WO2022176691A1 - Water treatment device and three-way valve for liquids - Google Patents

Water treatment device and three-way valve for liquids Download PDF

Info

Publication number
WO2022176691A1
WO2022176691A1 PCT/JP2022/004816 JP2022004816W WO2022176691A1 WO 2022176691 A1 WO2022176691 A1 WO 2022176691A1 JP 2022004816 W JP2022004816 W JP 2022004816W WO 2022176691 A1 WO2022176691 A1 WO 2022176691A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
raw water
water
bypass
valve
Prior art date
Application number
PCT/JP2022/004816
Other languages
French (fr)
Japanese (ja)
Inventor
崇 榊原
美咲 佐岡
テイ リ チュオン
知弘 足立
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023500752A priority Critical patent/JPWO2022176691A1/ja
Publication of WO2022176691A1 publication Critical patent/WO2022176691A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/48Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof integrally combined with devices for controlling the filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/60Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor integrally combined with devices for controlling the filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • F16K11/048Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves with valve seats positioned between movable valve members

Definitions

  • This disclosure relates to a water treatment device that purifies water by filtration and chemical addition.
  • a chemical supply device that brings a solid oxidant into contact with water has been used to supply the oxidant in water treatment equipment.
  • a chemical feeder that gradually dissolves solid calcium hypochlorite.
  • FIG. 9 is a schematic diagram showing the configuration of a conventional water treatment device.
  • raw water is introduced from the water intake 102 to bring the raw water into contact with the water-soluble solid medicine 103 .
  • the amount of the water-soluble solid drug 103 in contact with the raw water increases as the flow rate increases within a certain flow rate range.
  • the drug is eluted when the flow rate is increased, and the elution of the drug can be suppressed when the flow rate is stopped (see, for example, Patent Document 1).
  • the water treatment apparatus includes a filtration unit containing a filter medium, a raw water inflow pipe that allows raw water to flow into the filtration unit, a chemical supply unit that adds a chemical in the route of the raw water inflow pipe, and after filtration from the filtration unit.
  • a purified water discharge pipe for taking out the treated water a bypass pipe that bypasses the chemical supply unit in the path of the raw water inflow pipe, and a bypass valve that adjusts the amount of water flowing in the bypass pipe and the amount of water flowing through the chemical supply unit.
  • the water treatment apparatus by adjusting the amount of water flowing from the raw water inflow pipe to the bypass pipe and the amount of water flowing through the chemical supply unit, the effect that the necessary chemical solution can be supplied for each operation mode.
  • FIG. 1 is a schematic diagram of the overall configuration of a water treatment apparatus according to Embodiment 1-1 of the present disclosure.
  • FIG. 2 is a schematic diagram showing the flow of water during backwashing of the same water treatment apparatus.
  • FIG. 3 is a schematic diagram showing the flow of water during rinsing treatment in the same water treatment apparatus.
  • FIG. 4 is a cross-sectional view of a filtration unit and a switching valve of the same water treatment apparatus.
  • FIG. 5 is a cross-sectional view of the chemical supply unit of the same water treatment apparatus.
  • FIG. 6 is a schematic diagram of the overall configuration of the water treatment apparatus according to Embodiment 1-2 of the present disclosure.
  • FIG. 7 is a schematic diagram showing the flow of water during backwashing of the same water treatment apparatus.
  • FIG. 1 is a schematic diagram of the overall configuration of a water treatment apparatus according to Embodiment 1-1 of the present disclosure.
  • FIG. 2 is a schematic diagram showing the flow of water during backwashing of the
  • FIG. 8 is a schematic diagram of an air injection part of the same water treatment apparatus.
  • FIG. 9 is a schematic diagram showing the configuration of a conventional water treatment apparatus.
  • FIG. 10 is a schematic diagram of the overall configuration of a water treatment apparatus according to Embodiment 2-1 of the present disclosure.
  • FIG. 11 is a schematic diagram showing the flow of water during backwashing of the same water treatment apparatus.
  • FIG. 12 is a schematic diagram showing the flow of water during rinsing treatment in the same water treatment apparatus.
  • FIG. 13 is a cross-sectional view of a filtration unit and a switching valve of the same water treatment apparatus.
  • FIG. 14 is a cross-sectional view of the chemical supply part of the same water treatment apparatus.
  • FIG. 15A is a cross-sectional view of a bypass valve at low pressure in the same water treatment apparatus.
  • FIG. 15B is a horizontal cross-sectional view of the shaft collar of the bypass valve.
  • FIG. 16 is a cross-sectional view of a bypass valve of the same water treatment apparatus at high pressure.
  • FIG. 17 is an overall configuration schematic diagram of a water treatment apparatus according to Embodiment 2-2 of the present disclosure.
  • FIG. 18 is a cross-sectional view of the bypass valve of the same water treatment apparatus at low pressure.
  • FIG. 19 is a cross-sectional view of the bypass valve of the same water treatment apparatus at high pressure.
  • FIG. 20 is a schematic diagram showing the configuration of a conventional water treatment apparatus.
  • Embodiment 1 includes at least Embodiments 1-1 and 1-2 below.
  • FIG. 1 is a schematic diagram showing the overall configuration of a water treatment apparatus 1 of the present embodiment and showing the flow of water during filtration.
  • the filtration unit 2 removes metal ions and turbidity components from the raw water to purify the raw water. Contaminants collected in the filtering part 2 are discharged out of the device after being subjected to backwashing and rinsing treatments, so that the filtering part 2 can be kept clean and can be used repeatedly.
  • the backwashing process is a process in which the raw water flows in the reverse direction in the filtration unit 2 to discharge dirt. In the rinsing process, after the backwashing process, the raw water is passed through the filtration unit 2 in the filtration direction to discharge the separated contaminants out of the apparatus.
  • a raw water inflow pipe 10 is used as a pipe for sending raw water to the filtration unit 2
  • a purified water discharge pipe 20 is used as a pipe for sending out the water purified in the filtration unit 2 from the filtration unit 2.
  • a backwash drain pipe 40 is used as a pipe for discharging dirt.
  • the purified water is stored in a purified water tank 6 or the like provided outside the water treatment apparatus 1 and used as domestic water when necessary.
  • Raw water is sent to the water treatment device 1 by an electric pump 4 connected to the inlet side of the raw water inflow pipe 10 (opposite side of the filtration unit 2).
  • a water tank storing raw water may be provided at a high place, and the raw water may be sent to the water treatment apparatus 1 according to the height difference between the water tank and the water treatment apparatus 1.
  • tap water jointly operated in the area may be directly connected.
  • water sources include equipment for sending out raw water.
  • the raw water inflow pipe 10 and purified water discharge pipe 20 may be made of materials and structures that can withstand the water pressure of the electric pump 4 .
  • vinyl chloride resin, steel pipes, or straight pipes and pipe joints using composite materials thereof can be used because of their durability and ease of processing. It should be noted that the larger the nominal diameter, the lower the head loss. If it is difficult to select a member that can withstand the maximum pressure of the electric pump 4 , it is recommended to install a pressure reducing valve, a pressure regulating valve, and a relief valve between the electric pump 4 and the water treatment device 1 .
  • the drug supply unit 3 is provided within the path of the raw water inflow pipe 10 . Although details will be described later, the chemical supply unit 3 adds an oxidizing agent to the raw water, aggregates the metal ions contained in the raw water as substances that are poorly soluble in water, and makes them easier to collect in the filtration unit 2. do.
  • FIG. 2 is a schematic diagram showing the flow of water during the backwashing process of the water treatment apparatus 1.
  • FIG. 3 is a schematic diagram showing the flow of water during rinsing treatment of the water treatment apparatus 1.
  • FIG. 4 is a sectional view of the filtration unit 2 and the switching valve 5 of the water treatment device 1. As shown in FIG.
  • a gravel layer having a relatively large grain size is provided at the lowest layer to improve the flow of water and prevent the filtering material from flowing out from the bottom of the water collecting pipe 70 .
  • the amount of filtering material in the lower layer 72 is preferably about 1/2 to 1 times the diameter of the filtering section 2.
  • the filling amount of the filtering material including the upper layer 71 and the lower layer 72 is about 1/4 to 4/5 times the internal volume of the filtering section 2 .
  • the filtration unit 2 is connected to external pipes (raw water inflow pipe 10, purified water discharge pipe 20, backwash drain pipe 40) at the top.
  • An inflow port 73 and an outflow port 74 serving as openings are provided inside the filtration unit 2 , and the outflow port 74 is connected to the water collecting pipe 70 .
  • a switching valve 5 is attached to the upper part of the filtration unit 2, and an external pipe (raw water inflow pipe 10, purified water discharge pipe 20, backwash drain pipe 40) and an inflow port 73 and an outflow port 74 in the filtration unit 2 are connected. Connected. By operating the switching valve 5 , communication between the external pipe and the inlet 73 and the outlet 74 is switched.
  • a channel switching piece 75 for switching the channel is provided in the switching valve 5, and by rotating the channel switching piece 75, the direction of communication with the connected piping and the opening is changed. The channel switching piece 75 can be rotated by an external handle or moved by an external motor.
  • the raw water inflow pipe 10 and the inflow port 73 are communicated, and the outflow port 74 and the purified water discharge pipe 20 are communicated.
  • the raw water inflow pipe 10 and the outflow port 74 are communicated with each other by operating the channel switching piece 75, and the inflow port 73 and the backwash drain pipe 40 are communicated with each other.
  • the raw water inflow pipe 10 and the inflow port 73 are brought into communication with each other, and the outflow port 74 and the backwash drain pipe 40 are brought into communication with each other.
  • raw water can be sent directly to the purified water tank 6 by connecting the raw water inflow pipe 10 and the purified water discharge pipe 20 .
  • the flow path can be switched by using a plurality of valves in addition to using the switching valve 5 .
  • the filtration unit 2 can discharge dirt accumulated during the filtration process by backwashing. During the backwashing process, water flows as follows and dirt is discharged from the outflow port 74 .
  • FIG. FIG. 5 is a cross-sectional view of the chemical supply unit 3 of the water treatment device 1.
  • the chemical supply unit 3 is provided to promote aggregation of metal ions contained in the raw water by the chemical put therein and facilitate the supplementation by the filtration unit 2 .
  • the drug supply unit 3 has an inflow channel 31 , a drug channel 32 , a bypass channel 33 and an outflow channel 34 .
  • the inflow path 31 is connected to the raw water inflow pipe 10 and allows the raw water to flow into the drug supply section 3 .
  • the drug channel 32 branches off from the inflow channel 31 and dissolves the drug.
  • the bypass channel 33 is also branched from the inflow channel 31 via the narrowed portion 33a, and is provided to adjust the chemical solution to a required concentration. After branching from the inflow path 31 , the bypass path 33 is connected to the inlet side of the outflow path 34 .
  • the outflow channel 34 merges with the drug channel 32 and the bypass channel 33 and is connected to the raw water inflow pipe 10 again, so that the raw water containing the drug is delivered to the raw water inflow pipe 10 . As shown in FIG.
  • the drug path 32 includes an ejection tube 52 that rises vertically after being branched, a drug placement portion 53 that contacts the drug at the upper portion of the ejection tube 52 and elutes the drug, and an ejection tube 52. It is composed of a recovery part 54 which is an outer periphery and inside the housing 51 .
  • the ejection tube 52 is a small-diameter conduit, and is erected with a drug placement portion 53 on the top.
  • the medicine placement part 53 has a size for securing the amount (number) of the medicine to be placed so as to obtain the desired concentration of the medicine with respect to the flow rate of the raw water.
  • the liquid medicine in which the medicine is dissolved flows out to the collection unit 54.
  • the liquid medicine in which the medicine is dissolved accumulates in the lower portion of the housing 51 and then flows out from the collecting opening 55 to the outflow path 34 . Since the diameter of the ejection pipe 52 is made small and the distance from the inner wall surface of the housing 51 is secured, the liquid level of the raw water in which the drug is dissolved that flows down into the housing 51 is raised to the height of the housing 51. , can be reduced to about 1/2 or less.
  • the flow rate of raw water flowing through the drug channel 32 can be adjusted by the flow rate of raw water flowing through the bypass channel 33 . That is, by adjusting the diameter of the narrowed portion 33a of the bypass channel 33, the flow ratio of the raw water flowing through the drug channel 32 and the bypass channel 33 is adjusted. In this manner, the drug concentration in the outflow path 34 after confluence can be adjusted to a desired concentration.
  • the flow rate of the raw water flowing through the bypass 33 may be adjusted using a flow rate adjustment valve instead of the throttle portion 33a.
  • the chemical concentration of the raw water flowing out of the chemical supply unit 3 can be adjusted to a desired level. It can be adjusted within the range.
  • an air layer should always exist within the housing 51 of the drug supply unit 3 . Since the housing 51 is a closed space except for the connecting portion with the raw water inflow pipe 10, once the air disappears and the inside of the housing 51 is filled with water, the drug 60 is always in contact with the water and continues to be eluted. . Therefore, in order to send air to the drug supply unit 3, it is preferable to attach an air supply pipe or a valve such as a check valve to the raw water inflow pipe 10.
  • a water-soluble, solid medicine 60 is provided in the medicine placement section 53 .
  • the medicine 60 it is preferable to use tablets or granules. This is because the chemical agent 60 can have a large surface area and a stable solvent concentration can be maintained. Tablets with a diameter of 30 mm and a height of 10 to 20 mm may be used, and granules with a diameter of 5 mm to 15 mm may be used. If the size of the medicine 60 is small, adjacent medicines come into contact with water at the same time and stick to each other. If it sticks, only the lower portion of the chemical will come into contact with the water, making it impossible to obtain the desired concentration of chemical.
  • the chemical agent 60 having the size described above is used in order to supply the chemical solution with the desired concentration.
  • the chemical agent 60 functions to oxidize metal ions contained in the raw water to form aggregates that are sparingly soluble in water.
  • Various oxidizing agents can be used as the chemical agent 60, but depending on the required water purification performance, an inorganic coagulant such as PAC (polyaluminum chloride) or chitosan or a polymer coagulant may be used.
  • PAC polyaluminum chloride
  • chitosan or a polymer coagulant
  • a chemical agent 60 should be easily soluble in water, but the chemical agent 60 does not retain its solid form during the stoppage or during the backwashing process, that is, when the addition of the chemical agent is suspended. , the one that does not flow out from the medicine loading section 53 is preferable.
  • trichloroisocyanuric acid is used.
  • each member of the drug supply unit 3 may be in contact with the drug for a long time, it is better to select a material with low reactivity to the drug, such as PVC (polyvinyl chloride), PMMA (polymethyl methacrylate), or PP (polypropylene).
  • PVC polyvinyl chloride
  • PMMA polymethyl methacrylate
  • PP polypropylene
  • the material of the ejection tube 52 is vinyl chloride or ABS (acrylonitrile-butadiene-styrene), which is stronger than PP, considering compatibility with the drug. etc. is preferably selected.
  • the outer diameter of the ejection pipe 52 is preferably suppressed to 1/4 or less of the inner diameter of the base 51a or the upper cover 51b.
  • a space (recovery section 54) for temporarily storing the solution discharged from the placement section outlet 58 after drug supply can be provided outside the ejection tube 52. This is because it is possible to prevent the drug from rising and reaching the drug placement section 53 .
  • the inner diameter of the base 51a is 130 mm, it is preferable to use a PVC pipe having an outer diameter of about 25 to 40 mm.
  • the water treatment apparatus 1 of the present embodiment includes the filtration unit 2, the raw water inflow pipe 10, the purified water discharge pipe 20, and the backwash drain pipe 40 (Fig. 1).
  • the inlet side of the raw water inflow pipe 10 is connected to the discharge port of the electric pump 4 serving as the water source, and the outlet side is connected to the switching valve 5 of the filtering section 2 .
  • a drug supply unit 3 is provided in the path of the raw water inflow pipe 10 , and a bypass pipe 14 bypassing the drug supply unit 3 is provided.
  • This bypass pipe 14 branches at the raw water inflow pipe 10 on the upstream side of the chemical supply unit 3 (first branch portion 12), bypasses the chemical supply unit 3, and flows into the raw water inflow pipe 10 on the downstream side of the chemical supply unit 3.
  • a bypass valve 15 is provided in the path of the bypass pipe 14 to open/close the path of the bypass pipe 14 or adjust the flow rate of the bypass pipe 14 . That is, the bypass valve 15 can adjust the amount of water flowing through the bypass valve 15 (the water channel inside the bypass valve 15 can be opened or closed).
  • the filtration unit 2 has two outlets, and one of the outlets is connected to a purified water discharge pipe 20 for extracting water purified inside.
  • the other outlet is connected to a backwash drain pipe 40 for discharging particulate matter (dirt, turbidity components, metal aggregates, etc.) collected by the filtration unit 2 during backwashing and rinsing to the outside of the system. It is
  • FIGS. 1 to 4 the piping configuration inside the water treatment device 1 and the flow of water during filtration and backwashing will be described.
  • 4A and 4B are schematic cross-sectional views of the filtration unit 2, in which FIG. 4A is an overall view during the filtration process, FIG. ) indicates the state of the switching valve 5 during the rinsing process.
  • the raw water inflow pipe 10 is connected from the raw water inlet 11 on the water source side to the filtration unit 2 via the chemical supply unit 3.
  • the connection is switched by operating the switching valve 5 so that the raw water inflow pipe 10 and the inflow port 73 are in communication and the outflow port 74 and the purified water discharge pipe 20 are in communication.
  • the bypass valve 15 is opened, and the raw water inflow pipe 10 is connected from the raw water inlet 11 on the water source side to the filtration unit 2 via the bypass pipe 14 bypassing the chemical supply unit 3 .
  • the switching valve 5 is operated to switch the connection so that the raw water inflow pipe 10 and the outflow port 74 are in communication and the inflow port 73 and the backwash drain pipe 40 are in communication.
  • the flow of water in the filtering section 2 is reversed from that during the filtering process.
  • the water source the electric pump 4
  • a large flow rate is required when performing backwashing. Therefore, by increasing the diameter of the bypass pipe 14, a large flow rate of the raw water can be ensured during the backwashing process.
  • the flow rate is set according to the performance of the filtering section 2 . Therefore, a throttle portion 24 is provided in a portion of the pipe that passes during the filtration process, that is, in the route of the purified water discharge pipe 20 to suppress the flow rate during the filtration process.
  • the combination of the throttle portion 24 and the electric pump 4 allows the flow rate during the filtration process to be a desired designed value.
  • the diameter of the bypass pipe 14 is made larger than that of the constricted portion 24 to ensure the flow rate of water passing through the bypass pipe 14 during the backwashing process.
  • the bypass valve 15 may detect the pressure or flow rate in the raw water inflow pipe 10 and the purified water discharge pipe 20 to open and close. Since the backwashing process and the filtration process have different routes, a difference in pressure is also generated in the raw water inflow pipe 10 . By this pressure difference, the bypass valve 15 can be opened and closed. That is, as the bypass valve 15, a pressure switch provided in the raw water inflow pipe 10 or the purified water discharge pipe 20, or a solenoid valve or an electric valve that opens and closes in response to a signal from a flow meter provided in the pipe in the water treatment apparatus 1 is used. can be
  • bypass valve 15 and the switching valve 5 can be interlocked to change the flow path.
  • the bypass valve 15 may be opened and closed in conjunction with the operation of the switching valve 5 .
  • the water treatment apparatus 1 of the present embodiment can perform a "rinse process" for discharging foreign matter remaining in the pipes during the backwash process.
  • This rinsing process will be described with reference to FIGS. 3 and 4(c).
  • the rinsing process can be performed by changing the flow path of the switching valve 5 . Specifically, the bypass valve 15 is opened. The switching valve 5 is switched so that the raw water inflow pipe 10 and the inflow port 73 are communicated, and the outflow port 74 and the backwash drain pipe 40 are communicated. In such a state, the water flows in the filtering section 2 in the same direction as the filtering process, and the water that has passed through the filtering section 2 is discharged through the backwash drain pipe 40 .
  • FIG. 6 is a schematic diagram showing the overall configuration of the water treatment apparatus 1 of Embodiment 1-2 and showing the flow of water during filtration.
  • FIG. 7 is a schematic diagram showing the flow of water during the backwashing process of this embodiment. Components similar to those in Embodiment 1-1 are denoted by the same reference numerals, and detailed descriptions thereof are omitted. As shown in FIGS. 6 and 7, the difference from Embodiment 1-1 lies in the position of the bypass valve 15 and the air injection section 80.
  • FIG. 6 the difference from Embodiment 1-1 lies in the position of the bypass valve 15 and the air injection section 80.
  • the air injection part 80 is installed inside the bypass pipe 14 and can inject air into the bypass pipe 14 .
  • a venturi structure may be used for this air injection section.
  • FIG. 8 is a schematic diagram of the air injection part 80 of the water treatment device 1.
  • FIG. FIG. 8 shows a configuration using a venturi structure, and the principle of functioning of the air injection section 80 will be described.
  • the air injection part 80 is provided in the middle of the bypass pipe 14 .
  • the air injection section 80 has a first pipe portion 81 , a second pipe portion 82 , a third pipe portion 83 , a first inclined pipe portion 84 , a second inclined pipe portion 85 , and an air pipe 86 . is doing.
  • the first pipe portion 81 has a tubular shape with a central axis extending in the horizontal direction.
  • the speed of water flowing through the first pipe portion 81 is the fastest in the air injection portion 80 .
  • the second pipe portion 82 is provided upstream of the first pipe portion 81 in the water flow of the first pipe portion 81, and has a tubular shape with a central axis extending in the horizontal direction.
  • the cross-sectional area through which water flows in the second pipe portion 82 is larger than the cross-sectional area through which water flows in the first pipe portion 81 .
  • the second pipe portion 82 and the first pipe portion 81 are connected by a first inclined pipe portion 84 .
  • the first inclined pipe portion 84 has a tubular shape in which the central axis extends in the horizontal direction and the cross-sectional area through which water flows decreases from the second pipe portion 82 toward the first pipe portion 81 .
  • the third pipe portion 83 is provided downstream of the first pipe portion 81 in the water flow of the first pipe portion 81, and has a tubular shape with a central axis extending in the horizontal direction.
  • the cross-sectional area through which water flows in the third pipe portion 83 is larger than the cross-sectional area through which water flows in the first pipe portion 81 .
  • the third pipe portion 83 and the first pipe portion 81 are connected by a second inclined pipe portion 85 .
  • the second inclined pipe portion 85 has a tubular shape in which the central axis extends in the horizontal direction and the cross-sectional area through which water flows increases from the first pipe portion 81 toward the third pipe portion 83 .
  • the air pipe 86 has a tubular shape extending upward from the upper surface of the first pipe portion 81 .
  • the upper end of the air pipe 86 is open to the atmosphere and communicates with the inside of the first pipe portion 81 .
  • the cross-sectional area of the air tube 86 is smaller than the cross-sectional area of the first tube portion 81 .
  • a check valve may be provided in the air pipe 86 .
  • the water flowing through the air injection part 80 flows into the second pipe part 82 , passes through the first inclined pipe part 84 , the first pipe part 81 , the second inclined pipe part 85 in order, and flows out of the third pipe part 83 .
  • the first pipe portion 81, the second pipe portion 82, the third pipe portion 83, the first inclined pipe portion 84, the second inclined pipe portion 85, and the air pipe 86 are integrally formed. ing.
  • the central axes of the first pipe portion 81, the second pipe portion 82, the third pipe portion 83, the first inclined pipe portion 84, and the second inclined pipe portion 85 are arranged on a straight line.
  • the air injection part 80 when water flows from the second pipe part 82 to the third pipe part 83, the flow velocity of the first pipe part 81 becomes higher than the flow velocity of the second pipe part 82.
  • water has three types of energy: velocity head, pressure head, and position head.
  • the central axis of the air injection part 80 is horizontal, the positional water heads of the second pipe part 82, the first inclined pipe part 84, and the first pipe part 81 are the same, so the flow velocity of the first pipe part 81 is As the velocity head increases, the pressure head decreases.
  • the pressure in the first pipe section 81 becomes negative.
  • the pressure drop in the first pipe portion 81 increases as the flow velocity difference between the first pipe portion 81 and the second pipe portion 82 increases. Therefore, when the flow rate of the bypass pipe 14 is large, the pressure in the first pipe portion 81 tends to be negative. In addition, since the pressure of the first pipe portion 81 is determined by the pressure difference with the second pipe portion 82, the lower the pressure of the second pipe portion 82, the more easily the pressure becomes negative. In other words, the lower the pressure resistance in the rear stage of the air injection section 80, the easier it is to become negative pressure and the easier it is to suck in air.
  • the inner diameter ratio of the first pipe portion 81 and the second pipe portion 82 should be about 1:3 to 1:10.
  • the central axes of the first pipe portion 81, the second pipe portion 82, the third pipe portion 83, the first inclined pipe portion 84, and the second inclined pipe portion 85 may not be horizontal.
  • the first pipe portion 81 and the second pipe portion 81 and the second pipe portion 81 are adjusted so that the pressure in the first pipe portion 81 becomes sufficiently negative, taking into account the fact that the positional water heads of the first pipe portion 81 and the second pipe portion 82 change. It is preferable to determine the inner diameter ratio of the portion 82 .
  • the pressure loss in the bypass pipe 14 is very important. For example, when the pressure loss of the bypass pipe 14 is small, all the raw water flows into the bypass pipe 14 and the flow rate on the side of the medicine supply section 3 becomes zero. In that case, it is preferable to supply the raw water to the drug supply unit 3 by providing a throttle in the bypass pipe 14 to increase the pressure loss of the bypass pipe 14 . This is because the branched flow rate of the raw water is determined by the ratio of the pressure loss in the bypass pipe 14 and the pressure loss in the chemical supply unit 3 .
  • the flow rate on the side of the drug supply unit 3 during filtration can be determined by the pressure loss of the bypass pipe 14, and by adjusting the flow rate on the side of the drug supply unit 3, the concentration of the drug to be supplied can also be adjusted. It is possible to
  • the air injection part 80 needs to be designed considering both the injection amount of air and the pressure loss.
  • the bypass valve 15 is opened, and the raw water inflow pipe 10 flows from the raw water inlet 11 on the water source side to the chemical supply unit 3 or the bypass pipe 14. It is connected to the filtering unit 2 via the In the filtering unit 2, the connection is switched by operating the switching valve 5 so that the raw water inflow pipe 10 and the inflow port 73 are in communication and the outflow port 74 and the purified water discharge pipe 20 are in communication.
  • the bypass valve 15 is closed, and the raw water inflow pipe 10 is connected from the raw water inlet 11 on the water source side to the filtration unit 2 via the bypass pipe 14 bypassing the bypass valve 15 .
  • the switching valve 5 is operated to switch the connection so that the raw water inflow pipe 10 and the outflow port 74 are in communication and the inflow port 73 and the backwash drain pipe 40 are in communication.
  • the flow of water in the filtering section 2 is reversed from that during the filtering process.
  • the water source the electric pump 4
  • the flow rate of the bypass pipe 14 increases and air is injected from the air injection section 80 .
  • the flow velocity difference between the second pipe portion 82 and the first pipe portion 81 of the air injection portion 80 increases, and the pressure in the first pipe portion 81 increases. This is because the decrease becomes larger.
  • air is sucked into the first tube portion 81 from the air tube 86 .
  • the sucked air enters the filtering section 2 via the switching valve 5 . It is possible to improve the efficiency of the backwashing process by breaking down the dirt accumulated in the filtering part 2 by the rising force of the air that has entered the lower part of the filter medium.
  • FIG. 20 is a schematic diagram showing the configuration of a conventional water treatment device.
  • raw water is introduced from a water intake 1102 to bring the raw water into contact with a water-soluble solid medicine 1103 .
  • the amount of the water-soluble solid drug 1103 in contact with the raw water increases as the flow rate increases within a certain flow rate range.
  • the drug is eluted when the flow rate is increased, and the elution of the drug can be suppressed when the flow rate is stopped (see, for example, Patent Document 1).
  • the present disclosure provides a water treatment apparatus capable of obtaining a desired concentration of chemical solution for each operation mode of the apparatus by controlling the flow of water inside the water treatment apparatus to limit the contact between the chemical agent and water. It is intended to
  • the water treatment apparatus includes a filtration unit containing a filter medium, a raw water inflow pipe that allows raw water to flow into the filtration unit, a chemical supply unit that adds a chemical in the route of the raw water inflow pipe, and after filtration from the filtration unit.
  • a purified water discharge pipe for taking out the treated water a bypass pipe that bypasses the chemical supply part in the route of the raw water inflow pipe, and a bypass valve provided in the bypass pipe route, and the bypass valve is provided in the raw water inflow pipe.
  • the water treatment apparatus by suppressing the inflow of raw water from the raw water inflow pipe to the chemical supply unit, it is possible to supply the chemical solution required for each operation mode.
  • Embodiment 2 of the present disclosure will be described below with reference to the drawings.
  • the second embodiment includes at least the following embodiments 2-1 and 2-2.
  • the water treatment apparatus 1001 uses well water or water stored in a water tank as raw water, and the metal ions and turbidity components contained in the raw water are removed by filtration, and the impurities accumulated in the system are filtered. Backwashing is performed to discharge metal ion aggregates and turbidity components out of the system.
  • FIG. 10 is a schematic diagram showing the overall configuration of the water treatment apparatus 1001 of the present embodiment and showing the flow of water during filtration.
  • the water treatment device 1001 has a filtration unit 1002 containing a filter medium and a chemical supply unit 1003 for adding chemicals to raw water. It is configured by connecting with piping.
  • the filtration unit 1002 removes metal ions, turbidity components, and the like from raw water to purify the raw water. Contaminants accumulated in the filtering section 1002 are discharged to the outside of the apparatus after being subjected to backwashing and rinsing processes, so that the filtering section 1002 is kept clean and can be used repeatedly.
  • the backwashing process is a process of flowing raw water in the reverse direction in the filtration unit 1002 to discharge dirt.
  • a raw water inflow pipe 1010 is used as a pipe for sending raw water to the filtration unit 1002
  • a purified water discharge pipe 1020 is used as a pipe for sending out the water purified in the filtration unit 1002 from the filtration unit 1002.
  • a backwash drain pipe 1040 is used to discharge dirt.
  • the purified water is stored in a purified water tank 1006 or the like provided outside the water treatment apparatus 1001, and is used as domestic water when necessary.
  • Raw water is sent to the water treatment device 1001 by an electric pump 1004 connected to the inlet side of the raw water inflow pipe 1010 (opposite side of the filtration unit 1002).
  • a water tank storing raw water may be provided at a high place, and the raw water may be sent to the water treatment apparatus 1001 according to the height difference between the water tank and the water treatment apparatus 1001.
  • tap water jointly operated in the area may be directly connected.
  • water sources include equipment for sending out raw water.
  • the electric pump 1004 is a pump driven by an electric motor that sucks up and discharges well water or water stored in a water tank. Flow pumps, mixed flow pumps, etc. are used. If the well water level is low, a submersible pump or other submersible pump should be used instead of a suction pump. When used in general households, the depth of the well must be about 1 to 10 meters for shallow wells, and 10 to 30 meters or more for deep wells. Considering the head loss of the downstream piping and water treatment equipment, a pump with a head of 20 meters or more is preferable, and a vortex pump or a jet pump is more preferable. The flow rate discharged by the electric pump is, for example, about 5 liters per minute to 100 liters per minute.
  • the raw water inflow pipe 1010 and purified water discharge pipe 1020 may be made of materials and structures that can withstand the water pressure of the electric pump 1004 .
  • vinyl chloride resin, steel pipes, or straight pipes and pipe joints using composite materials thereof can be used because of their durability and ease of processing. It should be noted that the larger the nominal diameter, the lower the head loss. If it is difficult to select a member that can withstand the maximum pressure of the electric pump 1004 , it is preferable to install a pressure reducing valve, a pressure regulating valve, and a relief valve between the electric pump 1004 and the water treatment device 1001 .
  • the drug supply unit 1003 is provided within the path of the raw water inflow pipe 1010 . Although details will be described later, the chemical supply unit 1003 adds an oxidizing agent to the raw water, aggregates the metal ions contained in the raw water as substances that are poorly soluble in water, and facilitates the collection in the filtration unit 1002. do.
  • FIG. 11 is a schematic diagram showing the flow of water during the backwashing process of the water treatment device 1001.
  • FIG. 12 is a schematic diagram showing the flow of water during rinsing treatment of the water treatment apparatus 1001.
  • FIG. 13 is a cross-sectional view of the filtration unit 1002 and switching valve 1005 of the water treatment device 1001. As shown in FIG.
  • the filtering part 1002 has a filtering material and a water collecting pipe 1070 inside, and purifies raw water by passing it through.
  • the filter medium inside the filtering section 1002 is mainly composed of an upper layer 1071 for filtering dirt and a lower layer 1072 having a rectifying action.
  • the filter media used for the upper layer 1071 are activated carbon, manganese sand, anthracite, etc., and about 1 to 4 types are layered and used according to the raw water quality.
  • Filtration section 1002 of the present embodiment exerts a filtering action centering on this upper layer 1071 .
  • the filter material used for the lower layer 1072 is composed of gravel or resin with coarse pores for dispersing water entering and leaving the water collecting pipe.
  • a gravel layer having a relatively large grain size is provided at the lowest layer to improve the flow of water and prevent the filtering material from flowing out from the bottom of the water collecting pipe 1070 .
  • the amount of filtering material in the lower layer 1072 should be about 1/2 to 1 times the diameter of the filtering section 1002 .
  • the filling amount of the filtering material including the upper layer 1071 and the lower layer 1072 is about 1/4 to 4/5 times the internal volume of the filtering section 1002 .
  • the filtration unit 1002 is connected at its upper portion to external pipes (raw water inflow pipe 1010, purified water discharge pipe 1020, backwash drain pipe 1040).
  • An inflow port 1073 and an outflow port 1074 that are openings are provided inside the filtration unit 1002 , and the outflow port 1074 is connected to the water collecting pipe 1070 .
  • a switching valve 1005 is attached to the upper part of the filtration unit 1002, and an external pipe (raw water inflow pipe 1010, purified water discharge pipe 1020, backwash drain pipe 1040) and an inflow port 1073 and an outflow port 1074 in the filtration unit 1002 are connected. Connected. By operating the switching valve 1005 , communication between the external piping and the inlet 1073 and the outlet 1074 is switched. A channel switching piece 1075 for switching the channel is provided in the switching valve 1005. By rotating the channel switching piece 1075, the direction of communication with the connected piping and the opening is changed. The channel switching piece 1075 can be rotated by an external handle or moved by an external motor.
  • the channel switching piece 1075 by operating the channel switching piece 1075, the raw water inflow pipe 1010 and the inflow port 1073 are communicated, and the outflow port 1074 and the purified water discharge pipe 1020 are communicated.
  • the channel switching piece 1075 by operating the channel switching piece 1075, the raw water inflow pipe 1010 and the outflow port 1074 are communicated, and the inflow port 1073 and the backwash drain pipe 1040 are communicated.
  • the channel switching piece 1075 by operating the channel switching piece 1075, the raw water inflow pipe 1010 and the inflow port 1073 are communicated, and the outflow port 1074 and the backwash drain pipe 1040 are communicated.
  • raw water can be sent directly to the purified water tank 1006 by connecting the raw water inflow pipe 1010 and the purified water discharge pipe 1020 .
  • the flow path can be switched by using a plurality of valves in addition to using the switching valve 1005 .
  • the filtration unit 1002 can discharge dirt accumulated by filtration processing by backwashing processing. During the backwashing process, water flows as follows and dirt is discharged from the outflow port 1074 .
  • FIG. 14 is a cross-sectional view of the chemical supply unit 1003 of the water treatment device 1001. As shown in FIG.
  • the drug supply unit 1003 is provided to facilitate aggregation of metal ions contained in the raw water by the drug put therein, and facilitate the capture by the filtration unit 1002 .
  • the drug supply section 1003 has an inflow channel 1031 , a drug channel 1032 , a bypass channel 1033 and an outflow channel 1034 .
  • the inflow path 1031 is connected to the raw water inflow pipe 1010 and allows the raw water to flow into the drug supply section 1003 .
  • the drug channel 1032 branches off from the inflow channel 1031 and dissolves the drug.
  • the bypass channel 1033 is also branched from the inflow channel 1031 via a narrowed portion 1033a, and is provided to adjust the concentration of the chemical solution to a required level.
  • the bypass path 1033 is connected to the inlet side of the outflow path 1034 .
  • the outflow channel 1034 merges with the drug channel 1032 and the bypass channel 1033 and is again connected to the raw water inflow pipe 1010 to deliver the raw water containing the drug to the raw water inflow pipe 1010 .
  • the drug path 1032 includes an ejection tube 1052 that rises vertically after being branched, a drug placement portion 1053 that contacts the drug at the upper portion of the ejection tube 1052 and elutes the drug, and an ejection tube 1052. It is composed of a recovery part 1054 which is an outer periphery and inside the housing 1051 .
  • the ejection tube 1052 is a small-diameter conduit and is erected with a drug loading section 1053 on the top.
  • Ejection pipe 1052 has a smaller diameter at the bottom and provides drug placement portion 1053 at the top of ejection pipe 1052, thereby allowing raw water to come into contact with the drug at a desired flow rate.
  • the drug placement unit 1053 has a size for securing the amount (number) of the drug to be placed so as to obtain a drug solution having a desired concentration with respect to the flow rate of the raw water.
  • the liquid medicine in which the medicine is dissolved flows out to the collection unit 1054.
  • the drug solution in which the drug is dissolved accumulates in the lower portion of housing 1051 and then flows out from recovery opening 1055 to outflow path 1034 .
  • the diameter of the ejection pipe 1052 is made small and the distance from the inner wall surface of the housing 1051 is secured, the liquid level of the raw water in which the medicine has flowed down into the housing 1051 is set to the height of the housing 1051. , can be reduced to about 1/2 or less.
  • the flow rate of raw water flowing through drug channel 1032 can be adjusted by the flow rate of raw water flowing through bypass channel 1033 . That is, by adjusting the diameter of the narrowed portion 1033a of the bypass channel 1033, the ratio of the flow rates of the raw water flowing through the drug channel 1032 and the bypass channel 1033 is adjusted. In this manner, the drug concentration in the outflow path 1034 after confluence can be adjusted to a desired concentration. Note that the flow rate of the raw water flowing through the bypass passage 1033 may be adjusted using a flow rate adjustment valve instead of the restrictor 1033a.
  • the housing 1051 of the medicine supply unit 1003 it is preferable that an air layer always exists inside the housing 1051 of the medicine supply unit 1003 . Since the housing 1051 is a closed space except for the connecting portion with the raw water inflow pipe 1010, once the air disappears and the inside of the housing 1051 is filled with water, the drug 1060 is always in contact with the water and continues to be eluted. . Therefore, in order to send air to the chemical supply unit 1003, it is preferable to attach a pipe for supplying air to the raw water inflow pipe 1010 and a valve such as a check valve.
  • a water-soluble, solid medicine 1060 is provided on the medicine loading section 1053 .
  • the medicine 1060 it is preferable to use tablets or granules. This is because the surface area of the drug 1060 can be increased and a stable solvent concentration can be maintained. Tablets with a diameter of 30 mm and a height of 10 to 20 mm may be used, and granules with a diameter of 5 mm to 15 mm may be used. If the size of the drug 1060 is small, adjacent drugs will come into contact with water at the same time and stick together. If it sticks, only the lower portion of the chemical will come into contact with the water, making it impossible to obtain the desired concentration of chemical.
  • the drug 1060 having the size described above is used to supply the drug solution with the desired concentration.
  • the chemical agent 1060 functions to oxidize metal ions contained in the raw water to form aggregates that are sparingly soluble in water.
  • Various oxidizing agents can be used as the chemical agent 1060, but depending on the required water purification performance, an inorganic flocculant such as PAC (polyaluminum chloride) or chitosan or a polymer flocculant may be used.
  • PAC polyaluminum chloride
  • chitosan a polymer flocculant
  • each member of the drug supply unit 1003 may be in contact with the drug for a long time, it is preferable to select a material with low reactivity to the drug, such as PVC (polyvinyl chloride), PMMA (polymethyl methacrylate), or PP (polypropylene).
  • PVC polyvinyl chloride
  • PMMA polymethyl methacrylate
  • PP polypropylene
  • the material of the ejection tube 1052 is vinyl chloride or ABS (acrylonitrile-butadiene-styrene), which is stronger than PP, considering compatibility with the drug. etc. is preferably selected.
  • This bypass pipe 1014 branches at the raw water inflow pipe 1010 on the upstream side of the drug supply unit 1003 (branching portion 1012), bypasses the drug supply unit 1003, and merges with the raw water inflow pipe 1010 on the downstream side of the drug supply unit 1003. (branching unit 1013).
  • a bypass valve 1015 a is provided in the path of the bypass pipe 1014 .
  • the bypass valve 1015a is a two-way valve that senses the pressure on the upstream side of the bypass valve 1015a and opens and closes, although the details will be described later. That is, the bypass valve 1015a has a mechanism that opens the path of the bypass pipe 1014 when the upstream pressure is lower than a predetermined pressure P, and closes the path of the bypass pipe 1014 when the pressure exceeds the predetermined pressure P. .
  • the filtration unit 1002 has two outlets, and one of the outlets is connected to a purified water discharge pipe 1020 for extracting water purified inside.
  • the other outlet is connected to a backwash drain pipe 1040 that discharges particulate matter (dirt, turbidity components, metal aggregates, etc.) collected by the filtration unit 1002 during backwashing and rinsing to the outside of the system. It is
  • FIGS. 13A and 13B are schematic cross-sectional views of the filtration unit 1002, in which FIG. 13A is an overall view during filtration, FIG. ) indicates the state of the switching valve 1005 during the rinsing process.
  • the switching valve 1005 is operated to switch the connection so that the raw water inflow pipe 1010 and the inflow port 1073 are in communication and the outflow port 1074 and the purified water discharge pipe 1020 are in communication.
  • a narrowed portion 1024 is provided in the route of the purified water discharge pipe 1020 . This is because, in order to obtain desired filtering performance, it is necessary to suppress the flow rate during the filtering process so that the flow rate is set according to the performance of the filtering section 1002 .
  • the combination of the throttle section 1024 and the electric pump 1004 can set the flow rate during the filtration process to a desired designed value.
  • the pressure loss in the piping is greater than in the path during the backwashing process, which will be described later, and the pressure in the raw water inflow piping 1010 increases.
  • it is necessary to send water to the purified water tank 1006 during the filtration process and the higher the installation position of the purified water tank 1006, the higher the pressure in the raw water inflow pipe 1010 becomes.
  • the bypass pipe 1014 is blocked by the bypass valve 1015a, and the raw water inflow pipe 1010 is passed from the raw water inlet 1011 on the water source side through the chemical supply unit 1003. Connect to filtering unit 1002 .
  • the switching valve 1005 is operated so that the raw water inflow pipe 1010 and the outflow port 1074 are in communication, and the inflow port 1073 and the backwash drain pipe 1040 are in communication. switch.
  • Backwashing requires a large flow rate, so the backwash drain pipe 1040 has a larger diameter than the throttle portion 1024 . In such a route, the pressure loss in the pipe is small, and the pressure inside the raw water inflow pipe 1010 is low.
  • the bypass valve 1015a When the pressure in the raw water inflow pipe 1010 is low and does not exceed a predetermined pressure P, the bypass valve 1015a is opened, and the raw water inflow pipe 1010 bypasses the chemical supply unit 1003 from the raw water inlet 1011 on the water source side, and bypasses the bypass pipe 1014. is connected to the filtering unit 1002 via the .
  • the diameter of the bypass pipe 1014 is made larger than that of the pipe inside the medicine supply section 1003 .
  • the pressure loss of the bypass pipe 1014 is smaller than that of the drug supply unit 1003, so that most of the flow rate flows to the bypass pipe 1014 side without blocking the flow path to the drug supply unit 1003, and the drug supply unit 1003 flow rate is smaller. Since the flow rate on the drug supply unit 1003 side is further divided into the drug path 1032 and the bypass path 1033, the flow rate in the drug path 1032 is very small, and the drug 1060 and water hardly come into contact with each other.
  • the flow of water in the filtration unit 1002 is reversed from that during the filtration process.
  • the water source the electric pump 1004
  • the filtration process and the backwashing process can be performed.
  • the bypass valve 1015a which closes when a predetermined pressure P is exceeded, can be used to bypass the chemical supply unit 1003 during backwashing processing that does not require a chemical.
  • the predetermined pressure P is determined under conditions such as the depth of a well where the water treatment device 1001 can be used and the installation height of the purified water tank 1006. Pressure in the raw water inflow pipe 1010 during filtration>predetermined pressure P Also, the capacity of the electric pump 1004 is determined so that the predetermined pressure P>the pressure in the raw water inflow pipe 1010 during the backwashing process.
  • the water treatment apparatus 1001 of the present embodiment can perform "rinse treatment" for discharging foreign substances remaining in the pipes during the backwash treatment. This rinsing process will be described with reference to FIGS. 12 and 13(c).
  • Rinsing processing can be performed by changing the flow path of the switching valve 1005 .
  • the switching valve 1005 switches so that the raw water inflow pipe 1010 and the inflow port 1073 are communicated and the outflow port 1074 and the backwash drain pipe 1040 are communicated. In such a state, water flows in the same direction as the filtering process in the filtering section 1002 , and the water that has passed through the filtering section 1002 is discharged through the backwash drain pipe 1040 .
  • FIG. 15A is a cross-sectional view of the bypass valve 1015a at low pressure of the water treatment device 1001.
  • FIG. 15B is a horizontal cross-sectional view of the shaft collar of bypass valve 1015a.
  • FIG. 16 is a cross-sectional view of the bypass valve 1015a of the water treatment device 1001 at high pressure.
  • a two-way valve type bypass valve 1015a (this embodiment) provided in the bypass pipe 1014 and a branch of the raw water inflow pipe 1010 and the bypass pipe 1014
  • a three-way valve type bypass valve 1015b (Embodiment 2-2 described later) provided in the portion 1012 can be used.
  • FIG. 15A is a cross-sectional view of the bypass valve 1015a at low pressure
  • FIG. 16 is a cross-sectional view of the bypass valve 1015a at high pressure.
  • the bypass valve 1015a is provided in the bypass pipe 1014 as described above.
  • the bypass pipe 1014 branches from the raw water inflow pipe 1010 at a branch portion 1012, bypasses the drug supply portion 1003, and joins the raw water inflow pipe 1010 at a branch portion 1013 located downstream of the drug supply portion 1003 (FIG. 10). , FIGS. 11 and 12).
  • the bypass valve 1015 a has an inflow pipe 1080 for inflowing raw water from the branch 1012 , an outflow pipe 1081 for outflowing raw water to the raw water inflow pipe 1010 , and an on-off valve 1090 .
  • the on-off valve 1090 has a base 1091 , a lid portion 1092 attached to the top thereof, a diaphragm 1093 , a shaft 1094 , a spring 1095 , a valve body 1096 and a valve seat 1097 .
  • the diaphragm 1093 is fixed with its peripheral edge sandwiched between the base 1091 and the lid portion 1092 .
  • a pressure receiving space 1098 is provided between the diaphragm 1093 and the base 1091 , and the pressure receiving space 1098 and the inflow pipe 1080 communicate with each other through a pressure receiving pipe 1099 .
  • the diaphragm 1093 is driven by the pressure of the raw water that has flowed into the pressure receiving space 1098 .
  • the shaft 1094 is provided so as to pass through the vicinity of the central axis of the pressure receiving pipe 1099 and the outflow pipe 1081, the diaphragm 1093 is attached to the pressure receiving pipe 1099 side, and the valve element 1096 is attached to the outflow pipe 1081 side.
  • the valve seat 1097 is provided on the outflow pipe 1081 side of the base 1091 and has an opening facing the valve body 1096 . This opening communicates the inflow pipe 1080 and the outflow pipe 1081 and is opened and closed by the valve body 1096 .
  • the shaft 1094 slides on the valve body 1096 in conjunction with the operation of the diaphragm 1093 to open and close the opening of the valve seat 1097 leading to the outflow pipe 1081 .
  • the valve body 1096 and the shaft 1094 slide vertically inside the bypass valve 1015a.
  • a spring 1095 is provided above the diaphragm 1093 so as to press the diaphragm 1093 downward.
  • the diameter of the pressure receiving pipe 1099 is made smaller than the diameter of the surface of the spring 1095 that presses the diaphragm 1093 , and the force of the spring 1095 is received by the base 1091 . If the diameter of the pressure receiving tube 1099 is larger than the diameter of the surface of the spring 1095 that presses the diaphragm 1093, the diaphragm 1093 is constantly deformed by the force of the spring 1095, resulting in a large load in terms of material strength. Therefore, by reducing the diameter of the pressure receiving pipe 1099 and receiving the force of the spring at the base 1091, deformation of the diaphragm 1093 during low pressure (including when operation is stopped) is suppressed and durability is ensured.
  • shaft 1094 has collar portion 1100 at a position between diaphragm 1093 and base 1091, and collar portion 1100 is sandwiched between diaphragm 1093 and base 1091.
  • the collar portion 1100 is composed of a number of projections projecting radially from the axis of the shaft 1094 such that the projections are caught in the opening of the pressure receiving tube 1099 .
  • the convex portion is sized and arranged so as not to block the flow path of the pressure receiving pipe 1099 .
  • Such a structure can prevent the diaphragm 1093 and the base 1091 from sticking to each other, secure the flow path of the pressure receiving pipe 1099 , and allow the inflow pipe 1080 and the pressure receiving space 1098 to communicate with each other.
  • the on-off valve 1090 is a two-way valve that opens and closes the outflow pipe 1081 .
  • the area of the diaphragm 1093 in contact with the pressure receiving space 1098 must be larger than the area of the valve body 1096 .
  • the two surfaces receive the same pressure, and the larger the area, the greater the resultant force of the pressure.
  • force acts in the direction in which the diaphragm 1093 and the valve body 1096 pull the shaft 1094 together, and the shaft 1094 slides in the direction where the force is greater.
  • the area where the diaphragm 1093 receives pressure must be larger than the valve element 1096 .
  • the diaphragm 1093 is located on the flow path of the water treatment device 1001, it is recommended to select a rubber material having chemical resistance, such as fluororubber or silicon rubber.
  • the reaction force of the spring 1095 is adjusted so that the bypass valve 1015a is closed when the pressure in the raw water inflow pipe 1010 reaches a predetermined pressure P or higher.
  • the bypass valve 1015a for sensing the pressure in the raw water inflow pipe 1010 is switched between opening and closing depending on the operation mode.
  • FIG. 17 is a schematic diagram of the overall configuration of the water treatment device 1001 of Embodiment 2-2.
  • FIG. 18 is a cross-sectional view of the bypass valve 1015b of the water treatment device 1001 when the pressure is low.
  • FIG. 19 is a cross-sectional view of the bypass valve 1015b of the water treatment device 1001 at high pressure.
  • a three-way valve type bypass valve 1015b is used at the branch portion 1012 of the bypass pipe 1014 in the raw water inflow pipe 1010 in order to adjust the flow rate of the bypass pipe 1014 .
  • the bypass valve 1015b is a three-way valve as described above, and has one inlet (inflow pipe 1080) and two outlets (outflow pipes 1081a and 1081b).
  • the inflow pipe 1080 allows raw water to flow in from the raw water inflow pipe 1010 as in the first embodiment.
  • the outflow pipe 1081 a causes the raw water to flow out to the drug supply section 1003 .
  • Outflow pipe 1081 b causes the raw water to flow out to bypass pipe 1014 .
  • the bypass valve 1015b switches the outlet (outflow tube 1081a, outflow tube 1081b) according to the pressure applied to the inflow tube 1080.
  • the bypass valve 1015b has an on-off valve 1090, like the bypass valve 1015a.
  • a feature of the three-way valve type bypass valve 1015b is that the pressure receiving space 1098 communicates with the outflow pipe 1081a. Further, communication between the pressure receiving space 1098 and the outflow pipe 1081a is opened and closed by the operation of the diaphragm 1093. As shown in FIG.
  • the same parts as those of the bypass valve 1015a are denoted by the same numbers, and detailed description thereof will be omitted.
  • bypass valve 1015b With such a configuration will be described.
  • the pressure in the raw water inflow pipe 1010 is lower than the predetermined pressure P
  • the diaphragm 1093 is pressed against the base 1091 and the outflow pipe 1081a is blocked by the diaphragm 1093 .
  • the outflow pipe 1081b is open, and the raw water flowing through the bypass valve 1015b flows to the outflow pipe 1081b, that is, the bypass pipe 1014 side.
  • the on-off valve 1090 is a three-way valve that opens the outflow pipe 1081b when the pressure is low and opens the outflow pipe 1081a when the pressure is high.
  • the flow path passing through the chemical supply unit 1003 is Since only the channel passing through the bypass pipe 1014 is closed and opened, water can flow through the bypass pipe 1014 and bypass the drug supply unit 1003 .
  • the operation mode in which the pressure in the raw water inflow pipe 1010 becomes higher than the predetermined pressure P, the flow path passing through the bypass pipe 1014 is closed, and only the flow path passing through the drug supply section 1003 is opened. Therefore, water flows into the drug supply unit 1003 .
  • the three-way valve type bypass valve 1015b closes the flow path passing through the drug supply unit 1003 during the backwashing process, the difference in pressure loss between the filtration process and the backwashing process is small, and the flow path on the side of the drug supply part 1003 is closed. This is useful in a case where water would also flow into the medicine supply section 1003 if left open.
  • the bypass valve 1015b can also be used as a two-way valve that detects pressure and opens and closes by closing the downstream side of the outflow pipe 1081a or the outflow pipe 1081b.
  • the downstream side of the outflow pipe 1081a When the downstream side of the outflow pipe 1081a is blocked, it functions as a valve that opens the outflow pipe 1081b at low pressure and closes the outflow pipe 1081b at high pressure.
  • the three-way valve type bypass valve 1015b can be used as a two-way valve.
  • the valve functions as a valve that closes the outflow tube 1081a at low pressure and opens the outflow tube 1081a at high pressure.
  • the first outflow port described in the claims corresponds to the outflow pipe 1081a of the bypass valve 1015b
  • the second outflow port corresponds to the outflow pipe 1081b of the bypass valve 1015b
  • a first valve body described in claims corresponds to the diaphragm 1093
  • a second valve body corresponds to the valve body 1096 .

Abstract

The water treatment device (1) according to the present disclosure is provided with: a filtration part (2) which contains a filter material; a raw water inflow pipe (10) through which raw water flows in; a chemical supply part (3) which is located in the path of the raw water inflow pipe (10) and adds a chemical; and a bypass valve (15) which, in the path of the raw water inflow pipe (10), has a bypass pipe (14) for bypassing the chemical supply part (3) and which adjusts the amount of water flowing in the bypass pipe (14) and the amount of water flowing in the chemical supply part (3). By switching the bypass valve (15), it is possible to control the flow rate through the chemical supply part (3) and to control the supply of the chemical.

Description

水処理装置および液体用三方弁Three-way valve for water treatment equipment and liquids
 本開示は、濾過と薬剤添加によって水を浄化する水処理装置に関するものである。 This disclosure relates to a water treatment device that purifies water by filtration and chemical addition.
 従来、水処理装置における酸化剤の供給には、固体の酸化剤を水に接触させる薬剤供給装置が用いられている。例えば、井戸水を浄水処理する場合には、固体の次亜塩素酸カルシウムを徐々に溶かす薬剤供給装置を用いて、浄水処理対象となる原水を酸化させることが可能である。 Conventionally, a chemical supply device that brings a solid oxidant into contact with water has been used to supply the oxidant in water treatment equipment. For example, when purifying well water, it is possible to oxidize raw water to be purified by using a chemical feeder that gradually dissolves solid calcium hypochlorite.
 定量ポンプで薬剤を注入するシステム、もしくは流量に関わらず一定量の薬剤を溶出させる薬剤供給装置においては、注入する配管の流量に合わせて定量ポンプの流量を変化させる必要があり、非常に高価である。 In a system that injects drugs with a metering pump, or a drug supply device that elutes a constant amount of drug regardless of the flow rate, it is necessary to change the flow rate of the metering pump according to the flow rate of the injection pipe, which is very expensive. be.
 図9は、従来の水処理装置の構成を示す模式図である。図9に示す通り、固形薬剤供給装置101においては、取水口102から原水を流入させて水溶性固形薬剤103に原水を接触させる。薬剤接触相104内に水が流入すると、一定の流量範囲内では流量の増加に応じて、原水に接触する水溶性固形薬剤103の量が増加する。本機構により、流量が上昇した際は薬剤が溶出し、流量が停止している際は、薬剤の溶出を抑えることが可能である(例えば、特許文献1参照)。 FIG. 9 is a schematic diagram showing the configuration of a conventional water treatment device. As shown in FIG. 9 , in the solid medicine supply device 101 , raw water is introduced from the water intake 102 to bring the raw water into contact with the water-soluble solid medicine 103 . When water flows into the drug contact phase 104, the amount of the water-soluble solid drug 103 in contact with the raw water increases as the flow rate increases within a certain flow rate range. With this mechanism, the drug is eluted when the flow rate is increased, and the elution of the drug can be suppressed when the flow rate is stopped (see, for example, Patent Document 1).
実公昭58-49836号公報Japanese Utility Model Publication No. 58-49836
 このような水処理装置においては、装置の運転モードによって薬剤濃度を切り替える必要がある。例えば、運転モードとして、原水を濾過するモードでは薬剤を添加する。また、濾材を洗浄するモードでは薬剤を添加しないなど、塩素添加を切り替える必要がある。特に、簡単な構成によって前述したような薬剤の有無を切り替えることが望まれている。 In such water treatment equipment, it is necessary to switch the chemical concentration according to the operation mode of the equipment. For example, as an operation mode, a chemical agent is added in a mode of filtering raw water. In addition, it is necessary to switch the addition of chlorine, such as not adding chemicals in the mode for cleaning the filter medium. In particular, it is desired to switch between the presence and absence of the drug as described above with a simple configuration.
 本開示は、水処理装置内部において、水の流れを制御することで、薬剤と水の接触を制限し、所望の濃度の薬液を得ることができる水処理装置を提供することを目的としている。 An object of the present disclosure is to provide a water treatment apparatus capable of obtaining a desired concentration of chemical liquid by controlling the flow of water inside the water treatment apparatus to limit the contact between the chemical agent and water.
 本開示に係る水処理装置は、濾材を内包した濾過部と、濾過部に原水を流入させる原水流入配管と、原水流入配管の経路内で薬剤を添加する薬剤供給部と、濾過部から濾過後の処理水を取り出す浄水吐出配管と、原水流入配管の経路内で薬剤供給部を迂回するバイパス配管と、バイパス配管内を流れる水量と薬剤供給部を流れる水量とを調整するバイパスバルブと、を備える。 The water treatment apparatus according to the present disclosure includes a filtration unit containing a filter medium, a raw water inflow pipe that allows raw water to flow into the filtration unit, a chemical supply unit that adds a chemical in the route of the raw water inflow pipe, and after filtration from the filtration unit. A purified water discharge pipe for taking out the treated water, a bypass pipe that bypasses the chemical supply unit in the path of the raw water inflow pipe, and a bypass valve that adjusts the amount of water flowing in the bypass pipe and the amount of water flowing through the chemical supply unit. .
 本開示によれば、水処理装置において、原水流入配管からバイパス配管内を流れる水量と薬剤供給部を流れる水量とを調整することにより、各運転モードに必要な薬液を供給することが出来るという効果がある。 According to the present disclosure, in the water treatment apparatus, by adjusting the amount of water flowing from the raw water inflow pipe to the bypass pipe and the amount of water flowing through the chemical supply unit, the effect that the necessary chemical solution can be supplied for each operation mode. There is
図1は、本開示の実施の形態1-1の水処理装置の全体構成の概略図である。FIG. 1 is a schematic diagram of the overall configuration of a water treatment apparatus according to Embodiment 1-1 of the present disclosure. 図2は、同水処理装置の逆洗処理時の水の流れを示す概略図である。FIG. 2 is a schematic diagram showing the flow of water during backwashing of the same water treatment apparatus. 図3は、同水処理装置のリンス処理時の水の流れを示す概略図である。FIG. 3 is a schematic diagram showing the flow of water during rinsing treatment in the same water treatment apparatus. 図4は、同水処理装置の濾過部と切替弁の断面図である。FIG. 4 is a cross-sectional view of a filtration unit and a switching valve of the same water treatment apparatus. 図5は、同水処理装置の薬剤供給部の断面図である。FIG. 5 is a cross-sectional view of the chemical supply unit of the same water treatment apparatus. 図6は、本開示の実施の形態1-2の水処理装置の全体構成の概略図である。FIG. 6 is a schematic diagram of the overall configuration of the water treatment apparatus according to Embodiment 1-2 of the present disclosure. 図7は、同水処理装置の逆洗処理時の水の流れを示す概略図である。FIG. 7 is a schematic diagram showing the flow of water during backwashing of the same water treatment apparatus. 図8は、同水処理装置の空気注入部の概略図である。FIG. 8 is a schematic diagram of an air injection part of the same water treatment apparatus. 図9は、従来の水処理装置の構成を示す模式図である。FIG. 9 is a schematic diagram showing the configuration of a conventional water treatment apparatus. 図10は、本開示の実施の形態2-1の水処理装置の全体構成の概略図である。FIG. 10 is a schematic diagram of the overall configuration of a water treatment apparatus according to Embodiment 2-1 of the present disclosure. 図11は、同水処理装置の逆洗処理時の水の流れを示す概略図である。FIG. 11 is a schematic diagram showing the flow of water during backwashing of the same water treatment apparatus. 図12は、同水処理装置のリンス処理時の水の流れを示す概略図である。FIG. 12 is a schematic diagram showing the flow of water during rinsing treatment in the same water treatment apparatus. 図13は、同水処理装置の濾過部と切替弁の断面図である。FIG. 13 is a cross-sectional view of a filtration unit and a switching valve of the same water treatment apparatus. 図14は、同水処理装置の薬剤供給部の断面図である。FIG. 14 is a cross-sectional view of the chemical supply part of the same water treatment apparatus. 図15Aは、同水処理装置の低圧時のバイパスバルブの断面図である。FIG. 15A is a cross-sectional view of a bypass valve at low pressure in the same water treatment apparatus. 図15Bは、バイパスバルブのシャフトつば部における水平断面図である。FIG. 15B is a horizontal cross-sectional view of the shaft collar of the bypass valve. 図16は、同水処理装置の高圧時のバイパスバルブの断面図である。FIG. 16 is a cross-sectional view of a bypass valve of the same water treatment apparatus at high pressure. 図17は、本開示の実施の形態2-2の水処理装置の全体構成概略図である。FIG. 17 is an overall configuration schematic diagram of a water treatment apparatus according to Embodiment 2-2 of the present disclosure. 図18は、同水処理装置の低圧時のバイパスバルブの断面図である。FIG. 18 is a cross-sectional view of the bypass valve of the same water treatment apparatus at low pressure. 図19は、同水処理装置の高圧時のバイパスバルブの断面図である。FIG. 19 is a cross-sectional view of the bypass valve of the same water treatment apparatus at high pressure. 図20は、従来の水処理装置の構成を示す模式図である。FIG. 20 is a schematic diagram showing the configuration of a conventional water treatment apparatus.
 (実施の形態1)
 以下、実施の形態1について図面を参照しながら説明する。
(Embodiment 1)
Embodiment 1 will be described below with reference to the drawings.
 実施の形態1に係る水処理装置1は、井戸水または貯水槽に蓄えた水を原水とし、この原水に含まれる金属イオンや濁質成分を除去する濾過処理と、濾過処理によって系内に蓄積された金属イオンの凝集物、濁質成分を系外へ排出する逆洗処理を行うものである。 In the water treatment apparatus 1 according to Embodiment 1, well water or water stored in a water tank is used as raw water. Backwashing is performed to discharge metal ion aggregates and turbidity components out of the system.
 なお、実施の形態1は、少なくとも以下の実施の形態1-1及び実施の形態1-2を包含する。 It should be noted that Embodiment 1 includes at least Embodiments 1-1 and 1-2 below.
 (実施の形態1-1)
 図1は、本実施の形態の水処理装置1の全体構成を示すとともに、濾過処理時における水の流れを示した概略図である。
(Embodiment 1-1)
FIG. 1 is a schematic diagram showing the overall configuration of a water treatment apparatus 1 of the present embodiment and showing the flow of water during filtration.
 図1に示すように、水処理装置1は、濾材を内包した濾過部2と、原水に対して薬剤を添加する薬剤供給部3を有し、濾過部2、薬剤供給部3を後述するように配管で接続して構成される。 As shown in FIG. 1, the water treatment apparatus 1 has a filtration unit 2 containing a filter medium and a chemical supply unit 3 for adding chemicals to raw water. It is configured by connecting with piping.
 濾過部2は、原水から金属イオンや濁質成分を除去し、原水を浄化するものであり、いわば、水処理装置1の心臓部である。濾過部2に溜まった汚れは、逆洗処理、リンス処理を行って装置外へと排出し、濾過部2を綺麗に保ち、繰り返し使用することが可能にしている。逆洗処理とは、濾過部2内で原水を逆流する方向に流し、汚れを排出する処理である。リンス処理とは、逆洗処理を行った後、濾過部2内に濾過方向に原水を流して分離した汚れを装置外へ排出するものである。この濾過部2に対して、原水を送る側の配管を原水流入配管10とし、濾過部2で浄化された水を濾過部2から送出する配管を浄水吐出配管20とし、逆洗とリンス運転で汚れを排出する配管を逆洗ドレン管40とする。浄化された水は、水処理装置1外部に設けられる浄水タンク6などに貯められ、必要な時に生活水として使われる。 The filtration unit 2 removes metal ions and turbidity components from the raw water to purify the raw water. Contaminants collected in the filtering part 2 are discharged out of the device after being subjected to backwashing and rinsing treatments, so that the filtering part 2 can be kept clean and can be used repeatedly. The backwashing process is a process in which the raw water flows in the reverse direction in the filtration unit 2 to discharge dirt. In the rinsing process, after the backwashing process, the raw water is passed through the filtration unit 2 in the filtration direction to discharge the separated contaminants out of the apparatus. A raw water inflow pipe 10 is used as a pipe for sending raw water to the filtration unit 2, and a purified water discharge pipe 20 is used as a pipe for sending out the water purified in the filtration unit 2 from the filtration unit 2. Backwashing and rinsing operations A backwash drain pipe 40 is used as a pipe for discharging dirt. The purified water is stored in a purified water tank 6 or the like provided outside the water treatment apparatus 1 and used as domestic water when necessary.
 水処理装置1に対しては、原水流入配管10の入口側(濾過部2の反対側)に接続された電動ポンプ4によって原水が送られる。なお、電動ポンプ4を使用する代わりに、原水を蓄えた貯水槽を高所に設け、貯水槽と水処理装置1との高低差によって原水を水処理装置1に送る方法でもよい。また、地域などで共同運営している水道水を直接接続してもよい。本実施の形態では、井戸、貯水槽、水道等に加え、原水を送り出す装置類を含めて水源とする。 Raw water is sent to the water treatment device 1 by an electric pump 4 connected to the inlet side of the raw water inflow pipe 10 (opposite side of the filtration unit 2). Alternatively, instead of using the electric pump 4, a water tank storing raw water may be provided at a high place, and the raw water may be sent to the water treatment apparatus 1 according to the height difference between the water tank and the water treatment apparatus 1. Alternatively, tap water jointly operated in the area may be directly connected. In this embodiment, in addition to wells, water tanks, taps, etc., water sources include equipment for sending out raw water.
 電動ポンプ4は、井戸水または貯水槽へ蓄えた水を吸い上げ、吐出する電動機で駆動するポンプであって、例えば、渦巻きポンプ、タービンポンプなどの遠心ポンプ、渦流ポンプ(カスケードポンプ)、ジェットポンプ、軸流ポンプ、または斜流ポンプなどが用いられる。また、井戸水位が低い場合は、吸い上げ型のポンプではなく、サブマーシブルポンプ等の水中ポンプを用いると良い。一般家庭で用いる場合、井戸の深さは、浅井戸であれば1メートルから10メートル程度、深井戸であれば10メートルから30メートル以上吸い上げる必要がある。後段の配管や水処理装置の損失水頭を考慮すると、20メートル以上の揚程があるものがよく、渦流ポンプまたはジェットポンプなどがより好ましい。電動式ポンプで吐出する流量は、例えば5リットル毎分から100リットル毎分程度であるが、一般家庭用であれば5リットル毎分から50リットル毎分程度の流量特性をもつものがより好ましい。 The electric pump 4 is a pump driven by an electric motor that sucks up and discharges well water or water stored in a water tank. A flow pump, a mixed flow pump, or the like is used. Also, if the well water level is low, it is better to use a submersible pump or other submersible pump instead of a suction pump. When used in general households, the depth of the well must be about 1 to 10 meters for shallow wells, and 10 to 30 meters or more for deep wells. Considering the head loss of the downstream piping and water treatment equipment, a pump with a head of 20 meters or more is preferable, and a vortex pump or a jet pump is more preferable. The flow rate discharged by the electric pump is, for example, about 5 liters per minute to 100 liters per minute.
 原水流入配管10、浄水吐出配管20は、電動ポンプ4の水圧に耐えられる材質、構造であればよい。具体的には、耐久性、加工のしやすさから、例えば、塩化ビニル樹脂や鋼管、あるいは、これらの複合材料を用いた直管や配管継手が使用できる。なお、呼び径は損失水頭が低くなるよう大きい方が好ましく、例えば呼び径13ミリメートルから50ミリメートル、厚みは1ミリメートルから5ミリメートル程度のものが好ましい。電動ポンプ4の最大圧に耐えうる部材選定が困難な場合は、電動ポンプ4と水処理装置1の間に減圧弁や調圧弁、逃し弁を取り付けると良い。 The raw water inflow pipe 10 and purified water discharge pipe 20 may be made of materials and structures that can withstand the water pressure of the electric pump 4 . Specifically, for example, vinyl chloride resin, steel pipes, or straight pipes and pipe joints using composite materials thereof can be used because of their durability and ease of processing. It should be noted that the larger the nominal diameter, the lower the head loss. If it is difficult to select a member that can withstand the maximum pressure of the electric pump 4 , it is recommended to install a pressure reducing valve, a pressure regulating valve, and a relief valve between the electric pump 4 and the water treatment device 1 .
 薬剤供給部3は、原水流入配管10の経路内に設けられている。詳しくは、後述するが、薬剤供給部3は、原水に対して酸化剤を添加し、原水に含まれる金属イオンを水に難溶な物質として凝集させ、濾過部2において捕集しやすくする働きをする。 The drug supply unit 3 is provided within the path of the raw water inflow pipe 10 . Although details will be described later, the chemical supply unit 3 adds an oxidizing agent to the raw water, aggregates the metal ions contained in the raw water as substances that are poorly soluble in water, and makes them easier to collect in the filtration unit 2. do.
 (濾過部関連)
 次に濾過部関連部品である、濾過部2と切替弁5に関して図4を用いて説明する。図2は、水処理装置1の逆洗処理時の水の流れを示す概略図である。図3は、水処理装置1のリンス処理時の水の流れを示す概略図である。図4は、水処理装置1の濾過部2と切替弁5の断面図である。
(Filtration part related)
Next, the filter part 2 and the switching valve 5, which are parts related to the filter part, will be described with reference to FIG. FIG. 2 is a schematic diagram showing the flow of water during the backwashing process of the water treatment apparatus 1. As shown in FIG. FIG. 3 is a schematic diagram showing the flow of water during rinsing treatment of the water treatment apparatus 1. As shown in FIG. FIG. 4 is a sectional view of the filtration unit 2 and the switching valve 5 of the water treatment device 1. As shown in FIG.
 濾過部2は、濾材および集水管70などを内部に有するもので、原水を通過させて浄化するものである。濾過部2の内部の濾材は、主として汚れを濾過するための上層71と、整流作用を有する下層72とで構成されている。上層71に用いられる濾材は、活性炭、マンガン砂、またはアンスラサイト等であって、原水水質に合わせ1~4種類程度を層状にして使用する。本実施の形態の濾過部2は、この上層71を中心に濾過の作用が働く。下層72に用いられる濾材は、集水管から出入りする水を分散するための砂利または穴が粗い樹脂で構成されている。そして、下層72では、最下層に比較的粒径の大きい砂利層を設け、水の流れを良くするとともに、集水管70の下部から濾材が流出しないようにしている。なお、下層72の濾材量は、濾過部2の直径の1/2~1倍程度にするとよい。また、上層71と下層72を合わせた濾材の充填量は、濾過部2の内容積の1/4~4/5倍程度になるようにするとよい。 The filtering part 2 has a filtering material, a water collecting pipe 70, etc. inside, and purifies the raw water by passing it through. The filtering material inside the filtering part 2 is mainly composed of an upper layer 71 for filtering dirt and a lower layer 72 having a rectifying action. The filter material used for the upper layer 71 is activated carbon, manganese sand, anthracite, or the like, and about 1 to 4 types are layered and used according to the raw water quality. In the filtering section 2 of the present embodiment, the filtering action works centering on the upper layer 71 . The filter media used in the lower layer 72 is composed of gravel or coarse-pored resin for dispersing water entering and exiting the collection pipes. In the lower layer 72 , a gravel layer having a relatively large grain size is provided at the lowest layer to improve the flow of water and prevent the filtering material from flowing out from the bottom of the water collecting pipe 70 . The amount of filtering material in the lower layer 72 is preferably about 1/2 to 1 times the diameter of the filtering section 2. FIG. In addition, it is preferable that the filling amount of the filtering material including the upper layer 71 and the lower layer 72 is about 1/4 to 4/5 times the internal volume of the filtering section 2 .
 濾過部2は、上部において、外部配管(原水流入配管10、浄水吐出配管20、逆洗ドレン管40)と接続されている。濾過部2内部には、開口となる流入口73と流出口74が設けられ、流出口74は、集水管70と接続されている。 The filtration unit 2 is connected to external pipes (raw water inflow pipe 10, purified water discharge pipe 20, backwash drain pipe 40) at the top. An inflow port 73 and an outflow port 74 serving as openings are provided inside the filtration unit 2 , and the outflow port 74 is connected to the water collecting pipe 70 .
 濾過部2の上部には、切替弁5が取り付けられており、外部配管(原水流入配管10、浄水吐出配管20、逆洗ドレン管40)と濾過部2内の流入口73と流出口74が接続される。切替弁5の操作によって外部配管と流入口73、流出口74との連通が切り替えられる。切替弁5内には、流路を切り替える流路切替コマ75を備えており、流路切替コマ75を回転させることによって、接続された配管、開口との連通方向を変更する。流路切替コマ75は、外部の取っ手で回転させる、あるいは、外部モータで動かすことが出来る。 A switching valve 5 is attached to the upper part of the filtration unit 2, and an external pipe (raw water inflow pipe 10, purified water discharge pipe 20, backwash drain pipe 40) and an inflow port 73 and an outflow port 74 in the filtration unit 2 are connected. Connected. By operating the switching valve 5 , communication between the external pipe and the inlet 73 and the outlet 74 is switched. A channel switching piece 75 for switching the channel is provided in the switching valve 5, and by rotating the channel switching piece 75, the direction of communication with the connected piping and the opening is changed. The channel switching piece 75 can be rotated by an external handle or moved by an external motor.
 濾過処理時には、流路切替コマ75の操作によって、原水流入配管10と流入口73を連通させ、流出口74と浄水吐出配管20を連通させる。一方、逆洗処理時には、流路切替コマ75の操作によって、原水流入配管10と流出口74を連通させ、流入口73と逆洗ドレン管40を連通させる。また、リンス処理時には、流路切替コマ75の操作によって、原水流入配管10と流入口73を連通させ、流出口74と逆洗ドレン管40を連通させる。 During the filtration process, by operating the channel switching piece 75, the raw water inflow pipe 10 and the inflow port 73 are communicated, and the outflow port 74 and the purified water discharge pipe 20 are communicated. On the other hand, during the backwashing process, the raw water inflow pipe 10 and the outflow port 74 are communicated with each other by operating the channel switching piece 75, and the inflow port 73 and the backwash drain pipe 40 are communicated with each other. Further, during the rinsing process, by operating the channel switching piece 75, the raw water inflow pipe 10 and the inflow port 73 are brought into communication with each other, and the outflow port 74 and the backwash drain pipe 40 are brought into communication with each other.
 なお、切替弁5に接続する配管の種類によって様々な運転が可能である。例えば、原水流入配管10と浄水吐出配管20を接続することで、原水を直接浄水タンク6に送ることが出来る。 Various operations are possible depending on the type of piping connected to the switching valve 5. For example, raw water can be sent directly to the purified water tank 6 by connecting the raw water inflow pipe 10 and the purified water discharge pipe 20 .
 なお、本実施の形態では、切替弁5を用いたが、切替弁5を使用する以外にも、複数のバルブを使用することでも流路を切り替えることが出来る。 Although the switching valve 5 is used in the present embodiment, the flow path can be switched by using a plurality of valves in addition to using the switching valve 5 .
 このような構成において、濾過処理時、逆洗処理時の水の流れについて説明する。濾過処理時には、濾過部2内では、以下のように水が流れ、流出口74から浄化された水が得られる。 In such a configuration, the flow of water during filtration and backwashing will be described. During the filtering process, water flows in the filtering section 2 as follows, and purified water is obtained from the outlet 74 .
 [濾過処理時の濾過部2内の流路]
 流入口73→上層71→下層72→集水管70→流出口74
 なお、リンス処理時においても、濾過部2内では濾過処理時と同じように水が流れるが、後述する逆洗処理後の汚れを含んだ水が流出口74から流出する。そのため、流出口74は逆洗ドレン管40に連通され、外部へ排出される。
[Flow path in filtration unit 2 during filtration]
Inflow port 73→upper layer 71→lower layer 72→collection pipe 70→outflow port 74
During the rinsing process, water flows in the filtering section 2 in the same manner as during the filtering process, but the water containing dirt after the backwashing process described later flows out from the outlet port 74 . Therefore, the outflow port 74 is communicated with the backwash drain pipe 40 and discharged to the outside.
 また、濾過部2には濾過処理で溜まった汚れを逆洗処理で排出することが出来る。逆洗処理時には以下のように水が流れ、流出口74から汚れが排出される。 In addition, the filtration unit 2 can discharge dirt accumulated during the filtration process by backwashing. During the backwashing process, water flows as follows and dirt is discharged from the outflow port 74 .
 [逆洗処理時の濾過部2内の流路]
 流出口74→集水管70→下層72→上層71→流入口73
 (薬剤供給部)
 次に、薬剤供給部3について、図1、図5を用いて説明する。図5は、水処理装置1の薬剤供給部3の断面図である。薬剤供給部3は、その内部に入れられた薬剤によって、原水に含まれる金属イオンの凝集を促進し、濾過部2で補足しやすくするために設けられている。薬剤供給部3は、流入路31、薬剤路32、バイパス路33、流出路34を有している。流入路31は、原水流入配管10と接続され、原水を薬剤供給部3に流入させる。薬剤路32は、流入路31から分岐し、薬剤を溶かすものである。バイパス路33は、絞り部33aを介して、同じく流入路31から分岐し、薬液を必要な濃度に調整するために設けられている。そして、バイパス路33は、流入路31から分岐後、流出路34の入口側に接続されている。流出路34は、薬剤路32、バイパス路33と合流し、再び原水流入配管10に接続され、原水流入配管10に薬剤の含まれた原水を送り出すことになる。図5に示すように、薬剤路32は、分岐後、鉛直方向に立ち上がる噴出管52と、噴出管52の上部で薬剤に接触し、薬剤を溶出させる薬剤載置部53と、噴出管52の外周であって、筐体51の内部となる回収部54とで構成される。
[Flow path in filtration unit 2 during backwashing]
Outlet 74→water collection pipe 70→lower layer 72→upper layer 71→inlet 73
(Drug supply unit)
Next, the drug supply unit 3 will be described with reference to FIGS. 1 and 5. FIG. FIG. 5 is a cross-sectional view of the chemical supply unit 3 of the water treatment device 1. As shown in FIG. The chemical supply unit 3 is provided to promote aggregation of metal ions contained in the raw water by the chemical put therein and facilitate the supplementation by the filtration unit 2 . The drug supply unit 3 has an inflow channel 31 , a drug channel 32 , a bypass channel 33 and an outflow channel 34 . The inflow path 31 is connected to the raw water inflow pipe 10 and allows the raw water to flow into the drug supply section 3 . The drug channel 32 branches off from the inflow channel 31 and dissolves the drug. The bypass channel 33 is also branched from the inflow channel 31 via the narrowed portion 33a, and is provided to adjust the chemical solution to a required concentration. After branching from the inflow path 31 , the bypass path 33 is connected to the inlet side of the outflow path 34 . The outflow channel 34 merges with the drug channel 32 and the bypass channel 33 and is connected to the raw water inflow pipe 10 again, so that the raw water containing the drug is delivered to the raw water inflow pipe 10 . As shown in FIG. 5, the drug path 32 includes an ejection tube 52 that rises vertically after being branched, a drug placement portion 53 that contacts the drug at the upper portion of the ejection tube 52 and elutes the drug, and an ejection tube 52. It is composed of a recovery part 54 which is an outer periphery and inside the housing 51 .
 噴出管52は小径の管路で上部に薬剤載置部53を備えて立設されている。噴出管52は、下部の径を小さくし、薬剤載置部53を噴出管52の上部に設けることによって、原水を所望の流量で薬剤と接触させることを実現している。薬剤載置部53は、原水の流量に対し、所望の濃度の薬液が得られるよう、置く薬剤の量(数)を確保するための大きさとなる。 The ejection tube 52 is a small-diameter conduit, and is erected with a drug placement portion 53 on the top. By reducing the diameter of the lower portion of the ejection pipe 52 and providing the drug placement portion 53 in the upper portion of the ejection pipe 52, the raw water can be brought into contact with the drug at a desired flow rate. The medicine placement part 53 has a size for securing the amount (number) of the medicine to be placed so as to obtain the desired concentration of the medicine with respect to the flow rate of the raw water.
 薬剤を溶かした薬液は、回収部54へ流出する。回収部54において、薬剤を溶かした薬液は、筐体51の下部に貯まり、その後、回収開口55から流出路34へと流れだす。噴出管52の径を小さくし、筐体51の内壁面との距離を確保してあるので、筐体51内に流下した薬剤の溶けた原水は、液面を筐体51の高さに対し、1/2程度、あるいはそれ以下にすることができている。薬液は所望の深さで筐体51内に貯まることによって、流出路34において原水と混合する割合が調整されている。 The liquid medicine in which the medicine is dissolved flows out to the collection unit 54. In the collecting portion 54 , the liquid medicine in which the medicine is dissolved accumulates in the lower portion of the housing 51 and then flows out from the collecting opening 55 to the outflow path 34 . Since the diameter of the ejection pipe 52 is made small and the distance from the inner wall surface of the housing 51 is secured, the liquid level of the raw water in which the drug is dissolved that flows down into the housing 51 is raised to the height of the housing 51. , can be reduced to about 1/2 or less. By accumulating the chemical liquid in the housing 51 at a desired depth, the mixing ratio of the chemical liquid with the raw water in the outflow passage 34 is adjusted.
 また、薬剤路32を流れる原水の流量は、バイパス路33を流れる原水の流量によって調整できる。すなわち、バイパス路33の絞り部33aの径を調整することで、薬剤路32とバイパス路33を流れる原水の流量割合を調整する。このようにして合流後の流出路34における薬剤濃度が所望の濃度になるように調整できるようになっている。なお、絞り部33aの代わりに、流量調整用のバルブを用いてバイパス路33を流れる原水の流量を調整してもよい。 Also, the flow rate of raw water flowing through the drug channel 32 can be adjusted by the flow rate of raw water flowing through the bypass channel 33 . That is, by adjusting the diameter of the narrowed portion 33a of the bypass channel 33, the flow ratio of the raw water flowing through the drug channel 32 and the bypass channel 33 is adjusted. In this manner, the drug concentration in the outflow path 34 after confluence can be adjusted to a desired concentration. The flow rate of the raw water flowing through the bypass 33 may be adjusted using a flow rate adjustment valve instead of the throttle portion 33a.
 そして、薬剤供給部3への原水流入量を所定の範囲内にし、薬剤供給部3内の液面を所望の高さにすることによって、薬剤供給部3から流出する原水の薬剤濃度を所望の範囲内に調整することができるのである。 By setting the amount of raw water flowing into the chemical supply unit 3 within a predetermined range and by setting the liquid level in the chemical supply unit 3 to a desired height, the chemical concentration of the raw water flowing out of the chemical supply unit 3 can be adjusted to a desired level. It can be adjusted within the range.
 なお、薬剤供給部3の筐体51内には、常時の空気層が存在するようにするとよい。筐体51は、原水流入配管10との接続部を除いて密閉空間なので、一旦空気が無くなり、筐体51内が水で満たされると、薬剤60が常に水に接触し溶出し続けることになる。そのため、薬剤供給部3に空気を送るため、原水流入配管10に空気補給用の配管や、逆止弁などのバルブを取付けると良い。 It should be noted that an air layer should always exist within the housing 51 of the drug supply unit 3 . Since the housing 51 is a closed space except for the connecting portion with the raw water inflow pipe 10, once the air disappears and the inside of the housing 51 is filled with water, the drug 60 is always in contact with the water and continues to be eluted. . Therefore, in order to send air to the drug supply unit 3, it is preferable to attach an air supply pipe or a valve such as a check valve to the raw water inflow pipe 10.
 薬剤載置部53には、水溶性で、固形の薬剤60を備えている。薬剤60としては、タブレットや顆粒状のものを用いることがよい。なぜなら、薬剤60の表面積が大きくでき安定した溶剤濃度を保つことができるからである。タブレットであれば、直径30mm、高さ10~20mmのもの、顆粒状であれば直径5mmから15mmのものを使用するとよい。薬剤60の大きさが小さい場合には、隣り合った薬剤が同時に水に接触して薬剤同士が固着してしまう。固着すると、薬剤の下部だけが水に接触して所望の濃度の薬液が得られなくなるということがある。あるいは、薬剤60の大きさが小さい場合には、噴出管52から供給される水との接触面積が大きくなって所望の濃度の薬液が得られなくなる。そのため、所望の濃度の薬液を供給するため、上述の大きさの薬剤60を用いている。 A water-soluble, solid medicine 60 is provided in the medicine placement section 53 . As the medicine 60, it is preferable to use tablets or granules. This is because the chemical agent 60 can have a large surface area and a stable solvent concentration can be maintained. Tablets with a diameter of 30 mm and a height of 10 to 20 mm may be used, and granules with a diameter of 5 mm to 15 mm may be used. If the size of the medicine 60 is small, adjacent medicines come into contact with water at the same time and stick to each other. If it sticks, only the lower portion of the chemical will come into contact with the water, making it impossible to obtain the desired concentration of chemical. Alternatively, if the size of the chemical 60 is small, the contact area with the water supplied from the ejection pipe 52 becomes large, making it impossible to obtain the desired concentration of the chemical. Therefore, the chemical agent 60 having the size described above is used in order to supply the chemical solution with the desired concentration.
 また、薬剤60は、上述のように、原水に含まれる金属イオンを酸化して水に難溶な凝集物を生成する働きをする。薬剤60としては、種々の酸化剤を用いることができるが、求められる水浄化性能によってはPAC(ポリ塩化アルミニウム)やキトサン等、無機の凝集剤や高分子の凝集剤を使用しても良い。原水に対して薬剤を添加する場合には、薬剤60は水に溶けやすいものがよいが、停止中、あるいは逆洗処理中、すなわち、薬剤の添加を中断しているときには、固形形状を保持し、薬剤載置部53から流れ出さないものがよい。本実施の形態では、トリクロロイソシアヌル酸を用いている。 In addition, as described above, the chemical agent 60 functions to oxidize metal ions contained in the raw water to form aggregates that are sparingly soluble in water. Various oxidizing agents can be used as the chemical agent 60, but depending on the required water purification performance, an inorganic coagulant such as PAC (polyaluminum chloride) or chitosan or a polymer coagulant may be used. When a chemical agent is added to the raw water, the chemical agent 60 should be easily soluble in water, but the chemical agent 60 does not retain its solid form during the stoppage or during the backwashing process, that is, when the addition of the chemical agent is suspended. , the one that does not flow out from the medicine loading section 53 is preferable. In this embodiment, trichloroisocyanuric acid is used.
 薬剤供給部3の各部材は、薬剤と長時間接する可能性があるのでPVC(ポリ塩化ビニル)、PMMA(ポリメタクリル酸メチル)、PP(ポリプロピレン)など薬剤に対する反応性が低い素材を選ぶとよい。一方、噴出管52には薬剤載置部53を支えるための強度が必要なので、薬剤に対する相性を考慮すると、噴出管52の材質はPPより強度がある塩化ビニルやABS(アクリロニトリル・ブタジエン・スチレン)などを選択することが好ましい。噴出管52の外径は、基台51aや上部カバー51bの内径の4分の1以下に抑えるとよい。上述のように、噴出管52の外側に載置部出口58から排出された薬剤供給後の溶液を一時貯留する空間(回収部54)を設けることができ、筐体51内の水位が急激に上昇し薬剤載置部53まで到達することを抑制できるからである。例えば、基台51aの内径が130mmの場合、外径25~40mm程度の塩ビ管などを使用するとよい。 Since each member of the drug supply unit 3 may be in contact with the drug for a long time, it is better to select a material with low reactivity to the drug, such as PVC (polyvinyl chloride), PMMA (polymethyl methacrylate), or PP (polypropylene). . On the other hand, since the ejection tube 52 requires strength to support the drug mounting portion 53, the material of the ejection tube 52 is vinyl chloride or ABS (acrylonitrile-butadiene-styrene), which is stronger than PP, considering compatibility with the drug. etc. is preferably selected. The outer diameter of the ejection pipe 52 is preferably suppressed to 1/4 or less of the inner diameter of the base 51a or the upper cover 51b. As described above, a space (recovery section 54) for temporarily storing the solution discharged from the placement section outlet 58 after drug supply can be provided outside the ejection tube 52. This is because it is possible to prevent the drug from rising and reaching the drug placement section 53 . For example, when the inner diameter of the base 51a is 130 mm, it is preferable to use a PVC pipe having an outer diameter of about 25 to 40 mm.
 (配管構成)
 本実施の形態の最も特徴的な部分について説明する。
(Piping configuration)
The most characteristic part of this embodiment will be described.
 上述のとおり、本実施の形態の水処理装置1は、濾過部2と、原水流入配管10と、浄水吐出配管20と、逆洗ドレン管40を備えている(図1)。原水流入配管10は、入口側を水源となる電動ポンプ4の吐出口と配管接続され、出口側は濾過部2の切替弁5に接続されている。原水流入配管10の経路内には、薬剤供給部3が設けられ、さらに、薬剤供給部3を迂回するバイパス配管14が設けられている。このバイパス配管14は、薬剤供給部3の上流側の原水流入配管10で分岐(第1分岐部12)し、薬剤供給部3を迂回して、薬剤供給部3の下流側で原水流入配管10に合流(第2分岐部13)する。バイパス配管14の経路内には、バイパス配管14の経路を開放/閉鎖する、あるいは、バイパス配管14内を流れる流量を調整するバイパスバルブ15が設けられている。つまり、バイパスバルブ15は、バイパスバルブ15内を流れる水量を調整可能(バイパスバルブ15内の水路を開放または閉鎖可能)である。 As described above, the water treatment apparatus 1 of the present embodiment includes the filtration unit 2, the raw water inflow pipe 10, the purified water discharge pipe 20, and the backwash drain pipe 40 (Fig. 1). The inlet side of the raw water inflow pipe 10 is connected to the discharge port of the electric pump 4 serving as the water source, and the outlet side is connected to the switching valve 5 of the filtering section 2 . A drug supply unit 3 is provided in the path of the raw water inflow pipe 10 , and a bypass pipe 14 bypassing the drug supply unit 3 is provided. This bypass pipe 14 branches at the raw water inflow pipe 10 on the upstream side of the chemical supply unit 3 (first branch portion 12), bypasses the chemical supply unit 3, and flows into the raw water inflow pipe 10 on the downstream side of the chemical supply unit 3. joins (second branch 13). A bypass valve 15 is provided in the path of the bypass pipe 14 to open/close the path of the bypass pipe 14 or adjust the flow rate of the bypass pipe 14 . That is, the bypass valve 15 can adjust the amount of water flowing through the bypass valve 15 (the water channel inside the bypass valve 15 can be opened or closed).
 濾過部2は、2つの出口を有しており、一方の出口には、内部で浄化された水を取り出す浄水吐出配管20が接続されている。他方の出口には、逆洗処理時、リンス処理時に、濾過部2で捕集された粒状物質(よごれ、濁質成分、金属凝集物など)を系外へ排出する逆洗ドレン管40が接続されている。 The filtration unit 2 has two outlets, and one of the outlets is connected to a purified water discharge pipe 20 for extracting water purified inside. The other outlet is connected to a backwash drain pipe 40 for discharging particulate matter (dirt, turbidity components, metal aggregates, etc.) collected by the filtration unit 2 during backwashing and rinsing to the outside of the system. It is
 次に、図1~4を用いて、水処理装置1内の配管構成と、濾過処理、逆洗処理における水の流れを説明する。図4は、濾過部2の断面概略図で、図4の(a)は濾過処理時の全体図、図4の(b)は逆洗処理時の切替弁5の状態、図4の(c)はリンス処理時の切替弁5の状態を示すものである。 Next, with reference to FIGS. 1 to 4, the piping configuration inside the water treatment device 1 and the flow of water during filtration and backwashing will be described. 4A and 4B are schematic cross-sectional views of the filtration unit 2, in which FIG. 4A is an overall view during the filtration process, FIG. ) indicates the state of the switching valve 5 during the rinsing process.
 濾過処理時においては、図1と図4の(a)に示すように、原水流入配管10は、水源側の原水入口11から薬剤供給部3を経由して濾過部2へと接続する。濾過部2では、原水流入配管10と流入口73とが連通し、流出口74と浄水吐出配管20とが連通するように、切替弁5を操作して、接続を切り替える。 During the filtration process, as shown in FIGS. 1 and 4(a), the raw water inflow pipe 10 is connected from the raw water inlet 11 on the water source side to the filtration unit 2 via the chemical supply unit 3. In the filtering unit 2, the connection is switched by operating the switching valve 5 so that the raw water inflow pipe 10 and the inflow port 73 are in communication and the outflow port 74 and the purified water discharge pipe 20 are in communication.
 このような配管構成において、濾過処理時には、以下のように水が流れることになる。 In such a piping configuration, water flows as follows during filtration.
 [濾過処理時の流路]
 原水入口11→(原水流入配管10)→第1分岐部12→薬剤供給部3→第2分岐部13→切替弁5→濾過部2→切替弁5→(浄水吐出配管20)→浄水出口21
 なお、浄水吐出配管20の経路内には、逆止弁62を設けている。浄水出口21から取り出した浄水は、高所に設けた浄水タンク6へと配管接続される場合が多い。逆止弁62は、高所に設けられた浄水タンク6からの浄水の逆流を制止し、濾過部2内への水の逆流入を防ぐものである。
[Flow path during filtration]
Raw water inlet 11→(raw water inflow pipe 10)→first branch 12→chemical supply unit 3→second branch 13→switching valve 5→filtering unit 2→switching valve 5→(purified water discharge pipe 20)→purified water outlet 21
A check valve 62 is provided in the route of the purified water discharge pipe 20 . Purified water taken out from the purified water outlet 21 is often piped to a purified water tank 6 provided at a high place. The check valve 62 prevents reverse flow of purified water from the purified water tank 6 provided at a high place and prevents reverse flow of water into the filtering section 2 .
 次に、図2と図4の(b)を用い逆洗処理時の水の流れを説明する。逆洗処理時には、バイパスバルブ15を開放して、原水流入配管10を、水源側の原水入口11から、薬剤供給部3を迂回し、バイパス配管14を経由して濾過部2へと接続する。濾過部2では、原水流入配管10と流出口74とが連通し、流入口73と逆洗ドレン管40とが連通するように、切替弁5を操作して、接続を切り替える。このとき、濾過部2内では、濾過処理時とは水の流れが逆になる。本実施の形態による水処理装置1では、切替弁5とバイパスバルブ15を切り替えることによって水源(電動ポンプ4)をひとつにして、濾過処理、逆洗処理を行うことができる。 Next, the flow of water during the backwashing process will be described using FIG. 2 and FIG. 4(b). During backwashing, the bypass valve 15 is opened, and the raw water inflow pipe 10 is connected from the raw water inlet 11 on the water source side to the filtration unit 2 via the bypass pipe 14 bypassing the chemical supply unit 3 . In the filtration unit 2, the switching valve 5 is operated to switch the connection so that the raw water inflow pipe 10 and the outflow port 74 are in communication and the inflow port 73 and the backwash drain pipe 40 are in communication. At this time, the flow of water in the filtering section 2 is reversed from that during the filtering process. In the water treatment apparatus 1 according to the present embodiment, by switching the switching valve 5 and the bypass valve 15, the water source (the electric pump 4) can be used as one, and filtration and backwashing can be performed.
 逆洗処理時には、以下のように水が流れることになる。 During the backwash process, water flows as follows.
 [逆洗処理時の流路]
 原水入口11→(原水流入配管10)→第1分岐部12→(バイパス配管14)→バイパスバルブ15→(バイパス配管14)→第2分岐部13→切替弁5→濾過部2→切替弁5→逆洗ドレン管40
 このように、逆洗処理時には、濾過部2を通過した後、装置外へ排出するので、薬剤の添加によって金属イオン等を凝集させる必要がない。従って、逆洗処理時には、原水は、薬剤供給部3を迂回するバイパス配管14を経由して濾過部2へ送られる。そして、逆洗処理時には薬剤の溶出を抑えて、原水に近い状態のままの水が濾過部2に供給され、濾過部2内の洗浄を行うことになる。
[Flow path during backwashing]
Raw water inlet 11 → (raw water inflow pipe 10) → first branch 12 → (bypass pipe 14) → bypass valve 15 → (bypass pipe 14) → second branch 13 → switching valve 5 → filtering unit 2 → switching valve 5 → Backwash drain pipe 40
In this way, during the backwashing process, after passing through the filtration unit 2, the material is discharged out of the apparatus, so there is no need to add chemicals to agglomerate metal ions and the like. Therefore, during the backwashing process, the raw water is sent to the filtration unit 2 via the bypass pipe 14 bypassing the chemical supply unit 3 . During the backwashing process, the elution of chemicals is suppressed, and water in a state close to raw water is supplied to the filtering section 2 to wash the inside of the filtering section 2 .
 また、逆洗処理を行う際には、大きな流量を必要とする。そのため、バイパス配管14の径を大きくすることによって、逆洗処理時の原水の流量を大きく確保することができる。一方、濾過処理時には、濾過部2の能力により流量を設定する。そのため、濾過処理時に通過する配管の一部、すなわち、浄水吐出配管20の経路内に絞り部24を設け、濾過処理時における流量を抑えるようにしている。この絞り部24と電動ポンプ4との組み合わせによって、濾過処理時の流量を所望の設計値にしている。そして、バイパス配管14の径は、絞り部24よりも大きくして、逆洗処理時にバイパス配管14を通過する水の流量を確保するようになっている。 In addition, a large flow rate is required when performing backwashing. Therefore, by increasing the diameter of the bypass pipe 14, a large flow rate of the raw water can be ensured during the backwashing process. On the other hand, during the filtering process, the flow rate is set according to the performance of the filtering section 2 . Therefore, a throttle portion 24 is provided in a portion of the pipe that passes during the filtration process, that is, in the route of the purified water discharge pipe 20 to suppress the flow rate during the filtration process. The combination of the throttle portion 24 and the electric pump 4 allows the flow rate during the filtration process to be a desired designed value. The diameter of the bypass pipe 14 is made larger than that of the constricted portion 24 to ensure the flow rate of water passing through the bypass pipe 14 during the backwashing process.
 なお、逆洗処理時の大きな流量をそのまま排出するため、逆洗ドレン管40は絞り部24に比べ径を大きくとっている。 In addition, the diameter of the backwash drain pipe 40 is made larger than that of the throttle portion 24 in order to discharge the large flow rate during the backwash process as it is.
 また、バイパスバルブ15は、原水流入配管10、浄水吐出配管20内の圧力、あるいは流量を検知し、開閉するようにしてもよい。逆洗処理と濾過処理では経路が異なるため、原水流入配管10中の圧力にも差が生まれる。この圧力差によってバイパスバルブ15を開閉させることができる。すなわち、バイパスバルブ15として、原水流入配管10や浄水吐出配管20に設けた圧力スイッチや、水処理装置1内の配管に設けた流量計から信号を受けて開閉する電磁弁や電動弁を使用しても良い。 Also, the bypass valve 15 may detect the pressure or flow rate in the raw water inflow pipe 10 and the purified water discharge pipe 20 to open and close. Since the backwashing process and the filtration process have different routes, a difference in pressure is also generated in the raw water inflow pipe 10 . By this pressure difference, the bypass valve 15 can be opened and closed. That is, as the bypass valve 15, a pressure switch provided in the raw water inflow pipe 10 or the purified water discharge pipe 20, or a solenoid valve or an electric valve that opens and closes in response to a signal from a flow meter provided in the pipe in the water treatment apparatus 1 is used. can be
 また、切替弁5や電動ポンプ4を一括で制御する場合は、バイパスバルブ15と切替弁5を連動させて流路を変更させることも可能である。あるいは、切替弁5の操作に連動してバイパスバルブ15の開閉を行ってもよい。 Further, when the switching valve 5 and the electric pump 4 are collectively controlled, the bypass valve 15 and the switching valve 5 can be interlocked to change the flow path. Alternatively, the bypass valve 15 may be opened and closed in conjunction with the operation of the switching valve 5 .
 なお、本実施の形態の水処理装置1は、逆洗処理時に配管内に残った異物を排出するための「リンス処理」を行うことができる。このリンス処理について、図3と図4の(c)を用いて説明する。リンス処理は切替弁5の流路を変更することで可能である。具体的には、バイパスバルブ15は開かれる。切替弁5は、原水流入配管10と流入口73を連通し、流出口74と逆洗ドレン管40とを連通するように切り替えられる。このような状態では、濾過部2内では、濾過処理と同方向に通水し、濾過部2を通過した水は逆洗ドレン管40を通って排出される。 It should be noted that the water treatment apparatus 1 of the present embodiment can perform a "rinse process" for discharging foreign matter remaining in the pipes during the backwash process. This rinsing process will be described with reference to FIGS. 3 and 4(c). The rinsing process can be performed by changing the flow path of the switching valve 5 . Specifically, the bypass valve 15 is opened. The switching valve 5 is switched so that the raw water inflow pipe 10 and the inflow port 73 are communicated, and the outflow port 74 and the backwash drain pipe 40 are communicated. In such a state, the water flows in the filtering section 2 in the same direction as the filtering process, and the water that has passed through the filtering section 2 is discharged through the backwash drain pipe 40 .
 このようなバルブ操作によって、リンス処理時には、以下のように水が流れることになる。 Due to such valve operation, water flows as follows during rinsing.
 [リンス処理時の流路]
 原水入口11→(原水流入配管10)→第1分岐部12→(バイパス配管14)→第2分岐部13→切替弁5→濾過部2→切替弁5→逆洗ドレン管40
 逆洗処理が終わった直後には、濾過部2内、あるいは、水処理装置1の配管内には、濾過部2の逆洗によって洗い出された異物が残っている。そのため、リンス処理によって、異物を排出することができる。本実施の形態では、リンス処理では薬剤を添加しないようにバイパスバルブ15を開放し、バイパス配管14側に水を流し、薬剤60の使用量を減らしたが、バイパスバルブ15を閉じて流れる水に薬剤60を添加してもよい。
[Flow path during rinsing]
Raw water inlet 11 → (raw water inflow pipe 10 ) → first branch 12 → (bypass pipe 14 ) → second branch 13 → switching valve 5 → filtering unit 2 → switching valve 5 → backwash drain pipe 40
Immediately after the backwashing process is finished, foreign substances washed out by the backwashing of the filtration unit 2 remain in the filtration unit 2 or in the pipes of the water treatment device 1 . Therefore, the foreign matter can be discharged by the rinsing process. In the present embodiment, the bypass valve 15 is opened so as not to add the chemical agent in the rinsing process, water is flowed to the bypass pipe 14 side, and the amount of the chemical agent 60 used is reduced. A drug 60 may be added.
 このように、数種類の運転モードがある水処理装置1に使用する薬剤供給部3は、必要に応じて薬剤添加の有無を切り替える必要がある。そのため、流量によって薬剤添加の有無を切り替えられる薬剤供給部3と、薬剤供給部3を迂回するバイパス配管14を接続することで、濾過処理運転時には薬剤を添加し、逆洗運転時には薬剤を添加しないことが可能となる。 In this way, the chemical supply unit 3 used in the water treatment apparatus 1, which has several types of operation modes, needs to switch between adding chemicals and not adding them as necessary. Therefore, by connecting the chemical supply unit 3, which can switch whether or not the chemical agent is added depending on the flow rate, and the bypass pipe 14 that bypasses the chemical supply unit 3, the chemical agent is added during the filtration operation, and is not added during the backwash operation. becomes possible.
 (実施の形態1-2)
 図6は、実施の形態1-2の水処理装置1の全体構成を示すとともに、濾過処理時における水の流れを示した概略図である。図7は、本実施の形態の逆洗処理時の水の流れを示す概略図となっている。実施の形態1-1と同様の構成要素については、同一の符号を付し、その詳細の説明を省略する。図6、図7に示すように、実施の形態1-1と相違する点は、バイパスバルブ15の位置と空気注入部80である。
(Embodiment 1-2)
FIG. 6 is a schematic diagram showing the overall configuration of the water treatment apparatus 1 of Embodiment 1-2 and showing the flow of water during filtration. FIG. 7 is a schematic diagram showing the flow of water during the backwashing process of this embodiment. Components similar to those in Embodiment 1-1 are denoted by the same reference numerals, and detailed descriptions thereof are omitted. As shown in FIGS. 6 and 7, the difference from Embodiment 1-1 lies in the position of the bypass valve 15 and the air injection section 80. FIG.
 バイパスバルブ15は、原水流入配管10内でも良い。具体的には、原水流入配管10は、原水流入配管10においてバイパス配管14に分岐する第1分岐部12と、原水流入配管10においてバイパス配管14と合流する第2分岐部13と、を有している。バイパスバルブ15は、原水流入配管10において第1分岐部12と薬剤供給部3との間の配管、または原水流入配管10において薬剤供給部3と第2分岐部13との間の配管に設けられる。バイパスバルブ15は、バイパスバルブ15内を流れる水量を調整可能(バイパスバルブ15内の水路を開放または閉鎖可能)である。なお、本実施の形態では、バイパスバルブ15は、原水流入配管10において薬剤供給部3と第2分岐部13との間の配管に設けられている。 The bypass valve 15 may be inside the raw water inflow pipe 10 . Specifically, the raw water inflow pipe 10 has a first branch portion 12 that branches to the bypass pipe 14 in the raw water inflow pipe 10, and a second branch portion 13 that joins the bypass pipe 14 in the raw water inflow pipe 10. ing. The bypass valve 15 is provided in the pipe between the first branch portion 12 and the drug supply portion 3 in the raw water inflow pipe 10, or in the pipe between the drug supply portion 3 and the second branch portion 13 in the raw water inflow pipe 10. . The bypass valve 15 can adjust the amount of water flowing through the bypass valve 15 (the water channel inside the bypass valve 15 can be opened or closed). Incidentally, in the present embodiment, the bypass valve 15 is provided in the pipe between the chemical supply part 3 and the second branch part 13 in the raw water inflow pipe 10 .
 空気注入部80はバイパス配管14内に設置され、バイパス配管14中に空気を注入する事ができる。この空気注入部にはベンチュリ構造を用いても良い。 The air injection part 80 is installed inside the bypass pipe 14 and can inject air into the bypass pipe 14 . A venturi structure may be used for this air injection section.
 図8は、水処理装置1の空気注入部80の概略図である。ベンチュリ構造を用いた場合の構成を図8に示し、空気注入部80が機能する原理を説明する。 FIG. 8 is a schematic diagram of the air injection part 80 of the water treatment device 1. FIG. FIG. 8 shows a configuration using a venturi structure, and the principle of functioning of the air injection section 80 will be described.
 空気注入部80はバイパス配管14の途中に設けられている。空気注入部80は、第1管部81と、第2管部82と、第3管部83と、第1傾斜管部84と、第2傾斜管部85と、空気管86と、を有している。 The air injection part 80 is provided in the middle of the bypass pipe 14 . The air injection section 80 has a first pipe portion 81 , a second pipe portion 82 , a third pipe portion 83 , a first inclined pipe portion 84 , a second inclined pipe portion 85 , and an air pipe 86 . is doing.
 第1管部81は、中心軸が水平方向に延びる管形状である。第1管部81を流れる水の速度は、空気注入部80において最も速くなる。 The first pipe portion 81 has a tubular shape with a central axis extending in the horizontal direction. The speed of water flowing through the first pipe portion 81 is the fastest in the air injection portion 80 .
 第2管部82は、第1管部81の水の流れにおいて第1管部81より上流側に設けられ、中心軸が水平方向に延びる管形状である。第2管部82において水が流れる断面積は、第1管部81において水が流れる断面積より大きい。第2管部82と第1管部81とは、第1傾斜管部84によって連結されている。 The second pipe portion 82 is provided upstream of the first pipe portion 81 in the water flow of the first pipe portion 81, and has a tubular shape with a central axis extending in the horizontal direction. The cross-sectional area through which water flows in the second pipe portion 82 is larger than the cross-sectional area through which water flows in the first pipe portion 81 . The second pipe portion 82 and the first pipe portion 81 are connected by a first inclined pipe portion 84 .
 第1傾斜管部84は、中心軸が水平方向に延び、第2管部82から第1管部81に向かうにつれて水が流れる断面積が小さくなる管形状である。 The first inclined pipe portion 84 has a tubular shape in which the central axis extends in the horizontal direction and the cross-sectional area through which water flows decreases from the second pipe portion 82 toward the first pipe portion 81 .
 第3管部83は、第1管部81の水の流れにおいて第1管部81より下流側に設けられ、中心軸が水平方向に延びる管形状である。第3管部83において水が流れる断面積は、第1管部81において水が流れる断面積より大きい。第3管部83と第1管部81とは、第2傾斜管部85によって連結されている。 The third pipe portion 83 is provided downstream of the first pipe portion 81 in the water flow of the first pipe portion 81, and has a tubular shape with a central axis extending in the horizontal direction. The cross-sectional area through which water flows in the third pipe portion 83 is larger than the cross-sectional area through which water flows in the first pipe portion 81 . The third pipe portion 83 and the first pipe portion 81 are connected by a second inclined pipe portion 85 .
 第2傾斜管部85は、中心軸が水平方向に延び、第1管部81から第3管部83に向かうにつれて水が流れる断面積が大きくなる管形状である。 The second inclined pipe portion 85 has a tubular shape in which the central axis extends in the horizontal direction and the cross-sectional area through which water flows increases from the first pipe portion 81 toward the third pipe portion 83 .
 空気管86は、第1管部81の上面から上方に延びる管形状である。空気管86の上端は、大気中に開口し、第1管部81内と連通している。空気管86の断面積は、第1管部81の断面積より小さい。空気管86には逆止弁を設けても良い。 The air pipe 86 has a tubular shape extending upward from the upper surface of the first pipe portion 81 . The upper end of the air pipe 86 is open to the atmosphere and communicates with the inside of the first pipe portion 81 . The cross-sectional area of the air tube 86 is smaller than the cross-sectional area of the first tube portion 81 . A check valve may be provided in the air pipe 86 .
 空気注入部80を流れる水は、第2管部82に流れ込み、第1傾斜管部84、第1管部81、第2傾斜管部85、を順次介して、第3管部83から流れ出す。 The water flowing through the air injection part 80 flows into the second pipe part 82 , passes through the first inclined pipe part 84 , the first pipe part 81 , the second inclined pipe part 85 in order, and flows out of the third pipe part 83 .
 なお、第1管部81と、第2管部82と、第3管部83と、第1傾斜管部84と、第2傾斜管部85と、空気管86とは、一体的に形成されている。第1管部81と、第2管部82と、第3管部83と、第1傾斜管部84と、第2傾斜管部85との中心軸は一直線上に配置されている。 The first pipe portion 81, the second pipe portion 82, the third pipe portion 83, the first inclined pipe portion 84, the second inclined pipe portion 85, and the air pipe 86 are integrally formed. ing. The central axes of the first pipe portion 81, the second pipe portion 82, the third pipe portion 83, the first inclined pipe portion 84, and the second inclined pipe portion 85 are arranged on a straight line.
 空気注入部80は、第2管部82から第3管部83へ水が流れている場合、第1管部81の流速が第2管部82の流速より大きくなる。一方、水が持つエネルギーは、速度水頭・圧力水頭・位置水頭の3種類であり、エネルギー総和は第2管部82と第1傾斜管部84と、第1管部81で保存される。空気注入部80の中心軸が水平の場合、第2管部82と、第1傾斜管部84と、第1管部81との位置水頭は同等であるため、第1管部81の流速が上がり、速度水頭が上昇した分、圧力水頭が低下する。この圧力水頭の低下が大きい場合、第1管部81は負圧になる。第1管部81が負圧になり大気圧より低くなると、空気管から空気を誘引し第1管部81内に空気が混入し、水と混合した後、第2傾斜管部85を介して、第3管部83より排出される。 In the air injection part 80, when water flows from the second pipe part 82 to the third pipe part 83, the flow velocity of the first pipe part 81 becomes higher than the flow velocity of the second pipe part 82. On the other hand, water has three types of energy: velocity head, pressure head, and position head. When the central axis of the air injection part 80 is horizontal, the positional water heads of the second pipe part 82, the first inclined pipe part 84, and the first pipe part 81 are the same, so the flow velocity of the first pipe part 81 is As the velocity head increases, the pressure head decreases. When the drop in the pressure head is large, the pressure in the first pipe section 81 becomes negative. When the pressure in the first pipe portion 81 becomes negative and becomes lower than the atmospheric pressure, air is drawn from the air pipe, mixed in the first pipe portion 81 , mixed with water, and then passed through the second inclined pipe portion 85 . , is discharged from the third pipe portion 83 .
 第1管部81と第2管部82の流速差が大きいほど、第1管部81の圧力低下は大きくなる。そのため、バイパス配管14の流量が大きい場合に、第1管部81は負圧になりやすい。また、第1管部81の圧力は第2管部82との圧力差で決まるため、第2管部82の圧力が低いほど負圧になりやすい。つまり、空気注入部80より後段の圧力抵抗が低いほど負圧になりやすく、空気を吸い込みやすい。また、第1管部81の負圧を生じさせるためには、第1管部81と第2管部82の内径比を、1:3~1:10程度にすると良い。なお、第1管部81、第2管部82、第3管部83、第1傾斜管部84、第2傾斜管部85の中心軸は水平ではなくても良い。その場合、第1管部81と第2管部82の位置水頭が変化することも考慮に入れた上で第1管部81が十分負圧になるよう、第1管部81と第2管部82の内径比を定めると良い。 The pressure drop in the first pipe portion 81 increases as the flow velocity difference between the first pipe portion 81 and the second pipe portion 82 increases. Therefore, when the flow rate of the bypass pipe 14 is large, the pressure in the first pipe portion 81 tends to be negative. In addition, since the pressure of the first pipe portion 81 is determined by the pressure difference with the second pipe portion 82, the lower the pressure of the second pipe portion 82, the more easily the pressure becomes negative. In other words, the lower the pressure resistance in the rear stage of the air injection section 80, the easier it is to become negative pressure and the easier it is to suck in air. Also, in order to generate a negative pressure in the first pipe portion 81, the inner diameter ratio of the first pipe portion 81 and the second pipe portion 82 should be about 1:3 to 1:10. The central axes of the first pipe portion 81, the second pipe portion 82, the third pipe portion 83, the first inclined pipe portion 84, and the second inclined pipe portion 85 may not be horizontal. In that case, the first pipe portion 81 and the second pipe portion 81 and the second pipe portion 81 are adjusted so that the pressure in the first pipe portion 81 becomes sufficiently negative, taking into account the fact that the positional water heads of the first pipe portion 81 and the second pipe portion 82 change. It is preferable to determine the inner diameter ratio of the portion 82 .
 バイパスバルブ15が原水流入配管10内にある場合は、バイパス配管14の圧力損失が非常に重要である。例えば、バイパス配管14の圧力損失が小さい場合、すべての原水がバイパス配管14に流入し、薬剤供給部3側の流量がゼロになる。その場合、バイパス配管14内に絞りを設け、バイパス配管14の圧力損失を増加させることによって、薬剤供給部3に原水を供給すると良い。これは、原水の分岐流量が、バイパス配管14の圧力損失と、薬剤供給部3の圧力損失の比で決まるからである。この原理を利用し、ろ過時の薬剤供給部3側の流量は、バイパス配管14の圧力損失によって決める事ができ、薬剤供給部3側の流量を調整する事によって、供給する薬剤の濃度も調整することが可能である。 When the bypass valve 15 is inside the raw water inflow pipe 10, the pressure loss in the bypass pipe 14 is very important. For example, when the pressure loss of the bypass pipe 14 is small, all the raw water flows into the bypass pipe 14 and the flow rate on the side of the medicine supply section 3 becomes zero. In that case, it is preferable to supply the raw water to the drug supply unit 3 by providing a throttle in the bypass pipe 14 to increase the pressure loss of the bypass pipe 14 . This is because the branched flow rate of the raw water is determined by the ratio of the pressure loss in the bypass pipe 14 and the pressure loss in the chemical supply unit 3 . Using this principle, the flow rate on the side of the drug supply unit 3 during filtration can be determined by the pressure loss of the bypass pipe 14, and by adjusting the flow rate on the side of the drug supply unit 3, the concentration of the drug to be supplied can also be adjusted. It is possible to
 一方、バイパス配管14の圧力損失の多くは空気注入部80で決まる。そのため、空気注入部80は空気の注入量と圧力損失の両方を考慮し設計する必要がある。 On the other hand, most of the pressure loss in the bypass pipe 14 is determined by the air injection section 80. Therefore, the air injection part 80 needs to be designed considering both the injection amount of air and the pressure loss.
 実施の形態1-2における各運転モードの動作を以下で説明する。 The operation of each operation mode in Embodiment 1-2 will be described below.
 濾過処理時においては、図6と図4の(a)に示すように、バイパスバルブ15を開放して、原水流入配管10は、水源側の原水入口11から薬剤供給部3またはバイパス配管14を経由して濾過部2へと接続される。濾過部2では、原水流入配管10と流入口73とが連通し、流出口74と浄水吐出配管20とが連通するように、切替弁5を操作して、接続を切り替える。 During the filtration process, as shown in FIGS. 6 and 4A, the bypass valve 15 is opened, and the raw water inflow pipe 10 flows from the raw water inlet 11 on the water source side to the chemical supply unit 3 or the bypass pipe 14. It is connected to the filtering unit 2 via the In the filtering unit 2, the connection is switched by operating the switching valve 5 so that the raw water inflow pipe 10 and the inflow port 73 are in communication and the outflow port 74 and the purified water discharge pipe 20 are in communication.
 濾過処理の場合は、バイパスバルブ15を開にする事によって以下のような流路を取る。 In the case of filtration processing, the following flow path is taken by opening the bypass valve 15.
 [濾過処理時の流路]
 原水入口11→(原水流入配管10)→第1分岐部12→薬剤供給部3+バイパス配管14→第2分岐部13→切替弁5→濾過部2→切替弁5→(浄水吐出配管20)→絞り部24+浄水出口21
 この流路では、第1分岐部12で薬剤供給部3とバイパス配管14に流路が分岐されることによって、薬剤を供給することが可能である。
[Flow path during filtration]
Raw water inlet 11 → (raw water inflow pipe 10) → first branch 12 → drug supply unit 3 + bypass pipe 14 → second branch 13 → switching valve 5 → filtration unit 2 → switching valve 5 → (purified water discharge pipe 20) → Squeezed portion 24 + purified water outlet 21
In this flow path, the flow path is branched into the medicine supply part 3 and the bypass pipe 14 at the first branch part 12, so that the medicine can be supplied.
 濾過処理時には、空気注入部80にも水が流れるが、空気は注入されない。これは、上記で説明した通り、空気注入部80から空気が吸引されるためには、空気注入部80の流速が大きい事と、空気注入部80の第2管部82の圧力が小さい事(空気注入部の前後圧力と同等)が重要であるためである。濾過処理時には、薬剤供給部3側の流量とバイパス配管14側の流量に分岐されるため、空気注入部80を流れる流量は低下する。また、絞り部24を水が通るため、バイパス配管14内の圧力が高まり第2管部82の圧力も同時に高まり、バイパス配管14を流れる水流の速度が所定の速度より小さくなる。以上2点より、空気が吸引する事を防ぐことが可能である。 During the filtration process, water also flows through the air injection section 80, but air is not injected. This is because, as described above, in order for the air to be sucked from the air injection section 80, the flow velocity of the air injection section 80 must be high and the pressure of the second tube portion 82 of the air injection section 80 must be low ( This is because the front-rear pressure of the air injection part) is important. During the filtration process, the flow is branched into the flow on the side of the drug supply unit 3 and the flow on the side of the bypass pipe 14, so the flow through the air injection unit 80 decreases. In addition, since the water passes through the narrowed portion 24, the pressure in the bypass pipe 14 increases and the pressure in the second pipe portion 82 also increases at the same time, so that the speed of the water flowing through the bypass pipe 14 becomes smaller than the predetermined speed. From the above two points, it is possible to prevent air from being sucked.
 次に、図7と図4の(b)を用い逆洗処理時の水の流れを説明する。逆洗処理時には、バイパスバルブ15を閉鎖して、原水流入配管10は、水源側の原水入口11から、バイパスバルブ15を迂回し、バイパス配管14を経由して濾過部2へと接続される。濾過部2では、原水流入配管10と流出口74とが連通し、流入口73と逆洗ドレン管40とが連通するように、切替弁5を操作して、接続を切り替える。このとき、濾過部2内では、濾過処理時とは水の流れが逆になる。本実施の形態による水処理装置1では、切替弁5とバイパスバルブ15を切り替えることによって水源(電動ポンプ4)をひとつにして、濾過処理、逆洗処理を行うことができる。 Next, the flow of water during the backwashing process will be described using FIG. 7 and FIG. 4(b). During backwashing, the bypass valve 15 is closed, and the raw water inflow pipe 10 is connected from the raw water inlet 11 on the water source side to the filtration unit 2 via the bypass pipe 14 bypassing the bypass valve 15 . In the filtration unit 2, the switching valve 5 is operated to switch the connection so that the raw water inflow pipe 10 and the outflow port 74 are in communication and the inflow port 73 and the backwash drain pipe 40 are in communication. At this time, the flow of water in the filtering section 2 is reversed from that during the filtering process. In the water treatment apparatus 1 according to the present embodiment, by switching the switching valve 5 and the bypass valve 15, the water source (the electric pump 4) can be used as one, and filtration and backwashing can be performed.
 逆洗処理の場合は、バイパスバルブ15を閉鎖にする事によって以下のような流路を取る。 In the case of backwashing, the following flow path is taken by closing the bypass valve 15.
 [逆洗処理時の流路]
 原水入口11→(原水流入配管10)→第1分岐部12→バイパス配管14→第2分岐部13→切替弁5→濾過部2→切替弁5→逆洗ドレン管40
 薬剤供給部3側の流量は、バイパスバルブ15によって完全に遮断され、逆洗処理時に薬剤を流出させることを防止することが可能である。
[Flow path during backwashing]
Raw water inlet 11→(raw water inflow pipe 10)→first branch 12→bypass pipe 14→second branch 13→switching valve 5→filtering unit 2→switching valve 5→backwash drain pipe 40
The flow rate on the side of the drug supply unit 3 is completely shut off by the bypass valve 15, and it is possible to prevent the drug from flowing out during the backwashing process.
 また、逆洗処理時には、バイパス配管14の流量が大きくなり、空気注入部80から空気が注入される。これは、上記で説明した通り、バイパス配管14の流量が大きい場合には、空気注入部80の第2管部82と第1管部81の流速差が大きくなり、第1管部81の圧力低下が大きくなるためである。結果として、空気管86から空気が、第1管部81内に吸引される。吸引された空気は、切替弁5を経由し濾過部2内に侵入する。ろ材の下部に侵入した空気が上昇する力によって、濾過部2に溜まった汚れを崩壊させ逆洗処理の効率を上げる事が可能である。 Also, during the backwashing process, the flow rate of the bypass pipe 14 increases and air is injected from the air injection section 80 . This is because, as described above, when the flow rate of the bypass pipe 14 is large, the flow velocity difference between the second pipe portion 82 and the first pipe portion 81 of the air injection portion 80 increases, and the pressure in the first pipe portion 81 increases. This is because the decrease becomes larger. As a result, air is sucked into the first tube portion 81 from the air tube 86 . The sucked air enters the filtering section 2 via the switching valve 5 . It is possible to improve the efficiency of the backwashing process by breaking down the dirt accumulated in the filtering part 2 by the rising force of the air that has entered the lower part of the filter medium.
 (実施の形態2)
 従来、水処理装置における酸化剤等の薬剤の供給には固体の薬剤を水に接触させる薬剤供給装置が用いられている。例えば、井戸水を浄水処理する場合には、固体の次亜塩素酸カルシウムを徐々に溶かす薬剤供給装置を用いて、浄水処理対象となる原水を酸化させることが可能である。
(Embodiment 2)
Conventionally, a chemical supply device that brings a solid chemical into contact with water has been used to supply chemical such as an oxidizing agent in a water treatment apparatus. For example, when purifying well water, it is possible to oxidize raw water to be purified by using a chemical feeder that gradually dissolves solid calcium hypochlorite.
 定量ポンプで薬剤を注入するシステム、もしくは流量に関わらず一定量の薬剤を溶出させる薬剤供給装置においては、注入する配管の流量に合わせて定量ポンプの流量を変化させる必要があり、非常に高価である。 In a system that injects drugs with a metering pump, or a drug supply device that elutes a constant amount of drug regardless of the flow rate, it is necessary to change the flow rate of the metering pump according to the flow rate of the injection pipe, which is very expensive. be.
 図20は、従来の水処理装置の構成を示す模式図である。図20に示す通り、固形薬剤供給装置1101においては、取水口1102から原水を流入させて水溶性固形薬剤1103に原水を接触させる。薬剤接触相1104内に水が流入すると、一定の流量範囲内では流量の増加に応じて、原水に接触する水溶性固形薬剤1103の量が増加する。本機構により、流量が上昇した際は薬剤が溶出し、流量が停止している際は、薬剤の溶出を抑えることが可能である(例えば、特許文献1参照)。 FIG. 20 is a schematic diagram showing the configuration of a conventional water treatment device. As shown in FIG. 20 , in the solid medicine supply device 1101 , raw water is introduced from a water intake 1102 to bring the raw water into contact with a water-soluble solid medicine 1103 . When water flows into the drug contact phase 1104, the amount of the water-soluble solid drug 1103 in contact with the raw water increases as the flow rate increases within a certain flow rate range. With this mechanism, the drug is eluted when the flow rate is increased, and the elution of the drug can be suppressed when the flow rate is stopped (see, for example, Patent Document 1).
 このような水処理装置においては、装置の運転モードによって薬剤濃度を切り替える必要がある。例えば、運転モードとして、原水を濾過するモードでは薬剤を添加する。また、濾材を洗浄するモードでは薬剤を添加しないなど、薬剤添加の有無や薬剤添加量を切り替える必要がある。特に、簡単な構成によって前述したような薬剤濃度を切り替えることが望まれている。 In such water treatment equipment, it is necessary to switch the chemical concentration according to the operation mode of the equipment. For example, as an operation mode, a chemical agent is added in a mode of filtering raw water. In addition, it is necessary to switch the presence or absence of addition of chemicals and the amount of addition of chemicals, such as not adding chemicals in the mode for cleaning the filter medium. In particular, it is desired to switch the drug concentration as described above with a simple configuration.
 本開示は、水処理装置内部において、水の流れを制御することで、薬剤と水の接触を制限し、装置の運転モードごとに所望の濃度の薬液を得ることができる水処理装置を提供することを目的としている。 The present disclosure provides a water treatment apparatus capable of obtaining a desired concentration of chemical solution for each operation mode of the apparatus by controlling the flow of water inside the water treatment apparatus to limit the contact between the chemical agent and water. It is intended to
 本開示に係る水処理装置は、濾材を内包した濾過部と、濾過部に原水を流入させる原水流入配管と、原水流入配管の経路内で薬剤を添加する薬剤供給部と、濾過部から濾過後の処理水を取り出す浄水吐出配管と、原水流入配管の経路内で薬剤供給部を迂回するバイパス配管と、バイパス配管経路内に設けられるバイパスバルブと、を備え、バイパスバルブは、原水流入配管内の圧力を感知してバイパス配管経路を開閉することにより、バイパス配管に流れる原水の流量を調整する。 The water treatment apparatus according to the present disclosure includes a filtration unit containing a filter medium, a raw water inflow pipe that allows raw water to flow into the filtration unit, a chemical supply unit that adds a chemical in the route of the raw water inflow pipe, and after filtration from the filtration unit. A purified water discharge pipe for taking out the treated water, a bypass pipe that bypasses the chemical supply part in the route of the raw water inflow pipe, and a bypass valve provided in the bypass pipe route, and the bypass valve is provided in the raw water inflow pipe. By sensing the pressure and opening and closing the bypass piping route, the flow rate of the raw water flowing through the bypass piping is adjusted.
 本開示によれば、水処理装置において、原水流入配管から薬剤供給部への原水流入を抑制することにより、各運転モードに必要な薬液を供給することが出来るという効果がある。 According to the present disclosure, in the water treatment apparatus, by suppressing the inflow of raw water from the raw water inflow pipe to the chemical supply unit, it is possible to supply the chemical solution required for each operation mode.
 以下、本開示の実施の形態2について図面を参照しながら説明する。なお、実施の形態2は、少なくとも以下の実施の形態2-1及び実施の形態2-2を包含する。 Embodiment 2 of the present disclosure will be described below with reference to the drawings. The second embodiment includes at least the following embodiments 2-1 and 2-2.
 (実施の形態2-1)
 本実施の形態に係る水処理装置1001は、井戸水または貯水槽に蓄えた水を原水とし、この原水に含まれる金属イオンや濁質成分を除去する濾過処理と、濾過処理によって系内に蓄積された金属イオンの凝集物、濁質成分を系外へ排出する逆洗処理を行うものである。
(Embodiment 2-1)
The water treatment apparatus 1001 according to the present embodiment uses well water or water stored in a water tank as raw water, and the metal ions and turbidity components contained in the raw water are removed by filtration, and the impurities accumulated in the system are filtered. Backwashing is performed to discharge metal ion aggregates and turbidity components out of the system.
 図10は、本実施の形態の水処理装置1001の全体構成を示すとともに、濾過処理時における水の流れを示した概略図である。 FIG. 10 is a schematic diagram showing the overall configuration of the water treatment apparatus 1001 of the present embodiment and showing the flow of water during filtration.
 図10に示すように、水処理装置1001は、濾材を内包した濾過部1002と、原水に対して薬剤を添加する薬剤供給部1003を有し、濾過部1002、薬剤供給部1003を後述するように配管で接続して構成される。濾過部1002は、原水から金属イオンおよび濁質成分などを除去し、原水を浄化するものであり、いわば、水処理装置1001の心臓部である。濾過部1002に溜まった汚れは、逆洗処理、リンス処理を行って装置外へと排出し、濾過部1002を綺麗に保ち、繰り返し使用することを可能にしている。逆洗処理とは、濾過部1002内で原水を逆流する方向に流し、汚れを排出する処理である。リンス処理とは、逆洗処理を行った後、濾過部1002内に濾過方向に原水を流して分離した汚れを装置外へ排出するものである。この濾過部1002に対して、原水を送る側の配管を原水流入配管1010とし、濾過部1002で浄化された水を濾過部1002から送出する配管を浄水吐出配管1020とし、逆洗とリンス運転で汚れを排出する配管を逆洗ドレン管1040とする。浄化された水は、水処理装置1001外部に設けられる浄水タンク1006などに貯められ、必要な時に生活水として使われることになる。 As shown in FIG. 10, the water treatment device 1001 has a filtration unit 1002 containing a filter medium and a chemical supply unit 1003 for adding chemicals to raw water. It is configured by connecting with piping. The filtration unit 1002 removes metal ions, turbidity components, and the like from raw water to purify the raw water. Contaminants accumulated in the filtering section 1002 are discharged to the outside of the apparatus after being subjected to backwashing and rinsing processes, so that the filtering section 1002 is kept clean and can be used repeatedly. The backwashing process is a process of flowing raw water in the reverse direction in the filtration unit 1002 to discharge dirt. In the rinsing process, after performing the backwashing process, the raw water is allowed to flow in the filtering section 1002 in the filtration direction, and the separated contaminants are discharged out of the apparatus. A raw water inflow pipe 1010 is used as a pipe for sending raw water to the filtration unit 1002, and a purified water discharge pipe 1020 is used as a pipe for sending out the water purified in the filtration unit 1002 from the filtration unit 1002. A backwash drain pipe 1040 is used to discharge dirt. The purified water is stored in a purified water tank 1006 or the like provided outside the water treatment apparatus 1001, and is used as domestic water when necessary.
 水処理装置1001に対しては、原水流入配管1010の入口側(濾過部1002の反対側)に接続された電動ポンプ1004によって原水が送られる。なお、電動ポンプ1004を使用する代わりに、原水を蓄えた貯水槽を高所に設け、貯水槽と水処理装置1001との高低差によって原水を水処理装置1001に送る方法でもよい。また、地域などで共同運営している水道水を直接接続してもよい。本実施の形態では、井戸、貯水槽、水道等に加え、原水を送り出す装置類を含めて水源とする。 Raw water is sent to the water treatment device 1001 by an electric pump 1004 connected to the inlet side of the raw water inflow pipe 1010 (opposite side of the filtration unit 1002). Alternatively, instead of using the electric pump 1004, a water tank storing raw water may be provided at a high place, and the raw water may be sent to the water treatment apparatus 1001 according to the height difference between the water tank and the water treatment apparatus 1001. Alternatively, tap water jointly operated in the area may be directly connected. In this embodiment, in addition to wells, water tanks, taps, etc., water sources include equipment for sending out raw water.
 電動ポンプ1004は、井戸水または貯水槽へ蓄えた水を吸い上げ、吐出する電動機で駆動するポンプであって、例えば、渦巻きポンプ、タービンポンプなどの遠心ポンプ、渦流ポンプ(カスケードポンプ)、ジェットポンプ、軸流ポンプ、斜流ポンプなどが用いられる。また、井戸水位が低い場合は、吸い上げ型のポンプではなく、サブマーシブルポンプ等、水中ポンプを用いると良い。一般家庭で用いる場合、井戸の深さは、浅井戸であれば1メートルから10メートル程度、深井戸であれば10メートルから30メートル以上吸い上げる必要がある。後段の配管や水処理装置の損失水頭を考慮すると、20メートル以上の揚程があるものがよく、渦流ポンプまたはジェットポンプなどがより好ましい。電動式ポンプで吐出する流量は、例えば5リットル毎分から100リットル毎分程度であるが、一般家庭用であれば5リットル毎分から50リットル毎分程度の流量特性をもつものがより好ましい。 The electric pump 1004 is a pump driven by an electric motor that sucks up and discharges well water or water stored in a water tank. Flow pumps, mixed flow pumps, etc. are used. If the well water level is low, a submersible pump or other submersible pump should be used instead of a suction pump. When used in general households, the depth of the well must be about 1 to 10 meters for shallow wells, and 10 to 30 meters or more for deep wells. Considering the head loss of the downstream piping and water treatment equipment, a pump with a head of 20 meters or more is preferable, and a vortex pump or a jet pump is more preferable. The flow rate discharged by the electric pump is, for example, about 5 liters per minute to 100 liters per minute.
 原水流入配管1010、浄水吐出配管1020は、電動ポンプ1004の水圧に耐えられる材質、構造であればよい。具体的には、耐久性、加工のしやすさから、例えば、塩化ビニル樹脂や鋼管、あるいは、これらの複合材料を用いた直管や配管継手が使用できる。なお、呼び径は損失水頭が低くなるよう大きい方が好ましく、例えば呼び径13ミリメートルから50ミリメートル、厚みは1ミリメートルから5ミリメートル程度のものが好ましい。電動ポンプ1004の最大圧に耐えうる部材選定が困難な場合は、電動ポンプ1004と水処理装置1001の間に減圧弁や調圧弁、逃し弁を取り付けると良い。 The raw water inflow pipe 1010 and purified water discharge pipe 1020 may be made of materials and structures that can withstand the water pressure of the electric pump 1004 . Specifically, for example, vinyl chloride resin, steel pipes, or straight pipes and pipe joints using composite materials thereof can be used because of their durability and ease of processing. It should be noted that the larger the nominal diameter, the lower the head loss. If it is difficult to select a member that can withstand the maximum pressure of the electric pump 1004 , it is preferable to install a pressure reducing valve, a pressure regulating valve, and a relief valve between the electric pump 1004 and the water treatment device 1001 .
 薬剤供給部1003は、原水流入配管1010の経路内に設けられている。詳しくは、後述するが、薬剤供給部1003は、原水に対して酸化剤を添加し、原水に含まれる金属イオンを水に難溶な物質として凝集させ、濾過部1002において捕集しやすくする働きをする。 The drug supply unit 1003 is provided within the path of the raw water inflow pipe 1010 . Although details will be described later, the chemical supply unit 1003 adds an oxidizing agent to the raw water, aggregates the metal ions contained in the raw water as substances that are poorly soluble in water, and facilitates the collection in the filtration unit 1002. do.
 (濾過部関連)
 次に濾過部関連部品である、濾過部1002と切替弁1005に関して図13を用いて説明する。図11は、水処理装置1001の逆洗処理時の水の流れを示す概略図である。図12は、水処理装置1001のリンス処理時の水の流れを示す概略図である。図13は、水処理装置1001の濾過部1002と切替弁1005の断面図である。
(Filtration part related)
Next, filtering section 1002 and switching valve 1005, which are filtering section related parts, will be described with reference to FIG. FIG. 11 is a schematic diagram showing the flow of water during the backwashing process of the water treatment device 1001. As shown in FIG. FIG. 12 is a schematic diagram showing the flow of water during rinsing treatment of the water treatment apparatus 1001. As shown in FIG. FIG. 13 is a cross-sectional view of the filtration unit 1002 and switching valve 1005 of the water treatment device 1001. As shown in FIG.
 濾過部1002は、濾材や集水管1070を内部に有するもので、原水を通過させて浄化するものである。濾過部1002の内部の濾材は、主として汚れを濾過するための上層1071と、整流作用を有する下層1072とで構成されている。上層1071に用いられる濾材は、活性炭、マンガン砂、アンスラサイト等であって、原水水質に合わせ1~4種類程度を層状にして使用する。本実施の形態の濾過部1002は、この上層1071を中心に濾過の作用が働く。下層1072に用いられる濾材は、集水管から出入りする水を分散するための砂利や穴が粗い樹脂で構成されている。そして、下層1072では、最下層に比較的粒径の大きい砂利層を設け、水の流れを良くするとともに、集水管1070の下部から濾材が流出しないようにしている。なお、下層1072の濾材量は、濾過部1002の直径の1/2~1倍程度にするとよい。また、上層1071と下層1072を合わせた濾材の充填量は、濾過部1002の内容積の1/4~4/5倍程度になるようにするとよい。 The filtering part 1002 has a filtering material and a water collecting pipe 1070 inside, and purifies raw water by passing it through. The filter medium inside the filtering section 1002 is mainly composed of an upper layer 1071 for filtering dirt and a lower layer 1072 having a rectifying action. The filter media used for the upper layer 1071 are activated carbon, manganese sand, anthracite, etc., and about 1 to 4 types are layered and used according to the raw water quality. Filtration section 1002 of the present embodiment exerts a filtering action centering on this upper layer 1071 . The filter material used for the lower layer 1072 is composed of gravel or resin with coarse pores for dispersing water entering and leaving the water collecting pipe. In the lower layer 1072 , a gravel layer having a relatively large grain size is provided at the lowest layer to improve the flow of water and prevent the filtering material from flowing out from the bottom of the water collecting pipe 1070 . The amount of filtering material in the lower layer 1072 should be about 1/2 to 1 times the diameter of the filtering section 1002 . In addition, it is preferable that the filling amount of the filtering material including the upper layer 1071 and the lower layer 1072 is about 1/4 to 4/5 times the internal volume of the filtering section 1002 .
 濾過部1002は、上部において、外部配管(原水流入配管1010、浄水吐出配管1020、逆洗ドレン管1040)と接続されている。濾過部1002内部には、開口となる流入口1073と流出口1074が設けられ、流出口1074は、集水管1070と接続されている。 The filtration unit 1002 is connected at its upper portion to external pipes (raw water inflow pipe 1010, purified water discharge pipe 1020, backwash drain pipe 1040). An inflow port 1073 and an outflow port 1074 that are openings are provided inside the filtration unit 1002 , and the outflow port 1074 is connected to the water collecting pipe 1070 .
 濾過部1002の上部には、切替弁1005が取り付けられており、外部配管(原水流入配管1010、浄水吐出配管1020、逆洗ドレン管1040)と濾過部1002内の流入口1073と流出口1074が接続される。切替弁1005の操作によって外部配管と流入口1073、流出口1074との連通が切り替えられる。切替弁1005内には、流路を切り替える流路切替コマ1075を備えており、流路切替コマ1075を回転させることによって、接続された配管、開口との連通方向を変更する。流路切替コマ1075は、外部の取っ手で回転させる、あるいは、外部モータで動かすことが出来る。 A switching valve 1005 is attached to the upper part of the filtration unit 1002, and an external pipe (raw water inflow pipe 1010, purified water discharge pipe 1020, backwash drain pipe 1040) and an inflow port 1073 and an outflow port 1074 in the filtration unit 1002 are connected. Connected. By operating the switching valve 1005 , communication between the external piping and the inlet 1073 and the outlet 1074 is switched. A channel switching piece 1075 for switching the channel is provided in the switching valve 1005. By rotating the channel switching piece 1075, the direction of communication with the connected piping and the opening is changed. The channel switching piece 1075 can be rotated by an external handle or moved by an external motor.
 濾過処理時には、流路切替コマ1075の操作によって、原水流入配管1010と流入口1073を連通させ、流出口1074と浄水吐出配管1020を連通させる。一方、逆洗処理時には、流路切替コマ1075の操作によって、原水流入配管1010と流出口1074を連通させ、流入口1073と逆洗ドレン管1040を連通させる。また、リンス処理時には、流路切替コマ1075の操作によって、原水流入配管1010と流入口1073を連通させ、流出口1074と逆洗ドレン管1040を連通させる。 During the filtration process, by operating the channel switching piece 1075, the raw water inflow pipe 1010 and the inflow port 1073 are communicated, and the outflow port 1074 and the purified water discharge pipe 1020 are communicated. On the other hand, during the backwashing process, by operating the channel switching piece 1075, the raw water inflow pipe 1010 and the outflow port 1074 are communicated, and the inflow port 1073 and the backwash drain pipe 1040 are communicated. Further, during the rinsing process, by operating the channel switching piece 1075, the raw water inflow pipe 1010 and the inflow port 1073 are communicated, and the outflow port 1074 and the backwash drain pipe 1040 are communicated.
 なお、切替弁1005に接続する配管の種類によって様々な運転が可能である。例えば、原水流入配管1010と浄水吐出配管1020を接続することで、原水を直接浄水タンク1006に送ることが出来る。 Various operations are possible depending on the type of piping connected to the switching valve 1005. For example, raw water can be sent directly to the purified water tank 1006 by connecting the raw water inflow pipe 1010 and the purified water discharge pipe 1020 .
 なお、本実施の形態では、切替弁1005を用いたが、切替弁1005を使用する以外にも複数のバルブを使用することでも流路を切り替えることが出来る。 Although the switching valve 1005 is used in the present embodiment, the flow path can be switched by using a plurality of valves in addition to using the switching valve 1005 .
 このような構成において、濾過処理時、逆洗処理時の水の流れについて説明する。濾過処理時には、濾過部1002内では、以下のように水が流れ、流出口1074から浄化された水が得られる。 In such a configuration, the flow of water during filtration and backwashing will be described. During the filtering process, water flows in the filtering section 1002 as follows, and purified water is obtained from the outlet 1074 .
 [濾過処理時の濾過部1002内の流路]
 流入口1073→上層1071→下層1072→集水管1070→流出口1074
 なお、リンス処理時においても、濾過部1002内では濾過処理時と同じように水が流れるが、後述する逆洗処理後の汚れを含んだ水が流出口1074から流出する。そのため、流出口1074は逆洗ドレン管1040に連通され、外部へ排出される。
[Flow path in filtration unit 1002 during filtration]
Inflow port 1073→upper layer 1071→lower layer 1072→collection pipe 1070→outflow port 1074
During the rinsing process, water flows in the filtering section 1002 in the same manner as during the filtering process, but the water containing dirt after the backwashing process described later flows out from the outlet 1074 . Therefore, the outflow port 1074 is communicated with the backwash drain pipe 1040 and discharged to the outside.
 また、濾過部1002には濾過処理で溜まった汚れを逆洗処理で排出することが出来る。逆洗処理時には以下のように水が流れ、流出口1074から汚れが排出される。 In addition, the filtration unit 1002 can discharge dirt accumulated by filtration processing by backwashing processing. During the backwashing process, water flows as follows and dirt is discharged from the outflow port 1074 .
 [逆洗処理時の濾過部1002内の流路]
 流出口1074→集水管1070→下層1072→上層1071→流入口1073
 (薬剤供給部)
 次に、薬剤供給部1003について、図10、図14を用いて説明する。図14は、水処理装置1001の薬剤供給部1003の断面図である。
[Flow path in filtration unit 1002 during backwashing]
Outlet 1074→collection pipe 1070→lower layer 1072→upper layer 1071→inlet 1073
(Drug supply unit)
Next, the drug supply unit 1003 will be described with reference to FIGS. 10 and 14. FIG. FIG. 14 is a cross-sectional view of the chemical supply unit 1003 of the water treatment device 1001. As shown in FIG.
 薬剤供給部1003は、その内部に入れられた薬剤によって、原水に含まれる金属イオンの凝集を促進し、濾過部1002で捕捉しやすくするために設けられている。薬剤供給部1003は、流入路1031、薬剤路1032、バイパス路1033、流出路1034を有している。流入路1031は、原水流入配管1010と接続され、原水を薬剤供給部1003に流入させる。薬剤路1032は、流入路1031から分岐し、薬剤を溶かすものである。バイパス路1033は、絞り部1033aを介して、同じく流入路1031から分岐し、薬液を必要な濃度に調整するために設けられている。そして、バイパス路1033は、流入路1031から分岐後、流出路1034の入口側に接続されている。流出路1034は、薬剤路1032、バイパス路1033と合流し、再び原水流入配管1010に接続され、原水流入配管1010に薬剤の含まれた原水を送り出すことになる。図14に示すように、薬剤路1032は、分岐後、鉛直方向に立ち上がる噴出管1052と、噴出管1052の上部で薬剤に接触し、薬剤を溶出させる薬剤載置部1053と、噴出管1052の外周であって、筐体1051の内部となる回収部1054とで構成される。 The drug supply unit 1003 is provided to facilitate aggregation of metal ions contained in the raw water by the drug put therein, and facilitate the capture by the filtration unit 1002 . The drug supply section 1003 has an inflow channel 1031 , a drug channel 1032 , a bypass channel 1033 and an outflow channel 1034 . The inflow path 1031 is connected to the raw water inflow pipe 1010 and allows the raw water to flow into the drug supply section 1003 . The drug channel 1032 branches off from the inflow channel 1031 and dissolves the drug. The bypass channel 1033 is also branched from the inflow channel 1031 via a narrowed portion 1033a, and is provided to adjust the concentration of the chemical solution to a required level. After branching from the inflow path 1031 , the bypass path 1033 is connected to the inlet side of the outflow path 1034 . The outflow channel 1034 merges with the drug channel 1032 and the bypass channel 1033 and is again connected to the raw water inflow pipe 1010 to deliver the raw water containing the drug to the raw water inflow pipe 1010 . As shown in FIG. 14, the drug path 1032 includes an ejection tube 1052 that rises vertically after being branched, a drug placement portion 1053 that contacts the drug at the upper portion of the ejection tube 1052 and elutes the drug, and an ejection tube 1052. It is composed of a recovery part 1054 which is an outer periphery and inside the housing 1051 .
 噴出管1052は小径の管路で上部に薬剤載置部1053を備えて立設されている。噴出管1052は、下部の径を小さくし、薬剤載置部1053を噴出管1052の上部に設けることによって、原水を所望の流量で薬剤と接触させることを実現している。薬剤載置部1053は、原水の流量に対し、所望の濃度の薬液が得られるよう、置く薬剤の量(数)を確保するための大きさとなる。 The ejection tube 1052 is a small-diameter conduit and is erected with a drug loading section 1053 on the top. Ejection pipe 1052 has a smaller diameter at the bottom and provides drug placement portion 1053 at the top of ejection pipe 1052, thereby allowing raw water to come into contact with the drug at a desired flow rate. The drug placement unit 1053 has a size for securing the amount (number) of the drug to be placed so as to obtain a drug solution having a desired concentration with respect to the flow rate of the raw water.
 薬剤を溶かした薬液は、回収部1054へ流出する。回収部1054において、薬剤を溶かした薬液は、筐体1051の下部に貯まり、その後、回収開口1055から流出路1034へと流れだす。噴出管1052の径を小さくし、筐体1051の内壁面との距離を確保してあるので、筐体1051内に流下した薬剤の溶けた原水は、液面を筐体1051の高さに対し、1/2程度、あるいはそれ以下にすることができている。薬液は所望の深さで筐体1051内に貯まることによって、流出路1034において原水と混合する割合が調整されている。 The liquid medicine in which the medicine is dissolved flows out to the collection unit 1054. In recovery portion 1054 , the drug solution in which the drug is dissolved accumulates in the lower portion of housing 1051 and then flows out from recovery opening 1055 to outflow path 1034 . Since the diameter of the ejection pipe 1052 is made small and the distance from the inner wall surface of the housing 1051 is secured, the liquid level of the raw water in which the medicine has flowed down into the housing 1051 is set to the height of the housing 1051. , can be reduced to about 1/2 or less. By accumulating the chemical liquid in the housing 1051 at a desired depth, the ratio of mixing with the raw water in the outflow path 1034 is adjusted.
 また、薬剤路1032を流れる原水の流量は、バイパス路1033を流れる原水の流量によって調整できる。すなわち、バイパス路1033の絞り部1033aの径を調整することで、薬剤路1032とバイパス路1033を流れる原水の流量割合を調整する。このようにして合流後の流出路1034における薬剤濃度が所望の濃度になるように調整できるようになっている。なお、絞り部1033aの代わりに、流量調整用のバルブを用いてバイパス路1033を流れる原水の流量を調整してもよい。 In addition, the flow rate of raw water flowing through drug channel 1032 can be adjusted by the flow rate of raw water flowing through bypass channel 1033 . That is, by adjusting the diameter of the narrowed portion 1033a of the bypass channel 1033, the ratio of the flow rates of the raw water flowing through the drug channel 1032 and the bypass channel 1033 is adjusted. In this manner, the drug concentration in the outflow path 1034 after confluence can be adjusted to a desired concentration. Note that the flow rate of the raw water flowing through the bypass passage 1033 may be adjusted using a flow rate adjustment valve instead of the restrictor 1033a.
 そして、薬剤供給部1003への原水流入量を所定の範囲内にし、薬剤供給部1003内の液面を所望の高さにすることによって、薬剤供給部1003から流出する原水の薬剤濃度を所望の範囲内に調整することができるのである。 By setting the amount of raw water flowing into the chemical supply unit 1003 within a predetermined range and by setting the liquid level in the chemical supply unit 1003 to a desired level, the chemical concentration of the raw water flowing out of the chemical supply unit 1003 can be adjusted to a desired level. It can be adjusted within the range.
 なお、薬剤供給部1003の筐体1051内には、常に空気層が存在するようにするとよい。筐体1051は、原水流入配管1010との接続部を除いて密閉空間なので、一旦空気が無くなり、筐体1051内が水で満たされると、薬剤1060が常に水に接触し溶出し続けることになる。そのため、薬剤供給部1003に空気を送るため、原水流入配管1010に空気補給用の配管や、逆止弁などのバルブを取付けると良い。 It should be noted that it is preferable that an air layer always exists inside the housing 1051 of the medicine supply unit 1003 . Since the housing 1051 is a closed space except for the connecting portion with the raw water inflow pipe 1010, once the air disappears and the inside of the housing 1051 is filled with water, the drug 1060 is always in contact with the water and continues to be eluted. . Therefore, in order to send air to the chemical supply unit 1003, it is preferable to attach a pipe for supplying air to the raw water inflow pipe 1010 and a valve such as a check valve.
 薬剤載置部1053には、水溶性で、固形の薬剤1060を備えている。薬剤1060としては、タブレットや顆粒状のものを用いることがよい。なぜなら、薬剤1060の表面積が大きくでき安定した溶剤濃度を保つことができるからである。タブレットであれば、直径30mm、高さ10~20mmのもの、顆粒状であれば直径5mmから15mmのものを使用するとよい。薬剤1060の大きさが小さい場合には、隣り合った薬剤が同時に水に接触して薬剤同士が固着してしまう。固着すると、薬剤の下部だけが水に接触して所望の濃度の薬液が得られなくなるということがある。あるいは、薬剤1060の大きさが小さい場合には、噴出管1052から供給される水との接触面積が大きくなって所望の濃度の薬液が得られなくなる。そのため、所望の濃度の薬液を供給するため、上述の大きさの薬剤1060を用いている。 A water-soluble, solid medicine 1060 is provided on the medicine loading section 1053 . As the medicine 1060, it is preferable to use tablets or granules. This is because the surface area of the drug 1060 can be increased and a stable solvent concentration can be maintained. Tablets with a diameter of 30 mm and a height of 10 to 20 mm may be used, and granules with a diameter of 5 mm to 15 mm may be used. If the size of the drug 1060 is small, adjacent drugs will come into contact with water at the same time and stick together. If it sticks, only the lower portion of the chemical will come into contact with the water, making it impossible to obtain the desired concentration of chemical. Alternatively, if the size of the chemical 1060 is small, the contact area with the water supplied from the ejection pipe 1052 becomes large, making it impossible to obtain the desired concentration of the chemical. Therefore, the drug 1060 having the size described above is used to supply the drug solution with the desired concentration.
 また、薬剤1060は、上述のように、原水に含まれる金属イオンを酸化して水に難溶な凝集物を生成する働きをする。薬剤1060としては、種々の酸化剤を用いることができるが、求められる水浄化性能によってはPAC(ポリ塩化アルミニウム)やキトサン等、無機の凝集剤や高分子の凝集剤を使用しても良い。原水に対して薬剤を添加する場合には、薬剤1060は水に溶けやすいものがよいが、停止中、あるいは逆洗処理中、すなわち、薬剤の添加を中断しているときには、固形形状を保持し、薬剤載置部1053から流れ出さないものがよい。本実施の形態では、トリクロロイソシアヌル酸を用いている。 In addition, as described above, the chemical agent 1060 functions to oxidize metal ions contained in the raw water to form aggregates that are sparingly soluble in water. Various oxidizing agents can be used as the chemical agent 1060, but depending on the required water purification performance, an inorganic flocculant such as PAC (polyaluminum chloride) or chitosan or a polymer flocculant may be used. When a chemical is added to the raw water, the chemical 1060 should be easily soluble in water, but the chemical 1060 does not retain its solid form during the stoppage or during the backwashing process, that is, when the addition of the chemical is suspended. , the one that does not flow out from the medicine loading section 1053 is preferable. In this embodiment, trichloroisocyanuric acid is used.
 薬剤供給部1003の各部材は、薬剤と長時間接する可能性があるのでPVC(ポリ塩化ビニル)、PMMA(ポリメタクリル酸メチル)、PP(ポリプロピレン)など薬剤に対する反応性が低い素材を選ぶとよい。一方、噴出管1052には薬剤載置部1053を支えるための強度が必要なので、薬剤に対する相性を考慮すると、噴出管1052の材質はPPより強度がある塩化ビニルやABS(アクリロニトリル・ブタジエン・スチレン)などを選択することが好ましい。噴出管1052の外径は、基台1051aや上部カバー1051bの内径の4分の1以下に抑えるとよい。上述のように、噴出管1052の外側に載置部出口1058から排出された薬剤供給後の溶液を一時貯留する空間(回収部1054)を設けることができ、筐体1051内の水位が急激に上昇し薬剤載置部1053まで到達することを抑制できるからである。例えば、基台1051aの内径が130mmの場合、外径25~40mm程度の塩ビ管などを使用するとよい。 Since each member of the drug supply unit 1003 may be in contact with the drug for a long time, it is preferable to select a material with low reactivity to the drug, such as PVC (polyvinyl chloride), PMMA (polymethyl methacrylate), or PP (polypropylene). . On the other hand, since the ejection tube 1052 requires strength to support the drug loading portion 1053, the material of the ejection tube 1052 is vinyl chloride or ABS (acrylonitrile-butadiene-styrene), which is stronger than PP, considering compatibility with the drug. etc. is preferably selected. The outer diameter of the ejection pipe 1052 is preferably set to one-fourth or less of the inner diameter of the base 1051a and the upper cover 1051b. As described above, a space (recovery section 1054) for temporarily storing the solution discharged from the placement section outlet 1058 after drug supply can be provided outside the ejection tube 1052, and the water level in the housing 1051 can be rapidly increased. This is because it is possible to prevent the drug from rising and reaching the drug placement section 1053 . For example, when the inner diameter of the base 1051a is 130 mm, it is preferable to use a PVC pipe with an outer diameter of about 25 to 40 mm.
 (配管構成)
 上述のとおり、本実施の形態の水処理装置1001は、濾過部1002と、原水流入配管1010と、浄水吐出配管1020と、逆洗ドレン管1040を備えている(図10)。原水流入配管1010は、入口側を水源となる電動ポンプ1004の吐出口と配管接続され、出口側は濾過部1002の切替弁1005に接続されている。原水流入配管1010の経路内には、薬剤供給部1003が設けられ、さらに、薬剤供給部1003を迂回するバイパス配管1014が設けられている。このバイパス配管1014は、薬剤供給部1003の上流側の原水流入配管1010で分岐(分岐部1012)し、薬剤供給部1003を迂回して、薬剤供給部1003の下流側で原水流入配管1010に合流(分岐部1013)する。バイパス配管1014の経路内には、バイパスバルブ1015aが設けられている。バイパスバルブ1015aは、詳しくは後述するが、バイパスバルブ1015aより上流側の圧力を感知し、開閉する二方弁である。すなわち、バイパスバルブ1015aは、上流側の圧力が所定の圧力Pより低い場合はバイパス配管1014の経路を開放し、所定の圧力Pを超えるとバイパス配管1014の経路を閉塞する機構を有している。
(Piping configuration)
As described above, the water treatment apparatus 1001 of the present embodiment includes a filtering section 1002, raw water inflow pipe 1010, purified water discharge pipe 1020, and backwash drain pipe 1040 (FIG. 10). The raw water inflow pipe 1010 has an inlet side connected to a discharge port of an electric pump 1004 serving as a water source, and an outlet side connected to a switching valve 1005 of the filtering section 1002 . A drug supply unit 1003 is provided in the path of the raw water inflow pipe 1010, and a bypass pipe 1014 bypassing the drug supply unit 1003 is provided. This bypass pipe 1014 branches at the raw water inflow pipe 1010 on the upstream side of the drug supply unit 1003 (branching portion 1012), bypasses the drug supply unit 1003, and merges with the raw water inflow pipe 1010 on the downstream side of the drug supply unit 1003. (branching unit 1013). A bypass valve 1015 a is provided in the path of the bypass pipe 1014 . The bypass valve 1015a is a two-way valve that senses the pressure on the upstream side of the bypass valve 1015a and opens and closes, although the details will be described later. That is, the bypass valve 1015a has a mechanism that opens the path of the bypass pipe 1014 when the upstream pressure is lower than a predetermined pressure P, and closes the path of the bypass pipe 1014 when the pressure exceeds the predetermined pressure P. .
 濾過部1002は2つの出口を有しており、一方の出口には、内部で浄化された水を取り出す浄水吐出配管1020が接続されている。他方の出口には、逆洗処理時、リンス処理時に、濾過部1002で捕集された粒状物質(よごれ、濁質成分、金属凝集物など)を系外へ排出する逆洗ドレン管1040が接続されている。 The filtration unit 1002 has two outlets, and one of the outlets is connected to a purified water discharge pipe 1020 for extracting water purified inside. The other outlet is connected to a backwash drain pipe 1040 that discharges particulate matter (dirt, turbidity components, metal aggregates, etc.) collected by the filtration unit 1002 during backwashing and rinsing to the outside of the system. It is
 次に、図10~13を用いて、水処理装置1001内の配管構成と、濾過処理、逆洗処理における水の流れを説明する。図13は、濾過部1002の断面概略図で、図13の(a)は濾過処理時の全体図、図13の(b)は逆洗処理時の切替弁1005の状態、図13の(c)はリンス処理時の切替弁1005の状態を示すものである。 Next, the piping configuration in the water treatment device 1001 and the flow of water in the filtration process and backwash process will be described with reference to FIGS. 13A and 13B are schematic cross-sectional views of the filtration unit 1002, in which FIG. 13A is an overall view during filtration, FIG. ) indicates the state of the switching valve 1005 during the rinsing process.
 まず、図10と図13の(a)を用いて濾過処理時の水の流れを説明する。 First, the flow of water during the filtration process will be described using FIGS. 10 and 13(a).
 濾過処理時において、濾過部1002では、原水流入配管1010と流入口1073とが連通し、流出口1074と浄水吐出配管1020とが連通するように、切替弁1005を操作して、接続を切り替える。浄水吐出配管1020の経路内には、絞り部1024を設けている。これは、所望の濾過性能を得るため、濾過部1002の能力によって設定された流量になるように濾過処理時における流量を抑える必要があるためである。この絞り部1024と電動ポンプ1004との組み合わせによって、濾過処理時の流量を所望の設計値にすることができる。このような絞り部1024を通る経路では、後述の逆洗処理時の経路と比べて配管の圧力損失が大きく、原水流入配管1010内の圧力が高くなる。また、濾過処理時には浄水タンク1006まで送水する必要があり、浄水タンク1006の設置位置が高いほど原水流入配管1010内の圧力は高くなる。原水流入配管1010内の圧力が高くなり所定の圧力Pを超えると、バイパスバルブ1015aによってバイパス配管1014が閉塞され、原水流入配管1010を、水源側の原水入口1011から薬剤供給部1003を経由して濾過部1002へと接続する。 During the filtration process, in the filtration unit 1002, the switching valve 1005 is operated to switch the connection so that the raw water inflow pipe 1010 and the inflow port 1073 are in communication and the outflow port 1074 and the purified water discharge pipe 1020 are in communication. A narrowed portion 1024 is provided in the route of the purified water discharge pipe 1020 . This is because, in order to obtain desired filtering performance, it is necessary to suppress the flow rate during the filtering process so that the flow rate is set according to the performance of the filtering section 1002 . The combination of the throttle section 1024 and the electric pump 1004 can set the flow rate during the filtration process to a desired designed value. In the path passing through the narrowed portion 1024, the pressure loss in the piping is greater than in the path during the backwashing process, which will be described later, and the pressure in the raw water inflow piping 1010 increases. In addition, it is necessary to send water to the purified water tank 1006 during the filtration process, and the higher the installation position of the purified water tank 1006, the higher the pressure in the raw water inflow pipe 1010 becomes. When the pressure in the raw water inflow pipe 1010 rises and exceeds a predetermined pressure P, the bypass pipe 1014 is blocked by the bypass valve 1015a, and the raw water inflow pipe 1010 is passed from the raw water inlet 1011 on the water source side through the chemical supply unit 1003. Connect to filtering unit 1002 .
 このような配管構成において、濾過処理時には、以下のように水が流れることになる。 In such a piping configuration, water flows as follows during filtration.
 [濾過処理時の流路]
 原水入口1011→(原水流入配管1010)→分岐部1012→薬剤供給部1003→分岐部1013→切替弁1005→濾過部1002→切替弁1005→(浄水吐出配管1020)→浄水出口1021
 なお、浄水吐出配管1020の経路内には、逆止弁1062を設けている。浄水出口1021から取り出した浄水は、高所に設けた浄水タンク1006へと配管接続される場合が多い。逆止弁1062は、高所に設けられた浄水タンク1006からの浄水の逆流を制止し、濾過部1002内への水の逆流入を防ぐものである。
[Flow path during filtration]
Raw water inlet 1011→(Raw water inflow pipe 1010)→Branch portion 1012→Drug supply portion 1003→Branch portion 1013→Switching valve 1005→Filtering portion 1002→Switching valve 1005→(Purified water discharge pipe 1020)→Purified water outlet 1021
A check valve 1062 is provided in the route of the purified water discharge pipe 1020 . Purified water taken out from the purified water outlet 1021 is often piped to a purified water tank 1006 provided at a high place. The check valve 1062 prevents reverse flow of purified water from the purified water tank 1006 provided at a high place and prevents reverse flow of water into the filtering section 1002 .
 次に、図11と図13の(b)を用い逆洗処理時の水の流れを説明する。 Next, the flow of water during the backwashing process will be described using FIG. 11 and FIG. 13(b).
 逆洗処理時において、濾過部1002では、原水流入配管1010と流出口1074とが連通し、流入口1073と逆洗ドレン管1040とが連通するように、切替弁1005を操作して、接続を切り替える。逆洗処理を行う際には、大きな流量を必要とするため、逆洗ドレン管1040は絞り部1024に比べ径を大きくとっている。このような経路では、配管の圧力損失が小さく、原水流入配管1010内の圧力は低くなる。原水流入配管1010内の圧力が低く所定の圧力Pを超えないと、バイパスバルブ1015aは開放され、原水流入配管1010は、水源側の原水入口1011から、薬剤供給部1003を迂回し、バイパス配管1014を経由して濾過部1002へと接続する。なお、バイパス配管1014の径は、薬剤供給部1003内の配管よりも大きくする。それによって、バイパス配管1014の圧力損失は薬剤供給部1003に比べて小さくなるため、薬剤供給部1003に流れる経路を閉塞しなくとも、流量の大部分がバイパス配管1014側に流れ、薬剤供給部1003に流れる流量は小さくなる。薬剤供給部1003側の流量はさらに薬剤路1032とバイパス路1033に分岐するため、薬剤路1032の流量は微量であり、薬剤1060と水は、ほとんど接触しない状態となる。 During the backwashing process, in the filtration unit 1002, the switching valve 1005 is operated so that the raw water inflow pipe 1010 and the outflow port 1074 are in communication, and the inflow port 1073 and the backwash drain pipe 1040 are in communication. switch. Backwashing requires a large flow rate, so the backwash drain pipe 1040 has a larger diameter than the throttle portion 1024 . In such a route, the pressure loss in the pipe is small, and the pressure inside the raw water inflow pipe 1010 is low. When the pressure in the raw water inflow pipe 1010 is low and does not exceed a predetermined pressure P, the bypass valve 1015a is opened, and the raw water inflow pipe 1010 bypasses the chemical supply unit 1003 from the raw water inlet 1011 on the water source side, and bypasses the bypass pipe 1014. is connected to the filtering unit 1002 via the . Incidentally, the diameter of the bypass pipe 1014 is made larger than that of the pipe inside the medicine supply section 1003 . As a result, the pressure loss of the bypass pipe 1014 is smaller than that of the drug supply unit 1003, so that most of the flow rate flows to the bypass pipe 1014 side without blocking the flow path to the drug supply unit 1003, and the drug supply unit 1003 flow rate is smaller. Since the flow rate on the drug supply unit 1003 side is further divided into the drug path 1032 and the bypass path 1033, the flow rate in the drug path 1032 is very small, and the drug 1060 and water hardly come into contact with each other.
 このとき、濾過部1002内では、濾過処理時とは水の流れが逆になる。本実施の形態による水処理装置1001では、切替弁1005を切り替えることによって水源(電動ポンプ1004)をひとつにして、濾過処理、逆洗処理を行うことができる。 At this time, the flow of water in the filtration unit 1002 is reversed from that during the filtration process. In the water treatment apparatus 1001 according to this embodiment, by switching the switching valve 1005, the water source (the electric pump 1004) can be made into one, and the filtration process and the backwashing process can be performed.
 逆洗処理時には、以下のように水が流れることになる。 During the backwash process, water flows as follows.
 [逆洗処理時の流路]
 原水入口1011→(原水流入配管1010)→分岐部1012→(バイパス配管1014)→バイパスバルブ1015a→(バイパス配管1014)→分岐部1013→切替弁1005→濾過部1002→切替弁1005→逆洗ドレン管1040
 このように、逆洗処理時には、濾過部1002を通過した後、装置外へ排出するので、薬剤の添加によって金属イオン等を凝集させる必要がない。従って、逆洗処理時には、原水は、薬剤供給部1003を迂回するバイパス配管1014を経由して濾過部1002へ送られる。そして、逆洗処理時には薬剤の溶出を抑えて、原水に近い状態のままの水が濾過部1002に供給され、濾過部1002内の洗浄を行うことになる。
[Flow path during backwashing]
Raw water inlet 1011→(raw water inflow pipe 1010)→branch portion 1012→(bypass pipe 1014)→bypass valve 1015a→(bypass pipe 1014)→branch portion 1013→switching valve 1005→filtration portion 1002→switching valve 1005→backwash drain tube 1040
In this way, during the backwashing process, after passing through the filtration unit 1002, the particles are discharged out of the apparatus, so there is no need to aggregate metal ions or the like by adding chemicals. Therefore, during the backwashing process, the raw water is sent to the filtration unit 1002 via the bypass pipe 1014 bypassing the chemical supply unit 1003 . During the backwashing process, elution of chemicals is suppressed, and water in a state close to raw water is supplied to the filtration unit 1002 to wash the inside of the filtration unit 1002 .
 以上のように、配管構成の違いによって、濾過処理時と逆洗処理時では原水流入配管1010内の圧力に差が生じ、濾過処理時のほうが、逆洗処理時に比べて原水流入配管1010内の圧力が高くなる。これを利用することによって、所定の圧力Pを超えると閉塞するバイパスバルブ1015aを用いて、薬剤を必要としない逆洗処理時に薬剤供給部1003を迂回させることが可能になる。所定の圧力Pは、水処理装置1001が使用可能な井戸の深さや浄水タンク1006の設置高さなどの条件下において、
  濾過処理時の原水流入配管1010内の圧力>所定の圧力P
 かつ
  所定の圧力P>逆洗処理時の原水流入配管1010内の圧力
となるよう電動ポンプ1004の能力から決定する。
As described above, due to the difference in the piping configuration, there is a difference in the pressure inside the raw water inflow pipe 1010 during the filtration process and during the backwashing process. pressure increases. By utilizing this, the bypass valve 1015a, which closes when a predetermined pressure P is exceeded, can be used to bypass the chemical supply unit 1003 during backwashing processing that does not require a chemical. The predetermined pressure P is determined under conditions such as the depth of a well where the water treatment device 1001 can be used and the installation height of the purified water tank 1006.
Pressure in the raw water inflow pipe 1010 during filtration>predetermined pressure P
Also, the capacity of the electric pump 1004 is determined so that the predetermined pressure P>the pressure in the raw water inflow pipe 1010 during the backwashing process.
 なお、本実施の形態の水処理装置1001は、逆洗処理時に配管内に残った異物を排出するための「リンス処理」を行うことができる。このリンス処理について、図12と図13(c)を用いて説明する。リンス処理は切替弁1005の流路を変更することで可能である。切替弁1005は、原水流入配管1010と流入口1073を連通し、流出口1074と逆洗ドレン管1040とを連通するように切り替える。このような状態では、濾過部1002内では、濾過処理と同方向に通水し、濾過部1002を通過した水は逆洗ドレン管1040を通って排出される。また、絞り部1024を通らず、径の大きい逆洗ドレン配管から排出されるため、原水流入配管1010内の圧力は逆洗処理時と同程度に低くなり、バイパスバルブ1015aは開放された状態となる。 It should be noted that the water treatment apparatus 1001 of the present embodiment can perform "rinse treatment" for discharging foreign substances remaining in the pipes during the backwash treatment. This rinsing process will be described with reference to FIGS. 12 and 13(c). Rinsing processing can be performed by changing the flow path of the switching valve 1005 . The switching valve 1005 switches so that the raw water inflow pipe 1010 and the inflow port 1073 are communicated and the outflow port 1074 and the backwash drain pipe 1040 are communicated. In such a state, water flows in the same direction as the filtering process in the filtering section 1002 , and the water that has passed through the filtering section 1002 is discharged through the backwash drain pipe 1040 . In addition, since the water does not pass through the constricted portion 1024 and is discharged from the large-diameter backwash drain pipe, the pressure in the raw water inflow pipe 1010 is reduced to the same level as during the backwash process, and the bypass valve 1015a is in an open state. Become.
 このようなバルブ操作によって、リンス処理時には、以下のように水が流れることになる。 Due to such valve operation, water flows as follows during rinsing.
 [リンス処理時の流路]
 原水入口1011→(原水流入配管1010)→分岐部1012→(バイパス配管1014)→分岐部1013→切替弁1005→濾過部1002→切替弁1005→逆洗ドレン管1040
 逆洗処理が終わった直後には、濾過部1002内、あるいは、水処理装置1001の配管内には、濾過部1002の逆洗によって洗い出された異物が残っている。そのため、リンス処理によって、異物を排出することができる。
[Flow path during rinsing]
Raw water inlet 1011 → (raw water inflow pipe 1010 ) → branch 1012 → (bypass pipe 1014 ) → branch 1013 → switching valve 1005 → filtration unit 1002 → switching valve 1005 → backwash drain pipe 1040
Immediately after the backwashing process is finished, foreign matter washed out by the backwashing of the filtration unit 1002 remains in the filtration unit 1002 or in the piping of the water treatment device 1001 . Therefore, the foreign matter can be discharged by the rinsing process.
 (バイパスバルブ)
 ここで、バイパスバルブ1015aの構成について図15A~図16を用いて説明する。図15Aは、水処理装置1001の低圧時のバイパスバルブ1015aの断面図である。図15Bは、バイパスバルブ1015aのシャフトつば部における水平断面図である。図16は、水処理装置1001の高圧時のバイパスバルブ1015aの断面図である。
(bypass valve)
Here, the configuration of the bypass valve 1015a will be described with reference to FIGS. 15A to 16. FIG. FIG. 15A is a cross-sectional view of the bypass valve 1015a at low pressure of the water treatment device 1001. FIG. FIG. 15B is a horizontal cross-sectional view of the shaft collar of bypass valve 1015a. FIG. 16 is a cross-sectional view of the bypass valve 1015a of the water treatment device 1001 at high pressure.
 なお、バイパス配管1014内の流量を調節するため、バイパスバルブとしては、バイパス配管1014内に設ける二方弁タイプのバイパスバルブ1015a(本実施の形態)と、原水流入配管1010とバイパス配管1014の分岐部1012に設ける三方弁タイプのバイパスバルブ1015b(後述する実施の形態2-2)を用いることができる。 In addition, in order to adjust the flow rate in the bypass pipe 1014, as a bypass valve, a two-way valve type bypass valve 1015a (this embodiment) provided in the bypass pipe 1014 and a branch of the raw water inflow pipe 1010 and the bypass pipe 1014 A three-way valve type bypass valve 1015b (Embodiment 2-2 described later) provided in the portion 1012 can be used.
 図15Aは、低圧時のバイパスバルブ1015aの断面図、図16は高圧時のバイパスバルブ1015aの断面図である。 15A is a cross-sectional view of the bypass valve 1015a at low pressure, and FIG. 16 is a cross-sectional view of the bypass valve 1015a at high pressure.
 バイパスバルブ1015aは、上述した通り、バイパス配管1014に設けられる。バイパス配管1014は、分岐部1012で原水流入配管1010から分岐し、薬剤供給部1003を迂回して、薬剤供給部1003の下流側に位置する分岐部1013で原水流入配管1010に合流する(図10、図11、図12)。バイパスバルブ1015aは、分岐部1012から原水を流入させる流入管1080と、原水流入配管1010に原水を流出させる流出管1081と、開閉弁1090とを有している。開閉弁1090は、土台1091と、その上部に取り付けられた蓋部1092と、ダイヤフラム1093と、シャフト1094と、ばね1095と、弁体1096と、弁座1097とを有している。 The bypass valve 1015a is provided in the bypass pipe 1014 as described above. The bypass pipe 1014 branches from the raw water inflow pipe 1010 at a branch portion 1012, bypasses the drug supply portion 1003, and joins the raw water inflow pipe 1010 at a branch portion 1013 located downstream of the drug supply portion 1003 (FIG. 10). , FIGS. 11 and 12). The bypass valve 1015 a has an inflow pipe 1080 for inflowing raw water from the branch 1012 , an outflow pipe 1081 for outflowing raw water to the raw water inflow pipe 1010 , and an on-off valve 1090 . The on-off valve 1090 has a base 1091 , a lid portion 1092 attached to the top thereof, a diaphragm 1093 , a shaft 1094 , a spring 1095 , a valve body 1096 and a valve seat 1097 .
 ダイヤフラム1093は、周縁を土台1091と蓋部1092の間に挟まれて固定されている。また、ダイヤフラム1093と土台1091の間には、受圧空間1098が設けられ、受圧空間1098と流入管1080は受圧管1099によって連通している。そして、受圧空間1098に流入した原水の圧力によってダイヤフラム1093が駆動することになる。 The diaphragm 1093 is fixed with its peripheral edge sandwiched between the base 1091 and the lid portion 1092 . A pressure receiving space 1098 is provided between the diaphragm 1093 and the base 1091 , and the pressure receiving space 1098 and the inflow pipe 1080 communicate with each other through a pressure receiving pipe 1099 . The diaphragm 1093 is driven by the pressure of the raw water that has flowed into the pressure receiving space 1098 .
 シャフト1094は、受圧管1099と流出管1081の中心軸近傍を貫通するように備えられ、受圧管1099側にダイヤフラム1093、流出管1081側に弁体1096が取り付けられている。弁座1097は、土台1091の流出管1081側に設けられ、弁体1096と対向して開口部を有している。この開口部は、流入管1080と流出管1081とを連通し、弁体1096によって開閉する。そして、シャフト1094は、ダイヤフラム1093の動作に連動して弁体1096を摺動し、流出管1081に通じる弁座1097の開口部を開閉する。 The shaft 1094 is provided so as to pass through the vicinity of the central axis of the pressure receiving pipe 1099 and the outflow pipe 1081, the diaphragm 1093 is attached to the pressure receiving pipe 1099 side, and the valve element 1096 is attached to the outflow pipe 1081 side. The valve seat 1097 is provided on the outflow pipe 1081 side of the base 1091 and has an opening facing the valve body 1096 . This opening communicates the inflow pipe 1080 and the outflow pipe 1081 and is opened and closed by the valve body 1096 . The shaft 1094 slides on the valve body 1096 in conjunction with the operation of the diaphragm 1093 to open and close the opening of the valve seat 1097 leading to the outflow pipe 1081 .
 図15A、図16においては、弁体1096およびシャフト1094はバイパスバルブ1015a内部を上下方向に摺動する。ばね1095は、ダイヤフラム1093の上部に、ダイヤフラム1093を下方向に押さえつけるように設けられている。本実施の形態では、受圧管1099の径をばね1095がダイヤフラム1093を押す面の径よりも小さくし、ばね1095の力を土台1091で受ける構造としている。ばね1095がダイヤフラム1093を押す面の径よりも受圧管1099の径が大きいと、ダイヤフラム1093は常にばね1095の力によって変形した状態となり、材料強度面で負荷が大きい。そのため、受圧管1099の径を小さくし、土台1091でばねの力を受けることで、低圧時(運転停止時なども含む)におけるダイヤフラム1093の変形を抑制し、耐久性を確保している。 15A and 16, the valve body 1096 and the shaft 1094 slide vertically inside the bypass valve 1015a. A spring 1095 is provided above the diaphragm 1093 so as to press the diaphragm 1093 downward. In this embodiment, the diameter of the pressure receiving pipe 1099 is made smaller than the diameter of the surface of the spring 1095 that presses the diaphragm 1093 , and the force of the spring 1095 is received by the base 1091 . If the diameter of the pressure receiving tube 1099 is larger than the diameter of the surface of the spring 1095 that presses the diaphragm 1093, the diaphragm 1093 is constantly deformed by the force of the spring 1095, resulting in a large load in terms of material strength. Therefore, by reducing the diameter of the pressure receiving pipe 1099 and receiving the force of the spring at the base 1091, deformation of the diaphragm 1093 during low pressure (including when operation is stopped) is suppressed and durability is ensured.
 また、ダイヤフラム1093と土台1091が密着して受圧管1099の流路を塞がず、流入管1080と受圧空間1098は連通する構造となっている。すなわち、図15Aおよび図15Bに示すように、シャフト1094は、ダイヤフラム1093と土台1091の間にあたる位置につば部1100を有し、つば部1100がダイヤフラム1093と土台1091の間に挟まれる構造となっている。つば部1100は、シャフト1094の軸から径方向に突出したいくつかの凸部で構成され、受圧管1099の開口部に凸部が引っかかるようになっている。また、凸部は受圧管1099の流路を塞がないような大きさ、配置となっている。このような構造にすることで、ダイヤフラム1093と土台1091の密着を防ぎ、かつ、受圧管1099の流路を確保し、流入管1080と受圧空間1098を連通させることができる。 In addition, the diaphragm 1093 and the base 1091 are in close contact with each other so that the flow path of the pressure receiving pipe 1099 is not blocked, and the inflow pipe 1080 and the pressure receiving space 1098 communicate with each other. That is, as shown in FIGS. 15A and 15B, shaft 1094 has collar portion 1100 at a position between diaphragm 1093 and base 1091, and collar portion 1100 is sandwiched between diaphragm 1093 and base 1091. ing. The collar portion 1100 is composed of a number of projections projecting radially from the axis of the shaft 1094 such that the projections are caught in the opening of the pressure receiving tube 1099 . Also, the convex portion is sized and arranged so as not to block the flow path of the pressure receiving pipe 1099 . Such a structure can prevent the diaphragm 1093 and the base 1091 from sticking to each other, secure the flow path of the pressure receiving pipe 1099 , and allow the inflow pipe 1080 and the pressure receiving space 1098 to communicate with each other.
 後述するように、ダイヤフラム1093に大きな圧力がかかり押し上げられると、シャフト1094および弁体1096も連動して押し上げられ、弁体1096が弁座1097に押し付けられ、流出管1081を塞ぐことになる。このように、開閉弁1090は、流出管1081の開閉を行う二方弁となっている。 As will be described later, when a large pressure is applied to the diaphragm 1093 and pushed up, the shaft 1094 and the valve body 1096 are also pushed up together, and the valve body 1096 is pressed against the valve seat 1097 to block the outflow pipe 1081. Thus, the on-off valve 1090 is a two-way valve that opens and closes the outflow pipe 1081 .
 このような動きをするためには、ダイヤフラム1093が受圧空間1098に接している面積は弁体1096の面積よりも大きい必要がある。この2つの面が受ける圧力は同じであり、面積の大きい方が圧力によって押される合力が大きくなる。つまり、ダイヤフラム1093と弁体1096がシャフト1094を引っ張り合う方向に力がはたらき、力が大きいほうへシャフト1094は摺動する。このように、ばね1095で押さえつけられているダイヤフラム1093を押し上げ流出管1081を閉塞させるためには、ダイヤフラム1093が圧力を受ける面積が弁体1096よりも大きくなければならない。 For such movement, the area of the diaphragm 1093 in contact with the pressure receiving space 1098 must be larger than the area of the valve body 1096 . The two surfaces receive the same pressure, and the larger the area, the greater the resultant force of the pressure. In other words, force acts in the direction in which the diaphragm 1093 and the valve body 1096 pull the shaft 1094 together, and the shaft 1094 slides in the direction where the force is greater. In order to push up the diaphragm 1093 pressed by the spring 1095 to close the outflow pipe 1081 in this manner, the area where the diaphragm 1093 receives pressure must be larger than the valve element 1096 .
 また、ダイヤフラム1093は水処理装置1001の流路上にあるため、フッ素ゴムやシリコンゴム等、薬剤耐性を有するゴム材を選定するとよい。ばね1095の反力は、原水流入配管1010内の圧力が所定の圧力P以上になるとバイパスバルブ1015aが閉塞するように調整する。 In addition, since the diaphragm 1093 is located on the flow path of the water treatment device 1001, it is recommended to select a rubber material having chemical resistance, such as fluororubber or silicon rubber. The reaction force of the spring 1095 is adjusted so that the bypass valve 1015a is closed when the pressure in the raw water inflow pipe 1010 reaches a predetermined pressure P or higher.
 このような構成により、圧力損失が小さく、原水流入配管1010内の圧力が所定の圧力Pを超えない運転モード(逆洗処理時、リンス処理時)においては、図15Aに示すように、ダイヤフラム1093は、ばね1095の反力によって土台1091に押さえつけられ、流出管1081の流路は開放される。つまり、バイパスバルブ1015aは開放される。その結果、バイパス配管1014に水が流れ、薬剤供給部1003を迂回することができる。一方、原水流入配管1010内の圧力が高くなり所定の圧力Pを超える運転モード(濾過処理時)においては、図16に示すように、ダイヤフラム1093が押し上げられ、シャフト1094および弁体1096も連動して上に移動し、流出管1081が閉塞される。つまり、バイパス配管1014が閉塞され、薬剤供給部1003に水が流れる。 With such a configuration, in operation modes (during backwashing and rinsing) in which the pressure loss is small and the pressure in the raw water inflow pipe 1010 does not exceed the predetermined pressure P, the diaphragm 1093 is pressed against the base 1091 by the reaction force of the spring 1095, and the flow path of the outflow pipe 1081 is opened. That is, the bypass valve 1015a is opened. As a result, water flows through the bypass pipe 1014 and bypasses the drug supply unit 1003 . On the other hand, in the operation mode (at the time of filtration processing) where the pressure in the raw water inflow pipe 1010 increases and exceeds the predetermined pressure P, as shown in FIG. , and the outflow pipe 1081 is blocked. That is, the bypass pipe 1014 is closed, and water flows into the medicine supply section 1003 .
 このように、本実施の形態の水処理装置1001においては、運転モード、すなわち、薬剤供給部1003に原水を通して薬液を供給する場合(濾過処理)、および薬液の必要がなく薬剤供給部1003を迂回する場合(逆洗処理)を切り替えて運転する。そのため、各運転モードの配管経路の圧力損失差を利用して、運転モードによって原水流入配管1010内の圧力を感知するバイパスバルブ1015aの開閉を切り替える構成となっている。このような構成により、薬剤供給部1003を通る流路と、薬剤供給部1003を迂回するバイパス配管1014を通る流路を切り替え、濾過処理運転時には薬剤を添加し、逆洗運転時には薬剤を添加しないことが可能となる。 Thus, in the water treatment apparatus 1001 of the present embodiment, in the operation mode, that is, when the chemical solution is supplied through the raw water to the chemical supply unit 1003 (filtration processing), and when the chemical solution is not required and the chemical solution is bypassed by the chemical supply unit 1003 If you do (backwashing), switch the operation. Therefore, by using the pressure loss difference in the piping path of each operation mode, the bypass valve 1015a for sensing the pressure in the raw water inflow pipe 1010 is switched between opening and closing depending on the operation mode. With such a configuration, the flow path passing through the chemical supply unit 1003 and the flow path passing through the bypass pipe 1014 bypassing the chemical supply unit 1003 are switched, and the chemical is added during the filtration process operation and is not added during the backwash operation. becomes possible.
 (実施の形態2-2)
 次に、図17~図19を用いて本開示の第2の実施の形態の水処理装置1001について説明する。図17は、本実施の形態2-2の水処理装置1001の全体構成概略図である。図18は、水処理装置1001の低圧時のバイパスバルブ1015bの断面図である。図19は、水処理装置1001の高圧時のバイパスバルブ1015bの断面図である。
(Embodiment 2-2)
Next, a water treatment device 1001 according to a second embodiment of the present disclosure will be described using FIGS. 17 to 19. FIG. FIG. 17 is a schematic diagram of the overall configuration of the water treatment device 1001 of Embodiment 2-2. FIG. 18 is a cross-sectional view of the bypass valve 1015b of the water treatment device 1001 when the pressure is low. FIG. 19 is a cross-sectional view of the bypass valve 1015b of the water treatment device 1001 at high pressure.
 本実施の形態では、実施の形態1と異なる点を中心に説明する。本実施の形態では、バイパス配管1014の流量調整のため、原水流入配管1010におけるバイパス配管1014の分岐部1012に三方弁タイプのバイパスバルブ1015bを用いている。 In this embodiment, differences from Embodiment 1 will be mainly described. In this embodiment, a three-way valve type bypass valve 1015b is used at the branch portion 1012 of the bypass pipe 1014 in the raw water inflow pipe 1010 in order to adjust the flow rate of the bypass pipe 1014 .
 バイパスバルブ1015bは、上述の通り三方弁となっており、入口(流入管1080)がひとつと、出口(流出管1081a、流出管1081b)が2つ設けられた構成である。流入管1080は、第1の実施の形態と同様、原水流入配管1010から原水を流入させる。流出管1081aは、薬剤供給部1003に原水を流出させる。流出管1081bは、バイパス配管1014に原水を流出させる。そして、バイパスバルブ1015bは、流入管1080にかかる圧力によって、出口(流出管1081a、流出管1081b)を切り替えるものである。 The bypass valve 1015b is a three-way valve as described above, and has one inlet (inflow pipe 1080) and two outlets ( outflow pipes 1081a and 1081b). The inflow pipe 1080 allows raw water to flow in from the raw water inflow pipe 1010 as in the first embodiment. The outflow pipe 1081 a causes the raw water to flow out to the drug supply section 1003 . Outflow pipe 1081 b causes the raw water to flow out to bypass pipe 1014 . The bypass valve 1015b switches the outlet (outflow tube 1081a, outflow tube 1081b) according to the pressure applied to the inflow tube 1080. FIG.
 バイパスバルブ1015bは、バイパスバルブ1015a同様、開閉弁1090を有している。三方弁タイプのバイパスバルブ1015bの特徴は、受圧空間1098が、流出管1081aと連通している点である。また、ダイヤフラム1093の動作によって受圧空間1098と流出管1081aの連通が開閉するようになっている。なお、開閉弁1090の他の構成について、バイパスバルブ1015aと同じ部分については同じ番号を付し、詳細な説明を省略する。 The bypass valve 1015b has an on-off valve 1090, like the bypass valve 1015a. A feature of the three-way valve type bypass valve 1015b is that the pressure receiving space 1098 communicates with the outflow pipe 1081a. Further, communication between the pressure receiving space 1098 and the outflow pipe 1081a is opened and closed by the operation of the diaphragm 1093. As shown in FIG. In addition, regarding other configurations of the on-off valve 1090, the same parts as those of the bypass valve 1015a are denoted by the same numbers, and detailed description thereof will be omitted.
 このような構成によるバイパスバルブ1015bの動作について説明する。原水流入配管1010内の圧力が所定の圧力Pより低い場合、ダイヤフラム1093は土台1091に押さえつけられ、流出管1081aはダイヤフラム1093によって閉塞されている。このとき、流出管1081bは開放されており、バイパスバルブ1015bを流れる原水は、流出管1081b、すなわち、バイパス配管1014側に流れる。 The operation of the bypass valve 1015b with such a configuration will be described. When the pressure in the raw water inflow pipe 1010 is lower than the predetermined pressure P, the diaphragm 1093 is pressed against the base 1091 and the outflow pipe 1081a is blocked by the diaphragm 1093 . At this time, the outflow pipe 1081b is open, and the raw water flowing through the bypass valve 1015b flows to the outflow pipe 1081b, that is, the bypass pipe 1014 side.
 一方、原水流入配管1010内の圧力が所定の圧力Pよりも高くなると、ダイヤフラム1093が押し上げられて流出管1081aが開放される。同時に、ダイヤフラム1093と連動してシャフト1094および弁体1096も押し上げられ、弁体1096が弁座1097に押し付けられ、流出管1081bを塞ぐ。すなわち、バイパスバルブ1015bを流れる原水は、流出管1081aの薬剤供給部1003側に流れる。このように、開閉弁1090は、低圧時に流出管1081bを開き、高圧時に流出管1081aを開く三方弁となっている。 On the other hand, when the pressure in the raw water inflow pipe 1010 becomes higher than the predetermined pressure P, the diaphragm 1093 is pushed up and the outflow pipe 1081a is opened. At the same time, the shaft 1094 and the valve body 1096 are also pushed up in conjunction with the diaphragm 1093, and the valve body 1096 is pressed against the valve seat 1097 to block the outflow pipe 1081b. That is, the raw water flowing through the bypass valve 1015b flows toward the medicine supply section 1003 side of the outflow pipe 1081a. Thus, the on-off valve 1090 is a three-way valve that opens the outflow pipe 1081b when the pressure is low and opens the outflow pipe 1081a when the pressure is high.
 このような構成のバイパスバルブ1015bを用いれば、原水流入配管1010内の圧力が所定の圧力Pより低くなる運転モード(逆洗処理時、リンス処理時)において、薬剤供給部1003を通る流路は閉塞され、バイパス配管1014を通る流路のみが開放されるため、バイパス配管1014に水が流れ、薬剤供給部1003を迂回することができる。一方、原水流入配管1010内の圧力が所定の圧力Pより高くなる運転モード(濾過処理時)においては、バイパス配管1014を通る流路が閉塞され、薬剤供給部1003を通る流路のみが開放されるため、薬剤供給部1003に水が流れる。 By using the bypass valve 1015b having such a configuration, the flow path passing through the chemical supply unit 1003 is Since only the channel passing through the bypass pipe 1014 is closed and opened, water can flow through the bypass pipe 1014 and bypass the drug supply unit 1003 . On the other hand, in the operation mode (at the time of filtration processing) in which the pressure in the raw water inflow pipe 1010 becomes higher than the predetermined pressure P, the flow path passing through the bypass pipe 1014 is closed, and only the flow path passing through the drug supply section 1003 is opened. Therefore, water flows into the drug supply unit 1003 .
 三方弁タイプのバイパスバルブ1015bは、逆洗処理時において薬剤供給部1003を通る流路が閉塞されるため、濾過処理時と逆洗処理時の圧損差が小さく、薬剤供給部1003側流路を開いたままでは薬剤供給部1003にも水が流れてしまうような場合に有用である。 Since the three-way valve type bypass valve 1015b closes the flow path passing through the drug supply unit 1003 during the backwashing process, the difference in pressure loss between the filtration process and the backwashing process is small, and the flow path on the side of the drug supply part 1003 is closed. This is useful in a case where water would also flow into the medicine supply section 1003 if left open.
 なお、バイパスバルブ1015bは、流出管1081aまたは流出管1081bの下流側を閉塞させることで、圧力を検知して開閉する二方弁として使用することもできる。流出管1081aの下流側を閉塞させた場合には、低圧時に流出管1081bを開き、高圧時には流出管1081bを閉じる弁となる。このようにして三方弁タイプのバイパスバルブ1015bを二方弁として用いることができる。反対に、流出管1081bの反対側を閉塞させた場合は、低圧時に流出管1081aを閉じ、高圧時に流出管1081aを開く弁となる。このようにした場合には、例えば、原水流入配管1010と逆洗ドレン管1040とを直接接続するバイパス経路を設け、そのバイパス経路内にリリーフ弁として設置することができる。このような構成によれば、電動ポンプ1004の性能が大きすぎる場合など、原水流入配管1010が高圧になった場合に、バイパス経路を開放して余剰な圧力・流量を排出し、水処理装置1001内を所望の圧力・流量にすることができる。 The bypass valve 1015b can also be used as a two-way valve that detects pressure and opens and closes by closing the downstream side of the outflow pipe 1081a or the outflow pipe 1081b. When the downstream side of the outflow pipe 1081a is blocked, it functions as a valve that opens the outflow pipe 1081b at low pressure and closes the outflow pipe 1081b at high pressure. In this manner, the three-way valve type bypass valve 1015b can be used as a two-way valve. Conversely, when the opposite side of the outflow tube 1081b is closed, the valve functions as a valve that closes the outflow tube 1081a at low pressure and opens the outflow tube 1081a at high pressure. In this case, for example, a bypass path that directly connects the raw water inflow pipe 1010 and the backwash drain pipe 1040 can be provided, and a relief valve can be installed in the bypass path. According to such a configuration, when the raw water inflow pipe 1010 becomes high pressure, such as when the performance of the electric pump 1004 is too large, the bypass route is opened to discharge excess pressure and flow rate, and the water treatment device 1001 The desired pressure and flow rate can be set inside.
 このように、同一の構成を使用して、機能の異なる複数の弁に転用することができるため、部品の種類を減らすことができ、金型コスト等を削減することができる。 In this way, the same configuration can be used for multiple valves with different functions, so the number of types of parts can be reduced, and mold costs can be reduced.
 なお、請求の範囲に記載する第1流出口は、バイパスバルブ1015bの流出管1081aに対応し、第2流出口は、バイパスバルブ1015bの流出管1081bに対応している。また、請求の範囲に記載する第1弁体は、ダイヤフラム1093に対応し、第2弁体は、弁体1096に対応している。 The first outflow port described in the claims corresponds to the outflow pipe 1081a of the bypass valve 1015b, and the second outflow port corresponds to the outflow pipe 1081b of the bypass valve 1015b. A first valve body described in claims corresponds to the diaphragm 1093 , and a second valve body corresponds to the valve body 1096 .
 本開示にかかる水処理装置は、逆洗に十分量の清浄な逆洗水を供給可能で、従来品と比較し省スペース設置可能な水処理装置であるため、井戸水や貯留水の浄化に使用される家庭用小型水処理装置等として有用である。 The water treatment device according to the present disclosure can supply a sufficient amount of clean backwash water for backwashing, and is a water treatment device that can be installed in a smaller space than conventional products, so it can be used for purifying well water and stored water. It is useful as a small household water treatment device, etc.
 1  水処理装置
 2  濾過部
 3  薬剤供給部
 4  電動ポンプ
 5  切替弁
 6  浄水タンク
 10  原水流入配管
 11  原水入口
 12  第1分岐部
 13  第2分岐部
 14  バイパス配管
 15  バイパスバルブ
 20  浄水吐出配管
 21  浄水出口
 24  絞り部
 31  流入路
 32  薬剤路
 33  バイパス路
 33a  絞り部
 34  流出路
 40  逆洗ドレン管
 51  筐体
 51a  基台
 51b  上部カバー
 52  噴出管
 53  薬剤載置部
 54  回収部
 55  回収開口
 58  載置部出口
 60  薬剤
 62  逆止弁
 70  集水管
 71  上層
 72  下層
 73  流入口
 74  流出口
 75  流路切替コマ
 80  空気注入部
 81  第1管部
 82  第2管部
 83  第3管部
 84  第1傾斜管部
 85  第2傾斜管部
 86  空気管
 101  固形薬剤供給装置
 102  取水口
 103  水溶性固形薬剤
 104  薬剤接触相
 1001  水処理装置
 1002  濾過部
 1003  薬剤供給部
 1004  電動ポンプ
 1005  切替弁
 1006  浄水タンク
 1010  原水流入配管
 1011  原水入口
 1012  分岐部
 1013  分岐部
 1014  バイパス配管
 1015a、1015b  バイパスバルブ
 1020  浄水吐出配管
 1021  浄水出口
 1024  絞り部
 1031  流入路
 1032  薬剤路
 1033  バイパス路
 1033a  絞り部
 1034  流出路
 1040  逆洗ドレン管
 1051  筐体
 1051a  基台
 1051b  上部カバー
 1052  噴出管
 1053  薬剤載置部
 1054  回収部
 1055  回収開口
 1058  載置部出口
 1060  薬剤
 1062  逆止弁
 1070  集水管
 1071  上層
 1072  下層
 1073  流入口
 1074  流出口
 1075  流路切替コマ
 1080  流入管
 1081、1081a、1081b  流出管
 1090  開閉弁
 1091  土台
 1092  蓋部
 1093  ダイヤフラム
 1094  シャフト
 1095  ばね
 1096  弁体
 1097  弁座
 1098  受圧空間
 1099  受圧管
 1100  つば部
 1101  固形薬剤供給装置
 1102  取水口
 1103  水溶性固形薬剤
 1104  薬剤接触相
REFERENCE SIGNS LIST 1 water treatment device 2 filtration unit 3 drug supply unit 4 electric pump 5 switching valve 6 purified water tank 10 raw water inflow pipe 11 raw water inlet 12 first branch 13 second branch 14 bypass pipe 15 bypass valve 20 purified water discharge pipe 21 purified water outlet 24 throttling part 31 inflow path 32 drug path 33 bypass path 33a throttling part 34 outflow path 40 backwash drain pipe 51 housing 51a base 51b upper cover 52 ejection pipe 53 drug placement part 54 recovery part 55 recovery opening 58 placement part Outlet 60 Drug 62 Check valve 70 Water collection pipe 71 Upper layer 72 Lower layer 73 Inlet 74 Outlet 75 Flow path switching piece 80 Air injection part 81 First pipe part 82 Second pipe part 83 Third pipe part 84 First inclined pipe part 85 Second inclined pipe portion 86 Air pipe 101 Solid chemical supply device 102 Water intake 103 Water-soluble solid chemical 104 Chemical contact phase 1001 Water treatment device 1002 Filtration unit 1003 Chemical supply unit 1004 Electric pump 1005 Switching valve 1006 Purified water tank 1010 Raw water inflow pipe 1011 raw water inlet 1012 branching portion 1013 branching portion 1014 bypass piping 1015a, 1015b bypass valve 1020 purified water discharge piping 1021 purified water outlet 1024 throttle section 1031 inflow path 1032 drug path 1033 bypass path 1033a throttle section 1034 outflow path 1040 backwash drain pipe 1 housing 1051a Base 1051b Upper cover 1052 Ejection pipe 1053 Drug placement part 1054 Recovery part 1055 Recovery opening 1058 Placement part outlet 1060 Drug 1062 Check valve 1070 Water collecting pipe 1071 Upper layer 1072 Lower layer 1073 Inlet 1074 Outlet 1075 Channel switching piece 1080 Inflow pipe 1081, 1081a, 1081b Outflow pipe 1090 On-off valve 1091 Base 1092 Lid portion 1093 Diaphragm 1094 Shaft 1095 Spring 1096 Valve body 1097 Valve seat 1098 Pressure receiving space 1099 Pressure receiving pipe 1100 Collar portion 1 101 solid drug feeder 1102 water intake 1103 water-soluble solid drug 1104 drug contact phase

Claims (17)

  1. 濾材を内包した濾過部と、
    前記濾過部に原水を流入させる原水流入配管と、
    前記原水流入配管の経路内で薬剤を添加する薬剤供給部と、
    前記濾過部から濾過後の処理水を取り出す浄水吐出配管と、
    前記原水流入配管の経路内で前記薬剤供給部を迂回するバイパス配管と、
    前記バイパス配管内を流れる前記原水の水量と前記薬剤供給部を流れる前記原水の水量とを調整するバイパスバルブと、を備える、
    水処理装置。
    a filtration unit containing a filter medium;
    a raw water inflow pipe that allows raw water to flow into the filtering unit;
    a chemical supply unit that adds a chemical within the route of the raw water inflow pipe;
    A purified water discharge pipe for taking out filtered treated water from the filtering unit;
    a bypass pipe that bypasses the chemical supply unit in the route of the raw water inflow pipe;
    a bypass valve that adjusts the amount of the raw water flowing through the bypass pipe and the amount of the raw water flowing through the chemical supply unit;
    Water treatment equipment.
  2. 前記バイパスバルブは、前記バイパス配管に設けられ、前記バイパスバルブ内を流れる前記原水の水量を調整可能である、
    請求項1に記載の水処理装置。
    The bypass valve is provided in the bypass pipe, and is capable of adjusting the amount of the raw water flowing through the bypass valve.
    The water treatment device according to claim 1.
  3. 前記原水流入配管において前記バイパス配管に分岐する第1分岐部と、
    前記原水流入配管において前記バイパス配管と合流する第2分岐部と、をさらに備え、
    前記バイパスバルブは、前記原水流入配管において前記第1分岐部と前記薬剤供給部との間の配管、または、前記原水流入配管において前記薬剤供給部と前記第2分岐部との間の配管に設けられ、前記バイパスバルブ内を流れる前記原水の水量を調整可能である、
    請求項1に記載の水処理装置。
    a first branching portion that branches to the bypass pipe in the raw water inflow pipe;
    a second branching portion that merges with the bypass pipe in the raw water inflow pipe,
    The bypass valve is provided in the pipe between the first branch portion and the drug supply portion in the raw water inflow pipe, or in the pipe between the drug supply portion and the second branch portion in the raw water inflow pipe. and is capable of adjusting the amount of the raw water flowing through the bypass valve,
    The water treatment device according to claim 1.
  4. 前記バイパスバルブは、前記バイパスバルブの上流側の圧力に応じて前記バイパスバルブ内を流れる前記原水の水量を調整する、
    請求項1から3のいずれかに記載の水処理装置。
    The bypass valve adjusts the amount of the raw water flowing through the bypass valve according to the pressure on the upstream side of the bypass valve.
    The water treatment device according to any one of claims 1 to 3.
  5. 前記濾過部からの排水を流す逆洗ドレン管と、
    前記濾過部に接続された前記原水流入配管、前記浄水吐出配管および前記逆洗ドレン管の少なくとも1つと、前記濾過部内の開口との連通接続を切り替える切替弁をさらに備え、
    前記バイパスバルブは、前記切替弁の操作に連動して開閉する、
    請求項1から4のいずれかに記載の水処理装置。
    a backwash drain pipe for flowing drainage from the filtration unit;
    At least one of the raw water inflow pipe, the purified water discharge pipe, and the backwash drain pipe connected to the filtration unit and a switching valve for switching communication with an opening in the filtration unit,
    The bypass valve opens and closes in conjunction with the operation of the switching valve.
    The water treatment device according to any one of claims 1 to 4.
  6. 前記浄水吐出配管には絞り部が設けられ、
    前記原水流入配管または前記浄水吐出配管内の圧力または流量を検出するセンサーを設け、
    前記バイパスバルブは、前記センサーの出力に応じて開閉する請求項1から5のいずれかに記載の水処理装置。
    A narrowed portion is provided in the purified water discharge pipe,
    A sensor is provided to detect the pressure or flow rate in the raw water inflow pipe or the purified water discharge pipe,
    The water treatment apparatus according to any one of claims 1 to 5, wherein the bypass valve opens and closes according to the output of the sensor.
  7. 濾過処理時には、前記原水は、前記薬剤供給部、前記濾過部および前記浄水吐出配管を順次介して流れ、
    逆洗処理時には、前記原水は、前記バイパス配管、前記濾過部、および逆洗ドレン管を順次介して流れ、
    前記バイパス配管内には、空気を注入する空気注入部が設けられ、
    前記空気注入部は、前記逆洗処理時に前記バイパス配管内に空気を注入する、
    請求項1から6のいずれかに記載の水処理装置。
    During the filtration process, the raw water flows sequentially through the chemical supply unit, the filtration unit, and the purified water discharge pipe,
    During the backwashing process, the raw water flows sequentially through the bypass pipe, the filtration unit, and the backwash drain pipe,
    An air injection part for injecting air is provided in the bypass pipe,
    The air injection unit injects air into the bypass pipe during the backwashing process.
    The water treatment device according to any one of claims 1 to 6.
  8. 前記浄水吐出配管には、水流の速度を所定の速度より小さくする絞り部が設けられ、
    前記空気注入部は、前記バイパス配管内を流れる前記原水の水流の速度が所定の速度より大きくなると、前記バイパス配管内に空気を注入する、
    請求項7に記載の水処理装置。
    The purified water discharge pipe is provided with a throttle portion that reduces the speed of the water flow below a predetermined speed,
    The air injection unit injects air into the bypass pipe when the speed of the raw water flowing through the bypass pipe exceeds a predetermined speed.
    The water treatment device according to claim 7.
  9. 前記原水流入配管の経路内であって、前記原水が蓄えられている水源と前記薬剤供給部との間の第一分岐部で分岐し、前記薬剤供給部をバイパスし、前記薬剤供給部と前記濾過部との間の第二分岐部に接続される前記バイパス配管と、
    前記濾過部の上部に設けられ、前記原水流入配管、前記浄水吐出配管または前記逆洗ドレン管と、前記濾過部内の流入口または流出口とが接続され、前記濾過部内の前記流入口および前記流出口との連通が切り替えられる切替弁と、をさらに備え、
    前記濾過処理時には、
    前記第一分岐部は、前記水源と前記薬剤供給部とを連通させ、
    前記第二分岐部は、前記薬剤供給部と前記切替弁とを連通させ、
    前記切替弁は、前記薬剤供給部および前記濾過部の前記流入口、ならびに、前記濾過部の前記流出口および前記浄水吐出配管を連通させ、
    前記逆洗処理時には、
    前記第一分岐部は、前記水源と前記バイパス配管とを連通させ、
    前記第二分岐部は、前記バイパス配管と前記切替弁とを連通させ、
    前記切替弁は、前記薬剤供給部および前記濾過部の前記流出口、ならびに、前記濾過部の前記流入口および前記逆洗ドレン管を連通させる、
    請求項7または8に記載の水処理装置。
    In the path of the raw water inflow pipe, branching at a first branching portion between the water source in which the raw water is stored and the drug supply unit, bypasses the drug supply unit, and connects the drug supply unit and the drug supply unit. the bypass pipe connected to the second branch portion between the filtration unit;
    The raw water inflow pipe, the purified water discharge pipe, or the backwash drain pipe is provided in the upper part of the filtration unit, and the inflow port or the outflow port in the filtration unit is connected, and the inflow port and the flow in the filtration unit are connected. a switching valve for switching communication with the outlet,
    During the filtration process,
    The first branch part communicates the water source and the drug supply part,
    the second branch portion communicates the drug supply portion and the switching valve;
    The switching valve communicates the inflow ports of the drug supply unit and the filtration unit, and the outflow port of the filtration unit and the purified water discharge pipe,
    During the backwashing process,
    The first branch part communicates the water source and the bypass pipe,
    the second branch portion communicates the bypass pipe and the switching valve;
    The switching valve communicates the drug supply unit and the outflow port of the filtration unit, and the inflow port of the filtration unit and the backwash drain pipe,
    The water treatment device according to claim 7 or 8.
  10. 前記空気注入部は、
    管形状の第1管部と、
    前記第1管部の水の流れにおいて前記第1管部より上流側に設けられ、断面積が前記第1管部より大きい管形状の第2管部と、
    前記第2管部と前記第1管部との間に設けられ、前記第2管部から前記第1管部に向かうにつれて断面積が小さくなる管形状の第1傾斜管部と、
    前記第1管部の水の流れにおける前記第1管部より下流側に設けられ、管形状の第3管部と、
    前記第1管部と前記第3管部との間に設けられ、前記第1管部から前記第3管部に向かうにつれて断面積が大きくなる管形状の第2傾斜管部と、
    前記第1管部から延びる管形状の空気管と、をさらに備え、
    前記第1管部内と前記空気管内とは連通し、
    前記空気管の断面積は、前記第1管部の断面積より小さい、
    請求項7から9のいずれかに記載の水処理装置。
    The air injection part is
    a tubular first tubular portion;
    a second tubular portion provided upstream of the first tubular portion in the flow of water in the first tubular portion and having a tubular shape with a cross-sectional area larger than the first tubular portion;
    a tubular-shaped first inclined tubular portion provided between the second tubular portion and the first tubular portion, the cross-sectional area of which decreases from the second tubular portion toward the first tubular portion;
    a tubular-shaped third tubular portion provided downstream of the first tubular portion in the flow of water of the first tubular portion;
    a tubular second inclined tubular portion provided between the first tubular portion and the third tubular portion, the cross-sectional area of which increases from the first tubular portion toward the third tubular portion;
    a tubular air tube extending from the first tube portion,
    the inside of the first pipe portion and the inside of the air pipe communicate with each other;
    the cross-sectional area of the air tube is smaller than the cross-sectional area of the first tube portion;
    The water treatment device according to any one of claims 7 to 9.
  11. 濾材を内包した濾過部と、
    前記濾過部に原水を流入させる原水流入配管と、
    前記原水流入配管の経路内で薬剤を添加する薬剤供給部と、
    前記濾過部から濾過後の処理水を取り出す浄水吐出配管と、
    前記原水流入配管の経路内で前記薬剤供給部を迂回するバイパス配管と、
    前記バイパス配管経路内に設けられるバイパスバルブと、を備え、
    前記バイパスバルブは、前記原水流入配管内の圧力を感知して前記バイパス配管経路を開閉することにより、前記バイパス配管に流れる前記原水の流量を調整する、
    水処理装置。
    a filtration unit containing a filter medium;
    a raw water inflow pipe that allows raw water to flow into the filtering unit;
    a chemical supply unit that adds a chemical within the route of the raw water inflow pipe;
    A purified water discharge pipe for taking out filtered treated water from the filtering unit;
    a bypass pipe that bypasses the chemical supply unit in the route of the raw water inflow pipe;
    a bypass valve provided in the bypass piping route,
    The bypass valve adjusts the flow rate of the raw water flowing through the bypass pipe by sensing the pressure in the raw water inflow pipe and opening and closing the bypass pipe route.
    Water treatment equipment.
  12. 前記バイパスバルブは、
    前記バイパスバルブより上流の圧力が所定の圧力を超えない場合は前記バイパス配管を開き、前記バイパスバルブより上流の圧力が前記所定の圧力を超える場合は前記バイパス配管を閉じる二方弁である、
    請求項11に記載の水処理装置。
    The bypass valve is
    A two-way valve that opens the bypass pipe when the pressure upstream of the bypass valve does not exceed a predetermined pressure, and closes the bypass pipe when the pressure upstream of the bypass valve exceeds the predetermined pressure,
    The water treatment device according to claim 11.
  13. 前記バイパスバルブは、
    前記薬剤供給部の上流側に位置する前記バイパス配管と前記原水流入配管との分岐部に設けられ、
    前記原水流入配管内の圧力が所定の圧力を超えない場合は、前記原水流入配管と前記バイパス配管とを連通し、
    前記原水流入配管内の圧力が前記所定の圧力を超える場合は、前記原水流入配管と前記薬剤供給部側を連通する三方弁である、
    請求項11または12に記載の水処理装置。
    The bypass valve is
    provided at a branching portion between the bypass pipe and the raw water inflow pipe located upstream of the chemical supply portion,
    When the pressure in the raw water inflow pipe does not exceed a predetermined pressure, the raw water inflow pipe and the bypass pipe are communicated,
    A three-way valve that communicates the raw water inflow pipe and the drug supply unit side when the pressure in the raw water inflow pipe exceeds the predetermined pressure,
    The water treatment device according to claim 11 or 12.
  14. 流入口と第1流出口と第2流出口とを有し、
    流入側の圧力が所定値より低い場合に、前記第1流出口を閉鎖するとともに、前記第2流出口を開放し、
    流入側の圧力が所定値よりも高い場合に、前記第1流出口を開放するとともに、前記第2流出口を閉鎖する、
    液体用三方弁。
    having an inlet, a first outlet, and a second outlet;
    closing the first outlet and opening the second outlet when the pressure on the inflow side is lower than a predetermined value;
    opening the first outlet and closing the second outlet when the pressure on the inflow side is higher than a predetermined value;
    Three-way valve for liquids.
  15. 前記第1流出口を開閉する第1弁体と、前記第2流出口を開閉する第2弁体とをさらに備え、
    上流側から圧力を受ける面積は、前記第1弁体のほうが前記第2弁体よりも大きい、
    請求項14記載の液体用三方弁。
    further comprising a first valve body that opens and closes the first outlet, and a second valve body that opens and closes the second outlet;
    The first valve body has a larger area that receives pressure from the upstream side than the second valve body,
    The three-way valve for liquid according to claim 14.
  16. 前記第1弁体は、弾性体によって閉鎖方向に付勢されたダイヤフラムである、
    請求項14または15記載の液体用三方弁。
    The first valve body is a diaphragm biased in a closing direction by an elastic body,
    The three-way valve for liquid according to claim 14 or 15.
  17. 前記第1流出口の下流側を閉鎖して二方弁として用いる、
    請求項14から16のいずれかに記載の液体用三方弁。
    The downstream side of the first outlet is closed and used as a two-way valve,
    The liquid three-way valve according to any one of claims 14 to 16.
PCT/JP2022/004816 2021-02-17 2022-02-08 Water treatment device and three-way valve for liquids WO2022176691A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023500752A JPWO2022176691A1 (en) 2021-02-17 2022-02-08

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2021-023039 2021-02-17
JP2021023039 2021-02-17
JP2021045346 2021-03-19
JP2021-045346 2021-03-19
JP2021158587 2021-09-29
JP2021-158587 2021-09-29
JP2021-196597 2021-12-03
JP2021196597 2021-12-03

Publications (1)

Publication Number Publication Date
WO2022176691A1 true WO2022176691A1 (en) 2022-08-25

Family

ID=82930462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004816 WO2022176691A1 (en) 2021-02-17 2022-02-08 Water treatment device and three-way valve for liquids

Country Status (2)

Country Link
JP (1) JPWO2022176691A1 (en)
WO (1) WO2022176691A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162898A (en) * 2005-12-16 2007-06-28 Shuichi Kobayashi Pressure amplifying three-way valve
WO2009122762A1 (en) * 2008-03-31 2009-10-08 東京エレクトロン株式会社 Three-way valve
JP2017131798A (en) * 2016-01-25 2017-08-03 パナソニックIpマネジメント株式会社 Water treatment equipment
JP2018084278A (en) * 2016-11-23 2018-05-31 アイシン精機株式会社 Valve module
JP2019042641A (en) * 2017-08-30 2019-03-22 パナソニックIpマネジメント株式会社 Filter
WO2021020138A1 (en) * 2019-07-31 2021-02-04 パナソニックIpマネジメント株式会社 Water treatment device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162898A (en) * 2005-12-16 2007-06-28 Shuichi Kobayashi Pressure amplifying three-way valve
WO2009122762A1 (en) * 2008-03-31 2009-10-08 東京エレクトロン株式会社 Three-way valve
JP2017131798A (en) * 2016-01-25 2017-08-03 パナソニックIpマネジメント株式会社 Water treatment equipment
JP2018084278A (en) * 2016-11-23 2018-05-31 アイシン精機株式会社 Valve module
JP2019042641A (en) * 2017-08-30 2019-03-22 パナソニックIpマネジメント株式会社 Filter
WO2021020138A1 (en) * 2019-07-31 2021-02-04 パナソニックIpマネジメント株式会社 Water treatment device

Also Published As

Publication number Publication date
JPWO2022176691A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
US20160107902A1 (en) System and method for the treatment of wastewater
EP2053024A1 (en) Water treatment device
KR100797051B1 (en) Water path changing adapter in water purification system
WO2022176691A1 (en) Water treatment device and three-way valve for liquids
WO2022004143A1 (en) Water treatment apparatus and pressure regulating valve
CN209636004U (en) Integrating water route system and water purifier
US10384150B2 (en) Fluid treatment reactor
JP2023047263A (en) Water treatment apparatus
JP2022130840A (en) water treatment system
JP7281617B2 (en) water treatment equipment
WO2024062956A1 (en) Water treatment device
JP6664673B1 (en) Filtration system
CN209906532U (en) Contain ammonia nitrogen effluent disposal system
JP2016104462A (en) Water treatment device
WO2024070864A1 (en) Water treatment device
JP2023131194A (en) Water treatment device
JP7329728B2 (en) water treatment equipment
JP2022011222A (en) Water treatment device
JP7361246B2 (en) water treatment equipment
JP2022037289A (en) Water treatment apparatus
JP7316492B2 (en) water treatment equipment
JP2023046443A (en) water treatment equipment
CN212315643U (en) Water purification system
WO2017130894A1 (en) Water treatment device
KR102016705B1 (en) Water filtration systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756012

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500752

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756012

Country of ref document: EP

Kind code of ref document: A1