WO2022176856A1 - Nonwoven fabric, nonwoven fabric layered body, filter, and liquid-blocking article - Google Patents

Nonwoven fabric, nonwoven fabric layered body, filter, and liquid-blocking article Download PDF

Info

Publication number
WO2022176856A1
WO2022176856A1 PCT/JP2022/005976 JP2022005976W WO2022176856A1 WO 2022176856 A1 WO2022176856 A1 WO 2022176856A1 JP 2022005976 W JP2022005976 W JP 2022005976W WO 2022176856 A1 WO2022176856 A1 WO 2022176856A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
layer
mass
nonwoven
containing compound
Prior art date
Application number
PCT/JP2022/005976
Other languages
French (fr)
Japanese (ja)
Inventor
秀超 北山
康三 飯場
尚貴 山岸
直 永井
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2023500856A priority Critical patent/JPWO2022176856A1/ja
Publication of WO2022176856A1 publication Critical patent/WO2022176856A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the present disclosure relates to nonwoven fabrics, nonwoven laminates, filters and articles for liquid shielding.
  • nonwoven fabrics have been used in various fields, and their applications include filters such as liquid filters and air filters, sanitary materials, medical materials, agricultural coating materials, civil engineering and construction materials, oil adsorbents, automotive materials, electronic It covers a wide range of materials, separators, clothing, packaging materials, and sound absorbing materials.
  • filters such as liquid filters and air filters, sanitary materials, medical materials, agricultural coating materials, civil engineering and construction materials, oil adsorbents, automotive materials, electronic It covers a wide range of materials, separators, clothing, packaging materials, and sound absorbing materials.
  • Non-woven fabrics are provided as filter media for such filters.
  • Fibers of thermoplastic resins such as polypropylene, polyethylene, and polyester are known as fibers constituting nonwoven fabrics.
  • Patent Literature 1 describes a non-woven fabric filter material for an air filter that includes composite short fibers having a core made of polyester and a sheath made of polypropylene.
  • a filter equipped with a nonwoven fabric as a filter medium captures and removes foreign matter (for example, fine particles) contained in fluids such as liquids and gases with the network structure of the nonwoven fabric. Therefore, as the filter is used for a longer period of time, the collected foreign matter accumulates in the filter material.
  • As a method for removing the foreign matter accumulated in the filter there is a method of scraping it with a brush or the like, and a method of flowing washing water, washing air, etc. in the direction opposite to the filtering direction (hereinafter also referred to as "backwashing").
  • Patent Literature 2 describes a filter equipped with a backwashing device.
  • the nonwoven fabric when removing foreign matter accumulated in a filter having a nonwoven fabric as a filter medium, the nonwoven fabric may be damaged by a method of scraping it with a brush or the like.
  • backwashing a certain amount of foreign matter remains in the filter medium, and the service life of the filter may be shortened.
  • the present inventors tried to add alkoxysilane to the fibers constituting the nonwoven fabric, which is a filter medium, to lower the surface free energy.
  • alkoxysilane to the fibers constituting the nonwoven fabric, which is a filter medium
  • non-woven fabrics are used in a variety of fields, and are also used for applications that require liquid shielding, such as medical materials such as protective clothing and medical gowns.
  • Nonwoven fabrics used for such applications are desired to have high water pressure resistance and to suppress deterioration of water pressure resistance over time.
  • An object of one embodiment of the present disclosure is to provide a nonwoven fabric that can be applied as a filter medium of a filter and has excellent backwashability and maintainability, or a nonwoven fabric laminate including the nonwoven fabric, a filter, and a liquid shielding article.
  • Another embodiment of the present disclosure aims to provide a nonwoven fabric having excellent water pressure resistance and maintenance properties, or a nonwoven fabric laminate, filter, and liquid shielding article including the nonwoven fabric.
  • the present disclosure includes the following embodiments. ⁇ 1> A nonwoven fabric containing fibers, The fibers are 80% by mass or more of the thermoplastic resin with respect to the total mass of the fibers, A reaction product (1 molecule Silylated polyolefins and derivatives thereof, excluding the reaction product of the silicon-containing compound having two or more SiH groups in the above and the vinyl group-containing compound having an average of 2.0 or more vinyl groups per molecule.
  • R 1 represents a hydrogen atom, a halogen atom or a hydrocarbon group
  • Y 1 represents O, S or NR 30
  • R 30 represents a hydrogen atom or a hydrocarbon group.
  • the thermoplastic resin contains at least one selected from the group consisting of polyolefins, polyamides and polyesters.
  • the thermoplastic resin contains polypropylene.
  • ⁇ 4> The nonwoven fabric according to any one of ⁇ 1> to ⁇ 3>, wherein the vinyl group-containing compound has a structure represented by the following formula (4).
  • A-CH CH 2 (4)
  • A is an ethylene homopolymer chain.
  • ⁇ 6> The nonwoven fabric according to any one of ⁇ 1> to ⁇ 5>, wherein the fibers have an average fiber diameter of 4.0 ⁇ m or less.
  • ⁇ 7> The nonwoven fabric according to any one of ⁇ 1> to ⁇ 6>, including a meltblown nonwoven fabric.
  • a nonwoven fabric layer A which is the nonwoven fabric according to any one of ⁇ 1> to ⁇ 7>; A nonwoven fabric laminate comprising a layer B other than the nonwoven fabric layer A.
  • a nonwoven fabric layer A which is the nonwoven fabric according to any one of ⁇ 1> to ⁇ 7>, a layer B other than the nonwoven fabric layer A, and a layer C other than the nonwoven fabric layer A , the layer B, the nonwoven fabric layer A and the layer C arranged in this order, the nonwoven fabric laminate according to ⁇ 8>.
  • ⁇ 11> The nonwoven fabric laminate according to ⁇ 10>, wherein at least one of the layer B and the layer C comprises a spunbond nonwoven fabric layer.
  • a filter comprising the nonwoven fabric according to any one of ⁇ 1> to ⁇ 7> or the nonwoven fabric laminate according to any one of ⁇ 8> to ⁇ 11>.
  • a liquid shielding article comprising the nonwoven fabric according to any one of ⁇ 1> to ⁇ 7> or the nonwoven fabric laminate according to any one of ⁇ 8> to ⁇ 11>.
  • An embodiment of the present disclosure can provide a nonwoven fabric that can be applied as a filter medium of a filter and has excellent backwashability and maintainability, or a nonwoven fabric laminate, filter, and liquid shielding article containing the nonwoven fabric.
  • Other embodiments of the present disclosure can provide nonwoven fabrics, or nonwoven fabric laminates, filters, and liquid shielding articles comprising the nonwoven fabrics, which have excellent water pressure resistance and maintenance properties.
  • a numerical range indicated using “to” indicates a range including the numerical values before and after "to” as the minimum and maximum values, respectively.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
  • the amount of each component in the composition is the total amount of the multiple substances present in the composition unless otherwise specified. means.
  • “mass” and “weight” are synonymous, and “mass%” and “weight%” are synonymous.
  • a combination of two or more preferred aspects is a more preferred aspect.
  • the nonwoven fabric of the present disclosure is a nonwoven fabric containing fibers, and the fibers contain a thermoplastic resin in an amount of 80% by mass or more with respect to the total mass of the fibers, and a structural unit represented by the following formula (1).
  • a reaction product of the contained silicon-containing compound and a vinyl group-containing compound having a number average molecular weight of 100 or more and 500,000 or less as determined by the GPC method (however, the above silicon-containing compound having two or more SiH groups in one molecule and the reaction product with the vinyl group-containing compound having an average of 2.0 or more vinyl groups per molecule), at least one selected from silylated polyolefins and derivatives thereof, in the total mass of the fiber It is a nonwoven fabric containing 0.01% by mass to 20% by mass.
  • R 1 represents a hydrogen atom, a halogen atom or a hydrocarbon group
  • Y 1 represents O, S or NR 30
  • R 30 represents a hydrogen atom or a hydrocarbon group.
  • the silylated polyolefins and derivatives thereof are collectively referred to as "specific silylated polyolefins" as appropriate.
  • the nonwoven fabric of the present disclosure is a nonwoven fabric containing fibers, the fibers containing a thermoplastic resin in an amount of 80% by mass or more based on the total mass of the fibers, and a specific silylated polyolefin in an amount of 80% by mass or more based on the total mass of the fibers. , 0.01% by mass or more and 20% by mass or less.
  • the nonwoven fabric of the present disclosure may be a nonwoven fabric composed of one layer of the specific nonwoven fabric described above, or may be a nonwoven fabric composed of two or more layers of the specific nonwoven fabric described above.
  • the nonwoven fabric of the present disclosure is suitably included in filters such as liquid filters and air filters. That is, the nonwoven fabric of the present disclosure can be suitably used as a filter medium for filters.
  • the present inventors tried to add alkoxysilane to the fibers constituting the nonwoven fabric to reduce the surface free energy in order to reduce the amount of foreign matter remaining even after backwashing in a filter equipped with a nonwoven fabric as a filter medium.
  • the backwashing performance may deteriorate if the filter is used for a long time. It is presumed that the reason for the decrease in backwashing performance is that the alkoxysilane bleeds out from the fibers as the filter is used for a longer period of time.
  • the nonwoven fabric of the present disclosure contains fibers containing a predetermined amount of a thermoplastic resin and a specific silylated polyolefin, so that it can be applied as a filter medium for filters and has excellent backwashing properties and maintainability. becomes.
  • the reason for this is that the inclusion of a specific amount of the specific silylated polyolefin can significantly reduce the surface energy of the fiber containing the thermoplastic resin, and the specific silylated polyolefin has high compatibility with the thermoplastic resin, It is presumed that the backwashability and its maintainability were dramatically improved by making it difficult to separate from the fibers.
  • the present inventors have found that adding alkoxysilane to the fibers constituting the nonwoven fabric to lower the surface free energy makes it difficult for water to pass through the nonwoven fabric, thereby improving the water pressure resistance.
  • the water resistance of an article made of nonwoven fabric such as a liquid shielding article, may deteriorate if the article is used for a long period of time.
  • the reason for the decrease in water resistance is presumed to be that the alkoxysilane bleeds out from the fibers as the article is used for a longer period of time.
  • the nonwoven fabric of the present disclosure includes fibers containing a predetermined amount of a thermoplastic resin and a specific silylated polyolefin, thereby improving water pressure resistance and maintaining the same.
  • the reason for this is that the inclusion of a specific amount of the specific silylated polyolefin can significantly reduce the surface energy of the fiber containing the thermoplastic resin, and the specific silylated polyolefin has high compatibility with the thermoplastic resin, It is presumed that the resistance to water pressure and its maintainability were improved by making it difficult to separate from the fibers.
  • the above speculation is not intended to restrictively interpret the nonwoven fabric of the present disclosure, but is explained as an example.
  • the nonwoven fabric of the present disclosure can be applied as a filter medium of a filter, and has at least one of the properties of being excellent in backwashability and its maintainability, and the properties of being excellent in water pressure resistance and its maintainability. You don't have to.
  • the nonwoven fabric of the present disclosure when the nonwoven fabric of the present disclosure is applied as a filter medium for a filter, the nonwoven fabric of the present disclosure only needs to have excellent backwashability and maintainability, and has excellent water pressure resistance and maintainability. It doesn't have to be.
  • the fibers contained in the nonwoven fabric of the present disclosure contain a thermoplastic resin of 80% by mass or more relative to the total mass of the fibers, and a specific silylated polyolefin of 0.01% to 20% by mass relative to the total mass of the fibers. % and
  • the nonwoven fabric of the present disclosure preferably contains 50% by mass or more of the fiber, more preferably 90% by mass or more, more preferably 95% by mass or more, from the viewpoint of further improving backwashability and maintainability thereof. Preferably, it is particularly preferably contained in an amount of 99% by mass or more.
  • the nonwoven fabric of the present disclosure may contain 100% by mass or less of the fibers, and may contain 100% by mass of the fibers, for example.
  • thermoplastic resin The thermoplastic resin is not particularly limited, and various known thermoplastic resins can be used. Thermoplastic resins according to the present disclosure do not include specific silylated polyolefins.
  • thermoplastic resin contained in the fiber may be of only one type, or may be of two or more types.
  • thermoplastic resins include polyolefin (PO), polyamide (PA), polyimide (PI), polyester (PEs) [e.g., polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), etc.], ethylene-vinyl acetate copolymer (EVA), polyetherimide (PEI), polyetherketone (PEEK), polyvinyl chloride ( PVC), polyacetal (POM), polycarbonate (PC), polysulfone (PSF), polyethersulfone (PES), polyphenylene sulfide (PPS) and the like.
  • PO polyolefin
  • PA polyamide
  • PI polyimide
  • PET polytrimethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PBN polybuty
  • the melt mass flow rate (MFR) of the thermoplastic resin is not particularly limited as long as the nonwoven fabric can be produced.
  • the melt mass flow rate (MFR) of the thermoplastic resin is preferably 10 g/10 minutes to 10000 g/10 minutes when the nonwoven fabric of the present disclosure is a meltblown nonwoven fabric, from the viewpoint of the fineness of the average fiber diameter, spinnability, etc. , more preferably 30 g/10 min to 5000 g/10 min, and still more preferably 50 g/10 min to 1800 g/10 min.
  • the melt mass flow rate (MFR) of the thermoplastic resin is preferably 10 g/10 min to 200 g/10 min when the nonwoven fabric of the present disclosure is a spunbond nonwoven fabric, from the viewpoint of the fineness of the average fiber diameter, spinnability, etc. Yes, more preferably 20 g/10 minutes to 100 g/10 minutes.
  • melt mass flow rate (MFR) in the present disclosure conforms to ASTM D-1238-04 and is carried out under conditions of 230°C and a load of 2160g.
  • MFR is measured at temperature and load as specified individually for each material in ASTM D-1238-04. If multiple types of load are specified, the minimum load shall be used for measurement. In addition, when measuring substances that are not individually specified in ASTM D-1238-04, the method of measuring the minimum load at the temperature of Tm + 60 ° C of the substance measured in Table 1 described in ASTM D-1238-04 to select. As the MFR measuring device, for example, the measuring device used in the examples described later can be used.
  • the thermoplastic resin preferably contains at least one selected from the group consisting of polyolefins, polyamides and polyesters from the viewpoint of ease of application to filters, and further improves compatibility with the specific silylated polyolefin. From the viewpoint of further improving the maintenance of backwashability, it is more preferable to contain a polyolefin.
  • the total content of polyolefin, polyamide and polyester, preferably the content of polyolefin may be 50% by mass to 100% by mass, or 80% by mass to 100% by mass, based on the total thermoplastic resin. good.
  • the polyolefin is not particularly limited, and homopolymers of olefin monomers such as ethylene, propylene, butene, pentene, hexene, octene, decene, and 4-methyl-1-pentene, or two or more kinds of olefin monomers.
  • a copolymer is mentioned.
  • Polyolefins may also contain structural units formed from monomers other than the above olefin monomers (eg, cyclic polyolefins, polar polyolefins, etc.).
  • the polyolefin preferably contains at least one selected from polyethylene and polypropylene, and more preferably contains polypropylene, from the viewpoint of further improving the maintenance of backwashability.
  • Polyethylene is preferably a polymer containing 50% by mass or more of ethylene units.
  • the polypropylene a polymer containing 50% by mass or more of propylene units is preferable, and a polymer containing 100% by mass of propylene units (that is, a homopolymer of propylene) is more preferable.
  • the total content of polyethylene and polypropylene, or the content of polypropylene may be 50% by mass to 100% by mass, or may be 80% by mass to 100% by mass, based on the total thermoplastic resin.
  • the melt mass flow rate (MFR) of polypropylene is not particularly limited as long as a nonwoven fabric can be produced.
  • MFR of polypropylene is preferably 10 g/10 min to 10000 g/10 min, more preferably 50 g/10 min when the nonwoven fabric of the present disclosure is a meltblown nonwoven fabric, from the viewpoint of fineness of average fiber diameter, spinnability, etc. min to 2000 g/10 min.
  • the melt mass flow rate (MFR) of polypropylene is preferably 10 g/10 min to 200 g/10 min when the nonwoven fabric of the present disclosure is a spunbond nonwoven fabric, from the viewpoint of fineness of average fiber diameter, spinnability, etc. More preferably, it is 20 g/10 minutes to 100 g/10 minutes.
  • the MFR of polypropylene is a value measured at 230° C. under a load of 2160 g according to ASTM D-1238-04.
  • the weight average molecular weight (Mw) of polypropylene is preferably 20,000 or more, more preferably 30,000 or more, and even more preferably 40,000 or more.
  • the weight average molecular weight (Mw) of polypropylene is preferably 500,000 or less, more preferably 300,000 or less, and even more preferably 100,000 or less.
  • the weight average molecular weight (Mw) of polypropylene is within the above range, the average fiber diameter tends to be small, which is preferable.
  • the weight average molecular weight (Mw) of polypropylene is preferably 20,000 to 500,000, more preferably 30,000 to 300,000, and even more preferably 40,000 to 100,000.
  • the above weight average molecular weight (Mw) is a value obtained by measuring by a gel permeation chromatography method (GPC method), obtaining the measurement result as a polystyrene conversion value, and then converting it to polypropylene by a universal calibration method.
  • GPC method gel permeation chromatography method
  • the polypropylene is at least one type selected from polypropylene having an MFR of 10 g/min to 10000 g/10 min, polypropylene wax, and polypropylene having long chain branches. are preferred. With such a mixture, the average fiber diameter tends to be small, and the collection efficiency of small particles tends to be improved.
  • the content of the thermoplastic resin is 80% by mass or more with respect to the total mass of fibers contained in the nonwoven fabric.
  • the content of the thermoplastic resin is 80% by mass or more, spinning stability when producing a nonwoven fabric can be obtained.
  • the fibers included in the nonwoven fabric of the present disclosure contain 0.01% by mass to 20% by mass of the specific silylated polyolefin with respect to the total mass of the fibers, the upper limit of the content of the thermoplastic resin is 99.99. % by mass.
  • the thermoplastic resin content is more preferably 85% by mass to 99.99% by mass, more preferably 88% by mass to 99.5% by mass, in order to improve the backwashability and maintainability of the filter comprising the nonwoven fabric of the present disclosure. % is more preferred, and 92% by mass to 99.9% by mass is particularly preferred.
  • the specific silylated polyolefin is a reaction between a silicon-containing compound containing a structural unit represented by the following formula (1) and a vinyl group-containing compound having a number average molecular weight of 100 or more and 500,000 or less as determined by the GPC method. (However, the reaction product of the silicon-containing compound having two or more SiH groups per molecule and the vinyl group-containing compound having an average of 2.0 or more vinyl groups per molecule is excluded), Silylated polyolefins and their derivatives.
  • R 1 represents a hydrogen atom, a halogen atom or a hydrocarbon group
  • Y 1 represents O, S or NR 30
  • R 30 represents a hydrogen atom or a hydrocarbon group.
  • the fibers included in the nonwoven fabric of the present disclosure contain at least one selected from specific silylated polyolefins in an amount of 0.01% by mass to 20% by mass relative to the total mass of the fibers.
  • GPC method means gel permeation chromatography method.
  • the term "derivative" means a compound in which a part of the structure is modified while retaining the basic skeleton of the compound.
  • the silylated polyolefins that are used, for example will likely have a network structure.
  • a silicon-containing compound is a hydrosilane compound having a structural unit represented by the following formula (1).
  • R 1 represents a hydrogen atom, a halogen atom or a hydrocarbon group
  • Y 1 represents O, S or NR 30
  • R 30 represents a hydrogen atom or a hydrocarbon group.
  • Halogen atoms include fluorine, chlorine, bromine, and iodine atoms.
  • Hydrocarbon groups include alkyl groups, alkenyl groups, and aryl groups.
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, hexyl, 2-ethylhexyl, octyl, decyl, and octadecyl groups.
  • alkyl groups linear or branched alkyl groups
  • cycloalkyl groups such as cyclopentyl group, cyclohexyl group and norbornyl group
  • arylalkyl groups such as benzyl group, phenylethyl group and phenylpropyl group
  • alkenyl groups include vinyl groups, propenyl groups, cyclohexenyl groups, and the like.
  • Aryl groups include phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, naphthyl, methylnaphthyl, anthryl, and phenanthryl groups.
  • the above hydrocarbon group may contain one or more heteroatoms.
  • Specific examples include groups in which at least one hydrogen of these groups is replaced with a group containing a halogen atom, an oxygen atom, a nitrogen atom, a silicon atom, a phosphorus atom, or a sulfur atom.
  • the silicon-containing compound has a structure represented by formula (2) below.
  • R 22 (Si(R 21 )HY 21 ) m —Z—(Y 22 —Si(R 23 )H) n —R 24 (2)
  • R 21 and R 23 each independently represent a hydrogen atom, a halogen atom or a hydrocarbon group
  • R 22 and R 24 each independently represent a halogen atom or a hydrocarbon group
  • Y 21 and Y 22 each independently represent O, S or NR 30
  • R 30 represents a hydrogen atom or a hydrocarbon group
  • m is 0 or 1
  • n is 0 or 1
  • Z represents a divalent group represented by the following formula (3).
  • hydrocarbon groups in formulas (1), (2), and (3) consist only of carbon atoms and hydrogen atoms.
  • the silicon-containing compound preferably has 3 or more, more preferably 5 or more, and even more preferably 10 or more silicon atoms. Also, the silicon-containing compound preferably has 10,000 or less, more preferably 1,000 or less, even more preferably 300 or less, and particularly preferably 50 or less silicon atoms.
  • l in formula (3) above is an integer from 0 to 10,000.
  • Preferred upper and lower limits of l include numbers determined from the values of m and n in formula (2) and the above preferred number of silicon atoms.
  • silicon-containing compounds are shown below.
  • Silicon-containing compounds include compounds having one SiH group.
  • Examples of silicon-containing compounds having one SiH group include compounds represented by the following formula (2a), in which some or all of the methyl groups in the following formula (2a) are ethyl groups, propyl groups, Compounds substituted with a butyl group, a phenyl group, a trifluoropropyl group, and the like are included.
  • d is an integer of 1 or more, and the upper limit is, for example, 1000, preferably 300, and more preferably 50.
  • More specific examples of such compounds include, but are not limited to, the compounds shown below.
  • silicon-containing compound having one SiH group includes, for example, a dimethylsiloxane-methylhydrogensiloxane copolymer represented by the following formula (2b), one of the methyl groups in the following formula (2b) Examples include compounds partially or wholly substituted with an ethyl group, a propyl group, a phenyl group, a trifluoropropyl group, or the like.
  • e is an integer of 0 or more, and the upper limit is, for example, 1000, preferably 300, and more preferably 50.
  • the order in which the —Si(CH 3 ) 2 —O— units and the —SiH(CH 3 )—O— units are arranged is not particularly limited, and the order may be statistically random, whether blockwise or disorderly. may be
  • Silicon-containing compounds also include compounds having two or more SiH groups.
  • silicon-containing compounds having two or more SiH groups include, for example, methylhydrogenpolysiloxane represented by the following formula (2c); , propyl group, phenyl group, trifluoropropyl group and the like.
  • f is an integer of 2 or more, and the upper limit is, for example, 1000, preferably 300, and more preferably 50.
  • silicon-containing compounds having two or more SiH groups include, for example, a dimethylsiloxane-methylhydrogensiloxane copolymer represented by the following formula (2d), and a methyl group in the following formula (2d): Examples include compounds partially or wholly substituted with an ethyl group, a propyl group, a phenyl group, a trifluoropropyl group, or the like.
  • the order in which the —Si(CH 3 ) 2 —O— units and —SiH(CH 3 )—O— units are arranged is not particularly limited, and may be block-like or disorderly. may be statistically random. More specific examples of such compounds include, but are not limited to, the compounds shown below.
  • silicon-containing compounds having two or more SiH groups include, for example, methylhydrogenpolysiloxane represented by the following formula (2e), in which some or all of the methyl groups are ethyl and compounds substituted with groups such as groups, propyl groups, phenyl groups, and trifluoropropyl groups.
  • i is an integer of 1 or more, and the upper limit is, for example, 1000, preferably 300, and more preferably 50.
  • such compounds include, but are not limited to, compounds whose structure corresponding to the number average molecular weight corresponds to the structure shown below.
  • silicon-containing compounds having two or more SiH groups include, for example, methylhydrogenpolysiloxane represented by the following formula (2f), in which some or all of the methyl groups are ethyl and compounds substituted with groups such as groups, propyl groups, phenyl groups, and trifluoropropyl groups.
  • HSi( CH3 ) 2O -(-SiH( CH3 )-O-) j - Si( CH3 )2H (2f) (In formula (2f), j is an integer of 1 or more, and the upper limit is, for example, 1000, preferably 300, and more preferably 50.)
  • silicon-containing compound having two or more SiH groups include, for example, a dimethylsiloxane/methylhydrogensiloxane copolymer represented by the following formula (2g); Examples include compounds partially or wholly substituted with an ethyl group, a propyl group, a phenyl group, a trifluoropropyl group, or the like.
  • k and l are each an integer of 1 or more, and the upper limit of the sum of k and l is, for example, 1000, preferably 300, more preferably 50.
  • the order in which the —Si(CH 3 ) 2 —O— units and —SiH(CH 3 )—O— units are arranged is not particularly limited, and the order may be statistically random whether it is blockwise or disorderly. may be
  • the number average molecular weight of the vinyl group-containing compound determined by the GPC method is 100 or more and 500,000 or less, more preferably 500 or more and 300,000 or less. It is more preferably 1,500 or more and 100,000 or less.
  • the number average molecular weight is at least the above lower limit, bleeding of the obtained silylated polyolefin from the resin tends to be suppressed.
  • the number average molecular weight is equal to or less than the above upper limit, the dispersibility of the silylated polyolefin in the resin tends to be good.
  • the number average molecular weight (Mn), weight average molecular weight (Mw) and Mw/Mn are values converted to polyethylene, as described later.
  • the vinyl group-containing compound is described below.
  • the vinyl group-containing compound is generally obtained by polymerizing or copolymerizing one or more selected from olefins having 2 to 50 carbon atoms.
  • olefins having 2 to 50 carbon atoms include ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl -1-pentene, 3,4-dimethyl-1-pentene, 4-methyl-1-hexene, 3-ethyl-1-pentene, 3-ethyl-4-methyl-1-pentene, 3,4-dimethyl-1 -hexene, 4-methyl-1-heptene, 3,4-dimethyl-1-heptene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, vinyl ⁇ -olefins such as cyclohexane; olefins containing internal double bonds such as cis-2-butene, trans-2-butene; isobutene
  • Vinylidene compounds cyclobutene, cyclopentene, 1-methyl-1-cyclopentene, 3-methyl-1-cyclopentene, 2-methyl-1-cyclopentene, cyclohexene, 1-methyl-1-cyclohexene, 3-methyl-1-cyclohexene, 2 -methyl-1-cyclohexene, cycloheptene, cyclooctene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, 5,6-dihydrodicyclopentadiene, 3a,4,5,6,7,7a-hexahydro- Aliphatic cyclic olefins containing internal double bonds such as 1H indene, tricyclo[6.2.1.0 2,7 ]undec-4-ene, cyclopentadiene, dicyclopentadiene; 3-enylbenzene, cyclohex-2-enylbenzene, cyclohex-3-
  • butadiene isoprene, 4-methyl-1,3-pentadiene, 4-methyl-1,4-pentadiene, 1,3-pentadiene, 1,4-pentadiene, 1,5-hexadiene , 1,4-hexadiene, 1,3-hexadiene, 1,3-octadiene, 1,4-octadiene, 1,5-octadiene, 1,6-octadiene, 1,7-octadiene, ethylidenenorbornene, vinylnorbornene, di Two or more double bonds such as cyclopentadiene, 7-methyl-1,6-octadiene, 4-ethylidene-8-methyl-1,7-nonadiene, 5,9-dimethyl-1,4,8-decatriene and chain polyenes having two or more double bonds.
  • the olefin having 2 to 50 carbon atoms may have a functional group containing an atom such as an oxygen atom, a nitrogen atom, a sulfur atom, or the like.
  • Unsaturated carboxylic acids such as acrylic acid, fumaric acid, itaconic acid, bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid and their sodium, potassium, lithium and zinc salts , magnesium salts, calcium salts; unsaturated carboxylic acid metal salts such as maleic anhydride, itaconic anhydride, bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride; acid anhydride; methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, etc.
  • Unsaturated carboxylic acid ester vinyl esters such as vinyl acetate, vinyl propionate, vinyl caproate, vinyl caprate, vinyl laurate, vinyl stearate, and vinyl trifluoroacetate; glycidyl acrylate, glycidyl methacrylate, mono-itaconate unsaturated glycidyl esters such as glycidyl esters; halogenated olefins such as vinyl chloride, vinyl fluoride and allyl fluoride; unsaturated cyano compounds such as acrylonitrile and 2-cyano-bicyclo[2.2.1]hept-5-ene; unsaturated compounds such as methyl vinyl ether and ethyl vinyl ether; saturated ether compounds; unsaturated amides such as acrylamide, methacrylamide, and N,N-dimethylacrylamide; Functional group-containing styrene derivatives such as methoxystyrene, ethoxystyrene, vinyl benzo
  • the vinyl group-containing compound has a structure represented by formula (4) below.
  • the vinyl group-containing compound having the structure represented by formula (4) is preferably a compound having a number average molecular weight of 100 or more and 500,000 or less.
  • the compatibility between the specific silylated polyolefin and the thermoplastic resin is further improved, and as a result, the reverse of the filter to which the nonwoven fabric of the present disclosure is applied. It is preferable because it improves washability and maintainability.
  • A-CH CH 2 (4)
  • A represents a polymer chain containing structural units derived from one or more ⁇ -olefins having 2 to 50 carbon atoms.
  • part A of the vinyl group-containing compound is preferably a copolymer of two or more olefins selected from the group consisting of ethylene polymer chains, propylene polymer chains, and ⁇ -olefins having 2 to 50 carbon atoms. is a chain. Further, the ⁇ -olefin is preferably an ⁇ -olefin having 2 to 20 carbon atoms.
  • a of the vinyl group-containing compound having the structure represented by formula (4) is a polymer chain composed only of ⁇ -olefins having 2 to 50 carbon atoms. More preferably, A of the vinyl group-containing compound is a polymer chain composed only of ⁇ -olefins having 2 to 20 carbon atoms. More preferably, A of the vinyl group-containing compound is an ethylene homopolymer chain, a propylene homopolymer chain, or an ethylene/C3-C20 ⁇ -olefin copolymer chain, and an ethylene homopolymer chain is particularly preferred. preferable. That A of the vinyl group-containing compound is an ethylene homopolymer chain means that the polyolefin portion in the specific silylated polyolefin obtained using the vinyl group-containing compound is polyethylene.
  • a particularly preferred embodiment of the present disclosure is a form in which the polyolefin portion in the specific silylated polyolefin is polyethylene, and the thermoplastic resin is polypropylene.
  • the specific silylated polyolefin tends to localize on the surface of the fibers contained in the nonwoven fabric and stay on the surface of the fibers, so that the filter to which the nonwoven fabric of the present disclosure is applied has improved backwashability and maintainability.
  • the vinyl group-containing compound represented by formula (4) has an ethylene-derived structural unit in the range of 81 mol% to 100 mol%, and an ⁇ -olefin-derived structural unit having 3 to 20 carbon atoms in the range of 0 mol% to 19 mol%.
  • An ethylene/ ⁇ -olefin copolymer is desirable. More preferably, it is an ethylene/ ⁇ -olefin copolymer having 90 mol% to 100 mol% of ethylene-derived structural units and 0 mol% to 10 mol% of ⁇ -olefin-derived structural units having 3 to 20 carbon atoms. is desirable. In particular, it is preferable that the ethylene-derived structural unit is 100 mol %.
  • the vinyl group-containing compound represented by formula (4) has a molecular weight distribution (ratio of weight average molecular weight to number average molecular weight, Mw/Mn) measured by gel permeation chromatography (GPC method) of 1.1 to 3. It is preferably in the range of .0.
  • the vinyl group-containing compound represented by formula (4) preferably has a number average molecular weight (Mn) in the range of 100 to 500,000, more preferably 500 to 300,000. 100,000 or less is more preferable.
  • the vinyl group-containing compound represented by formula (4) preferably has a melting point of 70°C or higher and 130°C or lower.
  • the vinyl group of the vinyl group-containing compound represented by formula (4) is present at the end of the main chain, and more preferably the vinyl group is present only at the end of the main chain.
  • the peak at 45 ppm is the main chain methylene group
  • the chemical shift peak at 1.93 ppm with a proton integral value of 2 is the methylene group adjacent to the terminal vinyl group, 4.80, 4.86 with a proton integral value of 1, respectively. Since the peak at 5.60-5.72 ppm is attributed to the terminal vinyl group, and there is no other peak of unknown attribution, it is confirmed that A is an ethylene homopolymer and has a structure containing a vinyl group only at the terminal. can be confirmed.
  • hydrogen of a vinyl group present at the end of the main chain has a shorter relaxation time in 1 H-NMR measurement than hydrogen of a vinyl group present in a side chain. It can also be determined by a method of comparing the hydrogen of the vinyl group of a polymer having a vinyl group in the chain and the relaxation time.
  • the terminal unsaturation rate (VE described later) calculated by 1 H-NMR is 60 mol%. It is desirable that the content is at least 100 mol % or less.
  • a further preferred embodiment is one in which the terminal unsaturation ratio calculated by 1 H-NMR is 80 mol % or more and 99.5 mol % or less, more preferably 90 mol % or more and 99 mol % or less.
  • the vinyl group-containing compound represented by formula (4) can be obtained by a known method such as the method described in JP-A-2003-73412.
  • a in formula (4) is a polyolefin polymer chain having an ethylene homopolymer chain, it can also be produced by the following method.
  • the specific silylated polyolefin according to the present disclosure can be produced by any method.
  • a vinyl group-containing compound and a silicon-containing compound are reacted in the presence of a transition metal catalyst (provided that the silicon-containing compound has two or more SiH groups per molecule, and the vinyl group silylated polyolefins or derivatives thereof, or mixtures thereof, except when a compound having an average of 2.0 or more vinyl groups per molecule is used as the containing compound.
  • a vinyl group-containing compound and a silicon-containing compound are reacted in the presence of a transition metal catalyst (provided that the silicon-containing compound has two or more SiH groups per molecule, and the vinyl Except for the case of using a group-containing compound having an average of 2.0 or more vinyl groups per molecule), a silylated polyolefin is obtained.
  • transition metal catalyst for example, a simple substance of platinum (platinum black), a transition metal halide, chloroplatinic acid, a platinum-olefin complex, a platinum-alcohol complex, or a platinum carrier supported on a carrier such as alumina or silica. things, etc.
  • the transition metal halide is a transition metal halide of Groups 3 to 12 of the periodic table of the elements, and from the viewpoint of ease of availability and economy, transitions of Groups 8 to 10 of the periodic table are preferred.
  • Halides of metals more preferably halides of platinum, rhodium, iridium, ruthenium, osmium, nickel and palladium. Halides of platinum are more preferred.
  • a mixture of two or more transition metal halides may also be used.
  • the halogen of the transition metal halide includes fluorine, chlorine, bromine, iodine, etc. Among them, chlorine is preferable in terms of ease of handling.
  • a transition metal catalyst composition obtained by previously mixing and stirring a transition metal halide and a silicon-containing compound according to the method described in JP-A-2010-37555 may be used as a catalyst.
  • the reaction rate of the double bond of the vinyl group-containing compound is usually 80% or more, preferably 90% or more, more preferably 95% or more, and the amount of the by-product vinylene derivative is less than that of the silylated polyolefin.
  • it is usually 20% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less.
  • the amount ratio for reacting the vinyl group-containing compound and the silicon-containing compound varies depending on the purpose, but the equivalent ratio between the vinyl group in the vinyl group-containing compound and the Si—H bond in the silicon-containing compound is 0.01 equivalent. It is in the range of 1-fold to 10-fold equivalent, preferably 0.1-fold to 2-fold equivalent.
  • the reaction between the vinyl group-containing compound and the silicon-containing compound is carried out in the presence of the transition metal catalyst.
  • the quantitative ratio between the transition metal catalyst and the vinyl group-containing compound is in the range of 10 ⁇ 10 to 10 ⁇ 1 times the equivalent ratio of the vinyl group in the vinyl group-containing compound to the transition metal content in the transition metal catalyst. and preferably in the range of 10 ⁇ 7 to 10 ⁇ 3 equivalents.
  • the reaction may be carried out at the end, and the method is not limited, and may be carried out, for example, as follows.
  • a vinyl group-containing compound is charged into a reaction vessel, and a silicon-containing compound and a transition metal catalyst are charged under a nitrogen atmosphere.
  • the above reactor is set in an oil bath whose internal temperature has been raised to the melting point of the vinyl group-containing compound or higher in advance, and the mixture is stirred. After the reaction, the oil bath is removed and the mixture is cooled to room temperature.
  • the resulting reaction mixture is taken out in a poor solvent such as methanol or acetone and stirred for 2 hours. After that, the obtained solid is collected by filtration, washed with the above poor solvent, and dried to obtain the desired product.
  • the reaction between the vinyl group-containing compound and the silicon-containing compound is preferably carried out at a reaction temperature in the range of 100°C to 200°C, more preferably at a temperature higher than the melting point of the vinyl group-containing compound to be reacted.
  • a reaction temperature is 100° C. or higher, the reaction efficiency tends to be excellent.
  • the pressure can be usually normal pressure, it can also be carried out under increased pressure or reduced pressure, if necessary.
  • a solvent can also be used if necessary. Solvents that are inert to the starting silicon-containing compound and vinyl group-containing compound can be used. Specific examples of usable solvents include aliphatic hydrocarbons such as n-hexane, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as toluene and xylene, esters such as ethyl acetate, acetone, ketones such as methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, and methyl propyl ketone; ethers such as tetrahydrofuran and 1,4-dioxane; and halogenated hydrocarbons such as chloroform, dichloroethane, trichloroethane, tetrachloroethane, and perchloroethane. . Among these, aromatic hydrocarbons such as toluene and xylene are particularly preferred
  • the amount of the solvent used affects the solubility of the raw material, and is preferably 100 times or less by mass, more preferably 20 times or less by mass, relative to the raw material.
  • the present disclosure is most preferably run solvent-free.
  • the silylated polyolefin may be taken out by drying the reaction mixture as it is, but it can be taken out by reprecipitation in a poor solvent or sludge.
  • the poor solvent can be appropriately selected as long as the solubility of the silylated polyolefin is low, and preferably one that removes the above-mentioned impurities.
  • Specific examples of the poor solvent include acetone, methanol, ethanol, n-propanol, isopropanol, acetonitrile, ethyl acetate, n-hexane, n-heptane, etc. Among them, acetone, methanol, and n-heptane. preferable.
  • vinyl group-containing compound examples include the compound represented by formula (4) as described above.
  • A-CH CH 2 (4) (In formula (4), A represents a polymer chain containing structural units derived from one or more ⁇ -olefins having 2 to 50 carbon atoms.)
  • the vinyl group-containing compound is a compound represented by formula (4)
  • a structure (structure 4-1) in which A consists only of an ⁇ -olefin having 2 to 20 carbon atoms is preferable.
  • the vinyl group-containing compound has a structure (Structure 4-2) in which —CH ⁇ CH 2 is present at the end of the polymer main chain.
  • the vinyl group-containing compound has a structure in which A consists solely of an ⁇ -olefin having 2 to 20 carbon atoms and —CH ⁇ CH 2 is present at the end of the polymer main chain (structure 4-4) (structure 4 -1 and structure 4-2).
  • the silicon-containing compound according to the present disclosure preferably has the structure of formula (2).
  • the reactant may have, for example, a structure represented by formula (X).
  • a 1 , A 2 and A 3 each independently represent a polyolefin chain or a hydrocarbon group having 1 to 20 carbon atoms.
  • Each R independently represents a hydrocarbon group having 1 to 20 carbon atoms.
  • a plurality of R may be the same or different.
  • m is an integer from 1 to 10,000.
  • the multiple A 3 's may be the same or different.
  • at least one of A 1 , A 2 and A 3 represents a polyolefin chain.
  • the polyolefin chain may be a portion derived from the aforementioned vinyl group-containing compound.
  • a preferred configuration of the polyolefin chain that A 1 , A 2 and A 3 in formula (X) can have is A—CH 2 CH 2 —.
  • Preferred configurations of A in A-CH 2 CH 2 - are the same as those of A in formula (A).
  • the preferred configuration of the hydrocarbon group having 1 to 20 carbon atoms that can be taken by A 1 , A 2 and A 3 and the preferred configuration of the hydrocarbon group having 1 to 20 carbon atoms that can be taken by R are represented by the formula ( It is the same as the structure of the hydrocarbon group that R 1 in 1) can take.
  • m is preferably 5 or more, more preferably 10 or more.
  • m is preferably 1,000 or less, more preferably 300 or less, and more preferably 50 or less.
  • the specific silylated polyolefin is presumed to have, for example, structures represented by formulas (5) to (8).
  • the combination of the silicon-containing compound and vinyl group-containing compound is not limited to these examples.
  • n and n in each of the above formulas represent an integer of 1 or more.
  • the portion derived from the vinyl group-containing compound may be referred to as "polyolefin chain", and the portion derived from the silicon-containing compound may be referred to as "silicon-containing compound chain”.
  • the vinyl group-containing compound has the structure represented by formula (4), especially structure 4-5, and the silicon-containing compound has structure 2-2
  • the silylated polyolefin is (polyolefin chain) - (silicon-containing compound It is thought to take a block copolymer-like structure in which chain)-(polyolefin chain) are linked in this order.
  • a compound having a presumed structure such as the above formula (5) can be exemplified.
  • the silylated polyolefin has ( In the block structure in which polyolefin chain) - (silicon-containing compound chain) - (polyolefin chain) are bonded in this order, it is thought that a structure in which a polyolefin chain is grafted from a silicon-containing compound chain may be included.
  • the silylated polyolefin is specifically exemplified by the above formula (6), formula It is considered that the structure of (8) is taken.
  • Z is (-SiH(CH 3 )O-) 6 -Si(CH 3 ) in formula (2).
  • 2 O--Si(C 6 H 5 ) 2 -- it is considered that the form of formula (7) is taken.
  • polyolefin chain (polyolefin chain)-(silicon-containing compound chain)-(polyolefin chain) vinyl group presumed to have a block copolymer structure, such as a presumed structure of formula (5)
  • the silylated polyolefin obtained from the combination of the silicon-containing compound and the silicon-containing compound is presumed to have a polyolefin chain as a graft chain from the silicon-containing compound chain. It is thought that the silylated polyolefin is more likely to undergo molecular motion than the presumed silylated polyolefin, and therefore, for example, it is thought that the silylated polyolefin is more likely to gather on the fiber surface during spinning. Also, with the above structure, polyolefin chains are present at both ends of the silicon-containing compound chain, so it is thought that bleeding out from the fiber surface is less likely to occur.
  • the content of the specific silylated polyolefin is 0.01% by mass to 20% by mass, and 0.05% by mass to 15% by mass, based on the total mass of the fibers contained in the nonwoven fabric, from the viewpoint of backwashability and maintainability. % by mass is preferable, and 0.05% by mass to 12% by mass is more preferable. In addition, from the viewpoint of exhibiting backwashability and its maintainability and making the fiber diameter of the fibers contained in the nonwoven fabric in a more suitable range for filtration performance, it is more preferable to be 0.1% by mass to 8% by mass. .
  • the total content of the specific silylated polyolefin and the thermoplastic resin in the fibers contained in the nonwoven fabric according to the present disclosure may be, for example, 85% by mass to 100% by mass with respect to the total mass of the fibers contained in the nonwoven fabric. , 90% by mass to 100% by mass, 95% by mass to 100% by mass, or 99% by mass to 100% by mass.
  • the fibers contained in the nonwoven fabric according to the present disclosure may be formed only from the thermoplastic resin and the specific silylated polyolefin, and in addition to the thermoplastic resin and the specific silylated polyolefin, antioxidants, weather stabilizers, and light stabilizers , antiblocking agents, lubricants, pigments, softeners, hydrophilic agents, auxiliary agents, water repellents, fillers, antibacterial agents, flame retardants, alkoxysilanes, and other known additives.
  • the content of the additives in the fibers contained in the nonwoven fabric according to the present disclosure may be 0.01 wt% to 10 wt%, and may be 0.05 wt%.
  • the content of alkoxysilane in the fibers contained in the nonwoven fabric according to the present disclosure is 1% by mass or less with respect to the total mass of the fibers contained in the nonwoven fabric, from the viewpoint of suppressing deterioration of backwash performance when used for a long time. , 0.5% by mass or less, or 0% by mass.
  • the average fiber diameter of the fibers contained in the nonwoven fabric of the present disclosure is not particularly limited as long as the filtering performance required for the filter medium of the filter can be obtained.
  • the average fiber diameter of the fibers may be, for example, 13.0 ⁇ m or less, preferably 4.0 ⁇ m or less, more preferably 3.0 ⁇ m or less, from the viewpoint of collecting smaller particles. .
  • the average fiber diameter of the fibers is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more.
  • the method for measuring the average fiber diameter is as follows. Using an electron microscope (model number: S-3500N, manufactured by Hitachi Ltd.), the surface of the nonwoven fabric is photographed at a magnification of 1000 times. The width (diameter) of all fibers that can be measured among the fibers in the photograph is measured. This is repeated until 1000 or more fibers are obtained, and the average of the obtained measurement results is taken as the average fiber diameter.
  • the nonwoven fabric of the present disclosure is a nonwoven fabric manufactured by the meltblown method described below (hereinafter also referred to as "meltblown nonwoven fabric”)
  • the nonwoven fabric preferably does not contain a solvent component.
  • a solvent component means an organic solvent component capable of dissolving the constituent components of the fibers contained in the nonwoven fabric according to the present disclosure.
  • solvent components include dimethylformamide (DMF). Free of solvent components means below the limit of detection by headspace gas chromatography.
  • the fibers of the nonwoven fabric of the present disclosure preferably have entanglement points where the fibers are self-fused.
  • the self-fused entangled point means a branched portion where the fibers are bonded to each other by fusing the fibers contained in the nonwoven fabric according to the present disclosure, and the entangled point formed by bonding the fibers to each other via the binder resin. is distinguished from The self-fused entangled points are formed, for example, in the process of thinning the fibrous propylene-based polymer by the meltblown method. Whether or not the fibers have self-fused entanglement points can be confirmed by an electron micrograph.
  • the specific surface area of the nonwoven fabric is preferably 0.2 m 2 /g to 20.0 m 2 /g, more preferably 1.0 m 2 /g to 15.0 m 2 /g, from the viewpoint of further improving collection efficiency. is more preferable, and more preferably 3.5 m 2 /g to 10.0 m 2 /g.
  • the specific surface area of the nonwoven fabric is a value determined according to JIS Z8830:2013.
  • the average pore size of the nonwoven fabric of the present disclosure is preferably 10.0 ⁇ m or less, more preferably 3.0 ⁇ m or less, and even more preferably 2.5 ⁇ m or less.
  • the average pore size of the nonwoven fabric is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more. When the average pore size is 0.01 ⁇ m or more, the pressure loss tends to be suppressed and the flow rate can be maintained when the nonwoven fabric is used for the filter.
  • the maximum pore size of the nonwoven fabric of the present disclosure is preferably 20.0 ⁇ m or less, more preferably 6.0 ⁇ m or less, and even more preferably 5.0 ⁇ m or less. Moreover, the minimum pore size of the nonwoven fabric is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the pore size (average pore size, maximum pore size and minimum pore size) of the nonwoven fabric of the present disclosure can be measured by the bubble point method. Specifically, in accordance with JIS Z8703: 1983 (standard conditions of the test location), in a temperature-controlled room at a temperature of 20 ⁇ 2 ° C and a humidity of 65 ⁇ 2%, a fluorine-based inert liquid (for example, 3M manufactured by Porous Materials, Inc., product name: Fluorinert), and the pore size is measured with a capillary flow porometer (eg, manufactured by Porous Materials, Inc., product name: CFP-1200AE).
  • a fluorine-based inert liquid for example, 3M manufactured by Porous Materials, Inc., product name: Fluorinert
  • a capillary flow porometer eg, manufactured by Porous Materials, Inc., product name: CFP-1200AE.
  • the basis weight of the nonwoven fabric of the present disclosure can be appropriately set depending on the application, and is usually 1 g/m 2 to 200 g/m 2 , preferably in the range of 2 g/m 2 to 150 g/m 2 .
  • the basis weight can be adjusted to a desired basis weight by, for example, changing the speed of the collector.
  • the porosity of the nonwoven fabric of the present disclosure is usually 20% or more, preferably in the range of 20% to 98%, more preferably in the range of 60% to 95%.
  • the porosity can be adjusted to a desired porosity by, for example, calendering after collection on a collector.
  • the porosity of the nonwoven fabric means the porosity at locations excluding embossing points.
  • the porosity is a value defined by the following formula. (1-((basis weight ⁇ 10 6 )/(thickness ⁇ density))
  • the unit of each is g/m 2 for basis weight, mm for thickness, and g/mm 3 for density.
  • the basis weight (g/m 2 ) is a value obtained by taking 10 sections of 100 mm in the machine direction (MD direction) ⁇ 100 mm in the transverse direction (CD direction) from the nonwoven fabric, measuring the weight of each, and converting it to the weight per unit area.
  • the thickness gauge load is 7 g/cm 2 .
  • the volume occupied by portions having a porosity of 20% or more is preferably 90% or more, and more preferably almost all portions have a porosity of 40% or more.
  • the nonwoven fabric of the present disclosure is used in a filter, it is preferably not embossed or not embossed in substantially all areas. When the filter is not embossed, the pressure loss when the fluid is passed through the filter is suppressed, and the length of the filter flow path is increased, so that the filtering performance tends to be improved.
  • the nonwoven fabric of the present disclosure is a nonwoven fabric laminate laminated to another nonwoven fabric, the other nonwoven fabric may be embossed.
  • the air permeability of the nonwoven fabric is measured by Frazier air permeability measurement defined in JIS L 1096:2010.
  • the air permeability of the nonwoven fabric is preferably 3 cm 3 /cm 2 /s to 30 cm 3 /cm 2 /s, more preferably 5 cm 3 /cm 2 /s to 20 cm 3 /cm 2 /s, still more preferably 8 cm 3 /cm 2 /s to 12 cm 3 /cm 2 /s.
  • the method for producing the nonwoven fabric of the present disclosure is not particularly limited, and known methods such as air through method, spunbond method, needle punch method, meltblown method, card method, heat fusion method, hydroentanglement method, solvent bonding method, etc. are applied. be able to.
  • the method for producing a nonwoven fabric is preferably a meltblown method or a spunbond method, from the viewpoint of obtaining a nonwoven fabric having excellent overall performance of uniformity, low lint, flexibility and filterability. More preferably, it is the law. That is, one of the preferred forms of the nonwoven fabric of the present disclosure is a configuration containing a meltblown nonwoven fabric.
  • the nonwoven fabric of the present disclosure may be a nonwoven fabric composed of one or more meltblown nonwoven fabric layers, or may be a nonwoven fabric composed of one or more meltblown nonwoven fabric layers and another nonwoven fabric layer. .
  • a resin composition containing a thermoplastic resin and a specific silylated polyolefin is melted using an extruder, and the melted composition is passed through a plurality of spinnerets.
  • the long fibers formed by spinning are cooled and stretched as necessary, deposited on the collection surface of the spunbond nonwoven fabric forming machine, and embossed with an emboss roll.
  • a method of heating and pressurizing may be mentioned.
  • the method of cooling and drawing includes, for example, an open spunbond method disclosed in Japanese Patent Publication No. 48-28386, in which melt-spun long fibers are drawn while being cooled in the atmosphere, and, for example, The closed spunbond method disclosed in Japanese Patent No. 3442896 is widely known.
  • meltblown nonwoven fabric for example, a manufacturing method having the following steps can be mentioned. 1) A step of extruding a molten resin composition (containing a thermoplastic resin and a specific silylated polyolefin) from a spinneret together with a heated gas by a meltblown method to form a fibrous resin composition 2) Fibrous resin composition is collected in the form of a web
  • the meltblown method is one of the fleece forming methods in the production of meltblown nonwoven fabrics.
  • a molten resin composition is extruded from a spinneret in a fibrous form
  • a heated compressed gas is applied to both sides of the extruded material in a molten state, and the heated compressed gas is accompanied by the extruded material to reduce the diameter of the extruded material. can be done.
  • a raw material resin composition is melted using an extruder or the like.
  • the melted resin composition is introduced into a spinneret connected to the tip of the extruder and discharged in the form of fibers from the spinning nozzle of the spinneret.
  • high-temperature gas for example, air
  • the extruded fibrous molten resin composition is pulled by high-temperature gas and thinned to a diameter of usually 1.4 ⁇ m or less, preferably 1.0 ⁇ m or less.
  • the fibrous molten resin composition is attenuated to the limit of the hot gas.
  • a high voltage may be applied to the fine fibrous molten resin composition to further fine it.
  • a high voltage is applied, the fibrous molten resin composition is pulled toward the collection side by the attractive force of the electric field and becomes finer.
  • the applied voltage is not particularly limited, and may be 1 kV to 300 kV.
  • the fibrous molten resin composition may be further thinned by being irradiated with heat rays.
  • heat rays By irradiating with heat rays, it is possible to re-melt the fibrous resin composition which has been thinned and whose fluidity has decreased.
  • the melt viscosity of the fibrous resin composition can be further lowered by irradiating with heat rays. Therefore, even if a propylene-based polymer having a large molecular weight is used as a spinning raw material, sufficiently fine fibers can be obtained, and a high-strength meltblown nonwoven fabric can be obtained.
  • a heat ray means an electromagnetic wave with a wavelength of 0.7 ⁇ m to 1000 ⁇ m, and particularly near infrared rays with a wavelength of 0.7 ⁇ m to 2.5 ⁇ m.
  • the intensity and irradiation dose of the heat rays are not particularly limited as long as the fibrous molten resin composition, for example, the fibrous molten propylene-based polymer is remelted.
  • a near-infrared lamp or a near-infrared heater of 1V to 200V, preferably 1V to 20V can be used.
  • the fibrous molten resin composition is collected in the form of a web. Generally, it is collected and deposited in a collector. Calendering may be performed after collection on the collector. Thereby, a meltblown nonwoven fabric is produced. The produced meltblown nonwoven fabric is wound into a roll, for example.
  • collectors include perforated belts, perforated drums, and the like. The collector may also have an air collecting portion, which may facilitate collection of the fibers.
  • a production apparatus for producing the meltblown nonwoven fabric of the present disclosure is not particularly limited as long as it can produce the meltblown nonwoven fabric of the present disclosure.
  • Examples of manufacturing equipment for meltblown nonwoven fabrics include: 1) an extruder for melting and conveying a resin composition; 2) a spinneret for discharging the molten resin composition conveyed from the extruder in a fibrous form; 3) a gas nozzle for injecting hot gas at the bottom of the spinneret; 4) a collector for collecting the fibrous molten resin composition discharged from the spinneret in the form of a web; can be mentioned.
  • the extruder is not particularly limited, and may be a single-screw extruder or a multi-screw extruder.
  • a solid resin composition charged from a hopper is melted in the compression section.
  • a spinneret is located at the tip of the extruder.
  • a spinneret usually comprises a plurality of spinning nozzles, for example, a plurality of spinning nozzles arranged in a row.
  • the diameter of the spinning nozzle is preferably between 0.05 mm and 0.38 mm.
  • a molten resin composition is conveyed to a spinneret by an extruder and introduced into a spinning nozzle.
  • a fibrous molten resin composition is discharged from the opening of the spinning nozzle.
  • the discharge pressure of the molten resin composition is usually in the range of 0.01 kg/cm 2 to 200 kg/cm 2 and preferably in the range of 10 kg/cm 2 to 30 kg/cm 2 . Mass production is realized by increasing the discharge amount.
  • the gas nozzle injects hot gas below the spinneret, more specifically near the opening of the spinning nozzle.
  • the propellant gas can be air. It is preferable to provide a gas nozzle in the vicinity of the opening of the spinning nozzle to inject a high-temperature gas onto the resin composition immediately after being discharged from the nozzle opening.
  • the speed of the jetted gas is not particularly limited, and may be 150 Nm 3 /h/m to 1500 Nm 3 /h/m.
  • the temperature of the injected gas is usually 5°C to 400°C or less, preferably 140°C to 350°C.
  • the type of gas to be injected is not particularly limited, and compressed air may be used.
  • the apparatus for producing a meltblown nonwoven fabric may further comprise voltage applying means for applying a voltage to the fibrous molten resin composition discharged from the spinneret. Further, a heat ray irradiation means for irradiating the fibrous molten resin composition extruded from the spinneret with heat rays may be further provided.
  • the collector that collects in the form of a web is not particularly limited, and for example, the fibers may be collected on a perforated belt.
  • the mesh width of the perforated belt is preferably 5 to 200 mesh.
  • an air collecting portion may be provided on the back side of the fiber collecting surface of the perforated belt to facilitate collection.
  • the distance from the collecting surface of the collector to the nozzle opening of the spinning nozzle is preferably 3 cm to 55 cm. Also, it may be collected on the collector while sucking from the back side of the collector.
  • the meltblown nonwoven fabric manufacturing apparatus may further include a pair of rolls with a clearance between the flat rolls or the crown rolls, or rolls to which a constant pressure can be applied without a clearance.
  • the fibers collected on the web are calendered by passing through rolls to adjust the porosity.
  • a first embodiment of the nonwoven fabric laminate of the present disclosure includes a nonwoven layer A, which is the nonwoven fabric of the present disclosure described above, and a layer B other than the nonwoven layer A. Since the nonwoven fabric laminate of the first embodiment includes the layer B together with the nonwoven fabric layer A, it is excellent in water pressure resistance and its maintainability. In particular, since the layer B has a function of supporting the nonwoven fabric layer A, the nonwoven fabric of the present disclosure constituting the nonwoven fabric layer A is less likely to be deformed, damaged, etc., and the nonwoven fabric laminate tends to be more excellent in water pressure resistance.
  • the layer B has a function of supporting the nonwoven fabric layer A, the strength of the nonwoven fabric laminate tends to be improved.
  • the nonwoven fabric layer A is included in the nonwoven fabric layered product of the first embodiment, it is excellent in backwashability and maintainability thereof.
  • the layer B in the first embodiment is not particularly limited as long as it is a layer other than the nonwoven fabric layer A that is the nonwoven fabric of the present disclosure described above, and is a resin film such as a porous film, woven fabric, knitted fabric, paper, or Layers composed of nonwoven fabrics other than nonwoven fabrics, and the like are included.
  • the nonwoven fabric preferably contains a spunbonded nonwoven fabric, that is, the layer B preferably contains a spunbonded nonwoven fabric layer, from the viewpoint that the nonwoven fabric laminate is superior in water pressure resistance and maintainability thereof. Including the spunbond nonwoven fabric in the layer B tends to further improve the strength of the nonwoven fabric laminate.
  • the nonwoven fabric layer A in the first embodiment may be a nonwoven fabric composed of one layer of the nonwoven fabric of the present disclosure, or may be a nonwoven fabric composed of two or more layers of the nonwoven fabric of the present disclosure.
  • the layer B in the first embodiment may be one layer or two or more layers. When Layer B is two or more layers, the two or more layers may be the same or different.
  • the fibers contained in the nonwoven fabric layer B in the first embodiment may contain a thermoplastic resin.
  • the thermoplastic resin includes, for example, the thermoplastic resin contained in the fibers in the nonwoven fabric of the present disclosure described above.
  • Preferred physical properties of the thermoplastic resin contained in the nonwoven fabric layer B are the same as the preferred physical properties of the thermoplastic resin contained in the fibers in the nonwoven fabric of the present disclosure described above.
  • the thermoplastic resin preferably contains polyolefin, preferably contains at least one selected from polyethylene and polypropylene, and preferably contains polypropylene.
  • Polyethylene is preferably a polymer containing 50% by mass or more of ethylene units.
  • polypropylene a polymer containing 50% by mass or more of propylene units is preferable, and a polymer containing 100% by mass of propylene units (that is, a homopolymer of propylene) is more preferable.
  • the content of polyolefin, the total content of polyethylene and polypropylene, or the content of polypropylene may be 50% by mass to 100% by mass, or 80% by mass to 100% by mass, based on the total thermoplastic resin.
  • the content of the thermoplastic resin in the nonwoven fabric layer B in the first embodiment is preferably 90% by mass or more, more preferably 95% by mass or more, relative to the total mass of fibers contained in the nonwoven fabric.
  • the upper limit of the thermoplastic resin content is not particularly limited as long as it is 100% by mass or less with respect to the total mass of fibers contained in the nonwoven fabric.
  • the nonwoven fabric layer B in the first embodiment may or may not contain the aforementioned specific silylated polyolefin and the aforementioned known additive independently.
  • the average fiber diameter of the fibers contained in the nonwoven fabric layer B in the first embodiment is not particularly limited.
  • the average fiber diameter of the fibers is preferably 5.0 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 12 ⁇ m or more, from the viewpoint that the nonwoven fabric laminate is superior in water pressure resistance and durability.
  • the upper limit of the average fiber diameter of the fibers is not particularly limited, and may be, for example, 30 ⁇ m or less.
  • the basis weight of the nonwoven fabric layer B in the first embodiment can be appropriately set depending on the application, and is usually in the range of 1 g/m 2 to 200 g/m 2 and preferably in the range of 2 g/m 2 to 150 g/m 2 . preferable.
  • the basis weight can be adjusted to a desired basis weight by, for example, changing the speed of the collector.
  • the porosity of the nonwoven fabric layer B in the first embodiment is usually 20% or more, preferably in the range of 20% to 98%, more preferably in the range of 60% to 95%.
  • the porosity can be adjusted to a desired porosity by, for example, calendering after collection on a collector.
  • the method for producing the nonwoven fabric laminate in the first embodiment is not particularly limited.
  • the nonwoven fabric layer of the first embodiment can be obtained by manufacturing the nonwoven fabric of the present disclosure and a nonwoven fabric other than the nonwoven fabric of the present disclosure, and laminating these nonwoven fabrics.
  • the method for laminating these nonwoven fabrics is not particularly limited, and includes thermal embossing, thermal fusion methods such as ultrasonic fusion, mechanical entangling methods such as needle punching and hydroentangling, hot melt adhesives, and urethane adhesives.
  • a method using an adhesive such as an adhesive agent is exemplified.
  • one of the nonwoven fabrics of the present disclosure or the nonwoven fabric other than the nonwoven fabric of the present disclosure is produced, the other nonwoven fabric of the disclosure or the nonwoven fabric other than the nonwoven fabric of the present disclosure is deposited on one of the produced nonwoven fabrics, and then the The nonwoven fabric laminate in the first embodiment can be obtained by laminating the nonwoven fabrics by the method described above.
  • the layer B is a layer composed of a non-woven fabric, for example, a resin film such as a porous film, a woven fabric, a knitted fabric, a base material such as paper, etc.
  • the non-woven fabric of the present disclosure is formed on the base material provided in advance on the collector.
  • the nonwoven laminate in the first embodiment may be obtained by depositing the fibers in a web and then laminating the nonwoven and substrate by the methods described above.
  • a second embodiment of the nonwoven fabric laminate of the present disclosure includes a nonwoven layer A that is the nonwoven fabric of the present disclosure, a layer B that is other than the nonwoven layer A, and a layer C that is other than the nonwoven layer A.
  • Layer B, said nonwoven fabric layer A and said layer C are arranged in this order.
  • the nonwoven fabric laminate of the second embodiment includes the layers B and C together with the nonwoven fabric layer A, so that it is excellent in water pressure resistance and its maintainability.
  • the nonwoven fabric layered product of 2nd Embodiment is excellent in backwashability and its maintainability by including the nonwoven fabric layer A.
  • the layer B and the layer C are located on both sides of the nonwoven fabric layer A, the nonwoven fabric laminate of the second embodiment tends to be superior in strength compared to the embodiment with only the nonwoven fabric layer A, and is easy to handle. Excellent in nature.
  • the layers B and C in the second embodiment are not particularly limited as long as they are layers other than the nonwoven fabric layer A, which is the nonwoven fabric of the present disclosure.
  • Resin films such as porous films, woven fabrics, knitted fabrics, paper, Examples thereof include layers composed of nonwoven fabrics other than the nonwoven fabric of the present disclosure.
  • the nonwoven fabrics that can constitute the layers B and C in the second embodiment are the same as the nonwoven fabrics that can constitute the layer B in the first embodiment.
  • Layers B and C in the second embodiment may be composed of the same type of nonwoven fabric, or may be composed of different types of nonwoven fabric.
  • at least one of the nonwoven fabric contained in the layer B and the nonwoven fabric contained in the layer C preferably contains a spunbond nonwoven fabric.
  • the nonwoven fabric contained in the layer B and the nonwoven fabric contained in the layer C more preferably contain a spunbond nonwoven fabric from the viewpoint that the nonwoven fabric laminate is more excellent in water pressure resistance and its maintainability. More preferably, it includes a spunbond nonwoven layer.
  • Layer B and Layer C contain spunbond nonwoven layers, the strength of the nonwoven fabric laminate tends to be further improved.
  • the nonwoven fabric layer A in the second embodiment may be a nonwoven fabric composed of one layer of the nonwoven fabric of the present disclosure, or may be a nonwoven fabric composed of two or more layers of the nonwoven fabric of the present disclosure.
  • Layer B and layer C in the second embodiment may each independently be one layer or two or more layers. When at least one of Layer B and Layer C is two or more layers, the two or more layers may be the same or different.
  • Layer B and layer C may be made of the same material or may be the same layer.
  • the layer B in the second embodiment is the nonwoven fabric layer B made of nonwoven fabric and the layer C in the second embodiment is the nonwoven fabric layer C made of nonwoven fabric will be described below.
  • a nonwoven fabric layer B containing a spunbond nonwoven fabric layer, a nonwoven fabric layer A, and a nonwoven fabric layer C containing a spunbond nonwoven fabric layer are preferably laminated in this order. More preferably comprises a meltblown nonwoven layer.
  • the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C may each independently be one nonwoven fabric layer, or two or more nonwoven fabric layers.
  • the preferred forms of the nonwoven fabric layer B and the nonwoven fabric layer C in the second embodiment are the same as the preferred forms of the nonwoven fabric layer B in the first embodiment.
  • nonwoven fabric laminate of the present disclosure including the nonwoven fabric laminate of the first embodiment and the nonwoven fabric laminate of the second embodiment, will be described below.
  • the nonwoven fabric laminate of the present disclosure preferably has a fused or bonded portion that fuses or bonds at least a portion of the nonwoven fabric contained in the nonwoven fabric laminate. Since the nonwoven fabric laminate has a fused part or a bonded part, the force applied to the fibers contained in the nonwoven fabric laminate when water pressure is applied to the nonwoven fabric laminate is dispersed to the fused part or the bonded part, thereby forming a nonwoven fabric laminate. water pressure resistance tends to be more improved.
  • the area ratio of the fused part or the bonded part is preferably 1% to 30%, more preferably 5% to 25%, from the viewpoint of the fused strength or adhesive strength of the nonwoven fabric laminate and the water pressure resistance of the nonwoven fabric laminate. is more preferably 7% to 20%.
  • the nonwoven fabric laminate of the present disclosure has at least one of the properties of being excellent in water pressure resistance and its maintainability, and the properties of being able to be applied as a filter medium of a filter and having excellent backwashing properties and its maintainability. You don't have to have both.
  • the manufacturing method of the nonwoven fabric laminate in the second embodiment is not particularly limited.
  • the layer B is the nonwoven fabric layer B and the layer C is the nonwoven fabric layer C
  • the nonwoven fabrics constituting the nonwoven fabric layers A to C are produced respectively, and these nonwoven fabrics are laminated to form the nonwoven fabric laminate in the second embodiment.
  • the method for laminating these nonwoven fabrics is not particularly limited, and includes thermal embossing, thermal fusion methods such as ultrasonic fusion, mechanical entangling methods such as needle punching and hydroentangling, hot melt adhesives, and urethane adhesives.
  • a method using an adhesive such as an adhesive agent is exemplified.
  • one of the nonwoven fabric constituting the nonwoven fabric layer B and the nonwoven fabric constituting the nonwoven fabric layer C is manufactured, and the nonwoven fabric of the present disclosure and the nonwoven fabric constituting the nonwoven fabric layer B or the nonwoven fabric layer C are formed on one of the manufactured nonwoven fabrics.
  • the nonwoven fabric laminate in the second embodiment can be obtained by depositing the other nonwoven fabric in order and then laminating these nonwoven fabrics by the method described above.
  • the nonwoven fabric laminate in the second embodiment can be produced through the following steps. 1) A resin composition containing a thermoplastic resin is melted using an extruder, the melted composition is melt-spun using a spunbond nonwoven fabric molding machine having a plurality of spinnerets, and a length formed by spinning is formed. After the fibers are cooled and stretched as necessary, they are deposited on the collection surface of a spunbond nonwoven fabric molding machine to obtain a nonwoven web.
  • the stamped area ratio of the embossing roll is preferably 1% to 30%, more preferably 5% to 25%, and more preferably 7% to 20%. is more preferable.
  • the temperature of the embossing roll during hot embossing is preferably 80°C to 140°C, more preferably 90°C to 130°C, even more preferably 95°C to 125°C.
  • nonwoven fabrics and nonwoven fabric laminates of the present disclosure include, for example, filters such as gas filters (air filters) and liquid filters, wipers, protective clothing, medical gowns (especially disposable protective clothing and disposable medical gowns). (liquid shielding article) such as a medical material such as a liquid shielding article.
  • filters such as gas filters (air filters) and liquid filters are preferable
  • protective clothing, medical gowns especially disposable protective clothing Liquid barrier articles such as medical materials such as disposable medical gowns
  • protective clothing, medical gowns especially disposable protective clothing Liquid barrier articles such as medical materials such as disposable medical gowns
  • the meltblown nonwoven fabric is 1) free of solvent components, 2) free of adhesive components for bonding fibers together, and 3) non-embossed.
  • the content of impurities is reduced. Therefore, such a nonwoven fabric has high cleanability and filtering performance, and is suitably used as a high-performance filter.
  • the liquid filter may consist of a single layer of nonwoven fabric or may consist of a laminate of two or more layers of nonwoven fabric. Moreover, the liquid filter may be made of a laminate of a nonwoven fabric and a resin film. When a laminate of two or more layers of nonwoven fabric is used as the liquid filter, the two or more layers of nonwoven fabric may simply be stacked. In addition, the liquid filter may be a nonwoven fabric combined with another nonwoven fabric depending on the purpose and the liquid to be applied. Moreover, in order to increase the strength of the liquid filter, a spunbonded nonwoven fabric may be used, or a spunbonded nonwoven fabric and a net-like material may be laminated.
  • the liquid filter may be calendered using, for example, a pair of rolls provided with a clearance between flat rolls or crown rolls to control the pore size and porosity to be small, or rolls to which a constant pressure can be applied without a clearance. . It is necessary to change the clearance between the rolls appropriately according to the thickness of the nonwoven fabric so as not to eliminate voids between the fibers of the nonwoven fabric.
  • the roll surface temperature is in the range of 15°C to 50°C lower than the melting point of the fibers formed from the resin composition.
  • the roll surface temperature is 15° C. or more lower than the melting point of the resin formed from the resin composition, film formation on the surface of the meltblown nonwoven fabric tends to be suppressed, and deterioration in filter performance tends to be suppressed.
  • the nonwoven fabric layer B containing the spunbond nonwoven fabric layer, the nonwoven fabric layer A containing the meltblown nonwoven fabric layer, and the nonwoven fabric layer C containing the spunbond nonwoven fabric layer are preferably laminated in this order.
  • the nonwoven fabric layer B and the nonwoven fabric layer C contribute to the strength of the nonwoven fabric laminate, and tend to be more excellent in water pressure resistance and its maintainability.
  • the nonwoven fabric laminate preferably has a fused part or an adhesive part that fuses or bonds at least a part of the nonwoven fabric contained in the nonwoven fabric laminate.
  • the sample concentration was 0.1% by mass, and the sample injection amount was 500 microliters.
  • a differential refractometer as a detector, it was determined as a polystyrene equivalent value. Then, based on the polystyrene equivalent values, they were converted into polyethylene equivalent values by the universal calibration method.
  • the number of moles of the raw material polymer is all expressed as a value based on Mn.
  • the ratio of the number of moles of the vinylene body produced to the number of moles of the vinyl group-containing compound as the raw material is the ratio of the number of moles of the vinylene body produced to the number of moles of the vinyl group-containing compound as the raw material.
  • the ratio of terminal vinyl groups and the number of vinyl groups per 1,000 carbon atoms are defined as the ratio of the number of vinyl groups to the number of carbon atoms derived from the number of protons corrected to the number of vinyl groups per 1,000 carbon atoms.
  • the terminal unsaturation rate and the number of vinyl groups per 1,000 carbon atoms are generally applied to the raw material vinyl group-containing compound. may also apply to silylated polyolefins as
  • a silylated polyolefin obtained by hydrosilylating a main chain end vinyl group-containing compound consisting only of ethylene with triethoxysilane has a peak (C) corresponding to 6 protons of the ethoxy group methylene of 3.8 ppm, and an isomerized vinylene group.
  • a peak (D) corresponding to two protons of is observed at 5.4 ppm.
  • the peak (E) for 2 protons of the unreacted vinyl group is observed at 4.8 ppm to 5.1 ppm, and the peak (F) for 1 proton is observed at 5.6 to 5.8 ppm.
  • the main chain methylene (G) for 2 protons was observed at 1.0 ppm to 1.5 ppm. ) is observed at 0.8 ppm. Furthermore, a peak (I) for two protons on the carbon adjacent to the double bond is observed at 1.9 ppm. If the peak areas of each peak (C), (D), (E), (F), (G), (H) and (I) are respectively SC, SD, SE, SF, SG, SH and SI , yield (YLD (%)), conversion rate (CVS (%)), isomerization rate (ISO (%)), terminal unsaturation rate (VE (%)), number of double bonds per thousand carbons ( VN (pieces/1000C)) is calculated by the following formula.
  • MFR Melt mass flow rate measurement method MFR was measured according to ASTM D-1238-04.
  • the melt mass flow rate (MFR) of polyethylene as the vinyl group-containing compound was measured using a melt indexer T-111 manufactured by Tokyo Seiki Co., Ltd. at 190° C. under a load of 2160 g.
  • the MFR of polypropylene as a thermoplastic resin was measured using a melt indexer T-111 manufactured by Tokyo Seiki Co., Ltd. at 230° C. under a load of 2160 g.
  • Example 1 ⁇ Preparation of resin composition> 99.0 parts by mass of polypropylene (product name: Achieve 6936G2, ExxonMobil, Inc., weight average molecular weight: 55,000, MFR; 1550 g/10 min, PP) as a thermoplastic resin, and silyl obtained as follows: and 1.0 parts by mass of the modified polyolefin (A) were mixed to obtain a resin composition.
  • Silylated polyolefin (A) is a specific silylated polyolefin.
  • silylated polyolefin (A) had a yield of 98%, an olefin conversion rate of 100%, and an isomerization rate of 2%.
  • the MFR was greater than the upper limit of measurement (MFR>100 g/10 min), and the polydimethylsiloxane content in the silylated polyolefin (A) calculated from the molecular formula was 26% by mass.
  • the resin composition obtained above is supplied to a die, and heated air (250 ° C. , 300 m 3 /sec), collected by a collector while being sucked from the back side of the collector, passed through rolls and calendered to obtain a meltblown nonwoven fabric.
  • the resulting meltblown nonwoven fabric had an average fiber diameter of 2.6 ⁇ m, a porosity of 81.0%, and a basis weight of 29.2 g/m 2 .
  • Adhesion amount, adhesion amount after backwashing, and adhesion rate after backwashing (before holding in water)
  • a 50 ppm aqueous dispersion (dust liquid) of polystyrene particles (particle size: 20 ⁇ m) was passed through six of the filters obtained above at a flow rate of 20 mL/min for 5 minutes. Meltblown nonwoven fabrics were taken out from 3 of the 6 filters after passing the liquid, dried, and the mass (mg) was measured.
  • the adhesion amount A (mg) before backwashing was determined from the mass (mg) (dry mass) before and after passing the dust liquid through the following formula (A).
  • Adhesion amount A (mg) before backwashing (Total mass of 3 nonwoven fabrics after passing dust liquid - Total mass of 3 nonwoven fabrics before passing dust liquid) / 3 (A) Then, after passing the dust liquid, pure water was passed through the three filters from which the meltblown nonwoven fabric was not removed for 5 minutes at a flow rate of 20 mL/min in the direction opposite to the direction of passing the dust liquid, Backwashed. The meltblown nonwoven fabric was taken out from the three filters after backwashing, dried, and the mass (mg) after backwashing was measured. For the three nonwoven fabrics dried after backwashing, the following formula (B ) was used to determine the adhesion amount B (mg) after backwashing.
  • Evaluation 2 Adhesion amount, adhesion amount after backwashing, and adhesion rate after backwashing (after being held in water) The remaining 6 filters that were not subjected to evaluation 1 were immersed in pure water for 7 days. For the 6 filters after immersion, in the same manner as in Evaluation 1, the adhesion amount A (mg) before backwashing, the adhesion amount B (mg) after backwashing, and the adhesion rate after backwashing (%) were calculated. did.
  • Table 1 shows the results obtained in Evaluation 1 and Evaluation 2.
  • Example 2 and Example 3 A nonwoven fabric and a filter comprising the same were produced in the same manner as in Example 1 except that the amounts of the silylated polyolefin (A) and polypropylene were changed as shown in Table 1, (Evaluation 1) and (Evaluation 2) were performed. Table 1 shows the results.
  • the nonwoven fabric produced in Example 2 had a porosity of 79.0% and a basis weight of 29.6 g/m 2 .
  • the nonwoven fabric produced in Example 3 had a porosity of 80.0% and a basis weight of 30.8 g/m 2 .
  • Example 4 A nonwoven fabric and a filter comprising the same were prepared in the same manner as in Example 1, except that polyethylene (PE, product name: SP50800P, Prime Polymer Co., Ltd.) was used as the thermoplastic resin in Example 1 instead of polypropylene. (Evaluation 1) and (Evaluation 2) were performed. Table 1 shows the results.
  • the nonwoven fabric produced in Example 4 had a porosity of 82.0% and a basis weight of 31.1 g/m 2 .
  • Example 5 In Example 1, a nonwoven fabric and a filter comprising the same were produced in the same manner as in Example 1, except that nylon 6 (product name: A1020BRL, Unitika Ltd., PA6) was used as the thermoplastic resin instead of polypropylene. (Evaluation 1) and (Evaluation 2) were performed. Table 1 shows the results.
  • the nonwoven fabric produced in Example 5 had a porosity of 81.0% and a basis weight of 29.8 g/m 2 .
  • Example 6 A nonwoven fabric and a filter comprising the same were produced in the same manner as in Example 1, except that polybutylene terephthalate (product name: 300FP, Duranex, PBT) was used as the thermoplastic resin in Example 1 instead of polypropylene. (Evaluation 1) and (Evaluation 2) were performed. Table 1 shows the results.
  • the nonwoven fabric produced in Example 6 had a porosity of 79.0% and a basis weight of 30.6 g/m 2 .
  • Example 1 A nonwoven fabric and a filter comprising the same were produced in the same manner as in Example 1, except that the silylated polyolefin (A) was not used, and (Evaluation 1) and (Evaluation 2) were performed. Table 1 shows the results.
  • the nonwoven fabric produced in Comparative Example 1 had a porosity of 78.0% and a basis weight of 31.6 g/m 2 .
  • Example 2 In Example 1, in the same manner as in Example 1, except that methyltrimethoxysilane (product name: LS-530, Shin-Etsu Chemical Co., Ltd., alkoxysilane) was used instead of the silylated polyolefin (A). A nonwoven fabric and a filter including the same were produced, and evaluated (Evaluation 1) and (Evaluation 2). Table 1 shows the results.
  • the nonwoven fabric produced in Comparative Example 2 had a porosity of 82.0% and a basis weight of 29.6 g/m 2 .
  • Example 3 A nonwoven fabric and a filter comprising the same were produced in the same manner as in Example 4, except that the silylated polyolefin (A) was not used in Example 4, and (Evaluation 1) and (Evaluation 2) were performed. Table 1 shows the results.
  • the nonwoven fabric produced in Comparative Example 3 had a porosity of 83.0% and a basis weight of 31.0 g/m 2 .
  • PP polypropylene (product name: Achieve 6936G2, ExxonMobil, weight average molecular weight: 55,000 propylene-based polymer, MFR: 1550 g/10 minutes)
  • PE polyethylene (product name: SP50800P, Prime Polymer Co., Ltd.)
  • PA6 Nylon 6 (product name: A1020BRL, Unitika Ltd.)
  • PBT polybutylene terephthalate (product name: 300FP, Duranex)
  • Silylated PO "Silylated polyolefin (A)" synthesized above (specific silylated polyolefin) ⁇ Alkoxysilane: methyltrimethoxysilane (product name: LS-530, Shin-Etsu Chemical Co., Ltd.)
  • the nonwoven fabrics included in the filters of Examples 1 to 6 all had good adhesion rates after backwashing in both evaluations before and after holding in water. was done. This means that the nonwoven fabrics included in the filters of Examples 1 to 6 are filter media excellent in backwashability and maintainability. Moreover, from Examples 1 to 4 and Examples 5 to 6, it can be seen that polyolefin is preferable as the thermoplastic resin, and polypropylene is more preferable. On the other hand, Comparative Examples 1 and 3 are filters provided with a nonwoven fabric containing no specific silylated polyolefin, and are found to be remarkably inferior in backwashability.
  • meltblown nonwoven fabric ⁇ Production of meltblown nonwoven fabric>
  • the resin composition prepared in Example 1 is supplied to a die, and heated air is blown from both sides of the nozzle from a die having a set temperature of 270 ° C. and a nozzle diameter of 0.12 mm at a rate of 50 mg / min per single nozzle hole. (270° C., 308 Nm 3 /h/m) together with the above resin composition is discharged onto SB1 on the collector, collected by the collector while being sucked from the back side of the collector, and meltblown nonwoven fabric 1 (MB1) on SB1. manufactured.
  • a meltblown nonwoven fabric 2 (MB2) was produced on MB1 with the same raw materials and production conditions.
  • the average fiber diameter of the obtained nonwoven fabric laminate was measured by the method described above. MB1 and MB2 were put together and the average fiber diameter was measured as one MB layer. Table 2 shows the measured values.
  • Example 8 A nonwoven fabric laminate having a four-layer structure of SB1/MB1/MB2/SB2 was prepared in the same manner as in Example 7 except that the amounts of silylated polyolefin (A) and polypropylene in MB1 and MB2 were changed as shown in Table 2. was produced and evaluated. Table 2 shows the results.
  • Example 7 a nonwoven fabric laminate having a four-layer structure of SB1/MB1/MB2/SB2 was produced in the same manner as in Example 7, except that the silylated polyolefin (A) was not used in MB1 and MB2, evaluated. Table 2 shows the results.
  • Example 8 except that methyltrimethoxysilane (product name: LS-530, Shin-Etsu Chemical Co., Ltd., alkoxysilane) was used instead of silylated polyolefin (A) in MB1 and MB2.
  • a nonwoven fabric laminate having a four-layer structure of SB1/MB1/MB2/SB2 was prepared and evaluated in the same manner as in the above. Table 2 shows the results.
  • the initial water pressure resistance of the nonwoven fabric laminates of Examples 7 and 8 and the initial water pressure resistance of the nonwoven fabric laminate of Comparative Example 5 were about the same, but the water pressure resistance of the nonwoven fabric laminates of Examples 7 and 8 over time was superior to the water pressure resistance after aging in the nonwoven fabric laminate of Comparative Example 5. These facts mean that the nonwoven fabric laminates of Examples 7 and 8 are excellent in water pressure resistance and its maintainability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

This nonwoven fabric contains fibers, the fibers comprising, in terms of the fiber total mass, at least 80 mass% of a thermoplastic resin and 0.01 to 20 mass% of at least one selected from a specific silylated polyolefin and a derivative thereof.

Description

不織布、不織布積層体、フィルタ及び液体遮蔽用物品Nonwovens, nonwoven laminates, filters and liquid barrier articles
 本開示は、不織布、不織布積層体、フィルタ及び液体遮蔽用物品に関する。 The present disclosure relates to nonwoven fabrics, nonwoven laminates, filters and articles for liquid shielding.
 近年、不織布は各種の分野で用いられており、その用途は、液体フィルタ、エアフィルタ等のフィルタ、衛生材、メディカル材、農業用被覆材、土木材、建材、油吸着材、自動車材、電子材料、セパレータ、衣類、包装材、吸音材などの多岐に亘っている。 In recent years, nonwoven fabrics have been used in various fields, and their applications include filters such as liquid filters and air filters, sanitary materials, medical materials, agricultural coating materials, civil engineering and construction materials, oil adsorbents, automotive materials, electronic It covers a wide range of materials, separators, clothing, packaging materials, and sound absorbing materials.
 一般に、フィルタは、液体、気体等の流体中に存在する異物(例えば、微粒子)を捕集し、取り除く目的で使用されている。不織布は、このようなフィルタの濾材として備られている。不織布を構成する繊維としては、ポリプロピレン、ポリエチレン、ポリエステル等の熱可塑性樹脂の繊維が知られている。例えば、特許文献1には、芯部がポリエステル、鞘部がポリプロピレンの複合短繊維を含むエアフィルタ用不織布濾材が記載されている。 Generally, filters are used for the purpose of collecting and removing foreign substances (for example, fine particles) present in fluids such as liquids and gases. Non-woven fabrics are provided as filter media for such filters. Fibers of thermoplastic resins such as polypropylene, polyethylene, and polyester are known as fibers constituting nonwoven fabrics. For example, Patent Literature 1 describes a non-woven fabric filter material for an air filter that includes composite short fibers having a core made of polyester and a sheath made of polypropylene.
 不織布を濾材として備えたフィルタは、液体、気体等の流体中に含まれる異物(例えば、微粒子)を、不織布が有する網目状構造で捕捉して除去するものである。そのため、フィルタの使用期間が長じるに従い、濾材には捕集された異物が溜まってしまう。フィルタに溜まった異物を除去する方法としては、ブラシなどで掻き取る方法の他、濾過方向とは逆方向に、洗浄水、洗浄空気などを流す方法(以下、「逆洗」ともいう。)が知られている。例えば、特許文献2には、逆洗装置を備えた濾過機が記載されている。 A filter equipped with a nonwoven fabric as a filter medium captures and removes foreign matter (for example, fine particles) contained in fluids such as liquids and gases with the network structure of the nonwoven fabric. Therefore, as the filter is used for a longer period of time, the collected foreign matter accumulates in the filter material. As a method for removing the foreign matter accumulated in the filter, there is a method of scraping it with a brush or the like, and a method of flowing washing water, washing air, etc. in the direction opposite to the filtering direction (hereinafter also referred to as "backwashing"). Are known. For example, Patent Literature 2 describes a filter equipped with a backwashing device.
特開2018-061924号公報JP 2018-061924 A 特開2018-23925号公報JP 2018-23925 A
 しかし、濾材として不織布を備えたフィルタに溜った異物を除去するに際して、ブラシなどで掻き取る方法では、不織布が破損してしまう場合がある。また、逆洗では、異物が濾材に一定量残ってしまい、フィルタの寿命が短くなってしまう場合がある。
 本発明者らは、逆洗しても残留する異物を減らすため、濾材である不織布を構成する繊維中にアルコキシシランを添加して表面自由エネルギーを低下させることを試みた。しかし、この方法では、フィルタを長時間使用していると、逆洗性能が低下してしまう場合があることが判明した。そのため、フィルタの濾材として適用でき、かつ逆洗性及びその維持性に優れる不織布が望ましい。
However, when removing foreign matter accumulated in a filter having a nonwoven fabric as a filter medium, the nonwoven fabric may be damaged by a method of scraping it with a brush or the like. In addition, in backwashing, a certain amount of foreign matter remains in the filter medium, and the service life of the filter may be shortened.
In order to reduce foreign matter remaining after backwashing, the present inventors tried to add alkoxysilane to the fibers constituting the nonwoven fabric, which is a filter medium, to lower the surface free energy. However, in this method, it was found that the backwashing performance may deteriorate if the filter is used for a long time. Therefore, a nonwoven fabric that can be used as a filter medium for filters and is excellent in backwashability and maintenance is desirable.
 前述のように不織布は多様な分野にて用いられており、防護服、医療用ガウン等の医療用資材などの液体の遮蔽が要求される用途にも使用されている。このような用途に使用される不織布では、耐水圧が高いこと、経時による耐水圧の低下が抑制されていること等が望ましい。 As mentioned above, non-woven fabrics are used in a variety of fields, and are also used for applications that require liquid shielding, such as medical materials such as protective clothing and medical gowns. Nonwoven fabrics used for such applications are desired to have high water pressure resistance and to suppress deterioration of water pressure resistance over time.
 本開示の一実施形態は、フィルタの濾材として適用でき、かつ逆洗性及びその維持性に優れる不織布、又は該不織布を含む不織布積層体、フィルタ及び液体遮蔽用物品を提供することを課題とする。
 本開示の他の実施形態は、耐水圧及びその維持性に優れる不織布、又は該不織布を含む不織布積層体、フィルタ及び液体遮蔽用物品を提供することを課題とする。
An object of one embodiment of the present disclosure is to provide a nonwoven fabric that can be applied as a filter medium of a filter and has excellent backwashability and maintainability, or a nonwoven fabric laminate including the nonwoven fabric, a filter, and a liquid shielding article. .
Another embodiment of the present disclosure aims to provide a nonwoven fabric having excellent water pressure resistance and maintenance properties, or a nonwoven fabric laminate, filter, and liquid shielding article including the nonwoven fabric.
 本開示には、以下の実施形態が含まれる。
<1> 繊維を含む不織布であって、
 前記繊維は、
 熱可塑性樹脂を、繊維の全質量に対して、80質量%以上と、
 下記の式(1)で表される構造単位を含有するケイ素含有化合物と、GPC法で求めた数平均分子量が100以上500,000以下であるビニル基含有化合物との反応物(ただし、1分子に2個以上のSiH基を有する前記ケイ素含有化合物と、1分子あたり平均2.0個以上のビニル基を有する前記ビニル基含有化合物との反応物は除く)である、シリル化ポリオレフィン及びその誘導体から選択される少なくとも1種を、繊維の全質量に対して、0.01質量%~20質量%と、
 を含有する、不織布。
-Si(R)H-Y-  (1)
 (式(1)中、Rは、水素原子、ハロゲン原子又は炭化水素基を表し、Yは、O、S又はNR30を表し、R30は、水素原子又は炭化水素基を表す。)
<2> 前記熱可塑性樹脂が、ポリオレフィン、ポリアミド及びポリエステルからなる群より選択される少なくとも1種を含む、<1>に記載の不織布。
<3> 前記熱可塑性樹脂が、ポリプロピレンを含む、<1>に記載の不織布。
<4> 前記ビニル基含有化合物が、下記の式(4)で表される構造を有する、<1>~<3>のいずれか1つに記載の不織布。
 A-CH=CH    (4)
 (式(4)中、Aは、炭素数2~50のα-オレフィン由来の構造を含む重合鎖を表す。)
<5> 前記Aが、エチレン単独重合鎖である、<4>に記載の不織布。
<6> 前記繊維の平均繊維径が、4.0μm以下である、<1>~<5>のいずれか1つに記載の不織布。
<7> メルトブローン不織布を含む、<1>~<6>のいずれか1つに記載の不織布。
<8> <1>~<7>のいずれか1つに記載の不織布である不織布層Aと、
 前記不織布層A以外である層Bと、を含む、不織布積層体。
<9> 前記層Bがスパンボンド不織布層を含む、<8>に記載の不織布積層体。
<10> <1>~<7>のいずれか1つに記載の不織布である不織布層Aと、前記不織布層A以外である層Bと、前記不織布層A以外である層Cと、を含み、前記層B、前記不織布層A及び前記層Cの順番で配置されている、<8>に記載の不織布積層体。
<11> 前記層B及び前記層Cの少なくとも一方がスパンボンド不織布層を含む<10>に記載の不織布積層体。
<12> <1>~<7>のいずれか1つに記載の不織布又は<8>~<11>のいずれか1つに記載の不織布積層体を含むフィルタ。
<13> <1>~<7>のいずれか1つに記載の不織布又は<8>~<11>のいずれか1つに記載の不織布積層体を含む液体遮蔽用物品。
The present disclosure includes the following embodiments.
<1> A nonwoven fabric containing fibers,
The fibers are
80% by mass or more of the thermoplastic resin with respect to the total mass of the fibers,
A reaction product (1 molecule Silylated polyolefins and derivatives thereof, excluding the reaction product of the silicon-containing compound having two or more SiH groups in the above and the vinyl group-containing compound having an average of 2.0 or more vinyl groups per molecule. 0.01% by mass to 20% by mass of at least one selected from the total mass of the fiber,
A nonwoven fabric containing
—Si(R 1 )HY 1 — (1)
(In formula (1), R 1 represents a hydrogen atom, a halogen atom or a hydrocarbon group, Y 1 represents O, S or NR 30 , and R 30 represents a hydrogen atom or a hydrocarbon group.)
<2> The nonwoven fabric according to <1>, wherein the thermoplastic resin contains at least one selected from the group consisting of polyolefins, polyamides and polyesters.
<3> The nonwoven fabric according to <1>, wherein the thermoplastic resin contains polypropylene.
<4> The nonwoven fabric according to any one of <1> to <3>, wherein the vinyl group-containing compound has a structure represented by the following formula (4).
A-CH=CH 2 (4)
(In formula (4), A represents a polymer chain containing a structure derived from an α-olefin having 2 to 50 carbon atoms.)
<5> The nonwoven fabric according to <4>, wherein A is an ethylene homopolymer chain.
<6> The nonwoven fabric according to any one of <1> to <5>, wherein the fibers have an average fiber diameter of 4.0 μm or less.
<7> The nonwoven fabric according to any one of <1> to <6>, including a meltblown nonwoven fabric.
<8> A nonwoven fabric layer A which is the nonwoven fabric according to any one of <1> to <7>;
A nonwoven fabric laminate comprising a layer B other than the nonwoven fabric layer A.
<9> The nonwoven fabric laminate according to <8>, wherein the layer B comprises a spunbond nonwoven layer.
<10> Including a nonwoven fabric layer A which is the nonwoven fabric according to any one of <1> to <7>, a layer B other than the nonwoven fabric layer A, and a layer C other than the nonwoven fabric layer A , the layer B, the nonwoven fabric layer A and the layer C arranged in this order, the nonwoven fabric laminate according to <8>.
<11> The nonwoven fabric laminate according to <10>, wherein at least one of the layer B and the layer C comprises a spunbond nonwoven fabric layer.
<12> A filter comprising the nonwoven fabric according to any one of <1> to <7> or the nonwoven fabric laminate according to any one of <8> to <11>.
<13> A liquid shielding article comprising the nonwoven fabric according to any one of <1> to <7> or the nonwoven fabric laminate according to any one of <8> to <11>.
 本開示の一実施形態は、フィルタの濾材として適用でき、かつ逆洗性及びその維持性に優れる不織布、又は該不織布を含む不織布積層体、フィルタ及び液体遮蔽用物品を提供することができる。
 本開示の他の実施形態は、耐水圧及びその維持性に優れる不織布、又は該不織布を含む不織布積層体、フィルタ及び液体遮蔽用物品を提供することができる。
An embodiment of the present disclosure can provide a nonwoven fabric that can be applied as a filter medium of a filter and has excellent backwashability and maintainability, or a nonwoven fabric laminate, filter, and liquid shielding article containing the nonwoven fabric.
Other embodiments of the present disclosure can provide nonwoven fabrics, or nonwoven fabric laminates, filters, and liquid shielding articles comprising the nonwoven fabrics, which have excellent water pressure resistance and maintenance properties.
 以下、本開示の不織布及びフィルタについて詳細に説明する。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する該複数の物質の合計量を意味する。
 本開示において、「質量」と「重量」とは同義であり、「質量%」と「重量%」とは同義である。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
The nonwoven fabrics and filters of the present disclosure are described in detail below.
In the present disclosure, a numerical range indicated using "to" indicates a range including the numerical values before and after "to" as the minimum and maximum values, respectively. In the numerical ranges described stepwise in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise. Moreover, in the numerical ranges described in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
In the present disclosure, when there are multiple substances corresponding to each component in the composition, the amount of each component in the composition is the total amount of the multiple substances present in the composition unless otherwise specified. means.
In the present disclosure, "mass" and "weight" are synonymous, and "mass%" and "weight%" are synonymous.
In the present disclosure, a combination of two or more preferred aspects is a more preferred aspect.
《不織布》
 本開示の不織布は、繊維を含む不織布であって、繊維は、熱可塑性樹脂を、繊維の全質量に対して、80質量%以上、及び、下記の式(1)で表される構造単位を含有するケイ素含有化合物と、GPC法で求めた数平均分子量が100以上500,000以下であるビニル基含有化合物との反応物(ただし、1分子に2個以上のSiH基を有する上記ケイ素含有化合物と、1分子あたり平均2.0個以上のビニル基を有する上記ビニル基含有化合物との反応物は除く)である、シリル化ポリオレフィン及びその誘導体から選択される少なくとも1種を、繊維の全質量に対して、0.01質量%~20質量%、を含有する、不織布である。
-Si(R)H-Y-   ・・・(1)
 (式(1)中、Rは、水素原子、ハロゲン原子又は炭化水素基を表し、Yは、O、S又はNR30を表し、R30は、水素原子又は炭化水素基を表す。)
 なお、本開示では、上記のシリル化ポリオレフィン及びその誘導体を、適宜「特定シリル化ポリオレフィン」と総称する。
《Nonwoven fabric》
The nonwoven fabric of the present disclosure is a nonwoven fabric containing fibers, and the fibers contain a thermoplastic resin in an amount of 80% by mass or more with respect to the total mass of the fibers, and a structural unit represented by the following formula (1). A reaction product of the contained silicon-containing compound and a vinyl group-containing compound having a number average molecular weight of 100 or more and 500,000 or less as determined by the GPC method (however, the above silicon-containing compound having two or more SiH groups in one molecule and the reaction product with the vinyl group-containing compound having an average of 2.0 or more vinyl groups per molecule), at least one selected from silylated polyolefins and derivatives thereof, in the total mass of the fiber It is a nonwoven fabric containing 0.01% by mass to 20% by mass.
—Si(R 1 )HY 1 — (1)
(In formula (1), R 1 represents a hydrogen atom, a halogen atom or a hydrocarbon group, Y 1 represents O, S or NR 30 , and R 30 represents a hydrogen atom or a hydrocarbon group.)
In the present disclosure, the silylated polyolefins and derivatives thereof are collectively referred to as "specific silylated polyolefins" as appropriate.
 本開示の不織布は、繊維を含む不織布であって、該繊維が、熱可塑性樹脂を、繊維の全質量に対して、80質量%以上と、特定シリル化ポリオレフィンを、繊維の全質量に対して、0.01質量%以上20質量%以下と、を含有する特定の不織布である。
 本開示の不織布は、前述の特定の不織布1層からなる不織布であってもよく、2層以上の前述の特定の不織布からなる不織布であってもよい。
 本開示の不織布は、液体用フィルタ、エアフィルタ等のフィルタに好適に含まれる。すなわち、本開示の不織布は、フィルタ用の濾材として好適に用いることができる。
The nonwoven fabric of the present disclosure is a nonwoven fabric containing fibers, the fibers containing a thermoplastic resin in an amount of 80% by mass or more based on the total mass of the fibers, and a specific silylated polyolefin in an amount of 80% by mass or more based on the total mass of the fibers. , 0.01% by mass or more and 20% by mass or less.
The nonwoven fabric of the present disclosure may be a nonwoven fabric composed of one layer of the specific nonwoven fabric described above, or may be a nonwoven fabric composed of two or more layers of the specific nonwoven fabric described above.
The nonwoven fabric of the present disclosure is suitably included in filters such as liquid filters and air filters. That is, the nonwoven fabric of the present disclosure can be suitably used as a filter medium for filters.
 本発明者らは、不織布を濾材として備えるフィルタにおいて、逆洗しても残留する異物を減らすため、不織布を構成する繊維中にアルコキシシランを添加して表面自由エネルギーを低下させることを試みた。しかし、この方法では、フィルタを長時間使用していると、逆洗性能が低下してしまう場合があることが判明した。逆洗性能が低下する理由は、フィルタの使用時間が長くなるに伴い、アルコキシシランが繊維からブリードアウトしてしまうためと推測される。
 これに対し、本開示の不織布は、熱可塑性樹脂と特定シリル化ポリオレフィンとを所定量で含有する繊維を含むことにより、フィルタの濾材として適用でき、かつ逆洗性及びその維持性に優れたものとなる。この理由は、特定量の特定シリル化ポリオレフィンの含有により、熱可塑性樹脂を含む繊維の表面エネルギーを有意に低下させることでき、かつ、特定シリル化ポリオレフィンは、熱可塑性樹脂との相溶性も高く、繊維から分離し難くなることで、逆洗性及びその維持性が飛躍的に向上したためと推測される。本開示の不織布が奏する上記の効果は、熱可塑性樹脂として、特定シリル化ポリオレフィンと同種の構造を有するポリオレフィンを用いた場合において、より顕著に発揮される。
 但し、上記の推測は、本開示の不織布を限定的に解釈するものではなく、一例として説明するものである。
The present inventors tried to add alkoxysilane to the fibers constituting the nonwoven fabric to reduce the surface free energy in order to reduce the amount of foreign matter remaining even after backwashing in a filter equipped with a nonwoven fabric as a filter medium. However, in this method, it was found that the backwashing performance may deteriorate if the filter is used for a long time. It is presumed that the reason for the decrease in backwashing performance is that the alkoxysilane bleeds out from the fibers as the filter is used for a longer period of time.
In contrast, the nonwoven fabric of the present disclosure contains fibers containing a predetermined amount of a thermoplastic resin and a specific silylated polyolefin, so that it can be applied as a filter medium for filters and has excellent backwashing properties and maintainability. becomes. The reason for this is that the inclusion of a specific amount of the specific silylated polyolefin can significantly reduce the surface energy of the fiber containing the thermoplastic resin, and the specific silylated polyolefin has high compatibility with the thermoplastic resin, It is presumed that the backwashability and its maintainability were dramatically improved by making it difficult to separate from the fibers. The above effects of the nonwoven fabric of the present disclosure are exhibited more remarkably when a polyolefin having the same type of structure as the specific silylated polyolefin is used as the thermoplastic resin.
However, the above speculation is not intended to restrictively interpret the nonwoven fabric of the present disclosure, but is explained as an example.
 本発明者らは、不織布を構成する繊維中にアルコキシシランを添加して表面自由エネルギーを低下させることで不織布は水が通りにくくなることで耐水圧が向上することを見出した。しかし、この方法では、不織布から構成される物品、例えば、液体遮蔽用物品を長時間使用していると、耐水性が低下してしまう場合があることが判明した。耐水性が低下する理由は、物品の使用時間が長くなるに伴い、アルコキシシランが繊維からブリードアウトしてしまうためと推測される。
 これに対し、本開示の不織布は、熱可塑性樹脂と特定シリル化ポリオレフィンとを所定量で含有する繊維を含むことにより、耐水圧が向上し、その維持性にも優れる。この理由は、特定量の特定シリル化ポリオレフィンの含有により、熱可塑性樹脂を含む繊維の表面エネルギーを有意に低下させることでき、かつ、特定シリル化ポリオレフィンは、熱可塑性樹脂との相溶性も高く、繊維から分離し難くなることで、耐水圧及びその維持性が向上したためと推測される。
 但し、上記の推測は、本開示の不織布を限定的に解釈するものではなく、一例として説明するものである。
The present inventors have found that adding alkoxysilane to the fibers constituting the nonwoven fabric to lower the surface free energy makes it difficult for water to pass through the nonwoven fabric, thereby improving the water pressure resistance. However, it has been found that, in this method, the water resistance of an article made of nonwoven fabric, such as a liquid shielding article, may deteriorate if the article is used for a long period of time. The reason for the decrease in water resistance is presumed to be that the alkoxysilane bleeds out from the fibers as the article is used for a longer period of time.
On the other hand, the nonwoven fabric of the present disclosure includes fibers containing a predetermined amount of a thermoplastic resin and a specific silylated polyolefin, thereby improving water pressure resistance and maintaining the same. The reason for this is that the inclusion of a specific amount of the specific silylated polyolefin can significantly reduce the surface energy of the fiber containing the thermoplastic resin, and the specific silylated polyolefin has high compatibility with the thermoplastic resin, It is presumed that the resistance to water pressure and its maintainability were improved by making it difficult to separate from the fibers.
However, the above speculation is not intended to restrictively interpret the nonwoven fabric of the present disclosure, but is explained as an example.
 本開示の不織布は、フィルタの濾材として適用でき、かつ逆洗性及びその維持性に優れるという性質、並びに、耐水圧及びその維持性に優れるという性質の少なくとも一方を備えていればよく、両方を備えている必要はない。例えば、本開示の不織布をフィルタの濾材として適用する場合、本開示の不織布は逆洗性及びその維持性に優れるという性質を奏していればよく、耐水圧及びその維持性に優れるという性質を備えていなくてもよい。 The nonwoven fabric of the present disclosure can be applied as a filter medium of a filter, and has at least one of the properties of being excellent in backwashability and its maintainability, and the properties of being excellent in water pressure resistance and its maintainability. You don't have to. For example, when the nonwoven fabric of the present disclosure is applied as a filter medium for a filter, the nonwoven fabric of the present disclosure only needs to have excellent backwashability and maintainability, and has excellent water pressure resistance and maintainability. It doesn't have to be.
<繊維>
 本開示の不織布が含む繊維は、熱可塑性樹脂を、繊維の全質量に対して、80質量%以上と、特定シリル化ポリオレフィンを、繊維の全質量に対して、0.01質量%~20質量%と、を含有する。本開示の不織布は、逆洗性及びその維持性をより向上させる観点から、該繊維を50質量%以上含むことが好ましく、90質量%以上含むことがより好ましく、95質量%以上含むことがさらに好ましく、99質量%以上含むことが特に好ましい。本開示の不織布は、該繊維を100質量%以下含んでいればよく、例えば、該繊維を100質量%含んでいてもよい。
<Fiber>
The fibers contained in the nonwoven fabric of the present disclosure contain a thermoplastic resin of 80% by mass or more relative to the total mass of the fibers, and a specific silylated polyolefin of 0.01% to 20% by mass relative to the total mass of the fibers. % and The nonwoven fabric of the present disclosure preferably contains 50% by mass or more of the fiber, more preferably 90% by mass or more, more preferably 95% by mass or more, from the viewpoint of further improving backwashability and maintainability thereof. Preferably, it is particularly preferably contained in an amount of 99% by mass or more. The nonwoven fabric of the present disclosure may contain 100% by mass or less of the fibers, and may contain 100% by mass of the fibers, for example.
(熱可塑性樹脂)
 熱可塑性樹脂としては、特に制限はなく、公知の各種の熱可塑性樹脂を用いることができる。本開示に係る熱可塑性樹脂には、特定シリル化ポリオレフィンは含まれない。
(Thermoplastic resin)
The thermoplastic resin is not particularly limited, and various known thermoplastic resins can be used. Thermoplastic resins according to the present disclosure do not include specific silylated polyolefins.
 繊維に含有される熱可塑性樹脂は、1種のみであってもよいし、2種以上であってもよい。 The thermoplastic resin contained in the fiber may be of only one type, or may be of two or more types.
 熱可塑性樹脂としては、具体的には、ポリオレフィン(PO)、ポリアミド(PA)、ポリイミド(PI)、ポリエステル(PEs)〔例えば、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)等〕、エチレン・酢酸ビニル共重合体(EVA)、ポリエーテルイミド(PEI)、ポリエーテルケトン(PEEK)、ポリ塩化ビニル(PVC)、ポリアセタール(POM)、ポリカーボネート(PC)、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニレンサルファイド(PPS)等が挙げられる。 Specific examples of thermoplastic resins include polyolefin (PO), polyamide (PA), polyimide (PI), polyester (PEs) [e.g., polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), etc.], ethylene-vinyl acetate copolymer (EVA), polyetherimide (PEI), polyetherketone (PEEK), polyvinyl chloride ( PVC), polyacetal (POM), polycarbonate (PC), polysulfone (PSF), polyethersulfone (PES), polyphenylene sulfide (PPS) and the like.
 熱可塑性樹脂のメルトマスフローレイト(MFR)は、不織布を製造し得る限り特に限定されない。熱可塑性樹脂のメルトマスフローレイト(MFR)は、平均繊維径の細さ、紡糸性等の観点から、本開示の不織布がメルトブローン不織布である場合、好ましくは10g/10分~10000g/10分であり、より好ましくは30g/10分~5000g/10分であり、さらに好ましくは50g/10分~1800g/10分である。
 熱可塑性樹脂のメルトマスフローレイト(MFR)は、平均繊維径の細さ、紡糸性等の観点から、本開示の不織布がスパンボンド不織布である場合、好ましくは10g/10分~200g/10分であり、より好ましくは20g/10分~100g/10分である。
The melt mass flow rate (MFR) of the thermoplastic resin is not particularly limited as long as the nonwoven fabric can be produced. The melt mass flow rate (MFR) of the thermoplastic resin is preferably 10 g/10 minutes to 10000 g/10 minutes when the nonwoven fabric of the present disclosure is a meltblown nonwoven fabric, from the viewpoint of the fineness of the average fiber diameter, spinnability, etc. , more preferably 30 g/10 min to 5000 g/10 min, and still more preferably 50 g/10 min to 1800 g/10 min.
The melt mass flow rate (MFR) of the thermoplastic resin is preferably 10 g/10 min to 200 g/10 min when the nonwoven fabric of the present disclosure is a spunbond nonwoven fabric, from the viewpoint of the fineness of the average fiber diameter, spinnability, etc. Yes, more preferably 20 g/10 minutes to 100 g/10 minutes.
 本開示におけるメルトマスフローレイト(MFR)の測定は、ASTM D-1238-04に準拠し、230℃、荷重2160gの条件で行う。 The measurement of melt mass flow rate (MFR) in the present disclosure conforms to ASTM D-1238-04 and is carried out under conditions of 230°C and a load of 2160g.
 詳細には、MFRは、ASTM D-1238-04で各物質に対し個別に規定された、温度と荷重で測定する。荷重が複数種類規定されている場合は最小荷重で測定を行う。また、ASTM D-1238-04で個別に規定されていない物質を測定するときは、ASTM D-1238-04に記載されているTable1で測定される物質のTm+60℃の温度の最小荷重の測定方法を選択する。
 MFRの測定装置としては、例えば、後述する実施例に使用する測定装置を使用することができる。
Specifically, MFR is measured at temperature and load as specified individually for each material in ASTM D-1238-04. If multiple types of load are specified, the minimum load shall be used for measurement. In addition, when measuring substances that are not individually specified in ASTM D-1238-04, the method of measuring the minimum load at the temperature of Tm + 60 ° C of the substance measured in Table 1 described in ASTM D-1238-04 to select.
As the MFR measuring device, for example, the measuring device used in the examples described later can be used.
 熱可塑性樹脂としては、フィルタへの適用容易性の観点から、ポリオレフィン、ポリアミド及びポリエステルからなる群より選択される少なくとも1種を含むことが好ましく、特定シリル化ポリオレフィンとの相溶性をより向上させて、逆洗性の維持性をより向上させる観点から、ポリオレフィンを含むことがより好ましい。
 ポリオレフィン、ポリアミド及びポリエステルの合計含有量、好ましくはポリオレフィンの含有量は、熱可塑性樹脂全体に対して、50質量%~100質量%であってもよく、80質量%~100質量%であってもよい。
The thermoplastic resin preferably contains at least one selected from the group consisting of polyolefins, polyamides and polyesters from the viewpoint of ease of application to filters, and further improves compatibility with the specific silylated polyolefin. From the viewpoint of further improving the maintenance of backwashability, it is more preferable to contain a polyolefin.
The total content of polyolefin, polyamide and polyester, preferably the content of polyolefin, may be 50% by mass to 100% by mass, or 80% by mass to 100% by mass, based on the total thermoplastic resin. good.
 ポリオレフィンとしては、特に制限されず、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、オクテン、デセン、4-メチル-1-ペンテン等のオレフィン単量体の単独重合体又は2種以上のオレフィン単量体の共重合体が挙げられる。また、ポリオレフィンは、上記オレフィン単量体以外の他の単量体(例えば、環状ポリオレフィン、極性ポリオレフィン等)から形成された構造単位を含んでもよい。 The polyolefin is not particularly limited, and homopolymers of olefin monomers such as ethylene, propylene, butene, pentene, hexene, octene, decene, and 4-methyl-1-pentene, or two or more kinds of olefin monomers. A copolymer is mentioned. Polyolefins may also contain structural units formed from monomers other than the above olefin monomers (eg, cyclic polyolefins, polar polyolefins, etc.).
 これらの中でも、ポリオレフィンとしては、逆洗性の維持性をより向上させる観点から、ポリエチレン及びポリプロピレンから選択される少なくとも1種を含むことが好ましく、ポリプロピレンを含むことがより好ましい。
 ポリエチレンとしては、エチレン単位を50質量%以上含む重合体であることが好ましい。
 ポリプロピレンとしては、プロピレン単位を50質量%以上含む重合体が好ましく、プロピレン単位が100質量%である重合体(すなわち、プロピレンの単独重合体)がより好ましい。
 ポリエチレン及びポリプロピレンの合計含有量、又はポリプロピレンの含有量は、熱可塑性樹脂全体に対して、50質量%~100質量%であってもよく、80質量%~100質量%であってもよい。
Among these, the polyolefin preferably contains at least one selected from polyethylene and polypropylene, and more preferably contains polypropylene, from the viewpoint of further improving the maintenance of backwashability.
Polyethylene is preferably a polymer containing 50% by mass or more of ethylene units.
As the polypropylene, a polymer containing 50% by mass or more of propylene units is preferable, and a polymer containing 100% by mass of propylene units (that is, a homopolymer of propylene) is more preferable.
The total content of polyethylene and polypropylene, or the content of polypropylene may be 50% by mass to 100% by mass, or may be 80% by mass to 100% by mass, based on the total thermoplastic resin.
 ポリプロピレンのメルトマスフローレイト(MFR)は、不織布を製造し得る限り特に限定されない。ポリプロピレンのMFRは、平均繊維径の細さ、紡糸性等の観点から、本開示の不織布がメルトブローン不織布である場合、好ましくは10g/10分~10000g/10分であり、より好ましくは50g/10分~2000g/10分である。
 ポリプロピレンのメルトマスフローレイト(MFR)は、平均繊維径の細さ、紡糸性等の観点から、本開示の不織布がスパンボンド不織布である場合、好ましくは10g/10分~200g/10分であり、より好ましくは20g/10分~100g/10分である。
 ポリプロピレンのMFRは、ASTM D-1238-04に準拠し、230℃、荷重2160gで測定した値である。
The melt mass flow rate (MFR) of polypropylene is not particularly limited as long as a nonwoven fabric can be produced. MFR of polypropylene is preferably 10 g/10 min to 10000 g/10 min, more preferably 50 g/10 min when the nonwoven fabric of the present disclosure is a meltblown nonwoven fabric, from the viewpoint of fineness of average fiber diameter, spinnability, etc. min to 2000 g/10 min.
The melt mass flow rate (MFR) of polypropylene is preferably 10 g/10 min to 200 g/10 min when the nonwoven fabric of the present disclosure is a spunbond nonwoven fabric, from the viewpoint of fineness of average fiber diameter, spinnability, etc. More preferably, it is 20 g/10 minutes to 100 g/10 minutes.
The MFR of polypropylene is a value measured at 230° C. under a load of 2160 g according to ASTM D-1238-04.
 ポリプロピレンの重量平均分子量(Mw)は、2万以上であることが好ましく、3万以上であることがより好ましく、4万以上であることがさらに好ましい。
 また、ポリプロピレンの重量平均分子量(Mw)としては、50万以下であることが好ましく、30万以下であることがより好ましく、10万以下であることがさらに好ましい。
 ポリプロピレンの重量平均分子量(Mw)が上記範囲内であると、平均繊維径が小さくなる傾向にあるため好ましい。
 上記観点から、ポリプロピレンの重量平均分子量(Mw)は、2万~50万であることが好ましく、3万~30万であることがより好ましく、4万~10万であることがさらに好ましい。
The weight average molecular weight (Mw) of polypropylene is preferably 20,000 or more, more preferably 30,000 or more, and even more preferably 40,000 or more.
The weight average molecular weight (Mw) of polypropylene is preferably 500,000 or less, more preferably 300,000 or less, and even more preferably 100,000 or less.
When the weight average molecular weight (Mw) of polypropylene is within the above range, the average fiber diameter tends to be small, which is preferable.
From the above viewpoint, the weight average molecular weight (Mw) of polypropylene is preferably 20,000 to 500,000, more preferably 30,000 to 300,000, and even more preferably 40,000 to 100,000.
 なお、上記の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定し、測定結果をポリスチレン換算値として得たのち、ユニバーサル較正法でポリプロピレンに換算した値である。 The above weight average molecular weight (Mw) is a value obtained by measuring by a gel permeation chromatography method (GPC method), obtaining the measurement result as a polystyrene conversion value, and then converting it to polypropylene by a universal calibration method.
 ポリプロピレンとしてMFR及び/又は分子量が異なる2種以上を含む場合、ポリプロピレンとしては、MFRが10g/分~10000g/10分のポリプロピレンと、ポリプロピレンのワックス及び長鎖分岐を有するポリプロピレンから選ばれる少なくとも1種との混合物が好ましい。このような混合物であると、平均繊維径が細くなる傾向にあり、小さな粒子の捕集効率が向上する傾向にある。 When two or more types of polypropylene having different MFRs and/or molecular weights are included, the polypropylene is at least one type selected from polypropylene having an MFR of 10 g/min to 10000 g/10 min, polypropylene wax, and polypropylene having long chain branches. are preferred. With such a mixture, the average fiber diameter tends to be small, and the collection efficiency of small particles tends to be improved.
 熱可塑性樹脂の含有率は、不織布が含む繊維の全質量に対して、80質量%以上である。熱可塑性樹脂の含有率が、80質量%以上であることで、不織布を製造する際の紡糸安定性が得られる。また、本開示の不織布が含む繊維は、特定シリル化ポリオレフィンを繊維の全質量に対して0.01質量%~20質量%含有することから、熱可塑性樹脂の含有率の上限は、99.99質量%である。
 熱可塑性樹脂の含有率は、本開示の不織布を備えるフィルタの逆洗性及びその維持性を向上させるために、85質量%~99.99質量%がより好ましく、88質量%~99.5質量%がさらに好ましく、92質量%~99.9質量%が特に好ましい。
The content of the thermoplastic resin is 80% by mass or more with respect to the total mass of fibers contained in the nonwoven fabric. When the content of the thermoplastic resin is 80% by mass or more, spinning stability when producing a nonwoven fabric can be obtained. In addition, since the fibers included in the nonwoven fabric of the present disclosure contain 0.01% by mass to 20% by mass of the specific silylated polyolefin with respect to the total mass of the fibers, the upper limit of the content of the thermoplastic resin is 99.99. % by mass.
The thermoplastic resin content is more preferably 85% by mass to 99.99% by mass, more preferably 88% by mass to 99.5% by mass, in order to improve the backwashability and maintainability of the filter comprising the nonwoven fabric of the present disclosure. % is more preferred, and 92% by mass to 99.9% by mass is particularly preferred.
(特定シリル化ポリオレフィン)
 特定シリル化ポリオレフィンは、下記の式(1)で表される構造単位を含有するケイ素含有化合物と、GPC法で求めた数平均分子量が100以上500,000以下であるビニル基含有化合物との反応物(ただし、1分子に2個以上のSiH基を有する上記ケイ素含有化合物と、1分子あたり平均2.0個以上のビニル基を有する上記ビニル基含有化合物との反応物は除く)である、シリル化ポリオレフィン及びその誘導体である。
 -Si(R)H-Y-  (1)
 (式(1)中、Rは、水素原子、ハロゲン原子又は炭化水素基を表し、Yは、O、S又はNR30を表し、R30は、水素原子又は炭化水素基を表す。)
 本開示の不織布が含む繊維は、特定シリル化ポリオレフィンから選択される少なくとも1種を、繊維の全質量に対して、0.01質量%~20質量%含有する。
 GPC法は、ゲルパーミエーションクロマトグラフィー法の意味である。
 ここで、本開示において「誘導体」とは、ある化合物の基本骨格は保持したまま、その化合物の構造の一部を改変したものを意味する。
(specific silylated polyolefin)
The specific silylated polyolefin is a reaction between a silicon-containing compound containing a structural unit represented by the following formula (1) and a vinyl group-containing compound having a number average molecular weight of 100 or more and 500,000 or less as determined by the GPC method. (However, the reaction product of the silicon-containing compound having two or more SiH groups per molecule and the vinyl group-containing compound having an average of 2.0 or more vinyl groups per molecule is excluded), Silylated polyolefins and their derivatives.
—Si(R 1 )HY 1 — (1)
(In formula (1), R 1 represents a hydrogen atom, a halogen atom or a hydrocarbon group, Y 1 represents O, S or NR 30 , and R 30 represents a hydrogen atom or a hydrocarbon group.)
The fibers included in the nonwoven fabric of the present disclosure contain at least one selected from specific silylated polyolefins in an amount of 0.01% by mass to 20% by mass relative to the total mass of the fibers.
GPC method means gel permeation chromatography method.
Here, in the present disclosure, the term "derivative" means a compound in which a part of the structure is modified while retaining the basic skeleton of the compound.
 特定シリル化ポリオレフィンは、例えば、式(1)の構造単位を含有するケイ素含有化合物中の-Si-Hと、ビニル基含有化合物中の-CH=CH(すなわち、ビニル基)とが反応して生成する、-Si-C-C-構造を含むものであってもよい。
 ただし、上記ケイ素含有化合物として1分子に2個以上のSiH基を有するものを用い、かつ上記ビニル基含有化合物として1分子あたり平均2.0個以上のビニル基を有するものを用いる場合は、得られるシリル化ポリオレフィンは、例えば網目構造を有する可能性が高いと考えられることから、本開示では、このような場合を除いている。
In the specific silylated polyolefin, for example, -Si-H in the silicon-containing compound containing the structural unit of formula (1) reacts with -CH=CH 2 (that is, vinyl group) in the vinyl group-containing compound. may contain a -Si-C-C- structure generated by
However, when using a compound having two or more SiH groups per molecule as the silicon-containing compound and using a compound having an average of 2.0 or more vinyl groups per molecule as the vinyl group-containing compound, The present disclosure excludes such cases, since it is believed that the silylated polyolefins that are used, for example, will likely have a network structure.
 ケイ素含有化合物は、下記の式(1)で表される構造単位を有するヒドロシラン化合物である。
 -Si(R)H-Y-  (1)
 式(1)中、Rは、水素原子、ハロゲン原子又は炭化水素基を表し、Yは、O、S又はNR30を表し、R30は、水素原子又は炭化水素基を表す。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。
 炭化水素基としては、アルキル基、アルケニル基、及びアリール基が挙げられる。
A silicon-containing compound is a hydrosilane compound having a structural unit represented by the following formula (1).
—Si(R 1 )HY 1 — (1)
In formula (1), R 1 represents a hydrogen atom, a halogen atom or a hydrocarbon group, Y 1 represents O, S or NR 30 , and R 30 represents a hydrogen atom or a hydrocarbon group.
Halogen atoms include fluorine, chlorine, bromine, and iodine atoms.
Hydrocarbon groups include alkyl groups, alkenyl groups, and aryl groups.
 アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基、デシル基、オクタデシル基等の直鎖状又は分岐状アルキル基;シクロペンチル基、シクロヘキシル基、ノルボルニル基等のシクロアルキル基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアリールアルキル基等が挙げられる。
 アルケニル基としては、ビニル基、プロペニル基、シクロヘキセニル基等が挙げられる。
Examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, hexyl, 2-ethylhexyl, octyl, decyl, and octadecyl groups. linear or branched alkyl groups; cycloalkyl groups such as cyclopentyl group, cyclohexyl group and norbornyl group; arylalkyl groups such as benzyl group, phenylethyl group and phenylpropyl group;
Examples of alkenyl groups include vinyl groups, propenyl groups, cyclohexenyl groups, and the like.
 アリール基としては、フェニル基、トリル基、ジメチルフェニル基、トリメチルフェニル基、エチルフェニル基、プロピルフェニル基、ビフェニル基、ナフチル基、メチルナフチル基、アントリル基、フェナントリル基等が挙げられる。 Aryl groups include phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, naphthyl, methylnaphthyl, anthryl, and phenanthryl groups.
 また、上記の炭化水素基は、1つ以上のヘテロ原子を含んでいてもよい。具体的には、これらの基の少なくとも一つの水素が、ハロゲン原子、酸素原子、窒素原子、ケイ素原子、リン原子、イオウ原子を含む基で置換された基が挙げられる。 In addition, the above hydrocarbon group may contain one or more heteroatoms. Specific examples include groups in which at least one hydrogen of these groups is replaced with a group containing a halogen atom, an oxygen atom, a nitrogen atom, a silicon atom, a phosphorus atom, or a sulfur atom.
 一実施形態において、ケイ素含有化合物は、下記の式(2)で表される構造を有する。R22-(Si(R21)H-Y21-Z-(Y22-Si(R23)H)-R24 (2)
 式(2)中、R21及びR23はそれぞれ独立して、水素原子、ハロゲン原子又は炭化水素基を表し、
 R22及びR24はそれぞれ独立して、ハロゲン原子、又は炭化水素基を表し、
 Y21及びY22はそれぞれ独立して、O、S又はNR30を表し、R30は、水素原子又は炭化水素基を表し、
 mは0又は1であり、
 nは0又は1であり、
 R21、R23、Y21及びY22が複数存在する場合、各基は同一であっても異なっていてもよく、
 Zは、下記の式(3)で表される2価の基を表す。
 -Si(R41)(R41)-(Y23-Si(R41)(R41))-  (3)
In one embodiment, the silicon-containing compound has a structure represented by formula (2) below. R 22 —(Si(R 21 )HY 21 ) m —Z—(Y 22 —Si(R 23 )H) n —R 24 (2)
In formula (2), R 21 and R 23 each independently represent a hydrogen atom, a halogen atom or a hydrocarbon group,
R 22 and R 24 each independently represent a halogen atom or a hydrocarbon group,
Y 21 and Y 22 each independently represent O, S or NR 30 , R 30 represents a hydrogen atom or a hydrocarbon group,
m is 0 or 1,
n is 0 or 1,
When multiple R 21 , R 23 , Y 21 and Y 22 are present, each group may be the same or different,
Z represents a divalent group represented by the following formula (3).
—Si(R 41 )(R 41 )—(Y 23 —Si(R 41 )(R 41 )) l — (3)
 式(3)中、R41は水素原子、ハロゲン原子又は炭化水素基を表し、各R41はそれぞれ同一であっても異なっていてもよく、Y23は、それぞれ独立して、O、S又はNR30を表し、R30は、水素原子又は炭化水素基を表し、
 lは0~10,000の整数である。
 ただし、上記の式(2)において、m=n=0の場合、式(3)において、少なくとも1つのR41は水素原子である。
In formula (3), R 41 represents a hydrogen atom, a halogen atom or a hydrocarbon group, each R 41 may be the same or different, and each Y 23 independently represents O, S or represents NR 30 , R 30 represents a hydrogen atom or a hydrocarbon group,
l is an integer from 0 to 10,000.
However, when m=n=0 in formula (2) above, at least one R 41 in formula (3) is a hydrogen atom.
 なお、式(2)及び式(3)におけるハロゲン原子及び炭化水素基の定義は、上記の式(1)における定義と同様である。 The definitions of halogen atoms and hydrocarbon groups in formulas (2) and (3) are the same as those in formula (1) above.
 また、式(1)、式(2)、及び式(3)における炭化水素基として、炭素原子と水素原子とのみからなるものであることも1つの典型的な実施態様である。 It is also a typical embodiment that the hydrocarbon groups in formulas (1), (2), and (3) consist only of carbon atoms and hydrogen atoms.
 一実施形態において、ケイ素含有化合物は、好ましくは3個以上、より好ましくは5個以上、さらに好ましくは10個以上のケイ素原子を有する。また、ケイ素含有化合物は好ましくは10,000個以下、より好ましくは1,000個以下、さらに好ましくは300個以下、特に好ましくは50個以下のケイ素原子を有する。 In one embodiment, the silicon-containing compound preferably has 3 or more, more preferably 5 or more, and even more preferably 10 or more silicon atoms. Also, the silicon-containing compound preferably has 10,000 or less, more preferably 1,000 or less, even more preferably 300 or less, and particularly preferably 50 or less silicon atoms.
 一実施形態において、上記の式(3)におけるlは、0~10,000の整数である。lの好ましい上限及び下限としては、式(2)のmとnの値と上記好ましいケイ素原子の個数とから定まる数を挙げることができる。 In one embodiment, l in formula (3) above is an integer from 0 to 10,000. Preferred upper and lower limits of l include numbers determined from the values of m and n in formula (2) and the above preferred number of silicon atoms.
 一実施形態において、上記の式(2)においてm=n=1、すなわち両末端にSiH基を有するケイ素含有化合物が好ましく用いられる。 In one embodiment, m=n=1 in the above formula (2), that is, a silicon-containing compound having SiH groups at both ends is preferably used.
 一実施形態において、上記の式(2)においてm=1であり、n=0、すなわち片末端にSiH基を有するケイ素含有化合物が好ましく用いられる。 In one embodiment, m = 1 and n = 0 in the above formula (2), that is, a silicon-containing compound having a SiH group at one end is preferably used.
 特に好ましいケイ素含有化合物としては、上記の式(2)及び式(3)において、m=n=1であり、R21、R23及びR41は全て炭化水素基である化合物が挙げられる。
 特に好ましい別のケイ素含有化合物としては、上記の式(2)及び式(3)において、m=1、n=0であり、R21及びR41は全て炭化水素基である化合物が挙げられる。
Particularly preferred silicon-containing compounds include compounds in which m=n=1 and R 21 , R 23 and R 41 are all hydrocarbon groups in formulas (2) and (3) above.
Other particularly preferred silicon-containing compounds include compounds in which m=1, n=0, and R 21 and R 41 are all hydrocarbon groups in formulas (2) and (3) above.
 ケイ素含有化合物の具体例を以下に示す。 Specific examples of silicon-containing compounds are shown below.
 ケイ素含有化合物としては、SiH基を1個有する化合物が挙げられる。
 SiH基を1個有するケイ素含有化合物の例としては、例えば、下記の式(2a)で表される化合物、下記の式(2a)においてメチル基の一部又は全部が、エチル基、プロピル基、ブチル基、フェニル基、トリフロロプロピル基等で置換された化合物などが挙げられる。
 HSi(CHO-(-Si(CH-O-)-Si(CH  (2a)
(式(2a)中、dは1以上の整数であり、上限は例えば1000、好ましくは300、さらに好ましくは50である。)
 このような化合物として、より具体的には、以下に示す化合物が挙げられるが、これらに限定されない。
 C-((CHSiO)-(CHSiH
 C-((CHSiO)65-(CHSiH
Silicon-containing compounds include compounds having one SiH group.
Examples of silicon-containing compounds having one SiH group include compounds represented by the following formula (2a), in which some or all of the methyl groups in the following formula (2a) are ethyl groups, propyl groups, Compounds substituted with a butyl group, a phenyl group, a trifluoropropyl group, and the like are included.
HSi(CH 3 ) 2 O—(—Si(CH 3 ) 2 —O—) d —Si(CH 3 ) 3 (2a)
(In formula (2a), d is an integer of 1 or more, and the upper limit is, for example, 1000, preferably 300, and more preferably 50.)
More specific examples of such compounds include, but are not limited to, the compounds shown below.
C4H9 -(( CH3 ) 2SiO ) 9- ( CH3 ) 2SiH
C4H9 -(( CH3 ) 2SiO ) 65- ( CH3 ) 2SiH
 SiH基を1個有するケイ素含有化合物の別の例としては、例えば、下記の式(2b)で表されるジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、下記の式(2b)においてメチル基の一部又は全部がエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換された化合物などが挙げられる。
  Si(CHO-(-Si(CH-O-)-(-SiH(CH)-O-)-Si(CH    (2b)
(式(2b)中、eは、0以上の整数であり、上限は例えば1000、好ましくは300、さらに好ましくは50である。)
 なお、-Si(CH-O-単位と-SiH(CH)-O-単位とが並ぶ順序には特に制限はなく、ブロック的であっても無秩序であっても統計的ランダム的であってもよい。
Another example of the silicon-containing compound having one SiH group includes, for example, a dimethylsiloxane-methylhydrogensiloxane copolymer represented by the following formula (2b), one of the methyl groups in the following formula (2b) Examples include compounds partially or wholly substituted with an ethyl group, a propyl group, a phenyl group, a trifluoropropyl group, or the like.
Si(CH 3 ) 3 O-(-Si(CH 3 ) 2 -O-) e -(-SiH(CH 3 )-O-)-Si(CH 3 ) 3 (2b)
(In formula (2b), e is an integer of 0 or more, and the upper limit is, for example, 1000, preferably 300, and more preferably 50.)
The order in which the —Si(CH 3 ) 2 —O— units and the —SiH(CH 3 )—O— units are arranged is not particularly limited, and the order may be statistically random, whether blockwise or disorderly. may be
 このような化合物として、より具体的には、以下に示す化合物が挙げられるが、これに限定されない。
  Si(CHO-SiH(CH)-O-Si(CH 
More specific examples of such compounds include, but are not limited to, the compounds shown below.
Si(CH 3 ) 3 O—SiH(CH 3 )—O—Si(CH 3 ) 3
 ケイ素含有化合物としてはまた、SiH基を2個以上有する化合物が挙げられる。 Silicon-containing compounds also include compounds having two or more SiH groups.
 SiH基を2個以上有するケイ素含有化合物の例としては、例えば、下記の式(2c)で表されるメチルハイドロジェンポリシロキサン、下記の式(2c)においてメチル基の一部又は全部がエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換されたた化合物などが挙げられる。
(CHSiO-(-SiH(CH)-O-)-Si(CH   (2c)
(式(2c)中、fは2以上の整数であり、上限は例えば1000、好ましくは300、さらに好ましくは50である。)
Examples of silicon-containing compounds having two or more SiH groups include, for example, methylhydrogenpolysiloxane represented by the following formula (2c); , propyl group, phenyl group, trifluoropropyl group and the like.
(CH 3 ) 3 SiO—(—SiH(CH 3 )—O—) f —Si(CH 3 ) 3 (2c)
(In formula (2c), f is an integer of 2 or more, and the upper limit is, for example, 1000, preferably 300, and more preferably 50.)
 SiH基を2個以上有するケイ素含有化合物の別の例としては、例えば、下記の式(2d)で表されるジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、下記の式(2d)においてメチル基の一部又は全部がエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換された化合物などが挙げられる。
(CHSiO-(-Si(CH-O-)-(-SiH(CH)-O-)-Si(CH    (2d)
(式(2d)中、gは1以上の整数であり、hは2以上の整数であり、gとhとの合計の上限は、例えば1000、好ましくは300、さらに好ましくは50である。)
Other examples of silicon-containing compounds having two or more SiH groups include, for example, a dimethylsiloxane-methylhydrogensiloxane copolymer represented by the following formula (2d), and a methyl group in the following formula (2d): Examples include compounds partially or wholly substituted with an ethyl group, a propyl group, a phenyl group, a trifluoropropyl group, or the like.
(CH 3 ) 3 SiO—(—Si(CH 3 ) 2 —O—) g —(—SiH(CH 3 )—O—) h —Si(CH 3 ) 3 (2d)
(In formula (2d), g is an integer of 1 or more, h is an integer of 2 or more, and the upper limit of the sum of g and h is, for example, 1000, preferably 300, more preferably 50.)
 また、式(2d)において、-Si(CH-O-単位と-SiH(CH)-O-単位とが並ぶ順序には特に制限はなく、ブロック的であっても無秩序であっても統計的ランダム的であってもよい。
 このような化合物として、より具体的には、以下に示す化合物が挙げられるが、これに限定されない。
Further, in the formula (2d), the order in which the —Si(CH 3 ) 2 —O— units and —SiH(CH 3 )—O— units are arranged is not particularly limited, and may be block-like or disorderly. may be statistically random.
More specific examples of such compounds include, but are not limited to, the compounds shown below.
Figure JPOXMLDOC01-appb-C000001

 
Figure JPOXMLDOC01-appb-C000001

 
 SiH基を2個以上有するケイ素含有化合物のさらに別の例としては、例えば、下記の式(2e)で表されるメチルハイドロジェンポリシロキサン、式(2e)においてメチル基の一部又は全部がエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換された化合物などが挙げられる。
 HSi(CHO-(-Si(CH-O-)-Si(CHH (2e)
(式(2e)中、iは1以上の整数であり、上限は例えば1000、好ましくは300、さらに好ましくは50である。)
Further examples of silicon-containing compounds having two or more SiH groups include, for example, methylhydrogenpolysiloxane represented by the following formula (2e), in which some or all of the methyl groups are ethyl and compounds substituted with groups such as groups, propyl groups, phenyl groups, and trifluoropropyl groups.
HSi(CH 3 ) 2 O—(—Si(CH 3 ) 2 —O—) i —Si(CH 3 ) 2 H (2e)
(In formula (2e), i is an integer of 1 or more, and the upper limit is, for example, 1000, preferably 300, and more preferably 50.)
 このような化合物として、より具体的には、その数平均分子量に相当する構造が以下に示す構造に該当する化合物が挙げられるが、これらに限定されない。
 HSi(CHO-(-Si(CH-O-)-Si(CH
 HSi(CHO-(-Si(CH-O-)-Si(CH
 HSi(CHO-(-Si(CH-O-)18-Si(CH
 HSi(CHO-(-Si(CH-O-)80-Si(CH
 HSi(CHO-(-Si(CH-O-)230-Si(CH
More specifically, such compounds include, but are not limited to, compounds whose structure corresponding to the number average molecular weight corresponds to the structure shown below.
HSi( CH3 ) 2O -(-Si( CH3 ) 2 -O-) 5 - Si( CH3 )2H
HSi( CH3 ) 2O -(-Si( CH3 ) 2 -O-) 8 - Si( CH3 )2H
HSi( CH3 ) 2O -(-Si( CH3 ) 2 -O-) 18 - Si( CH3 )2H
HSi( CH3 ) 2O -(-Si( CH3 ) 2 -O-) 80 - Si( CH3 )2H
HSi( CH3 ) 2O -(-Si( CH3 ) 2 -O-) 230 - Si( CH3 )2H
 SiH基を2個以上有するケイ素含有化合物のさらに別の例としては、例えば、下記の式(2f)で表されるメチルハイドロジェンポリシロキサン、式(2f)においてメチル基の一部又は全部がエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換された化合物などが挙げられる。
 HSi(CHO-(-SiH(CH)-O-)-Si(CHH (2f)
(式(2f)中、jは1以上の整数であり、上限は例えば1000、好ましくは300、さらに好ましくは50である。)
Further examples of silicon-containing compounds having two or more SiH groups include, for example, methylhydrogenpolysiloxane represented by the following formula (2f), in which some or all of the methyl groups are ethyl and compounds substituted with groups such as groups, propyl groups, phenyl groups, and trifluoropropyl groups.
HSi( CH3 ) 2O -(-SiH( CH3 )-O-) j - Si( CH3 )2H (2f)
(In formula (2f), j is an integer of 1 or more, and the upper limit is, for example, 1000, preferably 300, and more preferably 50.)
 SiH基を2個以上有するケイ素含有化合物のさらに別の例としては、例えば、下記の式(2g)で表されるジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、式(2g)においてメチル基の一部又は全部がエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換された化合物などが挙げられる。 Further examples of the silicon-containing compound having two or more SiH groups include, for example, a dimethylsiloxane/methylhydrogensiloxane copolymer represented by the following formula (2g); Examples include compounds partially or wholly substituted with an ethyl group, a propyl group, a phenyl group, a trifluoropropyl group, or the like.
 HSi(CHO-(-Si(CH-O-)-(-SiH(CH)-O-)-Si(CHH    (2g)
(式(2g)中、k及びlは、それぞれ1以上の整数であり、kとlとの合計の上限は例えば1000、好ましくは300、さらに好ましくは50である。)
 また、-Si(CH-O-単位と-SiH(CH)-O-単位とが並ぶ順序には特に制限はなく、ブロック的であっても無秩序であっても統計的ランダム的であってもよい。
HSi(CH 3 ) 2 O-(-Si(CH 3 ) 2 -O-) k -(-SiH(CH 3 )-O-) 1 -Si(CH 3 ) 2 H (2 g)
(In formula (2g), k and l are each an integer of 1 or more, and the upper limit of the sum of k and l is, for example, 1000, preferably 300, more preferably 50.)
In addition, the order in which the —Si(CH 3 ) 2 —O— units and —SiH(CH 3 )—O— units are arranged is not particularly limited, and the order may be statistically random whether it is blockwise or disorderly. may be
 本開示において、ビニル基含有化合物のGPC法により求めた数平均分子量は、100以上500,000以下であり、500以上300,000以下であることがより好ましい。さらに好ましくは1,500以上100,000以下である。数平均分子量が上記下限値以上であることにより、得られたシリル化ポリオレフィンが樹脂中よりブリードすることが抑制される傾向にある。数平均分子量が上記上限値以下であることにより、樹脂中におけるシリル化ポリオレフィンの分散性が良好となる傾向にある。なお本開示では後述するように数平均分子量(Mn)、重量平均分子量(Mw)及びMw/Mnはポリエチレン換算の値とした。 In the present disclosure, the number average molecular weight of the vinyl group-containing compound determined by the GPC method is 100 or more and 500,000 or less, more preferably 500 or more and 300,000 or less. It is more preferably 1,500 or more and 100,000 or less. When the number average molecular weight is at least the above lower limit, bleeding of the obtained silylated polyolefin from the resin tends to be suppressed. When the number average molecular weight is equal to or less than the above upper limit, the dispersibility of the silylated polyolefin in the resin tends to be good. In the present disclosure, the number average molecular weight (Mn), weight average molecular weight (Mw) and Mw/Mn are values converted to polyethylene, as described later.
 以下にビニル基含有化合物について説明する。
 ビニル基含有化合物は、通常炭素数2~50のオレフィンから選ばれる1種以上を重合又は共重合して得られるものである。
The vinyl group-containing compound is described below.
The vinyl group-containing compound is generally obtained by polymerizing or copolymerizing one or more selected from olefins having 2 to 50 carbon atoms.
 炭素数2~50のオレフィンとしては、具体的には、エチレン、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、3,4-ジメチル-1-ペンテン、4-メチル-1-ヘキセン、3-エチル-1-ペンテン、3-エチル-4-メチル-1-ペンテン、3,4-ジメチル-1-ヘキセン、4-メチル-1-ヘプテン、3,4-ジメチル-1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、ビニルシクロヘキサンなどのα-オレフィン;シス-2-ブテン、トランス-2-ブテン、などの内部二重結合を含むオレフィン;イソブテン、2-メチル-1-ペンテン、2,4-ジメチル-1-ペンテン、2,4-ジメチル-1-ヘキセン、2,4,4-トリメチル-1-ペンテン、2,4-ジメチル-1-ヘプテン、2-メチル-1-ブテン、2-メチル-1-ヘキセン、2-メチル-1-ヘプテン、2-メチル-1-オクテン、2,3-ジメチル-1-ブテン、2,3-ジメチル-1-ペンテン、2,3-ジメチル-1-ヘキセン、2,3-ジメチル-1-オクテン、2,3,3-トリメチル-1-ブテン、2,3,3-トリメチル-1-ペンテン、2,3,3-トリメチル-1-ヘキセン、2,3,3-トリメチル-1-オクテン、2,3,4-トリメチル-1-ペンテン、2,3,4-トリメチル-1-ヘキセン、2,3,4-トリメチル-1-オクテン、2,4,4-トリメチル-1-ヘキセン、2,4,4-トリメチル-1-オクテン、2-メチル-3-シクロヘキシル-1-プロピレン、ビニリデンシクロペンタン、ビニリデンシクロヘキサン、ビニリデンシクロオクタン、2-メチルビニリデンシクロペンタン、3-メチルビニリデンシクロペンタン、4-メチルビニリデンシクロペンタンなどのビニリデン化合物;スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレンなどのアリールビニル化合物;α-メチルスチレン、α-エチルスチレン、2-メチル-3-フェニルプロピレンなどのアリールビニリデン化合物;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸-n-プロピル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸イソブチル、メタクリル酸-tert-ブチル、2-シアノプロピレン、2-アミノプロピレン、2-ヒドロキシメチルプロピレン、2-フルオロプロピレン、2-クロロプロピレンなどの官能基置換ビニリデン化合物;シクロブテン、シクロペンテン、1-メチル-1-シクロペンテン、3-メチル-1-シクロペンテン、2-メチル-1-シクロペンテン、シクロヘキセン、1-メチル-1-シクロヘキセン、3-メチル-1-シクロヘキセン、2-メチル-1-シクロヘキセン、シクロヘプテン、シクロオクテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、5,6-ジヒドロジシクロペンタジエン、3a,4,5,6,7,7a-ヘキサヒドロ-1Hインデン、トリシクロ[6.2.1.02,7]ウンデカ-4-エン、シクロペンタジエン、ジシクロペンタジエンなどの内部二重結合を含む脂肪族環状オレフィン;シクロペンタ-2-エニルベンゼン、シクロペンタ-3-エニルベンゼン、シクロヘキサ-2-エニルベンゼン、シクロヘキサ-3-エニルベンゼン、インデン、1,2-ジヒドロナフタレン、1,4-ジヒドロナフタレン、1,4-メチノ1,4,4a,9aテトラヒドロフルオレンなどの芳香環を含有する環状オレフィン;ブタジエン、イソプレン、4-メチル-1,3-ペンタジエン、4-メチル-1,4-ペンタジエン、1,3-ペンタジエン、1,4-ペンタジエン、1,5-ヘキサジエン、1,4-ヘキサジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、エチリデンノルボルネン、ビニルノルボルネン、ジシクロペンタジエン、7-メチル-1,6-オクタジエン、4-エチリデン-8-メチル-1,7-ノナジエン、5,9-ジメチル-1,4,8-デカトリエンなどの、二個以上の二重結合を有する環状ポリエン及び二個以上の二重結合を有する鎖状ポリエンなどが挙げられる。 Specific examples of olefins having 2 to 50 carbon atoms include ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl -1-pentene, 3,4-dimethyl-1-pentene, 4-methyl-1-hexene, 3-ethyl-1-pentene, 3-ethyl-4-methyl-1-pentene, 3,4-dimethyl-1 -hexene, 4-methyl-1-heptene, 3,4-dimethyl-1-heptene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, vinyl α-olefins such as cyclohexane; olefins containing internal double bonds such as cis-2-butene, trans-2-butene; isobutene, 2-methyl-1-pentene, 2,4-dimethyl-1-pentene, 2 ,4-dimethyl-1-hexene, 2,4,4-trimethyl-1-pentene, 2,4-dimethyl-1-heptene, 2-methyl-1-butene, 2-methyl-1-hexene, 2-methyl -1-heptene, 2-methyl-1-octene, 2,3-dimethyl-1-butene, 2,3-dimethyl-1-pentene, 2,3-dimethyl-1-hexene, 2,3-dimethyl-1 -octene, 2,3,3-trimethyl-1-butene, 2,3,3-trimethyl-1-pentene, 2,3,3-trimethyl-1-hexene, 2,3,3-trimethyl-1-octene , 2,3,4-trimethyl-1-pentene, 2,3,4-trimethyl-1-hexene, 2,3,4-trimethyl-1-octene, 2,4,4-trimethyl-1-hexene, 2 , 4,4-trimethyl-1-octene, 2-methyl-3-cyclohexyl-1-propylene, vinylidenecyclopentane, vinylidenecyclohexane, vinylidenecyclooctane, 2-methylvinylidenecyclopentane, 3-methylvinylidenecyclopentane, 4- vinylidene compounds such as methylvinylidenecyclopentane; aryls such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, o-ethylstyrene, m-ethylstyrene and p-ethylstyrene Vinyl compounds; arylvinylidene compounds such as α-methylstyrene, α-ethylstyrene, 2-methyl-3-phenylpropylene; methyl methacrylate, ethyl methacrylate, -n-propyl methacrylate, isopropyl methacrylate Functional group substitution such as phenyl, n-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, 2-cyanopropylene, 2-aminopropylene, 2-hydroxymethylpropylene, 2-fluoropropylene, 2-chloropropylene, etc. Vinylidene compounds; cyclobutene, cyclopentene, 1-methyl-1-cyclopentene, 3-methyl-1-cyclopentene, 2-methyl-1-cyclopentene, cyclohexene, 1-methyl-1-cyclohexene, 3-methyl-1-cyclohexene, 2 -methyl-1-cyclohexene, cycloheptene, cyclooctene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, 5,6-dihydrodicyclopentadiene, 3a,4,5,6,7,7a-hexahydro- Aliphatic cyclic olefins containing internal double bonds such as 1H indene, tricyclo[6.2.1.0 2,7 ]undec-4-ene, cyclopentadiene, dicyclopentadiene; 3-enylbenzene, cyclohex-2-enylbenzene, cyclohex-3-enylbenzene, indene, 1,2-dihydronaphthalene, 1,4-dihydronaphthalene, 1,4-methino-1,4,4a,9a tetrahydrofluorene, etc. butadiene, isoprene, 4-methyl-1,3-pentadiene, 4-methyl-1,4-pentadiene, 1,3-pentadiene, 1,4-pentadiene, 1,5-hexadiene , 1,4-hexadiene, 1,3-hexadiene, 1,3-octadiene, 1,4-octadiene, 1,5-octadiene, 1,6-octadiene, 1,7-octadiene, ethylidenenorbornene, vinylnorbornene, di Two or more double bonds such as cyclopentadiene, 7-methyl-1,6-octadiene, 4-ethylidene-8-methyl-1,7-nonadiene, 5,9-dimethyl-1,4,8-decatriene and chain polyenes having two or more double bonds.
 また、炭素数2~50のオレフィンは、酸素原子、窒素原子、硫黄原子、等の原子を含んだ官能基を有していてもよい。例えばアクリル酸、フマル酸、イタコン酸、ビシクロ[2.2.1]ヘプタ-5-エン-2,3-ジカルボン酸などの不飽和カルボン酸及びこれらのナトリウム塩、カリウム塩、リチウム塩、亜鉛塩、マグネシウム塩、カルシウム塩などの不飽和カルボン酸金属塩;無水マレイン酸、無水イタコン酸、ビシクロ[2.2.1]ヘプタ-5-エン-2,3-ジカルボン酸無水物などの不飽和カルボン酸無水物;アクリル酸メチル、アクリル酸エチル、アクリル酸-n-プロピル、アクリル酸イソプロピル、アクリル酸-n-ブチル、アクリル酸イソブチル、アクリル酸-tert-ブチル、アクリル酸-2-エチルヘキシル、などの不飽和カルボン酸エステル;酢酸ビニル、プロピオン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、トリフルオロ酢酸ビニルなどのビニルエステル類;アクリル酸グリシジル、メタクリル酸グリシジル、イタコン酸モノグリシジルエステルなどの不飽和グリシジルエステル;
 塩化ビニル、フッ化ビニル、フッ化アリルなどのハロゲン化オレフィン;アクリロニトリル、2-シアノ-ビシクロ[2.2.1]ヘプタ-5-エンなどの不飽和シアノ化合物;メチルビニルエーテル、エチルビニルエーテルなどの不飽和エーテル化合物;アクリルアミド、メタクリルアミド、N,N-ジメチルアクリルアミド等の不飽和アミド;
 メトキシスチレン、エトキシスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルベンジルアセテート、ヒドロキシスチレン、o-クロロスチレン、p-クロロスチレン、ジビニルベンゼンなどの官能基含有スチレン誘導体;N-ビニルピロリドンなどが挙げられる。
Also, the olefin having 2 to 50 carbon atoms may have a functional group containing an atom such as an oxygen atom, a nitrogen atom, a sulfur atom, or the like. Unsaturated carboxylic acids such as acrylic acid, fumaric acid, itaconic acid, bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid and their sodium, potassium, lithium and zinc salts , magnesium salts, calcium salts; unsaturated carboxylic acid metal salts such as maleic anhydride, itaconic anhydride, bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride; acid anhydride; methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, etc. Unsaturated carboxylic acid ester; vinyl esters such as vinyl acetate, vinyl propionate, vinyl caproate, vinyl caprate, vinyl laurate, vinyl stearate, and vinyl trifluoroacetate; glycidyl acrylate, glycidyl methacrylate, mono-itaconate unsaturated glycidyl esters such as glycidyl esters;
halogenated olefins such as vinyl chloride, vinyl fluoride and allyl fluoride; unsaturated cyano compounds such as acrylonitrile and 2-cyano-bicyclo[2.2.1]hept-5-ene; unsaturated compounds such as methyl vinyl ether and ethyl vinyl ether; saturated ether compounds; unsaturated amides such as acrylamide, methacrylamide, and N,N-dimethylacrylamide;
Functional group-containing styrene derivatives such as methoxystyrene, ethoxystyrene, vinyl benzoic acid, methyl vinyl benzoate, vinylbenzyl acetate, hydroxystyrene, o-chlorostyrene, p-chlorostyrene, and divinylbenzene; N-vinylpyrrolidone; .
 好ましい実施形態において、ビニル基含有化合物は、下記の式(4)で表される構造を有する。式(4)で表される構造を有するビニル基含有化合物は、数平均分子量が100以上500,000以下の化合物であることが好ましい。
 ビニル基含有化合物が、式(4)で表される構造を有することで、特定シリル化ポリオレフィンと熱可塑性樹脂との相溶性がより向上し、これにより、本開示の不織布を適用したフィルタの逆洗性及びその維持性が向上することから好ましい。
In a preferred embodiment, the vinyl group-containing compound has a structure represented by formula (4) below. The vinyl group-containing compound having the structure represented by formula (4) is preferably a compound having a number average molecular weight of 100 or more and 500,000 or less.
When the vinyl group-containing compound has the structure represented by formula (4), the compatibility between the specific silylated polyolefin and the thermoplastic resin is further improved, and as a result, the reverse of the filter to which the nonwoven fabric of the present disclosure is applied. It is preferable because it improves washability and maintainability.
 A-CH=CH      (4)
 ここで、式(4)中、Aは1種以上の炭素数2~50のα-オレフィン由来の構造単位を含む重合鎖を表す。
A-CH=CH 2 (4)
Here, in formula (4), A represents a polymer chain containing structural units derived from one or more α-olefins having 2 to 50 carbon atoms.
 式(4)において、好ましくは、ビニル基含有化合物のA部は、エチレン重合鎖、プロピレン重合鎖又は炭素数2~50のα-オレフィンからなる群から選択される2種以上のオレフィンの共重合鎖である。また上記α-オレフィンは、炭素数が2~20のα-オレフィンであることが好ましい。 In formula (4), part A of the vinyl group-containing compound is preferably a copolymer of two or more olefins selected from the group consisting of ethylene polymer chains, propylene polymer chains, and α-olefins having 2 to 50 carbon atoms. is a chain. Further, the α-olefin is preferably an α-olefin having 2 to 20 carbon atoms.
 好ましい実施形態において、式(4)で表される構造を有するビニル基含有化合物のAは、炭素数2~50のα-オレフィンのみから構成される重合鎖である。さらに好ましくはビニル基含有化合物のAは炭素数2~20のα-オレフィンのみから構成される重合鎖である。さらに好ましくは、ビニル基含有化合物のAは、エチレン単独重合鎖、プロピレン単独重合鎖、又は、エチレン・炭素数3~20のα-オレフィン共重合鎖であり、エチレン単独重合鎖であることが特に好ましい。
 ビニル基含有化合物のAが、エチレン単独重合鎖であることは、当該ビニル基含有化合物を用いて得られた特定シリル化ポリオレフィンにおけるポリオレフィン部分は、ポリエチレンであることを意味する。
In a preferred embodiment, A of the vinyl group-containing compound having the structure represented by formula (4) is a polymer chain composed only of α-olefins having 2 to 50 carbon atoms. More preferably, A of the vinyl group-containing compound is a polymer chain composed only of α-olefins having 2 to 20 carbon atoms. More preferably, A of the vinyl group-containing compound is an ethylene homopolymer chain, a propylene homopolymer chain, or an ethylene/C3-C20 α-olefin copolymer chain, and an ethylene homopolymer chain is particularly preferred. preferable.
That A of the vinyl group-containing compound is an ethylene homopolymer chain means that the polyolefin portion in the specific silylated polyolefin obtained using the vinyl group-containing compound is polyethylene.
 本開示に係る特に好ましい実施形態は、特定シリル化ポリオレフィンにおけるポリオレフィン部分がポリエチレンであり、熱可塑性樹脂がポリプロピレンである形態である。この場合、特定シリル化ポリオレフィンが不織布に含まれる繊維の表面に局在しつつ繊維表面に留まる傾向が高まるため、本開示の不織布を適用したフィルタの逆洗性及びその維持性がさらに向上する。 A particularly preferred embodiment of the present disclosure is a form in which the polyolefin portion in the specific silylated polyolefin is polyethylene, and the thermoplastic resin is polypropylene. In this case, the specific silylated polyolefin tends to localize on the surface of the fibers contained in the nonwoven fabric and stay on the surface of the fibers, so that the filter to which the nonwoven fabric of the present disclosure is applied has improved backwashability and maintainability.
 式(4)で表されるビニル基含有化合物は、エチレン由来の構造単位が81mol%~100mol%、炭素原子数3~20のα-オレフィン由来の構造単位が0mol%~19mol%の範囲にあるエチレン・α-オレフィン共重合体であることが望ましい。より好ましくは、エチレン由来の構造単位が90mol%~100mol%、炭素原子数3~20のα-オレフィン由来の構造単位が0mol%~10mol%の範囲にあるエチレン・α-オレフィン共重合体であることが望ましい。とりわけエチレン由来の構造単位が100モル%であることが好ましい。 The vinyl group-containing compound represented by formula (4) has an ethylene-derived structural unit in the range of 81 mol% to 100 mol%, and an α-olefin-derived structural unit having 3 to 20 carbon atoms in the range of 0 mol% to 19 mol%. An ethylene/α-olefin copolymer is desirable. More preferably, it is an ethylene/α-olefin copolymer having 90 mol% to 100 mol% of ethylene-derived structural units and 0 mol% to 10 mol% of α-olefin-derived structural units having 3 to 20 carbon atoms. is desirable. In particular, it is preferable that the ethylene-derived structural unit is 100 mol %.
 式(4)で表されるビニル基含有化合物は、ゲルパーミエーションクロマトグラフィー法(GPC法)で測定した分子量分布(重量平均分子量と数平均分子量の比、Mw/Mn)が1.1~3.0の範囲にあることが好ましい。 The vinyl group-containing compound represented by formula (4) has a molecular weight distribution (ratio of weight average molecular weight to number average molecular weight, Mw/Mn) measured by gel permeation chromatography (GPC method) of 1.1 to 3. It is preferably in the range of .0.
 また、式(4)で表されるビニル基含有化合物は、数平均分子量(Mn)が100以上500,000以下の範囲にあることが望ましく、500以上300,000以下がより好ましく、1,500以上100,000以下がさらに好ましい。 Further, the vinyl group-containing compound represented by formula (4) preferably has a number average molecular weight (Mn) in the range of 100 to 500,000, more preferably 500 to 300,000. 100,000 or less is more preferable.
 また、式(4)で表されるビニル基含有化合物は、融点が70℃以上130℃以下であることが好ましい。 Further, the vinyl group-containing compound represented by formula (4) preferably has a melting point of 70°C or higher and 130°C or lower.
 さらに好ましくは、式(4)で表されるビニル基含有化合物のビニル基は、主鎖の末端に存在することが好ましく、ビニル基が主鎖の末端のみに存在することがより好ましい。 More preferably, the vinyl group of the vinyl group-containing compound represented by formula (4) is present at the end of the main chain, and more preferably the vinyl group is present only at the end of the main chain.
 なお、ビニル基が主鎖の末端に存在することの確認は、例えば、13C-NMR、H-NMRを利用することで可能である。例えば、式(4)におけるAがエチレン単独重合体である場合、13C-NMRにより3級炭素が検出されず、かつH-NMRでビニル基の水素が検出されることで確認する方法が挙げられる。H-NMRのみにおいても、検出された各プロトンのピークを帰属することにより、構造の確認が可能である。
 例えば、国際公開2012/098865公報の合成例1で合成した化合物においては、プロトン積分値が3であるケミカルシフト0.81ppmのピークが片末端のメチル基であり、ケミカルシフト1.10-1.45ppmのピークは主鎖のメチレン基、プロトン積分値が2であるケミカルシフト1.93ppmのピークは末端ビニル基に隣接するメチレン基、プロトン積分値がそれぞれ1である4.80、4.86、5.60-5.72ppmのピークが末端ビニル基と帰属され、他に帰属不明のピークが存在しないことから、Aがエチレン単独重合体であり末端のみにビニル基を含有する構造であることを確認することができる。
 また、別の方法として、主鎖末端に存在するビニル基の水素の方が、側鎖に存在するビニル基の水素よりもH-NMR測定における緩和時間が短いことを利用して、例えば側鎖にビニル基を有するポリマーの当該ビニル基の水素と緩和時間を比較する方法で決めることも可能である。
The existence of a vinyl group at the end of the main chain can be confirmed by using 13 C-NMR and 1 H-NMR, for example. For example, when A in formula (4) is an ethylene homopolymer, 13 C-NMR can detect no tertiary carbon and 1 H-NMR can detect vinyl group hydrogen. mentioned. Even with 1 H-NMR alone, it is possible to confirm the structure by assigning each detected proton peak.
For example, in the compound synthesized in Synthesis Example 1 of WO 2012/098865, the chemical shift peak of 0.81 ppm with a proton integral value of 3 is a methyl group at one end, and the chemical shift is 1.10-1. The peak at 45 ppm is the main chain methylene group, the chemical shift peak at 1.93 ppm with a proton integral value of 2 is the methylene group adjacent to the terminal vinyl group, 4.80, 4.86 with a proton integral value of 1, respectively. Since the peak at 5.60-5.72 ppm is attributed to the terminal vinyl group, and there is no other peak of unknown attribution, it is confirmed that A is an ethylene homopolymer and has a structure containing a vinyl group only at the terminal. can be confirmed.
As another method, hydrogen of a vinyl group present at the end of the main chain has a shorter relaxation time in 1 H-NMR measurement than hydrogen of a vinyl group present in a side chain. It can also be determined by a method of comparing the hydrogen of the vinyl group of a polymer having a vinyl group in the chain and the relaxation time.
 側鎖のビニル基のH-NMRにおけるケミカルシフトが、末端に存在するビニル基よりも低磁場シフトすることを利用して判別することができる場合もある。 In some cases, it can be determined by utilizing the fact that the chemical shift in 1 H-NMR of the vinyl group in the side chain is lower than that of the terminal vinyl group.
 また、式(4)で表されるビニル基含有化合物が、主鎖の末端のみにビニル基を含有する場合、H-NMRにより計算される末端不飽和率(後述するVE)が60モル%以上100モル%以下であることが望ましい。さらに好ましい態様の一つは、H-NMRにより計算される末端不飽和率が80モル%以上99.5モル%以下、より好ましくは90モル%以上99モル%以下であるものである。 Further, when the vinyl group-containing compound represented by formula (4) contains a vinyl group only at the end of the main chain, the terminal unsaturation rate (VE described later) calculated by 1 H-NMR is 60 mol%. It is desirable that the content is at least 100 mol % or less. A further preferred embodiment is one in which the terminal unsaturation ratio calculated by 1 H-NMR is 80 mol % or more and 99.5 mol % or less, more preferably 90 mol % or more and 99 mol % or less.
 式(4)で表されるビニル基含有化合物は、公知の方法、例えば特開2003-73412号公報に記載の方法で得ることができる。 The vinyl group-containing compound represented by formula (4) can be obtained by a known method such as the method described in JP-A-2003-73412.
 式(4)におけるAがエチレン単独重合鎖を有するポリオレフィン重合鎖である場合には、以下の方法で製造することもできる。
(a)特開2000-239312号公報、特開2001-2731号公報、特開2003-73412号公報などに示されているようなサリチルアルドイミン配位子を有する遷移金属化合物を重合触媒として用いる重合方法。
(b)チタン化合物と有機アルミニウム化合物とからなるチタン系触媒を用いる重合方法。
(c)バナジウム化合物と有機アルミニウム化合物とからなるバナジウム系触媒を用いる重合方法。
(d)ジルコノセンなどのメタロセン化合物と有機アルミニウムオキシ化合物(アルミノキサン)とからなるチーグラー型触媒を用いる重合方法。
When A in formula (4) is a polyolefin polymer chain having an ethylene homopolymer chain, it can also be produced by the following method.
(a) Using a transition metal compound having a salicylaldoimine ligand as disclosed in JP-A-2000-239312, JP-A-2001-2731, JP-A-2003-73412, etc. as a polymerization catalyst polymerization method.
(b) A polymerization method using a titanium-based catalyst comprising a titanium compound and an organoaluminum compound.
(c) A polymerization method using a vanadium-based catalyst comprising a vanadium compound and an organoaluminum compound.
(d) A polymerization method using a Ziegler-type catalyst comprising a metallocene compound such as zirconocene and an organoaluminumoxy compound (aluminoxane).
~シリル化ポリオレフィンの製造方法~
 本開示に係る特定シリル化ポリオレフィンは、どのような方法によって製造されたものでも使用できる。好ましくは遷移金属触媒の存在下で、ビニル基含有化合物とケイ素含有化合物とを反応させること(ただし、上記ケイ素含有化合物として1分子に2個以上のSiH基を有するものを用い、かつ上記ビニル基含有化合物として1分子あたり平均2.0個以上のビニル基を有するものを用いる場合は除く)により得られたシリル化ポリオレフィンもしくはその誘導体、又はこれらの混合物である。
~Method for producing silylated polyolefin~
The specific silylated polyolefin according to the present disclosure can be produced by any method. Preferably, a vinyl group-containing compound and a silicon-containing compound are reacted in the presence of a transition metal catalyst (provided that the silicon-containing compound has two or more SiH groups per molecule, and the vinyl group silylated polyolefins or derivatives thereof, or mixtures thereof, except when a compound having an average of 2.0 or more vinyl groups per molecule is used as the containing compound.
 以下、上記ビニル基含有化合物とケイ素含有化合物とを反応させる工程について詳述する。 The step of reacting the vinyl group-containing compound and the silicon-containing compound is described in detail below.
 本工程では、遷移金属触媒の存在下で、ビニル基含有化合物とケイ素含有化合物とを反応させ(ただし、上記ケイ素含有化合物として1分子に2個以上のSiH基を有するものを用い、かつ上記ビニル基含有化合物として1分子あたり平均2.0個以上のビニル基を有するものを用いる場合は除く)、シリル化ポリオレフィンを得る。 In this step, a vinyl group-containing compound and a silicon-containing compound are reacted in the presence of a transition metal catalyst (provided that the silicon-containing compound has two or more SiH groups per molecule, and the vinyl Except for the case of using a group-containing compound having an average of 2.0 or more vinyl groups per molecule), a silylated polyolefin is obtained.
 遷移金属触媒としては、例えば、白金の単体(白金黒)、ハロゲン化遷移金属、塩化白金酸、白金-オレフィン錯体、白金-アルコール錯体、あるいはアルミナ、シリカ等の担体に白金の担体を担持させたものなどが挙げられる。 As the transition metal catalyst, for example, a simple substance of platinum (platinum black), a transition metal halide, chloroplatinic acid, a platinum-olefin complex, a platinum-alcohol complex, or a platinum carrier supported on a carrier such as alumina or silica. things, etc.
 ハロゲン化遷移金属としては、元素周期表第3族~第12族の遷移金属のハロゲン化物であり、入手の容易さ、経済性の観点から好ましくは元素周期表第8族~第10族の遷移金属のハロゲン化物であり、より好ましくは白金、ロジウム、イリジウム、ルテニウム、オスミウム、ニッケル、パラジウムのハロゲン化物である。さらに好ましくは白金のハロゲン化物である。また、二種以上のハロゲン化遷移金属の混合物であっても構わない。 The transition metal halide is a transition metal halide of Groups 3 to 12 of the periodic table of the elements, and from the viewpoint of ease of availability and economy, transitions of Groups 8 to 10 of the periodic table are preferred. Halides of metals, more preferably halides of platinum, rhodium, iridium, ruthenium, osmium, nickel and palladium. Halides of platinum are more preferred. A mixture of two or more transition metal halides may also be used.
 ハロゲン化遷移金属のハロゲンとしては、フッ素、塩素、臭素、ヨウ素等が挙げられるが、これらのうちでは取扱いの容易さの点で塩素が好ましい。  The halogen of the transition metal halide includes fluorine, chlorine, bromine, iodine, etc. Among them, chlorine is preferable in terms of ease of handling.
 また、特開2010-37555号公報に記載の方法に従い、ハロゲン化遷移金属とケイ素含有化合物をあらかじめ混合攪拌して得られる遷移金属触媒組成物を触媒として用いてもよい。このような遷移金属触媒組成物を触媒として用いるとビニル基含有化合物とケイ素化合物との反応が効率よく進行する。このため、ビニル基含有化合物の二重結合の反応率が通常80%以上、好ましくは90%以上、より好ましくは95%以上であり、副生物であるビニレン誘導体の生成量は、シリル化ポリオレフィンに対して、通常20質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下である。 Alternatively, a transition metal catalyst composition obtained by previously mixing and stirring a transition metal halide and a silicon-containing compound according to the method described in JP-A-2010-37555 may be used as a catalyst. When such a transition metal catalyst composition is used as a catalyst, the reaction between the vinyl group-containing compound and the silicon compound proceeds efficiently. For this reason, the reaction rate of the double bond of the vinyl group-containing compound is usually 80% or more, preferably 90% or more, more preferably 95% or more, and the amount of the by-product vinylene derivative is less than that of the silylated polyolefin. On the other hand, it is usually 20% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less.
 ビニル基含有化合物とケイ素含有化合物とを反応させる際の量比は、目的によって異なるが、ビニル基含有化合物中のビニル基とケイ素含有化合物中のSi-H結合との当量比として0.01当量倍~10当量倍の範囲であり、好ましくは0.1当量倍~2当量倍の範囲である。 The amount ratio for reacting the vinyl group-containing compound and the silicon-containing compound varies depending on the purpose, but the equivalent ratio between the vinyl group in the vinyl group-containing compound and the Si—H bond in the silicon-containing compound is 0.01 equivalent. It is in the range of 1-fold to 10-fold equivalent, preferably 0.1-fold to 2-fold equivalent.
 ビニル基含有化合物とケイ素含有化合物との反応は、上記遷移金属触媒の存在下で行う。遷移金属触媒とビニル基含有化合物との量比は、ビニル基含有化合物中のビニル基と遷移金属触媒中の遷移金属分との当量比として、10-10当量倍~10-1当量倍の範囲であり、好ましくは10-7当量倍~10-3当量倍の範囲である。 The reaction between the vinyl group-containing compound and the silicon-containing compound is carried out in the presence of the transition metal catalyst. The quantitative ratio between the transition metal catalyst and the vinyl group-containing compound is in the range of 10 −10 to 10 −1 times the equivalent ratio of the vinyl group in the vinyl group-containing compound to the transition metal content in the transition metal catalyst. and preferably in the range of 10 −7 to 10 −3 equivalents.
 ビニル基含有化合物とケイ素含有化合物との反応における反応方法としては、最終的に反応すればよく、その方法は限定されるものではなく、例えば以下のように行なってもよい。反応容器中にビニル基含有化合物を装入し、窒素雰囲気下、ケイ素含有化合物と遷移金属触媒を装入する。予め内温をビニル基含有化合物の融点以上に昇温しておいた油浴中に、上記反応器をセットし攪拌する。反応後油浴を除いて室温に冷却し、得られた反応混合物をメタノール又はアセトンなどの貧溶媒中に取り出し2時間攪拌する。その後、得られた固体を濾取し、上記貧溶媒で洗浄し、乾燥させ、目的物を得ることができる。 As for the reaction method in the reaction between the vinyl group-containing compound and the silicon-containing compound, the reaction may be carried out at the end, and the method is not limited, and may be carried out, for example, as follows. A vinyl group-containing compound is charged into a reaction vessel, and a silicon-containing compound and a transition metal catalyst are charged under a nitrogen atmosphere. The above reactor is set in an oil bath whose internal temperature has been raised to the melting point of the vinyl group-containing compound or higher in advance, and the mixture is stirred. After the reaction, the oil bath is removed and the mixture is cooled to room temperature. The resulting reaction mixture is taken out in a poor solvent such as methanol or acetone and stirred for 2 hours. After that, the obtained solid is collected by filtration, washed with the above poor solvent, and dried to obtain the desired product.
 ビニル基含有化合物とケイ素含有化合物との反応は、反応温度を100℃~200℃の範囲とすることが好ましく、反応させるビニル基含有化合物の融点より高い温度で行うことがより好ましい。反応温度が100℃以上であることにより、反応効率に優れる傾向にある。また圧力は、通常は常圧で行うことができるが、必要に応じて加圧下又は減圧下で行うこともできる。 The reaction between the vinyl group-containing compound and the silicon-containing compound is preferably carried out at a reaction temperature in the range of 100°C to 200°C, more preferably at a temperature higher than the melting point of the vinyl group-containing compound to be reacted. When the reaction temperature is 100° C. or higher, the reaction efficiency tends to be excellent. Moreover, although the pressure can be usually normal pressure, it can also be carried out under increased pressure or reduced pressure, if necessary.
 必要に応じて溶媒を使用することもできる。使用する溶媒は、原料のケイ素含有化合物及びビニル基含有化合物に対して不活性なものが使用できる。使用できる溶媒の具体例は、例えばn-ヘキサン等の脂肪族炭化水素類、シクロヘキサン等の脂環式炭化水素類、トルエン、キシレン等の芳香族炭化水素類、酢酸エチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、メチルプロピルケトン等のケトン類、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、クロロホルム、ジクロロエタン、トリクロロエタン、テトラクロロエタン、パークロロエタン等のハロゲン化炭化水素などが挙げられる。これらのうち、特にトルエン、キシレン等の芳香族炭化水素が好ましい。 A solvent can also be used if necessary. Solvents that are inert to the starting silicon-containing compound and vinyl group-containing compound can be used. Specific examples of usable solvents include aliphatic hydrocarbons such as n-hexane, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as toluene and xylene, esters such as ethyl acetate, acetone, ketones such as methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, and methyl propyl ketone; ethers such as tetrahydrofuran and 1,4-dioxane; and halogenated hydrocarbons such as chloroform, dichloroethane, trichloroethane, tetrachloroethane, and perchloroethane. . Among these, aromatic hydrocarbons such as toluene and xylene are particularly preferred.
 溶媒を使用する場合は溶媒の使用量は原料の溶解性に作用し、原料に対して、100質量倍以下が好ましく、20質量倍以下がより好ましい。本開示では、無溶媒で実施することが最も好ましい。 When a solvent is used, the amount of the solvent used affects the solubility of the raw material, and is preferably 100 times or less by mass, more preferably 20 times or less by mass, relative to the raw material. The present disclosure is most preferably run solvent-free.
 以上のように、遷移金属触媒の存在下、ビニル基含有化合物とケイ素含有化合物とを反応させることにより、式(1)で表される構造単位を含むシリル化ポリオレフィンを含む反応混合物が得られる。 As described above, by reacting a vinyl group-containing compound and a silicon-containing compound in the presence of a transition metal catalyst, a reaction mixture containing a silylated polyolefin containing a structural unit represented by formula (1) is obtained.
 シリル化ポリオレフィンは、上記反応混合物をそのまま乾燥して取り出してもよいが、貧溶媒への再沈殿、又はスラッジングにより取り出すことができる。貧溶媒はシリル化ポリオレフィンの溶解度が小さいものであればよく、適宜選択することができ、好ましくは上記不純物が除けるものがよい。貧溶媒として具体的には、アセトン、メタノール、エタノール、n-プロパノール、イソプロパノール、アセトニトリル、酢酸エチル、n-ヘキサン、n-ヘプタン等が挙げられ、これらのうちではアセトン、メタノール、及びn-ヘプタンが好ましい。 The silylated polyolefin may be taken out by drying the reaction mixture as it is, but it can be taken out by reprecipitation in a poor solvent or sludge. The poor solvent can be appropriately selected as long as the solubility of the silylated polyolefin is low, and preferably one that removes the above-mentioned impurities. Specific examples of the poor solvent include acetone, methanol, ethanol, n-propanol, isopropanol, acetonitrile, ethyl acetate, n-hexane, n-heptane, etc. Among them, acetone, methanol, and n-heptane. preferable.
 本開示に係るビニル基含有化合物としては、前述したように具体的には、式(4)で表される化合物が挙げられる。
 A-CH=CH  (4)
 (式(4)中、Aは1種以上の炭素数2~50のα-オレフィン由来の構造単位を含む重合鎖を表す。)
Specific examples of the vinyl group-containing compound according to the present disclosure include the compound represented by formula (4) as described above.
A-CH=CH 2 (4)
(In formula (4), A represents a polymer chain containing structural units derived from one or more α-olefins having 2 to 50 carbon atoms.)
 ビニル基含有化合物が式(4)で表される化合物である場合、Aが炭素数2~20のα-オレフィンのみからなる構造(構造4-1)が好ましい。 When the vinyl group-containing compound is a compound represented by formula (4), a structure (structure 4-1) in which A consists only of an α-olefin having 2 to 20 carbon atoms is preferable.
 さらに好ましくは、ビニル基含有化合物は、-CH=CHがポリマー主鎖の末端に存在する構造(構造4-2)を有する。 More preferably, the vinyl group-containing compound has a structure (Structure 4-2) in which —CH═CH 2 is present at the end of the polymer main chain.
 なおさらに好ましくは、ビニル基含有化合物は、-CH=CHがポリマー主鎖の末端のみに存在する構造(構造4-3)を有する。 Even more preferably, the vinyl group-containing compound has a structure (structure 4-3) in which -CH=CH 2 is present only at the ends of the polymer backbone.
 なおさらに好ましくは、ビニル基含有化合物は、Aが炭素数2~20のα-オレフィンのみからなり、-CH=CHがポリマー主鎖の末端に存在する構造(構造4-4)(構造4-1と構造4-2との組み合わせ)を有する。 Even more preferably, the vinyl group-containing compound has a structure in which A consists solely of an α-olefin having 2 to 20 carbon atoms and —CH═CH 2 is present at the end of the polymer main chain (structure 4-4) (structure 4 -1 and structure 4-2).
 なおさらに好ましくは、ビニル基含有化合物は、Aが炭素数2~20のα-オレフィンのみからなり、さらに-CH=CHがポリマー主鎖の末端のみに存在する構造(構造4-5)(構造4-1と構造4-3との組み合わせ)を有する。 Even more preferably, the vinyl group-containing compound has a structure in which A consists solely of an α-olefin having 2 to 20 carbon atoms, and -CH=CH 2 is present only at the ends of the polymer main chain (structure 4-5) ( combination of structure 4-1 and structure 4-3).
 本開示に係るケイ素含有化合物は、前述したように、具体的には式(2)の構造を有するものが望ましい。そのうちでもビニル基含有化合物が式(4)で表される場合、ケイ素含有化合物としては、式(2)においてm=n=1である構造(構造2-1)が好ましく、さらには式(2)中のZにおけるR41が全て炭化水素基及びハロゲンから選ばれるものである構造(構造2-2)がより好ましい(すなわち、R41はいずれも水素原子ではないことが望ましい。)。 As described above, the silicon-containing compound according to the present disclosure preferably has the structure of formula (2). Among them, when the vinyl group-containing compound is represented by formula (4), the silicon-containing compound is preferably a structure (structure 2-1) in which m = n = 1 in formula (2), and further formula (2 ) in which all R 41 in Z are selected from a hydrocarbon group and a halogen (structure 2-2) (that is, it is desirable that none of R 41 is a hydrogen atom).
 また、ビニル基含有化合物が1分子に平均して2個未満のビニル基を有する場合は、ケイ素含有化合物としては、式(2)においてm=1、n=0であり、かつ式(2)中のR41が全て炭化水素基及びハロゲンから選ばれる構造(構造2-3)、式(2)においてm=0、n=0であり、かつ式(2)中のR41のうち1つだけが水素原子である構造(構造2-4)のようなSiH基を1分子に1個有する化合物に加えて、Si-H結合が1分子に2個以上有する化合物を使用することも可能であり、例えば前述の構造2-1又は構造2-2をとってもよい。 Further, when the vinyl group-containing compound has an average of less than 2 vinyl groups per molecule, the silicon-containing compound has m = 1 and n = 0 in formula (2), and wherein all R 41 are selected from hydrocarbon groups and halogen (structure 2-3), m = 0 and n = 0 in formula (2), and one of R 41 in formula (2) is a hydrogen atom (Structure 2-4), in addition to compounds having one SiH group per molecule, it is also possible to use compounds having two or more Si—H bonds per molecule. Yes, for example structure 2-1 or structure 2-2 described above.
 前記反応物は、例えば、式(X)で表される構造を有していてもよい。 The reactant may have, for example, a structure represented by formula (X).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(X)中、A、A及びAはそれぞれ独立に、ポリオレフィン鎖又は炭素数1~20の炭化水素基を表す。Rはそれぞれ独立に炭素数1~20の炭化水素基を表す。複数のRは、同一であってもよく、異なっていてもよい。mは1~10,000の整数である。Aが複数存在する場合、複数のAは、同一であってもよく、異なっていてもよい。ただし、A、A、Aのうち、少なくとも1つはポリオレフィン鎖を表す。 In formula (X), A 1 , A 2 and A 3 each independently represent a polyolefin chain or a hydrocarbon group having 1 to 20 carbon atoms. Each R independently represents a hydrocarbon group having 1 to 20 carbon atoms. A plurality of R may be the same or different. m is an integer from 1 to 10,000. When there are multiple A 3 's, the multiple A 3 's may be the same or different. However, at least one of A 1 , A 2 and A 3 represents a polyolefin chain.
 ポリオレフィン鎖は、前述のビニル基含有化合物由来の部分であってもよい。
 式(X)におけるA、A及びAが取り得るポリオレフィン鎖の好ましい構成は、A-CHCH―である。A-CHCH―における、Aの好ましい構成は、式(A)におけるAと同様である。
 式(X)において、A、A及びAが取り得る炭素数1~20の炭化水素基の好ましい構成及びRがとり得る炭素数1~20の炭化水素基の好ましい構成は、式(1)におけるRがとり得る炭化水素基の構成と同様である。
 式(X)において、mは5以上が好ましく、10以上がより好ましい。また、mは1,000以下が好ましく、300以下がより好ましく、50以下がより好ましい。
The polyolefin chain may be a portion derived from the aforementioned vinyl group-containing compound.
A preferred configuration of the polyolefin chain that A 1 , A 2 and A 3 in formula (X) can have is A—CH 2 CH 2 —. Preferred configurations of A in A-CH 2 CH 2 - are the same as those of A in formula (A).
In the formula (X), the preferred configuration of the hydrocarbon group having 1 to 20 carbon atoms that can be taken by A 1 , A 2 and A 3 and the preferred configuration of the hydrocarbon group having 1 to 20 carbon atoms that can be taken by R are represented by the formula ( It is the same as the structure of the hydrocarbon group that R 1 in 1) can take.
In formula (X), m is preferably 5 or more, more preferably 10 or more. Also, m is preferably 1,000 or less, more preferably 300 or less, and more preferably 50 or less.
 特定シリル化ポリオレフィンは、例えば、式(5)~(8)で表されるような構造を有していると推定される。もちろんそのケイ素含有化合物やビニル基含有化合物の組合せは、これらの例示になんら限定されるものではない。 The specific silylated polyolefin is presumed to have, for example, structures represented by formulas (5) to (8). Of course, the combination of the silicon-containing compound and vinyl group-containing compound is not limited to these examples.
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000006

 
Figure JPOXMLDOC01-appb-C000006

 
 上記各式中のm及びnは、1以上の整数を表す。 m and n in each of the above formulas represent an integer of 1 or more.
 以下に、特に好ましい態様とその推定理由とを述べる。以下では、ビニル基含有化合物由来の部分のことを、「ポリオレフィン鎖」、ケイ素含有化合物由来の部分のことを、「ケイ素含有化合物鎖」ということがある。ビニル基含有化合物が、式(4)で表される構造、中でも構造4-5をとり、ケイ素含有化合物が構造2-2をとる場合、シリル化ポリオレフィンは、(ポリオレフィン鎖)-(ケイ素含有化合物鎖)-(ポリオレフィン鎖)の順に結合したブロック共重合体のような構造をとると考えられる。具体的には上記した式(5)のような推定構造を有する化合物が例示できる。 Below, we will describe a particularly preferable mode and the presumed reason for it. Hereinafter, the portion derived from the vinyl group-containing compound may be referred to as "polyolefin chain", and the portion derived from the silicon-containing compound may be referred to as "silicon-containing compound chain". When the vinyl group-containing compound has the structure represented by formula (4), especially structure 4-5, and the silicon-containing compound has structure 2-2, the silylated polyolefin is (polyolefin chain) - (silicon-containing compound It is thought to take a block copolymer-like structure in which chain)-(polyolefin chain) are linked in this order. Specifically, a compound having a presumed structure such as the above formula (5) can be exemplified.
 ビニル基含有化合物が構造4-5をとり、ケイ素含有化合物が構造2-1をとった場合であって、ケイ素含有化合物がSiH基を3個以上有する場合には、シリル化ポリオレフィンには、(ポリオレフィン鎖)-(ケイ素含有化合物鎖)-(ポリオレフィン鎖)の順に結合しているブロック構造において、さらにケイ素含有化合物鎖からポリオレフィン鎖がグラフト的に結合したような構造が含まれ得ると考えられる。 When the vinyl group-containing compound has structure 4-5 and the silicon-containing compound has structure 2-1, and the silicon-containing compound has 3 or more SiH groups, the silylated polyolefin has ( In the block structure in which polyolefin chain) - (silicon-containing compound chain) - (polyolefin chain) are bonded in this order, it is thought that a structure in which a polyolefin chain is grafted from a silicon-containing compound chain may be included.
 またビニル基含有化合物が構造4-5をとり、ケイ素含有化合物が構造2-3、構造2-4である場合、シリル化ポリオレフィンは、具体的に例示すれば、上記の式(6)、式(8)のような構造をとっているのではないかと考えられる。 Further, when the vinyl group-containing compound has structure 4-5 and the silicon-containing compound has structures 2-3 and 2-4, the silylated polyolefin is specifically exemplified by the above formula (6), formula It is considered that the structure of (8) is taken.
 またビニル基含有化合物が構造4-5をとり、ケイ素含有化合物が、式(2)においてm=0、n=0、Zが(-SiH(CH)O-)-Si(CHO-Si(C-である場合、式(7)のような形をとるのではないか考えられる。 Further, the vinyl group-containing compound has structure 4-5, and the silicon-containing compound has m = 0, n = 0, and Z is (-SiH(CH 3 )O-) 6 -Si(CH 3 ) in formula (2). In the case of 2 O--Si(C 6 H 5 ) 2 --, it is considered that the form of formula (7) is taken.
 (ポリオレフィン鎖)-(ケイ素含有化合物鎖)-(ポリオレフィン鎖)のブロック共重合体の構造をとると推定されるような、例えば式(5)の推定構造をとると推定されるようなビニル基含有化合物とケイ素含有化合物との組み合わせから得たシリル化ポリオレフィンは、ケイ素含有化合物鎖からグラフト鎖としてポリオレフィン鎖を有すると推測されるシリル化ポリオレフィン、ポリオレフィン鎖がグラフト鎖としてケイ素含有化合物鎖を有すると推測されるシリル化ポリオレフィンよりも分子運動をしやすいと考えられ、そのため例えば、紡糸した際に当該シリル化ポリオレフィンが繊維表面に、より集まりやすいのではないかと考えられる。また、上記構造であれば、ケイ素含有化合物鎖の両末端にポリオレフィン鎖が存在するため、繊維表面からブリードアウトすることが少ないのではないかと考えられる。 (polyolefin chain)-(silicon-containing compound chain)-(polyolefin chain) vinyl group presumed to have a block copolymer structure, such as a presumed structure of formula (5) The silylated polyolefin obtained from the combination of the silicon-containing compound and the silicon-containing compound is presumed to have a polyolefin chain as a graft chain from the silicon-containing compound chain. It is thought that the silylated polyolefin is more likely to undergo molecular motion than the presumed silylated polyolefin, and therefore, for example, it is thought that the silylated polyolefin is more likely to gather on the fiber surface during spinning. Also, with the above structure, polyolefin chains are present at both ends of the silicon-containing compound chain, so it is thought that bleeding out from the fiber surface is less likely to occur.
 特定シリル化ポリオレフィンの含有率は、逆洗性及びその維持性の観点から、不織布が含む繊維の全質量に対して、0.01質量%~20質量%であり、0.05質量%~15質量%であることが好ましく、0.05質量%~12質量%であることがより好ましい。また、逆洗性及びその維持性を発揮し、かつ、不織布が含む繊維の繊維径を濾過性能により好適な範囲とする観点からは、0.1質量%~8質量%とすることがさらに好ましい。 The content of the specific silylated polyolefin is 0.01% by mass to 20% by mass, and 0.05% by mass to 15% by mass, based on the total mass of the fibers contained in the nonwoven fabric, from the viewpoint of backwashability and maintainability. % by mass is preferable, and 0.05% by mass to 12% by mass is more preferable. In addition, from the viewpoint of exhibiting backwashability and its maintainability and making the fiber diameter of the fibers contained in the nonwoven fabric in a more suitable range for filtration performance, it is more preferable to be 0.1% by mass to 8% by mass. .
 本開示に係る不織布に含まれる繊維での特定シリル化ポリオレフィン及び熱可塑性樹脂の合計含有量は、例えば、不織布が含む繊維の全質量に対して、85質量%~100質量%であってもよく、90質量%~100質量%であってもよく、95質量%~100質量%であってもよく、99質量%~100質量%であってもよい。 The total content of the specific silylated polyolefin and the thermoplastic resin in the fibers contained in the nonwoven fabric according to the present disclosure may be, for example, 85% by mass to 100% by mass with respect to the total mass of the fibers contained in the nonwoven fabric. , 90% by mass to 100% by mass, 95% by mass to 100% by mass, or 99% by mass to 100% by mass.
(添加剤)
 本開示に係る不織布に含まれる繊維は、熱可塑性樹脂及び特定シリル化ポリオレフィンのみから形成されてもよく、熱可塑性樹脂及び特定シリル化ポリオレフィンの他に、酸化防止剤、耐候安定剤、耐光安定剤、ブロッキング防止剤、滑剤、顔料、柔軟剤、親水剤、助剤、撥水剤、フィラー、抗菌剤、難燃剤、アルコキシシラン等の公知の添加剤を含んでいてもよい。
 前述の繊維が公知の添加剤を含む場合、本開示に係る不織布に含まれる繊維での添加剤の含有量は、0.01質量%~10質量%であってもよく、0.05質量%~5質量%であってもよく、0.1質量%~1質量%であってもよい。
 本開示に係る不織布に含まれる繊維でのアルコキシシランの含有量は、長時間使用した際の逆洗性能の低下を抑制する観点から、不織布が含む繊維の全質量に対して、1質量%以下であってもよく、0.5質量%以下であってもよく、0質量%であってもよい。
(Additive)
The fibers contained in the nonwoven fabric according to the present disclosure may be formed only from the thermoplastic resin and the specific silylated polyolefin, and in addition to the thermoplastic resin and the specific silylated polyolefin, antioxidants, weather stabilizers, and light stabilizers , antiblocking agents, lubricants, pigments, softeners, hydrophilic agents, auxiliary agents, water repellents, fillers, antibacterial agents, flame retardants, alkoxysilanes, and other known additives.
When the aforementioned fibers contain known additives, the content of the additives in the fibers contained in the nonwoven fabric according to the present disclosure may be 0.01 wt% to 10 wt%, and may be 0.05 wt%. It may be up to 5% by mass, or 0.1% by mass to 1% by mass.
The content of alkoxysilane in the fibers contained in the nonwoven fabric according to the present disclosure is 1% by mass or less with respect to the total mass of the fibers contained in the nonwoven fabric, from the viewpoint of suppressing deterioration of backwash performance when used for a long time. , 0.5% by mass or less, or 0% by mass.
(平均繊維径)
 本開示の不織布に含まれる繊維の平均繊維径は、フィルタの濾材に要求される濾過性能を得ることができれば、特に制限されない。繊維の平均繊維径は、例えば、13.0μm以下であってもよく、より小さな粒子を捕集する観点からは、4.0μm以下であることが好ましく、3.0μm以下であることがより好ましい。
 また、フィルタとしたときの強度を保持する観点から、繊維の平均繊維径は、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましい。
(average fiber diameter)
The average fiber diameter of the fibers contained in the nonwoven fabric of the present disclosure is not particularly limited as long as the filtering performance required for the filter medium of the filter can be obtained. The average fiber diameter of the fibers may be, for example, 13.0 μm or less, preferably 4.0 μm or less, more preferably 3.0 μm or less, from the viewpoint of collecting smaller particles. .
Moreover, from the viewpoint of maintaining the strength when used as a filter, the average fiber diameter of the fibers is preferably 0.1 μm or more, more preferably 0.5 μm or more.
 平均繊維径の測定方法は、以下のとおりである。
 電子顕微鏡(型番;S-3500N、(株)日立製作所製)を用いて、不織布の表面を、倍率1000倍にて写真撮影する。写真に写った繊維のうち繊維の幅(直径)を測定可能な全ての繊維の幅(直径)を測定する。これを1000本以上になるまで繰り返し、得られた測定結果の平均を平均繊維径とする。
The method for measuring the average fiber diameter is as follows.
Using an electron microscope (model number: S-3500N, manufactured by Hitachi Ltd.), the surface of the nonwoven fabric is photographed at a magnification of 1000 times. The width (diameter) of all fibers that can be measured among the fibers in the photograph is measured. This is repeated until 1000 or more fibers are obtained, and the average of the obtained measurement results is taken as the average fiber diameter.
 本開示の不織布が後述するメルトブローン法で製造された不織布(以下、「メルトブローン不織布」ともいう。)である場合、不織布は溶媒成分を含まないことが好ましい。溶媒成分とは、本開示に係る不織布に含まれる繊維の構成成分を溶解可能な有機溶媒成分を意味する。溶媒成分としては、ジメチルホルムアミド(DMF)などが挙げられる。
 溶媒成分を含まないとは、ヘッドスペースガスクロマトグラフ法によって検出限界以下であることを意味する。
When the nonwoven fabric of the present disclosure is a nonwoven fabric manufactured by the meltblown method described below (hereinafter also referred to as "meltblown nonwoven fabric"), the nonwoven fabric preferably does not contain a solvent component. A solvent component means an organic solvent component capable of dissolving the constituent components of the fibers contained in the nonwoven fabric according to the present disclosure. Examples of solvent components include dimethylformamide (DMF).
Free of solvent components means below the limit of detection by headspace gas chromatography.
 本開示の不織布の繊維は、繊維同士が自己融着した交絡点を有することが好ましい。自己融着した交絡点とは、本開示に係る不織布に含まれる繊維が融着することで繊維同士が結合した枝分かれ部位を意味し、繊維同士がバインダ樹脂を介して接着してできた交絡点とは区別される。
 自己融着した交絡点は、例えば、メルトブローン法による繊維状プロピレン系重合体の細化の過程で形成される。
 なお、繊維同士が自己融着した交絡点を有するか否かは、電子顕微鏡写真により確認することができる。
The fibers of the nonwoven fabric of the present disclosure preferably have entanglement points where the fibers are self-fused. The self-fused entangled point means a branched portion where the fibers are bonded to each other by fusing the fibers contained in the nonwoven fabric according to the present disclosure, and the entangled point formed by bonding the fibers to each other via the binder resin. is distinguished from
The self-fused entangled points are formed, for example, in the process of thinning the fibrous propylene-based polymer by the meltblown method.
Whether or not the fibers have self-fused entanglement points can be confirmed by an electron micrograph.
 本開示の不織布の繊維同士が自己融着による交絡点を有する場合、繊維同士を接着させるための接着成分を用いなくともよい。例えば、繊維同士が自己融着による交絡点を有するメルトブローン不織布の場合には、本開示に係る不織布が含む繊維が含有する熱可塑性樹脂及び特定シリル化ポリオレフィン以外の樹脂成分を含有しなくてもよい。 When the fibers of the nonwoven fabric of the present disclosure have entanglement points due to self-fusion, it is not necessary to use an adhesive component for bonding the fibers together. For example, in the case of a meltblown nonwoven fabric in which fibers have entangled points due to self-fusion, resin components other than the thermoplastic resin and specific silylated polyolefin contained in the fibers contained in the nonwoven fabric according to the present disclosure may not be contained. .
 不織布の比表面積は、捕集効率をより向上させる観点から、0.2m/g~20.0m/gであることが好ましく、1.0m/g~15.0m/gであることがより好ましく、3.5m/g~10.0m/gであることがさらに好ましい。
 不織布の比表面積は、JIS Z8830:2013に準拠して求めた値である。
 不織布の平均繊維径と比表面積とを上記範囲内にすることで、フィルタとして用いると捕集効率と圧力損失のバランスにより優れる。
The specific surface area of the nonwoven fabric is preferably 0.2 m 2 /g to 20.0 m 2 /g, more preferably 1.0 m 2 /g to 15.0 m 2 /g, from the viewpoint of further improving collection efficiency. is more preferable, and more preferably 3.5 m 2 /g to 10.0 m 2 /g.
The specific surface area of the nonwoven fabric is a value determined according to JIS Z8830:2013.
By setting the average fiber diameter and the specific surface area of the nonwoven fabric within the above ranges, when used as a filter, the balance between collection efficiency and pressure loss is excellent.
 本開示の不織布の平均孔径は10.0μm以下であることが好ましく、3.0μm以下であることがより好ましく、2.5μm以下であることがさらに好ましい。
 また、不織布の平均孔径は0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。平均孔径が0.01μm以上であると、不織布をフィルタに用いた場合に、圧損が抑えられ、流量を維持できる傾向にある。
The average pore size of the nonwoven fabric of the present disclosure is preferably 10.0 μm or less, more preferably 3.0 μm or less, and even more preferably 2.5 μm or less.
The average pore size of the nonwoven fabric is preferably 0.01 μm or more, more preferably 0.1 μm or more. When the average pore size is 0.01 μm or more, the pressure loss tends to be suppressed and the flow rate can be maintained when the nonwoven fabric is used for the filter.
 本開示の不織布の最大孔径は、20.0μm以下であることが好ましく、6.0μm以下であることがより好ましく、5.0μm以下であることがさらに好ましい。
 また、不織布の最小孔径は、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。
The maximum pore size of the nonwoven fabric of the present disclosure is preferably 20.0 μm or less, more preferably 6.0 μm or less, and even more preferably 5.0 μm or less.
Moreover, the minimum pore size of the nonwoven fabric is preferably 0.01 μm or more, more preferably 0.1 μm or more.
 本開示の不織布の孔径(平均孔径、最大孔径及び最小孔径)は、バブルポイント法により測定することができる。具体的には、JIS Z8703:1983(試験場所の標準状態)に準拠し、温度20±2℃、湿度65±2%の恒温室内で、不織布の試験片にフッ素系不活性液体(例えば、3M社製、商品名:フロリナート)を含浸させ、キャピラリー・フロー・ポロメーター(例えば、Porous materials,Inc社製、製品名:CFP-1200AE)で孔径を測定する。 The pore size (average pore size, maximum pore size and minimum pore size) of the nonwoven fabric of the present disclosure can be measured by the bubble point method. Specifically, in accordance with JIS Z8703: 1983 (standard conditions of the test location), in a temperature-controlled room at a temperature of 20 ± 2 ° C and a humidity of 65 ± 2%, a fluorine-based inert liquid (for example, 3M manufactured by Porous Materials, Inc., product name: Fluorinert), and the pore size is measured with a capillary flow porometer (eg, manufactured by Porous Materials, Inc., product name: CFP-1200AE).
 本開示の不織布の目付は、用途により適宜設定することができ、通常、1g/m~200g/mであり、2g/m~150g/mの範囲にあることが好ましい。目付は、例えばコレクターの速度を変更することで所望の目付にすることができる。
 本開示の不織布の空隙率は、通常20%以上であり、20%~98%の範囲にあることが好ましく、60%~95%の範囲にあることがより好ましい。空隙率は、例えばコレクター上に捕集後に、カレンダー成形を行うことで、所望の空隙率にすることができる。
 本開示の不織布がエンボス加工されている場合には、不織布の空隙率は、エンボス点を除く箇所における空隙率を意味する。
 空隙率は、次式で定義された値である。
(1-((目付×10)/(厚み×密度))
 なおそれぞれの単位としては、目付けはg/m、厚みはmm、密度はg/mmである。
 目付(g/m)は、不織布から機械方向(MD方向)100mm×横方向(CD方向)100mmの切片を10点採取し、それぞれの重量を測定して単位面積あたりの重量に換算した値を平均した値である。
 厚み(mm)は、不織布から機械方向(MD方向)100mm×横方向(CD方向)100mmの切片を10点採取し、それぞれの四隅付近と中央付近の5点、合計50点の厚みを測定した値の平均値である。厚み計の荷重は7g/cmである。
The basis weight of the nonwoven fabric of the present disclosure can be appropriately set depending on the application, and is usually 1 g/m 2 to 200 g/m 2 , preferably in the range of 2 g/m 2 to 150 g/m 2 . The basis weight can be adjusted to a desired basis weight by, for example, changing the speed of the collector.
The porosity of the nonwoven fabric of the present disclosure is usually 20% or more, preferably in the range of 20% to 98%, more preferably in the range of 60% to 95%. The porosity can be adjusted to a desired porosity by, for example, calendering after collection on a collector.
When the nonwoven fabric of the present disclosure is embossed, the porosity of the nonwoven fabric means the porosity at locations excluding embossing points.
The porosity is a value defined by the following formula.
(1-((basis weight × 10 6 )/(thickness × density))
The unit of each is g/m 2 for basis weight, mm for thickness, and g/mm 3 for density.
The basis weight (g/m 2 ) is a value obtained by taking 10 sections of 100 mm in the machine direction (MD direction) × 100 mm in the transverse direction (CD direction) from the nonwoven fabric, measuring the weight of each, and converting it to the weight per unit area. is the average value of
For the thickness (mm), 10 sections of 100 mm in the machine direction (MD direction) x 100 mm in the transverse direction (CD direction) were taken from the nonwoven fabric, and the thickness was measured at 5 points near the four corners and 5 points near the center, for a total of 50 points. is the average of the values. The thickness gauge load is 7 g/cm 2 .
 また、本開示の不織布のうち、20%以上の空隙率を有する部位の占める体積が90%以上であることが好ましく、ほぼ全ての部位で40%以上の空隙率を有することがより好ましい。本開示の不織布をフィルタに用いる場合には、エンボス加工されていないか、又はほとんど全ての領域でエンボス加工されていないことが好ましい。
 エンボス加工されていない場合には、フィルタに流体を通過させたときの圧力損失が抑えられ、かつ、フィルタ流路長が長くなるためフィルタリング性能が向上する傾向にある。
 なお、本開示の不織布が他の不織布に積層された不織布積層体である場合に、他の不織布はエンボス加工されていてもよい。
In the nonwoven fabric of the present disclosure, the volume occupied by portions having a porosity of 20% or more is preferably 90% or more, and more preferably almost all portions have a porosity of 40% or more. If the nonwoven fabric of the present disclosure is used in a filter, it is preferably not embossed or not embossed in substantially all areas.
When the filter is not embossed, the pressure loss when the fluid is passed through the filter is suppressed, and the length of the filter flow path is increased, so that the filtering performance tends to be improved.
When the nonwoven fabric of the present disclosure is a nonwoven fabric laminate laminated to another nonwoven fabric, the other nonwoven fabric may be embossed.
 不織布の通気度はJIS L 1096:2010規定されるフラジール通気度測定によって測定する。不織布の通気度は、好ましくは3cm/cm/s~30cm/cm/sであり、より好ましくは5cm/cm/s~20cm/cm/sであり、さらに好ましくは8cm/cm/s~12cm/cm/sである。 The air permeability of the nonwoven fabric is measured by Frazier air permeability measurement defined in JIS L 1096:2010. The air permeability of the nonwoven fabric is preferably 3 cm 3 /cm 2 /s to 30 cm 3 /cm 2 /s, more preferably 5 cm 3 /cm 2 /s to 20 cm 3 /cm 2 /s, still more preferably 8 cm 3 /cm 2 /s to 12 cm 3 /cm 2 /s.
<不織布の製造方法>
 本開示の不織布の製造方法は特に制限されず、エアスルー法、スパンボンド法、ニードルパンチ法、メルトブローン法、カード法、熱融着法、水流交絡法、溶剤接着法等の公知の方法を適用することができる。
 これらの中でも、均一性、低リント性、柔軟性及びフィルタ性の総合的な性能に優れる不織布が得られる観点から、不織布の製造方法としては、メルトブローン法又はスパンボンド法であることが好ましく、メルトブローン法であることがより好ましい。
 すなわち、本開示の不織布の好適な形態の一つは、メルトブローン不織布を含む構成である。本開示の不織布は、1層又は2層以上のメルトブローン不織布層からなる不織布であってもよく、1層又は2層以上のメルトブローン不織布層と、他の不織布層とからなる不織布であってもよい。
<Method for manufacturing nonwoven fabric>
The method for producing the nonwoven fabric of the present disclosure is not particularly limited, and known methods such as air through method, spunbond method, needle punch method, meltblown method, card method, heat fusion method, hydroentanglement method, solvent bonding method, etc. are applied. be able to.
Among these, the method for producing a nonwoven fabric is preferably a meltblown method or a spunbond method, from the viewpoint of obtaining a nonwoven fabric having excellent overall performance of uniformity, low lint, flexibility and filterability. More preferably, it is the law.
That is, one of the preferred forms of the nonwoven fabric of the present disclosure is a configuration containing a meltblown nonwoven fabric. The nonwoven fabric of the present disclosure may be a nonwoven fabric composed of one or more meltblown nonwoven fabric layers, or may be a nonwoven fabric composed of one or more meltblown nonwoven fabric layers and another nonwoven fabric layer. .
 スパンボンド不織布を製造する際の一般的な方法としては、例えば、熱可塑性樹脂及び特定シリル化ポリオレフィンを含有する樹脂組成物を、押出機を用い溶融し、溶融した組成物を、複数の紡糸口金を有するスパンボンド不織布成形機を用いて溶融紡糸し、紡糸により形成された長繊維を必要に応じて冷却し延伸させた後、スパンボンド不織布成形機の捕集面上に堆積させ、エンボスロールで加熱加圧処理する方法が挙げられる。
 冷却と延伸の方法は、例えば、特公昭48-28386号公報に開示された溶融紡糸された長繊維が大気中で冷却されながら延伸されることで製造される開放式スパンボンド法と、例えば、特許第3442896号公報に開示された密閉式スパンボンド法が広く知られている。
As a general method for producing a spunbond nonwoven fabric, for example, a resin composition containing a thermoplastic resin and a specific silylated polyolefin is melted using an extruder, and the melted composition is passed through a plurality of spinnerets. After melt spinning using a spunbond nonwoven fabric forming machine having a spunbond nonwoven fabric forming machine, the long fibers formed by spinning are cooled and stretched as necessary, deposited on the collection surface of the spunbond nonwoven fabric forming machine, and embossed with an emboss roll. A method of heating and pressurizing may be mentioned.
The method of cooling and drawing includes, for example, an open spunbond method disclosed in Japanese Patent Publication No. 48-28386, in which melt-spun long fibers are drawn while being cooled in the atmosphere, and, for example, The closed spunbond method disclosed in Japanese Patent No. 3442896 is widely known.
 メルトブローン不織布は、例えば、以下の工程を有する製造方法を挙げることができる。
 1)メルトブローン法により、溶融した樹脂組成物(熱可塑性樹脂及び特定シリル化ポリオレフィンを含有する。)を紡糸口金から加熱ガスと共に吐出して、繊維状に形成する工程
 2)繊維状の樹脂組成物を、ウェブ状に捕集する工程
For the meltblown nonwoven fabric, for example, a manufacturing method having the following steps can be mentioned.
1) A step of extruding a molten resin composition (containing a thermoplastic resin and a specific silylated polyolefin) from a spinneret together with a heated gas by a meltblown method to form a fibrous resin composition 2) Fibrous resin composition is collected in the form of a web
 メルトブローン法とは、メルトブローン不織布の製造におけるフリース形成法の一つである。溶融した樹脂組成物を、紡糸口金から繊維状に吐出させるときに、溶融状態の吐出物に両側面から加熱圧縮ガスをあてるとともに、加熱圧縮ガスを随伴させることで吐出物の径を小さくすることができる。 The meltblown method is one of the fleece forming methods in the production of meltblown nonwoven fabrics. When a molten resin composition is extruded from a spinneret in a fibrous form, a heated compressed gas is applied to both sides of the extruded material in a molten state, and the heated compressed gas is accompanied by the extruded material to reduce the diameter of the extruded material. can be done.
 メルトブローン法は、具体的には、例えば、原料となる樹脂組成物を、押出機などを用いて溶融する。溶融した樹脂組成物は、押出機の先端に接続された紡糸口金に導入され、紡糸口金の紡糸ノズルから、繊維状に吐出される。吐出された繊維状の溶融した樹脂組成物を高温ガス(例えば、空気)で牽引することにより、繊維状の溶融した樹脂組成物が細化される。 Specifically, in the meltblown method, for example, a raw material resin composition is melted using an extruder or the like. The melted resin composition is introduced into a spinneret connected to the tip of the extruder and discharged in the form of fibers from the spinning nozzle of the spinneret. By pulling the ejected fibrous molten resin composition with high-temperature gas (for example, air), the fibrous molten resin composition is finely divided.
 吐出された繊維状の溶融した樹脂組成物は、高温ガスに牽引されることで、通常1.4μm以下、好ましくは1.0μm以下の直径にまで細化される。好ましくは、高温ガスによる限界まで繊維状の溶融した樹脂組成物を細化する。 The extruded fibrous molten resin composition is pulled by high-temperature gas and thinned to a diameter of usually 1.4 μm or less, preferably 1.0 μm or less. Preferably, the fibrous molten resin composition is attenuated to the limit of the hot gas.
 細化した繊維状の溶融した樹脂組成物に、高電圧を印加して、さらに細化してもよい。高電圧を印加すると、電場の引力により繊維状の溶融した樹脂組成物が捕集側に引っ張られて細化する。印加する電圧は特に制限されず、1kV~300kVであってもよい。 A high voltage may be applied to the fine fibrous molten resin composition to further fine it. When a high voltage is applied, the fibrous molten resin composition is pulled toward the collection side by the attractive force of the electric field and becomes finer. The applied voltage is not particularly limited, and may be 1 kV to 300 kV.
 また、繊維状の溶融した樹脂組成物に、熱線を照射して、さらに細化してもよい。熱線を照射することで細化し、流動性の低下した繊維状の樹脂組成物を再溶融することができる。また、熱線を照射することで、繊維状の樹脂組成物の溶融粘度をより下げることもできる。そのため、分子量の大きいプロピレン系重合体を紡糸原料としても、十分に細化された繊維を得ることができ、高強度のメルトブローン不織布が得られうる。 In addition, the fibrous molten resin composition may be further thinned by being irradiated with heat rays. By irradiating with heat rays, it is possible to re-melt the fibrous resin composition which has been thinned and whose fluidity has decreased. Moreover, the melt viscosity of the fibrous resin composition can be further lowered by irradiating with heat rays. Therefore, even if a propylene-based polymer having a large molecular weight is used as a spinning raw material, sufficiently fine fibers can be obtained, and a high-strength meltblown nonwoven fabric can be obtained.
 熱線とは、波長0.7μm~1000μmの電磁波を意味し、特に波長0.7μm~2.5μmである近赤外線を意味する。熱線の強度や照射量は特に制限されず、繊維状の溶融した樹脂組成物、例えば繊維状溶融プロピレン系重合体が再溶融されればよい。例えば、1V~200V、好ましくは1V~20Vの近赤外線ランプ又は近赤外線ヒータを用いることができる。 A heat ray means an electromagnetic wave with a wavelength of 0.7 μm to 1000 μm, and particularly near infrared rays with a wavelength of 0.7 μm to 2.5 μm. The intensity and irradiation dose of the heat rays are not particularly limited as long as the fibrous molten resin composition, for example, the fibrous molten propylene-based polymer is remelted. For example, a near-infrared lamp or a near-infrared heater of 1V to 200V, preferably 1V to 20V can be used.
 繊維状の溶融した樹脂組成物は、ウェブ状に捕集される。一般には、捕集器(コレクター)に捕集されて堆積される。コレクター上に捕集されたのちに、カレンダー成形を行なってもよい。これにより、メルトブローン不織布が製造される。製造されたメルトブローン不織布は、例えばロール状に巻き取られる。コレクターの例には、多孔ベルト、多孔ドラムなどが含まれる。また、コレクターは空気捕集部を有していてもよく、これにより繊維の捕集を促進してもよい。 The fibrous molten resin composition is collected in the form of a web. Generally, it is collected and deposited in a collector. Calendering may be performed after collection on the collector. Thereby, a meltblown nonwoven fabric is produced. The produced meltblown nonwoven fabric is wound into a roll, for example. Examples of collectors include perforated belts, perforated drums, and the like. The collector may also have an air collecting portion, which may facilitate collection of the fibers.
<メルトブローン不織布の製造装置>
 本開示のメルトブローン不織布を製造するための製造装置は、本開示のメルトブローン不織布を製造することができれば特に限定されない。
 メルトブローン不織布の製造装置としては、例えば、
 1)樹脂組成物を溶融して搬送する押出機と、
 2)押出機から搬送された溶融した樹脂組成物を、繊維状に吐出する紡糸口金と、
 3)紡糸口金の下部に、高温ガスを噴射するガスノズルと、
 4)紡糸口金から吐出された繊維状の溶融した樹脂組成物をウェブ状に捕集する捕集器と、
 を具備する製造装置を挙げることができる。
<Manufacturing equipment for meltblown nonwoven fabric>
A production apparatus for producing the meltblown nonwoven fabric of the present disclosure is not particularly limited as long as it can produce the meltblown nonwoven fabric of the present disclosure.
Examples of manufacturing equipment for meltblown nonwoven fabrics include:
1) an extruder for melting and conveying a resin composition;
2) a spinneret for discharging the molten resin composition conveyed from the extruder in a fibrous form;
3) a gas nozzle for injecting hot gas at the bottom of the spinneret;
4) a collector for collecting the fibrous molten resin composition discharged from the spinneret in the form of a web;
can be mentioned.
 押出機は、特に限定されず、一軸押出機であっても多軸押出機であってもよい。ホッパーから投入された固体の樹脂組成物が、圧縮部で溶融される。 The extruder is not particularly limited, and may be a single-screw extruder or a multi-screw extruder. A solid resin composition charged from a hopper is melted in the compression section.
 紡糸口金は、押出機の先端に配置されている。紡糸口金は、通常複数の紡糸ノズルを具備しており、例えば、複数の紡糸ノズルが列状に配列している。紡糸ノズルの直径は、0.05mm~0.38mmであることが好ましい。溶融した樹脂組成物が、押出機によって紡糸口金にまで搬送され、紡糸ノズルに導入される。紡糸ノズルの開口部から繊維状の溶融した樹脂組成物が吐出される。溶融した樹脂組成物の吐出圧力は、通常0.01kg/cm~200kg/cmの範囲であり、10kg/cm~30kg/cmの範囲であることが好ましい。これより吐出量を高めて、大量生産を実現する。 A spinneret is located at the tip of the extruder. A spinneret usually comprises a plurality of spinning nozzles, for example, a plurality of spinning nozzles arranged in a row. The diameter of the spinning nozzle is preferably between 0.05 mm and 0.38 mm. A molten resin composition is conveyed to a spinneret by an extruder and introduced into a spinning nozzle. A fibrous molten resin composition is discharged from the opening of the spinning nozzle. The discharge pressure of the molten resin composition is usually in the range of 0.01 kg/cm 2 to 200 kg/cm 2 and preferably in the range of 10 kg/cm 2 to 30 kg/cm 2 . Mass production is realized by increasing the discharge amount.
 ガスノズルは、紡糸口金の下部、より具体的には紡糸ノズルの開口部付近に、高温ガスを噴射する。噴射ガスは、空気でありうる。ガスノズルを紡糸ノズルの開口部の近傍に設けて、ノズル開口からの吐出直後の樹脂組成物に、高温ガスを噴射することが好ましい。 The gas nozzle injects hot gas below the spinneret, more specifically near the opening of the spinning nozzle. The propellant gas can be air. It is preferable to provide a gas nozzle in the vicinity of the opening of the spinning nozzle to inject a high-temperature gas onto the resin composition immediately after being discharged from the nozzle opening.
 噴射するガスの速度(吐出風量)は特に限定されず、150Nm/h/m~1500Nm/h/mであってもよい。噴射するガスの温度は、通常5℃~400℃以下であり、好ましくは140℃~350℃の範囲である。噴射するガスの種類は特に限定されず、圧縮空気を用いてもよい。 The speed of the jetted gas (discharge air volume) is not particularly limited, and may be 150 Nm 3 /h/m to 1500 Nm 3 /h/m. The temperature of the injected gas is usually 5°C to 400°C or less, preferably 140°C to 350°C. The type of gas to be injected is not particularly limited, and compressed air may be used.
 メルトブローン不織布の製造装置は、紡糸口金から吐出された繊維状の溶融した樹脂組成物に電圧を印加する電圧付与手段を、さらに具備してもよい。
 また、紡糸口金から吐出された繊維状の溶融した樹脂組成物に熱線を照射する熱線照射手段を、さらに具備してもよい。
The apparatus for producing a meltblown nonwoven fabric may further comprise voltage applying means for applying a voltage to the fibrous molten resin composition discharged from the spinneret.
Further, a heat ray irradiation means for irradiating the fibrous molten resin composition extruded from the spinneret with heat rays may be further provided.
 ウェブ状に捕集する捕集器(コレクター)は特に限定されず、例えば、多孔ベルトに繊維を捕集すればよい。多孔ベルトのメッシュ幅は5メッシュ~200メッシュであることが好ましい。さらに、多孔ベルトの繊維捕集面の裏側に空気捕集部を設けて、捕集を容易にしてもよい。捕集器の捕集面から、紡糸ノズルのノズル開口部までの距離は、3cm~55cmであることが好ましい。また、捕集器の裏側から吸引しつつ、捕集器上に捕集してもよい。 The collector that collects in the form of a web is not particularly limited, and for example, the fibers may be collected on a perforated belt. The mesh width of the perforated belt is preferably 5 to 200 mesh. Furthermore, an air collecting portion may be provided on the back side of the fiber collecting surface of the perforated belt to facilitate collection. The distance from the collecting surface of the collector to the nozzle opening of the spinning nozzle is preferably 3 cm to 55 cm. Also, it may be collected on the collector while sucking from the back side of the collector.
 メルトブローン不織布の製造装置は、さらにフラットロールないしクラウンロール間にクリアランスを設けた一対のロールないしクリアランス無しで一定圧力をかけられるロールを備えていても良い。ウェブ上に捕集された繊維は、ロールを通ることでカレンダー処理がされ、空隙率を調整することができる。 The meltblown nonwoven fabric manufacturing apparatus may further include a pair of rolls with a clearance between the flat rolls or the crown rolls, or rolls to which a constant pressure can be applied without a clearance. The fibers collected on the web are calendered by passing through rolls to adjust the porosity.
《不織布積層体》
(第一実施形態)
 本開示の不織布積層体の第一実施形態は、前述の本開示の不織布である不織布層Aと、前記不織布層A以外である層Bと、を含む。
 第一実施形態の不織布積層体は、不織布層Aとともに層Bを含むことで耐水圧及びその維持性に優れる。特に、層Bが不織布層Aを支持する機能を有することで、不織布層Aを構成する本開示の不織布の変形、破損等が生じにくく、不織布積層体は耐水圧により優れる傾向にある。さらに、層Bが不織布層Aを支持する機能を有することで、不織布積層体の強度が向上する傾向にある。また、第一実施形態の不織布積層体は、不織布層Aを含むことで逆洗性及びその維持性に優れている。
《Nonwoven fabric laminate》
(First embodiment)
A first embodiment of the nonwoven fabric laminate of the present disclosure includes a nonwoven layer A, which is the nonwoven fabric of the present disclosure described above, and a layer B other than the nonwoven layer A.
Since the nonwoven fabric laminate of the first embodiment includes the layer B together with the nonwoven fabric layer A, it is excellent in water pressure resistance and its maintainability. In particular, since the layer B has a function of supporting the nonwoven fabric layer A, the nonwoven fabric of the present disclosure constituting the nonwoven fabric layer A is less likely to be deformed, damaged, etc., and the nonwoven fabric laminate tends to be more excellent in water pressure resistance. Furthermore, since the layer B has a function of supporting the nonwoven fabric layer A, the strength of the nonwoven fabric laminate tends to be improved. Moreover, since the nonwoven fabric layer A is included in the nonwoven fabric layered product of the first embodiment, it is excellent in backwashability and maintainability thereof.
 第一実施形態における層Bは、前述の本開示の不織布である不織布層A以外の層であれば特に限定されず、多孔質フィルム等の樹脂フィルム、織物、編物、紙、前述の本開示の不織布以外の不織布から構成される層などが挙げられる。 The layer B in the first embodiment is not particularly limited as long as it is a layer other than the nonwoven fabric layer A that is the nonwoven fabric of the present disclosure described above, and is a resin film such as a porous film, woven fabric, knitted fabric, paper, or Layers composed of nonwoven fabrics other than nonwoven fabrics, and the like are included.
 第一実施形態における層Bを構成し得る不織布としては、例えば、スパンボンド不織布、メルトブローン不織布、湿式不織布、スパンレース不織布、乾式不織布、乾式パルプ不織布、エアレイド不織布、ウォータージェット不織布、フラッシュ紡糸不織布、開繊不織布、ニードルパンチ不織布等、種々公知の短繊維不織布及び長繊維不織布(例えば長繊維セルロース不織布)等が挙げられる。中でも、不織布積層体が耐水圧及びその維持性により優れる観点から、不織布はスパンボンド不織布を含むことが好ましい、すなわち、層Bはスパンボンド不織布層を含むことが好ましい。層Bがスパンボンド不織布を含むことで、不織布積層体の強度がより向上する傾向にある。 Examples of nonwoven fabrics that can constitute Layer B in the first embodiment include spunbond nonwoven fabrics, meltblown nonwoven fabrics, wet nonwoven fabrics, spunlace nonwoven fabrics, dry nonwoven fabrics, dry pulp nonwoven fabrics, air-laid nonwoven fabrics, water jet nonwoven fabrics, flash spun nonwoven fabrics, open Various known short-fiber nonwoven fabrics and long-fiber nonwoven fabrics (for example, long-fiber cellulose nonwoven fabrics), such as fiber nonwoven fabrics and needle-punched nonwoven fabrics, can be used. Above all, the nonwoven fabric preferably contains a spunbonded nonwoven fabric, that is, the layer B preferably contains a spunbonded nonwoven fabric layer, from the viewpoint that the nonwoven fabric laminate is superior in water pressure resistance and maintainability thereof. Including the spunbond nonwoven fabric in the layer B tends to further improve the strength of the nonwoven fabric laminate.
 第一実施形態における不織布層Aは、本開示の不織布1層からなる不織布であってもよく、2層以上の本開示の不織布からなる不織布であってもよい。
 第一実施形態における層Bは、1層の層であってもよく、2層以上の層であってもよい。層Bが2層以上である場合、2層以上の層はそれぞれ同じであってもよく、異なっていてもよい。
The nonwoven fabric layer A in the first embodiment may be a nonwoven fabric composed of one layer of the nonwoven fabric of the present disclosure, or may be a nonwoven fabric composed of two or more layers of the nonwoven fabric of the present disclosure.
The layer B in the first embodiment may be one layer or two or more layers. When Layer B is two or more layers, the two or more layers may be the same or different.
 以下、層Bが不織布から構成される層である不織布層Bである場合の好ましい形態について説明する。
 第一実施形態における不織布層Bに含まれる繊維は、熱可塑性樹脂を含んでいてもよい。熱可塑性樹脂としては、例えば、前述の本開示の不織布中の繊維に含有される熱可塑性樹脂が挙げられる。不織布層Bに含まれる熱可塑性樹脂の好ましい物性は、前述の本開示の不織布中の繊維に含有される熱可塑性樹脂の好ましい物性と同様である。中でも、熱可塑性樹脂としては、ポリオレフィンを含むことが好ましく、ポリエチレン及びポリプロピレンから選択される少なくとも1種を含むことが好ましく、ポリプロピレンを含むことが好ましい。
 ポリエチレンとしては、エチレン単位を50質量%以上含む重合体であることが好ましい。
 ポリプロピレンとしては、プロピレン単位を50質量%以上含む重合体が好ましく、プロピレン単位が100質量%である重合体(すなわち、プロピレンの単独重合体)がより好ましい。
 ポリオレフィンの含有量、ポリエチレン及びポリプロピレンの合計含有量、又はポリプロピレンの含有量は、熱可塑性樹脂全体に対して、50質量%~100質量%であってもよく、80質量%~100質量%であってもよい。
A preferred embodiment in the case where the layer B is a nonwoven fabric layer B made of nonwoven fabric will be described below.
The fibers contained in the nonwoven fabric layer B in the first embodiment may contain a thermoplastic resin. The thermoplastic resin includes, for example, the thermoplastic resin contained in the fibers in the nonwoven fabric of the present disclosure described above. Preferred physical properties of the thermoplastic resin contained in the nonwoven fabric layer B are the same as the preferred physical properties of the thermoplastic resin contained in the fibers in the nonwoven fabric of the present disclosure described above. Among them, the thermoplastic resin preferably contains polyolefin, preferably contains at least one selected from polyethylene and polypropylene, and preferably contains polypropylene.
Polyethylene is preferably a polymer containing 50% by mass or more of ethylene units.
As the polypropylene, a polymer containing 50% by mass or more of propylene units is preferable, and a polymer containing 100% by mass of propylene units (that is, a homopolymer of propylene) is more preferable.
The content of polyolefin, the total content of polyethylene and polypropylene, or the content of polypropylene may be 50% by mass to 100% by mass, or 80% by mass to 100% by mass, based on the total thermoplastic resin. may
 第一実施形態における不織布層Bにおける熱可塑性樹脂の含有率は、不織布が含む繊維の全質量に対して、90質量%以上であることが好ましく、95質量%以上であることがより好ましい。前述の熱可塑性樹脂の含有率の上限は、不織布が含む繊維の全質量に対して100質量%以下であれば特に制限されない。 The content of the thermoplastic resin in the nonwoven fabric layer B in the first embodiment is preferably 90% by mass or more, more preferably 95% by mass or more, relative to the total mass of fibers contained in the nonwoven fabric. The upper limit of the thermoplastic resin content is not particularly limited as long as it is 100% by mass or less with respect to the total mass of fibers contained in the nonwoven fabric.
 第一実施形態における不織布層Bは、前述の特定シリル化ポリオレフィン及び前述の公知の添加剤をそれぞれ独立に、含んでいてもよく、含んでいなくてもよい。 The nonwoven fabric layer B in the first embodiment may or may not contain the aforementioned specific silylated polyolefin and the aforementioned known additive independently.
 第一実施形態における不織布層Bに含まれる繊維の平均繊維径は、特に制限されない。繊維の平均繊維径は、不織布積層体が耐水圧及びその維持性により優れる観点から、5.0μm以上であることが好ましく、10μm以上であることがより好ましく、12μm以上であることがさらに好ましい。繊維の平均繊維径の上限は特に制限されず、例えば、30μm以下であってもよい。 The average fiber diameter of the fibers contained in the nonwoven fabric layer B in the first embodiment is not particularly limited. The average fiber diameter of the fibers is preferably 5.0 µm or more, more preferably 10 µm or more, and even more preferably 12 µm or more, from the viewpoint that the nonwoven fabric laminate is superior in water pressure resistance and durability. The upper limit of the average fiber diameter of the fibers is not particularly limited, and may be, for example, 30 μm or less.
 第一実施形態における不織布層Bの目付は、用途により適宜設定することができ、通常、1g/m~200g/mであり、2g/m~150g/mの範囲にあることが好ましい。目付は、例えばコレクターの速度を変更することで所望の目付にすることができる。
 第一実施形態における不織布層Bの空隙率は、通常20%以上であり、20%~98%の範囲にあることが好ましく、60%~95%の範囲にあることがより好ましい。空隙率は、例えばコレクター上に捕集後に、カレンダー成形を行うことで、所望の空隙率にすることができる。
The basis weight of the nonwoven fabric layer B in the first embodiment can be appropriately set depending on the application, and is usually in the range of 1 g/m 2 to 200 g/m 2 and preferably in the range of 2 g/m 2 to 150 g/m 2 . preferable. The basis weight can be adjusted to a desired basis weight by, for example, changing the speed of the collector.
The porosity of the nonwoven fabric layer B in the first embodiment is usually 20% or more, preferably in the range of 20% to 98%, more preferably in the range of 60% to 95%. The porosity can be adjusted to a desired porosity by, for example, calendering after collection on a collector.
<不織布積層体の製造方法>
 第一実施形態における不織布積層体の製造方法は特に制限されない。層Bが不織布層Bである場合、本開示の不織布及び本開示の不織布以外の不織布をそれぞれ製造し、これらの不織布を積層することで第一実施形態における不織布積層体を得ることができる。これらの不織布を積層する方法としては、特に限定されず、熱エンボス加工、超音波融着等の熱融着法、ニードルパンチ、水流交絡等の機械的交絡法、ホットメルト接着剤、ウレタン系接着剤等の接着剤を用いる方法が挙げられる。
<Method for manufacturing nonwoven fabric laminate>
The method for producing the nonwoven fabric laminate in the first embodiment is not particularly limited. When the layer B is the nonwoven fabric layer B, the nonwoven fabric layer of the first embodiment can be obtained by manufacturing the nonwoven fabric of the present disclosure and a nonwoven fabric other than the nonwoven fabric of the present disclosure, and laminating these nonwoven fabrics. The method for laminating these nonwoven fabrics is not particularly limited, and includes thermal embossing, thermal fusion methods such as ultrasonic fusion, mechanical entangling methods such as needle punching and hydroentangling, hot melt adhesives, and urethane adhesives. A method using an adhesive such as an adhesive agent is exemplified.
 あるいは、本開示の不織布又は本開示の不織布以外の不織布の一方を製造し、製造された一方の不織布上に本開示の不織布又は本開示の不織布以外の不織布の他方を堆積させ、次いで、これらの不織布を前述の方法により積層することで第一実施形態における不織布積層体を得ることができる。 Alternatively, one of the nonwoven fabrics of the present disclosure or the nonwoven fabric other than the nonwoven fabric of the present disclosure is produced, the other nonwoven fabric of the disclosure or the nonwoven fabric other than the nonwoven fabric of the present disclosure is deposited on one of the produced nonwoven fabrics, and then the The nonwoven fabric laminate in the first embodiment can be obtained by laminating the nonwoven fabrics by the method described above.
 層Bが不織布以外から構成される層、例えば、多孔質フィルム等の樹脂フィルム、織物、編物、紙等の基材である場合、コレクター上に予め設けた基材上に本開示の不織布となる繊維をウェブ状に堆積させ、次いで、不織布及び基材を前述の方法により積層することで第一実施形態における不織布積層体を得てもよい。 When the layer B is a layer composed of a non-woven fabric, for example, a resin film such as a porous film, a woven fabric, a knitted fabric, a base material such as paper, etc., the non-woven fabric of the present disclosure is formed on the base material provided in advance on the collector. The nonwoven laminate in the first embodiment may be obtained by depositing the fibers in a web and then laminating the nonwoven and substrate by the methods described above.
(第二実施形態)
 本開示の不織布積層体の第二実施形態は、本開示の不織布である不織布層Aと、前記不織布層A以外である層Bと、前記不織布層A以外である層Cと、を含み、前記層B、前記不織布層A及び前記層Cの順番で配置されている。
 第二実施形態の不織布積層体は、不織布層Aとともに層B及び層Cを含むことで耐水圧及びその維持性に優れる。また、第二実施形態の不織布積層体は、不織布層Aを含むことで逆洗性及びその維持性に優れている。
 さらに、不織布層Aの両面に層B及び層Cがそれぞれ位置していることで第二実施形態の不織布積層体は、不織布層Aのみの実施形態に比べて、強度に優れる傾向にあり、取扱い性に優れる。
(Second embodiment)
A second embodiment of the nonwoven fabric laminate of the present disclosure includes a nonwoven layer A that is the nonwoven fabric of the present disclosure, a layer B that is other than the nonwoven layer A, and a layer C that is other than the nonwoven layer A. Layer B, said nonwoven fabric layer A and said layer C are arranged in this order.
The nonwoven fabric laminate of the second embodiment includes the layers B and C together with the nonwoven fabric layer A, so that it is excellent in water pressure resistance and its maintainability. Moreover, the nonwoven fabric layered product of 2nd Embodiment is excellent in backwashability and its maintainability by including the nonwoven fabric layer A.
Furthermore, since the layer B and the layer C are located on both sides of the nonwoven fabric layer A, the nonwoven fabric laminate of the second embodiment tends to be superior in strength compared to the embodiment with only the nonwoven fabric layer A, and is easy to handle. Excellent in nature.
 第二実施形態における層B及び層Cは、前述の本開示の不織布である不織布層A以外の層であれば特に限定されず、多孔質フィルム等の樹脂フィルム、織物、編物、紙、前述の本開示の不織布以外の不織布から構成される層などが挙げられる。 The layers B and C in the second embodiment are not particularly limited as long as they are layers other than the nonwoven fabric layer A, which is the nonwoven fabric of the present disclosure. Resin films such as porous films, woven fabrics, knitted fabrics, paper, Examples thereof include layers composed of nonwoven fabrics other than the nonwoven fabric of the present disclosure.
 第二実施形態における層B及び層Cを構成し得る不織布としては、第一実施形態における層Bを構成し得る不織布と同様である。また、第二実施形態における層B及び層Cは、それぞれ同じ種類の不織布から構成されるものであってもよく、違う種類の不織布から構成されるものであってもよい。中でも、不織布積層体が耐水圧及びその維持性により優れる観点から、層Bに含まれる不織布及び層Cに含まれる不織布の少なくとも一方はスパンボンド不織布を含むことが好ましい、すなわち、層B及び層Cの少なくとも一方はスパンボンド不織布層を含むことが好ましい。中でも、不織布積層体が耐水圧及びその維持性にさらに優れる観点から、層Bに含まれる不織布及び層Cに含まれる不織布はスパンボンド不織布を含むことがより好ましい、すなわち、層B及び層Cはスパンボンド不織布層を含むことがより好ましい。層B及び層Cがスパンボンド不織布層を含むと、不織布積層体の強度がより向上する傾向にある。 The nonwoven fabrics that can constitute the layers B and C in the second embodiment are the same as the nonwoven fabrics that can constitute the layer B in the first embodiment. Layers B and C in the second embodiment may be composed of the same type of nonwoven fabric, or may be composed of different types of nonwoven fabric. Among them, from the viewpoint that the nonwoven fabric laminate is excellent in water pressure resistance and its maintainability, at least one of the nonwoven fabric contained in the layer B and the nonwoven fabric contained in the layer C preferably contains a spunbond nonwoven fabric. preferably includes a spunbond nonwoven layer. Among them, the nonwoven fabric contained in the layer B and the nonwoven fabric contained in the layer C more preferably contain a spunbond nonwoven fabric from the viewpoint that the nonwoven fabric laminate is more excellent in water pressure resistance and its maintainability. More preferably, it includes a spunbond nonwoven layer. When Layer B and Layer C contain spunbond nonwoven layers, the strength of the nonwoven fabric laminate tends to be further improved.
 第二実施形態における不織布層Aは、本開示の不織布1層からなる不織布であってもよく、2層以上の本開示の不織布からなる不織布であってもよい。
 第二実施形態における層B及び層Cは、それぞれ独立に、1層の層であってもよく、2層以上の層であってもよい。層B及び層Cの少なくとも一方が2層以上である場合、2層以上の層はそれぞれ同じであってもよく、異なっていてもよい。
 層B及び層Cは、同じ材質から構成されるものであってもよく、同じ層であってもよい。
The nonwoven fabric layer A in the second embodiment may be a nonwoven fabric composed of one layer of the nonwoven fabric of the present disclosure, or may be a nonwoven fabric composed of two or more layers of the nonwoven fabric of the present disclosure.
Layer B and layer C in the second embodiment may each independently be one layer or two or more layers. When at least one of Layer B and Layer C is two or more layers, the two or more layers may be the same or different.
Layer B and layer C may be made of the same material or may be the same layer.
 以下、第二実施形態における層Bが不織布から構成される不織布層Bであり、第二実施形態における層Cが不織布から構成される不織布層Cである場合の好ましい形態について説明する。 A preferred embodiment in which the layer B in the second embodiment is the nonwoven fabric layer B made of nonwoven fabric and the layer C in the second embodiment is the nonwoven fabric layer C made of nonwoven fabric will be described below.
 第二実施形態における不織布積層体は、スパンボンド不織布層を含む不織布層B、不織布層A、スパンボンド不織布層を含む不織布層Cがこの順で積層されていることが好ましく、さらに、不織布層Aがメルトブローン不織布層を含むことがより好ましい。不織布層A、不織布層B及び不織布層Cはそれぞれ独立に1層の不織布層であってもよく、2層以上の不織布層であってもよい。 In the nonwoven fabric laminate in the second embodiment, a nonwoven fabric layer B containing a spunbond nonwoven fabric layer, a nonwoven fabric layer A, and a nonwoven fabric layer C containing a spunbond nonwoven fabric layer are preferably laminated in this order. more preferably comprises a meltblown nonwoven layer. The nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C may each independently be one nonwoven fabric layer, or two or more nonwoven fabric layers.
 第二実施形態における不織布層B及び不織布層Cの好ましい形態は、前述の第一実施形態における不織布層Bの好ましい形態と同様である。 The preferred forms of the nonwoven fabric layer B and the nonwoven fabric layer C in the second embodiment are the same as the preferred forms of the nonwoven fabric layer B in the first embodiment.
 以下、第一実施形態の不織布積層体及び第二実施形態の不織布積層体を包含する本開示の不織布積層体の好ましい形態について説明する。 Preferred embodiments of the nonwoven fabric laminate of the present disclosure, including the nonwoven fabric laminate of the first embodiment and the nonwoven fabric laminate of the second embodiment, will be described below.
 本開示の不織布積層体は、該不織布積層体に含まれる不織布の少なくとも一部を融着又は接着する融着部又は接着部を有することが好ましい。不織布積層体が融着部又は接着部を有することにより、不織布積層体に水圧をかけたときに不織布積層体に含まれる繊維に加わる力が融着部又は接着部に分散することで不織布積層体の耐水圧がより向上する傾向にある。 The nonwoven fabric laminate of the present disclosure preferably has a fused or bonded portion that fuses or bonds at least a portion of the nonwoven fabric contained in the nonwoven fabric laminate. Since the nonwoven fabric laminate has a fused part or a bonded part, the force applied to the fibers contained in the nonwoven fabric laminate when water pressure is applied to the nonwoven fabric laminate is dispersed to the fused part or the bonded part, thereby forming a nonwoven fabric laminate. water pressure resistance tends to be more improved.
 融着部又は接着部の面積率は、不織布積層体の融着強度又は接着強度の観点及び不織布積層体の耐水圧の観点から、1%~30%であることが好ましく、5%~25%であることがより好ましく、7%~20%であることがさらに好ましい。 The area ratio of the fused part or the bonded part is preferably 1% to 30%, more preferably 5% to 25%, from the viewpoint of the fused strength or adhesive strength of the nonwoven fabric laminate and the water pressure resistance of the nonwoven fabric laminate. is more preferably 7% to 20%.
 本開示の不織布積層体は、耐水圧及びその維持性に優れるという性質、及び、フィルタの濾材として適用でき、かつ逆洗性及びその維持性に優れるという性質の少なくとも一方を備えていればよく、両方を備えている必要はない。 The nonwoven fabric laminate of the present disclosure has at least one of the properties of being excellent in water pressure resistance and its maintainability, and the properties of being able to be applied as a filter medium of a filter and having excellent backwashing properties and its maintainability. You don't have to have both.
<不織布積層体の製造方法>
 第二実施形態における不織布積層体の製造方法は特に制限されない。層Bが不織布層Bであり、層Cが不織布層Cである場合、不織布層A~Cを構成する不織布をそれぞれ製造し、これらの不織布を積層することで第二実施形態における不織布積層体を得ることができる。これらの不織布を積層する方法としては、特に限定されず、熱エンボス加工、超音波融着等の熱融着法、ニードルパンチ、水流交絡等の機械的交絡法、ホットメルト接着剤、ウレタン系接着剤等の接着剤を用いる方法が挙げられる。
<Method for manufacturing nonwoven fabric laminate>
The manufacturing method of the nonwoven fabric laminate in the second embodiment is not particularly limited. When the layer B is the nonwoven fabric layer B and the layer C is the nonwoven fabric layer C, the nonwoven fabrics constituting the nonwoven fabric layers A to C are produced respectively, and these nonwoven fabrics are laminated to form the nonwoven fabric laminate in the second embodiment. Obtainable. The method for laminating these nonwoven fabrics is not particularly limited, and includes thermal embossing, thermal fusion methods such as ultrasonic fusion, mechanical entangling methods such as needle punching and hydroentangling, hot melt adhesives, and urethane adhesives. A method using an adhesive such as an adhesive agent is exemplified.
 あるいは、不織布層Bを構成する不織布又は不織布層Cを構成する不織布の一方を製造し、製造された一方の不織布上に本開示の不織布、及び不織布層Bを構成する不織布又は不織布層Cを構成する不織布の他方を順に堆積させ、次いで、これらの不織布を前述の方法により積層することで第二実施形態における不織布積層体を得ることができる。 Alternatively, one of the nonwoven fabric constituting the nonwoven fabric layer B and the nonwoven fabric constituting the nonwoven fabric layer C is manufactured, and the nonwoven fabric of the present disclosure and the nonwoven fabric constituting the nonwoven fabric layer B or the nonwoven fabric layer C are formed on one of the manufactured nonwoven fabrics. The nonwoven fabric laminate in the second embodiment can be obtained by depositing the other nonwoven fabric in order and then laminating these nonwoven fabrics by the method described above.
 不織布層Aがメルトブローン不織布層であり、不織布層B及び不織布層Cがスパンボンド不織布層である場合、例えば、以下の工程を経ることで第二実施形態における不織布積層体を製造することができる。
 1)熱可塑性樹脂を含有する樹脂組成物を、押出機を用い溶融し、溶融した組成物を、複数の紡糸口金を有するスパンボンド不織布成形機を用いて溶融紡糸し、紡糸により形成された長繊維を必要に応じて冷却し延伸させた後、スパンボンド不織布成形機の捕集面上に堆積させ、不織ウェブを得る工程
 2)メルトブローン法により、溶融した樹脂組成物(熱可塑性樹脂及び特定シリル化ポリオレフィンを含有する。)を紡糸口金から加熱ガスと共に吐出して、繊維状に形成する工程
 3)2)にて得られた繊維状の樹脂組成物を、1)にて得られた不織ウェブ上に堆積させる工程
 4)熱可塑性樹脂を含有する樹脂組成物を、押出機を用い溶融し、溶融した組成物を、複数の紡糸口金を有するスパンボンド不織布成形機を用いて溶融紡糸し、紡糸により形成された長繊維を必要に応じて冷却し延伸させた後、3)で得られた不織ウェブ上に堆積させる工程
 5)三層の不織ウェブに熱エンボス加工を施すことで三層の不織布を積層する工程
When the nonwoven fabric layer A is a meltblown nonwoven fabric layer and the nonwoven fabric layers B and C are spunbond nonwoven fabric layers, for example, the nonwoven fabric laminate in the second embodiment can be produced through the following steps.
1) A resin composition containing a thermoplastic resin is melted using an extruder, the melted composition is melt-spun using a spunbond nonwoven fabric molding machine having a plurality of spinnerets, and a length formed by spinning is formed. After the fibers are cooled and stretched as necessary, they are deposited on the collection surface of a spunbond nonwoven fabric molding machine to obtain a nonwoven web. containing a silylated polyolefin.) is discharged from a spinneret together with a heated gas to form a fibrous resin composition; Step of depositing on a woven web 4) A resin composition containing a thermoplastic resin is melted using an extruder, and the melted composition is melt-spun using a spunbond nonwoven fabric molding machine having a plurality of spinnerets. , After cooling and stretching the long fibers formed by spinning as necessary, depositing them on the nonwoven web obtained in 3) 5) By subjecting the three-layer nonwoven web to heat embossing Process of laminating three layers of nonwoven fabric
 これらの不織布を積層する方法として熱エンボス加工を行う場合、エンボスロールの刻印面積率は1%~30%であることが好ましく、5%~25%であることがより好ましく、7%~20%であることがさらに好ましい。
 熱エンボス加工を行う際のエンボスロールの温度は、80℃~140℃であることが好ましく、90℃~130℃であることがより好ましく、95℃~125℃であることがさらに好ましい。
When heat embossing is performed as a method for laminating these nonwoven fabrics, the stamped area ratio of the embossing roll is preferably 1% to 30%, more preferably 5% to 25%, and more preferably 7% to 20%. is more preferable.
The temperature of the embossing roll during hot embossing is preferably 80°C to 140°C, more preferably 90°C to 130°C, even more preferably 95°C to 125°C.
<用途>
 本開示の不織布及び不織布積層体の用途としては、例えば、ガスフィルタ(エアフィルタ)、液体フィルタ等のフィルタ、ワイパー、防護服、医療用ガウン(特に、使い捨ての防護服、使い捨ての医療用ガウン)等の医療用資材などの液体の遮蔽が要求される物品(液体遮蔽用物品)などが挙げられる。
 特に、本開示の不織布の用途としては、ガスフィルタ(エアフィルタ)、液体フィルタ等のフィルタが好ましく、本開示の不織布積層体の用途としては、防護服、医療用ガウン(特に、使い捨ての防護服、使い捨ての医療用ガウン)等の医療用資材などの液体遮蔽用物品が好ましい。
<Application>
Applications of the nonwoven fabrics and nonwoven fabric laminates of the present disclosure include, for example, filters such as gas filters (air filters) and liquid filters, wipers, protective clothing, medical gowns (especially disposable protective clothing and disposable medical gowns). (liquid shielding article) such as a medical material such as a liquid shielding article.
In particular, as the use of the nonwoven fabric of the present disclosure, filters such as gas filters (air filters) and liquid filters are preferable, and as the use of the nonwoven fabric laminate of the present disclosure, protective clothing, medical gowns (especially disposable protective clothing Liquid barrier articles such as medical materials such as disposable medical gowns) are preferred.
 本開示の不織布がメルトブローン不織布を含む場合、メルトブローン不織布が、1)溶媒成分を含まず、2)繊維同士を接着させるための接着剤成分を含まず、3)エンボス加工が施されていない、これら1)~3)の少なくとも一つを満たす場合には、不純物の含有量が低減される。そのため、このような不織布は、清浄性とフィルタリング性能が高く、高性能フィルタとして好適に用いられる。 When the nonwoven fabric of the present disclosure comprises a meltblown nonwoven fabric, the meltblown nonwoven fabric is 1) free of solvent components, 2) free of adhesive components for bonding fibers together, and 3) non-embossed. When at least one of 1) to 3) is satisfied, the content of impurities is reduced. Therefore, such a nonwoven fabric has high cleanability and filtering performance, and is suitably used as a high-performance filter.
 液体用フィルタは、不織布の単層からなってもよく、又は不織布の2層以上の積層体からなってもよい。また、液体フィルタは、不織布と樹脂フィルムとの積層体からなってもよい。液体用フィルタとして、2層以上の不織布の積層体を用いる場合は、2層以上の不織布を単に重ねてもよい。
 また、液体用フィルタは、目的及び適用する液体に応じて、不織布に、他の不織布を組み合わせてもよい。また、液体用フィルタの強度を強めるために、スパンボンド不織布を用いてもよく、スパンボンド不織布と網状物などとを積層してもよい。
The liquid filter may consist of a single layer of nonwoven fabric or may consist of a laminate of two or more layers of nonwoven fabric. Moreover, the liquid filter may be made of a laminate of a nonwoven fabric and a resin film. When a laminate of two or more layers of nonwoven fabric is used as the liquid filter, the two or more layers of nonwoven fabric may simply be stacked.
In addition, the liquid filter may be a nonwoven fabric combined with another nonwoven fabric depending on the purpose and the liquid to be applied. Moreover, in order to increase the strength of the liquid filter, a spunbonded nonwoven fabric may be used, or a spunbonded nonwoven fabric and a net-like material may be laminated.
 液体フィルタは、例えば、孔径や空隙率を小さく制御するためにフラットロールないしクラウンロール間にクリアランスを設けた一対のロールないしクリアランス無しで一定圧力をかけられるロールを用いてカレンダー処理を行なってもよい。ロール間のクリアランスは、不織布の厚みに応じて、適宜変更して、不織布の繊維間にある空隙がなくならようにすることが必要である。 The liquid filter may be calendered using, for example, a pair of rolls provided with a clearance between flat rolls or crown rolls to control the pore size and porosity to be small, or rolls to which a constant pressure can be applied without a clearance. . It is necessary to change the clearance between the rolls appropriately according to the thickness of the nonwoven fabric so as not to eliminate voids between the fibers of the nonwoven fabric.
 カレンダー処理の際に、加熱処理を行う場合、ロール表面温度が樹脂組成物から形成された繊維の融点より15℃から50℃低い温度の範囲で熱圧接することが望ましい。ロール表面温度が樹脂組成物から形成された樹脂の融点より15℃以上低い場合は、メルトブローン不織布の表面のフィルム化が抑えられ、フィルタ性能の低下が抑制される傾向にある。 When heat treatment is performed during calendering, it is desirable that the roll surface temperature is in the range of 15°C to 50°C lower than the melting point of the fibers formed from the resin composition. When the roll surface temperature is 15° C. or more lower than the melting point of the resin formed from the resin composition, film formation on the surface of the meltblown nonwoven fabric tends to be suppressed, and deterioration in filter performance tends to be suppressed.
 本開示の不織布積層体は、スパンボンド不織布層を含む不織布層B、メルトブローン不織布層を含む不織布層A、スパンボンド不織布層を含む不織布層Cがこの順で積層されていることが好ましい。この構成により、不織布層B及び不織布層Cが不織布積層体の強度に寄与し、耐水圧及びその維持性により優れる傾向にある。さらに、不織布積層体の耐水圧をさらに向上させる観点から、不織布積層体は、該不織布積層体に含まれる不織布の少なくとも一部を融着又は接着する融着部又は接着部を有することが好ましい。 In the nonwoven fabric laminate of the present disclosure, the nonwoven fabric layer B containing the spunbond nonwoven fabric layer, the nonwoven fabric layer A containing the meltblown nonwoven fabric layer, and the nonwoven fabric layer C containing the spunbond nonwoven fabric layer are preferably laminated in this order. With this configuration, the nonwoven fabric layer B and the nonwoven fabric layer C contribute to the strength of the nonwoven fabric laminate, and tend to be more excellent in water pressure resistance and its maintainability. Furthermore, from the viewpoint of further improving the water pressure resistance of the nonwoven fabric laminate, the nonwoven fabric laminate preferably has a fused part or an adhesive part that fuses or bonds at least a part of the nonwoven fabric contained in the nonwoven fabric laminate.
 以下、実施例に基づいて本開示をさらに具体的に説明するが、本開示はこれらの実施例に限定されるものではない。 The present disclosure will be described in more detail below based on examples, but the present disclosure is not limited to these examples.
 (測定及び計算方法)
 分子量、収率、転化率及び異性化率、メルトマスフローレイト(MFR)は、以下に記載の方法で測定・計算した。
(Method of measurement and calculation)
Molecular weight, yield, conversion rate, isomerization rate, and melt mass flow rate (MFR) were measured and calculated by the methods described below.
[m1]分子量の測定方法(ポリエチレン)
 特定シリル化ポリオレフィンの原料であるポリエチレンの数平均分子量Mn、重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、ミリポア社製GPC-150を用い以下のようにして、GPC法により測定した。
 すなわち、分離カラムは、TSK GNH HTであり、カラムサイズは直径7.5mm、長さ300mmのものを使用した。カラム温度は140℃とし、移動相にはオルトジクロロベンゼン(富士フイルム和光純薬(株))及び酸化防止剤としてBHT(武田薬品工業(株))0.025質量%を用い、1.0mL/分で移動させた。試料濃度は0.1質量%とし、試料注入量は500マイクロリットルとした。
 検出器として示差屈折計を用い、ポリスチレン換算値として求めた。次いで、ポリスチレン換算値をもとに、ユニバーサル較正法でポリエチレン換算の値に換算した。
 なお、以下の合成例にて、原料ポリマーのモル数はすべてMnに基づいた値で表している。
[m1] Method for measuring molecular weight (polyethylene)
The number average molecular weight Mn, weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of polyethylene, which is the raw material of the specific silylated polyolefin, were measured by the GPC method using Millipore GPC-150 as follows. .
That is, the separation column was TSK GNH HT, and the column size used was 7.5 mm in diameter and 300 mm in length. The column temperature was 140° C., and ortho-dichlorobenzene (Fuji Film Wako Pure Chemical Industries, Ltd.) was used as the mobile phase, and BHT (Takeda Pharmaceutical Co., Ltd.) 0.025% by mass was used as the antioxidant. moved in minutes. The sample concentration was 0.1% by mass, and the sample injection amount was 500 microliters.
Using a differential refractometer as a detector, it was determined as a polystyrene equivalent value. Then, based on the polystyrene equivalent values, they were converted into polyethylene equivalent values by the universal calibration method.
In addition, in the following synthesis examples, the number of moles of the raw material polymer is all expressed as a value based on Mn.
[m2]分子量の測定(ポリプロピレン)
 ポリプロピレンの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法により、下記の装置及び条件で測定したポリスチレン換算値として求めた。次いで、ポリスチレン換算値をもとに、ユニバーサル較正法でポリプロピレンに換算し、特定シリル化ポリオレフィン以外のポリオレフィンの重量平均分子量を求めた
[GPC測定装置]
 カラム :TOSO GMHHR-H(S)HT(東ソー(株)製)
 検出器 :液体クロマトグラム用RI検出器 WATERS 150C(ウォーターズ社製)
[測定条件]
 溶媒 :1,2,4-トリクロロベンゼン
 測定温度 :145℃
 流速 :1.0mL/分
 試料濃度 :2.2mg/mL
 注入量 :160μL
 検量線 :Universal Calibration
 解析プログラム:HT-GPC(Ver.1.0)
[m2] Measurement of molecular weight (polypropylene)
The weight-average molecular weight (Mw) of polypropylene was determined by gel permeation chromatography as a polystyrene-equivalent value measured using the following equipment and conditions. Then, based on the polystyrene conversion value, it was converted to polypropylene by the universal calibration method, and the weight average molecular weight of the polyolefin other than the specific silylated polyolefin was determined [GPC measurement device]
Column: TOSO GMHHR-H (S) HT (manufactured by Tosoh Corporation)
Detector: RI detector for liquid chromatogram WATERS 150C (manufactured by Waters)
[Measurement condition]
Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145°C
Flow rate: 1.0 mL/min Sample concentration: 2.2 mg/mL
Injection volume: 160 μL
Calibration curve: Universal Calibration
Analysis program: HT-GPC (Ver.1.0)
[m3]NMR解析による収率、転化率、異性化率、末端不飽和率、炭素千個あたりの二重結合数の測定・計算方法
 シリル化ポリオレフィンの収率、転化率、異性化率、末端不飽和率、炭素千個あたりの二重結合数はH-NMRによって決定される。収率は原料のビニル基含有化合物のモル数に対して得られたシリル化ポリオレフィンのモル数の割合、転化率は原料のビニル基含有化合物のモル数に対する同消費モル数の割合、異性化率は原料のビニル基含有化合物のモル数に対して生成したビニレン体のモル数の割合、末端不飽和率は原料であるビニル基含有化合物の主鎖末端ビニル基と末端メチル基の合計に対する主鎖末端ビニル基の割合、炭素千個あたりのビニル基数はプロトン数から導き出される炭素数に対するビニル基数の割合を炭素千個あたりのビニル基数に補正したものと定義される。なお、末端不飽和率及び炭素千個あたりのビニル基数は一般的には原料であるビニル基含有化合物に対して適用するが、ヒドロシリル化が十分でない場合などには未反応原料の残存量の指標としてシリル化ポリオレフィンにも適用することがある。
[m3] Method for measurement and calculation of yield, conversion, isomerization, terminal unsaturation, number of double bonds per 1,000 carbon atoms by NMR analysis Yield, conversion, isomerization, terminal of silylated polyolefin The degree of unsaturation, the number of double bonds per 1,000 carbons, is determined by 1 H-NMR. Yield is the ratio of the number of moles of silylated polyolefin obtained to the number of moles of vinyl group-containing compound as a raw material, conversion rate is the ratio of the number of moles consumed to the number of moles of vinyl group-containing compound as a raw material, and isomerization rate. is the ratio of the number of moles of the vinylene body produced to the number of moles of the vinyl group-containing compound as the raw material, The ratio of terminal vinyl groups and the number of vinyl groups per 1,000 carbon atoms are defined as the ratio of the number of vinyl groups to the number of carbon atoms derived from the number of protons corrected to the number of vinyl groups per 1,000 carbon atoms. The terminal unsaturation rate and the number of vinyl groups per 1,000 carbon atoms are generally applied to the raw material vinyl group-containing compound. may also apply to silylated polyolefins as
 例えば、エチレンのみからなる主鎖末端ビニル基含有化合物をトリエトキシシランでヒドロシリル化して得られたシリル化ポリオレフィンのエトキシ基メチレンの6プロトン分のピーク(C)が3.8ppm、異性化したビニレン基の2プロトン分のピーク(D)が5.4ppmに観測される。ヒドロシリル化が十分でない場合は、未反応ビニル基の2プロトン分のピーク(E)が4.8ppm~5.1ppmに、1プロトン分のピーク(F)が5.6~5.8ppmに観測される。原料のビニル基含有化合物については、2プロトン分の主鎖メチレン(G)が1.0ppm~1.5ppmに観測され、主鎖末端にビニル基を持たないものは3プロトン分の末端メチル(H)が0.8ppmに観測される。さらに二重結合に隣接した炭素上の2プロトン分のピーク(I)が1.9ppmに観測される。
 各ピーク(C)、(D)、(E)、(F)、(G)、(H)及び(I)のピーク面積を各々SC、SD、SE、SF、SG、SH及びSIとすれば、収率(YLD(%))、転化率(CVS(%))、異性化率(ISO(%))、末端不飽和率(VE(%))、炭素千個あたりの二重結合数(VN(個/1000C))は下記式にて算出される。
 YLD(%)=(SC/3)/(SC/3+SD+SE)×100
 CVS(%)={1-SE/(SC/3+SD+SE)}×100
 ISO(%)=SD/(SC/3+SD+SE)×100
 VE(%)=SE/(SE/2+SH/3)×100
 VN(個/1000C)=(SE+SF)/3×1000/{(SD+SE+SF+SG+SH+SI)/2}
For example, a silylated polyolefin obtained by hydrosilylating a main chain end vinyl group-containing compound consisting only of ethylene with triethoxysilane has a peak (C) corresponding to 6 protons of the ethoxy group methylene of 3.8 ppm, and an isomerized vinylene group. A peak (D) corresponding to two protons of is observed at 5.4 ppm. When the hydrosilylation is insufficient, the peak (E) for 2 protons of the unreacted vinyl group is observed at 4.8 ppm to 5.1 ppm, and the peak (F) for 1 proton is observed at 5.6 to 5.8 ppm. be. Regarding the raw material vinyl group-containing compound, the main chain methylene (G) for 2 protons was observed at 1.0 ppm to 1.5 ppm. ) is observed at 0.8 ppm. Furthermore, a peak (I) for two protons on the carbon adjacent to the double bond is observed at 1.9 ppm.
If the peak areas of each peak (C), (D), (E), (F), (G), (H) and (I) are respectively SC, SD, SE, SF, SG, SH and SI , yield (YLD (%)), conversion rate (CVS (%)), isomerization rate (ISO (%)), terminal unsaturation rate (VE (%)), number of double bonds per thousand carbons ( VN (pieces/1000C)) is calculated by the following formula.
YLD (%) = (SC/3)/(SC/3 + SD + SE) x 100
CVS (%) = {1-SE/(SC/3+SD+SE)}×100
ISO (%) = SD / (SC / 3 + SD + SE) x 100
VE (%) = SE/(SE/2+SH/3) x 100
VN (pcs/1000C)=(SE+SF)/3×1000/{(SD+SE+SF+SG+SH+SI)/2}
[m4]メルトマスフローレイト(MFR)の測定方法
 MFRの測定は、ASTM D-1238-04に準拠して行なった。
 ビニル基含有化合物としてのポリエチレンのメルトマスフローレイト(MFR)は、東京精機社製メルトインデキサー T-111を用い、190℃、2160g荷重で測定した。
 また、熱可塑性樹脂としてのポリプロピレンのMFRは、東京精機社製メルトインデキサー T-111を用い、230℃、2160g荷重で測定した。
[m4] Melt mass flow rate (MFR) measurement method MFR was measured according to ASTM D-1238-04.
The melt mass flow rate (MFR) of polyethylene as the vinyl group-containing compound was measured using a melt indexer T-111 manufactured by Tokyo Seiki Co., Ltd. at 190° C. under a load of 2160 g.
The MFR of polypropylene as a thermoplastic resin was measured using a melt indexer T-111 manufactured by Tokyo Seiki Co., Ltd. at 230° C. under a load of 2160 g.
[実施例1]
<樹脂組成物の調製>
 熱可塑性樹脂としてポリプロピレン(製品名:Achieve 6936G2、ExxonMobil社、重量平均分子量:5.5万のプロピレン系重合体、MFR;1550g/10分、PP)99.0質量部と、下記により得たシリル化ポリオレフィン(A)1.0質量部と、を混合し、樹脂組成物を得た。
 シリル化ポリオレフィン(A)は、特定シリル化ポリオレフィンである。
[Example 1]
<Preparation of resin composition>
99.0 parts by mass of polypropylene (product name: Achieve 6936G2, ExxonMobil, Inc., weight average molecular weight: 55,000, MFR; 1550 g/10 min, PP) as a thermoplastic resin, and silyl obtained as follows: and 1.0 parts by mass of the modified polyolefin (A) were mixed to obtain a resin composition.
Silylated polyolefin (A) is a specific silylated polyolefin.
~シリル化ポリオレフィン(A)の合成~
 50mLサンプル管中、塩化白金(II)0.5gを、ヒドロシランA(HS(A)、Gelest,Inc.製、DMS-H11)(10mL)中に懸濁し、窒素気流下、室温で190時間攪拌した後、PTFEフィルター(0.45μm)を用いて濾過して白金触媒組成物(C-1、白金濃度が3.8重量%)を得た。
 300mLの2ツ口フラスコに、国際公開2012/098865公報の合成例2に記載の方法により得た片末端ビニル基含有エチレン重合体(Mw=4770、Mw/Mn=2.25(GPC)、末端不飽和率:97%)25.1g(11.8mmol)を装入し、窒素雰囲気下、ヒドロシランA(HS(A))8.7g(5.9mmol;Si-H基として11.8mmol相当)と、上記の方法により得た白金触媒組成物(C-1)をヒドロシランA(HS(A))で200倍希釈したもの150μL(Pt換算で1.4×10-6mmol)を装入した。
 予め内温130℃に昇温しておいた油浴中に、上記反応器をセットし、攪拌した。約3分後ポリマーは融解した。次いで6時間後に冷却し、メタノール約200mLを加え、300mLビーカーに内容物を取り出し2時間攪拌した。その後、固体を濾取しメタノールで洗浄し、60℃、2hPa以下の減圧下で乾燥させることにより、白色固体のシリル化ポリオレフィン(A)33.1gを得た。
 NMR解析の結果、得られたシリル化ポリオレフィン(A)は収率98%、オレフィン転化率100%、異性化率2%であった。MFRは測定上限値以上(MFR>100g/10min)であり、分子式より計算されるシリル化ポリオレフィン(A)中のポリジメチルシロキサン含量は26質量%であった。
~Synthesis of silylated polyolefin (A)~
In a 50 mL sample tube, 0.5 g of platinum (II) chloride was suspended in hydrosilane A (HS(A), Gelest, Inc., DMS-H11) (10 mL) and stirred at room temperature for 190 hours under a nitrogen stream. After that, it was filtered using a PTFE filter (0.45 μm) to obtain a platinum catalyst composition (C-1, platinum concentration: 3.8% by weight).
A 300 mL two-necked flask was charged with a one-end vinyl group-containing ethylene polymer (Mw = 4770, Mw/Mn = 2.25 (GPC), terminal Unsaturation rate: 97%) 25.1 g (11.8 mmol) was charged, and under a nitrogen atmosphere, hydrosilane A (HS(A)) 8.7 g (5.9 mmol; equivalent to 11.8 mmol as Si—H group). Then, 150 μL (1.4×10 −6 mmol in terms of Pt) of platinum catalyst composition (C-1) obtained by the above method diluted 200-fold with hydrosilane A (HS(A)) was charged. .
The reactor was set in an oil bath whose internal temperature had been raised to 130° C. in advance, and stirred. After about 3 minutes the polymer melted. After 6 hours, it was cooled, about 200 mL of methanol was added, and the contents were taken out in a 300 mL beaker and stirred for 2 hours. Thereafter, the solid was collected by filtration, washed with methanol, and dried at 60° C. under reduced pressure of 2 hPa or less to obtain 33.1 g of silylated polyolefin (A) as a white solid.
As a result of NMR analysis, the obtained silylated polyolefin (A) had a yield of 98%, an olefin conversion rate of 100%, and an isomerization rate of 2%. The MFR was greater than the upper limit of measurement (MFR>100 g/10 min), and the polydimethylsiloxane content in the silylated polyolefin (A) calculated from the molecular formula was 26% by mass.
<不織布の作製>
 上記で得られた樹脂組成物をダイに供給し、設定温度250℃、ノズルの直径が0.20mmであるダイスから、ノズル単孔あたり50mg/分で、ノズルの両側から吹き出す加熱エアー(250℃、300m/秒)とともに上記樹脂組成物を吐き出し、コレクターの裏側から吸引しつつコレクターで捕集し、ロールを通してカレンダー成形をしてメルトブローン不織布を得た。
 得られたメルトブローン不織布の平均繊維径は2.6μmであり、空隙率は81.0%であり、目付は29.2g/mであった。
<Production of nonwoven fabric>
The resin composition obtained above is supplied to a die, and heated air (250 ° C. , 300 m 3 /sec), collected by a collector while being sucked from the back side of the collector, passed through rolls and calendered to obtain a meltblown nonwoven fabric.
The resulting meltblown nonwoven fabric had an average fiber diameter of 2.6 μm, a porosity of 81.0%, and a basis weight of 29.2 g/m 2 .
<フィルタの作製>
 上記で得られたメルトブローン不織布を切り出した。なお、切り出した不織布は質量を測定した。
 切り出したメルトブローン不織布を、φ47mmのフィルターホルダー(ステンレスラインホルダー型式KS-47、advantec社)に設置して、フィルタを作製した。
 同様のフィルタを合計12個準備した。
<Production of filter>
The meltblown nonwoven fabric obtained above was cut out. The mass of the cut nonwoven fabric was measured.
The cut meltblown nonwoven fabric was placed in a φ47 mm filter holder (stainless line holder type KS-47, Advantec) to prepare a filter.
A total of 12 similar filters were prepared.
〔評価〕
(評価1)付着量、逆洗後の付着量、及び、逆洗後付着率(水中保持前)
 上記で得たフィルタのうちの6個のフィルタに対して、ポリスチレン粒子(粒子径:20μm)の50ppm水分散液(ダスト液)を、20mL/minの流量で5分間通液した。
 通液後の6個のフィルタのうちの3個から、メルトブローン不織布を取り出し、乾燥させ、質量(mg)を測定した。
 3枚の不織布について、ダスト液を通液する前後の質量(mg)(乾燥質量)から、下記の式(A)により、逆洗前の付着量A(mg)を求めた。
 逆洗前の付着量A(mg)=(3枚の不織布のダスト液通液後の合計質量-3枚の不織布のダスト液通液前の合計質量)/3   (A)
 次いで、ダスト液の通液後、メルトブローン不織布を取り出さなかった3個のフィルタに対して、ダスト液の通液方向とは反対方向に純水を20mL/minの流量で5分間通液して、逆洗した。
 逆洗後の3個のフィルタからメルトブローン不織布を取り出し、乾燥させ、逆洗後の質量(mg)を測定した。
 逆洗後に乾燥させた3枚の不織布について、ダスト液を通液する前の質量(mg)(乾燥質量)と、逆洗後の質量(mg)(乾燥質量)とから、下記の式(B)により、逆洗後の付着量B(mg)を求めた。
 逆洗後の付着量B(mg)=(3枚の不織布の逆洗後の合計質量-3枚の不織布のダスト液通液前の合計質量)/3    (B)
 さらに、逆洗前の付着量A(mg)と逆洗後の付着量B(mg)とから、下記式(C)により逆洗後付着率(%)を求めた。
 逆洗後付着率(%)=(逆洗後の異物付着量B/異物付着量A)×100  (C)
〔evaluation〕
(Evaluation 1) Adhesion amount, adhesion amount after backwashing, and adhesion rate after backwashing (before holding in water)
A 50 ppm aqueous dispersion (dust liquid) of polystyrene particles (particle size: 20 μm) was passed through six of the filters obtained above at a flow rate of 20 mL/min for 5 minutes.
Meltblown nonwoven fabrics were taken out from 3 of the 6 filters after passing the liquid, dried, and the mass (mg) was measured.
For the three nonwoven fabrics, the adhesion amount A (mg) before backwashing was determined from the mass (mg) (dry mass) before and after passing the dust liquid through the following formula (A).
Adhesion amount A (mg) before backwashing = (Total mass of 3 nonwoven fabrics after passing dust liquid - Total mass of 3 nonwoven fabrics before passing dust liquid) / 3 (A)
Then, after passing the dust liquid, pure water was passed through the three filters from which the meltblown nonwoven fabric was not removed for 5 minutes at a flow rate of 20 mL/min in the direction opposite to the direction of passing the dust liquid, Backwashed.
The meltblown nonwoven fabric was taken out from the three filters after backwashing, dried, and the mass (mg) after backwashing was measured.
For the three nonwoven fabrics dried after backwashing, the following formula (B ) was used to determine the adhesion amount B (mg) after backwashing.
Adhesion amount B (mg) after backwashing = (Total mass of 3 nonwoven fabrics after backwashing - Total mass of 3 nonwoven fabrics before dust liquid flow) / 3 (B)
Further, from the adhesion amount A (mg) before backwashing and the adhesion amount B (mg) after backwashing, the post-backwashing adhesion rate (%) was obtained by the following formula (C).
Adhesion rate after backwash (%) = (Amount of foreign matter adhered after backwash B/Amount of foreign matter adhered A) x 100 (C)
(評価2)付着量、逆洗後の付着量、及び、逆洗後付着率(水中保持後)
 評価1を行なわなかった残りの6個のフィルタを純水に7日間浸漬した。
 浸漬後の6個のフィルタについて、評価1と同様にして、逆洗前の付着量A(mg)、逆洗後の付着量B(mg)、及び、逆洗後付着率(%)を算出した。
(Evaluation 2) Adhesion amount, adhesion amount after backwashing, and adhesion rate after backwashing (after being held in water)
The remaining 6 filters that were not subjected to evaluation 1 were immersed in pure water for 7 days.
For the 6 filters after immersion, in the same manner as in Evaluation 1, the adhesion amount A (mg) before backwashing, the adhesion amount B (mg) after backwashing, and the adhesion rate after backwashing (%) were calculated. did.
 評価1及び評価2で得られた結果を表1に示す。 Table 1 shows the results obtained in Evaluation 1 and Evaluation 2.
[実施例2及び実施例3]
 シリル化ポリオレフィン(A)及びポリプロピレンの量を表1に記載のとおりに変更した以外は実施例1と同様にして、不織布及びこれを備えたフィルタを不織布及びこれを備えたフィルタを1作製し、(評価1)及び(評価2)を行なった。結果を表1に示す。実施例2で製造した不織布の空隙率は79.0%であり、目付は29.6g/mであった。実施例3で製造した不織布の空隙率は80.0%であり、目付は30.8g/mであった。
[Example 2 and Example 3]
A nonwoven fabric and a filter comprising the same were produced in the same manner as in Example 1 except that the amounts of the silylated polyolefin (A) and polypropylene were changed as shown in Table 1, (Evaluation 1) and (Evaluation 2) were performed. Table 1 shows the results. The nonwoven fabric produced in Example 2 had a porosity of 79.0% and a basis weight of 29.6 g/m 2 . The nonwoven fabric produced in Example 3 had a porosity of 80.0% and a basis weight of 30.8 g/m 2 .
[実施例4]
 実施例1において、ポリプロピレンに換えてポリエチレン(PE、製品名:SP50800P、(株)プライムポリマー)を熱可塑性樹脂として用いた以外は、実施例1と同様にして、不織布及びこれを備えたフィルタを作製し、(評価1)及び(評価2)を行なった。結果を表1に示す。実施例4で製造した不織布の空隙率は82.0%であり、目付は31.1g/mであった。
[Example 4]
A nonwoven fabric and a filter comprising the same were prepared in the same manner as in Example 1, except that polyethylene (PE, product name: SP50800P, Prime Polymer Co., Ltd.) was used as the thermoplastic resin in Example 1 instead of polypropylene. (Evaluation 1) and (Evaluation 2) were performed. Table 1 shows the results. The nonwoven fabric produced in Example 4 had a porosity of 82.0% and a basis weight of 31.1 g/m 2 .
[実施例5]
 実施例1において、ポリプロピレンに換えてナイロン6(製品名:A1020BRL、ユニチカ(株)、PA6)を熱可塑性樹脂として用いた以外は、実施例1と同様にして、不織布及びこれを備えたフィルタを作製し、(評価1)及び(評価2)を行なった。結果を表1に示す。実施例5で製造した不織布の空隙率は81.0%であり、目付は29.8g/mであった。
[Example 5]
In Example 1, a nonwoven fabric and a filter comprising the same were produced in the same manner as in Example 1, except that nylon 6 (product name: A1020BRL, Unitika Ltd., PA6) was used as the thermoplastic resin instead of polypropylene. (Evaluation 1) and (Evaluation 2) were performed. Table 1 shows the results. The nonwoven fabric produced in Example 5 had a porosity of 81.0% and a basis weight of 29.8 g/m 2 .
[実施例6]
 実施例1において、ポリプロピレンに換えてポリブチレンテレフタレート(製品名:300FP、ジュラネックス社、PBT)を熱可塑性樹脂として用いた以外は、実施例1と同様にして、不織布及びこれを備えたフィルタを作製し、(評価1)及び(評価2)を行なった。結果を表1に示す。実施例6で製造した不織布の空隙率は79.0%であり、目付は30.6g/mであった。
[Example 6]
A nonwoven fabric and a filter comprising the same were produced in the same manner as in Example 1, except that polybutylene terephthalate (product name: 300FP, Duranex, PBT) was used as the thermoplastic resin in Example 1 instead of polypropylene. (Evaluation 1) and (Evaluation 2) were performed. Table 1 shows the results. The nonwoven fabric produced in Example 6 had a porosity of 79.0% and a basis weight of 30.6 g/m 2 .
[比較例1]
 実施例1において、シリル化ポリオレフィン(A)を用いなかった以外は、実施例1と同様にして、不織布及びこれを備えたフィルタを作製し、(評価1)及び(評価2)を行なった。結果を表1に示す。比較例1で製造した不織布の空隙率は78.0%であり、目付は31.6g/mであった。
[Comparative Example 1]
A nonwoven fabric and a filter comprising the same were produced in the same manner as in Example 1, except that the silylated polyolefin (A) was not used, and (Evaluation 1) and (Evaluation 2) were performed. Table 1 shows the results. The nonwoven fabric produced in Comparative Example 1 had a porosity of 78.0% and a basis weight of 31.6 g/m 2 .
[比較例2]
 実施例1において、シリル化ポリオレフィン(A)に換えてメチルトリメトキシシラン(製品名:LS-530、信越化学工業(株)、アルコキシシラン)を用いた以外は、実施例1と同様にして、不織布及びこれを備えたフィルタを作製し、(評価1)及び(評価2)を行なった。結果を表1に示す。比較例2で製造した不織布の空隙率は82.0%であり、目付は29.6g/mであった。
[Comparative Example 2]
In Example 1, in the same manner as in Example 1, except that methyltrimethoxysilane (product name: LS-530, Shin-Etsu Chemical Co., Ltd., alkoxysilane) was used instead of the silylated polyolefin (A). A nonwoven fabric and a filter including the same were produced, and evaluated (Evaluation 1) and (Evaluation 2). Table 1 shows the results. The nonwoven fabric produced in Comparative Example 2 had a porosity of 82.0% and a basis weight of 29.6 g/m 2 .
[比較例3]
 実施例4において、シリル化ポリオレフィン(A)を用いなかった以外は、実施例4と同様にして、不織布及びこれを備えたフィルタを作製し、(評価1)及び(評価2)を行なった。結果を表1に示す。比較例3で製造した不織布の空隙率は83.0%であり、目付は31.0g/mであった。
[Comparative Example 3]
A nonwoven fabric and a filter comprising the same were produced in the same manner as in Example 4, except that the silylated polyolefin (A) was not used in Example 4, and (Evaluation 1) and (Evaluation 2) were performed. Table 1 shows the results. The nonwoven fabric produced in Comparative Example 3 had a porosity of 83.0% and a basis weight of 31.0 g/m 2 .
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1中の各成分の詳細を以下に纏めて示す。
 ・PP:ポリプロピレン(製品名:Achieve 6936G2、ExxonMobil社、重量平均分子量:5.5万のプロピレン系重合体、MFR;1550g/10分)
 ・PE:ポリエチレン(製品名:SP50800P、(株)プライムポリマー)
 ・PA6:ナイロン6(製品名:A1020BRL、ユニチカ(株))
 ・PBT:ポリブチレンテレフタレート(製品名:300FP、ジュラネックス社)
 ・シリル化PO:上記にて合成した「シリル化ポリオレフィン(A)」(特定シリル化ポリオレフィン)
 ・アルコキシシラン:メチルトリメトキシシラン(製品名:LS-530、信越化学工業(株))
Details of each component in Table 1 are collectively shown below.
PP: polypropylene (product name: Achieve 6936G2, ExxonMobil, weight average molecular weight: 55,000 propylene-based polymer, MFR: 1550 g/10 minutes)
・ PE: polyethylene (product name: SP50800P, Prime Polymer Co., Ltd.)
・PA6: Nylon 6 (product name: A1020BRL, Unitika Ltd.)
・PBT: polybutylene terephthalate (product name: 300FP, Duranex)
・ Silylated PO: "Silylated polyolefin (A)" synthesized above (specific silylated polyolefin)
・ Alkoxysilane: methyltrimethoxysilane (product name: LS-530, Shin-Etsu Chemical Co., Ltd.)
 表1から明らかなように、実施例1~6の各フィルタが備える不織布では、いずれも水中保持前及び水中保持後のいずれの評価においても、逆洗後の付着率が良好であることが確認された。このことは、実施例1~6のフィルタが備える不織布は、逆洗性及びその維持性に優れた濾材であることを意味する。
 また、実施例1~4と実施例5~6からは、熱可塑性樹脂としてはポリオレフィンが好ましく、ポリプロピレンがより好ましいことが分かる。
 一方、比較例1及び比較例3は、特定シリル化ポリオレフィンを含有しない不織布を備えたフィルタであり、逆洗性に顕著に劣っていることが分かる。
 また、特定シリル化ポリオレフィンに換えて、アルコキシシランを用いた比較例2では、水中保持前の逆洗性は良好であったが、水中保持後の逆洗性が顕著に劣り、逆洗性の維持性を達成できないことが分かる。
As is clear from Table 1, the nonwoven fabrics included in the filters of Examples 1 to 6 all had good adhesion rates after backwashing in both evaluations before and after holding in water. was done. This means that the nonwoven fabrics included in the filters of Examples 1 to 6 are filter media excellent in backwashability and maintainability.
Moreover, from Examples 1 to 4 and Examples 5 to 6, it can be seen that polyolefin is preferable as the thermoplastic resin, and polypropylene is more preferable.
On the other hand, Comparative Examples 1 and 3 are filters provided with a nonwoven fabric containing no specific silylated polyolefin, and are found to be remarkably inferior in backwashability.
In addition, in Comparative Example 2 in which alkoxysilane was used instead of the specific silylated polyolefin, the backwashability before being kept in water was good, but the backwashability after being kept in water was remarkably poor. It turns out that maintainability cannot be achieved.
[実施例7]
[不織布積層体の製造]
<スパンボンド不織布(SB)の製造>
 スパンボンド不織布の製造用の熱可塑性樹脂としてポリプロピレン((株)プライムポリマー製:商品名プライムポリプロS119;融点:156℃、MFR(ASTM D1238に準拠し、温度230℃、荷重2160gで測定):62g/10分)を用いた。上記熱可塑性樹脂をダイに供給し、設定温度230℃で紡糸を行い、コレクターで捕集してスパンボンド不織布1(SB1)を得た。
[Example 7]
[Manufacture of nonwoven fabric laminate]
<Production of spunbond nonwoven fabric (SB)>
Polypropylene (manufactured by Prime Polymer Co., Ltd.: trade name: Prime Polypro S119; melting point: 156°C, MFR (measured at a temperature of 230°C and a load of 2160g according to ASTM D1238): 62g as a thermoplastic resin for producing a spunbond nonwoven fabric /10 min) was used. The thermoplastic resin was supplied to a die, spun at a set temperature of 230° C., and collected by a collector to obtain a spunbond nonwoven fabric 1 (SB1).
<メルトブローン不織布の製造>
 次いで、実施例1で調製した樹脂組成物をダイに供給し、設定温度270℃、ノズルの直径が0.12mmであるダイスから、ノズル単孔あたり50mg/分で、ノズルの両側から吹き出す加熱エアー(270℃、308Nm/h/m)とともに上記樹脂組成物をコレクター上にあるSB1の上に吐き出し、コレクターの裏側から吸引しつつコレクターで捕集してSB1の上にメルトブローン不織布1(MB1)を製造した。さらに、同一の原料及び製造条件で、MB1の上にメルトブローン不織布2(MB2)を製造した。
<Production of meltblown nonwoven fabric>
Next, the resin composition prepared in Example 1 is supplied to a die, and heated air is blown from both sides of the nozzle from a die having a set temperature of 270 ° C. and a nozzle diameter of 0.12 mm at a rate of 50 mg / min per single nozzle hole. (270° C., 308 Nm 3 /h/m) together with the above resin composition is discharged onto SB1 on the collector, collected by the collector while being sucked from the back side of the collector, and meltblown nonwoven fabric 1 (MB1) on SB1. manufactured. In addition, a meltblown nonwoven fabric 2 (MB2) was produced on MB1 with the same raw materials and production conditions.
<スパンボンド不織布(SB)の製造>
 次いで、SB1と同様の原料及び製造条件で、MB2の上にスパンボンド不織布2(SB2)を製造した。
<Production of spunbond nonwoven fabric (SB)>
A spunbond nonwoven fabric 2 (SB2) was then produced on MB2 using the same raw materials and production conditions as SB1.
<エンボス加工>
 次いで、120℃、ニップ圧33kg/cm、刻印面積率10.2%で熱エンボス加工を行い、各層を融着し、SB1/MB1/MB2/SB2の4層構造を有する不織布積層体を得た。
<Embossing>
Then, heat embossing was performed at 120° C., a nip pressure of 33 kg/cm, and an impression area ratio of 10.2% to fuse each layer to obtain a nonwoven fabric laminate having a four-layer structure of SB1/MB1/MB2/SB2. .
<目付、空隙率の測定>
 上述のエンボス加工を行なわずに得られた不織布積層体から各層を剥離し、SB1、SB2、MB1及びMB2のそれぞれの目付と空隙率を、上述の方法で測定した。SB1とSB2、MB1とMB2は同じ値が得られた。測定値を表2に示す。
<Measurement of basis weight and porosity>
Each layer was peeled off from the nonwoven fabric laminate obtained without the above-described embossing, and the basis weight and porosity of each of SB1, SB2, MB1 and MB2 were measured by the methods described above. The same values were obtained for SB1 and SB2, and for MB1 and MB2. Table 2 shows the measured values.
<平均繊維径の測定>
 得られた不織布積層体から上述の方法で平均繊維径を測定した。MB1及びMB2はまとめて1つのMB層として平均繊維径を測定した。測定値を表2に示す。
<Measurement of average fiber diameter>
The average fiber diameter of the obtained nonwoven fabric laminate was measured by the method described above. MB1 and MB2 were put together and the average fiber diameter was measured as one MB layer. Table 2 shows the measured values.
(評価3)得られた不織布積層体の耐水圧を、JIS L 1092(2009)に規定されているA法(低水圧法)に準拠して、昇圧速度600mm/min±30mm/minで測定した。結果を表2に示す。この値を初期耐水圧ともいう。 (Evaluation 3) The water pressure resistance of the obtained nonwoven fabric laminate was measured at a pressurization rate of 600 mm/min ± 30 mm/min in accordance with A method (low water pressure method) specified in JIS L 1092 (2009). . Table 2 shows the results. This value is also called the initial water pressure resistance.
(評価4)得られた不織布積層体を60℃の水中に72時間静置した。次いで、不織布積層体を水から取り出し、室温で24時間乾燥させた。その後、評価3と同様に耐水圧を測定した。結果を表2に示す。この値を経時後耐水圧ともいう。 (Evaluation 4) The obtained nonwoven fabric laminate was allowed to stand in water at 60°C for 72 hours. The nonwoven laminate was then removed from the water and allowed to dry at room temperature for 24 hours. After that, the water pressure resistance was measured in the same manner as in Evaluation 3. Table 2 shows the results. This value is also called water pressure resistance after aging.
(評価5)上述の評価3で得られた初期耐水圧と、上述の評価4で得られた経時後耐水圧から、下記式より耐水圧の降下率を計算した。結果を表2に示す。
[1-(経時後耐水圧/初期耐水圧)]×100=降下率(%)
(Evaluation 5) From the initial water pressure resistance obtained in Evaluation 3 above and the water pressure resistance over time obtained in Evaluation 4 above, the drop rate of water pressure resistance was calculated from the following formula. Table 2 shows the results.
[1-(water pressure resistance after aging / initial water pressure resistance)] × 100 = descent rate (%)
(評価5)不織布積層体の引張強度(N/50mm)及び伸度(%)を、JIS L 1906(2010)に準拠して測定した。具体的には、不織布積層体から、幅50mm×長さ200mmの試験片を採取し、引張試験機((株)島津製作所製、オートグラフAGS-J)を用いてチャック間距離100mm、ヘッドスピード300mm/minでMD:5点、CD:5点を測定し、最大強度の平均値と最大強度測定時の伸度の平均値を算出し、引張強度(N/50mm)及び伸び(%)を求めた。結果を表2に示す。 (Evaluation 5) The tensile strength (N/50mm) and elongation (%) of the nonwoven fabric laminate were measured according to JIS L 1906 (2010). Specifically, a test piece having a width of 50 mm and a length of 200 mm was taken from the non-woven fabric laminate, and a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-J) was used with a chuck distance of 100 mm and a head speed. MD: 5 points, CD: 5 points are measured at 300 mm / min, the average value of maximum strength and the average value of elongation at the time of maximum strength measurement are calculated, and tensile strength (N / 50 mm) and elongation (%) are calculated. asked. Table 2 shows the results.
[実施例8]
 MB1及びMB2におけるシリル化ポリオレフィン(A)とポリプロピレンの量を表2に記載のとおりに変更した以外は実施例7と同様にして、SB1/MB1/MB2/SB2の4層構造の不織布積層体を作製して評価した。結果を表2に示す。
[Example 8]
A nonwoven fabric laminate having a four-layer structure of SB1/MB1/MB2/SB2 was prepared in the same manner as in Example 7 except that the amounts of silylated polyolefin (A) and polypropylene in MB1 and MB2 were changed as shown in Table 2. was produced and evaluated. Table 2 shows the results.
[比較例4]
 実施例7において、MB1及びMB2にてシリル化ポリオレフィン(A)を用いなかった以外は、実施例7と同様にして、SB1/MB1/MB2/SB2の4層構造の不織布積層体を作製し、評価した。結果を表2に示す。
[Comparative Example 4]
In Example 7, a nonwoven fabric laminate having a four-layer structure of SB1/MB1/MB2/SB2 was produced in the same manner as in Example 7, except that the silylated polyolefin (A) was not used in MB1 and MB2, evaluated. Table 2 shows the results.
[比較例5]
 実施例8において、MB1及びMB2にてシリル化ポリオレフィン(A)に換えてメチルトリメトキシシラン(製品名:LS-530、信越化学工業(株)、アルコキシシラン)を用いた以外は、実施例8と同様にしてSB1/MB1/MB2/SB2の4層構造の不織布積層体を作成して評価した。結果を表2に示す。
[Comparative Example 5]
Example 8 except that methyltrimethoxysilane (product name: LS-530, Shin-Etsu Chemical Co., Ltd., alkoxysilane) was used instead of silylated polyolefin (A) in MB1 and MB2. A nonwoven fabric laminate having a four-layer structure of SB1/MB1/MB2/SB2 was prepared and evaluated in the same manner as in the above. Table 2 shows the results.
 表2中において、「-」は該当する成分が未添加であること及び該当する物性のデータが無いことを意味する。 In Table 2, "-" means that the corresponding component has not been added and that there is no corresponding physical property data.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表2から明らかなように、実施例7及び8の不織布積層体では、いずれも水中保持前及び水中保持後のいずれの評価においても、逆洗後の付着率が良好であることが確認された。このことは、実施例7及び8の不織布積層体は、逆洗性及びその維持性に優れていることを意味する。
 実施例7及び8の不織布積層体における初期耐水圧及び経時後耐水圧は、比較例4の不織布積層体における初期耐水圧及び経時後耐水圧よりも優れていた。さらに、実施例7及び8の不織布積層体における初期耐水圧と比較例5の不織布積層体における初期耐水圧とは同程度であったが、実施例7及び8の不織布積層体における経時後耐水圧は比較例5の不織布積層体における経時後耐水圧よりも優れていた。これらのことは、実施例7及び8の不織布積層体は、耐水圧及びその維持性に優れることを意味する。
As is clear from Table 2, it was confirmed that the nonwoven fabric laminates of Examples 7 and 8 had good adhesion rates after backwashing in both evaluations before and after being kept in water. . This means that the nonwoven fabric laminates of Examples 7 and 8 are excellent in backwashability and maintenance.
The initial water pressure resistance and water pressure resistance after time of the nonwoven fabric laminates of Examples 7 and 8 were superior to the initial water pressure resistance and water pressure resistance after time of the nonwoven fabric laminate of Comparative Example 4. Furthermore, the initial water pressure resistance of the nonwoven fabric laminates of Examples 7 and 8 and the initial water pressure resistance of the nonwoven fabric laminate of Comparative Example 5 were about the same, but the water pressure resistance of the nonwoven fabric laminates of Examples 7 and 8 over time was superior to the water pressure resistance after aging in the nonwoven fabric laminate of Comparative Example 5. These facts mean that the nonwoven fabric laminates of Examples 7 and 8 are excellent in water pressure resistance and its maintainability.
 2021年2月22日に出願された日本国特許出願2021-026456の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application 2021-026456 filed on February 22, 2021 is incorporated herein by reference in its entirety.
All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.

Claims (13)

  1.  繊維を含む不織布であって、
     前記繊維は、
     熱可塑性樹脂を、繊維の全質量に対して、80質量%以上と、
     下記の式(1)で表される構造単位を含有するケイ素含有化合物と、GPC法で求めた数平均分子量が100以上500,000以下であるビニル基含有化合物との反応物(ただし、1分子に2個以上のSiH基を有する前記ケイ素含有化合物と、1分子あたり平均2.0個以上のビニル基を有する前記ビニル基含有化合物との反応物は除く)である、シリル化ポリオレフィン及びその誘導体から選択される少なくとも1種を、繊維の全質量に対して、0.01質量%~20質量%と、
     を含有する、不織布。
    -Si(R)H-Y-  (1)
     (式(1)中、Rは、水素原子、ハロゲン原子又は炭化水素基を表し、Yは、O、S又はNR30を表し、R30は、水素原子又は炭化水素基を表す。)
    A nonwoven fabric comprising fibers,
    The fibers are
    80% by mass or more of the thermoplastic resin with respect to the total mass of the fibers,
    A reaction product (1 molecule Silylated polyolefins and derivatives thereof, excluding the reaction product of the silicon-containing compound having two or more SiH groups in the above and the vinyl group-containing compound having an average of 2.0 or more vinyl groups per molecule. At least one selected from 0.01% by mass to 20% by mass with respect to the total mass of the fiber,
    A nonwoven fabric containing
    —Si(R 1 )HY 1 — (1)
    (In formula (1), R 1 represents a hydrogen atom, a halogen atom or a hydrocarbon group, Y 1 represents O, S or NR 30 , and R 30 represents a hydrogen atom or a hydrocarbon group.)
  2.  前記熱可塑性樹脂が、ポリオレフィン、ポリアミド及びポリエステルからなる群より選択される少なくとも1種を含む、請求項1に記載の不織布。 The nonwoven fabric according to claim 1, wherein the thermoplastic resin contains at least one selected from the group consisting of polyolefin, polyamide and polyester.
  3.  前記熱可塑性樹脂が、ポリプロピレンを含む、請求項1に記載の不織布。 The nonwoven fabric according to claim 1, wherein the thermoplastic resin contains polypropylene.
  4.  前記ビニル基含有化合物が、下記の式(4)で表される構造を有する、請求項1~請求項3のいずれか1項に記載の不織布。
     A-CH=CH    (4)
     (式(4)中、Aは、炭素数2~50のα-オレフィン由来の構造を含む重合鎖を表す。)
    The nonwoven fabric according to any one of claims 1 to 3, wherein the vinyl group-containing compound has a structure represented by the following formula (4).
    A-CH=CH 2 (4)
    (In formula (4), A represents a polymer chain containing a structure derived from an α-olefin having 2 to 50 carbon atoms.)
  5.  前記Aが、エチレン単独重合鎖である、請求項4に記載の不織布。 The nonwoven fabric according to claim 4, wherein said A is an ethylene homopolymer chain.
  6.  前記繊維の平均繊維径が、4.0μm以下である、請求項1~請求項5のいずれか1項に記載の不織布。 The nonwoven fabric according to any one of claims 1 to 5, wherein the fibers have an average fiber diameter of 4.0 µm or less.
  7.  メルトブローン不織布を含む、請求項1~請求項6のいずれか1項に記載の不織布。 The nonwoven fabric according to any one of claims 1 to 6, which includes a meltblown nonwoven fabric.
  8.  請求項1~請求項7のいずれか1項に記載の不織布である不織布層Aと、
     前記不織布層A以外である層Bと、を含む、不織布積層体。
    A nonwoven fabric layer A, which is the nonwoven fabric according to any one of claims 1 to 7;
    A nonwoven fabric laminate comprising a layer B other than the nonwoven fabric layer A.
  9.  前記層Bがスパンボンド不織布層を含む、請求項8に記載の不織布積層体。 The nonwoven laminate according to claim 8, wherein said layer B comprises a spunbond nonwoven layer.
  10.  請求項1~請求項7のいずれか1項に記載の不織布である不織布層Aと、前記不織布層A以外である層Bと、前記不織布層A以外である層Cと、を含み、前記層B、前記不織布層A及び前記層Cの順番で配置されている、請求項8に記載の不織布積層体。 A nonwoven fabric layer A that is the nonwoven fabric according to any one of claims 1 to 7, a layer B that is other than the nonwoven fabric layer A, and a layer C that is other than the nonwoven fabric layer A, and the layer 9. The nonwoven laminate of claim 8, wherein B, said nonwoven layer A and said layer C are arranged in order.
  11.  前記層B及び前記層Cの少なくとも一方がスパンボンド不織布層を含む請求項10に記載の不織布積層体。 The nonwoven fabric laminate according to claim 10, wherein at least one of said layer B and said layer C comprises a spunbond nonwoven layer.
  12.  請求項1~請求項7のいずれか1項に記載の不織布又は請求項8~請求項11のいずれか1項に記載の不織布積層体を含むフィルタ。 A filter comprising the nonwoven fabric according to any one of claims 1 to 7 or the nonwoven fabric laminate according to any one of claims 8 to 11.
  13.  請求項1~請求項7のいずれか1項に記載の不織布又は請求項8~請求項11のいずれか1項に記載の不織布積層体を含む液体遮蔽用物品。 A liquid shielding article comprising the nonwoven fabric according to any one of claims 1 to 7 or the nonwoven fabric laminate according to any one of claims 8 to 11.
PCT/JP2022/005976 2021-02-22 2022-02-15 Nonwoven fabric, nonwoven fabric layered body, filter, and liquid-blocking article WO2022176856A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023500856A JPWO2022176856A1 (en) 2021-02-22 2022-02-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-026456 2021-02-22
JP2021026456 2021-02-22

Publications (1)

Publication Number Publication Date
WO2022176856A1 true WO2022176856A1 (en) 2022-08-25

Family

ID=82931770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005976 WO2022176856A1 (en) 2021-02-22 2022-02-15 Nonwoven fabric, nonwoven fabric layered body, filter, and liquid-blocking article

Country Status (2)

Country Link
JP (1) JPWO2022176856A1 (en)
WO (1) WO2022176856A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983003615A1 (en) * 1982-04-12 1983-10-27 Kuroda, Katsuhiko Agent for improving low temperature fluidity of fuel oil
JPS60125664A (en) * 1983-12-12 1985-07-04 東レ・ダウコーニング・シリコーン株式会社 Manufacture of silicon elastomer coated cloth
JPH0455491A (en) * 1990-06-22 1992-02-24 Goyo Paper Working Co Ltd Stain-proofing agent
JP2003166173A (en) * 2001-09-20 2003-06-13 Mitsui Chemicals Inc Fiber sheet and protective working clothes
WO2014042253A1 (en) * 2012-09-14 2014-03-20 出光興産株式会社 Multilayer nonwoven fabric and method for producing same
JP2015189088A (en) * 2014-03-28 2015-11-02 三井化学株式会社 Adhered article, resin composition, molded article and glass run channel
WO2017154813A1 (en) * 2016-03-11 2017-09-14 ダイキン工業株式会社 Nonwoven fabric
JP2021031819A (en) * 2019-08-29 2021-03-01 三井化学株式会社 Nonwoven fabric and filter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983003615A1 (en) * 1982-04-12 1983-10-27 Kuroda, Katsuhiko Agent for improving low temperature fluidity of fuel oil
JPS60125664A (en) * 1983-12-12 1985-07-04 東レ・ダウコーニング・シリコーン株式会社 Manufacture of silicon elastomer coated cloth
JPH0455491A (en) * 1990-06-22 1992-02-24 Goyo Paper Working Co Ltd Stain-proofing agent
JP2003166173A (en) * 2001-09-20 2003-06-13 Mitsui Chemicals Inc Fiber sheet and protective working clothes
WO2014042253A1 (en) * 2012-09-14 2014-03-20 出光興産株式会社 Multilayer nonwoven fabric and method for producing same
JP2015189088A (en) * 2014-03-28 2015-11-02 三井化学株式会社 Adhered article, resin composition, molded article and glass run channel
WO2017154813A1 (en) * 2016-03-11 2017-09-14 ダイキン工業株式会社 Nonwoven fabric
JP2021031819A (en) * 2019-08-29 2021-03-01 三井化学株式会社 Nonwoven fabric and filter

Also Published As

Publication number Publication date
JPWO2022176856A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
JP6339124B2 (en) Non-woven fabric, manufacturing method and manufacturing apparatus thereof
JP6231481B2 (en) Multilayer nonwoven fabric and method for producing the same
CN1143910C (en) Flexible nonwoven fabric laminate
US20080227919A9 (en) Plasticized polyolefin compositions
TW201202003A (en) Method for producing temperature resistant nonwovens
KR101852207B1 (en) Stretch articles including polyolefin elastic fiber
TW201134994A (en) Bicomponent fibers
EP3296355A1 (en) Fibers comprising polymer compositions and nonwoven materials prepared therefrom
JP2021031819A (en) Nonwoven fabric and filter
WO2013030188A1 (en) Fibers and nonwovens comprising a propylene random copolymer, and process for producing the fibers
WO2012105566A1 (en) Nonwoven fabric and textile product
KR20130116934A (en) Terpolymer for melt blown media for air filtration
JP6636215B1 (en) Non-woven fabric and filter
KR102605801B1 (en) Melt-blown nonwoven fabric, filter, and method for manufacturing melt-blown nonwoven fabric
WO2022176856A1 (en) Nonwoven fabric, nonwoven fabric layered body, filter, and liquid-blocking article
US20160326357A1 (en) Compositions Comprising Propylene-Based Elastomers and Polyalphaolefins
WO2015130340A1 (en) Compositions comprising propylene-based elastomers and polyalphaolefins
JP6511595B1 (en) Meltblown non-woven fabric and filter
TW201929938A (en) Melt-blown nonwoven fabric, nonwoven fabric laminate, filter and manufacturing method of melt-blown nonwoven fabric
JP7298087B2 (en) Non-woven fabrics and filters
WO2015047604A1 (en) Polymer compositions and articles made therefrom
JP4409615B2 (en) Stretchable member and stretchable nonwoven fabric laminate
JP4959497B2 (en) Non-woven
JPWO2022210047A5 (en)
JP2006348461A (en) Elastic member and elastic nonwoven fabric laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500856

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756174

Country of ref document: EP

Kind code of ref document: A1