WO2022176592A1 - 車載用切替装置 - Google Patents

車載用切替装置 Download PDF

Info

Publication number
WO2022176592A1
WO2022176592A1 PCT/JP2022/003712 JP2022003712W WO2022176592A1 WO 2022176592 A1 WO2022176592 A1 WO 2022176592A1 JP 2022003712 W JP2022003712 W JP 2022003712W WO 2022176592 A1 WO2022176592 A1 WO 2022176592A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
battery
connection state
current
conductive path
Prior art date
Application number
PCT/JP2022/003712
Other languages
English (en)
French (fr)
Inventor
優介 伊佐治
孝佳 板東
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to DE112022001171.8T priority Critical patent/DE112022001171T5/de
Priority to CN202280015037.4A priority patent/CN116848750A/zh
Priority to US18/546,659 priority patent/US20240227623A9/en
Publication of WO2022176592A1 publication Critical patent/WO2022176592A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]

Definitions

  • the present disclosure relates to an in-vehicle switching device.
  • the vehicle power supply device disclosed in Patent Document 1 is a device capable of connecting the first power storage means and the second power storage means in series or in parallel.
  • the control means turns on the third switch means to energize one charging resistor. .
  • the controller turns on the first switch means to form a circuit for series connection.
  • a device that can switch a plurality of batteries between a series connection state and a parallel connection state and can detect the current flowing between the batteries in both the series connection state and the parallel connection state is more easily realized. With the goal.
  • An in-vehicle switching device for a vehicle in the present disclosure includes: A vehicle comprising: a battery unit having at least a first battery and a second battery; and a switching circuit that switches between a series connection state in which the first battery and the second battery are connected in series and a parallel connection state in which the first battery and the second battery are connected in parallel.
  • An in-vehicle switching device used in a power supply system for the switching circuit; a first conducting path, which is a path through which current is permitted to flow in the series connection state and through which current does not flow in the parallel connection state; a second conductive path, which is a path through which current is allowed to flow in the parallel connection state and through which current does not flow in the series connection state; Forms a path between the negative electrode of the first battery and the positive electrode of the second battery in the series connection state, and between or both the positive electrodes of the first battery and the second battery in the parallel connection state.
  • a third conductive path forming a path between the negative electrodes; a current detection unit that detects the current flowing through the third conducting path; have
  • a vehicle-mounted switching device can switch a plurality of batteries between a series-connected state and a parallel-connected state, and can detect a current flowing between the batteries in both the series-connected state and the parallel-connected state. can be realized.
  • FIG. 1 is a schematic diagram conceptually showing an in-vehicle power supply system including an in-vehicle switching device according to a first embodiment.
  • FIG. 2 is a schematic diagram conceptually showing an in-vehicle power supply system including an in-vehicle switching device according to the second embodiment.
  • An in-vehicle switching device of the present disclosure includes a battery unit having at least a first battery and a second battery, a series connection state in which the first battery and the second battery are connected in series, and a parallel connection state in which the first battery and the second battery are connected in parallel. and a switching circuit that switches to a power supply system for a vehicle.
  • the in-vehicle switching device has a switching circuit, a first conductive path, a second conductive path, a third conductive path, and a current detector.
  • the first conductive path is a path through which current is allowed to flow when in a series connection state and through which current does not flow when in a parallel connection state.
  • the second conducting path is a path through which current is allowed to flow when in the parallel connection state and through which current does not flow when in the series connection state.
  • the third conductive path forms a path between the negative electrode of the first battery and the positive electrode of the second battery when in a series connection state, and between or both the positive electrodes of the first battery and the second battery when in a parallel connection state. form a path between the negative electrodes.
  • the current detector detects current flowing through the third conductive path.
  • the third conductive path forms a path between the electrodes and current is allowed to flow in both the series connection state and the parallel connection state. Further, since the current detection section is provided in the third conductive path, the current between the batteries can be detected by the common current detection section in both the series connection state and the parallel connection state. Therefore, a device that can detect the current flowing between the batteries in both the series connection state and the parallel connection state is more easily realized.
  • the third conductive path includes a first common path and a second common path.
  • the first common path is a conductive path that conducts between the positive electrodes of the first battery and the second battery in the parallel connection state.
  • the second common path is a conducting path that conducts between the negative electrodes of the first battery and the second battery in the parallel connection state.
  • the current detection unit may include a first detection unit that detects current flowing through the first common path and a second detection unit that detects current flowing through the second common path.
  • the in-vehicle switching device described in [2] above can more accurately grasp the current generated between the batteries in the parallel connection state in both the positive-side path and the negative-side path.
  • the second conductive path may include an inter-positive conductive path and an inter-negative conductive path.
  • the inter-positive conductive path forms a path between the positive electrodes of the first battery and the second battery in the parallel connection state.
  • the inter-negative conductive path forms a path between both negative electrodes of the first battery and the second battery in the parallel connection state.
  • the second conductive path may comprise a first fuse provided in the positive-electrode conductive path and a second fuse provided in the negative-electrode conductive path.
  • the conductive path can be forcibly cut off.
  • An in-vehicle power supply system can have a power path that is a path for transmitting power from a battery unit in both a series connection state and a parallel connection state.
  • the power line is provided with an external fuse having a function of interrupting the flow of electricity through the power line, and in the vehicle-mounted switching device of [3] above, the rated current of the first fuse and the second fuse is higher than the rated current of the external fuse. can also be made smaller.
  • the in-vehicle switching device described in [4] above can have a smaller configuration for the first fuse and the second fuse. Since the path between the batteries in the parallel connection state is a path through which a relatively low current flows compared to the power path, arranging the first fuse and the second fuse in such a path makes it easy to reduce the size of the fuse. .
  • FIG. 1 illustrates an in-vehicle power supply system 100 provided with an in-vehicle switching device 1 according to the first embodiment.
  • the in-vehicle power supply system 100 is used as a power supply for operating a load R (for example, a motor for driving the wheels, etc.) of the vehicle mounted thereon.
  • the in-vehicle power supply system 100 includes a battery section 10 , a high potential side conducting path 16 , a low potential side conducting path 17 , an in-vehicle switching device 1 , and a junction box section 2 .
  • the battery section 10 has a first battery 10A and a second battery 10B.
  • the in-vehicle switching device 1 has a first conducting path 11, a second conducting path 12, a third conducting path 13, a switching circuit 14, and a current detection section 14H.
  • the in-vehicle switching device 1 is used in an in-vehicle power supply system 100 .
  • the first battery 10A and the second battery 10B in the battery section 10 are provided with a plurality of battery sections configured as unit cells, and the battery sections are integrally combined. A battery section is not shown.
  • the highest potential electrode of the plurality of unit cells electrically connected in series is the positive electrode BH
  • the plurality of unit cells electrically connected in series is the negative electrode BL.
  • electrically connected desirably refers to a configuration in which the objects to be connected are electrically connected to each other (a state in which current can flow) so that the potentials of both objects are equal.
  • electrically connected may be a configuration in which both connection objects are connected in a state in which an electric component is interposed between them and both connection objects are electrically connected.
  • One end of the high potential side conductive path 16 is electrically connected to the positive electrode BH of the first battery 10A.
  • One end of the low potential side conductive path 17 is electrically connected to the negative electrode BL of the second battery 10B.
  • the second conducting path 12 allows a current to flow when the first battery 10A and the second battery 10B are electrically connected in parallel (hereinafter also simply referred to as a parallel connection state).
  • the second conducting path 12 is a path through which no current flows when the first battery 10A and the second battery 10B are electrically connected in series (hereinafter also simply referred to as a series connection state).
  • the second conductive path 12 includes an inter-positive conductive path 12A and an inter-negative conductive path 12B.
  • One end of the inter-positive electrode conductive path 12A is electrically connected to the other end of the high potential side conductive path 16 .
  • One end of the inter-negative electrode conductive path 12B is electrically connected to the other end of the low potential side conductive path 17 .
  • the third conducting path 13 forms a path between the negative electrode BL of the first battery 10A and the positive electrode BH of the second battery 10B in the series connection state, and forms a path between the first battery 10A and the second battery 10A in the parallel connection state. It forms a path between both positive electrodes BH or between both negative electrodes BL of 10B.
  • the third conductive path 13 includes a first common path 13A and a second common path 13B. One end of the first common path 13A is electrically connected to the positive electrode BH of the second battery 10B. The other end of the first common path 13A is electrically connected to the other end of the inter-positive electrode conductive path 12A. One end of the second common path 13B is electrically connected to the negative electrode BL of the first battery 10A. The other end of the second common path 13B is electrically connected to the other end of the inter-negative conductive path 12B.
  • the high-potential-side conductive path 16, the positive-electrode conductive path 12A, and the first common path 13A form a path that conducts between the positive electrodes BH of the first battery 10A and the second battery 10B in the parallel connection state.
  • the first common path 13A is a conductive path that conducts between the positive electrodes BH of the first battery 10A and the second battery 10B in the parallel connection state.
  • the low-potential-side conductive path 17, the inter-negative conductive path 12B, and the second common path 13B form paths that conduct between the negative electrodes BL of the first battery 10A and the second battery 10B in the parallel connection state.
  • the second common path 13B is a conductive path that conducts between the negative electrodes BL of the first battery 10A and the second battery 10B in the parallel connection state.
  • the first conducting path 11 is a path through which current is allowed to flow when in a series connection state and through which current does not flow when in a parallel connection state.
  • One end of the first conductive path 11 is electrically connected to the other end of the second common path 13B and the other end of the inter-negative conductive path 12B.
  • the other end of the first conductive path 11 is electrically connected to the other end of the first common path 13A and the other end of the inter-positive electrode conductive path 12A. That is, the first conducting path 11 is electrically connected in series to the first battery 10A and the second battery 10B via the first common path 13A and the second common path 13B.
  • the switching circuit 14 has a function of switching between a series connection state in which the first battery 10A and the second battery 10B are connected in series and a parallel connection state in which they are connected in parallel.
  • the switching circuit 14 has a first parallel switch 14A, a second parallel switch 14B, a series switch 14C, a first fuse 14D and a second fuse 14E.
  • the first parallel switch 14A, the second parallel switch 14B, and the series switch 14C are composed of semiconductor switches such as relay switches and MOSFETs, for example.
  • the first parallel switch 14A is interposed in the inter-positive conductive path 12A.
  • the second parallel switch 14B is interposed in the inter-negative conductive path 12B.
  • the series switch 14 ⁇ /b>C is interposed in the first conducting path 11 .
  • the first parallel switch 14A, the second parallel switch 14B, and the series switch 14C are configured to be switched between an ON state and an OFF state by a control section 50 configured by an information processing device such as a microcomputer.
  • the controller 50 is provided outside the in-vehicle power supply system 100, for example.
  • the first fuse 14D is interposed in the positive electrode conductive path 12A so as to be in series with the first parallel switch 14A. In the inter-positive electrode conductive path 12A, the first fuse 14D is located closer to one end than the first parallel switch 14A.
  • the second fuse 14E is interposed in the inter-negative conductive path 12B so as to be in series with the second parallel switch 14B. In the inter-negative electrode conductive path 12B, the second fuse 14E is located closer to one end than the second parallel switch 14B.
  • the first fuse 14D and the second fuse 14E are composed of, for example, thermal fuses.
  • the in-vehicle switching device 1 includes a first fuse 14D and a second fuse 14E that cut off the energization of the second conducting path 12 .
  • the current detector 14H has a first detector 14F and a second detector 14G.
  • the 1st detection part 14F is interposed and provided in 13 A of 1st common paths.
  • the 2nd detection part 14G is interposed and provided in the 2nd common path 13B.
  • the first detection unit 14F and the second detection unit 14G have, for example, resistors and differential amplifiers, and values indicating currents flowing through the first common path 13A and the second common path 13B (specifically, , analog voltage corresponding to the values of the currents flowing through the first common path 13A and the second common path 13B) can be output as current values.
  • the first detection unit 14F detects the state of the current flowing through the first common path 13A
  • the second detection unit 14G detects the state of the current flowing through the second common path 13B.
  • the current values output from the first detection unit 14F and the second detection unit 14G are configured to be input to the control unit 50, for example. That is, the current detection unit 14H detects currents flowing through the first common path 13A (the third conductive path 13) and the second common path 13B (the third conductive path 13).
  • the junction box section 2 has a function of supplying electric power from the battery section 10 to the load R and the like.
  • the junction box section 2 includes a high potential side power path 20A that is the power path 20, a low potential side power path 20B that is the power path 20, a high potential side switch 20D, a bypass section 20C, and a low potential side switch 20E. , and an external fuse 20K.
  • the power path 20 is a path for transmitting power from the battery unit 10 in both the series connection state and the parallel connection state.
  • One end of the high potential side power path 20A is electrically connected to the other end of the high potential side conductive path 16 and one end of the positive electrode conductive path 12A.
  • One end of the low potential side power path 20B is electrically connected to the other end of the low potential side conductive path 17 and one end of the inter-negative conductive path 12B.
  • the high potential side switch 20D is interposed in the high potential side power path 20A.
  • the bypass section 20C is electrically connected in parallel with the high potential side switch 20D.
  • the bypass section 20C has a bypass switch 20G and a resistor 20H. Bypass switch 20G and resistor 20H are electrically connected in series.
  • a bypass switch 20G is interposed between the resistor 20H and the high potential side conductive path 16 .
  • the low potential side switch 20E is interposed in the low potential side power path 20B.
  • the high potential side switch 20D, the bypass switch 20G, and the low potential side switch 20E are composed of semiconductor switches such as relay switches and MOSFETs, for example.
  • the external fuse 20K is interposed in the low potential side power path 20B on the opposite side of the low potential side conductive path 17 with the low potential side switch 20E interposed therebetween.
  • the external fuse 20K is composed of, for example, a thermal fuse.
  • the switching circuit 14 is in the series-connected state, the external fuse 20K is fused according to its own breaking characteristics (for example, rated current) to cut off the energization in the low-potential power path 20B. That is, the power line 20 is provided with an external fuse 20K having a function of interrupting the energization of the power line 20 .
  • a load R is electrically connected between the other end of the high-potential power path 20A and the other end of the low-potential power path 20B.
  • a parallel connection state in which the first battery 10A and the second battery 10B of the battery section 10 are electrically connected in parallel will be described.
  • the control unit 50 switches the first parallel switch 14A and the second parallel switch 14B to the ON state, and switches the series switch 14C to the OFF state.
  • the first battery 10A and the second battery 10B are electrically connected in parallel.
  • the switching circuit 14 is brought into a parallel connection state. After that, the high-potential side switch 20D and the low-potential side switch 20E are switched to the ON state, and power is supplied to the load R.
  • the high-potential-side conductive path 16, the positive-electrode conductive path 12A, and the first common path 13A form a path that conducts between the positive electrodes BH of the first battery 10A and the second battery 10B.
  • the low-potential-side conductive path 17, the inter-negative conductive path 12B, and the second common path 13B form a path that conducts between the negative electrodes BL of the first battery 10A and the second battery 10B.
  • the current generated from the second battery 10B is detected as the current value A by the first detector 14F provided in the first common path 13A.
  • the current generated from the first battery 10A is detected as the current value C by the second detector 14G provided in the second common path 13B.
  • the first detection unit 14F and the second detection unit 14G detect the currents in the first common path 13A and the second common path 13B as current values A and C at the same time.
  • the detected current values A and C are input to the control unit 50 at the same time.
  • the current value A and the current value C are added.
  • the current value B which is the calculation result of the addition in this way, corresponds to the current flowing through the low potential side power path 20B (high potential side power path 20A).
  • the current value B obtained in this way is a value at the same time when the first detection section 14F and the second detection section 14G detect the current in the first common path 13A and the second common path 13B.
  • control unit 50 sets the magnitude of the current flowing through the low potential side power path 20B as the current value B based on the current values C and A corresponding to the magnitudes of the currents generated from the first battery 10A and the second battery 10B. can grasp.
  • the switch circuit 14 when the switch circuit 14 is in the parallel connection state, if the series switch 14C is inadvertently switched to the ON state or short-circuited, each of the first battery 10A and the second battery 10B is connected to the positive electrode BH. A short circuit with the negative electrode BL will result. In this case, the first parallel switch 14A, the second parallel switch 14B, and the series switch 14C are prevented from malfunctioning due to the melting of the first fuse 14D and the second fuse 14E. Further, the control unit 50 controls the magnitude of the current flowing through the first common path 13A (the third conducting path 13) and the magnitude of the current flowing through the second common path 13B (the third conducting path 13) to reach a predetermined threshold value.
  • the control unit 50 the magnitude of the current flowing through the first common path 13A (the third conductive path 13) and the magnitude of the current flowing through the second common path 13B (the third conductive path 13) are predetermined. is reached, the first parallel switch 14A and the second parallel switch 14B can be switched to the OFF state to cut off the energization of the second conducting path 12.
  • the current generated from the first battery 10A flows through the positive electrode conductive path 12A, and the current generated from the second battery 10B flows through the negative electrode conductive path 12B.
  • the external fuse 20K has a current larger than the current flowing through each of the positive electrode conductive path 12A and the negative electrode conductive path 12B (that is, current generated from the first battery 10A and current from the second battery 10B) will flow. Therefore, the rated currents of the first fuse 14D and the second fuse 14E are made smaller than the rated current of the external fuse 20K.
  • a series connection state in which the first battery 10A and the second battery 10B of the battery section 10 are electrically connected in series will be described.
  • the control unit 50 switches the first parallel switch 14A and the second parallel switch 14B to the OFF state, and switches the series switch 14C to the ON state.
  • the first battery 10A and the second battery 10B are electrically connected in series.
  • the switching circuit 14 is brought into a series connection state. After that, the high-potential side switch 20D and the low-potential side switch 20E are switched to the ON state, and power is supplied to the load R.
  • the current flowing through the first common path 13A is detected as the current value F by the first detection unit 14F provided on the first common path 13A, and the second detection unit 14G provided on the second common path 13B detects A current value G is detected as the current flowing through the second common path 13B.
  • the 1st detection part 14F and the 2nd detection part 14G detect the electric current in the 1st common path 13A and the 2nd common path 13B at the same time, for example.
  • the current values F and G are input to the control unit 50 at the same time.
  • the first battery 10A and the second battery 10B are electrically connected in series. Therefore, the current values F and G are the same value.
  • the current flowing through the low potential side power path 20B (high potential side power path 20A) is also the same value as the current value F (current value G).
  • the control unit 50 can grasp the magnitude of the current generated from the battery unit 10 as the current values F and G.
  • the control unit 50 is configured to monitor whether or not the magnitude of the current flowing through the third conductive path 13 (first conductive path 11) has reached a predetermined threshold. For example, when a ground fault occurs in the load R, etc., the external fuse 20K is blown if the current flowing through the external fuse 20K increases but does not meet its own breaking characteristics (rated current). Can not do it. In such a case, when the control unit 50 determines that the magnitude of the current flowing through the third conducting path 13 (the first conducting path 11) has reached a predetermined threshold value, the series switch 14C is turned off to turn off the first electric current. The energization of the conductive path 11 can be interrupted.
  • a vehicle-mounted switching device 1 of the present disclosure is used in a vehicle-mounted power supply system 100 that includes a battery section 10 and a switching circuit 14 .
  • the battery section 10 has a first battery 10A and a second battery 10B.
  • the switching circuit 14 switches between a series connection state in which the first battery 10A and the second battery 10B are connected in series and a parallel connection state in which they are connected in parallel.
  • the in-vehicle switching device 1 has a switching circuit 14, a first conducting path 11, a second conducting path 12, a third conducting path 13, and a current detector 14H.
  • the first conductive path 11 is a path through which current is allowed to flow when in a series connection state and through which current does not flow when in a parallel connection state.
  • the second conducting path 12 is a path through which current is allowed to flow when in the parallel connection state and through which current does not flow when in the series connection state.
  • the third conducting path 13 forms a path between the negative electrode BL of the first battery 10A and the positive electrode BH of the second battery 10B in the series connection state, and forms a path between the first battery 10A and the second battery 10A in the parallel connection state. It forms a path between both positive electrodes BH or between both negative electrodes BL of 10B.
  • the current detector 14H detects current flowing through the third conductive path 13 .
  • the third conducting path 13 forms a path between the electrodes (positive electrode BH, negative electrode BL) in both the series connection state and the parallel connection state, allowing current to flow.
  • the current detection section 14H is provided in the third conductive path 13, the current between the first battery 10A and the second battery 10B can be detected by the common current detection section 14H in both the series connection state and the parallel connection state. can. Therefore, a device that can detect the current flowing between the first battery 10A and the second battery 10B in both the series connection state and the parallel connection state can be realized more easily.
  • the third conducting path 13 includes a first common path 13A and a second common path 13B.
  • the first common path 13A is a conductive path that conducts between the positive electrodes BH of the first battery 10A and the second battery 10B in the parallel connection state.
  • the second common path 13B is a conductive path that conducts between the negative electrodes BL of the first battery 10A and the second battery 10B in the parallel connection state.
  • the current detection unit 14H includes a first detection unit 14F that detects current flowing through the first common path 13A and a second detection unit 14G that detects current flowing through the second common path 13B.
  • the in-vehicle switching device 101 of the present disclosure can more accurately grasp the current generated between the first battery 10A and the second battery 10B in the parallel connection state in both the path on the positive electrode BH side and the path on the negative electrode BL side. .
  • the second conductive path 12 includes a positive electrode conductive path 12A and a negative electrode conductive path 12B.
  • the inter-positive conductive path 12A forms a path between the positive electrodes BH of the first battery 10A and the second battery 10B in the parallel connection state.
  • the inter-negative conductive path 12B forms a path between both negative electrodes BL of the first battery 10A and the second battery 10B in the parallel connection state.
  • the second conductive path 12 further includes a first fuse 14D provided in the positive electrode conductive path 12A and a second fuse 14E provided in the negative electrode conductive path 12B.
  • the in-vehicle switching device 1 of the present disclosure even if an excessive current is generated in the conductive path between the positive electrodes BH and when an excessive current is generated in the conductive path between the negative electrodes BL in the parallel connection state, the conductive paths are energized. can be forcibly shut down.
  • the in-vehicle power supply system 100 has a power path 20 that is a path for transmitting power from the battery section 10 in both the series connection state and the parallel connection state.
  • the electric power line 20 is provided with an external fuse 20K having a function of interrupting the energization of the electric power line 20.
  • the rated currents of the first fuse 14D and the second fuse 14E are Less than 20K rated current.
  • the first fuse 14D and the second fuse 14E can be configured in a smaller scale.
  • a path between the first battery 10A and the second battery 10B in the parallel connection state is a path through which a relatively low current flows with respect to the power path 20 . Therefore, by arranging the first fuse 14D and the second fuse 14E along such a path, it is easy to reduce the sizes of the first fuse 14D and the second fuse 14E.
  • an in-vehicle power supply system 200 provided with the in-vehicle switching device 101 according to the second embodiment will be described with reference to FIG.
  • the in-vehicle switching device 101 differs from the first embodiment in that the second common path 13B is not provided with the second detection section and the low potential side power path 20B is provided with the external current detection section 20F.
  • the same reference numerals are assigned to the same configurations as those of the first embodiment, and descriptions of the structures, functions and effects are omitted.
  • the current detector 114H includes a first detector 14F.
  • the first detector 14F detects the state of current flowing through the first common path 13A (the third conducting path 13). In other words, the current detector 114H detects the state of current flowing through one of the first common path 13A and the second common path 13B.
  • the junction box section 102 includes a high potential side power path 20A that is the power path 20, a low potential side power path 20B that is the power path 20, a high potential side switch 20D, a bypass section 20C, and a low potential side switch 20E. , an external fuse 20K and an external current detector 20F.
  • the external current detector 20F is interposed between the low potential side switch 20E and the low potential side conductive path 17.
  • the external current detector 20F has, for example, the same configuration as the first detector 14F.
  • the external current detector 20F detects the state of the current flowing through the low potential side power path 20B.
  • the current value output from the external current detection unit 20F is configured to be input to the control unit 50, for example.
  • a parallel connection state in which the first battery 10A and the second battery 10B of the battery section 10 are electrically connected in parallel will be described.
  • the control unit 50 switches the first parallel switch 14A and the second parallel switch 14B to the ON state, and switches the series switch 14C to the OFF state.
  • the first battery 10A and the second battery 10B are electrically connected in parallel.
  • the switching circuit 14 is brought into a parallel connection state. After that, the high-potential side switch 20D and the low-potential side switch 20E are switched to the ON state, and power is supplied to the load R.
  • the current generated from the second battery 10B is detected as the current value A by the first detector 14F provided in the first common path 13A.
  • the current flowing through the low potential side power path 20B is detected as the current value B by the external current detection section 20F provided in the low potential side power path 20B.
  • the first detector 14F and the external current detector 20F detect currents in the first common path 13A and the low potential side power path 20B at the same time.
  • the current values A and B are input to the control unit 50 at the same time.
  • the current value A is subtracted from the current value B in the control unit 50 .
  • the current value C which is the result of the subtraction, corresponds to the current generated from the first battery 10A.
  • the current value C obtained in this manner is a value at the same time as when the first detection section 14F and the external current detection section 20F detect the current in the first common path 13A and the low potential side power path 20B.
  • the control unit 50 can grasp the magnitudes of the currents generated from the first battery 10A and the second battery 10B as the current values C and A.
  • a series connection state in which the first battery 10A and the second battery 10B of the battery section 10 are electrically connected in series will be described.
  • the control unit 50 switches the first parallel switch 14A and the second parallel switch 14B to the OFF state, and switches the series switch 14C to the ON state.
  • the first battery 10A and the second battery 10B are electrically connected in series.
  • the switching circuit 14 is brought into a series connection state.
  • the high-potential side switch 20D and the low-potential side switch 20E are switched to the ON state, and power is supplied to the load R.
  • the first conductive path 11, the first common path 13A, and the second common path 13B form a path that conducts between the negative electrode BL of the first battery 10A and the positive electrode BH of the second battery 10B.
  • the current flowing through the first common path 13A is detected as the current value D by the first detection section 14F provided on the first common path 13A, and the external current detection section 20F provided on the low potential side power path 20B detects , the current flowing through the low potential side power path 20B is detected as a current value E.
  • the first detector 14F and the external current detector 20F for example, detect currents in the first common path 13A and the low potential side power path 20B at the same time.
  • the current values D and E are input to the control section 50 at the same time.
  • the first battery 10A and the second battery 10B are electrically connected in series. Therefore, the current values D and E are of the same magnitude. In this way, the control section 50 can grasp the magnitude of the current generated from the battery section 10 .
  • the switching circuit switches the first battery 10A and the second battery 10B between a series connection state and a parallel connection state. It is good also as a structure which switches to a connection state and a parallel connection state.
  • Embodiments 1 and 2 the configuration in which the control unit 50 is provided outside is disclosed. .
  • the external current detection section 20F is provided in the low potential side power path 20B, but the present invention is not limited to this, and the external current detection section may be provided in the high potential side power path.
  • the first detection unit 14F is provided on the first common path 13A and the second detection unit is not provided on the second common path 13B.
  • a configuration in which the second detection unit is provided and the first detection unit is not provided in the first common path may be employed.
  • the current detection unit is configured to output a current value corresponding to the magnitude of the current flowing through the conductive path.
  • the current detector determines whether or not the current value exceeds the threshold value, and outputs a threshold excess signal indicating that the current has exceeded the threshold value when the current value exceeds the threshold value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

複数のバッテリを直列接続状態と並列接続状態とに切り替えることができ、直列接続状態でも並列接続状態でもバッテリ間を流れる電流を検出し得る装置を、より簡易に実現する。 車載用切替装置(1)は、切替回路(14)と、直列接続状態のとき電流が流れ、並列接続状態のとき電流が流れない第1導電路(11)と、並列接続状態のとき電流が流れ、直列接続状態のとき電流が流れない第2導電路(12)と、直列接続状態のとき第1バッテリ(10A)の負極(BL)と第2バッテリ(10B)の正極(BH)との間の経路をなし、並列接続状態のとき第1バッテリ(10A)及び第2バッテリ(10B)の両正極(BH)間又は両負極(BL)間の経路をなす第3導電路(13)と、第3導電路(13)を流れる電流を検知する電流検知部(14H)とを有する。

Description

車載用切替装置
 本開示は、車載用切替装置に関する。
 特許文献1に開示される車両用電力供給装置は、第1の蓄電手段と第2の蓄電手段を直列又は並列に接続することができる装置である。この車両用電力供給装置では、第1の蓄電手段と第2の蓄電手段とをインバータに対して直列に接続するとき、制御手段が第3のスイッチ手段をオンして1つの充電抵抗に通電させる。制御装置は、その通電の後に、第1のスイッチ手段をオンして直列接続するための回路を構成する。
特開2007-274830号公報
 特許文献1のような技術を含め、複数のバッテリを直列接続状態及び並列接続状態に切り替え得るシステムでは、直列接続状態でも並列接続状態でもバッテリ間を流れる電流が正確に把握されることが望まれる。但し、単に複数の電流センサを付加するだけでは、構成の大型化、複雑化を招く懸念がある。
 そこで、本開示では、複数のバッテリを直列接続状態と並列接続状態とに切り替えることができ、直列接続状態でも並列接続状態でもバッテリ間を流れる電流を検出し得る装置を、より簡易に実現することを目的とする。
 本開示における車両用の車載用切替装置は、
 少なくとも第1バッテリ及び第2バッテリを有するバッテリ部と、前記第1バッテリ及び前記第2バッテリを直列に接続する直列接続状態と並列に接続する並列接続状態とに切り替わる切替回路と、を備えた車載用電源システムに用いられる車載用切替装置であって、
 前記切替回路と、
 前記直列接続状態のときに電流が流れることが許容され、前記並列接続状態のときに電流が流れない経路である第1導電路と、
 前記並列接続状態のときに電流が流れることが許容され、前記直列接続状態のときに電流が流れない経路である第2導電路と、
 前記直列接続状態のときに前記第1バッテリの負極と前記第2バッテリの正極との間の経路をなし、前記並列接続状態のときに前記第1バッテリ及び前記第2バッテリの両正極間又は両負極間の経路をなす第3導電路と、
 前記第3導電路を流れる電流を検知する電流検知部と、
 を有する。
 本開示に係る車載用切替装置は、複数のバッテリを直列接続状態と並列接続状態とに切り替えることができ、直列接続状態でも並列接続状態でもバッテリ間を流れる電流を検出し得る装置を、より簡易に実現できる。
図1は、実施形態1に係る車載用切替装置を備えた車載用電源システムを概念的に示す模式図である。 図2は、実施形態2に係る車載用切替装置を備えた車載用電源システムを概念的に示す模式図である。
 以下では、本開示の実施形態が列記されて例示される。なお、以下で示す〔1〕から〔4〕の特徴は、矛盾しない態様でどのように組み合わせてもよい。
 〔1〕本開示の車載用切替装置は、少なくとも第1バッテリ及び第2バッテリを有するバッテリ部と、第1バッテリ及び第2バッテリを直列に接続する直列接続状態と並列に接続する並列接続状態とに切り替わる切替回路と、を備えた車載用電源システムに用いられる。車載用切替装置は、切替回路と、第1導電路と、第2導電路と、第3導電路と、電流検知部とを有する。第1導電路は、直列接続状態のときに電流が流れることが許容され、並列接続状態のときに電流が流れない経路である。第2導電路は、並列接続状態のときに電流が流れることが許容され、直列接続状態のときに電流が流れない経路である。第3導電路は、直列接続状態のときに第1バッテリの負極と第2バッテリの正極との間の経路をなし、並列接続状態のときに第1バッテリ及び第2バッテリの両正極間又は両負極間の経路をなす。電流検知部は、第3導電路を流れる電流を検知する。
 上記〔1〕の車載用切替装置では、直列接続状態でも並列接続状態でも第3導電路が電極間の経路をなし、電流が流れることが許容される。そして、この第3導電路に電流検知部が設けられるため、直列接続状態でも並列接続状態でも共通の電流検知部によってバッテリ間の電流を検知することができる。ゆえに、直列接続状態でも並列接続状態でもバッテリ間を流れる電流を検出し得る装置が、より簡易に実現される。
 〔2〕上記〔1〕の車載用切替装置において、第3導電路は、第1共通路と、第2共通路とを備えている。第1共通路は、並列接続状態のときに第1バッテリ及び第2バッテリの両正極間を導通させる導電路である。第2共通路は、並列接続状態のときに第1バッテリ及び第2バッテリの両負極間を導通させる導電路である。電流検知部は、第1共通路を流れる電流を検知する第1検知部と、第2共通路を流れる電流を検知する第2検知部と、を備え得る。
 上記〔2〕に記載された車載用切替装置は、並列接続状態時にバッテリ間で生じる電流を、正極側の経路でも負極側の経路でも、より正確に把握することができる。
 〔3〕上記〔1〕又は〔2〕の車載用切替装置において、第2導電路は、正極間導電路と、負極間導電路とを備え得る。正極間導電路は、並列接続状態のときに第1バッテリ及び第2バッテリの両正極間の経路をなす。負極間導電路は、並列接続状態のときに第1バッテリ及び第2バッテリの両負極間の経路をなす。更に、第2導電路は、正極間導電路に設けられる第1ヒューズと、負極間導電路に設けられる第2ヒューズと、を備え得る。
 上記〔3〕に記載された車載用切替装置は、並列接続状態時に正極間の導電路で過剰な電流が生じた場合でも、負極間の導電路で過剰な電流が生じた場合でも、導電路の通電を強制的に遮断することができる。
 〔4〕車載用電源システムは、直列接続状態でも並列接続状態でもバッテリ部から電力を伝送するための経路である電力路を有し得る。電力路には、電力路の通電を遮断する機能を有する外部ヒューズが設けられ、上記〔3〕の車載用切替装置において、第1ヒューズ及び第2ヒューズの定格電流は、外部ヒューズの定格電流よりも小さくし得る。
 上記〔4〕に記載された車載用切替装置は、第1ヒューズ及び第2ヒューズをより小規模な構成とすることができる。並列接続状態時のバッテリ間の経路は、電力路に対して相対的に低い電流が流れる経路であるため、このような経路に第1ヒューズ及び第2ヒューズを配置すればヒューズのサイズを抑え易い。
[本開示の実施形態の詳細]
<実施形態1>
 図1には、実施形態1に係る車載用切替装置1が設けられた車載用電源システム100が例示される。車載用電源システム100は、搭載された車両の負荷R(例えば、車輪を駆動するモータ等)を動作させるための電源として使用される。車載用電源システム100は、バッテリ部10と、高電位側導電路16と、低電位側導電路17と、車載用切替装置1と、ジャンクションボックス部2とを備えている。バッテリ部10は、第1バッテリ10A、及び第2バッテリ10Bを有する。車載用切替装置1は、第1導電路11と、第2導電路12と、第3導電路13と、切替回路14と、電流検知部14Hと、を有している。車載用切替装置1は、車載用電源システム100に用いられる。
[バッテリ部の構成]
 バッテリ部10における第1バッテリ10A、及び第2バッテリ10Bは、単位電池として構成される電池部を複数備え、電池部が一体的に組み合わされた構成とされている。電池部は図示しない。第1バッテリ10A、及び第2バッテリ10Bの各々において、電気的に直列に接続された複数の単位電池の最も高電位の電極が正極BHであり、電気的に直列に接続された複数の単位電池の最も低電位の電極が負極BLである。
 本開示において、「電気的に接続される」とは、接続対象の両方の電位が等しくなるように互いに導通した状態(電流を流せる状態)で接続される構成であることが望ましい。ただし、この構成に限定されない。例えば、「電気的に接続される」とは、両接続対象の間に電気部品が介在しつつ両接続対象が導通し得る状態で接続された構成であってもよい。
[高電位側導電路、低電位側導電路の構成]
 高電位側導電路16の一端は、第1バッテリ10Aの正極BHに電気的に接続されている。低電位側導電路17の一端は、第2バッテリ10Bの負極BLに電気的に接続されている。
[車載用切替装置の構成]
 第2導電路12は、第1バッテリ10A、及び第2バッテリ10Bを電気的に並列に接続する並列接続状態(以下、単に並列接続状態ともいう)のときに電流が流れることが許容される。また、第2導電路12は、第1バッテリ10A、及び第2バッテリ10Bを電気的に直列に接続する直列接続状態(以下、単に直列接続状態ともいう)のときに電流が流れない経路である。第2導電路12は、正極間導電路12A、及び負極間導電路12Bを備えている。正極間導電路12Aの一端は、高電位側導電路16の他端に電気的に接続されている。負極間導電路12Bの一端は、低電位側導電路17の他端に電気的に接続されている。
 第3導電路13は、直列接続状態のときに第1バッテリ10Aの負極BLと第2バッテリ10Bの正極BHとの間の経路をなし、並列接続状態のときに第1バッテリ10A及び第2バッテリ10Bの両正極BH間又は両負極BL間の経路をなす。第3導電路13は、第1共通路13A、及び第2共通路13Bを備えている。第1共通路13Aの一端は、第2バッテリ10Bの正極BHに電気的に接続されている。第1共通路13Aの他端は、正極間導電路12Aの他端に電気的に接続されている。第2共通路13Bの一端は、第1バッテリ10Aの負極BLに電気的に接続されている。第2共通路13Bの他端は、負極間導電路12Bの他端に電気的に接続されている。
 高電位側導電路16、正極間導電路12A、及び第1共通路13Aは、並列接続状態のときに第1バッテリ10A及び第2バッテリ10Bの両正極BH間を導通させる経路をなす。つまり、第1共通路13Aは、並列接続状態のときに第1バッテリ10A及び第2バッテリ10Bの両正極BH間を導通させる導電路である。低電位側導電路17、負極間導電路12B、及び第2共通路13Bは、並列接続状態のときに第1バッテリ10A及び第2バッテリ10Bの両負極BL間を導通させる経路をなす。つまり、第2共通路13Bは、並列接続状態のときに第1バッテリ10A及び第2バッテリ10Bの両負極BL間を導通させる導電路である。
 第1導電路11は、直列接続状態のときに電流が流れることが許容され、並列接続状態のときに電流が流れない経路である。第1導電路11の一端は、第2共通路13Bの他端、及び負極間導電路12Bの他端に電気的に接続されている。第1導電路11の他端は、第1共通路13Aの他端、及び正極間導電路12Aの他端に電気的に接続されている。つまり、第1導電路11は、第1共通路13A及び第2共通路13Bを介して第1バッテリ10Aと第2バッテリ10Bとに電気的に直列に接続されている。
[切替回路の構成]
 切替回路14は、第1バッテリ10A、及び第2バッテリ10Bを直列に接続する直列接続状態と、並列に接続する並列接続状態とに切り替わる機能を有する。切替回路14は、第1並列スイッチ14A、第2並列スイッチ14B、直列スイッチ14C、第1ヒューズ14D、及び第2ヒューズ14Eを有している。
 第1並列スイッチ14A、第2並列スイッチ14B、及び直列スイッチ14Cは、例えば、リレースイッチや、MOSFET等の半導体スイッチで構成されている。第1並列スイッチ14Aは、正極間導電路12Aに介在して設けられている。第2並列スイッチ14Bは、負極間導電路12Bに介在して設けられている。直列スイッチ14Cは、第1導電路11に介在して設けられている。第1並列スイッチ14A、第2並列スイッチ14B、及び直列スイッチ14Cは、例えば、マイクロコンピュータ等の情報処理装置で構成された制御部50によってオン状態又はオフ状態に切り替えられ得る構成とされている。制御部50は、例えば、車載用電源システム100の外部に設けられている。
 第1ヒューズ14Dは、第1並列スイッチ14Aに直列になるように正極間導電路12Aに介在して設けられている。正極間導電路12Aにおいて、第1ヒューズ14Dは、第1並列スイッチ14Aよりも一端側に位置している。第2ヒューズ14Eは、第2並列スイッチ14Bに直列になるように負極間導電路12Bに介在して設けられている。負極間導電路12Bにおいて、第2ヒューズ14Eは、第2並列スイッチ14Bよりも一端側に位置している。第1ヒューズ14D、第2ヒューズ14Eは、例えば、サーマルヒューズ等で構成されている。第1ヒューズ14D、第2ヒューズ14Eは、切替回路14が並列接続状態のとき、自身が有する遮断特性(例えば、定格電流)に応じて溶断し、正極間導電路12A、及び負極間導電路12Bにおける通電を遮断する。つまり、車載用切替装置1は、第2導電路12の通電を遮断する第1ヒューズ14Dと、第2ヒューズ14Eと、を備えている。
[電流検知部の構成]
 電流検知部14Hは、第1検知部14F、及び第2検知部14Gを有している。第1検知部14Fは、第1共通路13Aに介在して設けられている。第2検知部14Gは、第2共通路13Bに介在して設けられている。第1検知部14F、及び第2検知部14Gは、例えば、抵抗器及び差動増幅器を有し、第1共通路13A、第2共通路13Bの各々を流れる電流を示す値(具体的には、第1共通路13A、第2共通路13Bを流れる電流の値に応じたアナログ電圧)を電流値として出力し得る構成をなす。第1検知部14Fは、第1共通路13Aに流れる電流の状態を検出し、第2検知部14Gは、第2共通路13Bに流れる電流の状態を検出する。第1検知部14F、及び第2検知部14Gから出力された電流値は、例えば、制御部50に入力され得る構成とされている。つまり、電流検知部14Hは、第1共通路13A(第3導電路13)、及び第2共通路13B(第3導電路13)を流れる電流を検知する。
[ジャンクションボックス部の構成]
 ジャンクションボックス部2は、バッテリ部10からの電力を負荷R等に供給し得る機能を有している。ジャンクションボックス部2は、電力路20である高電位側電力路20Aと、電力路20である低電位側電力路20Bと、高電位側スイッチ20Dと、バイパス部20Cと、低電位側スイッチ20Eと、外部ヒューズ20Kとを有している。
 電力路20は、直列接続状態でも並列接続状態でもバッテリ部10から電力を伝送するための経路である。高電位側電力路20Aの一端は、高電位側導電路16の他端、及び正極間導電路12Aの一端に電気的に接続されている。低電位側電力路20Bの一端は、低電位側導電路17の他端、及び負極間導電路12Bの一端に電気的に接続されている。
 高電位側スイッチ20Dは、高電位側電力路20Aに介在して設けられている。バイパス部20Cは、高電位側スイッチ20Dに対して電気的に並列に接続して設けられている。バイパス部20Cは、バイパススイッチ20Gと、抵抗20Hと、を有している。バイパススイッチ20Gと、抵抗20Hとは、電気的に直列に接続されている。抵抗20Hと、高電位側導電路16との間には、バイパススイッチ20Gが介在している。
 低電位側スイッチ20Eは、低電位側電力路20Bに介在して設けられている。高電位側スイッチ20D、バイパススイッチ20G、及び低電位側スイッチ20Eは、例えば、リレースイッチや、MOSFET等の半導体スイッチで構成されている。
 外部ヒューズ20Kは、低電位側スイッチ20Eを挟み、低電位側導電路17の反対側の低電位側電力路20Bに介在して設けられている。外部ヒューズ20Kは、例えば、サーマルヒューズ等で構成されている。外部ヒューズ20Kは、切替回路14が直列接続状態のとき、自身が有する遮断特性(例えば、定格電流)に応じて溶断し、低電位側電力路20Bにおける通電を遮断する。つまり、電力路20には、電力路20の通電を遮断する機能を有する外部ヒューズ20Kが設けられている。高電位側電力路20Aの他端側、及び低電位側電力路20Bの他端側の間には、負荷Rが電気的に接続されている。
[切替回路が並列接続状態の場合]
 バッテリ部10の第1バッテリ10A、及び第2バッテリ10Bを電気的に並列に接続する並列接続状態の場合について説明する。この場合、例えば、制御部50が、第1並列スイッチ14A、第2並列スイッチ14Bをオン状態に切り替えると共に、直列スイッチ14Cをオフ状態に切り替える。これにより、第1バッテリ10A、及び第2バッテリ10Bが電気的に並列に接続された状態になる。こうして、切替回路14が並列接続状態にされる。そして、この後、高電位側スイッチ20D、低電位側スイッチ20Eがオン状態に切り替わり、負荷Rに電力が供給されることになる。このとき、高電位側導電路16、正極間導電路12A、及び第1共通路13Aは、第1バッテリ10A及び第2バッテリ10Bの両正極BH間を導通させる経路をなす。これと共に、低電位側導電路17、負極間導電路12B、及び第2共通路13Bは、第1バッテリ10A及び第2バッテリ10Bの両負極BL間を導通させる経路をなす。
 このとき、第1共通路13Aに設けられた第1検知部14Fによって、第2バッテリ10Bから生じる電流が電流値Aとして検知される。これと共に、第2共通路13Bに設けられた第2検知部14Gによって、第1バッテリ10Aから生じる電流が電流値Cとして検知される。
 第1検知部14F、及び第2検知部14Gは、例えば、同時期に第1共通路13A、及び第2共通路13Bにおける電流を電流値A,Cとして検知する。そして、検知した電流値A,Cは、同時期に制御部50に入力される。制御部50では、電流値Aと電流値Cとが加算される。こうして加算した演算結果である電流値Bは、低電位側電力路20B(高電位側電力路20A)に流れる電流に相当する。こうして得た電流値Bは、第1検知部14F、及び第2検知部14Gが第1共通路13A、第2共通路13Bにおける電流を検知したときと同時期の値である。こうして、制御部50は、第1バッテリ10A、第2バッテリ10Bから生じる電流の大きさに対応する電流値C,Aに基づいて低電位側電力路20Bに流れる電流の大きさを電流値Bとして把握することができる。
 また、切替回路14が並列接続状態のときに、直列スイッチ14Cが不用意にオン状態に切り替わったり、ショート故障したりした場合、第1バッテリ10A、及び第2バッテリ10Bの各々は、正極BHと負極BLとが短絡した状態になってしまう。この場合、第1ヒューズ14D、及び第2ヒューズ14Eの各々が溶断することによって、第1並列スイッチ14A、第2並列スイッチ14B、及び直列スイッチ14Cが故障することを防止する。また、制御部50は、第1共通路13A(第3導電路13)に流れる電流の大きさ、及び第2共通路13B(第3導電路13)に流れる電流の大きさが所定の閾値に達したか否かを監視し得る構成とされている。例えば、直列スイッチ14Cが不用意にオン状態に切り替わったり、ショート故障したりした場合、第1ヒューズ14D、及び第2ヒューズ14Eに流れる電流の大きさが増加しつつも自身が有する遮断特性(定格電流)に満たない電流が流れた場合、第1ヒューズ14D、及び第2ヒューズ14Eは溶断することができない。このような場合、制御部50において、第1共通路13A(第3導電路13)に流れる電流の大きさ、及び第2共通路13B(第3導電路13)に流れる電流の大きさが所定の閾値に達したと判別すると、第1並列スイッチ14A、第2並列スイッチ14Bをオフ状態に切り替えて第2導電路12の通電を遮断することができる。
 並列接続状態の場合、正極間導電路12Aには、第1バッテリ10Aから生じる電流が流れ、負極間導電路12Bには、第2バッテリ10Bから生じる電流が流れる。これに対して、並列接続状態の場合、外部ヒューズ20Kには、正極間導電路12A、及び負極間導電路12Bの各々に流れる電流よりも大きい電流(すなわち、第1バッテリ10Aから生じる電流、及び第2バッテリ10Bから生じる電流の両方)が流れることになる。このため、第1ヒューズ14D、及び第2ヒューズ14Eの定格電流は、外部ヒューズ20Kの定格電流よりも小さくされている。
[切替回路が直列接続状態の場合]
 バッテリ部10の第1バッテリ10A、及び第2バッテリ10Bを電気的に直列に接続する直列接続状態の場合について説明する。この場合、例えば、制御部50が、第1並列スイッチ14A、第2並列スイッチ14Bをオフ状態に切り替えると共に、直列スイッチ14Cをオン状態に切り替える。これにより、第1バッテリ10A、及び第2バッテリ10Bが電気的に直列に接続された状態になる。こうして、切替回路14が直列接続状態にされる。そして、この後、高電位側スイッチ20D、低電位側スイッチ20Eがオン状態に切り替わり、負荷Rに電力が供給されることになる。
 このとき、第1共通路13Aに設けられた第1検知部14Fによって第1共通路13Aに流れる電流が電流値Fとして検知され、第2共通路13Bに設けられた第2検知部14Gによって、第2共通路13Bに流れる電流が電流値Gとして検知される。第1検知部14F、及び第2検知部14Gは、例えば、同時期に第1共通路13A、第2共通路13Bにおける電流を検知する。そして、電流値F,Gは、同時期に制御部50に入力される。第1バッテリ10A、及び第2バッテリ10Bは、電気的に直列に接続されている。このため、電流値F,Gは、同じ値である。低電位側電力路20B(高電位側電力路20A)に流れる電流も電流値F(電流値G)と同じ値である。こうして、制御部50は、バッテリ部10から生じる電流の大きさを電流値F,Gとして把握することができる。
 制御部50は、第3導電路13(第1導電路11)に流れる電流の大きさが所定の閾値に達したか否かを監視し得る構成とされている。例えば、負荷R等において地絡が発生した場合、外部ヒューズ20Kに流れる電流の大きさが増加しつつも自身が有する遮断特性(定格電流)に満たない電流が流れた場合、外部ヒューズ20Kは溶断することができない。このような場合、制御部50において、第3導電路13(第1導電路11)に流れる電流の大きさが所定の閾値に達したと判別すると、直列スイッチ14Cをオフ状態に切り替えて第1導電路11の通電を遮断することができる。
 次に、本開示に係る構成の効果が例示される。
 本開示の車載用切替装置1は、バッテリ部10と、切替回路14と、を備えた車載用電源システム100に用いられる。バッテリ部10は、第1バッテリ10A及び第2バッテリ10Bを有する。切替回路14は、第1バッテリ10A及び第2バッテリ10Bを直列に接続する直列接続状態と並列に接続する並列接続状態とに切り替わる。車載用切替装置1は、切替回路14と、第1導電路11と、第2導電路12と、第3導電路13と、電流検知部14Hとを有する。第1導電路11は、直列接続状態のときに電流が流れることが許容され、並列接続状態のときに電流が流れない経路である。第2導電路12は、並列接続状態のときに電流が流れることが許容され、直列接続状態のときに電流が流れない経路である。第3導電路13は、直列接続状態のときに第1バッテリ10Aの負極BLと第2バッテリ10Bの正極BHとの間の経路をなし、並列接続状態のときに第1バッテリ10A及び第2バッテリ10Bの両正極BH間又は両負極BL間の経路をなす。電流検知部14Hは、第3導電路13を流れる電流を検知する。
 本開示の車載用切替装置1では、直列接続状態でも並列接続状態でも第3導電路13が電極(正極BH、負極BL)間の経路をなし、電流が流れることが許容される。そして、この第3導電路13に電流検知部14Hが設けられるため、直列接続状態でも並列接続状態でも共通の電流検知部14Hによって第1バッテリ10A及び第2バッテリ10B間の電流を検知することができる。ゆえに、直列接続状態でも並列接続状態でも第1バッテリ10A及び第2バッテリ10B間を流れる電流を検出し得る装置が、より簡易に実現される。
 本開示の車載用切替装置101において、第3導電路13は、第1共通路13Aと、第2共通路13Bとを備える。第1共通路13Aは、並列接続状態のときに第1バッテリ10A及び第2バッテリ10Bの両正極BH間を導通させる導電路である。第2共通路13Bは、並列接続状態のときに第1バッテリ10A及び第2バッテリ10Bの両負極BL間を導通させる導電路である。電流検知部14Hは、第1共通路13Aを流れる電流を検知する第1検知部14Fと、第2共通路13Bを流れる電流を検知する第2検知部14Gと、を備える。
 本開示の車載用切替装置101は、並列接続状態時に第1バッテリ10A及び第2バッテリ10B間で生じる電流を、正極BH側の経路でも負極BL側の経路でも、より正確に把握することができる。
 本開示の車載用切替装置1において、第2導電路12は、正極間導電路12Aと、負極間導電路12Bとを備える。正極間導電路12Aは、並列接続状態のときに第1バッテリ10A及び第2バッテリ10Bの両正極BH間の経路をなす。負極間導電路12Bは、並列接続状態のときに第1バッテリ10A及び第2バッテリ10Bの両負極BL間の経路をなす。第2導電路12は、更に、正極間導電路12Aに設けられる第1ヒューズ14Dと、負極間導電路12Bに設けられる第2ヒューズ14Eと、を備える。
 本開示の車載用切替装置1は、並列接続状態時に正極BH間の導電路で過剰な電流が生じた場合でも、負極BL間の導電路で過剰な電流が生じた場合でも、導電路の通電を強制的に遮断することができる。
 車載用電源システム100は、直列接続状態でも並列接続状態でもバッテリ部10から電力を伝送するための経路である電力路20を有する。電力路20には、電力路20の通電を遮断する機能を有する外部ヒューズ20Kが設けられ、本開示の車載用切替装置1において、第1ヒューズ14D及び第2ヒューズ14Eの定格電流は、外部ヒューズ20Kの定格電流よりも小さい。
 本開示の車載用切替装置1は、第1ヒューズ14D及び第2ヒューズ14Eをより小規模な構成とすることができる。並列接続状態時の第1バッテリ10A及び第2バッテリ10B間の経路は、電力路20に対して相対的に低い電流が流れる経路である。このため、このような経路に第1ヒューズ14D及び第2ヒューズ14Eを配置すれば第1ヒューズ14D及び第2ヒューズ14Eのサイズを抑え易い。
<実施形態2>
 次に、実施形態2に係る車載用切替装置101が設けられた車載用電源システム200について図2を参照しつつ説明する。車載用切替装置101は、第2共通路13Bに第2検知部が設けられていない点、及び低電位側電力路20Bに外部電流検知部20Fが設けられている点等が実施形態1と異なる。実施形態1と同じ構成については、同一符号を付し、構造、作用及び効果の説明は省略する。
[電流検知部の構成]
 電流検知部114Hは、第1検知部14Fを備えている。第1検知部14Fは、第1共通路13A(第3導電路13)に流れる電流の状態を検出する。つまり、電流検知部114Hは、第1共通路13A及び第2共通路13Bの内の一方の経路に流れる電流の状態を検出する。
[ジャンクションボックス部の構成]
 ジャンクションボックス部102は、電力路20である高電位側電力路20Aと、電力路20である低電位側電力路20Bと、高電位側スイッチ20Dと、バイパス部20Cと、低電位側スイッチ20Eと、外部ヒューズ20Kと、外部電流検知部20Fとを有する。
 外部電流検知部20Fは、低電位側スイッチ20Eと低電位側導電路17との間に介在して設けられている。外部電流検知部20Fは、例えば、第1検知部14Fと同様の構成をなす。外部電流検知部20Fは、低電位側電力路20Bに流れる電流の状態を検出する。外部電流検知部20Fから出力された電流値は、例えば、制御部50に入力され得る構成とされている。
[切替回路が並列接続状態の場合]
 バッテリ部10の第1バッテリ10A、及び第2バッテリ10Bを電気的に並列に接続する並列接続状態の場合について説明する。この場合、例えば、制御部50が、第1並列スイッチ14A、第2並列スイッチ14Bをオン状態に切り替えると共に、直列スイッチ14Cをオフ状態に切り替える。これにより、第1バッテリ10A、及び第2バッテリ10Bが電気的に並列に接続された状態になる。こうして、切替回路14が並列接続状態にされる。そして、この後、高電位側スイッチ20D、低電位側スイッチ20Eがオン状態に切り替わり、負荷Rに電力が供給されることになる。
 このとき、第1共通路13Aに設けられた第1検知部14Fによって、第2バッテリ10Bから生じる電流が電流値Aとして検知される。これと共に、低電位側電力路20Bに設けられた外部電流検知部20Fによって、低電位側電力路20Bに流れる電流が電流値Bとして検知される。第1検知部14F、及び外部電流検知部20Fは、例えば、同時期に第1共通路13A、低電位側電力路20Bにおける電流を検知する。そして、電流値A,Bは、同時期に制御部50に入力される。制御部50では、電流値Bから電流値Aが減算される。こうして減算した演算結果である電流値Cは、第1バッテリ10Aから生じる電流に相当する。こうして得た電流値Cは、第1検知部14F、及び外部電流検知部20Fが第1共通路13A、低電位側電力路20Bにおける電流を検知したときと同時期の値である。こうして、制御部50は、第1バッテリ10A、第2バッテリ10Bから生じる電流の大きさを電流値C,Aとして把握することができる。
[切替回路が直列接続状態の場合]
 バッテリ部10の第1バッテリ10A、及び第2バッテリ10Bを電気的に直列に接続する直列接続状態の場合について説明する。この場合、例えば、制御部50が、第1並列スイッチ14A、第2並列スイッチ14Bをオフ状態に切り替えると共に、直列スイッチ14Cをオン状態に切り替える。これにより、第1バッテリ10A、及び第2バッテリ10Bが電気的に直列に接続された状態になる。こうして、切替回路14が直列接続状態にされる。そして、この後、高電位側スイッチ20D、低電位側スイッチ20Eがオン状態に切り替わり、負荷Rに電力が供給されることになる。このとき、第1導電路11、第1共通路13A、及び第2共通路13Bは、第1バッテリ10Aの負極BL、及び第2バッテリ10Bの正極BH間を導通させる経路をなす。
 このとき、第1共通路13Aに設けられた第1検知部14Fによって第1共通路13Aに流れる電流が電流値Dとして検知され、低電位側電力路20Bに設けられた外部電流検知部20Fによって、低電位側電力路20Bに流れる電流が電流値Eとして検知される。第1検知部14F、及び外部電流検知部20Fは、例えば、同時期に第1共通路13A、低電位側電力路20Bにおける電流を検知する。そして、電流値D,Eは、同時期に制御部50に入力される。第1バッテリ10A、及び第2バッテリ10Bは、電気的に直列に接続されている。このため、電流値D,Eは、同じ大きさである。こうして、制御部50は、バッテリ部10から生じる電流の大きさを把握することができる。
 <他の実施形態>
 本開示は、上記記述及び図面によって説明した実施形態に限定されるものではない。例えば、上述又は後述の実施形態の特徴は、矛盾しない範囲であらゆる組み合わせが可能である。また、上述又は後述の実施形態のいずれの特徴も、必須のものとして明示されていなければ省略することもできる。更に、上述した実施形態は、次のように変更されてもよい。
 実施形態1、2では、切替回路が第1バッテリ10A、及び第2バッテリ10Bを直列接続状態、及び並列接続状態に切り替えているが、これに限らず、切替回路が3つ以上のバッテリを直列接続状態、及び並列接続状態に切り替える構成としてもよい。
 実施形態1、2では、制御部50が外部に設けられている構成を開示しているが、これに限らず、制御部を車載用電源システム、又は車載用切替装置に設けた構成としてもよい。
 実施形態1では、外部電流検知部20Fが低電位側電力路20Bに設けられているが、これに限らず、外部電流検知部を高電位側電力路に設けてもよい。
 実施形態2では、第1共通路13Aに第1検知部14Fが設けられ、第2共通路13Bに第2検知部が設けられていない構成であるが、これに限らず、第2共通路に第2検知部が設けられ、第1共通路に第1検知部が設けられていない構成であってもよい。
 実施形態1では、電流検知部が、導電路に流れる電流の大きさに対応する電流値を出力する構成であることが開示されているが、これに限らず、電流検知部にコンパレータを用いた構成としてもよい。この場合、電流検知部は、電流値が閾値を超えたか否かを判定し、電流値が閾値を超えた場合に、電流が閾値を超えたことを示す閾値超過信号を出力する。
 なお、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、請求の範囲によって示された範囲内又は請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。
1,101…車載用切替装置
2,102…ジャンクションボックス部
10…バッテリ部
10A…第1バッテリ(バッテリ部)
10B…第2バッテリ(バッテリ部)
11…第1導電路
12…第2導電路
12A…正極間導電路(第2導電路)
12B…負極間導電路(第2導電路)
13…第3導電路
13A…第1共通路(第3導電路)
13B…第2共通路(第3導電路)
14…切替回路
14A…第1並列スイッチ
14B…第2並列スイッチ
14C…直列スイッチ
14D…第1ヒューズ
14E…第2ヒューズ
14F…第1検知部(電流検知部)
14G…第2検知部(電流検知部)
14H,114H…電流検知部
16…高電位側導電路
17…低電位側導電路
20…電力路
20A…高電位側電力路
20B…低電位側電力路
20C…バイパス部
20D…高電位側スイッチ
20E…低電位側スイッチ
20F…外部電流検知部
20G…バイパススイッチ
20H…抵抗
20K…外部ヒューズ
50…制御部
100,200…車載用電源システム
A,B,C,D,E,F,G…電流値
BH…正極
BL…負極
R…負荷

Claims (4)

  1.  少なくとも第1バッテリ及び第2バッテリを有するバッテリ部と、前記第1バッテリ及び前記第2バッテリを直列に接続する直列接続状態と並列に接続する並列接続状態とに切り替わる切替回路と、を備えた車載用電源システムに用いられる車載用切替装置であって、
     前記切替回路と、
     前記直列接続状態のときに電流が流れることが許容され、前記並列接続状態のときに電流が流れない経路である第1導電路と、
     前記並列接続状態のときに電流が流れることが許容され、前記直列接続状態のときに電流が流れない経路である第2導電路と、
     前記直列接続状態のときに前記第1バッテリの負極と前記第2バッテリの正極との間の経路をなし、前記並列接続状態のときに前記第1バッテリ及び前記第2バッテリの両正極間又は両負極間の経路をなす第3導電路と、
     前記第3導電路を流れる電流を検知する電流検知部と、
     を有する車載用切替装置。
  2.  前記第3導電路は、前記並列接続状態のときに前記第1バッテリ及び前記第2バッテリの両正極間を導通させる導電路である第1共通路と、前記並列接続状態のときに前記第1バッテリ及び前記第2バッテリの両負極間を導通させる導電路である第2共通路と、を備え、
     前記電流検知部は、前記第1共通路を流れる電流を検知する第1検知部と、前記第2共通路を流れる電流を検知する第2検知部と、
     を備える請求項1に記載の車載用切替装置。
  3.  前記第2導電路は、前記並列接続状態のときに前記第1バッテリ及び前記第2バッテリの両正極間の経路をなす正極間導電路と、前記並列接続状態のときに前記第1バッテリ及び前記第2バッテリの両負極間の経路をなす負極間導電路と、を備え、
     更に、前記正極間導電路に設けられる第1ヒューズと、前記負極間導電路に設けられる第2ヒューズと、
     を備える請求項1又は請求項2に記載の車載用切替装置。
  4.  前記車載用電源システムは、前記直列接続状態でも前記並列接続状態でも前記バッテリ部から電力を伝送するための経路である電力路を有し、
     前記電力路には、前記電力路の通電を遮断する機能を有する外部ヒューズが設けられ、
     前記第1ヒューズ及び前記第2ヒューズの定格電流は、前記外部ヒューズの定格電流よりも小さい請求項3に記載の車載用切替装置。
PCT/JP2022/003712 2021-02-22 2022-02-01 車載用切替装置 WO2022176592A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112022001171.8T DE112022001171T5 (de) 2021-02-22 2022-02-01 Fahrzeugseitige umschaltvorrichtung
CN202280015037.4A CN116848750A (zh) 2021-02-22 2022-02-01 车载用切换装置
US18/546,659 US20240227623A9 (en) 2021-02-22 2022-02-01 On-board switching device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-025924 2021-02-22
JP2021025924A JP2022127760A (ja) 2021-02-22 2021-02-22 車載用切替装置

Publications (1)

Publication Number Publication Date
WO2022176592A1 true WO2022176592A1 (ja) 2022-08-25

Family

ID=82932013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003712 WO2022176592A1 (ja) 2021-02-22 2022-02-01 車載用切替装置

Country Status (4)

Country Link
JP (1) JP2022127760A (ja)
CN (1) CN116848750A (ja)
DE (1) DE112022001171T5 (ja)
WO (1) WO2022176592A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024105796A1 (ja) * 2022-11-16 2024-05-23 住友電気工業株式会社 切替装置および切替システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236608A (ja) * 1992-02-24 1993-09-10 Fuji Electric Co Ltd 電気自動車の主回路システム
JPH07212980A (ja) * 1994-01-13 1995-08-11 Fujitsu Ltd バッテリの充・放電装置
JP2011097771A (ja) * 2009-10-30 2011-05-12 Honda Motor Co Ltd 電気自動車及びその電源制御方法
JP2020150784A (ja) * 2018-12-07 2020-09-17 矢崎総業株式会社 電源システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236608A (ja) * 1992-02-24 1993-09-10 Fuji Electric Co Ltd 電気自動車の主回路システム
JPH07212980A (ja) * 1994-01-13 1995-08-11 Fujitsu Ltd バッテリの充・放電装置
JP2011097771A (ja) * 2009-10-30 2011-05-12 Honda Motor Co Ltd 電気自動車及びその電源制御方法
JP2020150784A (ja) * 2018-12-07 2020-09-17 矢崎総業株式会社 電源システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024105796A1 (ja) * 2022-11-16 2024-05-23 住友電気工業株式会社 切替装置および切替システム

Also Published As

Publication number Publication date
CN116848750A (zh) 2023-10-03
US20240131963A1 (en) 2024-04-25
JP2022127760A (ja) 2022-09-01
DE112022001171T5 (de) 2023-12-21

Similar Documents

Publication Publication Date Title
US10877104B2 (en) Ground fault detection apparatus
JP5486822B2 (ja) 電池システム
CN108604809B (zh) 继电器装置以及电源装置
US9806545B2 (en) Battery management system, motor vehicle and battery module
US11440412B2 (en) Disconnection device for a high-voltage electrical system of a motor vehicle, high-voltage electrical system, and motor vehicle
US11381072B2 (en) Quick battery disconnect system for high current circuits
US11040633B2 (en) Battery pack for vehicle
CN108604515B (zh) 继电器装置
US9692035B2 (en) Battery system and motor vehicle
WO2022176592A1 (ja) 車載用切替装置
JP6642384B2 (ja) 車載電池用の電池監視装置
US20150180091A1 (en) Accumulator battery protected against external short-circuits
JP5188370B2 (ja) バッテリシステム
US9160163B2 (en) Battery management system, motor vehicle and battery system
WO2018105342A1 (ja) 電池監視装置の保護回路、及び電池監視装置
JP2010220377A (ja) 蓄電装置
JP6176186B2 (ja) 自動車の電源装置
US11626722B2 (en) On-board power supply system for a vehicle
US20190089173A1 (en) Protection circuit for a charging apparatus
WO2022230636A1 (ja) 車載用切替装置
US20240227623A9 (en) On-board switching device
US11932136B2 (en) Multi-voltage battery device and electrical system for a motor vehicle
JP6014764B2 (ja) 電池システム監視装置
JP7200915B2 (ja) 蓄電システム
WO2024127933A1 (ja) 車両用電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22754770

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280015037.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18546659

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022001171

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22754770

Country of ref document: EP

Kind code of ref document: A1