WO2022176191A1 - Station placement designing method and station placement designing device - Google Patents

Station placement designing method and station placement designing device Download PDF

Info

Publication number
WO2022176191A1
WO2022176191A1 PCT/JP2021/006583 JP2021006583W WO2022176191A1 WO 2022176191 A1 WO2022176191 A1 WO 2022176191A1 JP 2021006583 W JP2021006583 W JP 2021006583W WO 2022176191 A1 WO2022176191 A1 WO 2022176191A1
Authority
WO
WIPO (PCT)
Prior art keywords
point cloud
cloud data
fresnel zone
candidate position
data
Prior art date
Application number
PCT/JP2021/006583
Other languages
French (fr)
Japanese (ja)
Inventor
秀紀 俊長
和人 後藤
秀幸 坪井
直樹 北
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023500483A priority Critical patent/JP7510099B2/en
Priority to PCT/JP2021/006583 priority patent/WO2022176191A1/en
Publication of WO2022176191A1 publication Critical patent/WO2022176191A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present invention relates to a station placement design method and a station placement design device that perform station placement design using point cloud data.
  • the line of sight between the candidate positions for installing two radio station devices is determined based on whether or not there is an obstruction on the line of sight connecting the candidate positions with a straight line. was making judgments. Then, in the conventional station placement design, it was determined at which candidate position the radio station apparatus should be installed based on the result of the line-of-sight determination (see, for example, Patent Document 1).
  • Three-dimensional point cloud data is generated, for example, by the following procedure.
  • a measuring device mounted on a moving object such as a vehicle that moves in the space to be evaluated irradiates the surroundings with laser light at regular intervals.
  • the measuring device receives the reflected wave of the laser light that reaches the shield and is reflected, the round-trip time of the laser light from the irradiation of the laser light to the reception of the reflected wave and the time of the measuring device that irradiated the laser light are calculated.
  • Three-dimensional coordinate data indicating the position in the three-dimensional space of the reflection point where the laser beam is reflected by the shield can be obtained based on the position.
  • positions indicated by reference numeral 101 are candidate positions for installing the radio station apparatus on the transmitting side
  • positions indicated by reference numeral 102 are candidate positions for installing the radio station apparatus on the receiving side.
  • they are referred to as a candidate position 101 and a candidate position 102 .
  • the candidate position 101 may be the receiving side and the candidate position 102 may be the transmitting side.
  • the first Fresnel zone 200 between them can be calculated.
  • point cloud data does not exist in all cross sections 201 to 211 to be evaluated in the first Fresnel zone 200.
  • FIGS. 5 to 7 show 11 cross sections 201 to 211 of the first Fresnel zone 200 to be evaluated as an example, the number of cross sections to be evaluated is not limited to 11.
  • FIG. 6 since there is a building 301 as an obstructing object, point cloud data exists in cross sections 207, 208, and 210, for example, as indicated by the hatched ranges.
  • FIG. 7 there is a tree 302 which is smaller than the building 301 in FIG. As shown, there will be point cloud data.
  • the present invention provides, when applying point cloud data to the process of determining visibility between candidate positions that are candidates for installing two radio station devices in consideration of the first Fresnel zone, in the process of determining visibility.
  • the purpose is to provide a technology that can reduce the time required.
  • Point cloud data which is data indicating the position in the three-dimensional space of the reflection point when the laser light irradiated to the three-dimensional space reaches the shield and is reflected, is stored in the point cloud data storage unit.
  • a data recording step a candidate position selecting step of selecting two of the wireless station candidate position data from the wireless station candidate position data storage unit; a Fresnel zone calculation step of calculating a first Fresnel zone; and a point of detecting an amount of the point cloud data present in the calculated first Fresnel zone based on the point cloud data stored in the point cloud data storage unit.
  • the group data amount detection step the amount of the detected point cloud data, and a threshold value, the possibility of communication between the candidate positions indicated by each of the two wireless station candidate position data selected in the candidate position selection step. and a determination step of determining the station position design method.
  • One aspect of the present invention is a wireless station candidate position data storage unit that stores wireless station candidate position data indicating candidate positions for installing a wireless station device in a three-dimensional space; 2 from a point cloud data storage unit for storing point cloud data, which is data indicating positions in the three-dimensional space of reflection points when the laser light reaches and is reflected by a shield; and the radio station candidate position data storage unit.
  • a candidate location selection unit that selects two radio station candidate location data; and a Fresnel zone that calculates a first Fresnel zone between candidate locations indicated by each of the two wireless station candidate location data selected by the candidate location selection unit.
  • a point cloud data amount for detecting the amount of the point cloud data present in the first Fresnel zone calculated by the Fresnel zone calculation unit based on the point cloud data stored in the point cloud data storage unit.
  • FIG. 1 is a block diagram showing the configuration of a station placement design device according to a first embodiment
  • FIG. It is a figure which shows the structure of a 1st Fresnel zone.
  • 4 is a flow chart showing the flow of processing performed by the station placement design device of the first embodiment
  • FIG. 11 is a block diagram showing the configuration of a station placement design device according to a second embodiment
  • FIG. 10 is a diagram showing an example (part 1) of evaluation by a cross section in the first Fresnel zone
  • FIG. 10 is a diagram showing an example (part 2) of evaluation by a cross section in the first Fresnel zone
  • FIG. 10 is a diagram showing an example (part 3) of evaluation by a cross section in the first Fresnel zone;
  • FIG. 1 is a block diagram showing the configuration of a station placement design device 1 according to the first embodiment.
  • the station placement design device 1 includes a wireless station candidate position data storage unit 11 , a point cloud data storage unit 12 , a candidate position selection unit 13 , a Fresnel zone calculation unit 14 , a point cloud data amount detection unit 15 and a determination unit 16 .
  • the wireless station candidate position data storage unit 11 stores wireless station candidate position data in advance.
  • the wireless station candidate position data is data indicating candidate positions for installing the wireless station device in the three-dimensional space.
  • each piece of wireless station candidate position data is, for example, three-dimensional coordinate data indicating the position of one point in a three-dimensional spatial coordinate system.
  • the candidate positions indicated by the radio station candidate position data include both types of candidate positions for installing equipment for radio base stations and candidate positions for installing equipment for radio terminal stations. It is assumed that there is
  • the point cloud data storage unit 12 stores point cloud data in advance.
  • the point cloud data stored in the point cloud data storage unit 12 are three-dimensional coordinates indicating the position in the three-dimensional space of the reflection point when the laser beam irradiated to the three-dimensional space reaches the shield and is reflected.
  • Data Point cloud data is defined as data containing one or more pieces of three-dimensional coordinate data, but in reality it is data containing a huge number of three-dimensional coordinate data.
  • Each piece of three-dimensional coordinate data included in the point cloud data indicates one point on the shield that reflects the laser beam. Therefore, when the point cloud data is displayed in a three-dimensional coordinate system, the shape of the shield is represented by points.
  • the three-dimensional coordinate system of the point cloud data stored in the point cloud data storage unit 12 and the three-dimensional coordinate system of the wireless station candidate position data stored in the wireless station candidate position data storage unit 11 match.
  • the candidate position selection unit 13 selects two pieces of wireless station candidate position data to be used as communication availability determination targets from the wireless station candidate position data storage unit 11 .
  • the combination of the two radio station candidate position data selected by the candidate position selection unit 13 is, for example, the combination of the radio station candidate position data of the radio base station apparatus and the radio station candidate position data of the radio terminal station apparatus.
  • the Fresnel zone calculator 14 calculates a first Fresnel zone between two candidate positions indicated by each of the two wireless station candidate position data selected by the candidate position selector 13 .
  • FIG. 2 shows the Fresnel zone when the positions indicated by the two wireless station candidate position data selected by the candidate position selection unit 13 are candidate positions 21 and 22, respectively, and the distance between the candidate positions 21 and 22 is D.
  • 3 is a diagram showing a configuration of a first Fresnel zone 30 calculated by a calculator 14;
  • the first Fresnel zone 30 is a spheroid formed by rotating an ellipse around the straight line connecting the candidate positions 21 and 22 as shown in FIG.
  • the radius r of the cross-sectional circle at the evaluation point 25 of the first Fresnel zone 30, which is an arbitrary point, is defined by the following equation (1).
  • is the wavelength of radio waves transmitted and received by the radio station devices scheduled to be installed at the candidate positions 21 and 22
  • d1 is the distance from the candidate position 21 to the evaluation point 25
  • d 2 is the distance from the evaluation point 25 to the candidate position 22
  • D is the distance from the evaluation point 25 to the candidate position 22
  • D is the distance from the evaluation point 25 to the candidate position 22
  • D is the distance from the evaluation point 25 to the candidate position 22
  • D d 1 +d 2 .
  • the units of ⁇ , d 1 , d 2 and D are meters, for example.
  • the point cloud data amount detection unit 15 extracts the point cloud data included in the first Fresnel zone 30 calculated by the Fresnel zone calculation unit 14 from the point cloud data stored in the point cloud data storage unit 12 . For example, the point cloud data amount detection unit 15 counts the number of three-dimensional coordinate data included in the extracted point cloud data, and detects the counted number as the point cloud data amount.
  • the determination unit 16 determines whether communication between the candidate positions 21 and 22 is possible based on the amount of point cloud data detected by the point cloud data amount detection unit 15 and a predetermined threshold value.
  • FIG. 3 is a flow chart showing the flow of processing performed by the station placement design device 1 of the first embodiment.
  • Candidate position selection section 13 selects two radio station candidate position data to be used as communication feasibility determination targets from radio station candidate position data storage section 11 in response to a selection operation by the user of station placement design apparatus 1 .
  • Candidate position selection section 13 outputs the selected two wireless station candidate position data to Fresnel zone calculation section 14 .
  • the Fresnel zone calculator 14 takes in two wireless station candidate position data output by the candidate position selector 13 .
  • the Fresnel zone calculator 14 determines a line segment between the two candidate positions 21 and 22 indicated by each of the two received radio station candidate position data (step S2).
  • the Fresnel zone calculator 14 calculates a spheroid centered on a straight line including the determined line segment, and defines the calculated spheroid as a first Fresnel zone 30 .
  • the Fresnel zone calculator 14 outputs the data of the spheroid representing the first Fresnel zone 30 to the point cloud data amount detector 15 (step S3).
  • the point cloud data amount detection unit 15 takes in the data of the spheroid representing the first Fresnel zone 30 output by the Fresnel zone calculation unit 14 .
  • the point cloud data amount detection unit 15 identifies the spatial range of the first Fresnel zone 30 based on the acquired data of the spheroid representing the first Fresnel zone 30 .
  • the point cloud data amount detection unit 15 extracts the point cloud data in the first Fresnel zone 30 by reading the point cloud data existing in the specified space range from the point cloud data storage unit 12 (step S4).
  • the point cloud data amount detection unit 15 counts the number of three-dimensional coordinate data included in the extracted point cloud data, and detects the counted number as the point cloud data amount.
  • the point cloud data amount detection unit 15 outputs the detected point cloud data amount to the determination unit 16 (step S5).
  • the determination unit 16 takes in the point cloud data amount output by the point cloud data amount detection unit 15 .
  • the determination unit 16 determines whether or not the amount of captured point cloud data is equal to or less than a predetermined threshold (step S6). If the determining unit 16 determines that the amount of captured point cloud data is equal to or less than the predetermined threshold value (step S6, Yes), each of the two wireless station candidate position data selected by the candidate position selecting unit 13 indicates It is determined that communication is possible between the candidate positions 21 and 22, that is, "communication is possible", and the determination result is output to the outside (step S7).
  • each of the two wireless station candidate position data selected by the candidate position selecting unit 13 is It is determined that communication cannot be established between the indicated candidate positions 21 and 22, that is, "communication is not possible", and the determination result is output to the outside (step S8).
  • outputting the determination results to the outside in steps S7 and S8 means, for example, that the determination unit 16 displays the determination results on a display or the like that the user of the station placement design device 1 can refer to.
  • the station placement design apparatus 1 of the first embodiment described above includes a wireless station candidate position data storage unit 11 that stores wireless station candidate position data indicating candidate positions for installing a wireless station apparatus in a three-dimensional space, a tertiary A point cloud data storage unit 12 is provided for storing point cloud data, which is data indicating the position in the three-dimensional space of the reflection point when the laser light irradiated to the original space reaches the shield and is reflected.
  • Candidate position selection section 13 selects two pieces of radio station candidate position data from radio station candidate position data storage section 11 .
  • the Fresnel zone calculator 14 calculates a first Fresnel zone between the candidate positions indicated by each of the two wireless station candidate position data selected by the candidate position selector 13 .
  • the point cloud data amount detection unit 15 detects the amount of point cloud data present in the first Fresnel zone calculated by the Fresnel zone calculation unit 14 based on the point cloud data stored in the point cloud data storage unit 12 . Based on the amount of point cloud data detected by the point cloud data amount detection unit 15 and a predetermined threshold value, the determination unit 16 determines whether each of the two wireless station candidate position data selected by the candidate position selection unit 13 indicates Determine whether communication between locations is possible. As a result, there is no need to perform line-of-sight determination based on point cloud data for each section of the first Fresnel zone 30, and the line-of-sight between candidate positions where two radio station devices are installed in consideration of the first Fresnel zone is eliminated. When applying the point cloud data to the determination process, it is possible to reduce the time required for the visibility determination process.
  • FIG. 4 is a block diagram showing the configuration of a station placement design device 1a according to the second embodiment.
  • the same reference numerals are assigned to the same configurations as in the first embodiment, and the different configurations will be described below.
  • a threshold value used when determining whether communication is possible is predetermined.
  • the measurement conditions such as the moving speed of the moving object on which the measuring device is mounted, the distance between the measuring device and the shield, and the interval measured by the measuring device, that is, the period at which the measuring device irradiates the laser light, differ. , the dispersion of the point cloud data in the three-dimensional space changes. Therefore, the use of appropriate threshold values for each measurement condition can improve the accuracy of determining whether communication is possible or not.
  • the station placement design device 1a of the second embodiment has a configuration that enables the use of appropriate threshold values.
  • the station placement design device 1a includes a wireless station candidate position data storage unit 11, a point cloud data storage unit 12, a candidate position selection unit 13, a Fresnel zone calculation unit 14, a point cloud data amount detection unit 15a, a determination unit 16a, and a threshold value selection unit. 17.
  • the point cloud data amount detection unit 15 a outputs the spheroid data indicating the first Fresnel zone 30 received from the Fresnel zone calculation unit 14 and the detected point cloud data amount to the threshold selection unit 17 .
  • the threshold selection unit 17 selects a threshold used when the determination unit 16a determines whether communication is possible. Specifically, the threshold selection unit 17 first calculates the volume of the first Fresnel zone 30 from the data of the spheroid representing the first Fresnel zone 30 . Next, the threshold selection unit 17 calculates the point density of the point cloud data in the first Fresnel zone 30 by dividing the point cloud data amount by the calculated volume of the first Fresnel zone 30 . For example, the threshold selection unit 17 stores in advance a table that associates a plurality of point density ranges with a threshold applied to each point density range. Detect from the table. The threshold selection unit 17 reads the threshold corresponding to the detected point density range, and selects the read threshold as the threshold used when the determination unit 16a determines whether or not communication is possible. The threshold selection unit 17 outputs the read threshold to the determination unit 16a.
  • the determination unit 16a captures the threshold output by the threshold selection unit 17, and determines whether communication between the candidate positions 21 and 22 is possible based on the point cloud data amount detected by the point cloud data amount detection unit 15a and the captured threshold. Determine whether it is possible.
  • the processing performed by the station placement design device 1a of the second embodiment is the same as the processing performed by the station placement design device 1 of the first embodiment shown in FIG. 3, except for the processing described below. .
  • the processing performed by the point cloud data amount detection unit 15 in the first embodiment is performed by the point cloud data amount detection unit 15a, and the processing performed by the determination unit 16 is performed by the determination unit 16a.
  • the parts to be changed or added are as follows.
  • the point cloud data amount detection unit 15a converts the spheroid data representing the first Fresnel zone 30 received from the Fresnel zone calculation unit 14 and the detected point cloud data amount into A process of outputting to the threshold selection unit 17 is performed.
  • the process of selecting the threshold by the threshold selection unit 17 is performed, and in the process of step S6, the determination unit 16a acquires the threshold output by the threshold selection unit 17. , the process of step S6 is performed using the captured threshold instead of the predetermined threshold.
  • the difference in point density in the first Fresnel zone 30 is regarded as the difference in the measurement conditions of the point cloud data, and the threshold selection unit 17 determines the point cloud in the first Fresnel zone 30 A threshold is chosen based on the point density of the data. Therefore, in addition to the effects of the station placement design device 1 of the first embodiment, when the measurement conditions of the point cloud data are different, an appropriate threshold can be used for each measurement condition, and communication availability can be determined. It becomes possible to improve the accuracy.
  • the point cloud data amount detection units 15 and 15a extract the point cloud data in the first Fresnel zone 30, and extract the three-dimensional coordinates included in the extracted point cloud data. The number of data is counted, and the counted number is detected as the amount of point cloud data.
  • the point cloud data amount detection units 15 and 15a write the extracted point cloud data in an internal storage area, and detect the capacity of the internal storage area after writing as the point cloud data amount. good too.
  • the unit of the threshold predetermined in the determination units 16 and 16a is not the number but the value indicating the capacity.
  • step S8 In the process of , instead of the process of outputting the determination result of "communication impossible" to the outside, details based on the ratio of existence of point cloud data for each cross section of the first Fresnel zone described with reference to FIGS. 5 to 7 It is also possible to apply a conventional method for determining a clear line of sight. Thus, even if the conventional method is applied to part of the configurations of the first and second embodiments, the conventional method is not applied when the process of step S7 is performed. This means that the time required for determination processing can be reduced.
  • the three-dimensional coordinate system of the point cloud data stored in the point cloud data storage unit 12 and the three-dimensional coordinate system of the wireless station candidate position data stored in the wireless station candidate position data storage unit 11 may be different from the original coordinate system.
  • the point cloud data amount detection units 15 and 15a convert the data of the spheroid indicating the first Fresnel zone 30 received from the Fresnel zone calculation unit 14 into the point cloud data stored in the point cloud data storage unit 12 as a cubic
  • the point cloud data in the first Fresnel zone 30 is extracted using the transformed ellipsoidal data after transformation into the original coordinate system.
  • step S6 the process of determining whether or not the value is equal to or less than the threshold is performed.
  • the present invention is not limited to this embodiment. may be replaced with the determination process.
  • the station placement design devices 1 and 1a in the above-described embodiments may be realized by a computer.
  • a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
  • the "computer system” referred to here includes hardware such as an OS and peripheral devices.
  • the term "computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
  • “computer-readable recording medium” means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as an FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array
  • It can be used for station placement design using 3D point cloud data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This station placement designing method comprises: selecting two pieces of radio station candidate position data from a radio station candidate position data storage unit; calculating a first Fresnel zone between the candidate positions indicated by the two respective selected pieces of radio station candidate position data; detecting, on the basis of point group data stored by a point group data storage unit, the amount of point group data existing in the calculated first Fresnel zone; and determining, on the basis of the detected amount of point group data and a threshold value, whether or not the communication is possible between the candidate positions indicated by the two respective selected pieces of radio station candidate position data.

Description

置局設計方法及び置局設計装置Station placement design method and station placement design device
 本発明は、点群データを用いて置局設計を行う置局設計方法及び置局設計装置に関する。 The present invention relates to a station placement design method and a station placement design device that perform station placement design using point cloud data.
 通信インフラである通信網に対してミリ波を活用するユースケースの提案が、IEEE(Institute of Electrical and Electronics Engineer)802.11ayにおいて行われている(例えば、非特許文献1参照)。ミリ波帯や準ミリ波帯等の高い周波数帯を利用して無線インフラを構築する取り組みが進められている。 A proposal for a use case utilizing millimeter waves for a communication network, which is a communication infrastructure, has been made in IEEE (Institute of Electrical and Electronics Engineer) 802.11ay (see, for example, Non-Patent Document 1). Efforts are being made to construct a wireless infrastructure using high frequency bands such as millimeter wave bands and quasi-millimeter wave bands.
 ミリ波帯や準ミリ波帯等の高い周波数帯では、電波の直進性が高く、回折等による電波の回り込みが期待できないため、遮蔽物の影響によって電波の到達に大きく影響を受けてしまう。そのため、従来の置局設計では、2つの無線局装置それぞれを設置する候補となる候補位置の間を直線で結んだ見通し線上に遮蔽物が存在するか否かに基づいて候補位置の間の見通し判定を行っていた。そして、従来の置局設計では、見通し判定の結果に基づいて、どの候補位置に無線局装置を設置するかを決めていた(例えば、特許文献1参照)。  In high frequency bands such as the millimeter wave band and quasi-millimeter wave band, radio waves travel in a straight line and cannot be expected to wrap around due to diffraction, etc., so the arrival of radio waves is greatly affected by the influence of shielding objects. Therefore, in the conventional station placement design, the line of sight between the candidate positions for installing two radio station devices is determined based on whether or not there is an obstruction on the line of sight connecting the candidate positions with a straight line. was making judgments. Then, in the conventional station placement design, it was determined at which candidate position the radio station apparatus should be installed based on the result of the line-of-sight determination (see, for example, Patent Document 1).
 上記の従来の置局設計では、見通し線上に遮蔽物が存在する場合、一律に通信ができないと判定してしまう。しかし、無線電波は、第1フレネルゾーンに広がって伝搬することが知られている。そのため、2つの無線局装置間の見通し線上に遮蔽物が存在する場合であっても通信ができる場合もある。逆に、見通し線上に遮蔽物が存在しない場合でも、第1フレネルゾーンに遮蔽物が存在する場合に、通信ができない場合もある。 With the above conventional station placement design, if there is a shielding object in the line of sight, it will be uniformly determined that communication is not possible. However, radio waves are known to propagate across the first Fresnel zone. Therefore, communication may be possible even when there is an obstacle in the line of sight between two radio station apparatuses. Conversely, even if there is no shielding object in the line of sight, communication may not be possible if there is a shielding object in the first Fresnel zone.
 これに対して、通信インフラの設備を監視するために、三次元の点群データを活用することも進められている(例えば、非特許文献2参照)。三次元の点群データを利用することで、第1フレネルゾーン内の遮蔽物の影響を考慮した見通し判定を行うことが可能になる。 On the other hand, the use of three-dimensional point cloud data is also being promoted to monitor communication infrastructure equipment (see, for example, Non-Patent Document 2). By using the three-dimensional point cloud data, it is possible to perform visibility determination considering the influence of obstructions in the first Fresnel zone.
 三次元の点群データは、例えば、以下の手順によって生成される。評価対象となる空間を移動する車両などの移動体に搭載された測定装置が、一定周期で周囲に対してレーザ光を照射する。レーザ光が遮蔽物に到達して反射する反射波を測定装置が受信することにより、レーザ光を照射してから反射波を受けるまでのレーザ光の往復時間と、レーザ光を照射した測定装置の位置とに基づいて、遮蔽物においてレーザ光を反射した反射点の三次元空間における位置を示す三次元座標データを求めることができる。このレーザ光の照射を評価対象の空間の全体に対して行うことにより、評価対象の空間における複数の三次元座標データを含む点群データが得られることになる。  Three-dimensional point cloud data is generated, for example, by the following procedure. A measuring device mounted on a moving object such as a vehicle that moves in the space to be evaluated irradiates the surroundings with laser light at regular intervals. When the measuring device receives the reflected wave of the laser light that reaches the shield and is reflected, the round-trip time of the laser light from the irradiation of the laser light to the reception of the reflected wave and the time of the measuring device that irradiated the laser light are calculated. Three-dimensional coordinate data indicating the position in the three-dimensional space of the reflection point where the laser beam is reflected by the shield can be obtained based on the position. By irradiating the entire space to be evaluated with this laser beam, point cloud data including a plurality of three-dimensional coordinate data in the space to be evaluated can be obtained.
 第1フレネルゾーン内の遮蔽物の影響を考慮した見通し判定は、例えば、図5から図7に示すように、第1フレネルゾーンの断面の各々における点群データの有無に基づいて行われる。図5から図7において、符号101で示す位置が、送信側の無線局装置を設置する候補位置であり、符号102で示す位置が、受信側の無線局装置を設置する候補位置である。以下、候補位置101、候補位置102という。なお、候補位置101が受信側であり、候補位置102が送信側であってもよい。 The line-of-sight determination that considers the influence of obstructions in the first Fresnel zone is performed based on the presence or absence of point cloud data in each cross-section of the first Fresnel zone, as shown in FIGS. 5 to 7, for example. 5 to 7, positions indicated by reference numeral 101 are candidate positions for installing the radio station apparatus on the transmitting side, and positions indicated by reference numeral 102 are candidate positions for installing the radio station apparatus on the receiving side. Hereinafter, they are referred to as a candidate position 101 and a candidate position 102 . The candidate position 101 may be the receiving side and the candidate position 102 may be the transmitting side.
 候補位置101と、候補位置102が定められると、その間の第1フレネルゾーン200を演算により求めることができる。図5に示す場合、候補位置101と、候補位置102の間に遮蔽物が存在しないため、第1フレネルゾーン200における評価対象の全ての断面201~211において、点群データは存在しないことになる。なお、図5から図7では、一例として、11個の第1フレネルゾーン200の評価対象の断面201~211を示しているが、評価対象の断面数は、11個に限られるものではない。 When the candidate position 101 and the candidate position 102 are determined, the first Fresnel zone 200 between them can be calculated. In the case shown in FIG. 5, since there is no obstruction between the candidate position 101 and the candidate position 102, point cloud data does not exist in all cross sections 201 to 211 to be evaluated in the first Fresnel zone 200. . Although FIGS. 5 to 7 show 11 cross sections 201 to 211 of the first Fresnel zone 200 to be evaluated as an example, the number of cross sections to be evaluated is not limited to 11.
 図6では、建物301という遮蔽物が存在しているため、例えば、断面207,208,210などにおいて、ハッチングの範囲によって示すように、点群データが存在することになる。図7では、図6の建物301よりも小さい樹木302の遮蔽物が存在しているために、断面201,202等には点群データは存在していないが、断面209において、ハッチングの範囲によって示すように、点群データが存在することになる。 In FIG. 6, since there is a building 301 as an obstructing object, point cloud data exists in cross sections 207, 208, and 210, for example, as indicated by the hatched ranges. In FIG. 7, there is a tree 302 which is smaller than the building 301 in FIG. As shown, there will be point cloud data.
 このように、第1フレネルゾーン200における評価対象の全断面201~211における点群データが存在する割合を利用することで、見通し線のみを用いる場合よりも、より正確に2つの候補位置101,102の間の見通し判定を行うことが可能になる。 In this way, by using the ratio of existence of point cloud data in all sections 201 to 211 to be evaluated in the first Fresnel zone 200, two candidate positions 101, It becomes possible to perform line-of-sight determination during 102 .
特開2006-352551号公報JP 2006-352551 A
 しかしながら、第1フレネルゾーン200の評価対象の断面201~211の各々における点群データの割合に基づいて見通し判定を行う場合、実際には、非常に多くの断面201~211を対象とする必要がある。そのため、見通し判定の処理において、非常に長い時間を要するという問題がある。 However, when the visibility is determined based on the ratio of the point cloud data in each of the cross sections 201 to 211 to be evaluated in the first Fresnel zone 200, it is actually necessary to target a very large number of cross sections 201 to 211. be. Therefore, there is a problem that it takes a very long time in the process of determining the visibility.
 上記事情に鑑み、本発明は、第1フレネルゾーンを考慮した2つの無線局装置を設置する候補となる候補位置の間の見通し判定の処理に点群データを適用する際に、見通し判定処理に要する時間を低減することができる技術の提供を目的としている。 In view of the above circumstances, the present invention provides, when applying point cloud data to the process of determining visibility between candidate positions that are candidates for installing two radio station devices in consideration of the first Fresnel zone, in the process of determining visibility. The purpose is to provide a technology that can reduce the time required.
 本発明の一態様は、三次元空間における無線局装置を設置する候補となる位置を示す無線局候補位置データを、無線局候補位置データ記憶部に記憶させる無線局候補位置データ記録ステップと、前記三次元空間に対して照射されるレーザ光が遮蔽物に到達して反射する際の反射点の前記三次元空間における位置を示すデータである点群データを点群データ記憶部に記憶させる点群データ記録ステップと、前記無線局候補位置データ記憶部から2つの前記無線局候補位置データを選択する候補位置選択ステップと、選択した2つの前記無線局候補位置データの各々が示す候補位置の間の第1フレネルゾーンを算出するフレネルゾーン算出ステップと、算出した前記第1フレネルゾーン内に存在する前記点群データの量を前記点群データ記憶部が記憶する前記点群データに基づいて検出する点群データ量検出ステップと、検出した前記点群データの量と、閾値とに基づいて、前記候補位置選択ステップにおいて選択した2つの前記無線局候補位置データの各々が示す候補位置の間の通信可否を判定する判定ステップと、を含む置局設計方法である。 According to one aspect of the present invention, a radio station candidate position data recording step of storing, in a radio station candidate position data storage unit, radio station candidate position data indicating a candidate position for installing a radio station device in a three-dimensional space; Point cloud data, which is data indicating the position in the three-dimensional space of the reflection point when the laser light irradiated to the three-dimensional space reaches the shield and is reflected, is stored in the point cloud data storage unit. a data recording step; a candidate position selecting step of selecting two of the wireless station candidate position data from the wireless station candidate position data storage unit; a Fresnel zone calculation step of calculating a first Fresnel zone; and a point of detecting an amount of the point cloud data present in the calculated first Fresnel zone based on the point cloud data stored in the point cloud data storage unit. Based on the group data amount detection step, the amount of the detected point cloud data, and a threshold value, the possibility of communication between the candidate positions indicated by each of the two wireless station candidate position data selected in the candidate position selection step. and a determination step of determining the station position design method.
 本発明の一態様は、三次元空間における無線局装置を設置する候補となる位置を示す無線局候補位置データを記憶する無線局候補位置データ記憶部と、前記三次元空間に対して照射されるレーザ光が遮蔽物に到達して反射する際の反射点の前記三次元空間における位置を示すデータである点群データを記憶する点群データ記憶部と、前記無線局候補位置データ記憶部から2つの前記無線局候補位置データを選択する候補位置選択部と、前記候補位置選択部が選択する2つの前記無線局候補位置データの各々が示す候補位置の間の第1フレネルゾーンを算出するフレネルゾーン算出部と、前記フレネルゾーン算出部が算出する前記第1フレネルゾーン内に存在する前記点群データの量を前記点群データ記憶部が記憶する前記点群データに基づいて検出する点群データ量検出部と、前記点群データ量検出部が検出する前記点群データの量と、閾値とに基づいて、前記候補位置選択部が選択した2つの前記無線局候補位置データの各々が示す候補位置の間の通信可否を判定する判定部と、を備える置局設計装置である。 One aspect of the present invention is a wireless station candidate position data storage unit that stores wireless station candidate position data indicating candidate positions for installing a wireless station device in a three-dimensional space; 2 from a point cloud data storage unit for storing point cloud data, which is data indicating positions in the three-dimensional space of reflection points when the laser light reaches and is reflected by a shield; and the radio station candidate position data storage unit. a candidate location selection unit that selects two radio station candidate location data; and a Fresnel zone that calculates a first Fresnel zone between candidate locations indicated by each of the two wireless station candidate location data selected by the candidate location selection unit. and a point cloud data amount for detecting the amount of the point cloud data present in the first Fresnel zone calculated by the Fresnel zone calculation unit based on the point cloud data stored in the point cloud data storage unit. Candidate positions indicated by each of the two radio station candidate position data selected by the candidate position selecting unit based on the detecting unit, the amount of the point cloud data detected by the point cloud data amount detecting unit, and a threshold. and a determination unit that determines whether or not communication is possible between.
 本発明により、第1フレネルゾーンを考慮した2つの無線局装置を設置する候補となる候補位置の間の見通し判定の処理に点群データを適用する際に、見通し判定処理に要する時間を低減することが可能になる。 According to the present invention, when applying point cloud data to processing of line-of-sight determination between candidate positions where two radio station devices are installed considering the first Fresnel zone, the time required for line-of-sight determination processing is reduced. becomes possible.
第1の実施形態の置局設計装置の構成を示すブロック図である。1 is a block diagram showing the configuration of a station placement design device according to a first embodiment; FIG. 第1フレネルゾーンの構成を示す図である。It is a figure which shows the structure of a 1st Fresnel zone. 第1の実施形態の置局設計装置が行う処理の流れを示すフローチャートである。4 is a flow chart showing the flow of processing performed by the station placement design device of the first embodiment; 第2の実施形態の置局設計装置の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of a station placement design device according to a second embodiment; FIG. 第1フレネルゾーンにおける断面による評価の例(その1)を示す図である。FIG. 10 is a diagram showing an example (part 1) of evaluation by a cross section in the first Fresnel zone; 第1フレネルゾーンにおける断面による評価の例(その2)を示す図である。FIG. 10 is a diagram showing an example (part 2) of evaluation by a cross section in the first Fresnel zone; 第1フレネルゾーンにおける断面による評価の例(その3)を示す図である。FIG. 10 is a diagram showing an example (part 3) of evaluation by a cross section in the first Fresnel zone;
(第1の実施形態)
 以下、本発明の実施形態について図面を参照して説明する。図1は、第1の実施形態における置局設計装置1の構成を示すブロック図である。置局設計装置1は、無線局候補位置データ記憶部11、点群データ記憶部12、候補位置選択部13、フレネルゾーン算出部14、点群データ量検出部15及び判定部16を備える。
(First embodiment)
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a station placement design device 1 according to the first embodiment. The station placement design device 1 includes a wireless station candidate position data storage unit 11 , a point cloud data storage unit 12 , a candidate position selection unit 13 , a Fresnel zone calculation unit 14 , a point cloud data amount detection unit 15 and a determination unit 16 .
 無線局候補位置データ記憶部11は、無線局候補位置データを予め記憶する。無線局候補位置データは、三次元空間における無線局装置を設置する候補となる位置を示すデータである。ここで、無線局候補位置データの各々は、例えば、三次元の空間座標系における1点の位置を示す三次元座標データである。ここで、無線局候補位置データが示す候補位置は、無線基地局用の装置を設置する候補となる位置と、無線端末局用の装置を設置する候補となる位置との両方の種類を含んでいるものとする。 The wireless station candidate position data storage unit 11 stores wireless station candidate position data in advance. The wireless station candidate position data is data indicating candidate positions for installing the wireless station device in the three-dimensional space. Here, each piece of wireless station candidate position data is, for example, three-dimensional coordinate data indicating the position of one point in a three-dimensional spatial coordinate system. Here, the candidate positions indicated by the radio station candidate position data include both types of candidate positions for installing equipment for radio base stations and candidate positions for installing equipment for radio terminal stations. It is assumed that there is
 点群データ記憶部12は、点群データを予め記憶する。点群データ記憶部12に記憶される点群データは、三次元空間に対して照射されるレーザ光が遮蔽物に到達して反射する際の反射点の三次元空間における位置を示す三次元座標データである。点群データは、1つ以上の三次元座標データを含むデータとして定義されるが、実際には、膨大な数の三次元座標データを含むデータである。点群データに含まれる三次元座標データの各々は、遮蔽物におけるレーザ光を反射した1点を示すことになる。したがって、点群データを三次元座標系において表示すると、遮蔽物の形状が点によって表されることになる。ここでは、点群データ記憶部12が記憶する点群データの三次元座標系と、無線局候補位置データ記憶部11が記憶する無線局候補位置データの三次元座標系とは一致しているものとする。 The point cloud data storage unit 12 stores point cloud data in advance. The point cloud data stored in the point cloud data storage unit 12 are three-dimensional coordinates indicating the position in the three-dimensional space of the reflection point when the laser beam irradiated to the three-dimensional space reaches the shield and is reflected. Data. Point cloud data is defined as data containing one or more pieces of three-dimensional coordinate data, but in reality it is data containing a huge number of three-dimensional coordinate data. Each piece of three-dimensional coordinate data included in the point cloud data indicates one point on the shield that reflects the laser beam. Therefore, when the point cloud data is displayed in a three-dimensional coordinate system, the shape of the shield is represented by points. Here, the three-dimensional coordinate system of the point cloud data stored in the point cloud data storage unit 12 and the three-dimensional coordinate system of the wireless station candidate position data stored in the wireless station candidate position data storage unit 11 match. and
 候補位置選択部13は、無線局候補位置データ記憶部11から通信可否の判定対象とする2つの無線局候補位置データを選択する。候補位置選択部13が選択する2つの無線局候補位置データの組み合わせは、例えば、無線基地局装置の無線局候補位置データと、無線端末局装置の無線局候補位置データとの組み合わせである。フレネルゾーン算出部14は、候補位置選択部13が選択した2つの無線局候補位置データの各々が示す2つの候補位置の間の第1フレネルゾーンを算出する。 The candidate position selection unit 13 selects two pieces of wireless station candidate position data to be used as communication availability determination targets from the wireless station candidate position data storage unit 11 . The combination of the two radio station candidate position data selected by the candidate position selection unit 13 is, for example, the combination of the radio station candidate position data of the radio base station apparatus and the radio station candidate position data of the radio terminal station apparatus. The Fresnel zone calculator 14 calculates a first Fresnel zone between two candidate positions indicated by each of the two wireless station candidate position data selected by the candidate position selector 13 .
 図2は、候補位置選択部13が選択した2つの無線局候補位置データが示す位置が、それぞれ候補位置21,22であり、候補位置21,22の間の距離がDである場合にフレネルゾーン算出部14が算出する第1フレネルゾーン30の構成を示す図である。第1フレネルゾーン30は、図2に示すように候補位置21,22を結ぶ直線を回転軸として楕円を回転させて形成される回転楕円体であり、候補位置21,22を結ぶ線分上の任意の1点である第1フレネルゾーン30の評価点25における断面の円の半径rは、次式(1)によって定義される。 FIG. 2 shows the Fresnel zone when the positions indicated by the two wireless station candidate position data selected by the candidate position selection unit 13 are candidate positions 21 and 22, respectively, and the distance between the candidate positions 21 and 22 is D. 3 is a diagram showing a configuration of a first Fresnel zone 30 calculated by a calculator 14; FIG. The first Fresnel zone 30 is a spheroid formed by rotating an ellipse around the straight line connecting the candidate positions 21 and 22 as shown in FIG. The radius r of the cross-sectional circle at the evaluation point 25 of the first Fresnel zone 30, which is an arbitrary point, is defined by the following equation (1).
 r={γ×d×d/(d+d)}1/2・・・(1) r={γ×d 1 ×d 2 /(d 1 +d 2 )} 1/2 (1)
 式(1)において、γは候補位置21,22への設置が予定される無線局装置が送受信する無線電波の波長であり、dは候補位置21から評価点25までの距離であり、dは評価点25から候補位置22までの距離である。D=d+dである。なお、γ、d、d、Dの単位は、例えばメートルである。 In equation (1), γ is the wavelength of radio waves transmitted and received by the radio station devices scheduled to be installed at the candidate positions 21 and 22, d1 is the distance from the candidate position 21 to the evaluation point 25, and d 2 is the distance from the evaluation point 25 to the candidate position 22; D=d 1 +d 2 . Note that the units of γ, d 1 , d 2 and D are meters, for example.
 点群データ量検出部15は、点群データ記憶部12が記憶する点群データの中からフレネルゾーン算出部14が算出した第1フレネルゾーン30に含まれる点群データを抽出する。点群データ量検出部15は、例えば、抽出した点群データに含まれる三次元座標データの数をカウントし、カウントした数を点群データ量として検出する。 The point cloud data amount detection unit 15 extracts the point cloud data included in the first Fresnel zone 30 calculated by the Fresnel zone calculation unit 14 from the point cloud data stored in the point cloud data storage unit 12 . For example, the point cloud data amount detection unit 15 counts the number of three-dimensional coordinate data included in the extracted point cloud data, and detects the counted number as the point cloud data amount.
 判定部16は、点群データ量検出部15が検出した点群データ量と、予め定められる閾値とに基づいて、候補位置21,22の間の通信が可能であるか否かを判定する。 The determination unit 16 determines whether communication between the candidate positions 21 and 22 is possible based on the amount of point cloud data detected by the point cloud data amount detection unit 15 and a predetermined threshold value.
(第1の実施形態の置局設計装置による処理)
 図3は、第1の実施形態の置局設計装置1が行う処理の流れを示すフローチャートである。候補位置選択部13は、置局設計装置1の利用者による選択操作を受けて、無線局候補位置データ記憶部11から通信可否の判定対象とする2つの無線局候補位置データを選択する。候補位置選択部13は、選択した2つの無線局候補位置データをフレネルゾーン算出部14に出力する。
(Processing by the station placement design device of the first embodiment)
FIG. 3 is a flow chart showing the flow of processing performed by the station placement design device 1 of the first embodiment. Candidate position selection section 13 selects two radio station candidate position data to be used as communication feasibility determination targets from radio station candidate position data storage section 11 in response to a selection operation by the user of station placement design apparatus 1 . Candidate position selection section 13 outputs the selected two wireless station candidate position data to Fresnel zone calculation section 14 .
 フレネルゾーン算出部14は、候補位置選択部13が出力する2つの無線局候補位置データを取り込む。フレネルゾーン算出部14は、取り込んだ2つの無線局候補位置データの各々が示す2つの候補位置21,22の間の線分を定める(ステップS2)。フレネルゾーン算出部14は、定めた線分を含む直線を中心とする回転楕円体を算出し、算出した回転楕円体を第1フレネルゾーン30とする。フレネルゾーン算出部14は、第1フレネルゾーン30を示す回転楕円体のデータを点群データ量検出部15に出力する(ステップS3)。 The Fresnel zone calculator 14 takes in two wireless station candidate position data output by the candidate position selector 13 . The Fresnel zone calculator 14 determines a line segment between the two candidate positions 21 and 22 indicated by each of the two received radio station candidate position data (step S2). The Fresnel zone calculator 14 calculates a spheroid centered on a straight line including the determined line segment, and defines the calculated spheroid as a first Fresnel zone 30 . The Fresnel zone calculator 14 outputs the data of the spheroid representing the first Fresnel zone 30 to the point cloud data amount detector 15 (step S3).
 点群データ量検出部15は、フレネルゾーン算出部14が出力する第1フレネルゾーン30を示す回転楕円体のデータを取り込む。点群データ量検出部15は、取り込んだ第1フレネルゾーン30を示す回転楕円体のデータに基づいて、第1フレネルゾーン30の空間の範囲を特定する。点群データ量検出部15は、特定した空間の範囲に存在する点群データを点群データ記憶部12から読み出すことにより、第1フレネルゾーン30内の点群データを抽出する(ステップS4)。 The point cloud data amount detection unit 15 takes in the data of the spheroid representing the first Fresnel zone 30 output by the Fresnel zone calculation unit 14 . The point cloud data amount detection unit 15 identifies the spatial range of the first Fresnel zone 30 based on the acquired data of the spheroid representing the first Fresnel zone 30 . The point cloud data amount detection unit 15 extracts the point cloud data in the first Fresnel zone 30 by reading the point cloud data existing in the specified space range from the point cloud data storage unit 12 (step S4).
 点群データ量検出部15は、抽出した点群データに含まれる三次元座標データの数をカウントし、カウントした数を点群データ量として検出する。点群データ量検出部15は、検出した点群データ量を判定部16に出力する(ステップS5)。 The point cloud data amount detection unit 15 counts the number of three-dimensional coordinate data included in the extracted point cloud data, and detects the counted number as the point cloud data amount. The point cloud data amount detection unit 15 outputs the detected point cloud data amount to the determination unit 16 (step S5).
 判定部16は、点群データ量検出部15が出力する点群データ量を取り込む。判定部16は、取り込んだ点群データ量が、予め定められる閾値以下であるか否かを判定する(ステップS6)。判定部16は、取り込んだ点群データ量が、予め定められる閾値以下であると判定した場合(ステップS6、Yes)、候補位置選択部13が選択した2つの無線局候補位置データの各々が示す候補位置21,22の間において通信ができる、すなわち「通信可」であると判定し、判定結果を外部に出力する(ステップS7)。 The determination unit 16 takes in the point cloud data amount output by the point cloud data amount detection unit 15 . The determination unit 16 determines whether or not the amount of captured point cloud data is equal to or less than a predetermined threshold (step S6). If the determining unit 16 determines that the amount of captured point cloud data is equal to or less than the predetermined threshold value (step S6, Yes), each of the two wireless station candidate position data selected by the candidate position selecting unit 13 indicates It is determined that communication is possible between the candidate positions 21 and 22, that is, "communication is possible", and the determination result is output to the outside (step S7).
 一方、判定部16は、取り込んだ点群データ量が、予め定められる閾値以下でないと判定した場合(ステップS6、No)、候補位置選択部13が選択した2つの無線局候補位置データの各々が示す候補位置21,22の間において通信ができない、すなわち「通信不可」であると判定し、判定結果を外部に出力する(ステップS8)。ここで、ステップS7,S8における外部への判定結果の出力とは、例えば、判定部16が、置局設計装置1の利用者が参照可能なディスプレイなどに判定結果を表示することである。 On the other hand, if the determining unit 16 determines that the acquired point cloud data amount is not equal to or less than the predetermined threshold value (step S6, No), each of the two wireless station candidate position data selected by the candidate position selecting unit 13 is It is determined that communication cannot be established between the indicated candidate positions 21 and 22, that is, "communication is not possible", and the determination result is output to the outside (step S8). Here, outputting the determination results to the outside in steps S7 and S8 means, for example, that the determination unit 16 displays the determination results on a display or the like that the user of the station placement design device 1 can refer to.
 上記の第1の実施形態の置局設計装置1は、三次元空間における無線局装置を設置する候補となる位置を示す無線局候補位置データを記憶する無線局候補位置データ記憶部11と、三次元空間に対して照射されるレーザ光が遮蔽物に到達して反射する際の反射点の三次元空間における位置を示すデータである点群データを記憶する点群データ記憶部12とを備える。候補位置選択部13は、無線局候補位置データ記憶部11から2つの無線局候補位置データを選択する。フレネルゾーン算出部14は、候補位置選択部13が選択する2つの無線局候補位置データの各々が示す候補位置の間の第1フレネルゾーンを算出する。点群データ量検出部15は、フレネルゾーン算出部14が算出する第1フレネルゾーン内に存在する点群データの量を点群データ記憶部12が記憶する点群データに基づいて検出する。判定部16は、点群データ量検出部15が検出する点群データの量と、予め定められる閾値とに基づいて、候補位置選択部13が選択した2つの無線局候補位置データの各々が示す位置の間の通信可否を判定する。これにより、第1フレネルゾーン30の断面ごとにおいて点群データに基づいて見通し判定を行う必要がなくなり、第1フレネルゾーンを考慮した2つの無線局装置を設置する候補となる候補位置の間の見通し判定の処理に点群データを適用する際に、見通し判定処理に要する時間を低減ことが可能になる。 The station placement design apparatus 1 of the first embodiment described above includes a wireless station candidate position data storage unit 11 that stores wireless station candidate position data indicating candidate positions for installing a wireless station apparatus in a three-dimensional space, a tertiary A point cloud data storage unit 12 is provided for storing point cloud data, which is data indicating the position in the three-dimensional space of the reflection point when the laser light irradiated to the original space reaches the shield and is reflected. Candidate position selection section 13 selects two pieces of radio station candidate position data from radio station candidate position data storage section 11 . The Fresnel zone calculator 14 calculates a first Fresnel zone between the candidate positions indicated by each of the two wireless station candidate position data selected by the candidate position selector 13 . The point cloud data amount detection unit 15 detects the amount of point cloud data present in the first Fresnel zone calculated by the Fresnel zone calculation unit 14 based on the point cloud data stored in the point cloud data storage unit 12 . Based on the amount of point cloud data detected by the point cloud data amount detection unit 15 and a predetermined threshold value, the determination unit 16 determines whether each of the two wireless station candidate position data selected by the candidate position selection unit 13 indicates Determine whether communication between locations is possible. As a result, there is no need to perform line-of-sight determination based on point cloud data for each section of the first Fresnel zone 30, and the line-of-sight between candidate positions where two radio station devices are installed in consideration of the first Fresnel zone is eliminated. When applying the point cloud data to the determination process, it is possible to reduce the time required for the visibility determination process.
(第2の実施形態)
 図4は、第2の実施形態における置局設計装置1aの構成を示すブロック図である。第2の実施形態の置局設計装置1aにおいて、第1の実施形態と同一の構成については、同一の符号を付し、以下、異なる構成について説明する。
(Second embodiment)
FIG. 4 is a block diagram showing the configuration of a station placement design device 1a according to the second embodiment. In the station placement designing apparatus 1a of the second embodiment, the same reference numerals are assigned to the same configurations as in the first embodiment, and the different configurations will be described below.
 第1の実施形態の置局設計装置1が備える判定部16では、通信が可能であるか否かの判定を行う際に用いる閾値が予め定められていた。実際には、測定装置を搭載した移動体の移動速度、測定装置と遮蔽物との間の距離、測定装置が測定する間隔、すなわち、測定装置がレーザ光を照射する周期などの測定条件が異なると、三次元空間における点群データのバラツキが変化する。そのため、それぞれの測定条件に対して適切な閾値が用いられる方が、通信可否の判定精度を高めることができることになる。第2の実施形態の置局設計装置1aでは、適切な閾値を用いることを可能にする構成を備えている。 In the determination unit 16 provided in the station placement design device 1 of the first embodiment, a threshold value used when determining whether communication is possible is predetermined. In practice, the measurement conditions such as the moving speed of the moving object on which the measuring device is mounted, the distance between the measuring device and the shield, and the interval measured by the measuring device, that is, the period at which the measuring device irradiates the laser light, differ. , the dispersion of the point cloud data in the three-dimensional space changes. Therefore, the use of appropriate threshold values for each measurement condition can improve the accuracy of determining whether communication is possible or not. The station placement design device 1a of the second embodiment has a configuration that enables the use of appropriate threshold values.
 置局設計装置1aは、無線局候補位置データ記憶部11、点群データ記憶部12、候補位置選択部13、フレネルゾーン算出部14、点群データ量検出部15a、判定部16a及び閾値選定部17を備える。 The station placement design device 1a includes a wireless station candidate position data storage unit 11, a point cloud data storage unit 12, a candidate position selection unit 13, a Fresnel zone calculation unit 14, a point cloud data amount detection unit 15a, a determination unit 16a, and a threshold value selection unit. 17.
 点群データ量検出部15aは、フレネルゾーン算出部14から受けた第1フレネルゾーン30を示す回転楕円体のデータと、検出した点群データ量とを閾値選定部17に出力する。 The point cloud data amount detection unit 15 a outputs the spheroid data indicating the first Fresnel zone 30 received from the Fresnel zone calculation unit 14 and the detected point cloud data amount to the threshold selection unit 17 .
 閾値選定部17は、判定部16aが通信可否の判定の際に用いる閾値を選定する。具体的には、閾値選定部17は、まず第1フレネルゾーン30を示す回転楕円体のデータから第1フレネルゾーン30の体積を算出する。次に、閾値選定部17は、点群データ量を、算出した第1フレネルゾーン30の体積で除算することにより、第1フレネルゾーン30における点群データの点密度を算出する。閾値選定部17は、例えば、複数の点密度の範囲と、点密度の範囲ごとに適用する閾値とを対応付けたテーブルを予め記憶しており、算出した点密度が含まれる点密度の範囲を当該テーブルから検出する。閾値選定部17は、検出した点密度の範囲に対応する閾値を読み出し、読み出した閾値を判定部16aが通信可否の判定の際に用いる閾値として選定する。閾値選定部17は、読み出した閾値を判定部16aに出力する。 The threshold selection unit 17 selects a threshold used when the determination unit 16a determines whether communication is possible. Specifically, the threshold selection unit 17 first calculates the volume of the first Fresnel zone 30 from the data of the spheroid representing the first Fresnel zone 30 . Next, the threshold selection unit 17 calculates the point density of the point cloud data in the first Fresnel zone 30 by dividing the point cloud data amount by the calculated volume of the first Fresnel zone 30 . For example, the threshold selection unit 17 stores in advance a table that associates a plurality of point density ranges with a threshold applied to each point density range. Detect from the table. The threshold selection unit 17 reads the threshold corresponding to the detected point density range, and selects the read threshold as the threshold used when the determination unit 16a determines whether or not communication is possible. The threshold selection unit 17 outputs the read threshold to the determination unit 16a.
 判定部16aは、閾値選定部17が出力する閾値を取り込み、点群データ量検出部15aが検出した点群データ量と、取り込んだ閾値とに基づいて、候補位置21,22の間の通信が可能であるか否かを判定する。 The determination unit 16a captures the threshold output by the threshold selection unit 17, and determines whether communication between the candidate positions 21 and 22 is possible based on the point cloud data amount detected by the point cloud data amount detection unit 15a and the captured threshold. Determine whether it is possible.
 第2の実施形態の置局設計装置1aが行う処理は、以下に示す処理を除いて、図3に示した第1の実施形態の置局設計装置1が行う処理と同一の処理が行われる。なお、第1の実施形態における点群データ量検出部15が行う処理は、点群データ量検出部15aが行い、判定部16が行う処理は、判定部16aが行うことになる。 The processing performed by the station placement design device 1a of the second embodiment is the same as the processing performed by the station placement design device 1 of the first embodiment shown in FIG. 3, except for the processing described below. . The processing performed by the point cloud data amount detection unit 15 in the first embodiment is performed by the point cloud data amount detection unit 15a, and the processing performed by the determination unit 16 is performed by the determination unit 16a.
 第2の実施形態の場合に、変更、または、追加される箇所は、以下の通りである。図3のステップS5の処理の最後に、点群データ量検出部15aが、フレネルゾーン算出部14から受けた第1フレネルゾーン30を示す回転楕円体のデータと、検出した点群データ量とを閾値選定部17に出力する処理を行う。図3のステップS6の処理が行われる前に、上記した閾値選定部17による閾値を選定する処理が行われ、ステップS6の処理において、判定部16aは、閾値選定部17が出力する閾値を取り込み、予め定められる閾値に替えて、取り込んだ閾値を用いてステップS6の処理を行う。 In the case of the second embodiment, the parts to be changed or added are as follows. At the end of the process of step S5 in FIG. 3, the point cloud data amount detection unit 15a converts the spheroid data representing the first Fresnel zone 30 received from the Fresnel zone calculation unit 14 and the detected point cloud data amount into A process of outputting to the threshold selection unit 17 is performed. Before the process of step S6 in FIG. 3 is performed, the process of selecting the threshold by the threshold selection unit 17 is performed, and in the process of step S6, the determination unit 16a acquires the threshold output by the threshold selection unit 17. , the process of step S6 is performed using the captured threshold instead of the predetermined threshold.
 第2の実施形態の置局設計装置1aでは、第1フレネルゾーン30における点密度の違いを、点群データの測定条件の違いとみなし、閾値選定部17が、第1フレネルゾーン30における点群データの点密度に基づいて閾値を選定する。そのため、第1の実施形態の置局設計装置1が奏する効果に加えて、点群データの測定条件が異なる場合、それぞれの測定条件に対して適切な閾値が用いることができ、通信可否の判定精度を高めることが可能になる。 In the station placement design device 1a of the second embodiment, the difference in point density in the first Fresnel zone 30 is regarded as the difference in the measurement conditions of the point cloud data, and the threshold selection unit 17 determines the point cloud in the first Fresnel zone 30 A threshold is chosen based on the point density of the data. Therefore, in addition to the effects of the station placement design device 1 of the first embodiment, when the measurement conditions of the point cloud data are different, an appropriate threshold can be used for each measurement condition, and communication availability can be determined. It becomes possible to improve the accuracy.
 なお、上記の第1及び第2の実施形態では、点群データ量検出部15,15aは、第1フレネルゾーン30内の点群データを抽出し、抽出した点群データに含まれる三次元座標データの数をカウントし、カウントした数を点群データ量として検出している。これに対して、点群データ量検出部15,15aは、抽出した点群データを内部の記憶領域に書き込み、書き込んだ後の内部の記憶領域の容量を点群データ量として検出するようにしてもよい。この場合、判定部16,16aにおいて予め定められる閾値の単位は、個数ではなく、容量を示す値になる。 In the first and second embodiments described above, the point cloud data amount detection units 15 and 15a extract the point cloud data in the first Fresnel zone 30, and extract the three-dimensional coordinates included in the extracted point cloud data. The number of data is counted, and the counted number is detected as the amount of point cloud data. On the other hand, the point cloud data amount detection units 15 and 15a write the extracted point cloud data in an internal storage area, and detect the capacity of the internal storage area after writing as the point cloud data amount. good too. In this case, the unit of the threshold predetermined in the determination units 16 and 16a is not the number but the value indicating the capacity.
 上記の第1及び第2の実施形態により、判定部16,16aが、ステップS6の処理において、点群データ量が閾値以下でない、すなわち点群データ量が閾値を超える量である場合、ステップS8の処理において、「通信不可」の判定結果を外部に出力する処理に替えて、図5から図7を参照して説明した第1フレネルゾーンの断面ごとの点群データが存在する割合に基づく詳細な見通しの判定を行う従来手法を適用するようにしてもよい。このように、第1及び第2の実施形態の構成の一部に対して従来手法を適用したとしても、ステップS7の処理が行われる場合には従来手法は適用されないため、全体としてみれば見通し判定処理に要する時間を低減できていることになる。 According to the above-described first and second embodiments, when the point cloud data amount is not less than the threshold in the process of step S6, that is, when the point cloud data amount exceeds the threshold, step S8 In the process of , instead of the process of outputting the determination result of "communication impossible" to the outside, details based on the ratio of existence of point cloud data for each cross section of the first Fresnel zone described with reference to FIGS. 5 to 7 It is also possible to apply a conventional method for determining a clear line of sight. Thus, even if the conventional method is applied to part of the configurations of the first and second embodiments, the conventional method is not applied when the process of step S7 is performed. This means that the time required for determination processing can be reduced.
 上記の第1及び第2の実施形態では、点群データ記憶部12が記憶する点群データの三次元座標系と、無線局候補位置データ記憶部11が記憶する無線局候補位置データの三次元座標系とが一致しているものとしているが、点群データ記憶部12が記憶する点群データの三次元座標系と、無線局候補位置データ記憶部11が記憶する無線局候補位置データの三次元座標系とが異なっていてもよい。この場合、点群データ量検出部15,15aは、フレネルゾーン算出部14から受けた第1フレネルゾーン30を示す回転楕円体のデータを、点群データ記憶部12が記憶する点群データの三次元座標系に変換し、変換した回転楕円体のデータを用いて、第1フレネルゾーン30内の点群データを抽出することになる。 In the above-described first and second embodiments, the three-dimensional coordinate system of the point cloud data stored in the point cloud data storage unit 12 and the three-dimensional coordinate system of the wireless station candidate position data stored in the wireless station candidate position data storage unit 11 However, the three-dimensional coordinate system of the point cloud data stored in the point cloud data storage unit 12 and the tertiary coordinate system of the wireless station candidate position data stored in the wireless station candidate position data storage unit 11 It may be different from the original coordinate system. In this case, the point cloud data amount detection units 15 and 15a convert the data of the spheroid indicating the first Fresnel zone 30 received from the Fresnel zone calculation unit 14 into the point cloud data stored in the point cloud data storage unit 12 as a cubic The point cloud data in the first Fresnel zone 30 is extracted using the transformed ellipsoidal data after transformation into the original coordinate system.
 上記の実施形態の構成では、ステップS6に示す処理において、閾値以下であるか否かという判定処理を行っている。しかしながら、本発明は、当該実施の形態に限られるものではなく、「以下であるか否か」という判定処理は一例に過ぎず、閾値の定め方に応じて、「未満であるか否か」という判定処理に置き換えられてもよい。 In the configuration of the above embodiment, in the process shown in step S6, the process of determining whether or not the value is equal to or less than the threshold is performed. However, the present invention is not limited to this embodiment. may be replaced with the determination process.
 上述した実施形態における置局設計装置1,1aをコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 The station placement design devices 1 and 1a in the above-described embodiments may be realized by a computer. In that case, a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed. It should be noted that the "computer system" referred to here includes hardware such as an OS and peripheral devices. The term "computer-readable recording medium" refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems. Furthermore, "computer-readable recording medium" means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as an FPGA (Field Programmable Gate Array).
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design within the scope of the gist of the present invention.
 三次元の点群データを用いた置局設計に用いることができる。 It can be used for station placement design using 3D point cloud data.
1…置局設計装置、11…無線局候補位置データ記憶部、12…点群データ記憶部、13…候補位置選択部、14…フレネルゾーン算出部、15…点群データ量検出部、16…判定部 REFERENCE SIGNS LIST 1 station placement design device 11 wireless station candidate position data storage unit 12 point cloud data storage unit 13 candidate position selection unit 14 Fresnel zone calculation unit 15 point cloud data amount detection unit 16 Judging part

Claims (5)

  1.  三次元空間における無線局装置を設置する候補となる位置を示す無線局候補位置データを、無線局候補位置データ記憶部に記憶させる無線局候補位置データ記録ステップと、
     前記三次元空間に対して照射されるレーザ光が遮蔽物に到達して反射する際の反射点の前記三次元空間における位置を示すデータである点群データを点群データ記憶部に記憶させる点群データ記録ステップと、
     前記無線局候補位置データ記憶部から2つの前記無線局候補位置データを選択する候補位置選択ステップと、
     選択した2つの前記無線局候補位置データの各々が示す候補位置の間の第1フレネルゾーンを算出するフレネルゾーン算出ステップと、
     算出した前記第1フレネルゾーン内に存在する前記点群データの量を前記点群データ記憶部が記憶する前記点群データに基づいて検出する点群データ量検出ステップと、
     検出した前記点群データの量と、閾値とに基づいて、前記候補位置選択ステップにおいて選択した2つの前記無線局候補位置データの各々が示す候補位置の間の通信可否を判定する判定ステップと、
     を含む置局設計方法。
    a radio station candidate position data recording step of storing, in a radio station candidate position data storage unit, radio station candidate position data indicating candidate positions for installing a radio station device in a three-dimensional space;
    Point cloud data, which is data indicating the position in the three-dimensional space of the reflection point when the laser light irradiated to the three-dimensional space reaches the shield and is reflected, is stored in the point cloud data storage unit. a group data recording step;
    a candidate location selection step of selecting two of the wireless station candidate location data from the wireless station candidate location data storage unit;
    a Fresnel zone calculation step of calculating a first Fresnel zone between candidate positions indicated by each of the two selected radio station candidate position data;
    a point cloud data amount detection step of detecting the calculated amount of the point cloud data present in the first Fresnel zone based on the point cloud data stored in the point cloud data storage unit;
    a determination step of determining whether or not communication is possible between candidate positions indicated by each of the two wireless station candidate position data selected in the candidate position selection step, based on the amount of the detected point cloud data and a threshold value;
    Station placement design method including.
  2.  前記点群データ量検出ステップにおいて、
     前記第1フレネルゾーン内に存在する前記点群データに含まれる前記三次元空間における三次元座標データの数をカウントし、カウントした数を前記点群データの量とする、
     請求項1に記載の置局設計方法。
    In the point cloud data amount detection step,
    counting the number of three-dimensional coordinate data in the three-dimensional space included in the point cloud data existing in the first Fresnel zone, and using the counted number as the amount of the point cloud data;
    The station placement design method according to claim 1.
  3.  前記点群データ量検出ステップにおいて、
     前記第1フレネルゾーン内に存在する前記点群データを抽出して記憶領域に書き込み、書き込み後の前記記憶領域の容量を前記点群データの量とする、
     請求項1に記載の置局設計方法。
    In the point cloud data amount detection step,
    Extracting the point cloud data existing in the first Fresnel zone and writing it in a storage area, and setting the capacity of the storage area after writing as the amount of the point cloud data;
    The station placement design method according to claim 1.
  4.  前記第1フレネルゾーンの容積に対する前記第1フレネルゾーン内に存在する前記点群データの点密度に基づいて前記閾値を選定する閾値選定ステップをさらに含み、
     前記判定ステップにおいて、
     前記閾値として、前記閾値選定ステップにより選定した閾値を適用して通信可否を判定する、
     請求項1から3のいずれか一項に記載の置局設計方法。
    further comprising a threshold selection step of selecting the threshold based on the point density of the point cloud data present within the first Fresnel zone relative to the volume of the first Fresnel zone;
    In the determination step,
    Determining whether communication is possible by applying the threshold selected by the threshold selection step as the threshold,
    The station placement design method according to any one of claims 1 to 3.
  5.  三次元空間における無線局装置を設置する候補となる位置を示す無線局候補位置データを記憶する無線局候補位置データ記憶部と、
     前記三次元空間に対して照射されるレーザ光が遮蔽物に到達して反射する際の反射点の前記三次元空間における位置を示すデータである点群データを記憶する点群データ記憶部と、
     前記無線局候補位置データ記憶部から2つの前記無線局候補位置データを選択する候補位置選択部と、
     前記候補位置選択部が選択する2つの前記無線局候補位置データの各々が示す候補位置の間の第1フレネルゾーンを算出するフレネルゾーン算出部と、
     前記フレネルゾーン算出部が算出する前記第1フレネルゾーン内に存在する前記点群データの量を前記点群データ記憶部が記憶する前記点群データに基づいて検出する点群データ量検出部と、
     前記点群データ量検出部が検出する前記点群データの量と、閾値とに基づいて、前記候補位置選択部が選択した2つの前記無線局候補位置データの各々が示す候補位置の間の通信可否を判定する判定部と、
     を備える置局設計装置。
    a radio station candidate position data storage unit for storing radio station candidate position data indicating candidate positions for installing a radio station device in a three-dimensional space;
    A point cloud data storage unit that stores point cloud data, which is data indicating the position in the three-dimensional space of the reflection point when the laser light irradiated to the three-dimensional space reaches the shield and is reflected;
    a candidate location selection unit that selects two of the wireless station candidate location data from the wireless station candidate location data storage unit;
    a Fresnel zone calculator that calculates a first Fresnel zone between candidate positions indicated by each of the two wireless station candidate position data selected by the candidate position selector;
    a point cloud data amount detection unit that detects the amount of the point cloud data present in the first Fresnel zone calculated by the Fresnel zone calculation unit based on the point cloud data stored in the point cloud data storage unit;
    Communication between candidate positions indicated by each of the two radio station candidate position data selected by the candidate position selector based on the amount of the point cloud data detected by the point cloud data amount detector and a threshold. a determination unit that determines whether or not
    A station placement design device.
PCT/JP2021/006583 2021-02-22 2021-02-22 Station placement designing method and station placement designing device WO2022176191A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023500483A JP7510099B2 (en) 2021-02-22 2021-02-22 Station location design method and station location design device
PCT/JP2021/006583 WO2022176191A1 (en) 2021-02-22 2021-02-22 Station placement designing method and station placement designing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/006583 WO2022176191A1 (en) 2021-02-22 2021-02-22 Station placement designing method and station placement designing device

Publications (1)

Publication Number Publication Date
WO2022176191A1 true WO2022176191A1 (en) 2022-08-25

Family

ID=82930496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006583 WO2022176191A1 (en) 2021-02-22 2021-02-22 Station placement designing method and station placement designing device

Country Status (2)

Country Link
JP (1) JP7510099B2 (en)
WO (1) WO2022176191A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047861A1 (en) * 2022-09-02 2024-03-07 日本電信電話株式会社 Data processing device, data processing method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107955A (en) * 2018-12-26 2020-07-09 日本電信電話株式会社 Station placement design method, station placement design apparatus, and station placement design program
WO2021005646A1 (en) * 2019-07-05 2021-01-14 日本電信電話株式会社 Shielding rate calculation device, shielding rate calculation method and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107955A (en) * 2018-12-26 2020-07-09 日本電信電話株式会社 Station placement design method, station placement design apparatus, and station placement design program
WO2021005646A1 (en) * 2019-07-05 2021-01-14 日本電信電話株式会社 Shielding rate calculation device, shielding rate calculation method and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047861A1 (en) * 2022-09-02 2024-03-07 日本電信電話株式会社 Data processing device, data processing method, and program

Also Published As

Publication number Publication date
JPWO2022176191A1 (en) 2022-08-25
JP7510099B2 (en) 2024-07-03

Similar Documents

Publication Publication Date Title
Geok et al. A comprehensive review of efficient ray-tracing techniques for wireless communication
US10521627B2 (en) RFID module for through boundary location accuracy
JP2005528622A (en) A stochastic model for positioning techniques.
US20130324147A1 (en) Access Node Locations in a Network
Aernouts et al. TDAoA: A combination of TDoA and AoA localization with LoRaWAN
JP7244785B2 (en) Shielding rate calculation device, shielding rate calculation method and program
CN110530343B (en) Actual measurement system, method, device and storage medium
EP3039446A1 (en) Location detection system and method
US11101900B2 (en) Radio wave environment display device and radio wave environment display method
KR101709411B1 (en) Method for positioning based on weighted triangulation and method for indoor positioning using the same
WO2022176191A1 (en) Station placement designing method and station placement designing device
US20170339236A1 (en) System and method for measuring position
JP6027121B2 (en) Measuring position indicating device, measuring position indicating method
CN114102577B (en) Robot and positioning method applied to robot
US20230171609A1 (en) Station placement support method, station placement support apparatus and station placement support program
WO2022176192A1 (en) Station placement design method and station placement design device
Grossmann et al. RSSI-based WLAN indoor positioning used within a digital museum guide
JP7244787B2 (en) Shielding rate calculation device, shielding rate calculation method and program
JP7280536B2 (en) Outlook determination method, visibility determination device, and program
JP5581675B2 (en) Radar apparatus and detection method
JP2019092099A (en) Radio wave environment estimation device and radio wave environment estimation method
CN109061562B (en) Object positioning method and device based on internal parameters of positioning chip and electronic equipment
Chang et al. Optimisation‐based deployment of beacons for indoor positioning using wireless communications and signal power ranking
Fernandes et al. Estimation of region of maximum exposure to radiofrequency electromagnetic fields
US20190165834A1 (en) Cable tracking by electromagnetic emission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926621

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500483

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926621

Country of ref document: EP

Kind code of ref document: A1