관부(120)의 헤드 부분이 위치된 부분이 내측으로 인입되는 형태로 형성됨에 따라, 카울(140)은 도 4와 같은 형태로 형성될 수 있다.As the portion in which the head portion of the internal combustion engine unit 120 of the cowl 140 is positioned is formed to be drawn inward, the cowl 140 may be formed in the shape shown in FIG. 4 .
참고로, 카울(140)의 형상에 따라 내연 기관부(120)의 온도 강하에 영향을 줄 수 있기 때문에, 카울(140)의 형상은 본 발명의 제1 실시예에 한정되지 않는다. For reference, the shape of the cowl 140 is not limited to the first embodiment because the temperature drop of the internal combustion engine unit 120 may be affected depending on the shape of the cowl 140 .
한편, 상기한 바와 같이, 본 발명의 실시예들에 따른 내연 기관부(120)에는 냉각팬(130)에서 발생되어 유동되는 바람과 내연 기관부(120)의 접촉 면적을 향상시키기 위한 냉각핀(127)이 마련된다.Meanwhile, as described above, in the internal combustion engine unit 120 according to embodiments of the present invention, a cooling fin ( 127) is provided.
냉각핀(127)은 점화 플러그(122)의 위치를 기준으로 외부 공기의 유입 방향을 따라 점화 플러그(122)의 하류 측에 마련된다. The cooling fins 127 are provided on the downstream side of the spark plug 122 along the inflow direction of the external air based on the position of the spark plug 122 .
도 5 내지 도 10을 참조하면, 본 발명의 일 실시예에 따른 하이브리드 엔진(100)에서 냉각핀(127,127-1)은 다양한 형태로 형성될 수 있다. 참고로, 본 발명의 하이브리드 엔진(100)에서는 냉각핀(127,127-1)의 형태에 따라 내연 기관부(120,120-1)의 냉각 성능이 달라질 수도 있다.5 to 10 , in the hybrid engine 100 according to an embodiment of the present invention, the cooling fins 127 and 127 - 1 may be formed in various shapes. For reference, in the hybrid engine 100 of the present invention, the cooling performance of the internal combustion engine parts 120 and 120 - 1 may vary depending on the shape of the cooling fins 127 and 127 - 1 .
우선, 도 5 내지 도 7에 도시한 바와 같이, 내연 기관부(120)에 마련된 냉각핀(127)은 방사형으로 형성될 수 있다. 다시 말해서, 냉각핀(127)은 복수 개로 마련되고, 복수 개의 냉각핀(127)은 내연 기관부(120)의 중심(C)에 배치된 점화 플러그(122)를 기준으로 방사상으로 형성된다. First, as shown in FIGS. 5 to 7 , the cooling fins 127 provided in the internal combustion engine unit 120 may be formed in a radial shape. In other words, a plurality of cooling fins 127 are provided, and the plurality of cooling fins 127 are radially formed based on the spark plug 122 disposed at the center C of the internal combustion engine unit 120 .
이와 같이, 복수 개의 냉각핀(127)이 점화 플러그(122)를 기준으로 방사상으로 형성됨으로써 냉각팬(130)에서 발생된 바람과 냉각핀(127)의 접촉 면적이 향상되고, 결국 내연 기관부(120)의 냉각 성능을 향상시킬 수 있게 된다. As described above, since the plurality of cooling fins 127 are radially formed with respect to the spark plug 122, the contact area between the wind generated by the cooling fan 130 and the cooling fins 127 is improved, and eventually the internal combustion engine unit ( 120) to improve the cooling performance.
한편, 도 8 내지 도 10에 도시한 바와 같이, 내연 기관부(120-1)에 마련되는 냉각핀(127-1)은 격자형으로 형성될 수 있다. Meanwhile, as shown in FIGS. 8 to 10 , the cooling fins 127 - 1 provided in the internal combustion engine unit 120 - 1 may be formed in a grid shape.
다시 말해서, 냉각핀(127-1)은 복수 개로 마련되고, 복수 개의 냉각핀(127-1)은 내연 기관부(120)의 중심(C)에 배치된 점화 플러그(122)를 기준으로 서로 다른 방향으로 교차되도록 마련된다. In other words, the cooling fins 127 - 1 are provided in plurality, and the plurality of cooling fins 127 - 1 are different from each other with respect to the spark plug 122 disposed at the center C of the internal combustion engine unit 120 . are provided to cross in the direction.
이때, 복수 개의 냉각핀(127-1)은 점화 플러그(122)를 기준으로 소정 간격 이격된 상태에서 적어도 일부분이 교차되도록 마련될 수 있다.In this case, the plurality of cooling fins 127 - 1 may be provided to cross at least a portion of the plurality of cooling fins 127 - 1 while being spaced apart from each other by a predetermined distance with respect to the spark plug 122 .
구체적으로, 복수 개의 냉각핀(127-1)은 내연 기관부(120-1)의 중심(C), 즉 점화 플러그(122)의 중심을 기준으로 제1 방향(도 12에서 세로 방향)으로 형성되는 복수 개의 제1 핀부재(127-1a)와, 제1 핀부재(127-1a)와 다른 제2 방향(도 10에서 가로 방향)으로 형성되는 복수 개의 제2 핀부재(127-1b)를 포함한다. Specifically, the plurality of cooling fins 127 - 1 are formed in the first direction (vertical direction in FIG. 12 ) with respect to the center C of the internal combustion engine unit 120 - 1 , that is, the center of the spark plug 122 . a plurality of first pin members 127-1a and a plurality of second pin members 127-1b formed in a second direction (horizontal direction in FIG. 10) different from the first pin member 127-1a include
이때, 제2 핀부재(127-1b)는 제1 핀부재(127-1a)와 적어도 일부분이 교차되도록 마련될 수 있다.In this case, the second pin member 127-1b may be provided such that at least a portion thereof crosses the first pin member 127-1a.
또한, 서로 교차되도록 마련된 제1 핀부재(127-1a)와 제2 핀부재(127-1b) 중에서 적어도 일부는 내연 기관부(120)의 중심(C)에 배치된 점화 플러그(122)로부터 소정 간격 이격된 상태로 마련된다. In addition, at least a portion of the first pin member 127-1a and the second pin member 127-1b provided to cross each other is predetermined from the spark plug 122 disposed at the center C of the internal combustion engine unit 120 . They are provided in a spaced apart state.
예를 들어, 도 8 및 도 9에 도시한 바와 같이, 냉각핀(127)의 제1 핀부재(127a) 중에서 일부는 내연 기관부(120-1)의 중심(C)에 배치된 점화 플러그(122)를 기준으로 이격된 상태로 마련될 수 있다. 이때, 제1 핀부재(127a) 중에서 다른 일부는 이격되지 않고 연장되어 연결된 상태로 마련된다. For example, as shown in FIGS. 8 and 9 , some of the first fin members 127a of the cooling fins 127 are spark plugs ( 122) may be provided in a spaced apart state. At this time, the other part of the first pin member 127a is provided in a connected state to extend without being spaced apart.
반면, 제2 핀부재(127-1b)는 내연 기관부(120-1)의 중심(C)에 배치된 점화 플러그(122)를 기준으로 연장된 상태로 마련된 제1 핀부재(127-1a)에 의해 이격된 상태로 마련될 수 있다.On the other hand, the second pin member 127-1b is provided in an extended state with respect to the spark plug 122 disposed at the center C of the internal combustion engine unit 120-1. It may be provided in a spaced apart state by
한편, 도 5 및 도 10을 참조하면, 냉각핀(127,127-1)을 포함하는 내연 기관부(120,120-1)의 일측에는 배기포트(128)가 형성된다.Meanwhile, referring to FIGS. 5 and 10 , an exhaust port 128 is formed on one side of the internal combustion engine parts 120 and 120 - 1 including the cooling fins 127 and 127 - 1 .
도 5 및 도 10에 도시한 바와 같이, 배기포트(128)의 형성 위치 및 크기에 따라 냉각핀(127,127-1)의 형태가 달라질 수 있다.5 and 10 , the shape of the cooling fins 127 and 127 - 1 may vary depending on the location and size of the exhaust port 128 .
예를 들어, 냉각핀(127,127-1)은 배기포트(128)의 상단부를 모두 덮도록 형성될 수도 있고 일부만 덮도록 형성될 수도 있다. 또한, 냉각핀(127,127-1)은 배기포트(128)를 덮지 않도록 형성될 수도 있다. For example, the cooling fins 127 and 127 - 1 may be formed to cover all of the upper end of the exhaust port 128 , or may be formed to cover only a part of the exhaust port 128 . In addition, the cooling fins 127 and 127 - 1 may be formed so as not to cover the exhaust port 128 .
즉, 냉각핀(127,127-1)이 배기포트(128)를 덮도록 형성되거나, 덮지 않도록 형성되는 것은 배기포트(128)의 위치 및 형태, 그리고 내연 기관부(120,120-1)의 냉각 성능에 따라 달라질 수 있다. That is, whether the cooling fins 127 and 127 - 1 are formed to cover the exhaust port 128 or not to cover the exhaust port 128 depends on the position and shape of the exhaust port 128 and the cooling performance of the internal combustion engine parts 120 and 120 - 1 . may vary.
참고로, 도 5 및 도 10을 참조하면, 내연 기관부(120,120-1)의 바닥면을 평평하게 형성할 수도 있다. For reference, referring to FIGS. 5 and 10 , the bottom surfaces of the internal combustion engine units 120 and 120 - 1 may be formed flat.
이는, 내연 기관부(120,120-1)를 복수 개로 형성할 경우, 내연 기관부(120,120-1)의 평평한 바닥면을 이용하여 내연 기관부(120,120-1)들을 안정적으로 체결할 수 있는 효과가 있다. This has the effect of stably fastening the internal combustion engine parts 120 and 120-1 by using the flat bottom surfaces of the internal combustion engine parts 120 and 120-1 when a plurality of internal combustion engine parts 120 and 120-1 are formed. .
한편, 도 11 내지 도 13을 참조하면, 냉각핀(127,127-1)에는 적어도 하나의 공기 접촉부(h)가 형성될 수 있다. Meanwhile, referring to FIGS. 11 to 13 , at least one air contact part h may be formed in the cooling fins 127 and 127 - 1 .
공기 접촉부(h)는 냉각팬(130)에서 발생되어 내연 기관부(120,120-1)로 유입되는 바람에 의한 내연 기관부(120,120-1)의 냉각 효과를 향상시키기 위한 것이다.The air contact part h is for improving the cooling effect of the internal combustion engine parts 120 and 120-1 by the wind generated by the cooling fan 130 and flowing into the internal combustion engine parts 120 and 120-1.
이러한, 공기 접촉부(h)는 냉각핀(127,127-1)에 적어도 하나 이상, 복수 개로 형성되는 것이 바람직하다.여기서, 도 11에 도시한 바와 같이, 공기 접촉부(h)는 원형의 형태로 형성될 수 있다. 또한, 도 12 및 도 13에 도시한 바와 같이 공기 접촉부(h)는 삼각형 또는 마름모와 같은 다각형의 형태로 형성될 수도 있다. At least one or more air contact portions h are preferably formed in the cooling fins 127 and 127-1. Here, as shown in FIG. 11, the air contact portions h may be formed in a circular shape. can In addition, as shown in FIGS. 12 and 13 , the air contact part h may be formed in a polygonal shape such as a triangle or a rhombus.
더욱이, 공기 접촉부(h)이 냉각핀(127,127-1)이 복수 개의 원형, 삼각형 또는 다각형 중 하나로 형성될 때, 복수 개의 공기 접촉부(h)은 모두 동일한 크기로 형성될 수도 있고 서로 다른 크기로 형성될 수도 있다. Moreover, when the air contact portion (h) is formed in one of a plurality of circular, triangular or polygonal cooling fins (127, 127-1), the plurality of air contact portions (h) may all be formed in the same size or have different sizes. it might be
참고로, 도 11 내지 도 13에 도시한 바와 같이, 냉각핀(127,127-1)에 형성되는 공기 접촉부(h)이 원형, 삼각형 또는 마름모 중 하나로 형성되는 것으로 도시하였으나 반드시 이에 한정되는 것은 아니며, 필요에 따라 다른 형태로 형성될 수도 있다. 또한, 도 11 내지 도 13에 도시한 냉각핀(127,127-1)의 형태 및 크기는 변형될 수 있으며, 반드시 이에 한정되는 것은 아니다.For reference, as shown in FIGS. 11 to 13, the air contact portion (h) formed in the cooling fins 127 and 127-1 is illustrated as being formed in one of a circle, a triangle, or a rhombus, but is not necessarily limited thereto. It may be formed in a different shape depending on the In addition, the shapes and sizes of the cooling fins 127 and 127 - 1 shown in FIGS. 11 to 13 may be modified, but are not necessarily limited thereto.
또한, 공기 접촉부(h)는 구멍(hole) 또는 홈(groove) 중에서 적어도 하나의 형태로 형성될 수 있다. 이때, 도 11 내지 도 13에 도시한 바와 같이, 공기 접촉부(h)가 구멍으로 형성되는 것이 바람직하나 반드시 이에 한정되는 것은 아니며, 냉각핀(127,127-1)에 대한 공기(또는 바람)의 접촉 면적을 향상시키기 위해 다른 형태로 형성될 수도 있다.In addition, the air contact portion (h) may be formed in the form of at least one of a hole (hole) or a groove (groove). At this time, as shown in FIGS. 11 to 13 , it is preferable that the air contact part (h) is formed as a hole, but is not limited thereto, and the contact area of air (or wind) with respect to the cooling fins 127 and 127 - 1 It may be formed in other shapes to improve the
이와 같이, 냉각핀(127,127-1)에 복수 개의 공기 접촉부(h)를 형성하게 되면 냉각핀(127,127-1)의 무게를 줄일 수 있을 뿐만 아니라, 내연 기관부(120,120-1)의 자체 무게도 줄일 수 있는 효과가 있다.In this way, when the plurality of air contact parts h are formed on the cooling fins 127 and 127-1, the weight of the cooling fins 127 and 127-1 can be reduced, and the weight of the internal combustion engine parts 120 and 120-1 is also reduced. has the effect of reducing it.
또한, 냉각핀(127,127-1)에 복수 개의 공기 접촉부(h)가 형성되어 냉각팬(130)에서 내연 기관부(120,120-1) 쪽으로 유동되는 바람에 의해 냉각핀(127,127-1) 부근에서 와류(vortex)가 발생되므로 내연 기관부(120,120-1)의 냉각 면적이 확대되게 된다. In addition, a plurality of air contact portions (h) are formed on the cooling fins (127, 127-1), and a vortex current near the cooling fins (127, 127-1) by the wind flowing from the cooling fan (130) toward the internal combustion engine part (120, 120-1). Since the vortex is generated, the cooling area of the internal combustion engine parts 120 and 120 - 1 is enlarged.
즉, 냉각핀(127,127-1)에 형성된 복수 개의 공기 접촉부(h)에 의해 냉각팬(130)에서 내연 기관부(120,120-1)로 유입되는 바람에 의한 내연 기관부(120,120-1) 자체의 냉각 효과를 더욱 향상시킬 수 있게 되는 것이다.That is, the internal combustion engine parts 120 and 120-1 itself by the wind flowing into the internal combustion engine parts 120 and 120-1 from the cooling fan 130 by the plurality of air contact parts h formed on the cooling fins 127 and 127-1. It will be possible to further improve the cooling effect.
이하, 도 14 내지 도 16을 참조하여, 본 발명의 제2 실시예에 따른 하이브리드 엔진(200)을 전술한 실시예와 상이한 점을 중심으로 설명한다.Hereinafter, the hybrid engine 200 according to the second embodiment of the present invention will be described with reference to FIGS. 14 to 16 , focusing on differences from the above-described embodiment.
본 발명의 제2 실시예에 따른 하이브리드 엔진(200)은 전술한 제1 실시예와는 다르게, 내연 기관부(120), 점화 플러그(122) 및 냉각팬(130)의 개수가 상이한 점과 그에 따른 카울(240)의 형태가 상이한 점을 제외하고, 전술한 제1 실시예와 실질적으로 동일하므로, 그 동일한 구성에 대해서는 동일한 구성에 대해서는 동일한 명칭 및 도면 부호를 부여하였으며, 그에 대한 설명은 전술한 제1 실시예를 준용하기로 한다.The hybrid engine 200 according to the second embodiment of the present invention differs from the above-described first embodiment in that the number of the internal combustion engine unit 120 , the spark plug 122 and the cooling fan 130 is different. Since the cowl 240 is substantially the same as the first embodiment described above, except that the shape of the cowl 240 is different, the same names and reference numerals are given to the same components for the same components, and the description thereof is described above. The first embodiment will be applied mutatis mutandis.
도 14 및 도 15를 참조하면, 본 발명의 제2 실시예에 따른 하이브리드 엔진(200)은 하나의 발전기(110), 복수 개의 내연 기관부(120) 및 복수 개의 냉각팬(130)을 포함할 수 있다. 14 and 15 , the hybrid engine 200 according to the second embodiment of the present invention may include one generator 110 , a plurality of internal combustion engine units 120 , and a plurality of cooling fans 130 . can
여기서, 본 발명의 제2 실시예에 따른 하이브리드 엔진(200)은 두 개의 내연 기관부(120)와 두 개의 냉각팬(130)을 포함할 수 있다.Here, the hybrid engine 200 according to the second embodiment of the present invention may include two internal combustion engine units 120 and two cooling fans 130 .
이때, 두 개의 내연 기관부(120)는 횡 방향, 다시 말해서 수평으로 방향으로 배열되고, 두 개의 내연 기관부(120)는 하나의 발전기(110)와 연결되도록 마련된다. At this time, the two internal combustion engine parts 120 are arranged in the transverse direction, that is, in a horizontal direction, and the two internal combustion engine parts 120 are provided to be connected to one generator 110 .
참고로, 두 개의 내연 기관부(120)는 발전기(110)를 중심으로 대칭 배열될 수 있다. 또한, 두 개의 내연 기관부(120)는 내부가 서로 연통된 상태로 마련되어, 두 개의 내연 기관부(120)에서 발생된 구동력은 발전기(110)로 전달되게 된다. 이때, 점화 플러그(122)는 두 개가 수평 배열된 내연 기관부(120)의 각 단부에 적어도 하나 이상으로 마련된다. For reference, the two internal combustion engine units 120 may be symmetrically arranged around the generator 110 . In addition, the two internal combustion engine units 120 are provided in a state in which their interiors communicate with each other, and the driving force generated by the two internal combustion engine units 120 is transmitted to the generator 110 . At this time, at least one spark plug 122 is provided at each end of the internal combustion engine unit 120 in which two are horizontally arranged.
두 개가 수평 배열된 내연 기관부(120)의 각 단부에 배치된 점화 플러그(120)의 외부 공기 유입부(121)쪽에는 냉각팬(130)이 마련된다. A cooling fan 130 is provided at the external air inlet 121 side of the spark plug 120 disposed at each end of the two horizontally arranged internal combustion engine units 120 .
다시 말해서, 두 개가 수평 배열된 내연 기관부(120)의 각 단부에 배치된 점화 플러그(122)에 외부 공기가 유입 되는 유입부(121)에는 적어도 하나의 냉각팬(130)이 마련된다. In other words, at least one cooling fan 130 is provided in the inlet 121 through which external air flows into the spark plugs 122 disposed at each end of the two horizontally arranged internal combustion engine units 120 .
상기한 바와 같이, 내연 기관부(120)가 두 개로 마련됨에 따라, 점화 플러그(122)는 두 개의 내연 기관부(120)의 각각에 마련된다. 또한, 냉각팬(130)도 두 개의 내연 기관부(120)의 각각에 마련된 각각의 점화 플러그(122)의 유입부(121) 쪽에 하나씩 마련된다. As described above, as the two internal combustion engine parts 120 are provided, the spark plug 122 is provided in each of the two internal combustion engine parts 120 . In addition, one cooling fan 130 is also provided at the inlet 121 side of each spark plug 122 provided in each of the two internal combustion engine units 120 .
도 14 및 도 15에 도시한 바와 같이, 두 개가 수평 배열된 내연 기관부(120)의 각 단부와 인접한 위치에 각각 마련된 냉각팬(130)에서 발생된 바람은 수평 배열된 두 개의 내연 기관부(120)의 각 단부에 배치된 점화 플러그(122)와 접촉되어 점화 플러그(122)를 냉각시킨다. 그 다음, 각 내연 기관부(120)의 냉각핀(127)과 접촉되어 내연 기관부(120)를 냉각시킨 후에, 발전기(110)를 통해 외부로 모두 배출되게 된다. As shown in FIGS. 14 and 15, the wind generated by the cooling fans 130 respectively provided at positions adjacent to each end of the two horizontally arranged internal combustion engine parts 120 is generated by the two horizontally arranged internal combustion engine parts ( The spark plugs 122 are cooled by being in contact with the spark plugs 122 disposed at each end of the 120 . Then, after contacting the cooling fins 127 of each internal combustion engine unit 120 to cool the internal combustion engine unit 120 , they are all discharged to the outside through the generator 110 .
한편, 본 발명의 제2 실시예에 따른 하이브리드 엔진(200)에서 수평 방향으로 배열된 복수 개의 내연 기관부(120)와 복수 개의 냉각팬(130)은 카울(240)에 의해 덮히게 된다.Meanwhile, in the hybrid engine 200 according to the second embodiment of the present invention, the plurality of internal combustion engine units 120 and the plurality of cooling fans 130 arranged in the horizontal direction are covered by the cowl 240 .
이때, 도 16에 도시한 바와 같이, 카울(240)은 복수 개의 내연 기관부(120) 및 냉각팬(130)의 배열 방향과 동일하게 횡 방향으로 긴 길이를 가지도록 형성된다. 다시 말해서, 카울(240)은 횡 방향으로 긴 길이를 가지도록 형성되며 복수 개의 내연 기관부(120) 및 냉각팬(130)을 둘러싸도록 마련된다. At this time, as shown in FIG. 16 , the cowl 240 is formed to have a long length in the lateral direction in the same manner as in the arrangement direction of the plurality of internal combustion engine units 120 and the cooling fan 130 . In other words, the cowl 240 is formed to have a long length in the transverse direction and is provided to surround the plurality of internal combustion engine units 120 and the cooling fan 130 .
이때, 카울(240)은 전술한 본 발명의 제1 실시예에 따른 카울(140)과 마찬가지로, 내연 기관부(120)의 헤드 부분의 위치되는 각 단부의 양 단부가 내측으로 인입되는 형태로 형성될 수 있다. At this time, like the cowl 140 according to the first embodiment of the present invention described above, the cowl 240 is formed in such a way that both ends of each end of the head portion of the internal combustion engine unit 120 are drawn inward. can be
이와 같이, 카울(240)에서 내연 기관부(120)의 헤드 부분이 위치된 부분이 내측으로 인입 형성되어 냉각팬(130)에서 발생된 바람의 유동 속도가 빨라지는 효과가 있다. 더욱이, 냉각팬(130)에서 발생된 바람이 빠른 유동 속도를 가짐에 따라 점화 플러그(122) 및 내연 기관부(120)를 더욱 효과적으로 냉각시킬 수 있게 된다. As described above, the portion in which the head portion of the internal combustion engine unit 120 is located in the cowl 240 is formed to be drawn in, thereby increasing the flow speed of the wind generated by the cooling fan 130 . Moreover, as the wind generated by the cooling fan 130 has a high flow speed, it is possible to more effectively cool the spark plug 122 and the internal combustion engine unit 120 .
다만, 상기와 같은 카울(240)의 형태는 본 발명의 실시예들에 한정되지 않는다. However, the shape of the cowl 240 as described above is not limited to the embodiments of the present invention.
이하, 도 1 내지 도 16을 참조하여, 상술한 본 발명의 실시예들과 다른 관점에서 하이브리드 엔진(100,200)을 설명한다.Hereinafter, the hybrid engines 100 and 200 from a different viewpoint from the above-described embodiments of the present invention will be described with reference to FIGS. 1 to 16 .
본 발명의 실시예들에 따른 하이브리드 엔진(100,200)은 내연 기관부(120,120-1) 및 내연 기관부(120,120-1)와 연결되는 발전기(110)를 포함할 수 있다.The hybrid engines 100 and 200 according to embodiments of the present invention may include internal combustion engine parts 120 and 120 - 1 and a generator 110 connected to the internal combustion engine parts 120 and 120 - 1 .
내연 기관부(120,120-1)는 단부에 점화 플러그(122)가 배치되는 연소실이 내부에 마련되고 외부에는 복수 개의 냉각핀(127,127-1)이 마련된다.The internal combustion engine parts 120 and 120 - 1 have a combustion chamber in which a spark plug 122 is disposed at an end thereof, and a plurality of cooling fins 127 and 127 - 1 are provided on the outside.
내연 기관부(120,120-1)의 냉각핀(127)은 내연 기관부(120,120-1)로 유입되는 외부 공기와 내연 기관부(120)의 접촉 면적을 증가시키기 위한 것이다. The cooling fins 127 of the internal combustion engine parts 120 and 120 - 1 are for increasing the contact area between the external air flowing into the internal combustion engine parts 120 and 120 - 1 and the internal combustion engine part 120 .
이때, 내연 기관부(120,120-1)로 유입되는 외부 공기는 외부에서 내연 기관부(120,120-1)로 유입되는 공기를 모두 포함하는 의미일 수 있다. In this case, the external air flowing into the internal combustion engine parts 120 and 120 - 1 may include all of the air flowing into the internal combustion engine parts 120 and 120 - 1 from the outside.
여기서, 복수 개의 냉각핀(127)은 내연 기관부(120)의 중심(C)에 배치된 점화 플러그(122)를 기준으로 방사상으로 형성되는 방사형으로 형성될 수 있다. 또한, 복수 개의 냉각핀(127-1)은 내연 기관부(120-1)의 중심(C)에 배치된 점화 플러그(122)를 기준을 서로 다른 방향으로 교차되는 격자형으로 형성될 수 있다. Here, the plurality of cooling fins 127 may be radially formed based on the spark plug 122 disposed at the center C of the internal combustion engine unit 120 . In addition, the plurality of cooling fins 127 - 1 may be formed in a grid shape that crosses the spark plug 122 disposed at the center C of the internal combustion engine unit 120 - 1 in different directions.
여기서, 방사형 또는 격자형의 복수 개의 냉각핀(127,127-1)은 내연 기관부(120,120-1)의 내부에 마련된 피스톤(124)의 왕복 운동 방향과 평행하게 형성된다. Here, the plurality of radial or grid-shaped cooling fins 127 and 127 - 1 are formed parallel to the reciprocating direction of the piston 124 provided inside the internal combustion engine parts 120 and 120 - 1 .
다시 말해서, 복수 개의 냉각핀(127,127-1)은 내연 기관부(127,127-1)의 둘레를 따라 소정 간격을 두고 이격되어 형성되되, 피스톤(124)의 왕복 운동 방향과 평행한 배열 방향을 갖도록 형성된다.In other words, the plurality of cooling fins 127 and 127-1 are spaced apart from each other at a predetermined distance along the circumference of the internal combustion engine unit 127 and 127-1, and are formed to have an arrangement direction parallel to the reciprocating motion direction of the piston 124. do.
본 발명의 제2 실시예에 따른 하이브리드 드론(200)에 기재된 바와 같이 복수 개의 내연 기관부(120,120-1)가 수평 배열되는 경우, 복수 개의 냉각핀(127,127-1)의 배열 방향은 복수 개의 내연 기관부(120,120-1)가 배열된 방향과 동일한 횡 방향으로 형성되는 것으로 볼 수도 있다.As described in the hybrid drone 200 according to the second embodiment of the present invention, when the plurality of internal combustion engine parts 120 and 120-1 are horizontally arranged, the arrangement direction of the plurality of cooling fins 127 and 127-1 is the plurality of internal combustion engine parts. It may be seen that the engine parts 120 and 120 - 1 are formed in the same transverse direction as the arrangement direction.
이와 같이, 내연 기관부(120,120-1)로 유입되는 외부 공기는 복수 개의 냉각핀(127,127-1)의 배열 방향과 동일한 방향으로 유동되어 내연 기관부(120,120-1)와 접촉되고, 내연 기관부(120,120-1)를 따라 흐르도록 마련된다. In this way, the external air flowing into the internal combustion engine parts 120 and 120-1 flows in the same direction as the arrangement direction of the plurality of cooling fins 127 and 127-1 and comes into contact with the internal combustion engine parts 120 and 120-1, and the internal combustion engine part It is provided to flow along (120, 120-1).
다시 말해서, 내연 기관부(120,120-1) 쪽으로 유입된 외부 공기는 먼저 점화 플러그(122)와 접촉되어 점화 플러그(122)를 냉각시킨다. 그 다음, 복수 개의 냉각핀(127,127-1)의 사이로 외부 공기가 유입되어 내연 기관부(120,120-1)를 냉각시키고, 발전기(120)를 통해 외부로 모두 배출되게 된다.In other words, the external air introduced toward the internal combustion engine parts 120 and 120 - 1 first comes into contact with the spark plug 122 to cool the spark plug 122 . Next, external air is introduced between the plurality of cooling fins 127 and 127-1 to cool the internal combustion engine parts 120 and 120-1, and all of them are discharged to the outside through the generator 120.
참고로, 상술한 바와 같이, 종래 하이브리드 엔진의 경우, 냉각핀이 내연 기관부의 피스톤의 왕복 방향과 직교하는 배열 방향(수평 방향)을 가지게 된다. 이러한 종래 하이브리드 엔진은 외부 공기가 냉각핀을 따라 내연 기관부를 흐르지 못하기 때문에 내연 기관부의 전면 및 후면의 냉각 효과 및 성능이 달라지게 되어 내연 기관부를 전체적으로 냉각시키는 것이 어렵게 된다. For reference, as described above, in the case of a conventional hybrid engine, the cooling fins have an arrangement direction (horizontal direction) perpendicular to the reciprocating direction of the piston of the internal combustion engine unit. In such a conventional hybrid engine, since external air does not flow through the internal combustion engine part along the cooling fins, the cooling effect and performance of the front and rear surfaces of the internal combustion engine part are changed, making it difficult to cool the internal combustion engine part as a whole.
즉, 종래 피스톤 왕복 운동 방향과 수직한 배열 방향을 가지는 수평형 냉각핀을 포함하는 하이브리드 엔진과 비교하면, 본 발명의 실시예들에 따른 하이브리드 엔진(100,200)은 내연 기관부(120,120-1)로 유입되는 외부 공기가 복수 개의 냉각핀(127,127-1)을 따라 흐르도록 형성되기 때문에 내연 기관부(120,120-1)를 전체적으로 냉각시킬 수 있게 된다. 더욱이, 내연 기관부(120,120-1)로 유입된 외부 공기는 내연 기관부(120,120-1)의 전면 및 후면과 균일하게 접촉되도록 마련되기 때문에 내연 기관부(120,120-1)를 전체적으로 효과적으로 냉각시킬 수 있게 된다.That is, compared to a conventional hybrid engine including a horizontal cooling fin having an arrangement direction perpendicular to the piston reciprocating motion direction, the hybrid engine 100 and 200 according to the embodiments of the present invention includes the internal combustion engine parts 120 and 120-1. Since the incoming external air is formed to flow along the plurality of cooling fins 127 and 127 - 1 , it is possible to cool the internal combustion engine parts 120 and 120 - 1 as a whole. Moreover, since the external air introduced into the internal combustion engine parts 120 and 120-1 is provided to be in uniform contact with the front and rear surfaces of the internal combustion engine parts 120 and 120-1, the internal combustion engine parts 120 and 120-1 can be effectively cooled as a whole. there will be
참고로, 상술한 바와 같이, 종래 하이브리드 엔진의 경우에는 냉각핀이 내연 기관부의 피스톤의 왕복 방향과 직교하는 방향의 배열 방향(수평 방향)을 가지게 된다. 이러한 종래 하이브리드 엔진은 외부 공기가 냉각핀을 따라 내연 기관부를 흐르지 못하기 때문에 내연 기관부의 전면 및 후면의 냉각 효과 및 성능이 달라지게 되어 내연 기관부를 전체적으로 냉각시키는 것이 어렵게 되는 문제점이 있다.For reference, as described above, in the case of a conventional hybrid engine, the cooling fins have an arrangement direction (horizontal direction) in a direction perpendicular to the reciprocating direction of the piston of the internal combustion engine unit. Since the external air does not flow through the internal combustion engine part along the cooling fins in the conventional hybrid engine, the cooling effect and performance of the front and rear surfaces of the internal combustion engine part are changed, so that it is difficult to cool the internal combustion engine part as a whole.
이하, 도 17 내지 도 19를 참조하여, 본 발명의 실시예들에 따른 하이브리드 엔진(100,200)에 대하여 CFD 시험을 수행한 결과에 대하여 간단히 설명한다. Hereinafter, a result of performing the CFD test on the hybrid engines 100 and 200 according to embodiments of the present invention will be briefly described with reference to FIGS. 17 to 19 .
참고로, 하기에서는 본 발명의 제2 실시예에 따른 하이브리드 엔진(200)으로 한정하여 CFD 시험을 수행한 결과에 대하여 설명하기로 한다. For reference, the results of performing the CFD test limited to the hybrid engine 200 according to the second embodiment of the present invention will be described below.
도 17 및 도 18은 하이브리드 엔진(200)으로 유입되는 바람의 유동 속도에 대한 CFD 시험 결과를 나타낸 도면이다. 17 and 18 are views showing CFD test results for the flow velocity of the wind introduced into the hybrid engine 200 .
도 17은 방사형의 냉각핀(127)이 마련된 내연 기관부(120)를 포함하는 하이브리드 엔진(200)으로 유입되는 바람의 유동 속도를 나타낸 것이다. 도 18은 격자형의 냉각핀(127-1)이 마련된 내연 기관부(120-1)를 포함하는 하이브리드 엔진(200)로 유입되는 바람의 유동 속도를 나타낸 것이다. FIG. 17 shows the flow velocity of wind flowing into the hybrid engine 200 including the internal combustion engine unit 120 provided with the radial cooling fins 127 . 18 shows the flow velocity of wind flowing into the hybrid engine 200 including the internal combustion engine unit 120-1 provided with the grid-type cooling fins 127-1.
이때, 도 17 및 도 18에 도시한 바와 같이, 바람은 내연 기관부(120, 120-1)의 양 측에서 유입되어 내연 기관부(120,120-1)의 중앙에 위치된 발전기(110)로 유동되는 유동 방향(flow direction)을 갖는다. At this time, as shown in FIGS. 17 and 18 , wind is introduced from both sides of the internal combustion engine parts 120 and 120-1 and flows to the generator 110 located in the center of the internal combustion engine parts 120 and 120-1. has a flow direction.
참고로, 도 17 및 도 18의 Velocity Streamline은 velocity streamline 막대의 상측(H1,H2)으로 가까울수록 하이브리드 엔진(200)으로 유입되는 바람의 유동 속도가 빠르다는 것이고, velocity streamline 막대의 하측(L1,L2)에 가까울수록 하이브리드 엔진(200)으로 유입되는 바람의 유동 속도가 느리다는 것을 의미한다.For reference, the velocity streamline of FIGS. 17 and 18 shows that the closer to the upper side (H1, H2) of the velocity streamline bar, the faster the flow velocity of the wind flowing into the hybrid engine 200, and the lower side of the velocity streamline bar (L1, The closer to L2), the slower the flow speed of the wind introduced into the hybrid engine 200 is.
도 17을 참조하면, 외부에서 유입된 공기가 복수 개의 내연 기관부(120)의 각 단부의 초입(a, e)은 L1 내지 L2의 유동 속도를 가지고, 내연 기관부(120)의 중앙(b.c)은 H1 내지 H2 정도의 유동 속도를 가지며, 발전기(110) 쪽은 H2의 유동 속도를 가지는 것으로 나타났다. Referring to FIG. 17 , the inlet (a, e) of each end of the plurality of internal combustion engine units 120 through which air introduced from the outside has a flow velocity of L1 to L2, and the center (b.c) of the internal combustion engine unit 120 . ) has a flow rate of about H1 to H2, and the generator 110 side has a flow rate of H2.
도 18을 참조하면, 외부에서 유입된 공기가 복수 개의 내연 기관부(120-1)의 각 단부의 초입(a,e)은 L1 정도의 유동 속도를 가지고, 내연 기관부(120-1)의 중앙(b,c)은 0 내지 L1의 유동 속도를 가지며, 내연 기관부(120-1)에서 발전기(110) 쪽은 L1 정도의 유동 속도를 가지는 것으로 나타났다. Referring to FIG. 18 , the inlet (a, e) of each end of the plurality of internal combustion engine parts 120-1 of the externally introduced air has a flow velocity of about L1, and the internal combustion engine part 120-1 is The center (b, c) has a flow velocity of 0 to L1, and the generator 110 side in the internal combustion engine unit 120-1 has a flow velocity of about L1.
즉, 격자형으로 형성된 냉각핀(127-1)이 마련된 내연 기관부(120-1)를 포함하는 하이브리드 엔진(200)으로 유입되는 바람의 유동 속도에 비하여 방사형으로 형성된 냉각핀(127)이 마련된 내연 기관부(120)를 포함하는 하이브리드 엔진(200)으로 유입되는 바람의 유동 속도가 크게 증가하는 것을 알 수 있다. That is, the cooling fins 127 formed radially compared to the flow rate of the wind flowing into the hybrid engine 200 including the internal combustion engine unit 120-1 provided with the cooling fins 127-1 formed in a grid shape are provided. It can be seen that the flow velocity of the wind introduced into the hybrid engine 200 including the internal combustion engine unit 120 is greatly increased.
도 19는 하이브리드 엔진(200)의 내연 기관부(120,120-1)의 온도 분포에 대한 CFD 시험 결과를 나타낸 도면이다. 19 is a view showing CFD test results for the temperature distribution of the internal combustion engine parts 120 and 120 - 1 of the hybrid engine 200 .
도 19에서 도시된 종래 기술은 기존의 하이브리드 엔진의 외주면을 따라 수평 방향으로 형성된 수평형의 냉각핀을 포함하는 내연 기관부의 온도 분포를 나타낸 것이다. The prior art illustrated in FIG. 19 shows a temperature distribution of an internal combustion engine including horizontal cooling fins formed in a horizontal direction along an outer circumferential surface of a conventional hybrid engine.
도 19의 (a)는 하이브리드 엔진(200)의 방사형의 냉각핀(127)을 포함하는 내연 기관부(120)의 온도 분포를 나타낸 것이다. 또한, 도 19의 (b)는 하이브리드 엔진(200)의 격자형의 냉각핀(127-1)을 포함하는 내연 기관부(120-1)의 온도 분포를 나타낸 것이다. 19( a ) shows the temperature distribution of the internal combustion engine unit 120 including the radial cooling fins 127 of the hybrid engine 200 . Also, FIG. 19(b) shows the temperature distribution of the internal combustion engine unit 120-1 including the grid-type cooling fins 127-1 of the hybrid engine 200. As shown in FIG.
참고로, 도 19를 참조하면, 온도 분포 결과가 빨간색에 가까울수록 하이브리드 엔진(200)의 내연 기관부(120)의 온도가 높다는 것이고, 파란색에 가까울수록 하이브리드 엔진(200)의 내연 기관부(120-1)의 온도가 낮다는 것을 의미한다.For reference, referring to FIG. 19 , as the temperature distribution result is closer to red, the temperature of the internal combustion engine part 120 of the hybrid engine 200 is higher, and as the temperature distribution result is closer to blue, the internal combustion engine part 120 of the hybrid engine 200 -1) means that the temperature is low.
도 19에 도시한 바와 같이, 종래 기술 및 본 발명의 실시예들에 따른 내연 기관부(120,120-1)의 점화 플러그(122) 부근의 온도 분포에 있어서 차이가 발생한다.As shown in FIG. 19 , a difference occurs in the temperature distribution in the vicinity of the spark plug 122 of the internal combustion engine parts 120 and 120 - 1 according to the prior art and embodiments of the present invention.
구체적으로, 도 19의 종래에 도시한 바와 같이, 종래 수평형의 냉각핀이 적용된 하이브리드 엔진의 점화 플러그(P1) 부근의 온도가 내연 기관부(P2)에 비하여 높은 것으로 나타났으며, 약 204 도로 측정되었다. Specifically, as shown in the prior art of FIG. 19, the temperature near the spark plug P1 of the hybrid engine to which the conventional horizontal cooling fin is applied was found to be higher than that of the internal combustion engine part P2, and about 204 degrees was measured.
이에 반해, 도 19의 (a)를 참조하면, 방사상의 냉각핀(127)을 포함하는 하이브리드 엔진(200)의 점화 플러그(122) 부근의 온도 분포(a')가 냉각핀(127) 부근의 온도 분포(a'')보다 높은 것으로 나타났다. 이때, 방사형의 냉각핀(127)을 포함하는 하이브리드 엔진(200)의 점화 플러그(122) 부근의 온도는 약 196.1도로 측정되었다. In contrast, Referring to FIG. 19A , the temperature distribution (a') near the spark plug 122 of the hybrid engine 200 including the radial cooling fins 127 is the temperature distribution (a') near the cooling fins 127 ( a''). At this time, the temperature in the vicinity of the spark plug 122 of the hybrid engine 200 including the radial cooling fins 127 was measured to be about 196.1 degrees.
한편, 도 19의 (b)를 참조하면, 격자형으로 형성된 냉각핀(127-1)을 포함하는 하이브리드 엔진(200)의 점화 플러그(122) 부근의 온도 분포(b')가 냉각핀(127-1) 부근의 온도 분포(b'')보다 높은 것으로 나타났다. 이때, 격자형의 냉각핀(127-1)을 포함하는 하이브리드 엔진(200)의 점화 플러그(122) 부근의 온도는 약 199.6도로 측정되었다. On the other hand, referring to FIG. 19B , the temperature distribution b′ near the spark plug 122 of the hybrid engine 200 including the cooling fins 127 - 1 formed in a grid shape is determined by the cooling fins 127 . -1) was found to be higher than the temperature distribution (b'') in the vicinity. At this time, the temperature in the vicinity of the spark plug 122 of the hybrid engine 200 including the grid-type cooling fins 127 - 1 was measured to be about 199.6 degrees.
즉, 격자형의 냉각핀(127-1)을 포함하는 하이브리드 엔진(200)의 점화 플러그(122) 부근의 온도에 비하여 방사형의 냉각핀(127)을 포함하는 하이브리드 엔진(200)의 점화 플러그(122)의 부근의 온도가 낮게 측정되는 것으로 나타났다. That is, the spark plug ( 122) was found to be low.
따라서, 종래 수평형 냉각핀을 포함하는 내연 기관부에 비하여, 방사형의 냉각핀(127)을 포함하는 내연 기관부(120)와 격자형의 냉각핀(127-1)을 포함하는 내연 기관부(120-1)의 냉각 효과가 큰 것으로 나타났다. Therefore, compared to the conventional internal combustion engine part including the horizontal cooling fins, the internal combustion engine part 120 including the radial cooling fins 127 and the internal combustion engine part including the grid cooling fins 127-1 ( 120-1) showed a large cooling effect.
또한, 격자형의 냉각핀(127-1)을 포함하는 내연 기관부(120-1)에 비하여 방사형의 냉각핀(127)을 포함하는 내연 기관부(120)에서의 점화 플러그(122) 부근의 냉각 효과가 더욱 큰 것으로 나타났다. In addition, in comparison with the internal combustion engine part 120-1 including the grid-type cooling fins 127-1, the spark plug 122 in the internal combustion engine part 120 including the radial cooling fins 127 is located near the The cooling effect was found to be greater.
상기의 시험 결과에서와 같이, 냉각팬(130)이 점화 플러그(122)의 앞쪽에 위치하고 냉각팬(130)의 회전축(F)과 점화 플러그(122)의 중심축(S)이 동축 상에 위치되며, 냉각핀(127)을 점화 플러그(122)를 기준으로 방사형 및 격자형으로 형성함에 따라 종래의 하이브리드 엔진에 비하여 하이브리드 엔진(100,200)의 냉각 성능이 향상되게 됨을 알 수 있다. As in the above test result, the cooling fan 130 is located in front of the spark plug 122 and the rotation shaft F of the cooling fan 130 and the central axis S of the spark plug 122 are located on the same axis. In addition, it can be seen that the cooling performance of the hybrid engines 100 and 200 is improved compared to the conventional hybrid engine by forming the cooling fins 127 in radial and lattice shapes based on the spark plug 122 .
또한, 상기와 같이, 카울(140,240)의 일부분이 내측으로 인입된 형태로 형성됨에 따라 하이브리드 엔진(100,200)의 냉각 성능을 더욱 개선할 수 있게 된다.In addition, as described above, as a portion of the cowls 140 and 240 are formed to be inwardly retracted, the cooling performance of the hybrid engines 100 and 200 can be further improved.
상기한 구성에 의하여, 본 발명의 실시예들에 따른 본 발명의 하이브리드 엔진(100,200) 및 이를 포함하는 하이브리드 드론은, 냉각팬(130)의 회전축(F)과 점화 플러그(122)의 중심축(S)이 가상의 축 상에서 동축으로 배열됨에 따라 냉각팬(130)에 의해 발생된 바람을 통해 점화 플러그(122) 및 내연 기관부(120)의 냉각 성능을 향상시킬 수 있는 효과가 있다. According to the above configuration, the hybrid engines 100 and 200 of the present invention and the hybrid drone including the same according to the embodiments of the present invention, the rotation shaft F of the cooling fan 130 and the central shaft (F) of the spark plug 122 ( As S) is arranged coaxially on the virtual axis, there is an effect that the cooling performance of the spark plug 122 and the internal combustion engine unit 120 can be improved through the wind generated by the cooling fan 130 .
더욱이, 점화 플러그(122) 및 내연 기관부(120)의 냉각 성능이 향상됨에 따라 하이브리드 엔진(100,200)의 과열로 인한 하이브리드 드론의 작동 이상을 미연에 방지할 수 있는 이점이 있다. Furthermore, as the cooling performance of the spark plug 122 and the internal combustion engine unit 120 is improved, there is an advantage in that abnormal operation of the hybrid drone due to overheating of the hybrid engines 100 and 200 can be prevented in advance.
이상과 같이 본 발명의 실시예에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 청구범위뿐 아니라 이 청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다. As described above, the embodiment of the present invention has been described with specific matters such as specific components and limited embodiments and drawings, but these are only provided to help a more general understanding of the present invention, and the present invention is limited to the above embodiments Various modifications and variations are possible from these descriptions by those of ordinary skill in the art to which the present invention pertains. Accordingly, the spirit of the present invention should not be limited to the described embodiments, and not only the claims described below, but also all of the claims and all equivalents or equivalent modifications thereof will fall within the scope of the spirit of the present invention.
본 발명의 일 실시예와 관련된 하이브리드 엔진 및 이를 포함하는 하이브리드 드론에 따르면, 유입되는 외부 공기를 통해 점화 플러그 및 내연 기관부의 냉각 성능을 향상시킬 수 있다. According to the hybrid engine and the hybrid drone including the same according to an embodiment of the present invention, the cooling performance of the spark plug and the internal combustion engine unit may be improved through the inflowing external air.

Claims (16)

  1. 단부에 점화 플러그가 배치되는 연소실이 내부에 마련되고 외부 공기에 대한 접촉 면적을 증가시키기 위한 복수 개의 냉각핀이 배치되는 내연 기관부; an internal combustion engine part having a combustion chamber having a spark plug disposed at an end thereof and disposed therein with a plurality of cooling fins for increasing a contact area with respect to external air;
    내연 기관부와 연결되어 전기 에너지를 발생시키는 발전기; 및 a generator connected to the internal combustion engine unit to generate electrical energy; and
    점화 플러그 및 내연 기관부를 냉각시키기 위한 바람을 발생시키는 적어도 하나의 냉각팬을 포함하며,at least one cooling fan for generating wind for cooling the spark plug and the internal combustion engine part;
    외부 공기의 유입 방향을 기준으로 점화 플러그의 상류 측에는 냉각팬이 배치되고, 점화 플러그의 하류 측에는 외부 공기의 유동 방향을 따라 냉각 핀이 배치되는, 하이브리드 엔진. A cooling fan is disposed on the upstream side of the spark plug based on the inflow direction of the outside air, and a cooling fan is disposed on the downstream side of the spark plug. along the flow direction of the outside air A hybrid engine, on which cooling fins are disposed.
  2. 제1항에 있어서,According to claim 1,
    냉각팬에서 발생된 바람은 점화 플러그와 내연 기관부의 냉각핀과 접촉되어 점화 플러그 및 내연 기관부를 냉각시킨 후에 발전기를 통해 외부로 배출되는 유동 방향을 가지는, 하이브리드 엔진.The wind generated by the cooling fan comes into contact with the cooling fins of the spark plug and the internal combustion engine to cool the spark plug and the internal combustion engine, and then has a flow direction that is discharged to the outside through the generator.
  3. 제2항에 있어서,3. The method of claim 2,
    냉각팬의 회전축과 점화 플러그의 중심축은 가상의 축 상에서 동축으로 배열되도록 마련된, 하이브리드 엔진.A hybrid engine, wherein the rotational axis of the cooling fan and the central axis of the spark plug are arranged to be coaxially arranged on an imaginary axis.
  4. 제2항에 있어서, 3. The method of claim 2,
    냉각팬에서 발생된 바람의 유동 방향과 점화 플러그 및 내연 기관부는 동일선 상에 위치되도록 마련된, 하이브리드 엔진. A hybrid engine, wherein the flow direction of the wind generated by the cooling fan and the spark plug and the internal combustion engine are arranged to be positioned on the same line.
  5. 제2항에 있어서, 3. The method of claim 2,
    바람의 유동 방향은 발전기의 구동축과 소정의 각도를 가지도록 경사지게 형성되는, 하이브리드 엔진. The flow direction of the wind is formed to be inclined to have a predetermined angle with the drive shaft of the generator, the hybrid engine.
  6. 제5항에 있어서, 6. The method of claim 5,
    소정의 각도는 70도 내지 110도의 범위를 형성하는, 하이브리드 엔진.The predetermined angle forms a range from 70 degrees to 110 degrees.
  7. 제1항에 있어서,According to claim 1,
    복수 개의 내연 기관부가 발전기와 연결되도록 마련되고, 점화 플러그는 복수 개의 내연 기관부의 각 단부에 적어도 하나 이상으로 마련되는, 하이브리드 엔진.A hybrid engine, wherein a plurality of internal combustion engine parts are provided to be connected to the generator, and at least one spark plug is provided at each end of the plurality of internal combustion engine parts.
  8. 제7항에 있어서, 8. The method of claim 7,
    복수 개의 내연 기관부와 그 단부에 마련된 각각의 점화 플러그를 냉각시키기 위한 바람을 발생시키는 복수 개의 냉각팬을 포함하고, A plurality of internal combustion engine units and a plurality of cooling fans for generating wind for cooling each spark plug provided at an end thereof,
    복수 개의 냉각팬 각각에서 발생된 바람은 복수 개의 내연 기관부의 단부에 마련된 각각의 점화 플러그 및 내연 기관부의 냉각핀과 접촉되어 점화 플러그와 내연 기관부를 냉각시킨 후에 발전기를 통해 외부로 배출되도록 마련된, 하이브리드 엔진. The wind generated from each of the plurality of cooling fans is provided to be discharged to the outside through the generator after the spark plugs and the cooling fins of the internal combustion engine unit are in contact with each spark plug provided at the end of the plurality of internal combustion engine units to cool the spark plugs and the internal combustion engine unit. engine.
  9. 제1항에 있어서,According to claim 1,
    복수 개의 냉각핀은 점화 플러그를 기준으로 방사상으로 형성되도록 마련된, 하이브리드 엔진.A plurality of cooling fins are provided to be radially formed with respect to the spark plug, the hybrid engine.
  10. 제1항에 있어서,According to claim 1,
    복수 개의 냉각핀은 점화 플러그를 중심으로 서로 다른 방향으로 교차되는 방향으로 형성되도록 마련된, 하이브리드 엔진.A hybrid engine, wherein the plurality of cooling fins are formed in directions crossing the spark plugs in different directions.
  11. 제10항에 있어서, 11. The method of claim 10,
    복수 개의 냉각핀이 점화 플러그로부터 소정 간격 이격된 상태에서 적어도 일 부분이 교차되도록 마련된, 하이브리드 엔진.A hybrid engine in which at least one portion of a plurality of cooling fins is provided to cross each other while being spaced apart from the spark plug by a predetermined distance.
  12. 제11항 있어서, 12. The method of claim 11,
    냉각핀은, cooling fins,
    제1 방향으로 형성되는 복수 개의 제1 핀부재; a plurality of first fin members formed in a first direction;
    제1 핀부재와 다른 제2 방향으로 형성되어 적어도 일 부분이 교차되는 복수 개의 제2 핀부재를 포함하고, and a plurality of second fin members formed in a second direction different from the first fin member so that at least one portion intersects;
    제1 핀부재 및 제2 핀부재 중에서 적어도 일부는 점화 플러그를 중심으로 소정 간격 이격된 상태로 마련되는, 하이브리드 엔진.The hybrid engine, wherein at least some of the first pin member and the second pin member are provided to be spaced apart from each other by a predetermined distance with respect to the spark plug.
  13. 제1항 있어서,The method of claim 1,
    냉각핀에는 적어도 하나 이상의 공기 접촉부가 형성되는, 하이브리드 엔진.A hybrid engine, wherein the cooling fins are formed with at least one air contact.
  14. 제1항에 있어서,According to claim 1,
    적어도 하나의 내연 기관부 및 냉각팬은 수평 방향으로 배열되고, the at least one internal combustion engine part and the cooling fan are arranged in a horizontal direction,
    카울은 내연 기관부 및 냉각팬의 배열 방향과 동일한 방향으로 배열되어 내연 기관부 및 냉각팬을 둘러싸도록 마련된, 하이브리드 엔진.The cowl is arranged in the same direction as the arrangement direction of the internal combustion engine unit and the cooling fan and is provided to surround the internal combustion engine unit and the cooling fan.
  15. 단부에 점화 플러그가 배치되는 연소실이 내부에 마련되고 외부 공기에 대한 접촉 면적을 증가시키기 위한 복수 개의 냉각핀이 배치되는 내연 기관부; 및an internal combustion engine part having a combustion chamber having a spark plug disposed at an end thereof and disposed therein with a plurality of cooling fins for increasing a contact area with respect to external air; and
    내연 기관부와 연결되어 전기 에너지를 발생시키는 발전기를 포함하며,It includes a generator connected to the internal combustion engine unit to generate electrical energy,
    내연 기관부에는 연소실의 내부에서 왕복 운동하는 적어도 하나의 피스톤이 배치되고,At least one piston reciprocating inside the combustion chamber is disposed in the internal combustion engine unit,
    복수 개의 냉각핀의 배열 방향은 피스톤의 운동 방향과 평행하게 형성되며,The arrangement direction of the plurality of cooling fins is formed parallel to the movement direction of the piston,
    내연 기관부로 유입되는 외부 공기는 복수 개의 냉각핀의 배열 방향과 동일한 방향을 따라 흐르도록 마련된, 하이브리드 엔진.The external air introduced into the internal combustion engine unit is provided to flow in the same direction as the arrangement direction of the plurality of cooling fins, the hybrid engine.
  16. 중공부를 갖는 하우징;a housing having a hollow part;
    하우징으로부터 방사상으로 연장되는 하나 이상의 암;one or more arms extending radially from the housing;
    하나 이상의 암의 단부에 구비되는 프로펠러 구동용 모터;a motor for driving a propeller provided at an end of one or more arms;
    모터의 회전축에 결합되어 추력을 발생시키는 프로펠러;a propeller coupled to the rotation shaft of the motor to generate thrust;
    모터에 구동력을 제공하는 배터리; 및 a battery that provides driving power to the motor; and
    하우징에 구비되고 구동에 의해 발생된 전기 에너지가 모터 또는 배터리에 공급되도록 마련된 하이브리드 엔진을 포함하며,It includes a hybrid engine provided in the housing and provided so that electric energy generated by driving is supplied to a motor or a battery,
    하이브리드 엔진은, hybrid engine,
    단부에 점화 플러그가 마련되는 연소실이 내부에 마련되고 외부 공기에 대한 접촉 면적을 증가시키기 위한 복수 개의 냉각핀이 배치되는 적어도 하나의 내연 기관부; at least one internal combustion engine unit having a combustion chamber having a spark plug provided at an end thereof and disposed therein with a plurality of cooling fins for increasing a contact area with respect to external air;
    내연 기관부와 연결되어 전기 에너지를 발생시키는 발전기; 및a generator connected to the internal combustion engine unit to generate electrical energy; and
    점화 플러그 및 내연 기관부를 냉각시키기 위한 바람을 발생시키는 적어도 하나의 냉각팬을 포함하고, at least one cooling fan for generating wind for cooling the spark plug and the internal combustion engine part;
    외부 공기의 유입 방향을 기준으로 점화 플러그의 상류 측에는 냉각팬이 배치되고, 점화 플러그의 하류 측에는 외부 공기의 유동 방향을 따라 냉각 핀이 배치되는, 하이브리드 드론.A hybrid drone, in which a cooling fan is disposed on an upstream side of the spark plug with respect to an inflow direction of outside air, and a cooling fin is disposed on a downstream side of the spark plug along the flow direction of outside air.
PCT/KR2021/002110 2021-02-17 2021-02-19 Hybrid engine and hybrid drone comprising same WO2022177038A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180092855.XA CN116848315A (en) 2021-02-17 2021-02-19 Hybrid engine and hybrid unmanned aerial vehicle comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0021223 2021-02-17
KR1020210021223A KR102330687B1 (en) 2021-02-17 2021-02-17 Hybrid engine and hybrid-drone comprising the same

Publications (1)

Publication Number Publication Date
WO2022177038A1 true WO2022177038A1 (en) 2022-08-25

Family

ID=78867344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002110 WO2022177038A1 (en) 2021-02-17 2021-02-19 Hybrid engine and hybrid drone comprising same

Country Status (3)

Country Link
KR (2) KR102330687B1 (en)
CN (1) CN116848315A (en)
WO (1) WO2022177038A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560408B2 (en) * 1988-04-30 1996-12-04 スズキ株式会社 Cylinder head structure for small vehicle engines
KR20110048984A (en) * 2009-11-04 2011-05-12 주식회사코핸즈 Moter of air compressor
KR20200034092A (en) * 2018-09-21 2020-03-31 (주)화인코왁 A hybrid multi copter which can be used for a generator
KR20200062957A (en) * 2018-11-27 2020-06-04 한국항공우주연구원 A power apparatus for integrated cooling and a method for cooling the same
KR20200122962A (en) * 2019-08-26 2020-10-28 주식회사 마크나인인더스트리 Hybrid drone

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200473384Y1 (en) * 2012-05-17 2014-07-02 (주) 성진기업 light apparatus
KR102086344B1 (en) 2019-09-11 2020-03-09 (주)네온테크 Drone Having Body Cooling Structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560408B2 (en) * 1988-04-30 1996-12-04 スズキ株式会社 Cylinder head structure for small vehicle engines
KR20110048984A (en) * 2009-11-04 2011-05-12 주식회사코핸즈 Moter of air compressor
KR20200034092A (en) * 2018-09-21 2020-03-31 (주)화인코왁 A hybrid multi copter which can be used for a generator
KR20200062957A (en) * 2018-11-27 2020-06-04 한국항공우주연구원 A power apparatus for integrated cooling and a method for cooling the same
KR20200122962A (en) * 2019-08-26 2020-10-28 주식회사 마크나인인더스트리 Hybrid drone

Also Published As

Publication number Publication date
CN116848315A (en) 2023-10-03
KR102415351B1 (en) 2022-06-30
KR102330687B1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2018143705A1 (en) Fan motor
WO2020189826A1 (en) Intelligent power generation module
WO2018225877A1 (en) Motor
WO2018230818A1 (en) Unmanned aerial vehicle for inspecting high-voltage line and control method therefor
CN108137167A (en) Capture apparatus and unmanned plane
WO2017048014A1 (en) Camera module thin film heater and camera module having same
WO2021118054A1 (en) Hybrid drive module
WO2017078330A1 (en) Flying object
WO2022177038A1 (en) Hybrid engine and hybrid drone comprising same
WO2021015483A1 (en) Heat management device for vehicle, and heat management method for vehicle
WO2021194113A1 (en) Rotary engine
WO2017052247A1 (en) Device for cooling gas turbine
WO2019240522A1 (en) Drive system for electric automobile
WO2021221407A1 (en) Heat dissipation device and antenna assembly using same
WO2017171402A1 (en) Extendable cable distribution device and method for manufacturing extendable cable distribution device
WO2020098408A1 (en) Air conditioner, control method therefor, and computer-readable storage medium
WO2018038457A1 (en) Gas turbine blade
WO2018043797A1 (en) Compressor and chiller system including same
WO2017115966A1 (en) Integrated system of heat exchange device and thermoelectric power generation device, and operating method therefor
WO2011099708A2 (en) Rotary device including a single driving unit for controlling both rotation and elevation motions
WO2011002191A2 (en) Thermoelectric power-generating system using the waste heat of a cooling fluid
WO2022045500A1 (en) Vehicular lamp capable of dehumidification
WO2023234488A1 (en) Heat exchanger and airplane comprising same
WO2021015456A1 (en) Heat exchanger
WO2021235619A1 (en) Blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926838

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180092855.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926838

Country of ref document: EP

Kind code of ref document: A1