WO2022176450A1 - Information processing device, information processing method, and program - Google Patents

Information processing device, information processing method, and program Download PDF

Info

Publication number
WO2022176450A1
WO2022176450A1 PCT/JP2022/000900 JP2022000900W WO2022176450A1 WO 2022176450 A1 WO2022176450 A1 WO 2022176450A1 JP 2022000900 W JP2022000900 W JP 2022000900W WO 2022176450 A1 WO2022176450 A1 WO 2022176450A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
virtual object
virtual
information processing
display
Prior art date
Application number
PCT/JP2022/000900
Other languages
French (fr)
Japanese (ja)
Inventor
良徳 大橋
大佑 松本
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2022176450A1 publication Critical patent/WO2022176450A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04815Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram

Definitions

  • the present disclosure relates to an information processing device, an information processing method, and a program.
  • AR augmented reality
  • HMD Head Mounted Display
  • Patent Literature 1 discloses a technique of recognizing a real space based on a captured image and creating an environment map.
  • an information processing device capable of further improving the user experience by enabling information of a virtual object, which is a target of user operation, to be handled in a geographic coordinate system, and Suggest a program.
  • a control unit for controlling display of a virtual object associated with a real space, and the control unit receives virtual space position information of the virtual object, which is a target operated by a user, Proposal of an information processing device that converts into geographic coordinate information based on geographic coordinate information of the information processing device acquired based on a captured image of a real space and virtual space position information corresponding to the geographic coordinate information do.
  • the processor displays the virtual object associated with the real space, and the virtual space position information of the virtual object, which is the target of the user's operation, is captured in the captured image of the real space. and converting into geographical coordinate information based on the virtual space position information corresponding to the geographical coordinate information of the information processing device acquired based on the above.
  • a computer is caused to function as a control unit that controls display of a virtual object associated with a real space, and the control unit controls the virtual space of the virtual object that is the target of the user's operation.
  • FIG. 1 is a diagram illustrating an overview of a cooperation system between display of a virtual object and a map service according to an embodiment of the present disclosure
  • FIG. 5 is a diagram showing an example of a screen on which POI information and icon images of virtual objects are arranged on a map image in the operation terminal according to the present embodiment
  • FIG. 10 is a diagram illustrating a case of operating a virtual object using the operating terminal according to the embodiment
  • 1 is a block diagram showing an example of the configuration of an AR display device and an operation terminal according to this embodiment
  • FIG. 4 is a sequence diagram showing the flow of position estimation processing based on captured images according to the present embodiment
  • FIG. 4 is a sequence diagram showing the flow of AR display processing in the AR display device according to this embodiment
  • FIG. 10 is a sequence diagram showing the flow of processing for displaying a layout of virtual objects on a map in the operation terminal according to the present embodiment
  • FIG. 10 is a sequence diagram showing the flow of placement processing of a new virtual object according to this embodiment
  • FIG. 10 is a sequence diagram showing the flow of information update processing of a virtual object operated on the operating terminal according to the embodiment; It is a figure explaining an example of selection operation of the virtual object using the operation terminal by this embodiment. It is a figure explaining an example of selection operation of the virtual object using the operation terminal by this embodiment.
  • FIG. 10 is a diagram illustrating an example of an operation for changing the position of a virtual object using the operating terminal in the position/rotation editing mode according to the embodiment
  • FIG. 10 is a diagram illustrating an example of an operation for changing the position of a virtual object using the operating terminal in the position/rotation editing mode according to the embodiment
  • FIG. 11 is a diagram illustrating an example of a pitch/yaw rotation operation of a virtual object using the operation terminal in the position/rotation edit mode according to the embodiment
  • FIG. 10 is a diagram illustrating an example of a roll rotation operation of a virtual object using the operation terminal in the position/rotation edit mode according to the embodiment
  • FIG. 10 is a diagram illustrating an example of a virtual object enlargement/reduction operation using the operation terminal in the rotation/scale edit mode according to the present embodiment
  • FIG. 11 is a diagram illustrating an example of a Roll rotation operation of a virtual object using the operation terminal in the rotation/scale editing mode according to the embodiment
  • FIG. 11 is a diagram illustrating selection determination of other operation options for a virtual object in a selected state according to the present embodiment
  • a map service (specifically, a map data server) that manages geographic information using virtual object information and location information (geographic coordinate information) in a geographic coordinate system that indicates at least latitude and longitude.
  • a virtual object is an image (2D image or 3DCG) presented by a display device as virtual space information. Further, in the display device, interaction in the virtual space can be realized by changing the position, posture, and display mode of the virtual object according to the user's operation input to the virtual object.
  • the coordinate system of the virtual space in response to a desire to fix the result of an operation performed by the user in the virtual space (for example, moving a virtual object, setting a new virtual object, etc.) to the location where the operation was performed, the coordinate system of the virtual space It is possible to specify the position in the virtual space, but since the virtual space position information is not linked to the latitude and longitude information, it is fixed to the location in the real space (real space) as one of the geographic information on the map service It was difficult to handle.
  • GPS Global Positioning System
  • the information of the virtual object which is the target of the user's operation, can be handled in a geographic coordinate system, so that it is reflected in a device that manages geographic information (for example, a map service). etc., to further improve the user experience.
  • a device that manages geographic information for example, a map service.
  • FIG. 1 is a diagram illustrating an overview of a cooperation system between display of a virtual object and a map service according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating an overview of a cooperation system between display of a virtual object and a map service according to an embodiment of the present disclosure.
  • AR technology for superimposing and displaying a virtual object in real space.
  • the cooperation system includes an AR display device 10 that displays a virtual object, an operation terminal 20 that receives an operation input for the virtual object, and position estimation based on feature points in the real space. and a map data server 40 for providing geographic images and the like.
  • the AR display device 10 is an example of an information processing device that superimposes and displays a virtual object on a real space (so-called AR display).
  • the AR display device 10 may be, for example, an HMD worn on the user's head, a terminal held by the user such as a smartphone, a mobile phone terminal, a tablet terminal, or a wearable device worn by the user. There may be.
  • the AR display by the AR display device 10 may be a method in which a virtual object is displayed on a transmissive display in a state in which the real space is directly visible through the transmissive display.
  • the AR display by the AR display device 10 displays a front real space image (captured image) acquired from a camera on a non-transmissive display in real time (using a video see-through display that performs so-called through display), A method of superimposing and displaying a virtual object on an image may be used.
  • the AR display device 10 communicates with the position estimation server 30 and the map data server 40 via a network.
  • the AR display device 10 transmits captured images of the surrounding area or feature points (in the real space) extracted from the captured images to the position estimation server 30, and acquires position information (geographical coordinate information) of the current location from the position estimation server 30. .
  • position information position information
  • more accurate position estimation is realized by using position estimation based on captured images. Acquisition of position information from the position estimation server 30 based on the captured image is performed, for example, at a frequency of about once per second.
  • the AR display device 10 may further utilize self-position recognition (for example, VIO (Visual Inertial Odometry)) using captured images and motion sensor data for relative positional changes in a short period of time.
  • VIO Visual Inertial Odometry
  • the AR display device 10 also transmits the geographical coordinate information acquired from the position estimation server 30 to the map data server 40 and acquires the surrounding geographical information from the map data server 40 .
  • the geographic information according to the present embodiment includes information about virtual objects (virtual object-related information), and the AR display device 10 is fixed to a location in the real space based on the geographic information acquired from the map data server 40. AR display of virtual objects may be performed.
  • the AR display device 10 is connected to the operation terminal 20 for wired or wireless communication, and controls the display of virtual objects according to the user's operation input using the operation terminal 20, thereby realizing interaction in the virtual space. .
  • the operation terminal 20 may be a dedicated controller, a wearable device worn on a user's hand or foot, or a smart phone (a general-purpose communication terminal).
  • the location information (geographical coordinate information) of the current location may be continuously transmitted from the AR display device 10 to the operation terminal 20 (for example, at a frequency of about 60 times per second), or the operation terminal 20 may capture images of the surroundings.
  • An image or a feature point (in a real space) extracted from the captured image may be transmitted to the position estimation server 30 and position information (geographical coordinate information) of the current location may be obtained from the position estimation server 30 .
  • the operation terminal 20 also transmits the geographical coordinate information of the current location to the map data server 40, acquires the surrounding geographical information (map image, POI information, virtual object related information) from the map data server 40, and converts the acquired information to It is also possible to display it on the display unit of the operation terminal 20 .
  • the position estimation server 30 is an information processing device that collates the feature points of the real object extracted from the captured image with the point cloud database 301 and performs position estimation (acquisition of geographical coordinate information).
  • the position estimation server 30 is also called a so-called VPS (Visual Positioning System) that measures positions from images.
  • the location estimation server 30 may be a cloud server composed of a plurality of servers.
  • the position estimation server 30 has a point cloud database 301 constructed by collecting feature points (three-dimensional information) of objects (real objects) in real space in advance.
  • the point cloud database 301 is a database in which feature points (three-dimensional information) of objects in real space are associated with geographic coordinate information.
  • the geographic coordinate information is, for example, latitude/longitude/altitude information.
  • the AR display device 10 or the operation terminal 20 transmits the captured image of the surrounding area or the feature points obtained from the captured image to the position estimation server 30, and the position estimation server 30 checks the point cloud database 301. This makes it possible to perform position estimation with higher precision than GPS.
  • the position estimation server 30 By collating the point cloud database 301, the position estimation server 30 obtains latitude/longitude/altitude information (geographical coordinate information), which is the absolute geographical position information of the AR display device 10 or the operation terminal 20, and attitude (for example, azimuth). specify (implementation of so-called localization). Note that the details of position estimation are not particularly limited.
  • the technology for constructing the point cloud database 301 is not particularly limited, either.
  • the point cloud database 301 Correlation between Real Space and Virtual Space
  • feature points (three-dimensional information) of an object in the real space are further associated with virtual space position information. That is, the correspondence between the real space and the virtual space is made in advance in the point cloud database 301 .
  • the virtual space position information is xyz coordinate information in the coordinate system of the virtual space. Such xyz coordinates indicate a position within a 10m to 100m square area, for example, with a certain geographic location as the origin.
  • the AR display device 10 or the operation terminal 20 transmits to the position estimation server 30 the captured image of the surroundings (or the information of the feature points extracted from the captured image).
  • geographic coordinate information latitude/longitude/altitude information
  • attitude information for example, azimuth
  • xyz coordinates xyz coordinates
  • attitude information for example, rotation matrix
  • the current location information acquisition may be performed, for example, at a frequency of about once per second.
  • Map data server 40 is an information processing device (map service server) that manages geographical information based on geographical coordinate information (latitude and longitude information).
  • Map service server may be a cloud server consisting of multiple servers.
  • Geographic information is information (text, image) about a place, such as a map image (either a 2D map image or a 3D map image), POI (point of interest) information (names of surrounding buildings and shops). and marks, including geographic coordinate information), and virtual object related information (virtual object ID, 3D image data, placed geographic coordinate information and posture information, sound data, movement of the virtual object, etc. defined scripts, etc.). That is, in the present embodiment, information on virtual objects is also handled as information on locations (virtual objects are fixed at locations in real space by geographic coordinate information). This makes it possible to display, for example, on a map image, the arrangement of virtual objects in addition to general POI information. The placement display of the virtual objects on the map will be described later with reference to FIG.
  • the map data server 40 includes a map image database 401 storing map images associated with geographical coordinate information and POI information associated with the geographical coordinate information. and an AR database 403 that stores virtual object-related information associated with geographical coordinate information.
  • the map data server 40 can return surrounding map image data, POI information, and virtual object-related information based on the geographical coordinate information (at least latitude and longitude information) transmitted from the AR display device 10 or the operation terminal 20. .
  • the “surroundings” may be, for example, an area of about 100 m square around the user's current location (latitude and longitude).
  • the AR display device 10 or the operation terminal 20 may acquire the peripheral information from the map data server 40 once, and then acquire the peripheral information again after moving to some extent. Further, when the map data server 40 updates the information in the area, the updated information may be notified from the map data server 40 to the AR display device 10 or the operation terminal 20 .
  • the AR display device 10 or the operation terminal 20 can superimpose POI information (building names, etc.) and virtual objects received from the map data server 40 on the real space for AR display.
  • the AR display device 10 can realize AR display by converting the POI information and the geographical coordinate information of the virtual object received from the map data server 40 into virtual space position information. The details of the conversion will be described using mathematical formulas to be described later.
  • the virtual space position information is calculated using the virtual space position information of the AR display device 10 based on the physical positional relationship. An example of AR display of a virtual object on the AR display device 10 and an operation of the virtual object using the operation terminal 20 will be described later with reference to FIG.
  • FIG. 2 is a diagram showing an example of a screen on which POI information and icon images of virtual objects are arranged on a map image in the operation terminal 20 according to this embodiment.
  • the virtual object information which is an example of the surrounding geographic information received from the map data server 40, includes geographic coordinate information (at least latitude and longitude information).
  • 20 displays icon images (icon images 252a, 252b, . can be expressed as This allows the user to intuitively grasp the position of the virtual object associated with the location in the real space on the map.
  • the map image used is not limited to the 2D image shown in FIG. 2, and may be a 3DCG image.
  • the geographical coordinate information of the current location which the operating terminal 20 transmits to the map data server 40 in order to obtain the geographical information of the surrounding area, may be the information received from the AR display device 10, or may be the information received from the AR display device 10. Information obtained from the server 30 may be used.
  • the operation terminal 20 transmits not only the geographical information around the current location, but also arbitrary latitude and longitude information, address, station name, etc. (POI information) input by the user to the map data server 40, and provides geographical information around an arbitrary location. Information may be obtained and displayed.
  • POI information arbitrary latitude and longitude information, address, station name, etc.
  • the POI information and the placement display of the virtual objects on the map may be displayed not only on the display unit of the operation terminal 20, but also on the display unit of the AR display device 10.
  • FIG. 3 is a diagram illustrating a case of operating a virtual object using the operating terminal 20 according to this embodiment.
  • the operation terminal 20 is, for example, a smart phone, and can be held by a user.
  • the AR display device 10 is realized by a transmissive spectacle type device in which a transmissive display is provided in the lens portion, as shown in FIG.
  • virtual objects 50a to 50c are superimposed and displayed in the real space (the user's field of view), as shown in FIG.
  • the user uses the operation terminal 20 to select at least one of the virtual objects 50a to 50c, and continues to use the operation terminal 20 to move, delete, copy, or copy the selected virtual object 50.
  • Various operations such as posture control and display mode (size, color, shape, etc.) change can be performed.
  • the user can operate the virtual object 50 by moving the operation terminal 20 or performing a touch operation on the operation display section 250 of the operation terminal 20 .
  • the movement of the operation terminal 20 (motion data detected by the motion sensor 240) and the user's touch operation (single-tap, double-tap, long press, swipe, pinch-in/pinch-out, etc.) on the operation display unit 250 of the operation terminal 20 , is continuously transmitted to the AR display device 10 .
  • the AR display device 10 continuously captures images of the user's visual field range with the camera 130 provided facing outward, and analyzes the captured images (visual field images) (extraction of feature points, acquisition of depth information, etc.). , recognition of surrounding real objects (object recognition), recognition of three-dimensional space, tracking, and the like are performed.
  • the AR display device 10 displays a pointing image L like a ray extending in a straight direction from the tip (upper end) of the operating terminal 20, and a virtual object 50c that collides with the pointing image L. It can be selected as an operation target. Since the instruction image L follows the direction of the operation terminal 20, the user can control the direction of the instruction image L by moving the top end (upper end) of the operation terminal 20 up, down, left, or right to select an arbitrary virtual object 50. can do. The selection is determined by, for example, tapping the operation display unit 250 of the operation terminal 20 .
  • the AR display device 10 performs AR display processing according to the user operation based on the tracking result of the operation terminal 20 obtained by analyzing the captured image and operation information such as motion data and touch operation transmitted from the operation terminal 20. Realize interaction in virtual space.
  • the AR display device 10 appropriately uses the virtual space position information and orientation information of the AR display device 10 and the operation terminal 20 and the virtual space position information and orientation information of the virtual object. may be used.
  • the AR display device 10 can transmit the result of operating a virtual object in the virtual space to the map data server 40 as update information and store it in the AR database 403 .
  • the result of the operation is, for example, placement of a new virtual object, movement, deletion, copy of the virtual object, control of posture, change in display mode, and the like.
  • the AR display device 10 transmits virtual object update information (virtual object ID, geographic coordinate information, orientation information, shape features, 3DCG, etc.) to the map data server 40 .
  • the AR display device 10 uses position information and orientation information of the virtual space when AR displaying a virtual object.
  • the information (rotation matrix) is converted into geographical coordinate information (latitude, longitude, elevation) and attitude information (azimuth angle) and transmitted to the map data server 40 .
  • the details of the conversion will be explained using mathematical formulas described later.
  • the operation result may be saved from the operation terminal 20 to the map data server 40.
  • the user operates the operation terminal 20 to generate a new virtual object (for example, by inputting a character to generate a 3DCG of the character), and the AR display performed on the display unit of the operation terminal 20 is performed on the generated virtual object.
  • the location is fixed by arranging it in the real space using it or by arranging it on the map displayed on the display unit of the operation terminal 20 .
  • the operation terminal 20 transmits the generation and placement of such a new virtual object as update information (operation result) to the map data server 40 and stores it in the AR database 403 .
  • the virtual space position information (xyz coordinates) and orientation information (rotation matrix) of the new virtual object are converted into geographic coordinate information (latitude, longitude, elevation) and orientation information (azimuth), and the map data It is sent to the server 40 .
  • FIG. 4 is a block diagram showing an example of the configuration of the AR display device 10 and the operation terminal 20 according to this embodiment.
  • the AR display device 10 and the operation terminal 20 are connected for communication by wire or wirelessly, and transmit and receive data.
  • the AR display device 10 has a communication section 110 , a control section 120 , a camera 130 , a motion sensor 140 , a display section 150 and a storage section 160 .
  • the AR display device 10 is an example of an information processing device that displays a virtual object associated with a real space.
  • the communication unit 110 communicates with an external device by wire or wirelessly, and transmits and receives data.
  • the communication unit 110 connects to a network and transmits/receives data to/from a server on the network.
  • the communication unit 110 for example, wired / wireless LAN (Local Area Network), Wi-Fi (registered trademark), Bluetooth (registered trademark), mobile communication network (LTE (Long Term Evolution), 3G (3rd generation mobile communication system), 4G (fourth-generation mobile communication system), 5G (fifth-generation mobile communication system)), etc., to connect with external devices and networks.
  • the communication unit 110 according to this embodiment can transmit and receive data to and from the operation terminal 20 , the position estimation server 30 , and the map data server 40 .
  • control unit 120 functions as an arithmetic processing device and a control device, and controls overall operations within the AR display device 10 according to various programs.
  • the control unit 120 is realized by an electronic circuit such as a CPU (Central Processing Unit), a microprocessor, or the like.
  • the control unit 120 may also include a ROM (Read Only Memory) that stores programs to be used, calculation parameters, and the like, and a RAM (Random Access Memory) that temporarily stores parameters that change as appropriate.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the control unit 120 analyzes (space recognition, etc.) captured images of the surrounding area acquired by the camera 130, motion data acquired by the motion sensor 140, virtual space position information acquired from the position estimation server 30, And based on the virtual object related information and the like acquired from the map data server 40, the display unit 150 performs control (AR display control) to superimpose and display the virtual object on the real space. Main functions of the control unit 120 will be described below.
  • the control unit 120 also functions as a coordinate information acquisition unit 121, a coordinate information conversion unit 122, and a virtual space processing unit 123.
  • the coordinate information acquisition unit 121 transmits to the position estimation server 30 the captured image of the surrounding area acquired by the camera 130 or the data of the feature points extracted from the captured image.
  • a process of acquiring geographic coordinate information (latitude, longitude, elevation) and corresponding virtual space position information (xyz coordinates) is performed.
  • the coordinate information acquisition unit 121 can also acquire geographical orientation information (eg, azimuth angle) of the AR display device 10 and virtual space orientation information (eg, rotation matrix) from the position estimation server 30 .
  • geographical orientation information eg, azimuth angle
  • virtual space orientation information eg, rotation matrix
  • the posture information corresponds to the user's head orientation (face orientation). Acquisition of position information and orientation information of the AR display device 10 in the geographic and virtual spaces is performed, for example, every second.
  • the coordinate information acquisition unit 121 obtains analysis results (tracking, etc.) of the captured image acquired by the camera 130 and a motion sensor for relative positional changes in a short period of time based on the acquired position information and orientation information.
  • Self-localization using 140 motion data for example, VIO (Visual Inertial Odometry) may be utilized.
  • the coordinate information conversion unit 122 performs mutual conversion between geographic coordinate information (latitude, longitude, elevation) and attitude information (azimuth) and virtual space position information (xyz coordinates) and attitude information (rotation matrix). A specific calculation method will be described later using mathematical formulas.
  • geographical coordinate information can be associated with a virtual object and managed, realizing cooperation with a map service. For example, the results of operations performed in the virtual space can be reflected in the map service and shared with other users.
  • the virtual space processing unit 123 performs AR display control to superimpose and display the virtual object on the real space. Algorithms for AR display control are not particularly limited, but the following processing is performed, for example.
  • the virtual space processing unit 123 analyzes the captured image of the user's field of view (an example of the captured image of the surroundings) acquired by the camera 130, and recognizes the real space. Real space recognition includes, for example, three-dimensional object recognition, plane area detection, and tracking.
  • the virtual space processing unit 123 may, for example, extract and track feature points from the captured image, and perform recognition processing of the three-dimensional space.
  • the virtual space processing unit 123 may further acquire depth information from the camera 130 and use it for recognizing the real space.
  • the virtual space processing unit 123 may further acquire motion data (motion of the AR display device 10 itself) from the motion sensor 140 and use it for real space recognition (particularly tracking).
  • the virtual space processing unit 123 is fixed at a location based on the virtual space position information and orientation information of the AR display device 10 acquired from the position estimation server 30 and the virtual object related information acquired from the map data server 40. To appropriately superimpose and display a virtual object (for example, 3DCG) on a real space.
  • the virtual space processing unit 123 can control the display position and posture of the virtual object according to the position of the plane area in the real space and the shape and position of the real object so as not to create an unnatural state.
  • the virtual space processing unit 123 appropriately controls the display of the virtual object according to the operation information for the virtual object by the user transmitted from the operation terminal 20, and executes the interaction in the virtual space.
  • the virtual space processing unit 123 also controls transmission of the operation result from the communication unit 110 to the map data server 40 .
  • the camera 130 is an imaging unit that has a function of imaging the real space.
  • the camera 130 is a camera ( external camera).
  • the angle of view of camera 130 is preferably an angle of view that includes at least the field of view of the user.
  • the virtual space processing unit 123 can perform spatial recognition of the real space (field of view) that the user sees through the display unit 150 based on the captured image acquired by the camera 130 .
  • the camera 130 may be singular or plural.
  • Camera 130 may also be configured as a so-called stereo camera.
  • Motion sensor 140 is a sensor that detects motion of the AR display device 10 .
  • Motion sensor 140 includes, for example, an acceleration sensor, an angular velocity sensor, and a geomagnetic sensor.
  • the motion sensor 140 may be a sensor (eg, an IMU (Inertial Measurement Unit)) including, for example, a 3-axis acceleration sensor and a 3-axis gyro sensor.
  • IMU Inertial Measurement Unit
  • the display unit 150 has a function of displaying images.
  • the display unit 150 is implemented by a transmissive display.
  • a transmissive display is a display that allows light in the real space to be directly delivered to the user's eyes. In the case of a transmissive display, the user can directly view the real space through the transmissive display.
  • a transmissive display may be, for example, an optical see-through display.
  • the optical see-through display can employ known forms including a half-mirror system, a light guide plate system, a retinal direct drawing system, and the like.
  • the display unit 150 may be a so-called video see-through display that displays an image captured by a camera (captured image of the real space in front of the eyes) on a non-transmissive display.
  • the display unit 150 displays, for example, a virtual object (eg, 3DCG) under the control of the control unit 120.
  • a virtual object eg, 3DCG
  • the storage unit 160 is realized by a ROM (Read Only Memory) that stores programs and calculation parameters used in the processing of the control unit 120, and a RAM (Random Access Memory) that temporarily stores parameters that change as appropriate.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the configuration of the AR display device 10 is not limited to the example shown in FIG.
  • the AR display device 10 may be realized by multiple devices. Specifically, for example, a display device (including at least a display unit 150, a camera 130, and a motion sensor 140) realized by a transmissive glasses-type device or the like, and an information processing terminal realized by a smartphone, a tablet terminal, a PC, or the like (including at least the control unit 120).
  • the AR display device 10 may further have a speaker and a microphone. Audio information of the virtual space (for example, sound effects of virtual objects, etc.) can be reproduced from the speaker.
  • the speakers may be configured as headphones, earphones, or bone conduction speakers, for example.
  • the microphone picks up the user's uttered voice and implements operation input by voice.
  • operation terminal 20 has communication section 210 , control section 220 , camera 230 , motion sensor 240 , operation display section 250 and storage section 260 .
  • the communication unit 210 communicates with an external device by wire or wirelessly, and transmits and receives data.
  • the communication unit 210 connects to a network and transmits/receives data to/from a server on the network.
  • the communication unit 210 for example, wired / wireless LAN (Local Area Network), Wi-Fi (registered trademark), Bluetooth (registered trademark), mobile communication network (LTE (Long Term Evolution), 3G (third generation mobile communication system), 4G (fourth-generation mobile communication system), 5G (fifth-generation mobile communication system)), etc., to connect with external devices and networks.
  • the communication unit 210 according to this embodiment can transmit and receive data to and from the AR display device 10, the position estimation server 30, and the map data server 40.
  • control unit 220 functions as an arithmetic processing device and a control device, and controls overall operations within the operation terminal 20 according to various programs.
  • the control unit 220 is implemented by an electronic circuit such as a CPU (Central Processing Unit), a microprocessor, or the like.
  • the control unit 220 may also include a ROM (Read Only Memory) that stores programs to be used, calculation parameters, and the like, and a RAM (Random Access Memory) that temporarily stores parameters that change as appropriate.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the control unit 220 also functions as a coordinate information acquisition unit 221, an operation information transmission control unit 222, and a display control unit 223.
  • the coordinate information acquisition unit 221 transmits to the position estimation server 30 the captured image of the surrounding area acquired by the camera 230 or the data of the feature points extracted from the captured image.
  • a process of acquiring coordinate information (latitude, longitude and altitude) and corresponding virtual space position information (xyz coordinates) is performed.
  • the coordinate information acquisition unit 221 can also acquire geographical attitude information (eg, azimuth angle) of the operation terminal 20 and virtual space attitude information (eg, rotation matrix) from the position estimation server 30 .
  • the orientation information is the camera 130 provided on the operation terminal 20 (for example, the outward facing camera provided on the surface (back side) opposite to the surface on which the operation display unit 250 is provided).
  • the geographical and virtual space position information and attitude information of the operation terminal 20 are acquired every second, for example. Further, the coordinate information acquisition unit 221 analyzes captured images continuously acquired by the camera 230 and based on the motion data of the operation terminal 20 continuously acquired by the motion sensor 240, based on the relative coordinates in a short period of time. Calculation of position change (eg, utilizing VIO) may also be performed.
  • the coordinate information acquisition unit 221 acquires the geographical coordinate information of the operation terminal 20 from the position estimation server 30, but the present embodiment is not limited to this, and the coordinate information acquisition unit 221 , for example, may obtain the geographical coordinate information of the AR display device 10 from the AR display device 10 and regard it as the coordinate information of the operation terminal 20 .
  • the AR display device 10 may transmit highly accurate geographic coordinate information acquired using VIO to the operation terminal 20 at a high frequency (for example, about 60 times per second).
  • the operation information transmission control unit 222 transmits motion data (movement information of the operation terminal 20) acquired from the motion sensor 240 and information of user's touch operation acquired from the operation display unit 250 to the AR display device 10 as operation information. controls sending to.
  • the operation information may be information of button operation or switch operation.
  • the display control unit 223 controls the display of the operation display unit 250.
  • the display control unit 223 may perform display control according to a user's touch operation acquired from the operation display unit 250 .
  • the display control unit 223 may transmit the geographical coordinate information of the operation terminal 20 to the map data server 40 and display the peripheral geographical information acquired from the map data server 40 on the operation display unit 250. .
  • POI information and virtual objects may be arranged and displayed on the map image.
  • the display control unit 223 has a layout that facilitates operation without looking closely at the hand.
  • a simple cross as shown in FIG. 3 may be displayed on the operation display unit 250.
  • a tap operation or a swipe operation may be performed by placing a finger on an arbitrary position without arranging a specific button image on the operation display section 250 .
  • the display control unit 223 can also perform AR display in which a virtual object is superimposed on the captured image (video of the real space) acquired by the camera 230 .
  • Information related to the display of such virtual objects is included in the peripheral geographic information acquired from the map data server 40 by the operating terminal 20 transmitting the geographic coordinate information to the map data server 40 .
  • the AR display is performed on the operation display unit 250, the user can select, move, delete, copy, control the posture, and display the virtual object by touching the virtual object displayed on the operation display unit 250.
  • An operation input such as a mode change can be performed.
  • the display control unit 223 can control the display of the virtual object and execute the interaction in the virtual space according to the user's touch operation.
  • Touch operations are, for example, operations such as single tap, double tap, long press, swipe, drag & drop, pinch in/pinch out.
  • the user can input characters from, for example, a software keyboard displayed on the operation display unit 250, generate a virtual object (3DCG) of the character, and perform control to newly place it at an arbitrary location in the real space. is also possible.
  • the results of such operations performed in the virtual space are transmitted from the AR display device 10 or the operation terminal 20 to the map data server 40 and stored in the AR database 403 so that they can be shared with other users. becomes.
  • the operation display unit 250 has an input function of attaching an operation input by the user and a display function of displaying an image.
  • the operation display unit 250 is realized by a touch panel display. Thereby, the operation display unit 250 can detect a touch operation on the display screen.
  • the operation display unit 250 according to this embodiment is assumed to be a non-transmissive display.
  • the storage unit 260 is implemented by a ROM (Read Only Memory) that stores programs, calculation parameters, and the like used in the processing of the control unit 220, and a RAM (Random Access Memory) that temporarily stores parameters that change as appropriate.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the configuration of the operation terminal 20 has been specifically described above, the configuration of the operation terminal 20 according to the present disclosure is not limited to the example shown in FIG.
  • the operation terminal 20 may be realized by a general-purpose smart phone, a tablet terminal, a handy game machine, a wearable device worn on a finger or wrist, or the like.
  • FIG. 5 is a sequence diagram showing the flow of position estimation processing based on captured images according to the present embodiment. As shown in FIG. 5, first, the AR display device 10 acquires a captured image by the camera 130 (step S103), and transmits the captured image or feature points extracted from the captured image to the position estimation server 30 (step S106). .
  • the position estimation server 30 collates the feature points of the captured image with the point cloud database 301, geographic coordinate information (latitude, longitude, elevation) and orientation information (for example, azimuth), and corresponding virtual space position information (xyz coordinates) and attitude information (for example, rotation matrix) are acquired (step S109).
  • geographic coordinate information latitude, longitude, elevation
  • orientation information for example, azimuth
  • corresponding virtual space position information xyz coordinates
  • attitude information for example, rotation matrix
  • the position estimation server 30 transmits the acquired geographical coordinate information and the like and the virtual space position information and the like to the AR display device 10 (step S112).
  • the AR display device 10 appropriately merges it with the data of the motion sensor 140 (using VIO) to obtain current position information with a higher frame rate (step S115).
  • the AR display device 10 uses GPS information representing the rough position of the AR display device 10 and Wi-Fi position estimation data. The result, information on the connected mobile phone base station, or the like may be transmitted together with the captured image. Also, when 5G becomes popular, the location estimation server 30 can also narrow down the area by the unique ID of the edge server transmitted from the AR display device 10 .
  • FIG. 6 is a sequence diagram showing the flow of AR display processing in the AR display device 10 according to this embodiment.
  • the coordinate information acquisition unit 121 of the AR display device 10 acquires the geographic coordinate information of the AR display device 10 based on the captured image of the periphery (user's field of view) acquired by the camera 130 . and virtual space position information and the like are acquired (step S123). Specifically, the process (acquisition process from the position estimation server 30) described with reference to FIG. 5 is performed.
  • the virtual space processing unit 123 of the AR display device 10 sets the acquired geographical coordinate information and the like and the virtual space position information and the like as the base position (current location) of the AR display device 10 (step S126).
  • the virtual space processing unit 123 of the AR display device 10 transmits the geographical coordinate information (current location) to the map data server 40 (step S129), and receives POI information and virtual object related information around the current location from the map data server 40.
  • the virtual object-related information includes, for example, the ID of the virtual object, 3DCG data for displaying (or generating) the virtual object, 3D model, various parameters, geographic coordinate information and posture information of the virtual object, and furthermore, virtual This includes object sound effect information and the like.
  • the AR display device 10 may periodically acquire update information (difference) from the map data server 40 after receiving the virtual object related information in the area at the time of initial connection.
  • the coordinate information conversion unit 122 of the AR display device 10 converts the POI information and the geographical coordinate information of the virtual object acquired from the map data server 40 into a virtual space in order to display them in a virtual space associated with the real space. Processing for conversion into position information is performed (step S135).
  • Geographical coordinate information (longitude1, latitude1, elevation1), which is the Geo Pose of the virtual object 1 obtained from the map data server 40 and the orientation ( Rotation) information (azimuth1) is converted into position information (PP1) and rotation (RP1) which are Pose in virtual space (dedicated coordinate system for each area).
  • the geographic coordinate information (latitude, longitude, elevation) of the virtual object 1 is transformed into a position in the Euclidean space on a global scale: PG1 (x, y, z) and rotation information, and converted into virtual space (dedicated coordinates for each area can be converted into position information (PP1) and rotation (RP1), which is Pose in the system).
  • the coordinate information conversion unit 122 converts the virtual coordinates of the AR display device 10 so as to correspond to the relative positional relationship between the geographical coordinate information/attitude information of the AR display device 10 and the geographical coordinate information/attitude information of the virtual object 1 . Based on the spatial position information/posture information, the geographic coordinate information/posture information of the virtual object 1 can be converted into virtual space position information/posture information.
  • the virtual space processing unit 123 performs AR display processing of the virtual object using the virtual space position information/orientation information of the virtual object (step S138).
  • FIG. 7 is a sequence diagram showing the flow of processing for arranging and displaying virtual objects on a map in the operation terminal 20 according to this embodiment.
  • the coordinate information acquisition unit 221 of the operation terminal 20 acquires the geographical coordinate information and the like of the operation terminal 20 and the virtual space position information and the like based on the captured image of the surrounding area acquired by the camera 230 .
  • Acquire step S203. Specifically, it is obtained from the position estimation server 30 based on the feature points of the captured image.
  • the coordinate information acquisition unit 221 may recognize the self-position at a higher frame rate using the motion data of the operation terminal 20 with respect to the relative positional change in a short time (for example, using VIO).
  • the display control unit 223 of the operation terminal 20 sets the acquired geographical coordinate information and the like and the virtual space position information and the like to the basic position (current location) of the operation terminal 20 (step S206).
  • the display control unit 223 of the operation terminal 20 transmits the geographical coordinate information (current location) to the map data server 40 (step S209), and from the map data server 40, the map image around the current location, the POI information, and the virtual object related Information is acquired (step S212).
  • the operation terminal 20 periodically acquires update information (difference) from the map data server 40 after receiving the virtual object related information in the area at the time of initial connection. good too.
  • the display control unit 223 of the operation terminal 20 displays the POI information and the icon image of the virtual object (included in the virtual object related information) acquired from the map data server 40 as shown in FIG. 2 based on the geographical coordinate information.
  • the operation display unit 250 performs processing for displaying on the map image (step S135). Thereby, the user can intuitively grasp the arrangement of the virtual objects associated with the real space, and can enjoy the integration of the real space and the virtual space.
  • FIG. 8 is a sequence diagram showing the flow of processing for arranging a new virtual object according to this embodiment.
  • the user can place (fix) the virtual object at an arbitrary location.
  • the newly placed virtual object may be a 3DCG prepared in advance as a placeable virtual object, a 3DCG arbitrarily edited by the user, or a 3DCG newly generated by the user. good too.
  • AR advertisements can be placed near stores that exist in real space
  • various AR characters an example of virtual objects
  • AR products can be placed anywhere in a theme park
  • AR items game items, etc., an example of virtual objects
  • AR products indicating that they can be purchased as data or as real items, an example of virtual objects
  • the coordinate information acquisition unit 121 of the AR display device 10 acquires the geographic coordinate information of the AR display device 10 based on the captured image of the periphery (user's field of view) acquired by the camera 130 . and virtual space position information and the like are acquired (step S303). Specifically, the process (acquisition process from the position estimation server 30) described with reference to FIG. 5 is performed.
  • the virtual space processing unit 123 of the AR display device 10 sets the acquired geographical coordinate information and the like and the virtual space position information and the like as the base position (current location) of the AR display device 10 (step S306).
  • the virtual space processing unit 123 of the AR display device 10 receives a new virtual object registration request (step S309).
  • the user uses the operation terminal 20 to move a new virtual object superimposed and displayed on the real space by the AR display device 10 and perform an operation to arrange the new virtual object at an arbitrary place in the real space.
  • the coordinate information conversion unit 122 of the AR display device 10 transforms the virtual space position coordinate information of the newly placed virtual object into the base position (virtual space coordinate information etc. and geographic coordinate information etc.) of the AR display device 10. Based on this, processing for conversion into geographical coordinate information is performed (step S312).
  • the coordinate information conversion unit 122 converts the position (PP1) and rotation (RP1), which are Pose, of the virtual object 1 in the virtual space (dedicated coordinate system for each area) to geographic Convert to coordinate information (longitude1, latitude1, elevation1) and attitude (rotation) information (azimuth1).
  • the coordinate information conversion unit 122 converts the AR display device 10 so as to correspond to the relative positional relationship between the virtual space position information/posture information of the virtual object 1 and the virtual space position information/posture information of the AR display device 10 .
  • the virtual space position information/attitude information of the virtual object 1 can be converted into the geographical coordinate information/attitude information based on the geographical coordinate information/attitude information.
  • the virtual space processing unit 123 of the AR display device 10 transmits information regarding the newly placed virtual object to the map data server 40 (step S315).
  • the information to be transmitted includes, for example, the ID of the virtual object, 3DCG data for displaying (or generating) the virtual object, the 3D model, various parameters, and the geographical coordinates converted in step S312.
  • Information/posture information is included.
  • the map data server 40 updates the AR database 403 with the virtual object-related information received from the AR display device 10 (step S318). Since the virtual object-related information includes the geographical coordinate information and the like of the newly placed virtual object, it can be reflected in the map data server 40 that manages the geographical information based on the geographical coordinate information. . Updates to the AR database 403 can be sent to other users within the area.
  • the information (operation result) of the virtual object newly arranged by the user can be reflected in the map data server 40 by performing the conversion process to the geographic coordinate information. .
  • the AR display device 10 transmits the operation result (information about the newly placed virtual object) to the AR display devices of other users near the user by P2P (peer-to-peer). good too. It is possible to experience the operation results in the virtual space with lower latency than via the cloud. In this system, it is assumed that the AR display device 10 acquires update differences from the map data server 40 at regular intervals (for example, every second). Priority may be given to the operation result.
  • FIG. 9 is a sequence diagram showing the flow of information update processing for a virtual object operated on the operation terminal 20. As shown in FIG.
  • the coordinate information acquisition unit 221 of the operation terminal 20 acquires the geographical coordinate information and the like of the operation terminal 20 and the virtual space position information and the like based on the peripheral captured image acquired by the camera 230 .
  • Acquire step S403. Specifically, it is obtained from the position estimation server 30 based on the feature points of the captured image. Acquisition of geographical coordinate information and the like from the position estimation server 30 may be performed at a frequency of about once per second.
  • the coordinate information acquisition unit 221 may recognize the self-position with higher accuracy by using the motion data of the operation terminal 20 with respect to the relative positional change in a short time (for example, using VIO). Note that the recognition of the self-position of the operation terminal 20 regarding changes in the self-position may be performed at a frequency of about 120 times per second.
  • the operating terminal 20 receives the user's operation input for the virtual object (step S406), and transmits the position and orientation information of the operating terminal 20 and the operation information to the AR display device 10 (step S409).
  • the operation information may include touch operations (information associated with various tap operations and swipe operations such as tap states, tap positions, swipe states, and swipe positions).
  • the position and orientation information of the operation terminal 20 can be recognized with higher accuracy based on motion data and captured images, such as by using VIO.
  • the AR display device 10 determines processing for the virtual object according to the position/orientation information and the operation information of the operation terminal 20 (step S412). For example, as shown in FIG. 3, it determines the result of collision determination between a line extending straight from the tip of the operation terminal 20 and the virtual object, and determines processing according to the touch operation.
  • the AR display device 10 transmits the determination of the above process as update information of the virtual object to other users' terminals (other AR display devices) located nearby by P2P (step S415).
  • the virtual object update information includes, for example, the ID of the virtual object and information on the determined process.
  • the determined processing may include changing the position information and orientation information of the virtual space.
  • the information about the determined processing may include post-change virtual space position information and orientation information.
  • the coordinate information conversion unit 122 of the AR display device 10 converts the virtual space coordinate information of the changed (updated) virtual object into geographic coordinate information (step S418).
  • the coordinate information conversion unit 122 may apply the above-described formula (Formula 3) to convert the virtual space coordinate information and orientation information of the changed (updated) virtual object into geographic coordinate information and orientation information.
  • the AR display device 10 transmits update information of the changed (updated) virtual object (including the ID of the virtual object, geographical coordinate information, determined processing, etc.) to the map data server 40 (step S412). ).
  • the map data server 40 updates the data by saving the virtual object update information received from the AR display device 10 in the AR database 403 (step S424). Since the update information of the virtual object includes the geographic coordinate information of the changed (updated) virtual object, etc., it can be reflected in the map data server 40 that manages the geographic information based on the geographic coordinate information. becomes. Updates to the AR database 403 can be sent to other users within the area. In this way, the edited content (update, change) of the virtual object is shared in real time.
  • the AR display device 10 then reflects the determined processing, that is, updates the display of the virtual object (step S427).
  • the update information of the AR database 403 can also be periodically notified to the operation terminal 20 . For example, even on the map displayed on the operation terminal 20, updates such as changes in the arrangement of virtual objects are reflected in real time.
  • each operation process according to the present embodiment has been specifically described. Note that the operation processing shown in each sequence diagram is an example, and the present disclosure is not limited to this. For example, this disclosure is not limited to the order of steps shown in each sequence diagram. At least some steps may be processed in parallel, may be processed in reverse order, or may be skipped.
  • step S415 shown in FIG. 9 the process shown in steps S418 to S424, and the process shown in step S427 may be performed in parallel.
  • Example of operation of virtual object using operation terminal 20 >> Next, an example of operating a virtual object using the operating terminal 20 according to this embodiment will be described with reference to FIGS. 10 to 18. FIG. Here, a case where a smartphone is used as a controller will be described as an example.
  • FIG. 10 and 11 are diagrams illustrating an example of a virtual object selection operation using the operation terminal 20 according to this embodiment.
  • an instruction image L such as a ray of light traveling straight from the tip of the operation terminal 20 (smartphone) is superimposed and displayed in real space on the display unit 150 (transmissive display) of the AR display device 10 .
  • FIG. 10 also shows virtual objects 51a to 51c superimposed and displayed on the real space on the display unit 150. As shown in FIG.
  • the indication image L can be displayed on an extension line of the central axis C that is at the center of the operation terminal 20 in the short direction and that is orthogonal to the short direction (perpendicular to the tip side of the operation terminal 20). Since the instruction image L is display-controlled by the AR display device 10 so as to follow the center axis C, as shown in the right side of FIG. By doing so, an arbitrary virtual object 51 can be selected.
  • Confirmation of the selection operation is determined by performing a tap operation on the operation terminal 20, as shown in FIG. 11, for example.
  • the AR display device 10 selects the virtual object 51b that most closely collides with the instruction image L when the tap operation is performed. Feedback of the selection state may be performed, for example, by changing the display mode of the virtual object 51b or lighting the surroundings.
  • the position/rotation edit mode and the rotation/scale edit mode may be switched. For example, you can tap and hold to enter position/rotation editing mode, and a single tap to enter rotation/scale editing mode.
  • FIGS. 12 and 13 are diagrams explaining an example of an operation method using the operation terminal 20 in the position/rotation edit mode according to this embodiment.
  • the position of the virtual object 51b in the selected state can be changed by changing the orientation of the operation terminal 20 up, down, left, right, or moving it horizontally while the user keeps tapping. changes.
  • L the length of the instruction image L (that is, the distance between the operation terminal 20 and the virtual object 51b in the selected state) constant
  • a change in the position and orientation of the operation terminal 20 causes the virtual object 51b in the selected state to move. Can change position.
  • the virtual object 51b in the selected state can be rotated (pitch rotation, yaw rotation). Further, as shown in FIG. 15 , by rotating the operating terminal 20 in the vertical direction (while tapping is continued), the virtual object 51b in the selected state can be rotated in the Roll direction.
  • 16 and 17 are diagrams illustrating an example of an operation method using the operation terminal 20 in the rotation/scale edit mode according to this embodiment.
  • the rotation/scale editing mode is set by single-tapping
  • the user can enlarge or reduce the virtual object 51b in the selected state by pinch-in/pinch-out operations, as shown in FIG.
  • the user can rotate the virtual object 51b in the selected state by Pitch rotation and Yaw rotation by vertical and horizontal swipe operations (the correspondence between the swipe operation direction and the rotation direction is the same as in the example shown in FIG. 14).
  • the virtual object 51b in the selected state may be rolled by performing a rotation operation with two fingers.
  • FIG. 18 is a diagram explaining selection determination of other operation options for the selected virtual object.
  • options 52a to 52c ("delete”, “undo”, “copy”, etc.) for other operations on the virtual object may be displayed.
  • the user can point to an arbitrary option with the instruction image L that goes straight from the tip of the operation terminal 20, and can make a decision by a tap operation.
  • the focus 53 of options can be switched (up, down, left, and right) by swiping on the operation terminal 20, and can be determined by tapping.
  • these options may be displayed as buttons on the display screen of the location estimation server 30.
  • AR Augmented Reality
  • VR Virtual Reality
  • MR Mated Reality
  • the AR display device 10 may be realized by a transmissive or non-transmissive HMD (Head Mounted Display) worn on the head, or may be a mobile terminal held by the user, such as a smartphone or a tablet terminal. It may be various wearable devices worn by the user.
  • HMD Head Mounted Display
  • a control unit for controlling display of a virtual object associated with the real space The control unit The virtual space position information of the virtual object that is the target of the user's operation, the geographical coordinate information of the information processing device obtained based on the captured image of the real space, and the virtual space corresponding to the geographical coordinate information An information processing device that converts into geographic coordinate information based on location information.
  • the geographic information managed by the external device includes map image data and virtual object information associated with geographic coordinate information.
  • the information processing apparatus according to (3), wherein the geographic information managed by the external device further includes POI (point of interest) information.
  • the control unit converts virtual space position information of the virtual object whose position has changed as a result of the user's operation into corresponding geographic coordinate information, and stores at least the converted geographic coordinate information as update information of the virtual object.
  • the information processing apparatus according to any one of (2) to (4) above, which controls transmission of information including to the external device.
  • the control unit Acquiring information of one or more virtual objects in a predetermined area including a location indicated by the geographical coordinate information of the information processing device from the external device; converting the geographical coordinate information of the virtual object included in the acquired information of the virtual object into corresponding virtual space position information based on the geographical coordinate information and the virtual space position information of the information processing device;
  • the information processing apparatus according to any one of (2) to (5), wherein display control of the obtained virtual object is performed based on the converted virtual space position information.
  • the information processing device is a display device worn on a user's head.
  • the information processing apparatus according to (8), wherein the captured image is a field-of-view image of the user obtained from an imaging unit of the display device.
  • the control unit according to any one of (1) to (9) above, wherein the control unit controls display of the virtual object that is the target of user operation in accordance with information indicating the user's operation obtained from the operation terminal.
  • the information processing device described.
  • (11) The information according to any one of (1) to (9), wherein the control unit controls display of the virtual object to be operated by the user according to the position and orientation of the operation terminal and touch operation information. processing equipment.
  • the control unit acquires, every second, information on the geographical coordinate information of the information processing device based on the captured image and information on virtual space position information corresponding to the geographical coordinate information from an external device that performs position estimation, the (1 ) to (14).
  • the information processing device according to any one of (1) to (15), wherein the control unit periodically acquires update information from an external device that manages the geographic coordinate information.
  • the information processing apparatus according to any one of (1) to (16), wherein the geographical coordinate information is latitude, longitude, and altitude information.
  • posture information of the information processing device in a geographic coordinate system is used in addition to the geographical coordinate information.
  • the information processing apparatus according to any one of (1) to (17) above, wherein posture information of the virtual object in the virtual space is also converted.
  • the processor displaying a virtual object associated with real space;
  • a method of processing information comprising: (20) the computer, Function as a control unit that controls the display of virtual objects associated with the real space, The control unit The virtual space position information of the virtual object that is the target of the user's operation, the geographical coordinate information of the information processing device obtained based on the captured image of the real space, and the virtual space corresponding to the geographical coordinate information
  • a program that converts geographic coordinates based on location information.
  • AR display device 121 coordinate information acquisition unit 122 coordinate information conversion unit 123 virtual space processing unit 20 operation terminal 221 coordinate information acquisition unit 222 operation information transmission control unit 223 display control unit 30 position estimation server 301 point cloud database 40 map data server 401 Map image database 402 POI database 403 AR database

Abstract

[Problem] To provide an information processing device, an information processing method, and a program with which it is possible to enable information of the virtual object to be operated on by a user to be handled in a geographical coordinate system so as to realize further improvement of user experience. [Solution] An information processing device comprising a control unit that exercises control on displaying a virtual object correlated to a real space. The control unit converts virtual space position information of the virtual object having been operated on by a user to geographical coordinate information on the basis of geographical coordinate information of the information processing device having been acquired on the basis of captured image in which the real space is imaged and virtual space position information that corresponds to the geographical coordinate information.

Description

情報処理装置、情報処理方法、およびプログラムInformation processing device, information processing method, and program
 本開示は、情報処理装置、情報処理方法、およびプログラムに関する。 The present disclosure relates to an information processing device, an information processing method, and a program.
 近年、実空間と仮想空間とを融合して視聴する技術が様々開発されている。例えば、ユーザの眼に実空間が直接見える状態で当該実空間に仮想空間の情報である画像(仮想オブジェクトと称する)を重畳的に表示する技術として、拡張現実(AR:Augmented Reality)技術が開発されている。拡張現実を提供する表示装置としては、例えば光学透過型のHMD(Head Mounted Display)が挙げられる。 In recent years, various technologies have been developed to fuse and view real and virtual spaces. For example, augmented reality (AR) technology has been developed as a technology that superimposes images (called virtual objects), which are virtual space information, on the real space in a state in which the user can directly see the real space. It is Display devices that provide augmented reality include, for example, an optically transmissive HMD (Head Mounted Display).
 また、実空間に仮想オブジェクトを重畳表示する際、カメラにより撮像された撮像画像の解析により実空間の認識が行われ得る。例えば下記特許文献1では、撮像画像に基づいて実空間の認識を行い、環境マップの作成を行う技術が開示されている。 Also, when displaying a virtual object superimposed on the real space, the real space can be recognized by analyzing the image captured by the camera. For example, Patent Literature 1 below discloses a technique of recognizing a real space based on a captured image and creating an environment map.
特許第5380789号公報Japanese Patent No. 5380789
 ここで、仮想空間の座標系で処理される仮想オブジェクトの情報を、地理座標系により情報を管理する地図サービスと連携させることは困難であった。 Here, it was difficult to link the virtual object information processed in the virtual space coordinate system with the map service that manages the information in the geographic coordinate system.
 そこで、本開示では、ユーザ操作の対象である仮想オブジェクトの情報を、地理座標系でも扱えるようにすることで、ユーザ体験のさらなる向上を実現することが可能な情報処理装置、情報処理方法、およびプログラムを提案する。 Therefore, in the present disclosure, an information processing device, an information processing method, and an information processing device capable of further improving the user experience by enabling information of a virtual object, which is a target of user operation, to be handled in a geographic coordinate system, and Suggest a program.
 本開示によれば、実空間に対応付けられた仮想オブジェクトを表示する制御を行う制御部を備え、前記制御部は、ユーザが操作を行った対象である前記仮想オブジェクトの仮想空間位置情報を、実空間を撮像した撮像画像に基づいて取得された情報処理装置の地理座標情報と、当該地理座標情報に対応する仮想空間位置情報とに基づいて、地理座標情報に変換する、情報処理装置を提案する。 According to the present disclosure, a control unit is provided for controlling display of a virtual object associated with a real space, and the control unit receives virtual space position information of the virtual object, which is a target operated by a user, Proposal of an information processing device that converts into geographic coordinate information based on geographic coordinate information of the information processing device acquired based on a captured image of a real space and virtual space position information corresponding to the geographic coordinate information do.
 本開示によれば、プロセッサが、実空間に対応付けられた仮想オブジェクトを表示することと、ユーザが操作を行った対象である前記仮想オブジェクトの仮想空間位置情報を、実空間を撮像した撮像画像に基づいて取得された情報処理装置の地理座標情報と、当該地理座標情報に対応する仮想空間位置情報とに基づいて、地理座標情報に変換することと、を含む、情報処理方法を提案する。 According to the present disclosure, the processor displays the virtual object associated with the real space, and the virtual space position information of the virtual object, which is the target of the user's operation, is captured in the captured image of the real space. and converting into geographical coordinate information based on the virtual space position information corresponding to the geographical coordinate information of the information processing device acquired based on the above.
 本開示によれば、コンピュータを、実空間に対応付けられた仮想オブジェクトを表示する制御を行う制御部として機能させ、前記制御部は、ユーザが操作を行った対象である前記仮想オブジェクトの仮想空間位置情報を、実空間を撮像した撮像画像に基づいて取得された情報処理装置の地理座標情報と、当該地理座標情報に対応する仮想空間位置情報とに基づいて、地理座標情報に変換する、プログラムを提案する。 According to the present disclosure, a computer is caused to function as a control unit that controls display of a virtual object associated with a real space, and the control unit controls the virtual space of the virtual object that is the target of the user's operation. A program for converting location information into geographic coordinate information based on geographic coordinate information of an information processing device acquired based on a captured image of real space and virtual space location information corresponding to the geographic coordinate information. Suggest.
本開示の一実施形態による仮想オブジェクトの表示と地図サービスとの連携システムの概要について説明する図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram illustrating an overview of a cooperation system between display of a virtual object and a map service according to an embodiment of the present disclosure; 本実施形態による操作端末において地図画像上にPOI情報および仮想オブジェクトのアイコン画像が配置される画面の一例を示す図である。FIG. 5 is a diagram showing an example of a screen on which POI information and icon images of virtual objects are arranged on a map image in the operation terminal according to the present embodiment; 本実施形態による操作端末を用いて仮想オブジェクトを操作する場合について説明する図である。FIG. 10 is a diagram illustrating a case of operating a virtual object using the operating terminal according to the embodiment; 本実施形態によるAR表示装置および操作端末の構成の一例を示すブロック図である。1 is a block diagram showing an example of the configuration of an AR display device and an operation terminal according to this embodiment; FIG. 本実施形態に係る撮像画像に基づく位置推定の処理の流れを示すシーケンス図である。4 is a sequence diagram showing the flow of position estimation processing based on captured images according to the present embodiment; FIG. 本実施形態によるAR表示装置におけるAR表示処理の流れを示すシーケンス図である。FIG. 4 is a sequence diagram showing the flow of AR display processing in the AR display device according to this embodiment; 本実施形態による操作端末における地図上での仮想オブジェクトの配置表示処理の流れを示すシーケンス図である。FIG. 10 is a sequence diagram showing the flow of processing for displaying a layout of virtual objects on a map in the operation terminal according to the present embodiment; 本実施形態による新たな仮想オブジェクトの配置処理の流れを示すシーケンス図である。FIG. 10 is a sequence diagram showing the flow of placement processing of a new virtual object according to this embodiment; 本実施形態による操作端末で操作された仮想オブジェクトの情報更新処理の流れを示すシーケンス図である。FIG. 10 is a sequence diagram showing the flow of information update processing of a virtual object operated on the operating terminal according to the embodiment; 本実施形態による操作端末を用いた仮想オブジェクトの選択操作の一例について説明する図である。It is a figure explaining an example of selection operation of the virtual object using the operation terminal by this embodiment. 本実施形態による操作端末を用いた仮想オブジェクトの選択操作の一例について説明する図である。It is a figure explaining an example of selection operation of the virtual object using the operation terminal by this embodiment. 本実施形態による位置・回転編集モードでの操作端末を用いた仮想オブジェクトの位置の変更操作の一例について説明する図である。FIG. 10 is a diagram illustrating an example of an operation for changing the position of a virtual object using the operating terminal in the position/rotation editing mode according to the embodiment; 本実施形態による位置・回転編集モードでの操作端末を用いた仮想オブジェクトの位置の変更操作の一例について説明する図である。FIG. 10 is a diagram illustrating an example of an operation for changing the position of a virtual object using the operating terminal in the position/rotation editing mode according to the embodiment; 本実施形態による位置・回転編集モードでの操作端末を用いた仮想オブジェクトのPitch・Yaw回転操作の一例について説明する図である。FIG. 11 is a diagram illustrating an example of a pitch/yaw rotation operation of a virtual object using the operation terminal in the position/rotation edit mode according to the embodiment; 本実施形態による位置・回転編集モードでの操作端末を用いた仮想オブジェクトのRoll回転操作の一例について説明する図である。FIG. 10 is a diagram illustrating an example of a roll rotation operation of a virtual object using the operation terminal in the position/rotation edit mode according to the embodiment; 本実施形態による回転・スケール編集モードでの操作端末を用いた仮想オブジェクトの拡大縮小操作の一例について説明する図である。FIG. 10 is a diagram illustrating an example of a virtual object enlargement/reduction operation using the operation terminal in the rotation/scale edit mode according to the present embodiment; 本実施形態による回転・スケール編集モードでの操作端末を用いた仮想オブジェクトのRoll回転操作の一例について説明する図である。FIG. 11 is a diagram illustrating an example of a Roll rotation operation of a virtual object using the operation terminal in the rotation/scale editing mode according to the embodiment; 本実施形態による選択状態の仮想オブジェクトに対するその他の操作の選択肢の選択決定について説明する図である。FIG. 11 is a diagram illustrating selection determination of other operation options for a virtual object in a selected state according to the present embodiment;
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.
 また、説明は以下の順序で行うものとする。
 1.概要
 2.構成例
 3.動作処理
  3-1.撮像画像に基づく位置推定
  3-2.AR表示装置10におけるAR表示処理
  3-3.操作端末20における地図上での仮想オブジェクトの配置表示
  3-4.新たな仮想オブジェクトの配置
  3-5.操作端末20で操作された仮想オブジェクトの情報更新
 4.操作端末20を用いた仮想オブジェクトの操作例
 5.補足
Also, the description shall be given in the following order.
1. Overview 2. Configuration example 3. Operation processing 3-1. Position estimation based on captured image 3-2. AR display processing in AR display device 10 3-3. Arrangement display of virtual objects on map on operation terminal 20 3-4. Placement of New Virtual Object 3-5. 3. Updating information of virtual objects operated by the operation terminal 20; 5. Operation example of a virtual object using the operation terminal 20; supplement
 <<1.概要>>
 本開示の一実施形態として、仮想オブジェクトの情報と、緯度経度を少なくとも示す地理座標系の位置情報(地理座標情報)を用いて地理情報を管理する地図サービス(具体的には、地図データサーバ。外部装置の一例)との連携について説明する。仮想オブジェクトとは、仮想空間の情報として表示装置により呈示される画像(2D画像や3DCG)である。また、表示装置において、仮想オブジェクトに対するユーザによる操作入力に応じて仮想オブジェクトの位置や姿勢、表示態様を変化させることで、仮想空間でのインタラクションを実現できる。
<<1. Overview>>
As an embodiment of the present disclosure, a map service (specifically, a map data server) that manages geographic information using virtual object information and location information (geographic coordinate information) in a geographic coordinate system that indicates at least latitude and longitude. An example of an external device) will be described. A virtual object is an image (2D image or 3DCG) presented by a display device as virtual space information. Further, in the display device, interaction in the virtual space can be realized by changing the position, posture, and display mode of the virtual object according to the user's operation input to the virtual object.
 (課題の整理)
 ここで、ユーザが仮想空間で行った操作の結果(例えば仮想オブジェクトの移動や、新たな仮想オブジェクトの設置等)を、当該操作を行った場所に固定したいという要望に対し、仮想空間の座標系における位置を特定することは可能であるが、仮想空間位置情報は緯度経度情報とは結び付いていないため、現実の空間(実空間)の場所に固定して地理情報の一つとして地図サービス上で扱うことは困難であった。また、スマートフォン等に設けられるGPS(Global Positioning System)機能を用いることも考え得るが、GPS機能では位置の精度が低く、地図サービスと連携することを想定した場合、実空間の位置と地図上の位置とのずれが大きくなる恐れがある。
(Organization of issues)
Here, in response to a desire to fix the result of an operation performed by the user in the virtual space (for example, moving a virtual object, setting a new virtual object, etc.) to the location where the operation was performed, the coordinate system of the virtual space It is possible to specify the position in the virtual space, but since the virtual space position information is not linked to the latitude and longitude information, it is fixed to the location in the real space (real space) as one of the geographic information on the map service It was difficult to handle. In addition, it is possible to use the GPS (Global Positioning System) function provided on smartphones, etc., but the GPS function has low position accuracy, and when assuming cooperation with a map service, the position in the real space and the position on the map There is a risk that the deviation from the position will become large.
 そこで、本開示による一実施形態では、ユーザが操作を行った対象である仮想オブジェクトの情報を、地理座標系でも扱えるようにすることで、地理情報を管理する装置(例えば地図サービス)に反映させる等、ユーザ体験のさらなる向上を実現する。 Therefore, in one embodiment according to the present disclosure, the information of the virtual object, which is the target of the user's operation, can be handled in a geographic coordinate system, so that it is reflected in a device that manages geographic information (for example, a map service). etc., to further improve the user experience.
 (システム構成)
 図1は、本開示の一実施形態による仮想オブジェクトの表示と地図サービスとの連携システムの概要について説明する図である。本実施形態では、一例として、実空間に仮想オブジェクトを重畳表示する所謂AR技術を用いる場合について説明する。
(System configuration)
FIG. 1 is a diagram illustrating an overview of a cooperation system between display of a virtual object and a map service according to an embodiment of the present disclosure. In this embodiment, as an example, a case of using so-called AR technology for superimposing and displaying a virtual object in real space will be described.
 本実施形態による連携システムは、図1に示すように、仮想オブジェクトの表示を行うAR表示装置10と、仮想オブジェクトに対する操作入力を受け付ける操作端末20と、実空間の特徴点に基づいて位置推定を行う位置推定サーバ30と、地理画像等の提供を行う地図データサーバ40とを含む。 As shown in FIG. 1, the cooperation system according to the present embodiment includes an AR display device 10 that displays a virtual object, an operation terminal 20 that receives an operation input for the virtual object, and position estimation based on feature points in the real space. and a map data server 40 for providing geographic images and the like.
 (AR表示装置10)
 AR表示装置10は、仮想オブジェクトを実空間に重畳して表示(所謂AR表示)する情報処理装置の一例である。AR表示装置10は、例えばユーザの頭部に装着されるHMDであってもよいし、スマートフォン、携帯電話端末、タブレット端末等のユーザに把持される端末や、その他ユーザに装着されるウェアラブルデバイスであってもよい。また、AR表示装置10によるAR表示は、透過ディスプレイを介して実空間が直接見える状態において当該透過ディスプレイに仮想オブジェクトが表示される方法であってもよい。また、AR表示装置10によるAR表示は、非透過ディスプレイに、カメラから取得した前方の実空間映像(撮像画像)をリアルタイムに表示し(所謂スルー表示を行うビデオシースルーディスプレイの利用)、当該実空間映像に仮想オブジェクトを重畳表示する方法であってもよい。
(AR display device 10)
The AR display device 10 is an example of an information processing device that superimposes and displays a virtual object on a real space (so-called AR display). The AR display device 10 may be, for example, an HMD worn on the user's head, a terminal held by the user such as a smartphone, a mobile phone terminal, a tablet terminal, or a wearable device worn by the user. There may be. Also, the AR display by the AR display device 10 may be a method in which a virtual object is displayed on a transmissive display in a state in which the real space is directly visible through the transmissive display. In addition, the AR display by the AR display device 10 displays a front real space image (captured image) acquired from a camera on a non-transmissive display in real time (using a video see-through display that performs so-called through display), A method of superimposing and displaying a virtual object on an image may be used.
 また、本実施形態によるAR表示装置10は、位置推定サーバ30および地図データサーバ40とネットワークを介して通信接続する。AR表示装置10は、周辺の撮像画像または当該撮像画像から抽出した(実空間の)特徴点を位置推定サーバ30に送信し、位置推定サーバ30から現在地の位置情報(地理座標情報)を取得する。本実施形態では、撮像画像に基づく位置推定を用いることで、より精度の高い位置推定を実現する。撮像画像に基づく位置推定サーバ30からの位置情報の取得は、例えば毎秒1回程度の頻度で行われる。なお、AR表示装置10は、さらに短時間における相対的な位置変化について、撮像画像およびモーションセンサのデータを用いた自己位置認識(例えば、VIO(Visual Inertial Odometry))を活用してもよい。 Also, the AR display device 10 according to the present embodiment communicates with the position estimation server 30 and the map data server 40 via a network. The AR display device 10 transmits captured images of the surrounding area or feature points (in the real space) extracted from the captured images to the position estimation server 30, and acquires position information (geographical coordinate information) of the current location from the position estimation server 30. . In this embodiment, more accurate position estimation is realized by using position estimation based on captured images. Acquisition of position information from the position estimation server 30 based on the captured image is performed, for example, at a frequency of about once per second. The AR display device 10 may further utilize self-position recognition (for example, VIO (Visual Inertial Odometry)) using captured images and motion sensor data for relative positional changes in a short period of time.
 また、AR表示装置10は、位置推定サーバ30から取得した地理座標情報を地図データサーバ40に送信し、地図データサーバ40から周辺の地理情報を取得する。本実施形態による地理情報には、仮想オブジェクトに関する情報(仮想オブジェクト関連情報)が含まれ、AR表示装置10は、地図データサーバ40から取得した地理情報に基づいて、実空間の場所に固定された仮想オブジェクトのAR表示を行い得る。また、AR表示装置10は、操作端末20と有線または無線により通信接続し、ユーザによる操作端末20を用いた操作入力に応じて仮想オブジェクトの表示制御を行うことで、仮想空間におけるインタラクションを実現する。 The AR display device 10 also transmits the geographical coordinate information acquired from the position estimation server 30 to the map data server 40 and acquires the surrounding geographical information from the map data server 40 . The geographic information according to the present embodiment includes information about virtual objects (virtual object-related information), and the AR display device 10 is fixed to a location in the real space based on the geographic information acquired from the map data server 40. AR display of virtual objects may be performed. In addition, the AR display device 10 is connected to the operation terminal 20 for wired or wireless communication, and controls the display of virtual objects according to the user's operation input using the operation terminal 20, thereby realizing interaction in the virtual space. .
 (操作端末20)
 操作端末20は、専用のコントローラであってもよいし、ユーザの手や足に装着されるウェアラブルデバイスであってもよいし、スマートフォン(汎用的な通信端末)であってもよい。なお、現在地の位置情報(地理座標情報)は、AR表示装置10から操作端末20に継続的に送信(例えば1秒間に60回程度の頻度)されてもよいし、操作端末20が周辺の撮像画像または当該撮像画像から抽出した(実空間の)特徴点を位置推定サーバ30に送信し、位置推定サーバ30から現在地の位置情報(地理座標情報)を取得してもよい。また、操作端末20は、現在地の地理座標情報を地図データサーバ40に送信し、地図データサーバ40から周辺の地理情報(地図画像、POI情報、仮想オブジェクト関連情報)を取得し、取得した情報を操作端末20の表示部に表示することも可能である。
(Operation terminal 20)
The operation terminal 20 may be a dedicated controller, a wearable device worn on a user's hand or foot, or a smart phone (a general-purpose communication terminal). Note that the location information (geographical coordinate information) of the current location may be continuously transmitted from the AR display device 10 to the operation terminal 20 (for example, at a frequency of about 60 times per second), or the operation terminal 20 may capture images of the surroundings. An image or a feature point (in a real space) extracted from the captured image may be transmitted to the position estimation server 30 and position information (geographical coordinate information) of the current location may be obtained from the position estimation server 30 . The operation terminal 20 also transmits the geographical coordinate information of the current location to the map data server 40, acquires the surrounding geographical information (map image, POI information, virtual object related information) from the map data server 40, and converts the acquired information to It is also possible to display it on the display unit of the operation terminal 20 .
 (位置推定サーバ30)
 位置推定サーバ30は、撮像画像から抽出される実物体の特徴点を、点群データベース301と照合し、位置推定(地理座標情報の取得)を行う情報処理装置である。位置推定サーバ30は、画像から位置を測定する所謂VPS(Visual Positioning System)とも称される。また、位置推定サーバ30は、複数のサーバから成るクラウドサーバであってもよい。
(Position estimation server 30)
The position estimation server 30 is an information processing device that collates the feature points of the real object extracted from the captured image with the point cloud database 301 and performs position estimation (acquisition of geographical coordinate information). The position estimation server 30 is also called a so-called VPS (Visual Positioning System) that measures positions from images. Also, the location estimation server 30 may be a cloud server composed of a plurality of servers.
 位置推定サーバ30は、予め実空間の物体(実物体)の特徴点(3次元情報)を収集して構築された点群データベース301を有している。点群データベース301は、実空間における物体の特徴点(3次元情報)と地理座標情報とが対応付けられたデータベースである。本実施形態において、地理座標情報とは、例えば緯度経度標高の情報である。本実施形態では、AR表示装置10や操作端末20が、周辺の撮像画像または当該撮像画像から得られる特徴点を位置推定サーバ30に送信し、位置推定サーバ30において、点群データベース301と照合することで、GPSよりも精度の高い位置推定を行うことが可能となる。位置推定サーバ30は、点群データベース301の照合により、AR表示装置10または操作端末20の地理上の絶対位置情報である緯度経度標高の情報(地理座標情報)と、姿勢(例えば方位角)を特定する(所謂ローカライゼーションの実施)。なお、位置推定の詳細については特に限定しない。また、点群データベース301の構築技術についても特に限定しないが、例えば位置推定サーバ30は、大まかなGPS情報に基づいて地図データサーバ40から地図情報(道路や建物の情報等)を取得し、複数の撮像画像から抽出された特徴点群とマッチングし、特徴点と地理座標情報との対応付けが予め行われ得る。 The position estimation server 30 has a point cloud database 301 constructed by collecting feature points (three-dimensional information) of objects (real objects) in real space in advance. The point cloud database 301 is a database in which feature points (three-dimensional information) of objects in real space are associated with geographic coordinate information. In this embodiment, the geographic coordinate information is, for example, latitude/longitude/altitude information. In the present embodiment, the AR display device 10 or the operation terminal 20 transmits the captured image of the surrounding area or the feature points obtained from the captured image to the position estimation server 30, and the position estimation server 30 checks the point cloud database 301. This makes it possible to perform position estimation with higher precision than GPS. By collating the point cloud database 301, the position estimation server 30 obtains latitude/longitude/altitude information (geographical coordinate information), which is the absolute geographical position information of the AR display device 10 or the operation terminal 20, and attitude (for example, azimuth). specify (implementation of so-called localization). Note that the details of position estimation are not particularly limited. The technology for constructing the point cloud database 301 is not particularly limited, either. By matching with the feature point group extracted from the captured image, the feature points and the geographic coordinate information can be associated in advance.
 ・実空間と仮想空間の対応付け
 また、本実施形態による点群データベース301では、実空間における物体の特徴点(3次元情報)に、さらに仮想空間位置情報が対応付けられている。すなわち、実空間と仮想空間の対応付けが、点群データベース301において予め行われている。本明細書において、仮想空間位置情報とは、仮想空間の座標系におけるxyz座標の情報である。かかるxyz座標は、例えば地理上のある場所を原点とした10m~100m四方程度のエリア内における位置を示す。
Correlation between Real Space and Virtual Space In the point cloud database 301 according to the present embodiment, feature points (three-dimensional information) of an object in the real space are further associated with virtual space position information. That is, the correspondence between the real space and the virtual space is made in advance in the point cloud database 301 . In this specification, the virtual space position information is xyz coordinate information in the coordinate system of the virtual space. Such xyz coordinates indicate a position within a 10m to 100m square area, for example, with a certain geographic location as the origin.
 これにより、AR表示装置10または操作端末20は、周辺を撮像した撮像画像(または当該撮像画像から抽出した特徴点の情報)を位置推定サーバ30に送信することで、位置推定サーバ30から、現在地の地理座標情報(緯度経度標高の情報)および姿勢情報(例えば方位角)と、対応する仮想空間の位置座標情報(xyz座標)および姿勢情報(例えば回転行列)を取得することができる。また、かかる現在地の情報取得は、例えば毎秒1回程度の頻度で行われてもよい。 As a result, the AR display device 10 or the operation terminal 20 transmits to the position estimation server 30 the captured image of the surroundings (or the information of the feature points extracted from the captured image). geographic coordinate information (latitude/longitude/altitude information) and attitude information (for example, azimuth), and the corresponding virtual space position coordinate information (xyz coordinates) and attitude information (for example, rotation matrix) can be obtained. Further, the current location information acquisition may be performed, for example, at a frequency of about once per second.
 (地図データサーバ40)
 地図データサーバ40は、地理座標情報(緯度経度の情報)に基づいて地理情報を管理する情報処理装置(地図サービスのサーバ)である。地図データサーバ40は、複数のサーバから成るクラウドサーバであってもよい。
(Map data server 40)
The map data server 40 is an information processing device (map service server) that manages geographical information based on geographical coordinate information (latitude and longitude information). The map data server 40 may be a cloud server consisting of multiple servers.
 地理情報とは、場所に関する情報(テキスト、画像)であって、例えば、地図画像(2D地図画像または3D地図画像のいずれでもよい)、POI(point of interest)情報(周辺の建物や店の名称やマーク等であって、地理座標情報を含む)、さらには仮想オブジェクト関連情報(仮想オブジェクトのID、3D画像データ、配置されている地理座標情報および姿勢情報、サウンドデータ、仮想オブジェクトの動き等を定義したスクリプト等)を含む。すなわち、本実施形態では、場所に関する情報として、仮想オブジェクトの情報も取り扱っている(仮想オブジェクトが地理座標情報で実空間の場所に固定されている)。これにより、例えば地図画像上に、一般的なPOI情報の他、仮想オブジェクトの配置も表示することが可能となる。地図上での仮想オブジェクトの配置表示については、図2を参照して後述する。 Geographic information is information (text, image) about a place, such as a map image (either a 2D map image or a 3D map image), POI (point of interest) information (names of surrounding buildings and shops). and marks, including geographic coordinate information), and virtual object related information (virtual object ID, 3D image data, placed geographic coordinate information and posture information, sound data, movement of the virtual object, etc. defined scripts, etc.). That is, in the present embodiment, information on virtual objects is also handled as information on locations (virtual objects are fixed at locations in real space by geographic coordinate information). This makes it possible to display, for example, on a map image, the arrangement of virtual objects in addition to general POI information. The placement display of the virtual objects on the map will be described later with reference to FIG.
 図1に示すように、本実施形態による地図データサーバ40は、地理座標情報に対応付けられた地図画像が格納される地図画像データベース401と、地理座標情報に対応付けられたPOI情報が格納されるPOIデータベース402と、地理座標情報に対応付けられた仮想オブジェクト関連情報が格納されるARデータベース403と、を有している。地図データサーバ40は、AR表示装置10または操作端末20から送信された地理座標情報(少なくとも緯度経度の情報)に基づいて、周辺の地図画像データ、POI情報、および仮想オブジェクト関連情報を返信し得る。「周辺」とは、例えばユーザの現在地(緯度経度)を中心として100m四方程度のエリア内としてもよい。AR表示装置10または操作端末20は、地図データサーバ40から周辺情報を一度取得した後、ある程度移動した場合に、再度周辺情報を取得するようしてもよい。また、地図データサーバ40において当該エリア内で情報の更新があった場合には、更新情報が地図データサーバ40からAR表示装置10または操作端末20に通知されてもよい。 As shown in FIG. 1, the map data server 40 according to the present embodiment includes a map image database 401 storing map images associated with geographical coordinate information and POI information associated with the geographical coordinate information. and an AR database 403 that stores virtual object-related information associated with geographical coordinate information. The map data server 40 can return surrounding map image data, POI information, and virtual object-related information based on the geographical coordinate information (at least latitude and longitude information) transmitted from the AR display device 10 or the operation terminal 20. . The “surroundings” may be, for example, an area of about 100 m square around the user's current location (latitude and longitude). The AR display device 10 or the operation terminal 20 may acquire the peripheral information from the map data server 40 once, and then acquire the peripheral information again after moving to some extent. Further, when the map data server 40 updates the information in the area, the updated information may be notified from the map data server 40 to the AR display device 10 or the operation terminal 20 .
 AR表示装置10または操作端末20は、地図データサーバ40から受信したPOI情報(建物の名称等)や仮想オブジェクトを、実空間に重畳してAR表示し得る。この際、例えばAR表示装置10は、地図データサーバ40から受信したPOI情報や仮想オブジェクトの地理座標情報を、仮想空間位置情報に変換することで、AR表示を実現し得る。変換の詳細については後述の数式を用いて説明するが、例えばAR表示装置10は、地図データサーバ40から受信したPOI情報や仮想オブジェクトの地理座標情報とAR表示装置10の地理座標情報との相対的な位置関係に基づいて、AR表示装置10の仮想空間位置情報を用い、仮想空間位置情報を算出する。また、AR表示装置10における仮想オブジェクトのAR表示例や、操作端末20を用いた仮想オブジェクトの操作については、図3を参照して後述する。 The AR display device 10 or the operation terminal 20 can superimpose POI information (building names, etc.) and virtual objects received from the map data server 40 on the real space for AR display. At this time, for example, the AR display device 10 can realize AR display by converting the POI information and the geographical coordinate information of the virtual object received from the map data server 40 into virtual space position information. The details of the conversion will be described using mathematical formulas to be described later. The virtual space position information is calculated using the virtual space position information of the AR display device 10 based on the physical positional relationship. An example of AR display of a virtual object on the AR display device 10 and an operation of the virtual object using the operation terminal 20 will be described later with reference to FIG.
 (地図上での仮想オブジェクトの配置表示について)
 図2は、本実施形態による操作端末20において、地図画像上にPOI情報および仮想オブジェクトのアイコン画像が配置される画面の一例を示す図である。
(Regarding the placement and display of virtual objects on the map)
FIG. 2 is a diagram showing an example of a screen on which POI information and icon images of virtual objects are arranged on a map image in the operation terminal 20 according to this embodiment.
 上述したように、本実施形態では、地図データサーバ40から受信する周辺の地理情報の一例である仮想オブジェクトの情報には地理座標情報(少なくとも緯度経度の情報)が含まれているため、操作端末20は、図2に示すような一般的な地図画像251上に、POI情報(建物や道路、駅の名称等)と共に、仮想オブジェクトの配置をアイコン画像(アイコン画像252a、252b・・・)等で示すことが可能となる。これにより、ユーザは、地図上で実空間の場所に対応付けられている仮想オブジェクトの位置を直感的に把握することが可能となる。なお、用いられる地図画像は、図2に示すような2D画像に限らず、3DCGであってもよい。 As described above, in the present embodiment, the virtual object information, which is an example of the surrounding geographic information received from the map data server 40, includes geographic coordinate information (at least latitude and longitude information). 20 displays icon images ( icon images 252a, 252b, . can be expressed as This allows the user to intuitively grasp the position of the virtual object associated with the location in the real space on the map. Note that the map image used is not limited to the 2D image shown in FIG. 2, and may be a 3DCG image.
 なお、周辺の地理情報を取得するために操作端末20が地図データサーバ40に送信する現在地の地理座標情報は、AR表示装置10から受信した情報であってもよいし、操作端末20が位置推定サーバ30から取得した情報であってもよい。 The geographical coordinate information of the current location, which the operating terminal 20 transmits to the map data server 40 in order to obtain the geographical information of the surrounding area, may be the information received from the AR display device 10, or may be the information received from the AR display device 10. Information obtained from the server 30 may be used.
 また、操作端末20は、現在地周辺の地理情報のみならず、ユーザにより入力された任意の緯度経度情報や住所、駅名等(POI情報)を地図データサーバ40に送信し、任意の場所周辺の地理情報を取得して表示してもよい。 In addition, the operation terminal 20 transmits not only the geographical information around the current location, but also arbitrary latitude and longitude information, address, station name, etc. (POI information) input by the user to the map data server 40, and provides geographical information around an arbitrary location. Information may be obtained and displayed.
 また、地図上でのPOI情報や仮想オブジェクトの配置表示は、操作端末20の表示部に限らず、AR表示装置10の表示部で表示されてもよい。 Also, the POI information and the placement display of the virtual objects on the map may be displayed not only on the display unit of the operation terminal 20, but also on the display unit of the AR display device 10.
 (操作端末20を用いて行われる仮想オブジェクトの操作)
 図3は、本実施形態による操作端末20を用いて仮想オブジェクトを操作する場合について説明する図である。図3に示すように、操作端末20は、例えばスマートフォンであって、ユーザに把持され得る。また、AR表示装置10は、図3に示すように、レンズ部分に透過ディスプレイが設けられる透過式メガネ型デバイスにより実現される。
(Operation of virtual object performed using operation terminal 20)
FIG. 3 is a diagram illustrating a case of operating a virtual object using the operating terminal 20 according to this embodiment. As shown in FIG. 3, the operation terminal 20 is, for example, a smart phone, and can be held by a user. Also, the AR display device 10 is realized by a transmissive spectacle type device in which a transmissive display is provided in the lens portion, as shown in FIG.
 ユーザに装着されるAR表示装置10では、図3に示すように、仮想オブジェクト50a~50cが実空間(ユーザの視界)に重畳表示されている。この際、ユーザは、操作端末20を用いて仮想オブジェクト50a~50cの少なくともいずれかを選択する操作と、選択した仮想オブジェクト50に対して、引き続き操作端末20を用いて、移動や削除、コピー、姿勢の制御、表示態様(大きさ、色、形等)の変化等の様々な操作を行い得る。具体的には、ユーザは、操作端末20を動かしたり、操作端末20の操作表示部250をタッチ操作したりすることで、仮想オブジェクト50を操作し得る。操作端末20の動き(モーションセンサ240により検出されるモーションデータ)や、操作端末20の操作表示部250に対するユーザのタッチ操作(シングルタップ、ダブルタップ、長押し、スワイプ、ピンチイン/ピンチアウト等)は、継続的にAR表示装置10に送信されている。また、AR表示装置10では、外向きに設けられたカメラ130により継続的にユーザの視界範囲を撮像し、撮像画像(視界画像)を解析して(特徴点の抽出、深度情報の取得等)、周辺の実物体の認識(物体認識)や3次元空間の認識、トラッキング等が行われている。  On the AR display device 10 worn by the user, virtual objects 50a to 50c are superimposed and displayed in the real space (the user's field of view), as shown in FIG. At this time, the user uses the operation terminal 20 to select at least one of the virtual objects 50a to 50c, and continues to use the operation terminal 20 to move, delete, copy, or copy the selected virtual object 50. Various operations such as posture control and display mode (size, color, shape, etc.) change can be performed. Specifically, the user can operate the virtual object 50 by moving the operation terminal 20 or performing a touch operation on the operation display section 250 of the operation terminal 20 . The movement of the operation terminal 20 (motion data detected by the motion sensor 240) and the user's touch operation (single-tap, double-tap, long press, swipe, pinch-in/pinch-out, etc.) on the operation display unit 250 of the operation terminal 20 , is continuously transmitted to the AR display device 10 . In addition, the AR display device 10 continuously captures images of the user's visual field range with the camera 130 provided facing outward, and analyzes the captured images (visual field images) (extraction of feature points, acquisition of depth information, etc.). , recognition of surrounding real objects (object recognition), recognition of three-dimensional space, tracking, and the like are performed.
 図3に示すように、AR表示装置10では、操作端末20の先端(上端)から直進方向に伸びるレイ(光線)のような指示画像Lが表示され、指示画像Lと衝突する仮想オブジェクト50cを操作対象として選択することができる。指示画像Lは、操作端末20の向きに追随するため、ユーザは、操作端末20の先端(上端)を上下左右に動かすことで、指示画像Lの方向を制御し、任意の仮想オブジェクト50を選択することができる。選択の決定は、例えば操作端末20の操作表示部250をタップ操作することで行われる。 As shown in FIG. 3, the AR display device 10 displays a pointing image L like a ray extending in a straight direction from the tip (upper end) of the operating terminal 20, and a virtual object 50c that collides with the pointing image L. It can be selected as an operation target. Since the instruction image L follows the direction of the operation terminal 20, the user can control the direction of the instruction image L by moving the top end (upper end) of the operation terminal 20 up, down, left, or right to select an arbitrary virtual object 50. can do. The selection is determined by, for example, tapping the operation display unit 250 of the operation terminal 20 .
 AR表示装置10は、撮像画像の解析による操作端末20のトラッキング結果や、操作端末20から送信されるモーションデータやタッチ操作等の操作情報に基づいて、ユーザ操作に応じたAR表示処理を行い、仮想空間におけるインタラクションを実現する。また、AR表示装置10は、ユーザ操作に応じたAR表示処理を行う際、AR表示装置10および操作端末20の仮想空間位置情報および姿勢情報や、仮想オブジェクトの仮想空間位置情報および姿勢情報を適宜利用してもよい。 The AR display device 10 performs AR display processing according to the user operation based on the tracking result of the operation terminal 20 obtained by analyzing the captured image and operation information such as motion data and touch operation transmitted from the operation terminal 20. Realize interaction in virtual space. In addition, when performing AR display processing according to a user operation, the AR display device 10 appropriately uses the virtual space position information and orientation information of the AR display device 10 and the operation terminal 20 and the virtual space position information and orientation information of the virtual object. may be used.
 (仮想オブジェクトに対するユーザ操作を行った結果の保存)
 本実施形態によるAR表示装置10は、仮想空間において仮想オブジェクトに対して操作を行った結果を地図データサーバ40に更新情報として送信し、ARデータベース403に保存することが可能である。ユーザによる操作の結果を地図データサーバ40のARデータベース403に反映させることで、他のユーザと操作の結果を共有することが可能となる。操作の結果とは、例えば新たな仮想オブジェクトの配置や、仮想オブジェクトの移動、削除、コピー、姿勢の制御、表示態様の変化等である。AR表示装置10は、仮想オブジェクトの更新情報(仮想オブジェクトのID、地理座標情報、姿勢情報、形状特徴、3DCG等)を、地図データサーバ40に送信する。なお、AR表示装置10では、仮想オブジェクトのAR表示の際は仮想空間の位置情報や姿勢情報を用いているため、適宜、操作が行われた仮想オブジェクトの仮想空間位置情報(xyz座標)、姿勢情報(回転行列)を、地理座標情報(緯度経度標高)、姿勢情報(方位角)に変換して、地図データサーバ40に送信する。変換の詳細については後述の数式を用いて説明する。
(storage of results of user operations on virtual objects)
The AR display device 10 according to this embodiment can transmit the result of operating a virtual object in the virtual space to the map data server 40 as update information and store it in the AR database 403 . By reflecting the result of the operation by the user in the AR database 403 of the map data server 40, it becomes possible to share the result of the operation with other users. The result of the operation is, for example, placement of a new virtual object, movement, deletion, copy of the virtual object, control of posture, change in display mode, and the like. The AR display device 10 transmits virtual object update information (virtual object ID, geographic coordinate information, orientation information, shape features, 3DCG, etc.) to the map data server 40 . Note that the AR display device 10 uses position information and orientation information of the virtual space when AR displaying a virtual object. The information (rotation matrix) is converted into geographical coordinate information (latitude, longitude, elevation) and attitude information (azimuth angle) and transmitted to the map data server 40 . The details of the conversion will be explained using mathematical formulas described later.
 なお、操作結果の保存は、操作端末20から地図データサーバ40に対して行われてもよい。例えばユーザが操作端末20を操作して新たな仮想オブジェクトを生成し(例えば文字を入力することで当該文字の3DCGを生成)、生成した仮想オブジェクトを操作端末20の表示部で行われるAR表示を利用して実空間に配置、若しくは操作端末20の表示部に表示される地図上で配置することで場所を固定する。操作端末20は、このような新たな仮想オブジェクトの生成および配置を更新情報(操作結果)として地図データサーバ40に送信し、ARデータベース403に保存する。この際も、新たな仮想オブジェクトの仮想空間位置情報(xyz座標)、姿勢情報(回転行列)が、地理座標情報(緯度経度標高)、姿勢情報(方位角)に変換された上で、地図データサーバ40に送信される。 Note that the operation result may be saved from the operation terminal 20 to the map data server 40. For example, the user operates the operation terminal 20 to generate a new virtual object (for example, by inputting a character to generate a 3DCG of the character), and the AR display performed on the display unit of the operation terminal 20 is performed on the generated virtual object. The location is fixed by arranging it in the real space using it or by arranging it on the map displayed on the display unit of the operation terminal 20 . The operation terminal 20 transmits the generation and placement of such a new virtual object as update information (operation result) to the map data server 40 and stores it in the AR database 403 . In this case also, the virtual space position information (xyz coordinates) and orientation information (rotation matrix) of the new virtual object are converted into geographic coordinate information (latitude, longitude, elevation) and orientation information (azimuth), and the map data It is sent to the server 40 .
 以上、本実施形態による連携システムの概要について説明した。続いて、連携システムに含まれるAR表示装置10および操作端末20の具体的な構成例および動作処理について順次説明する。 The overview of the cooperation system according to this embodiment has been described above. Next, specific configuration examples and operation processing of the AR display device 10 and the operation terminal 20 included in the cooperation system will be sequentially described.
 <<2.構成例>>
 図4は、本実施形態によるAR表示装置10および操作端末20の構成の一例を示すブロック図である。AR表示装置10および操作端末20は、有線または無線により通信接続し、データの送受信を行う。
<<2. Configuration example >>
FIG. 4 is a block diagram showing an example of the configuration of the AR display device 10 and the operation terminal 20 according to this embodiment. The AR display device 10 and the operation terminal 20 are connected for communication by wire or wirelessly, and transmit and receive data.
 <2-1.AR表示装置10>
 図4に示すように、AR表示装置10は、通信部110、制御部120、カメラ130、モーションセンサ140、表示部150、および記憶部160を有する。AR表示装置10は、実空間に対応付けられた仮想オブジェクトの表示を行う情報処理装置の一例である。
<2-1. AR display device 10>
As shown in FIG. 4 , the AR display device 10 has a communication section 110 , a control section 120 , a camera 130 , a motion sensor 140 , a display section 150 and a storage section 160 . The AR display device 10 is an example of an information processing device that displays a virtual object associated with a real space.
 (通信部110)
 通信部110は、有線または無線により外部装置と通信接続し、データの送受信を行う。例えば通信部110は、ネットワークに接続してネットワーク上のサーバとデータの送受信を行う。また、通信部110は、例えば、有線/無線LAN(Local Area Network)、Wi-Fi(登録商標)、Bluetooth(登録商標)、携帯通信網(LTE(Long Term Evolution)、3G(第3世代の移動体通信方式)、4G(第4世代の移動体通信方式)、5G(第5世代の移動体通信方式))等により外部装置やネットワークと通信接続する。本実施形態による通信部110は、操作端末20や、位置推定サーバ30、地図データサーバ40とデータの送受信を行い得る。
(Communication unit 110)
The communication unit 110 communicates with an external device by wire or wirelessly, and transmits and receives data. For example, the communication unit 110 connects to a network and transmits/receives data to/from a server on the network. In addition, the communication unit 110, for example, wired / wireless LAN (Local Area Network), Wi-Fi (registered trademark), Bluetooth (registered trademark), mobile communication network (LTE (Long Term Evolution), 3G (3rd generation mobile communication system), 4G (fourth-generation mobile communication system), 5G (fifth-generation mobile communication system)), etc., to connect with external devices and networks. The communication unit 110 according to this embodiment can transmit and receive data to and from the operation terminal 20 , the position estimation server 30 , and the map data server 40 .
 (制御部120)
 制御部120は、演算処理装置および制御装置として機能し、各種プログラムに従ってAR表示装置10内の動作全般を制御する。制御部120は、例えばCPU(Central Processing Unit)、マイクロプロセッサ等の電子回路によって実現される。また、制御部120は、使用するプログラムや演算パラメータ等を記憶するROM(Read Only Memory)、及び適宜変化するパラメータ等を一時記憶するRAM(Random Access Memory)を含んでいてもよい。
(control unit 120)
The control unit 120 functions as an arithmetic processing device and a control device, and controls overall operations within the AR display device 10 according to various programs. The control unit 120 is realized by an electronic circuit such as a CPU (Central Processing Unit), a microprocessor, or the like. The control unit 120 may also include a ROM (Read Only Memory) that stores programs to be used, calculation parameters, and the like, and a RAM (Random Access Memory) that temporarily stores parameters that change as appropriate.
 本実施形態による制御部120は、カメラ130により取得される周辺の撮像画像の解析(空間認識等)や、モーションセンサ140により取得されるモーションデータ、位置推定サーバ30から取得する仮想空間位置情報、および地図データサーバ40から取得する仮想オブジェクト関連情報等に基づいて、表示部150において実空間に仮想オブジェクトを重畳表示する制御(AR表示制御)を行う。以下、制御部120の主な機能について説明する。 The control unit 120 according to the present embodiment analyzes (space recognition, etc.) captured images of the surrounding area acquired by the camera 130, motion data acquired by the motion sensor 140, virtual space position information acquired from the position estimation server 30, And based on the virtual object related information and the like acquired from the map data server 40, the display unit 150 performs control (AR display control) to superimpose and display the virtual object on the real space. Main functions of the control unit 120 will be described below.
 本実施形態による制御部120は、座標情報取得部121、座標情報変換部122、および仮想空間処理部123としても機能する。 The control unit 120 according to this embodiment also functions as a coordinate information acquisition unit 121, a coordinate information conversion unit 122, and a virtual space processing unit 123.
 座標情報取得部121は、カメラ130により取得される周辺の撮像画像、または当該撮像画像から抽出される特徴点のデータを位置推定サーバ30に送信し、位置推定サーバ30から、AR表示装置10の地理座標情報(緯度経度標高)および、対応する仮想空間位置情報(xyz座標)を取得する処理を行う。また、座標情報取得部121は、位置推定サーバ30から併せてAR表示装置10の地理上の姿勢情報(例えば方位角)と、仮想空間の姿勢情報(例えば回転行列)も取得し得る。姿勢情報は、例えばAR表示装置10がユーザの頭部に装着されている場合、ユーザの頭部の向き(顔向き)に相当する。AR表示装置10の地理上および仮想空間の各位置情報および姿勢情報の取得は、例えば毎秒行われる。また、座標情報取得部121は、取得した位置情報や姿勢情報を基準とした短時間の間における相対的な位置変化について、カメラ130により取得される撮像画像の解析結果(トラッキング等)およびモーションセンサ140のモーションデータを用いた自己位置認識(例えば、VIO(Visual Inertial Odometry))を活用してもよい。 The coordinate information acquisition unit 121 transmits to the position estimation server 30 the captured image of the surrounding area acquired by the camera 130 or the data of the feature points extracted from the captured image. A process of acquiring geographic coordinate information (latitude, longitude, elevation) and corresponding virtual space position information (xyz coordinates) is performed. In addition, the coordinate information acquisition unit 121 can also acquire geographical orientation information (eg, azimuth angle) of the AR display device 10 and virtual space orientation information (eg, rotation matrix) from the position estimation server 30 . For example, when the AR display device 10 is worn on the user's head, the posture information corresponds to the user's head orientation (face orientation). Acquisition of position information and orientation information of the AR display device 10 in the geographic and virtual spaces is performed, for example, every second. In addition, the coordinate information acquisition unit 121 obtains analysis results (tracking, etc.) of the captured image acquired by the camera 130 and a motion sensor for relative positional changes in a short period of time based on the acquired position information and orientation information. Self-localization using 140 motion data (for example, VIO (Visual Inertial Odometry)) may be utilized.
 座標情報変換部122は、地理座標情報(緯度経度標高)や姿勢情報(方位角)と、仮想空間位置情報(xyz座標)や姿勢情報(回転行列)との相互変換を行う。具体的な算出方法については数式を用いて後述する。これにより、仮想オブジェクトに地理座標情報を対応付けて管理することができ、地図サービスとの連携が実現する。例えば、仮想空間で行われる操作結果を地図サービスに反映させ、他のユーザと共有することができる。 The coordinate information conversion unit 122 performs mutual conversion between geographic coordinate information (latitude, longitude, elevation) and attitude information (azimuth) and virtual space position information (xyz coordinates) and attitude information (rotation matrix). A specific calculation method will be described later using mathematical formulas. As a result, geographical coordinate information can be associated with a virtual object and managed, realizing cooperation with a map service. For example, the results of operations performed in the virtual space can be reflected in the map service and shared with other users.
 仮想空間処理部123は、仮想オブジェクトを実空間に重畳表示するAR表示制御を行う。AR表示制御のアルゴリズムについては特に限定しないが、例えば以下のような処理を行う。仮想空間処理部123は、カメラ130により取得されるユーザの視界の撮像画像(周辺の撮像画像の一例)を解析し、実空間の認識を行う。実空間の認識としては、例えば、3次元物体認識、平面領域の検出、トラッキング等が挙げられる。仮想空間処理部123は、例えば撮像画像から特徴点の抽出および追跡を行い、3次元空間の認識処理を行ってもよい。また、仮想空間処理部123は、さらにカメラ130から深度情報を取得して実空間の認識に用いてもよい。また、仮想空間処理部123は、さらにモーションセンサ140からモーションデータ(AR表示装置10自体の動き)を取得して実空間の認識(特にトラッキング)に用いてもよい。 The virtual space processing unit 123 performs AR display control to superimpose and display the virtual object on the real space. Algorithms for AR display control are not particularly limited, but the following processing is performed, for example. The virtual space processing unit 123 analyzes the captured image of the user's field of view (an example of the captured image of the surroundings) acquired by the camera 130, and recognizes the real space. Real space recognition includes, for example, three-dimensional object recognition, plane area detection, and tracking. The virtual space processing unit 123 may, for example, extract and track feature points from the captured image, and perform recognition processing of the three-dimensional space. The virtual space processing unit 123 may further acquire depth information from the camera 130 and use it for recognizing the real space. The virtual space processing unit 123 may further acquire motion data (motion of the AR display device 10 itself) from the motion sensor 140 and use it for real space recognition (particularly tracking).
 そして、仮想空間処理部123は、位置推定サーバ30から取得したAR表示装置10の仮想空間位置情報や姿勢情報、地図データサーバ40から取得した仮想オブジェクト関連情報に基づいて、場所に固定されている仮想オブジェクト(例えば3DCG)を実空間に適切に重畳表示する。例えば、仮想空間処理部123は、実空間の平面領域の位置や、実物体の形状や位置に合わせて、不自然な状態とならないよう、仮想オブジェクトの表示位置や姿勢を制御し得る。また、仮想空間処理部123は、操作端末20から送信されるユーザによる仮想オブジェクトに対する操作情報に従って仮想オブジェクトを適宜表示制御し、仮想空間のインタラクションを実行する。また、仮想空間処理部123は、操作結果を通信部110から地図データサーバ40に送信する制御を行う。 The virtual space processing unit 123 is fixed at a location based on the virtual space position information and orientation information of the AR display device 10 acquired from the position estimation server 30 and the virtual object related information acquired from the map data server 40. To appropriately superimpose and display a virtual object (for example, 3DCG) on a real space. For example, the virtual space processing unit 123 can control the display position and posture of the virtual object according to the position of the plane area in the real space and the shape and position of the real object so as not to create an unnatural state. In addition, the virtual space processing unit 123 appropriately controls the display of the virtual object according to the operation information for the virtual object by the user transmitted from the operation terminal 20, and executes the interaction in the virtual space. The virtual space processing unit 123 also controls transmission of the operation result from the communication unit 110 to the map data server 40 .
 (カメラ130)
 カメラ130は、実空間を撮像する機能を有する撮像部である。例えばカメラ130は、AR表示装置10が図3に示すような透過式メガネ型デバイスにより実現される場合、AR表示装置10がユーザに装着された状態でユーザの視線方向を向くよう設けられるカメラ(外向きカメラ)により実現される。カメラ130の画角は、少なくともユーザの視界を含む画角であることが望ましい。これにより、仮想空間処理部123において、ユーザが表示部150を介して見ている実空間(視界)の空間認識をカメラ130により取得される撮像画像に基づいて行うことができる。なお、カメラ130は単数であってもよいし、複数であってもよい。また、カメラ130は、所謂ステレオカメラとして構成されてもよい。
(Camera 130)
The camera 130 is an imaging unit that has a function of imaging the real space. For example, when the AR display device 10 is implemented by a transmissive glasses type device as shown in FIG. 3, the camera 130 is a camera ( external camera). The angle of view of camera 130 is preferably an angle of view that includes at least the field of view of the user. As a result, the virtual space processing unit 123 can perform spatial recognition of the real space (field of view) that the user sees through the display unit 150 based on the captured image acquired by the camera 130 . Note that the camera 130 may be singular or plural. Camera 130 may also be configured as a so-called stereo camera.
 (モーションセンサ140)
 モーションセンサ140は、AR表示装置10の動きを検出するセンサである。モーションセンサ140は、例えば、加速度センサ、角速度センサ、および地磁気センサを含む。また、モーションセンサ140は、例えば3軸加速度センサおよび3軸ジャイロセンサを含むセンサ(例えばIMU(Inertial Measurement Unit))であってもよい。
(motion sensor 140)
The motion sensor 140 is a sensor that detects motion of the AR display device 10 . Motion sensor 140 includes, for example, an acceleration sensor, an angular velocity sensor, and a geomagnetic sensor. Also, the motion sensor 140 may be a sensor (eg, an IMU (Inertial Measurement Unit)) including, for example, a 3-axis acceleration sensor and a 3-axis gyro sensor.
 (表示部150)
 表示部150は、画像表示を行う機能を有する。例えば表示部150は、透過ディスプレイにより実現される。透過ディスプレイとは、実空間の光を直接ユーザの眼に届けることが可能なディスプレイである。透過ディスプレイの場合、ユーザは透過ディスプレイを介して実空間を直接視認し得る。透過ディスプレイは、例えば光学シースルーディスプレイであってもよい。光学シースルーディスプレイは、ハーフミラー方式、導光板方式、網膜直描方式等を含む既知の形態を採用し得る。また、表示部150は、カメラにより撮影した映像(目の前の実空間の撮像画像)を非透過ディスプレイに表示する、所謂ビデオシースルーディスプレイであってもよい。
(Display unit 150)
The display unit 150 has a function of displaying images. For example, the display unit 150 is implemented by a transmissive display. A transmissive display is a display that allows light in the real space to be directly delivered to the user's eyes. In the case of a transmissive display, the user can directly view the real space through the transmissive display. A transmissive display may be, for example, an optical see-through display. The optical see-through display can employ known forms including a half-mirror system, a light guide plate system, a retinal direct drawing system, and the like. Further, the display unit 150 may be a so-called video see-through display that displays an image captured by a camera (captured image of the real space in front of the eyes) on a non-transmissive display.
 本実施形態による表示部150は、制御部120の制御に従って、例えば仮想オブジェクト(例えば3DCG)を表示する。 The display unit 150 according to this embodiment displays, for example, a virtual object (eg, 3DCG) under the control of the control unit 120.
 (記憶部160)
 記憶部160は、制御部120の処理に用いられるプログラムや演算パラメータ等を記憶するROM(Read Only Memory)、および適宜変化するパラメータ等を一時記憶するRAM(Random Access Memory)により実現される。
(storage unit 160)
The storage unit 160 is realized by a ROM (Read Only Memory) that stores programs and calculation parameters used in the processing of the control unit 120, and a RAM (Random Access Memory) that temporarily stores parameters that change as appropriate.
 以上、AR表示装置10の構成について具体的に説明したが、本開示によるAR表示装置10の構成は図4に示す例に限定されない。例えば、AR表示装置10は、複数の装置により実現されてもよい。具体的には、例えば透過式メガネ型デバイス等により実現される表示装置(少なくとも表示部150、カメラ130、およびモーションセンサ140を含む)と、スマートフォンやタブレット端末、PC等により実現される情報処理端末(少なくとも制御部120を含む)とから構成されてもよい。 Although the configuration of the AR display device 10 has been specifically described above, the configuration of the AR display device 10 according to the present disclosure is not limited to the example shown in FIG. For example, the AR display device 10 may be realized by multiple devices. Specifically, for example, a display device (including at least a display unit 150, a camera 130, and a motion sensor 140) realized by a transmissive glasses-type device or the like, and an information processing terminal realized by a smartphone, a tablet terminal, a PC, or the like (including at least the control unit 120).
 また、AR表示装置10は、さらにスピーカおよびマイクロフォンを有していてもよい。スピーカからは、仮想空間の音声情報(例えば仮想オブジェクトの効果音等)が再生され得る。スピーカは、例えばヘッドフォン、イヤフォン、若しくは骨伝導スピーカとして構成されてもよい。また、マイクロフォンは、ユーザの発話音声を収音し、音声による操作入力を実現する。 In addition, the AR display device 10 may further have a speaker and a microphone. Audio information of the virtual space (for example, sound effects of virtual objects, etc.) can be reproduced from the speaker. The speakers may be configured as headphones, earphones, or bone conduction speakers, for example. Also, the microphone picks up the user's uttered voice and implements operation input by voice.
 <2-2.操作端末20>
 図4に示すように、操作端末20は、通信部210、制御部220、カメラ230、モーションセンサ240、操作表示部250、および記憶部260を有する。
<2-2. Operation terminal 20>
As shown in FIG. 4 , operation terminal 20 has communication section 210 , control section 220 , camera 230 , motion sensor 240 , operation display section 250 and storage section 260 .
 (通信部210)
 通信部210は、有線または無線により外部装置と通信接続し、データの送受信を行う。例えば通信部210は、ネットワークに接続してネットワーク上のサーバとデータの送受信を行う。また、通信部210は、例えば、有線/無線LAN(Local Area Network)、Wi-Fi(登録商標)、Bluetooth(登録商標)、携帯通信網(LTE(Long Term Evolution)、3G(第3世代の移動体通信方式)、4G(第4世代の移動体通信方式)、5G(第5世代の移動体通信方式))等により外部装置やネットワークと通信接続する。本実施形態による通信部210は、AR表示装置10や、位置推定サーバ30、地図データサーバ40とデータの送受信を行い得る。
(Communication unit 210)
The communication unit 210 communicates with an external device by wire or wirelessly, and transmits and receives data. For example, the communication unit 210 connects to a network and transmits/receives data to/from a server on the network. In addition, the communication unit 210, for example, wired / wireless LAN (Local Area Network), Wi-Fi (registered trademark), Bluetooth (registered trademark), mobile communication network (LTE (Long Term Evolution), 3G (third generation mobile communication system), 4G (fourth-generation mobile communication system), 5G (fifth-generation mobile communication system)), etc., to connect with external devices and networks. The communication unit 210 according to this embodiment can transmit and receive data to and from the AR display device 10, the position estimation server 30, and the map data server 40. FIG.
 (制御部220)
 制御部220は、演算処理装置および制御装置として機能し、各種プログラムに従って操作端末20内の動作全般を制御する。制御部220は、例えばCPU(Central Processing Unit)、マイクロプロセッサ等の電子回路によって実現される。また、制御部220は、使用するプログラムや演算パラメータ等を記憶するROM(Read Only Memory)、及び適宜変化するパラメータ等を一時記憶するRAM(Random Access Memory)を含んでいてもよい。
(control unit 220)
The control unit 220 functions as an arithmetic processing device and a control device, and controls overall operations within the operation terminal 20 according to various programs. The control unit 220 is implemented by an electronic circuit such as a CPU (Central Processing Unit), a microprocessor, or the like. The control unit 220 may also include a ROM (Read Only Memory) that stores programs to be used, calculation parameters, and the like, and a RAM (Random Access Memory) that temporarily stores parameters that change as appropriate.
 また、本実施形態による制御部220は、座標情報取得部221、操作情報送信制御部222、および表示制御部223としても機能する。 The control unit 220 according to this embodiment also functions as a coordinate information acquisition unit 221, an operation information transmission control unit 222, and a display control unit 223.
 座標情報取得部221は、カメラ230により取得される周辺の撮像画像、または当該撮像画像から抽出される特徴点のデータを位置推定サーバ30に送信し、位置推定サーバ30から、操作端末20の地理座標情報(緯度経度標高)および、対応する仮想空間位置情報(xyz座標)を取得する処理を行う。また、座標情報取得部221は、位置推定サーバ30から併せて操作端末20の地理上の姿勢情報(例えば方位角)と、仮想空間の姿勢情報(例えば回転行列)も取得し得る。姿勢情報は、例えば操作端末20がユーザに把持されるスマートフォンの場合、操作端末20に設けられるカメラ130(例えば操作表示部250が設けられる面と対向する面(裏側)に設けられる外向きカメラ)の向きに相当する。操作端末20の地理上および仮想空間の各位置情報および姿勢情報の取得は、例えば毎秒行われる。また、座標情報取得部221は、カメラ230により継続的に取得される撮像画像の解析や、モーションセンサ240から継続的に取得される操作端末20のモーションデータに基づいて、短時間における相対的な位置変化の算出(例えばVIOの活用)も行い得る。 The coordinate information acquisition unit 221 transmits to the position estimation server 30 the captured image of the surrounding area acquired by the camera 230 or the data of the feature points extracted from the captured image. A process of acquiring coordinate information (latitude, longitude and altitude) and corresponding virtual space position information (xyz coordinates) is performed. In addition, the coordinate information acquisition unit 221 can also acquire geographical attitude information (eg, azimuth angle) of the operation terminal 20 and virtual space attitude information (eg, rotation matrix) from the position estimation server 30 . For example, when the operation terminal 20 is a smartphone held by the user, the orientation information is the camera 130 provided on the operation terminal 20 (for example, the outward facing camera provided on the surface (back side) opposite to the surface on which the operation display unit 250 is provided). corresponds to the direction of The geographical and virtual space position information and attitude information of the operation terminal 20 are acquired every second, for example. Further, the coordinate information acquisition unit 221 analyzes captured images continuously acquired by the camera 230 and based on the motion data of the operation terminal 20 continuously acquired by the motion sensor 240, based on the relative coordinates in a short period of time. Calculation of position change (eg, utilizing VIO) may also be performed.
 なお、ここでは一例として座標情報取得部221により操作端末20の地理座標情報を位置推定サーバ30から取得する旨を説明しているが、本実施形態はこれに限定されず、座標情報取得部221は、例えばAR表示装置10からAR表示装置10の地理座標情報を取得し、これを操作端末20の座標情報とみなしてもよい。AR表示装置10からは、VIOを活用して取得された、より精度の高い地理座標情報が、高頻度(例えば1秒間に60回程度)で操作端末20に送信されてもよい。 Here, as an example, it is described that the coordinate information acquisition unit 221 acquires the geographical coordinate information of the operation terminal 20 from the position estimation server 30, but the present embodiment is not limited to this, and the coordinate information acquisition unit 221 , for example, may obtain the geographical coordinate information of the AR display device 10 from the AR display device 10 and regard it as the coordinate information of the operation terminal 20 . The AR display device 10 may transmit highly accurate geographic coordinate information acquired using VIO to the operation terminal 20 at a high frequency (for example, about 60 times per second).
 操作情報送信制御部222は、モーションセンサ240から取得されるモーションデータ(操作端末20の動き情報)や、操作表示部250から取得されるユーザによるタッチ操作の情報を、操作情報としてAR表示装置10に送信する制御を行う。なお操作情報は、ボタン操作やスイッチ操作の情報であってもよい。 The operation information transmission control unit 222 transmits motion data (movement information of the operation terminal 20) acquired from the motion sensor 240 and information of user's touch operation acquired from the operation display unit 250 to the AR display device 10 as operation information. controls sending to. The operation information may be information of button operation or switch operation.
 表示制御部223は、操作表示部250の表示制御を行う。例えば表示制御部223は、操作表示部250から取得されるユーザによるタッチ操作に応じて、表示制御を行ってもよい。また、表示制御部223は、操作端末20の地理座標情報を地図データサーバ40に送信して地図データサーバ40から取得した周辺の地理情報を、操作表示部250に表示する制御を行ってもよい。具体的には、図2を参照して説明したように、地図画像上に、POI情報や仮想オブジェクトの配置表示を行ってもよい。 The display control unit 223 controls the display of the operation display unit 250. For example, the display control unit 223 may perform display control according to a user's touch operation acquired from the operation display unit 250 . Further, the display control unit 223 may transmit the geographical coordinate information of the operation terminal 20 to the map data server 40 and display the peripheral geographical information acquired from the map data server 40 on the operation display unit 250. . Specifically, as described with reference to FIG. 2, POI information and virtual objects may be arranged and displayed on the map image.
 また、表示制御部223は、図3で示すようにAR表示装置10で呈示される仮想オブジェクトに対して操作端末20を用いて操作が行われる場合、手元を注視しなくても操作し易いレイアウトとして、図3に示すような単なる十字の表示を操作表示部250に表示するようにしてもよい。また、操作表示部250に特定のボタン画像を配置せず、任意の場所に指を置いて、タップ操作やスワイプ操作が行えるようにしてもよい。 In addition, as shown in FIG. 3 , when a virtual object presented on the AR display device 10 is operated using the operation terminal 20, the display control unit 223 has a layout that facilitates operation without looking closely at the hand. Alternatively, a simple cross as shown in FIG. 3 may be displayed on the operation display unit 250. Alternatively, a tap operation or a swipe operation may be performed by placing a finger on an arbitrary position without arranging a specific button image on the operation display section 250 .
 また、表示制御部223は、カメラ230により取得される撮像画像(実空間の映像)に、仮想オブジェクトを重畳表示するAR表示も行い得る。かかる仮想オブジェクトの表示に関する情報は、操作端末20が地理座標情報を地図データサーバ40に送信して地図データサーバ40から取得する周辺の地理情報に含まれる。操作表示部250においてAR表示が行われている場合、ユーザは、操作表示部250に表示されている当該仮想オブジェクトに対してタッチ操作により仮想オブジェクトの選択、移動、削除、コピー、姿勢制御、表示態様の変更等の操作入力を行い得る。表示制御部223は、ユーザによるタッチ操作に応じて、仮想オブジェクトの表示を制御し、仮想空間におけるインタラクションを実行し得る。タッチ操作とは、例えば、シングルタップ、ダブルタップ、長押し、スワイプ、ドラッグ&ドロップ、ピンチイン/ピンチアウト等の操作である。また、ユーザは、例えば操作表示部250に表示されるソフトウェアキーボードから文字入力を行って、当該文字の仮想オブジェクト(3DCG)を生成し、新たに実空間の任意の場所に配置する制御を行うことも可能である。このような仮想空間で行われた操作の結果は、AR表示装置10または操作端末20から地図データサーバ40に送信され、ARデータベース403に保存されることで、他のユーザと共有することが可能となる。 The display control unit 223 can also perform AR display in which a virtual object is superimposed on the captured image (video of the real space) acquired by the camera 230 . Information related to the display of such virtual objects is included in the peripheral geographic information acquired from the map data server 40 by the operating terminal 20 transmitting the geographic coordinate information to the map data server 40 . When the AR display is performed on the operation display unit 250, the user can select, move, delete, copy, control the posture, and display the virtual object by touching the virtual object displayed on the operation display unit 250. An operation input such as a mode change can be performed. The display control unit 223 can control the display of the virtual object and execute the interaction in the virtual space according to the user's touch operation. Touch operations are, for example, operations such as single tap, double tap, long press, swipe, drag & drop, pinch in/pinch out. In addition, the user can input characters from, for example, a software keyboard displayed on the operation display unit 250, generate a virtual object (3DCG) of the character, and perform control to newly place it at an arbitrary location in the real space. is also possible. The results of such operations performed in the virtual space are transmitted from the AR display device 10 or the operation terminal 20 to the map data server 40 and stored in the AR database 403 so that they can be shared with other users. becomes.
 (操作表示部250)
 操作表示部250は、ユーザによる操作入力を付け付ける入力機能と、画像を表示する表示機能とを有する。例えば操作表示部250は、タッチパネルディスプレイにより実現される。これにより、操作表示部250は、表示画面に対するタッチ操作を検出し得る。本実施形態による操作表示部250は、一例として、非透過ディスプレイを想定する。
(Operation display unit 250)
The operation display unit 250 has an input function of attaching an operation input by the user and a display function of displaying an image. For example, the operation display unit 250 is realized by a touch panel display. Thereby, the operation display unit 250 can detect a touch operation on the display screen. As an example, the operation display unit 250 according to this embodiment is assumed to be a non-transmissive display.
 (記憶部260)
 記憶部260は、制御部220の処理に用いられるプログラムや演算パラメータ等を記憶するROM(Read Only Memory)、および適宜変化するパラメータ等を一時記憶するRAM(Random Access Memory)により実現される。
(storage unit 260)
The storage unit 260 is implemented by a ROM (Read Only Memory) that stores programs, calculation parameters, and the like used in the processing of the control unit 220, and a RAM (Random Access Memory) that temporarily stores parameters that change as appropriate.
 以上、操作端末20の構成について具体的に説明したが、本開示による操作端末20の構成は図4に示す例に限定されない。例えば、操作端末20は汎用的なスマートフォンにより実現されてもよいし、タブレット端末、ハンディタイプのゲーム機、指や手首に装着されるウェアラブルデバイス等により実現されてもよい。 Although the configuration of the operation terminal 20 has been specifically described above, the configuration of the operation terminal 20 according to the present disclosure is not limited to the example shown in FIG. For example, the operation terminal 20 may be realized by a general-purpose smart phone, a tablet terminal, a handy game machine, a wearable device worn on a finger or wrist, or the like.
 <<3.動作処理>>
 次に、本実施形態に係る連携システムの動作処理について図面を用いて具体的に説明する。
<<3. Operation processing >>
Next, operation processing of the cooperation system according to this embodiment will be specifically described with reference to the drawings.
 <3-1.撮像画像に基づく位置推定>
 図5は、本実施形態に係る撮像画像に基づく位置推定の処理の流れを示すシーケンス図である。図5に示すように、まず、AR表示装置10は、カメラ130により撮像画像を取得し(ステップS103)、撮像画像または撮像画像から抽出した特徴点を位置推定サーバ30に送信する(ステップS106)。
<3-1. Position Estimation Based on Captured Image>
FIG. 5 is a sequence diagram showing the flow of position estimation processing based on captured images according to the present embodiment. As shown in FIG. 5, first, the AR display device 10 acquires a captured image by the camera 130 (step S103), and transmits the captured image or feature points extracted from the captured image to the position estimation server 30 (step S106). .
 次に、位置推定サーバ30は、撮像画像の特徴点を、点群データベース301と照合し、地理座標情報(緯度経度標高)および姿勢情報(例えば方位角)と、対応する仮想空間位置情報(xyz座標)および姿勢情報(例えば回転行列)を取得する(ステップS109)。 Next, the position estimation server 30 collates the feature points of the captured image with the point cloud database 301, geographic coordinate information (latitude, longitude, elevation) and orientation information (for example, azimuth), and corresponding virtual space position information (xyz coordinates) and attitude information (for example, rotation matrix) are acquired (step S109).
 次いで、位置推定サーバ30は、取得した地理座標情報等と仮想空間位置情報等をAR表示装置10に送信する(ステップS112)。 Next, the position estimation server 30 transmits the acquired geographical coordinate information and the like and the virtual space position information and the like to the AR display device 10 (step S112).
 そして、AR表示装置10は、適宜、モーションセンサ140のデータとマージし(VIOの活用)、より高フレームレートな現在位置情報を取得する(ステップS115)。 Then, the AR display device 10 appropriately merges it with the data of the motion sensor 140 (using VIO) to obtain current position information with a higher frame rate (step S115).
 なお、位置推定サーバ30側で点群データベース301を参照して照合するエリアを絞り込むために、AR表示装置10は、AR表示装置10の大まかな位置を表すGPS情報や、Wi-Fi位置推定の結果、または接続している携帯電話基地局情報などを、撮像画像と併せて送信してもよい。また、5Gが普及した場合、位置推定サーバ30は、AR表示装置10から送信されるエッジサーバの固有IDによってエリアを絞り込むことも可能である。 In order to narrow down the area to be matched by referring to the point cloud database 301 on the side of the position estimation server 30, the AR display device 10 uses GPS information representing the rough position of the AR display device 10 and Wi-Fi position estimation data. The result, information on the connected mobile phone base station, or the like may be transmitted together with the captured image. Also, when 5G becomes popular, the location estimation server 30 can also narrow down the area by the unique ID of the edge server transmitted from the AR display device 10 .
 <3-2.AR表示装置10におけるAR表示処理>
 図6は、本実施形態によるAR表示装置10におけるAR表示処理の流れを示すシーケンス図である。図6に示すように、まず、AR表示装置10の座標情報取得部121は、カメラ130により取得される周辺(ユーザの視界範囲)の撮像画像に基づいて、AR表示装置10の地理座標情報等と仮想空間位置情報等とを取得する(ステップS123)。具体的には、図5を参照して説明した処理(位置推定サーバ30からの取得処理)が行われる。
<3-2. AR Display Processing in AR Display Device 10>
FIG. 6 is a sequence diagram showing the flow of AR display processing in the AR display device 10 according to this embodiment. As shown in FIG. 6 , first, the coordinate information acquisition unit 121 of the AR display device 10 acquires the geographic coordinate information of the AR display device 10 based on the captured image of the periphery (user's field of view) acquired by the camera 130 . and virtual space position information and the like are acquired (step S123). Specifically, the process (acquisition process from the position estimation server 30) described with reference to FIG. 5 is performed.
 次に、AR表示装置10の仮想空間処理部123は、取得した地理座標情報等および仮想空間位置情報等を、AR表示装置10の基本位置(現在地)に設定する(ステップS126)。 Next, the virtual space processing unit 123 of the AR display device 10 sets the acquired geographical coordinate information and the like and the virtual space position information and the like as the base position (current location) of the AR display device 10 (step S126).
 次いで、AR表示装置10の仮想空間処理部123は、地理座標情報(現在地)を地図データサーバ40に送信し(ステップS129)、地図データサーバ40から、現在地周辺のPOI情報および仮想オブジェクト関連情報を取得する(ステップS132)。仮想オブジェクト関連情報には、例えば、仮想オブジェクトのIDや、仮想オブジェクトを表示(または生成)するための3DCGデータ、3Dモデル、各種パラメータ、また、仮想オブジェクトの地理座標情報および姿勢情報、さらに、仮想オブジェクトの効果音情報等が含まれる。なお、AR表示装置10は、初期接続時にエリア内の仮想オブジェクト関連情報を受信した後は、定期的に地図データサーバ40から更新情報(差分)を取得するようにしてもよい。 Next, the virtual space processing unit 123 of the AR display device 10 transmits the geographical coordinate information (current location) to the map data server 40 (step S129), and receives POI information and virtual object related information around the current location from the map data server 40. Acquire (step S132). The virtual object-related information includes, for example, the ID of the virtual object, 3DCG data for displaying (or generating) the virtual object, 3D model, various parameters, geographic coordinate information and posture information of the virtual object, and furthermore, virtual This includes object sound effect information and the like. Note that the AR display device 10 may periodically acquire update information (difference) from the map data server 40 after receiving the virtual object related information in the area at the time of initial connection.
 次に、AR表示装置10の座標情報変換部122は、地図データサーバ40から取得したPOI情報や仮想オブジェクトの地理座標情報を、実空間に対応付けられた仮想空間で表示するために、仮想空間位置情報に変換する処理を行う(ステップS135)。 Next, the coordinate information conversion unit 122 of the AR display device 10 converts the POI information and the geographical coordinate information of the virtual object acquired from the map data server 40 into a virtual space in order to display them in a virtual space associated with the real space. Processing for conversion into position information is performed (step S135).
 ここで、座標の相互変換処理について説明する。まず、AR表示装置10の地理座標情報(緯度経度標高)および地理上の姿勢情報(方位角)を、地球規模のユークリッド空間に変換した位置:PG(x,y,z)および姿勢(回転:RG)は、下記数式(数1)に示す通りである。ここでは、仮想空間の姿勢情報の一例として、Yaw成分のみ指定して回転情報を生成している。 Here, the interconversion processing of coordinates will be explained. First, the position: PG (x, y, z) and the orientation (rotation: RG) is as shown in the following formula (Equation 1). Here, rotation information is generated by designating only the Yaw component as an example of the orientation information of the virtual space.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式(AR表示装置10の現在地)に基づいて、下記数式(数2)により、地図データサーバ40から取得した仮想オブジェクト1のGeo Poseである地理座標情報(longitude1、latitude1、elevation1)および姿勢(回転)情報(azimuth1)を、仮想空間(エリア毎の専用座標系)におけるPoseである位置情報(PP1)および回転(RP1)に変換する。この際、仮想オブジェクト1の地理座標情報(緯度経度標高)は、地球規模のユークリッド空間の位置:PG1(x,y,z)および回転情報への変換を経て、仮想空間(エリア毎の専用座標系)におけるPoseである位置情報(PP1)および回転(RP1)に変換され得る。 Geographical coordinate information (longitude1, latitude1, elevation1), which is the Geo Pose of the virtual object 1 obtained from the map data server 40 and the orientation ( Rotation) information (azimuth1) is converted into position information (PP1) and rotation (RP1) which are Pose in virtual space (dedicated coordinate system for each area). At this time, the geographic coordinate information (latitude, longitude, elevation) of the virtual object 1 is transformed into a position in the Euclidean space on a global scale: PG1 (x, y, z) and rotation information, and converted into virtual space (dedicated coordinates for each area can be converted into position information (PP1) and rotation (RP1), which is Pose in the system).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 以上説明した算出方法は一例であって、本実施形態はこれに限定されない。例えば、座標情報変換部122は、AR表示装置10の地理座標情報・姿勢情報と、仮想オブジェクト1の地理座標情報・姿勢情報との相対的な位置関係に対応するよう、AR表示装置10の仮想空間位置情報・姿勢情報に基づいて、仮想オブジェクト1の地理座標情報・姿勢情報を、仮想空間位置情報・姿勢情報に変換し得る。 The calculation method described above is an example, and the present embodiment is not limited to this. For example, the coordinate information conversion unit 122 converts the virtual coordinates of the AR display device 10 so as to correspond to the relative positional relationship between the geographical coordinate information/attitude information of the AR display device 10 and the geographical coordinate information/attitude information of the virtual object 1 . Based on the spatial position information/posture information, the geographic coordinate information/posture information of the virtual object 1 can be converted into virtual space position information/posture information.
 そして、仮想空間処理部123は、仮想オブジェクトの仮想空間位置情報・姿勢情報を用いて、仮想オブジェクトのAR表示処理を行う(ステップS138)。 Then, the virtual space processing unit 123 performs AR display processing of the virtual object using the virtual space position information/orientation information of the virtual object (step S138).
 <3-3.操作端末20における地図上での仮想オブジェクトの配置表示>
 図7は、本実施形態による操作端末20における地図上での仮想オブジェクトの配置表示処理の流れを示すシーケンス図である。
<3-3. Arrangement Display of Virtual Objects on Map on Operation Terminal 20>
FIG. 7 is a sequence diagram showing the flow of processing for arranging and displaying virtual objects on a map in the operation terminal 20 according to this embodiment.
 図7に示すように、まず、操作端末20の座標情報取得部221は、カメラ230により取得される周辺の撮像画像に基づいて、操作端末20の地理座標情報等と仮想空間位置情報等とを取得する(ステップS203)。具体的には、撮像画像の特徴点に基づいて位置推定サーバ30から取得される。また、座標情報取得部221は、短時間における相対的な位置変化について、操作端末20のモーションデータを用いてより高フレームレートに自己位置を認識してもよい(例えばVIOの活用)。 As shown in FIG. 7 , first, the coordinate information acquisition unit 221 of the operation terminal 20 acquires the geographical coordinate information and the like of the operation terminal 20 and the virtual space position information and the like based on the captured image of the surrounding area acquired by the camera 230 . Acquire (step S203). Specifically, it is obtained from the position estimation server 30 based on the feature points of the captured image. In addition, the coordinate information acquisition unit 221 may recognize the self-position at a higher frame rate using the motion data of the operation terminal 20 with respect to the relative positional change in a short time (for example, using VIO).
 次に、操作端末20の表示制御部223は、取得した地理座標情報等および仮想空間位置情報等を、操作端末20の基本位置(現在地)に設定する(ステップS206)。 Next, the display control unit 223 of the operation terminal 20 sets the acquired geographical coordinate information and the like and the virtual space position information and the like to the basic position (current location) of the operation terminal 20 (step S206).
 次いで、操作端末20の表示制御部223は、地理座標情報(現在地)を地図データサーバ40に送信し(ステップS209)、地図データサーバ40から、現在地周辺の地図画像、POI情報、および仮想オブジェクト関連情報を取得する(ステップS212)。AR表示装置10の場合と同様に、操作端末20は、初期接続時にエリア内の仮想オブジェクト関連情報を受信した後は、定期的に地図データサーバ40から更新情報(差分)を取得するようにしてもよい。 Next, the display control unit 223 of the operation terminal 20 transmits the geographical coordinate information (current location) to the map data server 40 (step S209), and from the map data server 40, the map image around the current location, the POI information, and the virtual object related Information is acquired (step S212). As in the case of the AR display device 10, the operation terminal 20 periodically acquires update information (difference) from the map data server 40 after receiving the virtual object related information in the area at the time of initial connection. good too.
 次に、操作端末20の表示制御部223は、地図データサーバ40から取得したPOI情報や仮想オブジェクトのアイコン画像(仮想オブジェクト関連情報に含まれる)を、地理座標情報に基づいて、図2に示すように、操作表示部250において地図画像上に表示する処理を行う(ステップS135)。これにより、ユーザは、実空間に対応付けられた仮想オブジェクトの配置を直感的に把握することができ、実空間と仮想空間の一体化を楽しむことができる。 Next, the display control unit 223 of the operation terminal 20 displays the POI information and the icon image of the virtual object (included in the virtual object related information) acquired from the map data server 40 as shown in FIG. 2 based on the geographical coordinate information. As shown, the operation display unit 250 performs processing for displaying on the map image (step S135). Thereby, the user can intuitively grasp the arrangement of the virtual objects associated with the real space, and can enjoy the integration of the real space and the virtual space.
 <3-4.新たな仮想オブジェクトの配置>
 図8は、本実施形態による新たな仮想オブジェクトの配置処理の流れを示すシーケンス図である。本実施形態では、仮想空間における仮想オブジェクトに関する操作の一つとして、ユーザが仮想オブジェクトを任意の場所に配置(固定)することが可能である。新たに配置する仮想オブジェクトは、予め配置可能な仮想オブジェクトとして用意された3DCGであってもよいし、ユーザが任意に編集した3DCGであってもよいし、ユーザが新たに生成した3DCGであってもよい。これにより、例えば実空間に存在する店舗の付近にAR広告(仮想オブジェクトの一例)を配置したり、テーマパーク内の任意の場所に様々なARキャラクタ(仮想オブジェクトの一例)を配置したり、街中の任意の場所にARアイテム(ゲームのアイテムなど。仮想オブジェクトの一例)やAR商品(データとしてまたは実物品として購入が可能であることを示す。仮想オブジェクトの一例)を配置したりすることが可能となる。
<3-4. Placement of New Virtual Object>
FIG. 8 is a sequence diagram showing the flow of processing for arranging a new virtual object according to this embodiment. In this embodiment, as one of the operations related to the virtual object in the virtual space, the user can place (fix) the virtual object at an arbitrary location. The newly placed virtual object may be a 3DCG prepared in advance as a placeable virtual object, a 3DCG arbitrarily edited by the user, or a 3DCG newly generated by the user. good too. As a result, for example, AR advertisements (an example of virtual objects) can be placed near stores that exist in real space, various AR characters (an example of virtual objects) can be placed anywhere in a theme park, It is possible to place AR items (game items, etc., an example of virtual objects) and AR products (indicating that they can be purchased as data or as real items, an example of virtual objects) anywhere in becomes.
 図8に示すように、まず、AR表示装置10の座標情報取得部121は、カメラ130により取得される周辺(ユーザの視界範囲)の撮像画像に基づいて、AR表示装置10の地理座標情報等と仮想空間位置情報等とを取得する(ステップS303)。具体的には、図5を参照して説明した処理(位置推定サーバ30からの取得処理)が行われる。 As shown in FIG. 8 , first, the coordinate information acquisition unit 121 of the AR display device 10 acquires the geographic coordinate information of the AR display device 10 based on the captured image of the periphery (user's field of view) acquired by the camera 130 . and virtual space position information and the like are acquired (step S303). Specifically, the process (acquisition process from the position estimation server 30) described with reference to FIG. 5 is performed.
 次に、AR表示装置10の仮想空間処理部123は、取得した地理座標情報等および仮想空間位置情報等を、AR表示装置10の基本位置(現在地)に設定する(ステップS306)。 Next, the virtual space processing unit 123 of the AR display device 10 sets the acquired geographical coordinate information and the like and the virtual space position information and the like as the base position (current location) of the AR display device 10 (step S306).
 次いで、AR表示装置10の仮想空間処理部123は、新たな仮想オブジェクトの登録リクエストを受け付ける(ステップS309)。例えばユーザは、操作端末20を用いて、AR表示装置10により実空間に重畳表示される新たな仮想オブジェクトを動かしながら、実空間の任意の場所に当該新たな仮想オブジェクトを配置する操作を行う。 Next, the virtual space processing unit 123 of the AR display device 10 receives a new virtual object registration request (step S309). For example, the user uses the operation terminal 20 to move a new virtual object superimposed and displayed on the real space by the AR display device 10 and perform an operation to arrange the new virtual object at an arbitrary place in the real space.
 次に、AR表示装置10の座標情報変換部122は、新たに配置された仮想オブジェクトの仮想空間位置座標情報を、AR表示装置10の基本位置(仮想空間座標情報等および地理座標情報等)に基づいて、地理座標情報に変換する処理を行う(ステップS312)。 Next, the coordinate information conversion unit 122 of the AR display device 10 transforms the virtual space position coordinate information of the newly placed virtual object into the base position (virtual space coordinate information etc. and geographic coordinate information etc.) of the AR display device 10. Based on this, processing for conversion into geographical coordinate information is performed (step S312).
 ここで、座標の相互変換処理について説明する。座標情報変換部122は、例えば下記数式(数3)により、仮想オブジェクト1の仮想空間(エリア毎の専用座標系)におけるPoseである位置(PP1)と回転(RP1)を、Geo Poseである地理座標情報(longitude1、latitude1、elevation1)および姿勢(回転)情報(azimuth1)に変換する。 Here, the interconversion processing of coordinates will be explained. The coordinate information conversion unit 122 converts the position (PP1) and rotation (RP1), which are Pose, of the virtual object 1 in the virtual space (dedicated coordinate system for each area) to geographic Convert to coordinate information (longitude1, latitude1, elevation1) and attitude (rotation) information (azimuth1).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 以上説明した算出方法は一例であって、本実施形態はこれに限定されない。例えば、座標情報変換部122は、仮想オブジェクト1の仮想空間位置情報・姿勢情報と、AR表示装置10の仮想空間位置情報・姿勢情報との相対的な位置関係に対応するよう、AR表示装置10の地理座標情報・姿勢情報に基づいて、仮想オブジェクト1の仮想空間位置情報・姿勢情報を、地理座標情報・姿勢情報に変換し得る。 The calculation method described above is an example, and the present embodiment is not limited to this. For example, the coordinate information conversion unit 122 converts the AR display device 10 so as to correspond to the relative positional relationship between the virtual space position information/posture information of the virtual object 1 and the virtual space position information/posture information of the AR display device 10 . The virtual space position information/attitude information of the virtual object 1 can be converted into the geographical coordinate information/attitude information based on the geographical coordinate information/attitude information.
 続いて、AR表示装置10の仮想空間処理部123は、新たに配置された仮想オブジェクトに関する情報を地図データサーバ40に送信する(ステップS315)。送信する情報(仮想オブジェクト関連情報)には、例えば、仮想オブジェクトのIDや、仮想オブジェクトを表示(または生成)するための3DCGデータ、3Dモデル、各種パラメータ、および、上記ステップS312で変換した地理座標情報・姿勢情報が含まれる。 Subsequently, the virtual space processing unit 123 of the AR display device 10 transmits information regarding the newly placed virtual object to the map data server 40 (step S315). The information to be transmitted (virtual object-related information) includes, for example, the ID of the virtual object, 3DCG data for displaying (or generating) the virtual object, the 3D model, various parameters, and the geographical coordinates converted in step S312. Information/posture information is included.
 そして、地図データサーバ40は、AR表示装置10から受信した仮想オブジェクト関連情報を、ARデータベース403を更新する(ステップS318)。かかる仮想オブジェクト関連情報には、新たに配置された仮想オブジェクトの地理座標情報等が含まれているため、地理座標情報に基づいて地理情報を管理する地図データサーバ40に反映させることが可能となる。ARデータベース403の更新情報は、当該エリア内に居る他のユーザに送信され得る。 Then, the map data server 40 updates the AR database 403 with the virtual object-related information received from the AR display device 10 (step S318). Since the virtual object-related information includes the geographical coordinate information and the like of the newly placed virtual object, it can be reflected in the map data server 40 that manages the geographical information based on the geographical coordinate information. . Updates to the AR database 403 can be sent to other users within the area.
 このように、本実施形態による連携システムでは、地理座標情報への変換処理を行うことで、ユーザが新たに配置した仮想オブジェクトの情報(操作結果)を、地図データサーバ40に反映させることができる。 As described above, in the cooperation system according to the present embodiment, the information (operation result) of the virtual object newly arranged by the user can be reflected in the map data server 40 by performing the conversion process to the geographic coordinate information. .
 なお、AR表示装置10は、ユーザの近くに居る他のユーザのAR表示装置に対しては、P2P(peer-to-peer)で操作結果(新たに配置した仮想オブジェクトに関する情報)を送信してもよい。クラウドを経由するよりも低遅延で仮想空間における操作結果を体験させることが可能となる。本システムでは、AR表示装置10は、一定間隔(例えば1秒毎など)で地図データサーバ40から更新差分を取得することを想定するが、P2Pでの更新と衝突した場合は、P2Pで取得した操作結果の方を優先するようにしてもよい。 Note that the AR display device 10 transmits the operation result (information about the newly placed virtual object) to the AR display devices of other users near the user by P2P (peer-to-peer). good too. It is possible to experience the operation results in the virtual space with lower latency than via the cloud. In this system, it is assumed that the AR display device 10 acquires update differences from the map data server 40 at regular intervals (for example, every second). Priority may be given to the operation result.
 なお、以上説明した例では、現地で一から新たな仮想オブジェクトの配置を行う場合を想定しているが、本実施形態はこれに限定されず、例えば新たな仮想オブジェクトの大まかな配置は地図上等で行い、位置や姿勢の細かい調整は現地で操作端末20とAR表示装置10を用いて行うようにしてもよい。 In the example described above, it is assumed that a new virtual object is laid out from scratch on site, but the present embodiment is not limited to this. etc., and fine adjustment of the position and orientation may be performed on site using the operation terminal 20 and the AR display device 10 .
 <3-5.操作端末20で操作された仮想オブジェクトの情報更新>
 図9は、操作端末20で操作された仮想オブジェクトの情報更新処理の流れを示すシーケンス図である。
<3-5. Information Update of Virtual Object Operated on Operation Terminal 20>
FIG. 9 is a sequence diagram showing the flow of information update processing for a virtual object operated on the operation terminal 20. As shown in FIG.
 図9に示すように、まず、操作端末20の座標情報取得部221は、カメラ230により取得される周辺の撮像画像に基づいて、操作端末20の地理座標情報等と仮想空間位置情報等とを取得する(ステップS403)。具体的には、撮像画像の特徴点に基づいて位置推定サーバ30から取得される。かかる位置推定サーバ30からの地理座標情報等の取得は、1秒間に1回程度の頻度で行われてもよい。また、座標情報取得部221は、短時間における相対的な位置変化について、操作端末20のモーションデータを用いてより高精度に自己位置を認識してもよい(例えばVIOの活用)。なお、操作端末20の自己位置の変化についての自己位置の認識は、1秒間に120回程度の頻度で行われてもよい。 As shown in FIG. 9 , first, the coordinate information acquisition unit 221 of the operation terminal 20 acquires the geographical coordinate information and the like of the operation terminal 20 and the virtual space position information and the like based on the peripheral captured image acquired by the camera 230 . Acquire (step S403). Specifically, it is obtained from the position estimation server 30 based on the feature points of the captured image. Acquisition of geographical coordinate information and the like from the position estimation server 30 may be performed at a frequency of about once per second. In addition, the coordinate information acquisition unit 221 may recognize the self-position with higher accuracy by using the motion data of the operation terminal 20 with respect to the relative positional change in a short time (for example, using VIO). Note that the recognition of the self-position of the operation terminal 20 regarding changes in the self-position may be performed at a frequency of about 120 times per second.
 次に、操作端末20は、仮想オブジェクトに対するユーザによる操作入力を受け付け(ステップS406)、操作端末20の位置姿勢情報と、操作情報をAR表示装置10に送信する(ステップS409)。操作情報には、タッチ操作(タップ状態、タップ位置、スワイプ状態、スワイプ位置等の各種タップ操作やスワイプ操作に冠する情報)が含まれ得る。また、操作端末20の位置姿勢情報は、VIOを活用するなど、モーションデータや撮像画像に基づいてより高精度に認識され得る。 Next, the operating terminal 20 receives the user's operation input for the virtual object (step S406), and transmits the position and orientation information of the operating terminal 20 and the operation information to the AR display device 10 (step S409). The operation information may include touch operations (information associated with various tap operations and swipe operations such as tap states, tap positions, swipe states, and swipe positions). Also, the position and orientation information of the operation terminal 20 can be recognized with higher accuracy based on motion data and captured images, such as by using VIO.
 次いで、AR表示装置10は、操作端末20の位置姿勢情報と操作情報に応じて、仮想オブジェクトに対する処理を決定する(ステップS412)。例えば図3に示すように操作端末20の先端から直進する方向に伸ばす線と仮想オブジェクトとの衝突判定の結果や、タッチ操作に応じた処理の決定等を行う。 Next, the AR display device 10 determines processing for the virtual object according to the position/orientation information and the operation information of the operation terminal 20 (step S412). For example, as shown in FIG. 3, it determines the result of collision determination between a line extending straight from the tip of the operation terminal 20 and the virtual object, and determines processing according to the touch operation.
 次に、AR表示装置10は、上記処理の決定を、仮想オブジェクトの更新情報として、近くに位置する他ユーザの端末(他のAR表示装置)にP2Pで送信する(ステップS415)。仮想オブジェクトの更新情報には、例えば仮想オブジェクトのIDと、決定された処理の情報が含まれる。また、決定された処理として、仮想空間の位置情報および姿勢情報の変更が含まれていてもよい。この場合は、決定された処理の情報として、変更後の仮想空間位置情報および姿勢情報が含まれ得る。 Next, the AR display device 10 transmits the determination of the above process as update information of the virtual object to other users' terminals (other AR display devices) located nearby by P2P (step S415). The virtual object update information includes, for example, the ID of the virtual object and information on the determined process. Further, the determined processing may include changing the position information and orientation information of the virtual space. In this case, the information about the determined processing may include post-change virtual space position information and orientation information.
 また、AR表示装置10の座標情報変換部122は、変更(更新)された仮想オブジェクトの仮想空間座標情報を、地理座標情報に変換する(ステップS418)。座標情報変換部122は、上述した式(数3)を適用して、変更(更新)された仮想オブジェクトの仮想空間座標情報および姿勢情報を、地理座標情報および姿勢情報に変換してもよい。 Also, the coordinate information conversion unit 122 of the AR display device 10 converts the virtual space coordinate information of the changed (updated) virtual object into geographic coordinate information (step S418). The coordinate information conversion unit 122 may apply the above-described formula (Formula 3) to convert the virtual space coordinate information and orientation information of the changed (updated) virtual object into geographic coordinate information and orientation information.
 続いて、AR表示装置10は、変更(更新)された仮想オブジェクトの更新情報(仮想オブジェクトのID、地理座標情報、決定された処理等を含む)を、地図データサーバ40に送信する(ステップS412)。 Subsequently, the AR display device 10 transmits update information of the changed (updated) virtual object (including the ID of the virtual object, geographical coordinate information, determined processing, etc.) to the map data server 40 (step S412). ).
 次いで、地図データサーバ40は、AR表示装置10から受信した仮想オブジェクトの更新情報を、ARデータベース403に保存することでデータの更新を行う(ステップS424)。かかる仮想オブジェクトの更新情報には、変更(更新)された仮想オブジェクトの地理座標情報等が含まれているため、地理座標情報に基づいて地理情報を管理する地図データサーバ40に反映させることが可能となる。ARデータベース403の更新情報は、当該エリア内に居る他のユーザに送信され得る。このように、仮想オブジェクトの編集内容(更新、変更)が、リアルタイムで共有される。 Next, the map data server 40 updates the data by saving the virtual object update information received from the AR display device 10 in the AR database 403 (step S424). Since the update information of the virtual object includes the geographic coordinate information of the changed (updated) virtual object, etc., it can be reflected in the map data server 40 that manages the geographic information based on the geographic coordinate information. becomes. Updates to the AR database 403 can be sent to other users within the area. In this way, the edited content (update, change) of the virtual object is shared in real time.
 そして、AR表示装置10は、決定された処理の反映、すなわち仮想オブジェクトの表示を更新する(ステップS427)。なお、ARデータベース403の更新情報は、操作端末20にも定期的に通知され得る。例えば操作端末20で表示される地図上でも、仮想オブジェクトの配置の変更等、更新がリアルタイムで反映される。 The AR display device 10 then reflects the determined processing, that is, updates the display of the virtual object (step S427). Note that the update information of the AR database 403 can also be periodically notified to the operation terminal 20 . For example, even on the map displayed on the operation terminal 20, updates such as changes in the arrangement of virtual objects are reflected in real time.
 以上、本実施形態による各動作処理について具体的に説明した。なお各シーケンス図に示す動作処理は一例であって、本開示はこれに限定されない。例えば、本開示は、各シーケンス図に示すステップの順序に限定されない。少なくともいずれかのステップが並列に処理されてもよいし、逆の順番で処理されてもよいし、スキップされてもよい。 Above, each operation process according to the present embodiment has been specifically described. Note that the operation processing shown in each sequence diagram is an example, and the present disclosure is not limited to this. For example, this disclosure is not limited to the order of steps shown in each sequence diagram. At least some steps may be processed in parallel, may be processed in reverse order, or may be skipped.
 例えば、図9に示すステップS415に示す処理と、ステップS418~S424に示す処理と、ステップS427に示す処理が、並列して行われてもよい。 For example, the process shown in step S415 shown in FIG. 9, the process shown in steps S418 to S424, and the process shown in step S427 may be performed in parallel.
 <<4.操作端末20を用いた仮想オブジェクトの操作例>>
 続いて、本実施形態による操作端末20を用いた仮想オブジェクトの操作例について、図10~図18を参照して説明する。ここでは一例としてスマートフォンをコントローラとして利用する場合について説明する。
<<4. Example of operation of virtual object using operation terminal 20 >>
Next, an example of operating a virtual object using the operating terminal 20 according to this embodiment will be described with reference to FIGS. 10 to 18. FIG. Here, a case where a smartphone is used as a controller will be described as an example.
 図10および図11は、本実施形態による操作端末20を用いた仮想オブジェクトの選択操作の一例について説明する図である。図10左に示すように、例えば操作端末20(スマートフォン)の先端から直進する光線のような指示画像Lが、AR表示装置10の表示部150(透過ディスプレイ)において実空間に重畳表示される。また、図10では、表示部150で実空間に重畳表示される仮想オブジェクト51a~51cも図示されている。 10 and 11 are diagrams illustrating an example of a virtual object selection operation using the operation terminal 20 according to this embodiment. As shown on the left side of FIG. 10 , an instruction image L, such as a ray of light traveling straight from the tip of the operation terminal 20 (smartphone), is superimposed and displayed in real space on the display unit 150 (transmissive display) of the AR display device 10 . FIG. 10 also shows virtual objects 51a to 51c superimposed and displayed on the real space on the display unit 150. As shown in FIG.
 指示画像Lは、図10左に示すように、操作端末20の短手方向中心で短手方向と直交(操作端末20の先端の辺と直交)する中心軸Cの延長線上に表示され得る。指示画像Lは、かかる中心軸Cに追随して表示されるようAR表示装置10により表示制御されるため、図10右に示すように、ユーザが操作端末20の先端の向きを上下左右に向けることで、任意の仮想オブジェクト51を選択することができる。 As shown on the left side of FIG. 10, the indication image L can be displayed on an extension line of the central axis C that is at the center of the operation terminal 20 in the short direction and that is orthogonal to the short direction (perpendicular to the tip side of the operation terminal 20). Since the instruction image L is display-controlled by the AR display device 10 so as to follow the center axis C, as shown in the right side of FIG. By doing so, an arbitrary virtual object 51 can be selected.
 選択操作の確定は、例えば図11に示すように、操作端末20でタップ操作することにより決定される。AR表示装置10は、タップ操作された際に指示画像Lと最も近くで衝突している仮想オブジェクト51bを選択状態とする。選択状態のフィードバックは、例えば仮想オブジェクト51bの表示態様を変化させたり、周囲を光らせたりすることで行われてもよい。 Confirmation of the selection operation is determined by performing a tap operation on the operation terminal 20, as shown in FIG. 11, for example. The AR display device 10 selects the virtual object 51b that most closely collides with the instruction image L when the tap operation is performed. Feedback of the selection state may be performed, for example, by changing the display mode of the virtual object 51b or lighting the surroundings.
 選択状態では、位置・回転編集モードと、回転・スケール編集モードが切り替えられるようにしてもよい。例えば、タップし続けることで位置・回転編集モードにし、シングルタップで回転・スケール編集モードにすることができる。 In the selected state, the position/rotation edit mode and the rotation/scale edit mode may be switched. For example, you can tap and hold to enter position/rotation editing mode, and a single tap to enter rotation/scale editing mode.
 図12~図15は、本実施形態による位置・回転編集モードでの操作端末20を用いた操作方法の一例について説明する図である。例えば図12および図13に示すように、ユーザがタップし続けた状態で、操作端末20の向きを上下左右に変えたり、前後に水平移動させたりすることで、選択状態の仮想オブジェクト51bの位置が変わる。指示画像Lの長さ(すなわち操作端末20と、選択状態の仮想オブジェクト51bとの間の距離)が一定に維持されることで、操作端末20の位置姿勢の変化により選択状態の仮想オブジェクト51bの位置を変えることができる。 12 to 15 are diagrams explaining an example of an operation method using the operation terminal 20 in the position/rotation edit mode according to this embodiment. For example, as shown in FIGS. 12 and 13 , the position of the virtual object 51b in the selected state can be changed by changing the orientation of the operation terminal 20 up, down, left, right, or moving it horizontally while the user keeps tapping. changes. By maintaining the length of the instruction image L (that is, the distance between the operation terminal 20 and the virtual object 51b in the selected state) constant, a change in the position and orientation of the operation terminal 20 causes the virtual object 51b in the selected state to move. Can change position.
 また、図14に示すように、ユーザがタップし続けている指を縦方向や横方向にスワイプすることで、選択状態の仮想オブジェクト51bの回転操作(Pitch回転、Yaw回転)を行い得る。また、図15に示すように、操作端末20を(タップし続けた状態で)垂直方向に回転させることで、選択状態の仮想オブジェクト51bのRoll方向の回転を行い得る。 Also, as shown in FIG. 14, by swiping the user's tapping finger in the vertical or horizontal direction, the virtual object 51b in the selected state can be rotated (pitch rotation, yaw rotation). Further, as shown in FIG. 15 , by rotating the operating terminal 20 in the vertical direction (while tapping is continued), the virtual object 51b in the selected state can be rotated in the Roll direction.
 図16および図17は、本実施形態による回転・スケール編集モードでの操作端末20を用いた操作方法の一例について説明する図である。例えば、シングルタップで回転・スケール編集モードにした場合、ユーザは、図16に示すように、ピンチイン/ピンチアウト操作で、選択状態の仮想オブジェクト51bの拡大、縮小操作を行える。また、ユーザは、縦方向や横方向のスワイプ操作で、選択状態の仮想オブジェクト51bのPitch回転、Yaw回転を行い得る(スワイプ操作の方向と回転方向の対応は図14に示す例と同様)。また、図17に示すように、2本指での回転操作により、選択状態の仮想オブジェクト51bのRoll回転を行ってもよい。 16 and 17 are diagrams illustrating an example of an operation method using the operation terminal 20 in the rotation/scale edit mode according to this embodiment. For example, when the rotation/scale editing mode is set by single-tapping, the user can enlarge or reduce the virtual object 51b in the selected state by pinch-in/pinch-out operations, as shown in FIG. In addition, the user can rotate the virtual object 51b in the selected state by Pitch rotation and Yaw rotation by vertical and horizontal swipe operations (the correspondence between the swipe operation direction and the rotation direction is the same as in the example shown in FIG. 14). Alternatively, as shown in FIG. 17, the virtual object 51b in the selected state may be rolled by performing a rotation operation with two fingers.
 図18は、選択状態の仮想オブジェクトに対するその他の操作の選択肢の選択決定について説明する図である。図18に示すように、仮想オブジェクト選択状態では、仮想オブジェクトに対するその他の操作の選択肢52a~52c(「削除」「元に戻す」「コピー」など)が表示されてもよい。この場合、ユーザは、操作端末20の先端から直進する指示画像Lにより任意の選択肢を指し、タップ操作により決定することができる。または、図18に示すように、選択肢のフォーカス53を操作端末20でのスワイプ操作で(上下左右に)切り替え、タップ操作で決定することもできる。または、これらの選択肢を位置推定サーバ30の表示画面上にボタンとして表示してもよい。 FIG. 18 is a diagram explaining selection determination of other operation options for the selected virtual object. As shown in FIG. 18, in the virtual object selection state, options 52a to 52c ("delete", "undo", "copy", etc.) for other operations on the virtual object may be displayed. In this case, the user can point to an arbitrary option with the instruction image L that goes straight from the tip of the operation terminal 20, and can make a decision by a tap operation. Alternatively, as shown in FIG. 18, the focus 53 of options can be switched (up, down, left, and right) by swiping on the operation terminal 20, and can be determined by tapping. Alternatively, these options may be displayed as buttons on the display screen of the location estimation server 30. FIG.
 <<5.補足>>
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本技術はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
<<5. Supplement >>
Although the preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, the present technology is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can conceive of various modifications or modifications within the scope of the technical idea described in the claims. are naturally within the technical scope of the present disclosure.
 上記実施形態では、一例としてAR(Augmented Reality)を想定して述べたが、本開示はこれに限定されず、VR(Virtual Reality)やMR(Mixed Reality)に適用することも可能である。 In the above embodiment, AR (Augmented Reality) is assumed as an example, but the present disclosure is not limited to this, and can be applied to VR (Virtual Reality) and MR (Mixed Reality).
 また、AR表示装置10は、頭部に装着される透過型または非透過型のHMD(Head Mounted Display)により実現されてもよいし、スマートフォンやタブレット端末等のユーザに把持されるモバイル端末であってもよいし、ユーザの身に装着される各種ウェアラブルデバイスであってもよい。 Also, the AR display device 10 may be realized by a transmissive or non-transmissive HMD (Head Mounted Display) worn on the head, or may be a mobile terminal held by the user, such as a smartphone or a tablet terminal. It may be various wearable devices worn by the user.
 また、上述したAR表示装置10または操作端末20に内蔵されるCPU、ROM、およびRAM等のハードウェアに、AR表示装置10または操作端末20の機能を発揮させるための1以上のコンピュータプログラムも作成可能である。また、当該1以上のコンピュータプログラムを記憶させたコンピュータ読み取り可能な記憶媒体も提供される。 Also, create one or more computer programs for causing the hardware such as the CPU, ROM, and RAM incorporated in the AR display device 10 or the operation terminal 20 described above to exhibit the functions of the AR display device 10 or the operation terminal 20. It is possible. Also provided is a computer-readable storage medium storing the one or more computer programs.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Also, the effects described in this specification are merely descriptive or exemplary, and are not limiting. In other words, the technology according to the present disclosure can produce other effects that are obvious to those skilled in the art from the description of this specification, in addition to or instead of the above effects.
 なお、本技術は以下のような構成も取ることができる。
(1)
 実空間に対応付けられた仮想オブジェクトを表示する制御を行う制御部を備え、
 前記制御部は、
  ユーザが操作を行った対象である前記仮想オブジェクトの仮想空間位置情報を、実空間を撮像した撮像画像に基づいて取得された情報処理装置の地理座標情報と、当該地理座標情報に対応する仮想空間位置情報とに基づいて、地理座標情報に変換する、情報処理装置。
(2)
 前記制御部は、前記変換した地理座標情報を少なくとも含む前記仮想オブジェクトに関する情報を、地理座標系を用いて地理情報を管理する外部装置に送信する制御を行う、前記(1)に記載の情報処理装置。
(3)
 前記外部装置で管理される前記地理情報には、地図画像のデータと、地理座標情報が対応付けられた仮想オブジェクトの情報が含まれる、前記(2)に記載の情報処理装置。
(4)
 前記外部装置で管理される前記地理情報には、さらにPOI(point of interest)情報が含まれる、前記(3)に記載の情報処理装置。
(5)
 前記制御部は、前記ユーザの操作の結果として位置が変化した前記仮想オブジェクトの仮想空間位置情報を、対応する地理座標情報に変換し、前記仮想オブジェクトの更新情報として、少なくとも当該変換した地理座標情報を含む情報を前記外部装置に送信する制御を行う、前記(2)~(4)のいずれか1項に記載の情報処理装置。
(6)
 前記制御部は、
  前記外部装置から、前記情報処理装置の地理座標情報で示される場所を含む所定のエリア内の1以上の仮想オブジェクトの情報を取得し、
  前記取得した仮想オブジェクトの情報に含まれる、当該仮想オブジェクトの地理座標情報を、前記情報処理装置の地理座標情報および仮想空間位置情報に基づいて、対応する仮想空間位置情報に変換し、
  前記変換した仮想空間位置情報に基づいて、前記取得した仮想オブジェクトの表示制御を行う、前記(2)~(5)のいずれか1項に記載の情報処理装置。
(7)
 前記撮像画像は、前記情報処理装置の撮像部から取得される、前記(1)~(6)のいずれか1項に記載の情報処理装置。
(8)
 前記情報処理装置は、ユーザの頭部に装着される表示装置である、前記(1)~(7)のいずれか1項に記載の情報処理装置。
(9)
 前記撮像画像は、前記表示装置の撮像部から得られる、前記ユーザの視界画像である、前記(8)に記載の情報処理装置。
(10)
 前記制御部は、操作端末から取得する前記ユーザの操作を示す情報に応じて、ユーザ操作の対象である前記仮想オブジェクトの表示を制御する、前記(1)~(9)のいずれか1項に記載の情報処理装置。
(11)
 前記制御部は、操作端末の位置姿勢およびタッチ操作情報に応じて、ユーザ操作の対象である前記仮想オブジェクトの表示を制御する、前記(1)~(9)のいずれか1項に記載の情報処理装置。
(12)
 前記操作端末は、ユーザにより把持されて操作され、モーションセンサおよびタッチパネルディスプレイが設けられる汎用的な通信端末である、前記(10)または(11)に記載の情報処理装置。
(13)
 前記制御部は、前記外部装置から取得される地理情報に基づいて、地図画像上に、1以上の仮想オブジェクトの配置を示す表示を行う、前記(2)~(12)のいずれか1項に記載の情報処理装置。
(14)
 前記制御部は、前記地図画像上に、前記地理情報に含まれるPOI(point of interest)情報をさらに表示する、前記(13)に記載の情報処理装置。
(15)
 前記制御部は、前記撮像画像に基づく前記情報処理装置の地理座標情報と、当該地理座標情報に対応する仮想空間位置情報との情報を、位置推定を行う外部装置から毎秒取得する、前記(1)~(14)のいずれか1項に記載の情報処理装置。
(16)
 前記制御部は、前記地理座標情報を管理する外部装置から、定期的に更新情報を取得する、前記(1)~(15)のいずれか1項に記載の情報処理装置。
(17)
 前記地理座標情報は、緯度、経度、および標高の情報である、前記(1)~(16)のいずれか1項に記載の情報処理装置。
(18)
 前記変換では、前記地理座標情報に加えて、地理座標系における前記情報処理装置の姿勢情報も用いられ、また、前記ユーザが操作を行った対象である仮想オブジェクトの前記仮想空間位置情報に加えて、前記仮想空間での当該仮想オブジェクトの姿勢情報も変換される、前記(1)~(17)のいずれか1項に記載の情報処理装置。
(19)
 プロセッサが、
 実空間に対応付けられた仮想オブジェクトを表示することと、
 ユーザが操作を行った対象である前記仮想オブジェクトの仮想空間位置情報を、実空間を撮像した撮像画像に基づいて取得された情報処理装置の地理座標情報と、当該地理座標情報に対応する仮想空間位置情報とに基づいて、地理座標情報に変換することと、
を含む、情報処理方法。
(20)
 コンピュータを、
 実空間に対応付けられた仮想オブジェクトを表示する制御を行う制御部として機能させ、
 前記制御部は、
  ユーザが操作を行った対象である前記仮想オブジェクトの仮想空間位置情報を、実空間を撮像した撮像画像に基づいて取得された情報処理装置の地理座標情報と、当該地理座標情報に対応する仮想空間位置情報とに基づいて、地理座標情報に変換する、プログラム。
Note that the present technology can also take the following configuration.
(1)
A control unit for controlling display of a virtual object associated with the real space,
The control unit
The virtual space position information of the virtual object that is the target of the user's operation, the geographical coordinate information of the information processing device obtained based on the captured image of the real space, and the virtual space corresponding to the geographical coordinate information An information processing device that converts into geographic coordinate information based on location information.
(2)
The information processing according to (1) above, wherein the control unit performs control to transmit information about the virtual object including at least the transformed geographic coordinate information to an external device that manages geographic information using a geographic coordinate system. Device.
(3)
The information processing apparatus according to (2), wherein the geographic information managed by the external device includes map image data and virtual object information associated with geographic coordinate information.
(4)
The information processing apparatus according to (3), wherein the geographic information managed by the external device further includes POI (point of interest) information.
(5)
The control unit converts virtual space position information of the virtual object whose position has changed as a result of the user's operation into corresponding geographic coordinate information, and stores at least the converted geographic coordinate information as update information of the virtual object. The information processing apparatus according to any one of (2) to (4) above, which controls transmission of information including to the external device.
(6)
The control unit
Acquiring information of one or more virtual objects in a predetermined area including a location indicated by the geographical coordinate information of the information processing device from the external device;
converting the geographical coordinate information of the virtual object included in the acquired information of the virtual object into corresponding virtual space position information based on the geographical coordinate information and the virtual space position information of the information processing device;
The information processing apparatus according to any one of (2) to (5), wherein display control of the obtained virtual object is performed based on the converted virtual space position information.
(7)
The information processing device according to any one of (1) to (6), wherein the captured image is obtained from an imaging unit of the information processing device.
(8)
The information processing device according to any one of (1) to (7) above, wherein the information processing device is a display device worn on a user's head.
(9)
The information processing apparatus according to (8), wherein the captured image is a field-of-view image of the user obtained from an imaging unit of the display device.
(10)
The control unit according to any one of (1) to (9) above, wherein the control unit controls display of the virtual object that is the target of user operation in accordance with information indicating the user's operation obtained from the operation terminal. The information processing device described.
(11)
The information according to any one of (1) to (9), wherein the control unit controls display of the virtual object to be operated by the user according to the position and orientation of the operation terminal and touch operation information. processing equipment.
(12)
The information processing apparatus according to (10) or (11), wherein the operation terminal is a general-purpose communication terminal that is held and operated by a user and provided with a motion sensor and a touch panel display.
(13)
The control unit according to any one of (2) to (12) above, wherein the control unit displays an arrangement of one or more virtual objects on a map image based on geographic information acquired from the external device. The information processing device described.
(14)
The information processing apparatus according to (13), wherein the control unit further displays POI (point of interest) information included in the geographic information on the map image.
(15)
The control unit acquires, every second, information on the geographical coordinate information of the information processing device based on the captured image and information on virtual space position information corresponding to the geographical coordinate information from an external device that performs position estimation, the (1 ) to (14).
(16)
The information processing device according to any one of (1) to (15), wherein the control unit periodically acquires update information from an external device that manages the geographic coordinate information.
(17)
The information processing apparatus according to any one of (1) to (16), wherein the geographical coordinate information is latitude, longitude, and altitude information.
(18)
In the transformation, posture information of the information processing device in a geographic coordinate system is used in addition to the geographical coordinate information. , the information processing apparatus according to any one of (1) to (17) above, wherein posture information of the virtual object in the virtual space is also converted.
(19)
the processor
displaying a virtual object associated with real space;
The virtual space position information of the virtual object that is the target of the user's operation, the geographical coordinate information of the information processing device obtained based on the captured image of the real space, and the virtual space corresponding to the geographical coordinate information converting to geographic coordinate information based on the location information;
A method of processing information, comprising:
(20)
the computer,
Function as a control unit that controls the display of virtual objects associated with the real space,
The control unit
The virtual space position information of the virtual object that is the target of the user's operation, the geographical coordinate information of the information processing device obtained based on the captured image of the real space, and the virtual space corresponding to the geographical coordinate information A program that converts geographic coordinates based on location information.
 10 AR表示装置
  121 座標情報取得部
  122 座標情報変換部
  123 仮想空間処理部
 20 操作端末
  221 座標情報取得部
  222 操作情報送信制御部
  223 表示制御部
 30 位置推定サーバ
  301 点群データベース
 40 地図データサーバ
  401 地図画像データベース
  402 POIデータベース
  403 ARデータベース
10 AR display device 121 coordinate information acquisition unit 122 coordinate information conversion unit 123 virtual space processing unit 20 operation terminal 221 coordinate information acquisition unit 222 operation information transmission control unit 223 display control unit 30 position estimation server 301 point cloud database 40 map data server 401 Map image database 402 POI database 403 AR database

Claims (20)

  1.  実空間に対応付けられた仮想オブジェクトを表示する制御を行う制御部を備え、
     前記制御部は、
      ユーザが操作を行った対象である前記仮想オブジェクトの仮想空間位置情報を、実空間を撮像した撮像画像に基づいて取得された情報処理装置の地理座標情報と、当該地理座標情報に対応する仮想空間位置情報とに基づいて、地理座標情報に変換する、
    情報処理装置。
    A control unit for controlling display of a virtual object associated with the real space,
    The control unit
    The virtual space position information of the virtual object that is the target of the user's operation, the geographical coordinate information of the information processing device obtained based on the captured image of the real space, and the virtual space corresponding to the geographical coordinate information Transform into geographic coordinate information based on location information and
    Information processing equipment.
  2.  前記制御部は、前記変換した地理座標情報を少なくとも含む前記仮想オブジェクトに関する情報を、地理座標系を用いて地理情報を管理する外部装置に送信する制御を行う、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein said control unit performs control to transmit information about said virtual object including at least said transformed geographical coordinate information to an external device managing geographical information using a geographical coordinate system. .
  3.  前記外部装置で管理される前記地理情報には、地図画像のデータと、地理座標情報が対応付けられた仮想オブジェクトの情報が含まれる、請求項2に記載の情報処理装置。 The information processing apparatus according to claim 2, wherein the geographic information managed by the external device includes map image data and virtual object information associated with geographic coordinate information.
  4.  前記外部装置で管理される前記地理情報には、さらにPOI(point of interest)情報が含まれる、請求項3に記載の情報処理装置。 The information processing apparatus according to claim 3, wherein the geographic information managed by the external device further includes POI (point of interest) information.
  5.  前記制御部は、前記ユーザの操作の結果として位置が変化した前記仮想オブジェクトの仮想空間位置情報を、対応する地理座標情報に変換し、前記仮想オブジェクトの更新情報として、少なくとも当該変換した地理座標情報を含む情報を前記外部装置に送信する制御を行う、請求項2に記載の情報処理装置。 The control unit converts virtual space position information of the virtual object whose position has changed as a result of the user's operation into corresponding geographic coordinate information, and stores at least the converted geographic coordinate information as update information of the virtual object. 3. The information processing apparatus according to claim 2, which controls transmission of information containing to said external device.
  6.  前記制御部は、
      前記外部装置から、前記情報処理装置の地理座標情報で示される場所を含む所定のエリア内の1以上の仮想オブジェクトの情報を取得し、
      前記取得した仮想オブジェクトの情報に含まれる、当該仮想オブジェクトの地理座標情報を、前記情報処理装置の地理座標情報および仮想空間位置情報に基づいて、対応する仮想空間位置情報に変換し、
      前記変換した仮想空間位置情報に基づいて、前記取得した仮想オブジェクトの表示制御を行う、請求項2に記載の情報処理装置。
    The control unit
    Acquiring information of one or more virtual objects in a predetermined area including a location indicated by the geographical coordinate information of the information processing device from the external device;
    converting the geographical coordinate information of the virtual object included in the acquired information of the virtual object into corresponding virtual space position information based on the geographical coordinate information and the virtual space position information of the information processing device;
    3. The information processing apparatus according to claim 2, wherein display control of said acquired virtual object is performed based on said converted virtual space position information.
  7.  前記撮像画像は、前記情報処理装置の撮像部から取得される、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the captured image is obtained from an imaging unit of the information processing apparatus.
  8.  前記情報処理装置は、ユーザの頭部に装着される表示装置である、請求項1に記載の情報処理装置。 The information processing device according to claim 1, wherein the information processing device is a display device worn on a user's head.
  9.  前記撮像画像は、前記表示装置の撮像部から得られる、前記ユーザの視界画像である、請求項8に記載の情報処理装置。 The information processing apparatus according to claim 8, wherein the captured image is a field-of-view image of the user obtained from an imaging unit of the display device.
  10.  前記制御部は、操作端末から取得する前記ユーザの操作を示す情報に応じて、ユーザ操作の対象である前記仮想オブジェクトの表示を制御する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the control unit controls display of the virtual object that is the target of the user's operation according to information indicating the user's operation acquired from the operation terminal.
  11.  前記制御部は、操作端末の位置姿勢およびタッチ操作情報に応じて、ユーザ操作の対象である前記仮想オブジェクトの表示を制御する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the control unit controls display of the virtual object that is the target of user operation according to the position and orientation of the operation terminal and touch operation information.
  12.  前記操作端末は、ユーザにより把持されて操作され、モーションセンサおよびタッチパネルディスプレイが設けられる汎用的な通信端末である、請求項10に記載の情報処理装置。 The information processing apparatus according to claim 10, wherein the operation terminal is a general-purpose communication terminal that is held and operated by a user and provided with a motion sensor and a touch panel display.
  13.  前記制御部は、前記外部装置から取得される地理情報に基づいて、地図画像上に、1以上の仮想オブジェクトの配置を示す表示を行う、請求項2に記載の情報処理装置。 3. The information processing apparatus according to claim 2, wherein the control unit displays a layout of one or more virtual objects on a map image based on geographic information acquired from the external device.
  14.  前記制御部は、前記地図画像上に、前記地理情報に含まれるPOI(point of interest)情報をさらに表示する、請求項13に記載の情報処理装置。 The information processing apparatus according to claim 13, wherein said control unit further displays POI (point of interest) information included in said geographic information on said map image.
  15.  前記制御部は、前記撮像画像に基づく前記情報処理装置の地理座標情報と、当該地理座標情報に対応する仮想空間位置情報との情報を、位置推定を行う外部装置から毎秒取得する、請求項1に記載の情報処理装置。 2. The control unit acquires, every second from an external device that performs position estimation, information on the geographical coordinate information of the information processing device based on the captured image and information on virtual space position information corresponding to the geographical coordinate information. The information processing device according to .
  16.  前記制御部は、前記地理座標情報を管理する外部装置から、定期的に更新情報を取得する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the control unit periodically acquires update information from an external device that manages the geographic coordinate information.
  17.  前記地理座標情報は、緯度、経度、および標高の情報である、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the geographical coordinate information is latitude, longitude, and altitude information.
  18.  前記変換では、前記地理座標情報に加えて、地理座標系における前記情報処理装置の姿勢情報も用いられ、また、前記ユーザが操作を行った対象である仮想オブジェクトの前記仮想空間位置情報に加えて、前記仮想空間での当該仮想オブジェクトの姿勢情報も変換される、請求項1に記載の情報処理装置。 In the transformation, posture information of the information processing device in a geographic coordinate system is used in addition to the geographical coordinate information. 2. The information processing apparatus according to claim 1, wherein posture information of said virtual object in said virtual space is also transformed.
  19.  プロセッサが、
     実空間に対応付けられた仮想オブジェクトを表示することと、
     ユーザが操作を行った対象である前記仮想オブジェクトの仮想空間位置情報を、実空間を撮像した撮像画像に基づいて取得された情報処理装置の地理座標情報と、当該地理座標情報に対応する仮想空間位置情報とに基づいて、地理座標情報に変換することと、
    を含む、情報処理方法。
    the processor
    displaying a virtual object associated with real space;
    The virtual space position information of the virtual object that is the target of the user's operation, the geographical coordinate information of the information processing device obtained based on the captured image of the real space, and the virtual space corresponding to the geographical coordinate information converting to geographic coordinate information based on the location information;
    A method of processing information, comprising:
  20.  コンピュータを、
     実空間に対応付けられた仮想オブジェクトを表示する制御を行う制御部として機能させ、
     前記制御部は、
      ユーザが操作を行った対象である前記仮想オブジェクトの仮想空間位置情報を、実空間を撮像した撮像画像に基づいて取得された情報処理装置の地理座標情報と、当該地理座標情報に対応する仮想空間位置情報とに基づいて、地理座標情報に変換する、プログラム。
    the computer,
    Function as a control unit that controls the display of virtual objects associated with the real space,
    The control unit
    The virtual space position information of the virtual object that is the target of the user's operation, the geographical coordinate information of the information processing device obtained based on the captured image of the real space, and the virtual space corresponding to the geographical coordinate information A program that converts geographic coordinates based on location information.
PCT/JP2022/000900 2021-02-22 2022-01-13 Information processing device, information processing method, and program WO2022176450A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021025808 2021-02-22
JP2021-025808 2021-02-22

Publications (1)

Publication Number Publication Date
WO2022176450A1 true WO2022176450A1 (en) 2022-08-25

Family

ID=82930767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000900 WO2022176450A1 (en) 2021-02-22 2022-01-13 Information processing device, information processing method, and program

Country Status (1)

Country Link
WO (1) WO2022176450A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230105019A1 (en) * 2021-10-04 2023-04-06 International Business Machines Corporation Using a predictive machine learning to determine storage spaces to store items in a storage infrastructure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012168646A (en) * 2011-02-10 2012-09-06 Sony Corp Information processing apparatus, information sharing method, program, and terminal device
WO2014162823A1 (en) * 2013-04-04 2014-10-09 ソニー株式会社 Information processing device, information processing method and program
WO2016017253A1 (en) * 2014-08-01 2016-02-04 ソニー株式会社 Information processing device, information processing method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012168646A (en) * 2011-02-10 2012-09-06 Sony Corp Information processing apparatus, information sharing method, program, and terminal device
WO2014162823A1 (en) * 2013-04-04 2014-10-09 ソニー株式会社 Information processing device, information processing method and program
WO2016017253A1 (en) * 2014-08-01 2016-02-04 ソニー株式会社 Information processing device, information processing method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230105019A1 (en) * 2021-10-04 2023-04-06 International Business Machines Corporation Using a predictive machine learning to determine storage spaces to store items in a storage infrastructure

Similar Documents

Publication Publication Date Title
US11796309B2 (en) Information processing apparatus, information processing method, and recording medium
JP5966510B2 (en) Information processing system
US9651782B2 (en) Wearable tracking device
US9256986B2 (en) Automated guidance when taking a photograph, using virtual objects overlaid on an image
JP5762892B2 (en) Information display system, information display method, and information display program
JP4679661B1 (en) Information presenting apparatus, information presenting method, and program
JP2021530817A (en) Methods and Devices for Determining and / or Evaluating Positioning Maps for Image Display Devices
US20170150230A1 (en) Information processing apparatus, information processing method, and program
CN104536579A (en) Interactive three-dimensional scenery and digital image high-speed fusing processing system and method
JPWO2014016987A1 (en) 3D user interface device and 3D operation method
JP2011203984A (en) Navigation device, navigation image generation method, and program
JP2012128779A (en) Virtual object display device
JP2021520577A (en) Image processing methods and devices, electronic devices and storage media
JP2023126474A (en) Systems and methods for augmented reality
WO2019142560A1 (en) Information processing device for guiding gaze
JP2021060627A (en) Information processing apparatus, information processing method, and program
JP2022084658A (en) Method for generating 3d object arranged in extended real space
WO2022176450A1 (en) Information processing device, information processing method, and program
Lee et al. Tunnelslice: Freehand subspace acquisition using an egocentric tunnel for wearable augmented reality
US20230244354A1 (en) 3d models for displayed 2d elements
KR20180060403A (en) Control apparatus for drone based on image
JP2017199085A (en) Information processing apparatus, information processing method, and program
US11907434B2 (en) Information processing apparatus, information processing system, and information processing method
JP5533311B2 (en) Exhibit information presentation device and presentation method
WO2022172335A1 (en) Virtual guide display device, virtual guide display system, and virtual guide display method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22755775

Country of ref document: EP

Kind code of ref document: A1