WO2022176093A1 - Abnormality detection system, vehicle-mounted device, abnormality detection method, and program - Google Patents

Abnormality detection system, vehicle-mounted device, abnormality detection method, and program Download PDF

Info

Publication number
WO2022176093A1
WO2022176093A1 PCT/JP2021/006068 JP2021006068W WO2022176093A1 WO 2022176093 A1 WO2022176093 A1 WO 2022176093A1 JP 2021006068 W JP2021006068 W JP 2021006068W WO 2022176093 A1 WO2022176093 A1 WO 2022176093A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning data
gnss positioning
gnss
vehicle
information
Prior art date
Application number
PCT/JP2021/006068
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 是永
健司 ▲高▼尾
昌弘 山田
陽平 知識
Original Assignee
三菱重工機械システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工機械システム株式会社 filed Critical 三菱重工機械システム株式会社
Priority to PCT/JP2021/006068 priority Critical patent/WO2022176093A1/en
Priority to JP2023500209A priority patent/JP7467756B2/en
Publication of WO2022176093A1 publication Critical patent/WO2022176093A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/40Transportation

Definitions

  • the present disclosure relates to an anomaly detection system, an onboard device, an anomaly detection method, and a program.
  • GNSS Global Navigation Satellite System
  • vehicle device vehicle device mounted on a vehicle receives satellite signals transmitted from GNSS satellites and estimates the position of the vehicle based on the received satellite signals. ing.
  • GNSS charging that identifies the travel route of the vehicle from time-series changes in GNSS positioning data, including information on received satellite signals and self-location information estimated from satellite signals, and charges a toll according to the travel route. system is considered.
  • GNSS billing systems etc.
  • check GNSS positioning data for anomalies in order to verify operation during the development stage detect malfunctions of on-board units after operation, and detect fraud such as spoofing and jamming of GNSS positioning data. required throughout the life cycle.
  • GNSS positioning data such as the size of position error and signal strength depends on the characteristics of each model of the onboard unit, the characteristics of the vehicle in which the onboard unit is installed, and the usage environment of the onboard unit (existing around the driving route). (presence or absence of buildings, etc.). Therefore, it has been difficult to detect anomalies in GNSS positioning data by rule-based determination processing that combines simple conditional branching such as comparison with a threshold value.
  • the present disclosure has been made in view of such problems, and an anomaly detection system capable of detecting anomalies in actually measured GNSS positioning data using pseudo GNSS positioning data generated by a trained generative model. , an onboard device, an anomaly detection method, and a program.
  • an anomaly detection system provides information about satellite signals received from GNSS satellites and information about the position of the vehicle estimated from the satellite signals via a GNSS receiver mounted on a vehicle.
  • a state observation unit that collects GNSS positioning data including a generation unit that generates pseudo GNSS positioning data by a generation model learned using the GNSS positioning data, and a generation unit that generates new GNSS positioning data when new GNSS positioning data is acquired and an abnormality determination unit that determines whether or not the newly acquired GNSS positioning data is abnormal based on comparison with the pseudo GNSS positioning data obtained.
  • the vehicle-mounted device includes information on satellite signals received from GNSS satellites via a GNSS receiver mounted on the vehicle, and information on the position of the vehicle estimated from the satellite signals.
  • a state observation unit that collects GNSS positioning data; and an abnormality determination unit that determines whether or not the GNSS positioning data is abnormal based on comparison with the pseudo GNSS positioning data.
  • an anomaly detection method includes information about satellite signals received from GNSS satellites and information about the position of the vehicle estimated from the satellite signals via a GNSS receiver mounted on a vehicle. generating pseudo GNSS positioning data by a generative model trained using the GNSS positioning data; and generating the generated GNSS positioning data when new GNSS positioning data is acquired. and determining whether the GNSS positioning data is abnormal based on comparison with the pseudo GNSS positioning data.
  • a program includes information regarding satellite signals received from GNSS satellites via a GNSS receiver onboard a vehicle, and information regarding the position of the vehicle estimated from the satellite signals. collecting positioning data; generating pseudo-GNSS positioning data by a generative model trained using the GNSS positioning data; and generating the pseudo-GNSS positioning data when new GNSS positioning data is acquired.
  • a step of determining whether or not the GNSS positioning data is abnormal based on the comparison with the positioning data is caused to be executed by the computer of the vehicle-mounted device.
  • an anomaly in actually measured GNSS positioning data is detected using pseudo GNSS positioning data generated by a learned generation model. can be done.
  • FIG. 1 is a diagram showing the overall configuration of an anomaly detection system according to a first embodiment of the present disclosure
  • FIG. 1 is a diagram showing a functional configuration of an anomaly detection system according to a first embodiment of the present disclosure
  • FIG. 3 is a diagram illustrating an example of a functional configuration of a learning unit and a learning process according to the first embodiment of the present disclosure
  • FIG. It is a figure which shows an example of the abnormality detection process which concerns on 1st Embodiment of this indication.
  • FIG. 10 is a diagram illustrating an example of a functional configuration of a learning unit and a learning process according to the second embodiment of the present disclosure
  • FIG. 11 is a diagram illustrating an example of anomaly detection processing according to the second embodiment of the present disclosure
  • FIG. FIG. 12 is a diagram showing the functional configuration of an anomaly detection system according to a third embodiment of the present disclosure
  • FIG. It is a figure showing an example of hardware constitutions of onboard equipment concerning one embodiment of this indication, and a center server
  • FIG. 1 An abnormality detection system 1 according to a first embodiment of the present disclosure will be described below with reference to FIGS. 1 to 4.
  • FIG. 1 An abnormality detection system 1 according to a first embodiment of the present disclosure will be described below with reference to FIGS. 1 to 4.
  • FIG. 1 An abnormality detection system 1 according to a first embodiment of the present disclosure will be described below with reference to FIGS. 1 to 4.
  • FIG. 1 An abnormality detection system 1 according to a first embodiment of the present disclosure will be described below with reference to FIGS. 1 to 4.
  • FIG. 1 is a diagram showing the overall configuration of an anomaly detection system according to the first embodiment of the present disclosure. As shown in FIG. 1 , the anomaly detection system 1 includes a plurality of vehicle-mounted devices 10 and a center server 20 .
  • a plurality of vehicle-mounted devices 10 are mounted on vehicle A, respectively.
  • the vehicle-mounted device 10 receives satellite signals emitted by the GNSS satellites 40 and estimates the position of the vehicle A on which the device is mounted based on the signals.
  • the vehicle-mounted device 10 also collects and records GNSS positioning data including information about the received satellite signals, information about the estimated position of the vehicle A, and the like.
  • the center server 20 is communicably connected to the vehicle-mounted device 10 via a wireless communication network N (such as a cellular network).
  • the center server 20 collects GNSS positioning data from each of the plurality of vehicle-mounted devices 10 and learns a generation model that generates pseudo GNSS data simulating normal GNSS data in each vehicle-mounted device 10 .
  • the center server 20 detects abnormality of the GNSS positioning data actually measured in each vehicle-mounted device 10 using the learned generation model.
  • FIG. 2 is a diagram showing the functional configuration of the anomaly detection system according to the first embodiment of the present disclosure.
  • the vehicle-mounted device 10 includes a GNSS receiver 100 , a sensor information acquisition section 101 , a state observation section 102 , an output section 103 and a storage medium 104 .
  • the GNSS receiver 100 receives satellite signals transmitted from the GNSS satellites 40 and estimates the position of the vehicle A.
  • the GNSS receiver 100 also generates GNSS positioning data including signal reception information about the received satellite signals and estimated position information about the position of the vehicle A, and outputs the data to the state observation unit 102 .
  • the signal reception information includes the signal strength of the satellite signals received by the GNSS receiver 100, the number of satellites, the elevation angle, the azimuth angle, and the like.
  • the estimated position information includes the estimated position (latitude, longitude, altitude) of vehicle A at the time of signal reception, estimated speed, and the like.
  • the sensor information acquisition unit 101 acquires sensor information from the in-vehicle sensor 30 of the vehicle A.
  • the vehicle-mounted sensor 30 is a receiver that receives a beacon signal capable of detecting the position of the vehicle A, for example, from a position information distribution beacon provided on the roadside.
  • the in-vehicle sensor 30 may be a receiver that receives a signal capable of detecting the vehicle speed of the vehicle A at the installation position of the speed measuring device from the speed measuring device provided on the roadside.
  • the in-vehicle sensor 30 may be an in-vehicle camera or LiDAR (Light Detection and Ranging) capable of detecting the surrounding environment of the vehicle A (presence or absence of surrounding buildings, etc.).
  • the vehicle-mounted sensor 30 may be a vehicle speed sensor, an acceleration sensor, an angular velocity sensor, or the like of the vehicle A.
  • the sensor information acquisition unit 101 outputs various sensor information acquired via the in-vehicle sensor 30 to the state observation unit 102 .
  • the state observation unit 102 collects GNSS positioning data via the GNSS receiver 100 .
  • the state observation unit 102 further collects positioning errors of the GNSS positioning data.
  • the positioning error is the difference (position error) between the estimated position of vehicle A based on satellite signals and the actual position.
  • the positioning error may also include the difference (speed error) between the estimated speed of vehicle A based on the satellite signal and the actual speed.
  • state observation unit 102 identifies the location of vehicle A on the link in the map data based on map data stored in advance in storage medium 104, and calculates the distance between the estimated location of vehicle A and the location on the link. is obtained as the position error.
  • the state observation unit 102 may obtain, as a position error, the difference between the estimated position of the vehicle A and the position of the vehicle A specified based on the beacon signal of the position information distribution beacon acquired by the sensor information acquisition unit 101. good.
  • the state observation unit 102 uses the difference between the estimated speed of the vehicle A and the speed of the vehicle A obtained from a roadside speed measuring device or the vehicle speed sensor of the vehicle A via the sensor information acquisition unit 101 as a speed error. Ask.
  • the state observation unit 102 further collects receiver information indicating the characteristics of the GNSS receiver 100, mounting environment information indicating the mounting environment of the GNSS receiver 100, and surrounding environment information indicating the presence or absence of shields around the vehicle A. may be collected.
  • the characteristics of the GNSS receiver 100 are antenna sensitivity, directivity, frequency characteristics, and the like.
  • Receiver information includes, for example, the type of GNSS receiver. Moreover, receiver information may also contain the information which shows the manufacturing time of the GNSS receiver 100, and the attachment period to the vehicle A. FIG. From the date of manufacture and the period of installation, the aging effects of the GNSS receiver 100 can be detected.
  • the installation environment information includes information on the vehicle on which the GNSS receiver 100 is mounted (model, etc.), antenna installation position, and antenna installation angle.
  • the surrounding environment information is information that enables detection of the presence or absence of obstacles that block the satellite signals of the GNSS satellites 40, such as buildings that exist around the vehicle A.
  • the surrounding environment information is, for example, an image captured by an in-vehicle camera acquired by the sensor information acquiring unit 101 and a LiDAR measurement result.
  • the state observation unit 102 transmits the generated GNSS positioning data to the center server 20 each time the GNSS receiver 100 generates GNSS positioning data.
  • the state observation unit 102 collects a plurality of accumulated GNSS positioning data to the center server 20 every predetermined period or every time a predetermined number of GNSS positioning data is accumulated in the storage medium 104. You may send.
  • the state observation part 102 transmits these to the center server 20 with GNSS positioning data, when the positioning error, receiver information, installation environment information, and surrounding environment information are collected.
  • the output unit 103 is a display device such as a liquid crystal display, and outputs (displays) anomaly detection information regarding anomalies in GNSS positioning data. Note that the output unit 103 may further include a speaker for outputting the abnormality detection information by voice or the like.
  • the storage medium 104 stores various data acquired and generated by each part of the vehicle-mounted device 10 .
  • the storage medium 104 stores sensor information acquired by the sensor information acquisition unit 101, GNSS positioning data collected by the state observation unit 102, and the like.
  • the center server 20 also includes a learning unit 200 , a generation unit 201 , an abnormality determination unit 202 and a storage medium 203 .
  • the learning unit 200 learns a generation model for generating pseudo GNSS positioning data using the learning data received from the vehicle-mounted device 10 .
  • the learning data includes GNSS positioning data collected by the state observation unit 102 of the vehicle-mounted device 10 .
  • the learning data may further include receiver information of the vehicle-mounted device 10, installation environment information, and information about the surrounding environment of the vehicle A in which the vehicle-mounted device 10 is mounted.
  • the generation unit 201 generates pseudo GNSS positioning data using the generation model learned by the learning unit 200 .
  • the abnormality determination unit 202 determines whether the GNSS positioning data is abnormal based on comparison with the pseudo GNSS positioning data generated by the generation unit 201. determine whether
  • the storage medium 203 stores GNSS positioning data collected from each vehicle-mounted device 10, a generation model learned by the learning unit 200, and the like.
  • FIG. 3 is a diagram illustrating an example of a functional configuration of a learning unit and a learning process according to the first embodiment of the present disclosure
  • FIG. The learning unit 200 learns a generative model for generating pseudo-GNSS positioning data using the technology of generative adversarial networks.
  • learning section 200 has generator 2001 and discriminator 2002 .
  • the generator 2001 is a generation model that generates pseudo GNSS positioning data x' simulating normal GNSS positioning data from the input latent variable z. That is, the generator 2001 maps the input latent variable z to an observation space composed of a plurality of actually measured GNSS positioning data.
  • GNSS positioning data in a normal state actually measured by the vehicle-mounted device 10 is stored in advance as learning data. Using this learning data, the generator 2001 performs learning so as to generate pseudo GNSS positioning data close to the genuine GNSS positioning data acquired during normal operation.
  • the normal GNSS positioning data is, for example, GNSS positioning data determined to be normal by an engineer or the like. Also, the normal GNSS positioning data may be GNSS positioning data collected by the GNSS receiver 100 that has been confirmed to be operating normally without failure or the like.
  • the discriminator 2002 identifies whether the input GNSS positioning data is GNSS positioning data x actually measured by the vehicle-mounted device 10 or pseudo GNSS positioning data x' generated by the generator 2001 .
  • the discriminator 2002 learns based on the learning data accumulated in the storage medium 203 so as to distinguish between the GNSS positioning data that is genuine data and the pseudo GNSS positioning data that is fake.
  • the learning data may further include positioning errors.
  • the generator 2001 is trained to generate pseudo GNSS positioning data with positioning errors that are closer to real GNSS positioning data.
  • the discriminator 2002 is learned so that even if the GNSS positioning data contains a positioning error, the authenticity of the data can be discriminated more accurately.
  • the learning data includes receiver information (model of GNSS receiver 100, manufacturing time, specification period, etc.), installation environment information (GNSS receiver 100 installation position, etc.), surrounding environment information (presence or absence of a shield that shields satellite signals, etc.) may further include
  • the signal reception information (signal strength, number of satellites, etc.) of the GNSS satellites 40 and the estimated position information of the vehicle A obtained from the received satellite signals are based on the characteristics of the receiver model, the installation environment, or the vehicle A (the GNSS receiver 100 ) changes depending on conditions such as the presence or absence of a shield around. For example, receiver characteristics (antenna sensitivity, directivity, frequency characteristics) differ for each model of GNSS receiver 100 .
  • the two vehicle-mounted devices 10 have GNSS receivers 100 of different models, even if satellite signals are received at the same position at the same time, they are included in the GNSS positioning data output by each vehicle-mounted device 10.
  • Signal reception information and estimated location information may differ.
  • the GNSS positioning data may differ depending on the surrounding environment such as the mounting environment of the GNSS receiver 100 and the presence or absence of a shield.
  • the generator 2001 further learns the receiver information, the mounting environment information, and the surrounding environment information contained in the learning data so that it can generate pseudo GNSS positioning data that is closer to the real GNSS positioning data according to these information. do.
  • the discriminator 2002 is learned so that even if the GNSS positioning data is affected by the receiver characteristics, the installation environment, and the presence or absence of obstructions, the authenticity of the data can be discriminated more accurately.
  • the learning unit 200 performs processing for further learning the generator 2001 and the discriminator 2002 by repeating training for the discriminator 2002 to discriminate whether the pseudo GNSS positioning data generated by the generator 2001 is genuine or fake. The flow of this learning process will be described below with reference to FIG.
  • the generator 2001 generates pseudo GNSS positioning data x' based on the input latent variable z (step S101).
  • a random number is used as the latent variable z.
  • the pseudo GNSS positioning data x' generated by the generator 2001 or the GNSS positioning data x accumulated in the storage medium 203 is input to the discriminator 2002 (step S102).
  • the discriminator 2002 identifies whether the input data is GNSS positioning data x (genuine) or pseudo GNSS positioning data x' (fake), and outputs identification result P (step S103).
  • step S104 learning (parameter adjustment, etc.) is performed so that the discriminator 2002 can more accurately discriminate between the fake and the genuine article based on the correctness of the identification result P (step S104).
  • the generator 2001 remains unchanged and fixed.
  • the generator 2001 learns based on the identification result P so that it can generate pseudo GNSS positioning data that is closer to the real thing (such that the discriminator 2002 misidentifies it as real). (step S105). At this time, the discriminator 2002 remains fixed without being changed.
  • the learning unit 200 alternately learns the generator 2001 and the discriminator 2002 by repeatedly executing the above steps. Thereby, the learning unit 200 can learn a generative model capable of generating the pseudo GNSS positioning data x′ closer to the real thing.
  • the learned generator 2001 (generative model) is stored in the storage medium 203 and used by the generator 201 when the center server 20 performs anomaly detection processing, which will be described later.
  • FIG. 4 is a diagram illustrating an example of anomaly detection processing according to the first embodiment of the present disclosure.
  • This abnormality detection process is performed after the learning process (FIG. 3) described above is completed.
  • the state observation unit 102 of the vehicle-mounted device 10 acquires GNSS positioning data via the GNSS receiver 100 (step S111). Also, the state observation unit 102 acquires sensor information via the sensor information acquisition unit 101 (step S112).
  • the state observation unit 102 transmits evaluation data for detecting anomalies in the GNSS positioning data to the center server 20 (step S113).
  • the evaluation data includes GNSS positioning data.
  • the evaluation data may include at least one of the positioning error, receiver information, installation environment information, and surrounding environment information collected by the state observation unit 102 .
  • the generation unit 201 of the center server 20 generates pseudo GNSS positioning data x' using the generation model that has been learned by the learning unit 200 (step S114).
  • the latent variable z corresponding to normal GNSS positioning data is unknown. Therefore, the generation unit 201 sequentially inputs all possible values of the latent variable z, and generates a plurality of pseudo GNSS positioning data x' based on each value. Then, one of the generated pseudo GNSS positioning data is close to the real GNSS positioning data.
  • the abnormality determination unit 202 of the center server 20 compares the GNSS positioning data x, which is the actual measurement data acquired from the vehicle-mounted device 10, with the pseudo GNSS positioning data x′ generated by the generation unit 201, and determines the GNSS positioning data. It is determined whether there is an abnormality in x (step S115).
  • the pseudo GNSS positioning data x' simulates GNSS positioning data estimated to be obtained when the vehicle-mounted device 10 is in a normal state. Therefore, if the state of the vehicle-mounted device 10 is normal, the GNSS positioning data x actually measured by the vehicle-mounted device 10 is data close to any of the plurality of pseudo GNSS positioning data x' generated by the generation unit 201. should be.
  • the abnormality determination unit 202 calculates, for example, the degree of matching between the GNSS positioning data x and each of the plurality of pseudo GNSS positioning data x', and the pseudo GNSS positioning data x' having a value equal to or higher than a predetermined value of the degree of matching is If there is, the GNSS positioning data x is determined to be normal. On the other hand, the abnormality determination unit 202 determines that the GNSS positioning data x is abnormal when there is no pseudo GNSS positioning data x' having a degree of matching equal to or greater than a predetermined value.
  • the abnormality determination unit 202 transmits abnormality detection information including the determination result indicating the presence or absence of abnormality to the vehicle-mounted device 10 (step S116).
  • the abnormality detection information may include the degree of matching calculated by the abnormality determination unit 202 .
  • the output unit 103 of the vehicle-mounted device 10 outputs the abnormality detection information received from the center server 20 and presents it to the passengers of the vehicle A (step S117).
  • the output unit 103 may output the abnormality detection information as a warning only when the abnormality detection information includes information indicating that the GNSS positioning data x is abnormal.
  • the anomaly detection system 1 executes the series of processes shown in FIG. 4 each time the state observation unit 102 acquires GNSS positioning data or at predetermined time intervals to determine whether there is an anomaly in the GNSS positioning data.
  • the anomaly detection system 1 includes the GNSS positioning data x acquired by the state observation unit 102 and the pseudo GNSS positioning data x′ created by the generation unit 201 using the learned generation model. , it is determined whether or not the acquired GNSS positioning data x is abnormal. By doing so, the abnormality detection system 1 detects that the GNSS positioning data x is abnormal when the GNSS positioning data x actually measured by the GNSS receiver 100 deviates from the pseudo GNSS positioning data x'. be able to.
  • the center server 20 of the anomaly detection system 1 further includes a learning unit 200 that learns a generation model for generating pseudo GNSS positioning data using normal GNSS positioning data collected by the state observation unit 102 .
  • the anomaly detection system 1 can learn a generation model capable of generating pseudo GNSS positioning data simulating data estimated to be acquired when the state of the GNSS receiver 100 is normal. can. Therefore, by using the generative model learned in this way, the anomaly detection system 1, when the actually measured GNSS positioning data x deviates from the pseudo GNSS positioning data x′ simulating the normal data, , the GNSS positioning data x can be determined to be abnormal.
  • the state observation unit 102 further collects positioning errors of the GNSS positioning data
  • the learning unit 200 further uses the positioning errors to learn the generative model.
  • the actually measured GNSS positioning data may contain positioning errors. Therefore, the anomaly detection system 1 according to the present embodiment learns the generative model including the positioning error.
  • the abnormality detection system 1 can also simulate the positioning error that occurs in the actual vehicle-mounted device 10 (GNSS receiver 100), it is possible to generate pseudo GNSS positioning data including such a positioning error. Become. Then, since the anomaly detection system 1 can generate pseudo GNSS positioning data that is closer to the real thing, it is possible to improve the accuracy of anomaly detection.
  • the state observation unit 102 further collects receiver information capable of detecting the characteristics of the GNSS receiver 100, and the learning unit 200 further uses the receiver information to learn the generative model.
  • receiver characteristics as an sensitivity, directivity, frequency characteristics, etc.
  • the anomaly detection system 1 learns a generative model including the receiver information (type) of the GNSS receiver 100 .
  • the anomaly detection system 1 can generate more realistic pseudo GNSS positioning data according to the characteristics of the GNSS receiver 100 .
  • the receiver information may include information capable of specifying the manufacturing time and usage period of the GNSS receiver 100 .
  • the anomaly detection system 1 can further learn changes in the characteristics of the GNSS receiver 100 due to deterioration over time. As a result, it is possible to perform anomaly detection in consideration of aging deterioration of each GNSS receiver 100, and improve the accuracy of anomaly detection.
  • the state observation unit 102 further collects mounting environment information indicating the mounting environment of the GNSS receiver 100
  • the learning unit 200 further uses the mounting environment information to learn the generation model. For example, if the vehicle in which the GNSS receiver 100 is mounted, the mounting position, or the like in the vehicle A changes, the signal strength of the satellite signal received by the GNSS receiver 100 may be affected. If it does so, even if it is the GNSS receiver 100 of the same model, a positioning result may differ. For this reason, the anomaly detection system 1 according to the present embodiment learns the generation model including the installation environment information of the GNSS receiver 100 . Thereby, the anomaly detection system 1 can generate more realistic pseudo GNSS positioning data according to the mounting environment of the GNSS receiver 100 . As a result, it is possible to perform anomaly detection in consideration of the installation environment of the GNSS receiver 100, and improve the accuracy of anomaly detection.
  • the state observation unit 102 further collects surrounding environment information regarding the surrounding environment of the vehicle A
  • the learning unit 200 further uses the surrounding environment information to learn the generative model. If there is a building around the vehicle A that blocks satellite signals, the signal strength of the satellite signals received by the GNSS receiver 100 may be affected. If it does so, even if the state of the onboard equipment 10 (GNSS receiver 100) is normal, there exists a possibility that a positioning error etc. may change a lot with the driving
  • the anomaly detection system 1 can generate more realistic pseudo GNSS positioning data according to the presence or absence of a shield around the vehicle A. As a result, it is possible to perform anomaly detection in consideration of the shielding situation around the vehicle A, thereby improving the accuracy of anomaly detection.
  • FIG. 5 and 6 An abnormality detection system 1 according to a second embodiment of the present disclosure will be described with reference to FIGS. 5 and 6.
  • FIG. Components common to those of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 5 is a diagram illustrating an example of a functional configuration of a learning unit and a learning process according to the second embodiment of the present disclosure; As shown in FIG. 5, the learning section 200 according to this embodiment further has an encoder 2003 .
  • the encoder 2003 is a model (latent variable model) for obtaining the optimum latent variable z' to be input to the generator 2001.
  • the encoder 2003 maps the GNSS positioning data accumulated in the storage medium 203 to the latent space, and learns so that when the GNSS positioning data is input, the latent variable z' corresponding to the input data can be output.
  • the learning unit 200 performs processing for further learning the generator 2001, the discriminator 2002, and the encoder 2003. The flow of this learning process will be described below with reference to FIG.
  • the generator 2001 generates pseudo GNSS positioning data x' based on the input latent variable z, as in the first embodiment (step S201).
  • the encoder 2003 obtains the latent variable z' corresponding to the input GNSS positioning data x (step S202).
  • step S202 data consisting of a combination of GNSS positioning data and latent variables is input to the discriminator 2002 (step S202).
  • the data input here is a set (x', z) consisting of the pseudo GNSS positioning data x' generated by the generator 2001 and the latent variable z used for its generation, or the GNSS positioning data input to the encoder 2003 It is a tuple (x,z') consisting of x and its corresponding latent variable z'.
  • the discriminator 2002 identifies whether the input data is GNSS positioning data x (genuine) or pseudo GNSS positioning data x', and outputs identification result P (step S204).
  • the discriminator 2002 and the generator 2001 perform learning based on the identification result P in each learning phase, as in the first embodiment (steps S205 and S206).
  • the encoder 2003 maps the GNSS positioning data x into the latent space and appropriate latent variables Learning is performed so that z' can be output.
  • the learning unit 200 alternately learns the generator 2001, the discriminator 2002, and the encoder 2003 by repeatedly executing the above steps. As a result, the learning unit 200 can learn a generative model capable of generating more realistic pseudo GNSS positioning data x', and learn a latent variable model capable of outputting a more appropriate latent variable z'.
  • the learned generator 2001 (generative model) and encoder 2003 (latent variable model) are stored in the storage medium 203 and used by the generator 201 when the center server 20 performs anomaly detection processing, which will be described later.
  • FIG. 6 is a diagram illustrating an example of anomaly detection processing according to the second embodiment of the present disclosure.
  • This abnormality detection process is performed after the learning process (FIG. 5) described above is completed.
  • the state observation unit 102 of the vehicle-mounted device 10 acquires GNSS positioning data (step S211) and acquires sensor information (step S212). Also, the state observation unit 102 transmits evaluation data for detecting an abnormality in the GNSS positioning data to the center server 20 (step S213). These processes are the same as steps S111 to S113 of the first embodiment (FIG. 4).
  • the generation unit 201 of the center server 20 inputs the GNSS positioning data acquired from the vehicle-mounted device 10 to the latent variable model learned by the learning unit 200, and generates a latent variable z' corresponding to this GNSS positioning data. is obtained (step S214).
  • the generation unit 201 also inputs the latent variable z' output from the latent variable model to the generation model, and generates pseudo GNSS positioning data x' from this latent variable z' (step S215).
  • the abnormality determination unit 202 of the center server 20 compares the GNSS positioning data x, which is the actual measurement data acquired from the vehicle-mounted device 10, with the pseudo GNSS positioning data x′ generated by the generation unit 201, and determines the GNSS positioning data. It is determined whether there is an abnormality in x (step S216).
  • the generator 201 generates only one piece of pseudo GNSS positioning data based on the latent variable z'. For this reason, the abnormality determination unit 202 only needs to compare the GNSS positioning data x with one generated pseudo GNSS positioning data x'.
  • the abnormality determination unit 202 transmits abnormality detection information including the determination result indicating the presence or absence of abnormality to the vehicle-mounted device 10 (step S217).
  • the output unit 103 of the vehicle-mounted device 10 Upon receiving the abnormality detection information from the center server 20, the output unit 103 of the vehicle-mounted device 10 outputs this information and presents it to the passengers of the vehicle A (step S218).
  • the anomaly detection system 1 executes the series of processes shown in FIG. 6 each time the state observation unit 102 acquires GNSS positioning data or at predetermined time intervals to determine whether there is an anomaly in the GNSS positioning data.
  • the learning unit 200 further learns the latent variable model using GNSS positioning data.
  • the generation unit 201 also inputs the latent variable z' output from the latent variable model to the generation model to generate the pseudo GNSS positioning data x'. Since the anomaly detection system 1 according to the present embodiment can identify the latent variable z′ from the GNSS positioning data using a learned latent variable model, each of the plurality of latent variables There is no need to generate a plurality of pseudo-GNSS positioning data based on and compare all pseudo-GNSS positioning data with the GNSS positioning data. Therefore, the anomaly detection system 1 can significantly reduce the processing load on the generation unit 201 and the anomaly determination unit 202 .
  • the center server 20 determines whether or not there is an anomaly in the GNSS positioning data collected by each of the plurality of vehicle-mounted devices 10 .
  • each of the plurality of vehicle-mounted devices 10 determines whether there is an abnormality in the GNSS positioning data acquired by itself.
  • the learning unit 200 of the center server 20 has the same functional configuration as the learning unit 200 according to the first or second embodiment.
  • the learning unit 200 completes learning of the generative model and the latent variable model, these learned models are distributed to each vehicle-mounted device 10 and stored in the storage medium 104 of the vehicle-mounted device 10 .
  • FIG. 7 is a diagram showing the functional configuration of an anomaly detection system according to the third embodiment of the present disclosure.
  • the vehicle-mounted device 10 according to the present embodiment further includes a generation section 111 and an abnormality determination section 112 .
  • the generation unit 111 and the abnormality determination unit 112 have the same functions as the generation unit 201 and the abnormality determination unit 202 of the center server 20 according to the first or second embodiment.
  • the generation unit 111 performs the same processing as in step S114 of the first embodiment (FIG. 4) to generate a plurality of pseudo GNSS positioning data x'. .
  • the abnormality determination unit 112 performs the same processing as in step S115 of the first embodiment (FIG. 4), and determines the GNSS positioning data x acquired by the state observation unit 102 and each of the plurality of pseudo GNSS positioning data x′. By comparison, the presence or absence of abnormality is determined.
  • the generation unit 111 when the generation model and the latent variable model are distributed from the center server 20, the generation unit 111 performs the same processing as in step S214 of the second embodiment (FIG. 6), and transforms the GNSS positioning data into the latent variable model. Input to obtain the latent variable z'. The generation unit 111 also inputs this latent variable z' to the generation model to generate one piece of pseudo GNSS positioning data x'.
  • the abnormality determination unit 112 performs the same processing as in step S216 of the second embodiment ( FIG. 6 ), compares the GNSS positioning data x acquired by the state observation unit 102 with the pseudo GNSS positioning data x′, and determines whether there is an abnormality. Determine the presence or absence of
  • the vehicle-mounted device 10 includes the state observation unit 102 that collects GNSS positioning data, the generation unit 111 that generates pseudo GNSS positioning data using a learned generation model, and a newly acquired and an abnormality determination unit 112 that determines whether or not the GNSS positioning data x is abnormal based on a comparison between the GNSS positioning data x and the pseudo GNSS positioning data x'.
  • the onboard equipment 10 mounted in each vehicle A can detect abnormality of the GNSS positioning data which self collected. This eliminates the need for the abnormality detection system 1 to frequently transmit and receive evaluation data (GNSS positioning data) between the vehicle-mounted device 10 and the center server 20, thereby significantly reducing the amount of communication.
  • the load of the abnormality detection processing can be distributed to each vehicle-mounted device 10, so the processing load of the center server 20 can be greatly reduced. can be reduced.
  • FIG. 8 is a diagram illustrating an example of a hardware configuration of a vehicle-mounted device and a center server according to an embodiment of the present disclosure.
  • computer 900 includes CPU 901 , main memory 902 , auxiliary memory 903 , and interface 904 .
  • the vehicle-mounted device 10 and the center server 20 according to each of the above-described embodiments are each implemented in a computer 900.
  • the operation of each processing unit described above is stored in the auxiliary storage device 903 in the form of a program.
  • the CPU 901 reads out the program from the auxiliary storage device 903, develops it in the main storage device 902, and executes the above processing according to the program.
  • the CPU 901 secures storage areas corresponding to the storage units described above in the main storage device 902 according to the program.
  • the program may be for realizing a part of the functions to be exhibited by the computer 900.
  • the program may function in combination with another program already stored in the auxiliary storage device 903 or in combination with another program installed in another device.
  • the computer 900 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration.
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • part or all of the functions implemented by the CPU 901 may be implemented by the integrated circuit.
  • auxiliary storage device 903 examples include magnetic disks, magneto-optical disks, optical disks, and semiconductor memories.
  • Auxiliary storage device 903 may be an internal medium directly connected to the bus of computer 900, or an external storage device 910 connected to computer 900 via interface 904 or a communication line. Further, when this program is delivered to the computer 900 via a communication line, the computer 900 receiving the delivery may develop the program in the main storage device 902 and execute the above process.
  • secondary storage 903 is a non-transitory, tangible storage medium.
  • the program may be for realizing part of the functions described above.
  • the program may be a so-called difference file (difference program) that implements the above-described functions in combination with another program already stored in the auxiliary storage device 903 .
  • the state observation unit 102 may further collect GNSS positioning data at the time of abnormality. A label indicating "abnormal" is added to the GNSS positioning data in the abnormal state. Also, the learning unit 200 gives a penalty when the generator 2001 generates pseudo GNSS positioning data close to the GNSS positioning data labeled "abnormal". Thereby, the generator 2001 (generative model) can be learned to generate only pseudo GNSS positioning data close to the GNSS positioning data in the normal state.
  • the abnormality determination units 202 and 112 may determine the presence or absence of an abnormality using a discriminator (discriminator 2002) learned by the learning unit 200.
  • the discriminator outputs as the discrimination result P the probability of discriminating the input data as authentic.
  • the abnormality determination units 202 and 112 determine that the GNSS positioning data x is abnormal. do. Moreover, in order to allow some error, the abnormality determination units 202 and 112 may determine that the GNSS positioning data x is abnormal when the probability P1 is lower than the probability P2 by a predetermined value or more.
  • an anomaly detection system (1) includes information about satellite signals received from GNSS satellites via a GNSS receiver (100) mounted on a vehicle, and estimated from the satellite signals.
  • a state observation unit (102) that collects GNSS positioning data including information about the position of the vehicle, and a generation unit (111, 201) that generates pseudo GNSS positioning data by a generation model trained using the GNSS positioning data. ) and, when new GNSS positioning data is acquired, based on the comparison with the generated pseudo GNSS positioning data, abnormality to determine whether the newly acquired GNSS positioning data is abnormal and a determination unit (112, 202).
  • the anomaly detection system can detect that the GNSS positioning data is anomalous when the GNSS positioning data actually measured by the GNSS receiver deviates from the pseudo GNSS positioning data.
  • the anomaly detection system (1) learns the generative model using the normal GNSS positioning data collected by the state observation unit (102). It further comprises a learning unit (200).
  • the anomaly detection system can learn a generation model that can generate pseudo GNSS positioning data simulating the data estimated to be obtained when the GNSS receiver is in a normal state. Therefore, the anomaly detection system, by using the generative model learned in this way, from the pseudo GNSS positioning data simulating the normal data, when the actually measured GNSS positioning data deviates, GNSS positioning data can be accurately determined as abnormal.
  • the state observation unit (102) further collects positioning errors of the GNSS positioning data
  • the learning unit ( 200) further uses the positioning error to learn the generative model.
  • the anomaly detection system can accurately simulate the positioning error of the actual GNSS receiver. Then, the anomaly detection system can generate pseudo GNSS positioning data that is closer to the real thing, so that the accuracy of anomaly detection can be improved.
  • the state observation unit (102) is a receiver capable of detecting characteristics of the GNSS receiver (100) Collecting further information, the learning unit (200) further uses the receiver information to learn the generative model.
  • the anomaly detection system can generate more realistic pseudo GNSS positioning data according to the characteristics of the GNSS receiver. As a result, it is possible to perform anomaly detection in consideration of the difference in characteristics of each GNSS receiver, and improve the accuracy of anomaly detection.
  • the state observation unit (102) is installed in the installation environment of the GNSS receiver (100). and the learning unit (200) further uses the mounting environment information to learn the generative model.
  • the anomaly detection system can generate more realistic pseudo GNSS positioning data according to the installation environment of the GNSS receiver. As a result, it is possible to perform anomaly detection in consideration of the installation environment of the GNSS receiver, and improve the accuracy of anomaly detection.
  • the state observation unit (102) provides surrounding environment information about the surrounding environment of the vehicle is further collected, and the learning unit (200) further uses the surrounding environment information to learn the generative model.
  • the anomaly detection system can generate more realistic pseudo GNSS positioning data that is more realistic according to the surrounding environment of the vehicle. As a result, it is possible to perform anomaly detection in consideration of the shielding situation around the vehicle, thereby improving the accuracy of anomaly detection.
  • the learning unit (200) uses the GNSS positioning data to use the pseudo A latent variable model that outputs latent variables for generating GNSS positioning data is further learned, and the generation unit (111, 201) inputs the latent variables output from the latent variable model to the generation model. , to generate the pseudo-GNSS positioning data.
  • the generation unit changes the latent variables one by one to generate a plurality of pseudo-GNSS positioning data based on each latent variable, and separately generates the GNSS positioning data and the plurality of pseudo-GNSS positioning data. I had to compare.
  • the anomaly detection system according to the above aspect can identify latent variables using a learned latent variable model, so it is possible to greatly reduce the processing load on the generation unit and the anomaly determination unit.
  • the vehicle-mounted device (10) is estimated from the information about the satellite signal received from the GNSS satellite and the satellite signal via the GNSS receiver (100) mounted on the vehicle
  • a state observation unit (102) that collects GNSS positioning data including information about the position of the vehicle
  • a generation unit (111) that generates pseudo GNSS positioning data by a generation model trained using the GNSS positioning data
  • an abnormality determination unit (112) that determines, when new GNSS positioning data is acquired, whether or not the GNSS positioning data is abnormal based on comparison with the generated pseudo GNSS positioning data; Prepare.
  • the on-board equipment installed in each vehicle detect anomalies in the GNSS positioning data it has collected.
  • the load of abnormality detection processing can be distributed to each vehicle-mounted device.
  • an anomaly detection method includes information about satellite signals received from GNSS satellites via a GNSS receiver (100) mounted on a vehicle, and the vehicle estimated from the satellite signals. a step of collecting GNSS positioning data including information about the position of the GNSS positioning data; generating pseudo-GNSS positioning data by a generative model trained using the GNSS positioning data; and determining whether the GNSS positioning data is abnormal based on comparison with the generated pseudo GNSS positioning data.
  • the program via a GNSS receiver (100) mounted on a vehicle, provides information about satellite signals received from GNSS satellites and the position of the vehicle estimated from the satellite signals. generating pseudo-GNSS positioning data by a generative model trained using the GNSS positioning data; generating, when new GNSS positioning data is obtained, generating The computer (900) of the vehicle-mounted device (10) is made to perform a step of determining whether or not the GNSS positioning data is abnormal based on the comparison with the pseudo GNSS positioning data thus obtained.
  • an anomaly in actually measured GNSS positioning data is detected using pseudo GNSS positioning data generated by a learned generation model. can be done.
  • Anomaly detection system 10 Onboard device 100 GNSS receiver 101 Sensor information acquisition unit 102 State observation unit 103 Output unit 104 Storage medium 111 Generation unit 112 Abnormality determination unit 20 Center server 200 Learning unit 2001 Generator 2002 Discriminator 2003 Encoder 201 Generation unit 202 Abnormality determination unit 203 Storage medium 30 In-vehicle sensor 40 GNSS satellite 900 Computer 901 CPU 902 Main storage device 903 Auxiliary storage device 904 Interface 910 External storage device

Abstract

This abnormality detection system comprises: a state observation unit for collecting, via a GNSS receiver mounted in a vehicle, GNSS positioning data including information relating to satellite signals received from GNSS satellites and information about the position of the vehicle estimated from the satellite signals; a generation unit for generating pseudo GNSS positioning data using a generation model trained using the GNSS positioning data; and an abnormality determination unit for, when new GNSS positioning data is acquired, determining whether the GNSS positioning data is abnormal on the basis of a comparison of the same with pseudo GNSS positioning data generated by the generation unit.

Description

異常検知システム、車載器、異常検知方法、及びプログラムAnomaly detection system, vehicle-mounted device, anomaly detection method, and program
 本開示は、異常検知システム、車載器、異常検知方法、及びプログラムに関する。 The present disclosure relates to an anomaly detection system, an onboard device, an anomaly detection method, and a program.
 車両等の移動体の走行位置を特定する技術として、全地球航法衛星システム(Global Navigation Satellite System、以下、GNSSとも記載する。)が知られている。たとえば特許文献1には、車両に搭載されたGNSS受信器(車載器)がGNSS衛星から発信される衛星信号を受信して、受信した衛星信号に基づいて車両の位置を推定する技術が記載されている。 The Global Navigation Satellite System (hereinafter also referred to as GNSS) is known as a technology for identifying the traveling position of mobile objects such as vehicles. For example, Patent Document 1 describes a technique in which a GNSS receiver (vehicle device) mounted on a vehicle receives satellite signals transmitted from GNSS satellites and estimates the position of the vehicle based on the received satellite signals. ing.
 また、受信した衛星信号の情報、衛星信号から推定される自己位置情報等を含むGNSS測位データの時系列変化から車両の走行経路を特定して、走行経路に応じた通行料金を課金するGNSS課金システムが考えられている。 In addition, GNSS charging that identifies the travel route of the vehicle from time-series changes in GNSS positioning data, including information on received satellite signals and self-location information estimated from satellite signals, and charges a toll according to the travel route. system is considered.
特開平9-5092号公報Japanese Patent Application Laid-Open No. 9-5092
 GNSS課金システム等に用いられるアプリケーションでは、開発段階の動作検証、運用後の車載器の不調の検出、GNSS測位データのスプーフィング及びジャミングといった不正の検出等を行うために、GNSS測位データの異常チェックがライフサイクル全体に渡って必要となる。 Applications used in GNSS billing systems, etc., check GNSS positioning data for anomalies in order to verify operation during the development stage, detect malfunctions of on-board units after operation, and detect fraud such as spoofing and jamming of GNSS positioning data. required throughout the life cycle.
 しかしながら、位置誤差の大きさ、信号強度等のGNSS測位データの品質は、車載器の機種別の特性、車載器が搭載された車両の特性、車載器の使用環境(走行経路の周辺に存在する建造物の有無等)といった様々な要素に左右される。このため、閾値との比較といった単純な条件分岐を組み合わせたルールベースの判定処理によって、GNSS測位データの異常を検知することが困難であった。 However, the quality of GNSS positioning data such as the size of position error and signal strength depends on the characteristics of each model of the onboard unit, the characteristics of the vehicle in which the onboard unit is installed, and the usage environment of the onboard unit (existing around the driving route). (presence or absence of buildings, etc.). Therefore, it has been difficult to detect anomalies in GNSS positioning data by rule-based determination processing that combines simple conditional branching such as comparison with a threshold value.
 本開示は、このような課題に鑑みてなされたものであって、学習済みの生成モデルにより生成された疑似GNSS測位データを用いて、実測されたGNSS測位データの異常を検知可能な異常検知システム、車載器、異常検知方法、及びプログラムを提供する。 The present disclosure has been made in view of such problems, and an anomaly detection system capable of detecting anomalies in actually measured GNSS positioning data using pseudo GNSS positioning data generated by a trained generative model. , an onboard device, an anomaly detection method, and a program.
 本開示の一態様によれば、異常検知システムは、車両に搭載されたGNSSレシーバを介して、GNSS衛星から受信した衛星信号に関する情報、及び当該衛星信号から推定される前記車両の位置に関する情報を含むGNSS測位データを収集する状態観測部と、前記GNSS測位データを用いて学習された生成モデルにより、疑似GNSS測位データを生成する生成部と、新たなGNSS測位データが取得された場合に、生成された前記疑似GNSS測位データとの対比に基づいて、新たに取得された当該GNSS測位データが異常であるか否かを判定する異常判定部と、を備える。 According to one aspect of the present disclosure, an anomaly detection system provides information about satellite signals received from GNSS satellites and information about the position of the vehicle estimated from the satellite signals via a GNSS receiver mounted on a vehicle. A state observation unit that collects GNSS positioning data including a generation unit that generates pseudo GNSS positioning data by a generation model learned using the GNSS positioning data, and a generation unit that generates new GNSS positioning data when new GNSS positioning data is acquired and an abnormality determination unit that determines whether or not the newly acquired GNSS positioning data is abnormal based on comparison with the pseudo GNSS positioning data obtained.
 本開示の一態様によれば、車載器は、車両に搭載されたGNSSレシーバを介して、GNSS衛星から受信した衛星信号に関する情報、及び当該衛星信号から推定される前記車両の位置に関する情報を含むGNSS測位データを収集する状態観測部と、前記GNSS測位データを用いて学習された生成モデルにより、疑似GNSS測位データを生成する生成部と、新たなGNSS測位データが取得された場合に、生成された前記疑似GNSS測位データとの対比に基づいて、当該GNSS測位データが異常であるか否かを判定する異常判定部と、を備える。 According to one aspect of the present disclosure, the vehicle-mounted device includes information on satellite signals received from GNSS satellites via a GNSS receiver mounted on the vehicle, and information on the position of the vehicle estimated from the satellite signals. A state observation unit that collects GNSS positioning data; and an abnormality determination unit that determines whether or not the GNSS positioning data is abnormal based on comparison with the pseudo GNSS positioning data.
 本開示の一態様によれば、異常検知方法は、車両に搭載されたGNSSレシーバを介して、GNSS衛星から受信した衛星信号に関する情報、及び当該衛星信号から推定される前記車両の位置に関する情報を含むGNSS測位データを収集するステップと、前記GNSS測位データを用いて学習された生成モデルにより、疑似GNSS測位データを生成するステップと、新たなGNSS測位データが取得された場合に、生成された前記疑似GNSS測位データとの対比に基づいて、当該GNSS測位データが異常であるか否かを判定するステップと、を有する。 According to one aspect of the present disclosure, an anomaly detection method includes information about satellite signals received from GNSS satellites and information about the position of the vehicle estimated from the satellite signals via a GNSS receiver mounted on a vehicle. generating pseudo GNSS positioning data by a generative model trained using the GNSS positioning data; and generating the generated GNSS positioning data when new GNSS positioning data is acquired. and determining whether the GNSS positioning data is abnormal based on comparison with the pseudo GNSS positioning data.
 本開示の一態様によれば、プログラムは、車両に搭載されたGNSSレシーバを介して、GNSS衛星から受信した衛星信号に関する情報、及び当該衛星信号から推定される前記車両の位置に関する情報を含むGNSS測位データを収集するステップと、前記GNSS測位データを用いて学習された生成モデルにより、疑似GNSS測位データを生成するステップと、新たなGNSS測位データが取得された場合に、生成された前記疑似GNSS測位データとの対比に基づいて、当該GNSS測位データが異常であるか否かを判定するステップと、を車載器のコンピュータに実行させる。 According to one aspect of the present disclosure, a program includes information regarding satellite signals received from GNSS satellites via a GNSS receiver onboard a vehicle, and information regarding the position of the vehicle estimated from the satellite signals. collecting positioning data; generating pseudo-GNSS positioning data by a generative model trained using the GNSS positioning data; and generating the pseudo-GNSS positioning data when new GNSS positioning data is acquired. A step of determining whether or not the GNSS positioning data is abnormal based on the comparison with the positioning data is caused to be executed by the computer of the vehicle-mounted device.
 本開示に係る異常検知システム、車載器、異常検知方法、及びプログラムによれば、学習済みの生成モデルにより生成された疑似GNSS測位データを用いて、実測されたGNSS測位データの異常を検知することができる。 According to the anomaly detection system, vehicle-mounted device, anomaly detection method, and program according to the present disclosure, an anomaly in actually measured GNSS positioning data is detected using pseudo GNSS positioning data generated by a learned generation model. can be done.
本開示の第1の実施形態に係る異常検知システムの全体構成を示す図である。1 is a diagram showing the overall configuration of an anomaly detection system according to a first embodiment of the present disclosure; FIG. 本開示の第1の実施形態に係る異常検知システムの機能構成を示す図である。1 is a diagram showing a functional configuration of an anomaly detection system according to a first embodiment of the present disclosure; FIG. 本開示の第1の実施形態に係る学習部の機能構成、及び学習処理の一例を示す図である。FIG. 3 is a diagram illustrating an example of a functional configuration of a learning unit and a learning process according to the first embodiment of the present disclosure; FIG. 本開示の第1の実施形態に係る異常検知処理の一例を示す図である。It is a figure which shows an example of the abnormality detection process which concerns on 1st Embodiment of this indication. 本開示の第2の実施形態に係る学習部の機能構成、及び学習処理の一例を示す図である。FIG. 10 is a diagram illustrating an example of a functional configuration of a learning unit and a learning process according to the second embodiment of the present disclosure; 本開示の第2の実施形態に係る異常検知処理の一例を示す図である。FIG. 11 is a diagram illustrating an example of anomaly detection processing according to the second embodiment of the present disclosure; FIG. 本開示の第3の実施形態に係る異常検知システムの機能構成を示す図である。FIG. 12 is a diagram showing the functional configuration of an anomaly detection system according to a third embodiment of the present disclosure; FIG. 本開示の一実施形態に係る車載器及びセンタサーバのハードウェア構成の一例を示す図である。It is a figure showing an example of hardware constitutions of onboard equipment concerning one embodiment of this indication, and a center server.
<第1の実施形態>
 以下、本開示の第1の実施形態に係る異常検知システム1について、図1~図4を参照しながら説明する。
<First embodiment>
An abnormality detection system 1 according to a first embodiment of the present disclosure will be described below with reference to FIGS. 1 to 4. FIG.
(異常検知システムの全体構成)
 図1は、本開示の第1の実施形態に係る異常検知システムの全体構成を示す図である。
 図1に示すように、異常検知システム1は、複数の車載器10と、センタサーバ20とを備えている。
(Overall configuration of anomaly detection system)
FIG. 1 is a diagram showing the overall configuration of an anomaly detection system according to the first embodiment of the present disclosure.
As shown in FIG. 1 , the anomaly detection system 1 includes a plurality of vehicle-mounted devices 10 and a center server 20 .
 複数の車載器10は、それぞれ車両Aに搭載される。車載器10は、GNSS衛星40が発信する衛星信号を受信して、当該信号に基づいて自機が搭載された車両Aの位置を推定する。また、車載器10は、受信した衛星信号に関する情報、車両Aの推定位置に関する情報等を含むGNSS測位データを収集して記録する。 A plurality of vehicle-mounted devices 10 are mounted on vehicle A, respectively. The vehicle-mounted device 10 receives satellite signals emitted by the GNSS satellites 40 and estimates the position of the vehicle A on which the device is mounted based on the signals. The vehicle-mounted device 10 also collects and records GNSS positioning data including information about the received satellite signals, information about the estimated position of the vehicle A, and the like.
 センタサーバ20は、車載器10と無線通信用のネットワークN(セルラーネットワーク等)を介して通信可能に接続される。センタサーバ20は、複数の車載器10それぞれからGNSS測位データを収集して、各車載器10における正常なGNSSデータを模擬した疑似GNSSデータを生成する生成モデルを学習する。また、センタサーバ20は、学習済みの生成モデルを用いて、各車載器10において実測されたGNSS測位データの異常を検知する。 The center server 20 is communicably connected to the vehicle-mounted device 10 via a wireless communication network N (such as a cellular network). The center server 20 collects GNSS positioning data from each of the plurality of vehicle-mounted devices 10 and learns a generation model that generates pseudo GNSS data simulating normal GNSS data in each vehicle-mounted device 10 . Moreover, the center server 20 detects abnormality of the GNSS positioning data actually measured in each vehicle-mounted device 10 using the learned generation model.
(異常検知システムの機能構成)
 図2は、本開示の第1の実施形態に係る異常検知システムの機能構成を示す図である。
 図2に示すように、車載器10は、GNSSレシーバ100と、センサ情報取得部101と、状態観測部102と、出力部103と、記憶媒体104とを備えている。
(Functional configuration of anomaly detection system)
FIG. 2 is a diagram showing the functional configuration of the anomaly detection system according to the first embodiment of the present disclosure.
As shown in FIG. 2 , the vehicle-mounted device 10 includes a GNSS receiver 100 , a sensor information acquisition section 101 , a state observation section 102 , an output section 103 and a storage medium 104 .
 GNSSレシーバ100は、GNSS衛星40から発信される衛星信号を受信して、車両Aの位置を推定する。また、GNSSレシーバ100は、受信した衛星信号に関する信号受信情報、及び車両Aの位置に関する推定位置情報を含むGNSS測位データを生成して、状態観測部102に出力する。 The GNSS receiver 100 receives satellite signals transmitted from the GNSS satellites 40 and estimates the position of the vehicle A. The GNSS receiver 100 also generates GNSS positioning data including signal reception information about the received satellite signals and estimated position information about the position of the vehicle A, and outputs the data to the state observation unit 102 .
 信号受信情報は、GNSSレシーバ100が受信した衛星信号の信号強度、衛星数、仰角、方位角等を含む。推定位置情報は、信号受信時点における車両Aの推定位置(緯度、経度、高度)、推定速度等を含む。 The signal reception information includes the signal strength of the satellite signals received by the GNSS receiver 100, the number of satellites, the elevation angle, the azimuth angle, and the like. The estimated position information includes the estimated position (latitude, longitude, altitude) of vehicle A at the time of signal reception, estimated speed, and the like.
 センサ情報取得部101は、車両Aが有する車載センサ30からセンサ情報を取得する。車載センサ30は、たとえば、路側に設けられた位置情報配信ビーコンから、車両Aの位置を検出可能なビーコン信号を受信する受信器である。車載センサ30は、路側に設けられたスピード計測機器から、スピード計測機器の設置位置における車両Aの車速を検出可能な信号を受信する受信器であってもよい。また、車載センサ30は、車両Aの周辺環境(周辺の建造物の有無等)を検出可能な車載カメラ、LiDAR(Light Detection and Ranging)であってもよい。さらに、車載センサ30は、車両Aの車速センサ、加速度センサ、角速度センサ等であってもよい。センサ情報取得部101は、車載センサ30を介して取得した各種センサ情報を、状態観測部102に出力する。 The sensor information acquisition unit 101 acquires sensor information from the in-vehicle sensor 30 of the vehicle A. The vehicle-mounted sensor 30 is a receiver that receives a beacon signal capable of detecting the position of the vehicle A, for example, from a position information distribution beacon provided on the roadside. The in-vehicle sensor 30 may be a receiver that receives a signal capable of detecting the vehicle speed of the vehicle A at the installation position of the speed measuring device from the speed measuring device provided on the roadside. In addition, the in-vehicle sensor 30 may be an in-vehicle camera or LiDAR (Light Detection and Ranging) capable of detecting the surrounding environment of the vehicle A (presence or absence of surrounding buildings, etc.). Furthermore, the vehicle-mounted sensor 30 may be a vehicle speed sensor, an acceleration sensor, an angular velocity sensor, or the like of the vehicle A. The sensor information acquisition unit 101 outputs various sensor information acquired via the in-vehicle sensor 30 to the state observation unit 102 .
 状態観測部102は、GNSSレシーバ100を介して、GNSS測位データを収集する。 The state observation unit 102 collects GNSS positioning data via the GNSS receiver 100 .
 また、状態観測部102は、GNSS測位データの測位誤差をさらに収集する。測位誤差は、車両Aの衛星信号に基づく推定位置と、実際の位置との差分(位置誤差)である。また、測位誤差は、車両Aの衛星信号に基づく推定速度と、実際の速度との差分(速度誤差)を含んでいてもよい。 In addition, the state observation unit 102 further collects positioning errors of the GNSS positioning data. The positioning error is the difference (position error) between the estimated position of vehicle A based on satellite signals and the actual position. The positioning error may also include the difference (speed error) between the estimated speed of vehicle A based on the satellite signal and the actual speed.
 たとえば、状態観測部102は、記憶媒体104に予め記憶された地図データに基づいて、車両Aの地図データのリンク上の位置を特定し、車両Aの推定位置と、リンク上の位置との距離を位置誤差として求める。なお、状態観測部102は、車両Aの推定位置と、センサ情報取得部101が取得した位置情報配信ビーコンのビーコン信号に基づいて特定された車両Aの位置との差分を位置誤差として求めてもよい。また、状態観測部102は、車両Aの推定速度と、センサ情報取得部101を介して路側のスピード計測機器、又は車両Aの車速センサから得た車両Aの速度との差分を、速度誤差として求める。 For example, state observation unit 102 identifies the location of vehicle A on the link in the map data based on map data stored in advance in storage medium 104, and calculates the distance between the estimated location of vehicle A and the location on the link. is obtained as the position error. Note that the state observation unit 102 may obtain, as a position error, the difference between the estimated position of the vehicle A and the position of the vehicle A specified based on the beacon signal of the position information distribution beacon acquired by the sensor information acquisition unit 101. good. In addition, the state observation unit 102 uses the difference between the estimated speed of the vehicle A and the speed of the vehicle A obtained from a roadside speed measuring device or the vehicle speed sensor of the vehicle A via the sensor information acquisition unit 101 as a speed error. Ask.
 また、状態観測部102は、GNSSレシーバ100の特性を示すレシーバ情報と、GNSSレシーバ100の取付環境を示す取付環境情報と、車両Aの周辺の遮蔽物の有無等を示す周辺環境情報とをさらに収集してもよい。 In addition, the state observation unit 102 further collects receiver information indicating the characteristics of the GNSS receiver 100, mounting environment information indicating the mounting environment of the GNSS receiver 100, and surrounding environment information indicating the presence or absence of shields around the vehicle A. may be collected.
 GNSSレシーバ100の特性とは、アンテナ感度、指向性、周波数特性等である。レシーバ情報は、たとえば、GNSSレシーバの型式を含む。また、レシーバ情報は、GNSSレシーバ100の製造時期及び車両Aへの取付期間を示す情報を含んでいてもよい。製造時期及び取付期間から、GNSSレシーバ100の経年劣化による影響を検出することができる。 The characteristics of the GNSS receiver 100 are antenna sensitivity, directivity, frequency characteristics, and the like. Receiver information includes, for example, the type of GNSS receiver. Moreover, receiver information may also contain the information which shows the manufacturing time of the GNSS receiver 100, and the attachment period to the vehicle A. FIG. From the date of manufacture and the period of installation, the aging effects of the GNSS receiver 100 can be detected.
 取付環境情報は、GNSSレシーバ100が搭載された車両に関する情報(型式等)、アンテナ取付位置、アンテナ取付角度を含む。 The installation environment information includes information on the vehicle on which the GNSS receiver 100 is mounted (model, etc.), antenna installation position, and antenna installation angle.
 周辺環境情報は、車両Aの周辺に存在する建造物等、GNSS衛星40の衛星信号を遮蔽する遮蔽物の有無を検出可能な情報である。周辺環境情報は、たとえばセンサ情報取得部101が取得した車載カメラの映像、LiDARの計測結果である。 The surrounding environment information is information that enables detection of the presence or absence of obstacles that block the satellite signals of the GNSS satellites 40, such as buildings that exist around the vehicle A. The surrounding environment information is, for example, an image captured by an in-vehicle camera acquired by the sensor information acquiring unit 101 and a LiDAR measurement result.
 状態観測部102は、GNSSレシーバ100がGNSS測位データを生成する度に、生成されたGNSS測位データをセンタサーバ20に送信する。他の実施形態では、状態観測部102は、所定期間毎に、又は所定数のGNSS測位データが記憶媒体104に蓄積される毎に、蓄積された複数のGNSS測位データをまとめてセンタサーバ20に送信してもよい。また、状態観測部102は、測位誤差、レシーバ情報、取付環境情報、周辺環境情報を収集している場合は、これらをGNSS測位データとともにセンタサーバ20に送信する。 The state observation unit 102 transmits the generated GNSS positioning data to the center server 20 each time the GNSS receiver 100 generates GNSS positioning data. In another embodiment, the state observation unit 102 collects a plurality of accumulated GNSS positioning data to the center server 20 every predetermined period or every time a predetermined number of GNSS positioning data is accumulated in the storage medium 104. You may send. Moreover, the state observation part 102 transmits these to the center server 20 with GNSS positioning data, when the positioning error, receiver information, installation environment information, and surrounding environment information are collected.
 出力部103は、液晶ディスプレイ等の表示装置であり、GNSS測位データの異常に関する異常検知情報を出力(表示)する。なお、出力部103は異常検知情報を音声等で出力するスピーカをさらに有していてもよい。 The output unit 103 is a display device such as a liquid crystal display, and outputs (displays) anomaly detection information regarding anomalies in GNSS positioning data. Note that the output unit 103 may further include a speaker for outputting the abnormality detection information by voice or the like.
 記憶媒体104には、車載器10の各部が取得、生成した各種データが記憶される。たとえば、記憶媒体104には、センサ情報取得部101が取得したセンサ情報、状態観測部102が収集したGNSS測位データ等が記憶される。 The storage medium 104 stores various data acquired and generated by each part of the vehicle-mounted device 10 . For example, the storage medium 104 stores sensor information acquired by the sensor information acquisition unit 101, GNSS positioning data collected by the state observation unit 102, and the like.
 また、センタサーバ20は、学習部200と、生成部201と、異常判定部202と、記憶媒体203とを備えている。 The center server 20 also includes a learning unit 200 , a generation unit 201 , an abnormality determination unit 202 and a storage medium 203 .
 学習部200は、車載器10から受信した学習データを用いて、疑似GNSS測位データを生成する生成モデルを学習する。学習データには、車載器10の状態観測部102が収集したGNSS測位データが含まれる。また、学習データには、車載器10のレシーバ情報、取付環境情報、車載器10が搭載された車両Aの周辺環境に関する情報がさらに含まれていてもよい。 The learning unit 200 learns a generation model for generating pseudo GNSS positioning data using the learning data received from the vehicle-mounted device 10 . The learning data includes GNSS positioning data collected by the state observation unit 102 of the vehicle-mounted device 10 . The learning data may further include receiver information of the vehicle-mounted device 10, installation environment information, and information about the surrounding environment of the vehicle A in which the vehicle-mounted device 10 is mounted.
 生成部201は、学習部200により学習された生成モデルにより、疑似GNSS測位データを生成する。 The generation unit 201 generates pseudo GNSS positioning data using the generation model learned by the learning unit 200 .
 異常判定部202は、車載器10から新たなGNSS測位データが取得された場合に、生成部201によって生成された疑似GNSS測位データとの対比に基づいて、当該GNSS測位データが異常であるか否かを判定する。 When new GNSS positioning data is acquired from the vehicle-mounted device 10, the abnormality determination unit 202 determines whether the GNSS positioning data is abnormal based on comparison with the pseudo GNSS positioning data generated by the generation unit 201. determine whether
 記憶媒体203には、センタサーバ20の各部が取得、生成した各種データが記憶される。たとえば、記憶媒体203には、車載器10それぞれから収集したGNSS測位データ、学習部200により学習された生成モデル等が記憶される。 Various data acquired and generated by each part of the center server 20 are stored in the storage medium 203 . For example, the storage medium 203 stores GNSS positioning data collected from each vehicle-mounted device 10, a generation model learned by the learning unit 200, and the like.
(学習処理)
 本開示の第1の実施形態に係る学習部の機能構成、及び学習処理の一例を示す図である。
 本実施形態に係る学習部200は、敵対的生成ネットワーク(Generative adversarial networks)の技術を用いて、疑似GNSS測位データを生成するための生成モデルを学習する。図3に示すように、学習部200は、ジェネレータ2001と、ディスクリミネータ2002とを有している。
(learning process)
FIG. 3 is a diagram illustrating an example of a functional configuration of a learning unit and a learning process according to the first embodiment of the present disclosure; FIG.
The learning unit 200 according to the present embodiment learns a generative model for generating pseudo-GNSS positioning data using the technology of generative adversarial networks. As shown in FIG. 3, learning section 200 has generator 2001 and discriminator 2002 .
 ジェネレータ2001は、入力された潜在変数zから、正常なGNSS測位データを模擬した疑似GNSS測位データx´を生成する生成モデルである。つまり、ジェネレータ2001は、入力された潜在変数zを、実測された複数のGNSS測位データからなる観測空間にマッピングするものである。センタサーバ20の記憶媒体203には、予め車載器10により実測された正常時のGNSS測位データが学習データとして蓄積されている。ジェネレータ2001は、この学習データを用いて、正常時に取得された本物のGNSS測位データに近い疑似GNSS測位データを生成できるように学習を行う。なお、正常なGNSS測位データは、たとえば、技術者等により正常であると判断されたGNSS測位データである。また、正常なGNSS測位データは、故障等がなく正常動作していると確認されたGNSSレシーバ100により収集されたGNSS測位データであってもよい。 The generator 2001 is a generation model that generates pseudo GNSS positioning data x' simulating normal GNSS positioning data from the input latent variable z. That is, the generator 2001 maps the input latent variable z to an observation space composed of a plurality of actually measured GNSS positioning data. In the storage medium 203 of the center server 20, GNSS positioning data in a normal state actually measured by the vehicle-mounted device 10 is stored in advance as learning data. Using this learning data, the generator 2001 performs learning so as to generate pseudo GNSS positioning data close to the genuine GNSS positioning data acquired during normal operation. The normal GNSS positioning data is, for example, GNSS positioning data determined to be normal by an engineer or the like. Also, the normal GNSS positioning data may be GNSS positioning data collected by the GNSS receiver 100 that has been confirmed to be operating normally without failure or the like.
 ディスクリミネータ2002は、入力されたGNSS測位データが、車載器10により実測されたGNSS測位データxであるか、ジェネレータ2001により生成された疑似GNSS測位データx´であるかを識別する。ディスクリミネータ2002は、記憶媒体203に蓄積された学習データに基づいて、本物のデータであるGNSS測位データと、偽物である疑似GNSS測位データとを識別できるように学習を行う。 The discriminator 2002 identifies whether the input GNSS positioning data is GNSS positioning data x actually measured by the vehicle-mounted device 10 or pseudo GNSS positioning data x' generated by the generator 2001 . The discriminator 2002 learns based on the learning data accumulated in the storage medium 203 so as to distinguish between the GNSS positioning data that is genuine data and the pseudo GNSS positioning data that is fake.
 なお、上記したように、学習データは、測位誤差をさらに含んでいてもよい。このような学習データを用いることにより、ジェネレータ2001は、本物のGNSS測位データにより近い測位誤差を含んだ疑似GNSS測位データを生成するように学習される。また、ディスクリミネータ2002は、GNSS測位データに測位誤差が含まれていても、より正確にデータの真偽の識別できるように学習される。 It should be noted that, as described above, the learning data may further include positioning errors. By using such training data, the generator 2001 is trained to generate pseudo GNSS positioning data with positioning errors that are closer to real GNSS positioning data. Also, the discriminator 2002 is learned so that even if the GNSS positioning data contains a positioning error, the authenticity of the data can be discriminated more accurately.
 また、学習データは、レシーバ情報(GNSSレシーバ100の型式、製造時期、仕様期間等)、取付環境情報(GNSSレシーバ100取付位置等)、周辺環境情報(衛星信号を遮蔽する遮蔽物の有無等)をさらに含んでいてもよい。GNSS衛星40の信号受信情報(信号強度、衛星数等)、及び受信した衛星信号から求められる車両Aの推定位置情報は、レシーバの型式に応じた特性、取付環境、又は車両A(GNSSレシーバ100)の周辺の遮蔽物の有無等の条件に応じて変化する。たとえば、レシーバの特性(アンテナ感度、指向性、周波数特性)は、GNSSレシーバ100の型式毎に異なっている。このため、二つの車載器10がそれぞれ型式の異なるGNSSレシーバ100を有している場合、同じ時刻に同じ位置で衛星信号を受信したとしても、各車載器10が出力するGNSS測位データに含まれる信号受信情報及び推定位置情報が相違する場合がある。同様に、GNSSレシーバ100の取付環境、遮蔽物の有無等の周辺環境によっても、GNSS測位データが相違する場合がある。このため、ジェネレータ2001は、学習データに含まれるレシーバ情報、取付環境情報、周辺環境情報をさらに学習することにより、これら情報に応じたより本物のGNSS測位データに近い疑似GNSS測位データを生成できるようにする。同様に、ディスクリミネータ2002は、GNSS測位データにレシーバ特性、取付環境、遮蔽物の有無による影響が含まれていても、より正確にデータの真偽の識別できるように学習される。 In addition, the learning data includes receiver information (model of GNSS receiver 100, manufacturing time, specification period, etc.), installation environment information (GNSS receiver 100 installation position, etc.), surrounding environment information (presence or absence of a shield that shields satellite signals, etc.) may further include The signal reception information (signal strength, number of satellites, etc.) of the GNSS satellites 40 and the estimated position information of the vehicle A obtained from the received satellite signals are based on the characteristics of the receiver model, the installation environment, or the vehicle A (the GNSS receiver 100 ) changes depending on conditions such as the presence or absence of a shield around. For example, receiver characteristics (antenna sensitivity, directivity, frequency characteristics) differ for each model of GNSS receiver 100 . For this reason, when the two vehicle-mounted devices 10 have GNSS receivers 100 of different models, even if satellite signals are received at the same position at the same time, they are included in the GNSS positioning data output by each vehicle-mounted device 10. Signal reception information and estimated location information may differ. Similarly, the GNSS positioning data may differ depending on the surrounding environment such as the mounting environment of the GNSS receiver 100 and the presence or absence of a shield. For this reason, the generator 2001 further learns the receiver information, the mounting environment information, and the surrounding environment information contained in the learning data so that it can generate pseudo GNSS positioning data that is closer to the real GNSS positioning data according to these information. do. Similarly, the discriminator 2002 is learned so that even if the GNSS positioning data is affected by the receiver characteristics, the installation environment, and the presence or absence of obstructions, the authenticity of the data can be discriminated more accurately.
 また、学習部200は、ジェネレータ2001で生成した疑似GNSS測位データを、ディスクリミネータ2002で本物か偽物か識別させる訓練を繰り返すことにより、ジェネレータ2001及びディスクリミネータ2002をさらに学習させる処理を行う。以下、この学習処理の流れについて、図3を参照しながら説明する。 In addition, the learning unit 200 performs processing for further learning the generator 2001 and the discriminator 2002 by repeating training for the discriminator 2002 to discriminate whether the pseudo GNSS positioning data generated by the generator 2001 is genuine or fake. The flow of this learning process will be described below with reference to FIG.
 まず、ジェネレータ2001は、入力された潜在変数zに基づいて疑似GNSS測位データx´を生成する(ステップS101)。ここでは、潜在変数zとして、たとえば乱数が用いられる。 First, the generator 2001 generates pseudo GNSS positioning data x' based on the input latent variable z (step S101). Here, for example, a random number is used as the latent variable z.
 次に、ディスクリミネータ2002に、ジェネレータ2001が生成した疑似GNSS測位データx´、又は記憶媒体203に蓄積されたGNSS測位データxが入力される(ステップS102)。 Next, the pseudo GNSS positioning data x' generated by the generator 2001 or the GNSS positioning data x accumulated in the storage medium 203 is input to the discriminator 2002 (step S102).
 ディスクリミネータ2002は、入力されたデータがGNSS測位データx(本物)であるか、疑似GNSS測位データx´(偽物)であるか識別し、識別結果Pを出力する(ステップS103)。 The discriminator 2002 identifies whether the input data is GNSS positioning data x (genuine) or pseudo GNSS positioning data x' (fake), and outputs identification result P (step S103).
 ディスクリミネータ2002の学習を行うフェーズでは、識別結果Pの正否に基づいて、ディスクリミネータ2002がより正しく偽物と本物とを識別できるように学習(パラメータ調整等)を行う(ステップS104)。このとき、ジェネレータ2001は変更せずに固定したままとする。 In the phase of learning the discriminator 2002, learning (parameter adjustment, etc.) is performed so that the discriminator 2002 can more accurately discriminate between the fake and the genuine article based on the correctness of the identification result P (step S104). At this time, the generator 2001 remains unchanged and fixed.
 また、ジェネレータ2001の学習を行うフェーズでは、識別結果Pに基づいて、ジェネレータ2001がより本物に近い(ディスクリミネータ2002に本物であると誤認させるような)疑似GNSS測位データを生成できるように学習を行う(ステップS105)。このとき、ディスクリミネータ2002は変更せずに固定したままとする。 Also, in the phase of learning the generator 2001, the generator 2001 learns based on the identification result P so that it can generate pseudo GNSS positioning data that is closer to the real thing (such that the discriminator 2002 misidentifies it as real). (step S105). At this time, the discriminator 2002 remains fixed without being changed.
 学習部200は、上述の各ステップを繰り返し実行することにより、ジェネレータ2001及びディスクリミネータ2002を交互に学習させる。これにより、学習部200は、より本物に近い疑似GNSS測位データx´を生成可能な生成モデルを学習することができる。学習済みのジェネレータ2001(生成モデル)は、記憶媒体203に記憶され、センタサーバ20が後述の異常検知処理を行う際に生成部201により利用される。 The learning unit 200 alternately learns the generator 2001 and the discriminator 2002 by repeatedly executing the above steps. Thereby, the learning unit 200 can learn a generative model capable of generating the pseudo GNSS positioning data x′ closer to the real thing. The learned generator 2001 (generative model) is stored in the storage medium 203 and used by the generator 201 when the center server 20 performs anomaly detection processing, which will be described later.
(異常検知処理)
 図4は、本開示の第1の実施形態に係る異常検知処理の一例を示す図である。
 以下、図4を参照しながら、異常検知システム1におけるGNSS測位データの異常検知処理の流れについて説明する。なお、この異常検知処理は、前述した学習処理(図3)が完了した後に行われる。
(abnormality detection processing)
FIG. 4 is a diagram illustrating an example of anomaly detection processing according to the first embodiment of the present disclosure.
Hereinafter, the flow of anomaly detection processing of GNSS positioning data in the anomaly detection system 1 will be described with reference to FIG. 4 . This abnormality detection process is performed after the learning process (FIG. 3) described above is completed.
 まず、車載器10の状態観測部102は、GNSSレシーバ100を介してGNSS測位データを取得する(ステップS111)。また、状態観測部102は、センサ情報取得部101を介してセンサ情報を取得する(ステップS112)。 First, the state observation unit 102 of the vehicle-mounted device 10 acquires GNSS positioning data via the GNSS receiver 100 (step S111). Also, the state observation unit 102 acquires sensor information via the sensor information acquisition unit 101 (step S112).
 また、状態観測部102は、GNSS測位データの異常を検知するための評価データをセンタサーバ20に送信する(ステップS113)。評価データには、GNSS測位データが含まれる。また、評価データには、状態観測部102が収集した測位誤差、レシーバ情報、取付環境情報、及び周辺環境情報のうち少なくとも一つが含まれていてもよい。 Also, the state observation unit 102 transmits evaluation data for detecting anomalies in the GNSS positioning data to the center server 20 (step S113). The evaluation data includes GNSS positioning data. Also, the evaluation data may include at least one of the positioning error, receiver information, installation environment information, and surrounding environment information collected by the state observation unit 102 .
 次に、センタサーバ20の生成部201は、学習部200によって学習済みの生成モデルを用いて、疑似GNSS測位データx´を生成する(ステップS114)。なお、本実施形態において、正常なGNSS測位データに対応する潜在変数zは不明である。このため、生成部201は、潜在変数zの取り得る全ての値をたとえば順に入力して、各値に基づく複数の疑似GNSS測位データx´を生成する。そうすると、生成した複数の疑似GNSS測位データのうちいずれかは、本物のGNSS測位データに近いものとなる。 Next, the generation unit 201 of the center server 20 generates pseudo GNSS positioning data x' using the generation model that has been learned by the learning unit 200 (step S114). Note that in this embodiment, the latent variable z corresponding to normal GNSS positioning data is unknown. Therefore, the generation unit 201 sequentially inputs all possible values of the latent variable z, and generates a plurality of pseudo GNSS positioning data x' based on each value. Then, one of the generated pseudo GNSS positioning data is close to the real GNSS positioning data.
 次に、センタサーバ20の異常判定部202は、車載器10から取得した実測データであるGNSS測位データxと、生成部201が生成した疑似GNSS測位データx´とを対比して、GNSS測位データxの異常の有無を判定する(ステップS115)。 Next, the abnormality determination unit 202 of the center server 20 compares the GNSS positioning data x, which is the actual measurement data acquired from the vehicle-mounted device 10, with the pseudo GNSS positioning data x′ generated by the generation unit 201, and determines the GNSS positioning data. It is determined whether there is an abnormality in x (step S115).
 疑似GNSS測位データx´は、車載器10の状態が正常であるときに取得されると推定されるGNSS測位データを模擬したものである。したがって、車載器10の状態が正常であれば、車載器10で実測されたGNSS測位データxは、生成部201が生成した複数の疑似GNSS測位データx´のいずれかに近いデータとなっているはずである。このため、異常判定部202は、たとえば、GNSS測位データxと、複数の疑似GNSS測位データx´それぞれとの一致度を算出し、一致度が所定以上の値となる疑似GNSS測位データx´がある場合、GNSS測位データxは正常であると判定する。一方、異常判定部202は、一致度が所定以上の疑似GNSS測位データx´がない場合、GNSS測位データxは異常であると判定する。 The pseudo GNSS positioning data x' simulates GNSS positioning data estimated to be obtained when the vehicle-mounted device 10 is in a normal state. Therefore, if the state of the vehicle-mounted device 10 is normal, the GNSS positioning data x actually measured by the vehicle-mounted device 10 is data close to any of the plurality of pseudo GNSS positioning data x' generated by the generation unit 201. should be. For this reason, the abnormality determination unit 202 calculates, for example, the degree of matching between the GNSS positioning data x and each of the plurality of pseudo GNSS positioning data x', and the pseudo GNSS positioning data x' having a value equal to or higher than a predetermined value of the degree of matching is If there is, the GNSS positioning data x is determined to be normal. On the other hand, the abnormality determination unit 202 determines that the GNSS positioning data x is abnormal when there is no pseudo GNSS positioning data x' having a degree of matching equal to or greater than a predetermined value.
 判定が完了すると、異常判定部202は、異常の有無を示す判定結果を含む異常検知情報を車載器10に送信する(ステップS116)。なお、異常検知情報は、異常判定部202が算出した一致度を含んでもよい。 When the determination is completed, the abnormality determination unit 202 transmits abnormality detection information including the determination result indicating the presence or absence of abnormality to the vehicle-mounted device 10 (step S116). Note that the abnormality detection information may include the degree of matching calculated by the abnormality determination unit 202 .
 また、車載器10の出力部103は、センタサーバ20から受信した異常検知情報を出力して、車両Aの搭乗者に提示する(ステップS117)。なお、出力部103は、異常検知情報にGNSS測位データxが異常であることを示す情報が含まれている場合のみ、警告として異常検知情報を出力するようにしてもよい。 Also, the output unit 103 of the vehicle-mounted device 10 outputs the abnormality detection information received from the center server 20 and presents it to the passengers of the vehicle A (step S117). Note that the output unit 103 may output the abnormality detection information as a warning only when the abnormality detection information includes information indicating that the GNSS positioning data x is abnormal.
 異常検知システム1は、状態観測部102がGNSS測位データを取得する度に、又は、所定時間毎に、図4に示す一連の処理を実行し、GNSS測位データの異常の有無を判定する。 The anomaly detection system 1 executes the series of processes shown in FIG. 4 each time the state observation unit 102 acquires GNSS positioning data or at predetermined time intervals to determine whether there is an anomaly in the GNSS positioning data.
(作用効果)
 以上のように、本実施形態に係る異常検知システム1は、状態観測部102が取得したGNSS測位データxと、生成部201により学習済みの生成モデルを用いて作成された疑似GNSS測位データx´との対比に基づいて、取得したGNSS測位データxが異常であるか否かを判定する。
 このようにすることで、異常検知システム1は、GNSSレシーバ100により実測されたGNSS測位データxが疑似GNSS測位データx´と乖離している場合、GNSS測位データxが異常であることを検知することができる。
(Effect)
As described above, the anomaly detection system 1 according to the present embodiment includes the GNSS positioning data x acquired by the state observation unit 102 and the pseudo GNSS positioning data x′ created by the generation unit 201 using the learned generation model. , it is determined whether or not the acquired GNSS positioning data x is abnormal.
By doing so, the abnormality detection system 1 detects that the GNSS positioning data x is abnormal when the GNSS positioning data x actually measured by the GNSS receiver 100 deviates from the pseudo GNSS positioning data x'. be able to.
 また、異常検知システム1のセンタサーバ20は、状態観測部102が収集した正常なGNSS測位データを用いて、疑似GNSS測位データを生成する生成モデルを学習する学習部200をさらに備える。
 このようにすることで、異常検知システム1は、GNSSレシーバ100の状態が正常である場合に取得されると推定されるデータを模擬した疑似GNSS測位データを生成可能な生成モデルを学習することができる。よって、異常検知システム1は、このように学習された生成モデルを用いることにより、正常時のデータを模擬した疑似GNSS測位データx´から、実測されたGNSS測位データxが乖離している場合は、GNSS測位データxが異常であると精度よく判定することができる。
The center server 20 of the anomaly detection system 1 further includes a learning unit 200 that learns a generation model for generating pseudo GNSS positioning data using normal GNSS positioning data collected by the state observation unit 102 .
By doing so, the anomaly detection system 1 can learn a generation model capable of generating pseudo GNSS positioning data simulating data estimated to be acquired when the state of the GNSS receiver 100 is normal. can. Therefore, by using the generative model learned in this way, the anomaly detection system 1, when the actually measured GNSS positioning data x deviates from the pseudo GNSS positioning data x′ simulating the normal data, , the GNSS positioning data x can be determined to be abnormal.
 また、状態観測部102はGNSS測位データの測位誤差をさらに収集し、学習部200は測位誤差をさらに用いて生成モデルを学習する。
 実測されるGNSS測位データには、測位誤差が含まれている場合がある。このため、本実施形態に係る異常検知システム1は、測位誤差も含めて生成モデルの学習を行うようにしている。これにより、異常検知システム1は、実際の車載器10(GNSSレシーバ100)に生じる測位誤差についても模擬することができるので、このような測位誤差を含む疑似GNSS測位データを生成することが可能となる。そうすると、異常検知システム1は、より本物に近い疑似GNSS測位データを生成することができるので、異常検知の精度を向上させることができる。
In addition, the state observation unit 102 further collects positioning errors of the GNSS positioning data, and the learning unit 200 further uses the positioning errors to learn the generative model.
The actually measured GNSS positioning data may contain positioning errors. Therefore, the anomaly detection system 1 according to the present embodiment learns the generative model including the positioning error. Thereby, since the abnormality detection system 1 can also simulate the positioning error that occurs in the actual vehicle-mounted device 10 (GNSS receiver 100), it is possible to generate pseudo GNSS positioning data including such a positioning error. Become. Then, since the anomaly detection system 1 can generate pseudo GNSS positioning data that is closer to the real thing, it is possible to improve the accuracy of anomaly detection.
 また、状態観測部102はGNSSレシーバ100の特性を検出可能なレシーバ情報を更に収集し、学習部200はレシーバ情報をさらに用いて生成モデルを学習する。
 GNSSレシーバ100の型式に応じて、レシーバの特性(アンテナ感度、指向性、周波数特性等)が異なる場合がある。つまり、異なるGNSSレシーバ100を用いると、同じ時刻の同じ場所であっても、測位結果(GNSS測位データの内容)が異なる可能性がある。このため、本実施形態に係る異常検知システム1は、GNSSレシーバ100のレシーバ情報(型式)も含めて生成モデルの学習を行うようにしている。これにより、異常検知システム1は、GNSSレシーバ100の特性に応じた、より本物に近い疑似GNSS測位データを生成することができる。この結果、GNSSレシーバ100毎の特性の違いを考慮した異常検知が可能となり、異常検知の精度を向上させることができる。
In addition, the state observation unit 102 further collects receiver information capable of detecting the characteristics of the GNSS receiver 100, and the learning unit 200 further uses the receiver information to learn the generative model.
Depending on the type of GNSS receiver 100, receiver characteristics (antenna sensitivity, directivity, frequency characteristics, etc.) may differ. That is, using different GNSS receivers 100 may result in different positioning results (contents of GNSS positioning data) even at the same place at the same time. For this reason, the anomaly detection system 1 according to the present embodiment learns a generative model including the receiver information (type) of the GNSS receiver 100 . Thereby, the anomaly detection system 1 can generate more realistic pseudo GNSS positioning data according to the characteristics of the GNSS receiver 100 . As a result, it is possible to perform anomaly detection in consideration of the difference in characteristics of each GNSS receiver 100, and improve the accuracy of anomaly detection.
 また、レシーバ情報は、GNSSレシーバ100の製造時期及び使用期間を特定可能な情報を含んでいてもよい。
 これにより、異常検知システム1は、GNSSレシーバ100の経年劣化による特性の変化をさらに学習させることができる。この結果、GNSSレシーバ100毎の経年劣化を考慮した異常検知が可能となり、異常検知の精度を向上させることができる。
Moreover, the receiver information may include information capable of specifying the manufacturing time and usage period of the GNSS receiver 100 .
Thereby, the anomaly detection system 1 can further learn changes in the characteristics of the GNSS receiver 100 due to deterioration over time. As a result, it is possible to perform anomaly detection in consideration of aging deterioration of each GNSS receiver 100, and improve the accuracy of anomaly detection.
 また、状態観測部102はGNSSレシーバ100の取付環境を示す取付環境情報をさらに収集し、学習部200は取付環境情報をさらに用いて生成モデルを学習する。
 たとえば、車両A内におけるGNSSレシーバ100の搭載車両や、取付位置等が変わると、GNSSレシーバ100が受信する衛星信号の信号強度等に影響が出る場合がある。そうすると、同じ型式のGNSSレシーバ100であっても、測位結果が異なる可能性がある。このため、本実施形態に係る異常検知システム1は、GNSSレシーバ100の取付環境情報も含めて生成モデルの学習を行うようにしている。これにより、異常検知システム1は、GNSSレシーバ100の取付環境に応じた、より本物に近い疑似GNSS測位データを生成することができる。この結果、GNSSレシーバ100の取付環境を考慮した異常検知が可能となり、異常検知の精度を向上させることができる。
In addition, the state observation unit 102 further collects mounting environment information indicating the mounting environment of the GNSS receiver 100, and the learning unit 200 further uses the mounting environment information to learn the generation model.
For example, if the vehicle in which the GNSS receiver 100 is mounted, the mounting position, or the like in the vehicle A changes, the signal strength of the satellite signal received by the GNSS receiver 100 may be affected. If it does so, even if it is the GNSS receiver 100 of the same model, a positioning result may differ. For this reason, the anomaly detection system 1 according to the present embodiment learns the generation model including the installation environment information of the GNSS receiver 100 . Thereby, the anomaly detection system 1 can generate more realistic pseudo GNSS positioning data according to the mounting environment of the GNSS receiver 100 . As a result, it is possible to perform anomaly detection in consideration of the installation environment of the GNSS receiver 100, and improve the accuracy of anomaly detection.
 また、状態観測部102は車両Aの周辺環境に関する周辺環境情報をさらに収集し、学習部200は周辺環境情報をさらに用いて生成モデルを学習する。
 車両Aの周辺に衛星信号を遮蔽するような建造物がある場合、GNSSレシーバ100が受信する衛星信号の信号強度等に影響が出る場合がある。そうすると、車載器10(GNSSレシーバ100)の状態が正常であっても、車両Aの走行位置によって測位誤差等が大きく変動する可能性がある。このため、本実施形態に係る異常検知システム1は、車両Aの周辺環境情報も含めて生成モデルの学習を行うようにしている。これにより、異常検知システム1は、車両Aの周辺の遮蔽物の有無に応じた、より本物に近い疑似GNSS測位データを生成することができる。この結果、車両A周辺の遮蔽状況を考慮した異常検知が可能となり、異常検知の精度を向上させることができる。
In addition, the state observation unit 102 further collects surrounding environment information regarding the surrounding environment of the vehicle A, and the learning unit 200 further uses the surrounding environment information to learn the generative model.
If there is a building around the vehicle A that blocks satellite signals, the signal strength of the satellite signals received by the GNSS receiver 100 may be affected. If it does so, even if the state of the onboard equipment 10 (GNSS receiver 100) is normal, there exists a possibility that a positioning error etc. may change a lot with the driving|running|working position of the vehicle A. For this reason, the anomaly detection system 1 according to the present embodiment learns the generative model including the surrounding environment information of the vehicle A. FIG. As a result, the anomaly detection system 1 can generate more realistic pseudo GNSS positioning data according to the presence or absence of a shield around the vehicle A. As a result, it is possible to perform anomaly detection in consideration of the shielding situation around the vehicle A, thereby improving the accuracy of anomaly detection.
<第2の実施形態>
 次に、本開示の第2の実施形態に係る異常検知システム1について、図5~図6を参照しながら説明する。
 第1の実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
<Second embodiment>
Next, an abnormality detection system 1 according to a second embodiment of the present disclosure will be described with reference to FIGS. 5 and 6. FIG.
Components common to those of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
(学習処理)
 図5は、本開示の第2の実施形態に係る学習部の機能構成、及び学習処理の一例を示す図である。
 図5に示すように、本実施形態に係る学習部200は、エンコーダ2003をさらに有している。
(learning process)
FIG. 5 is a diagram illustrating an example of a functional configuration of a learning unit and a learning process according to the second embodiment of the present disclosure;
As shown in FIG. 5, the learning section 200 according to this embodiment further has an encoder 2003 .
 エンコーダ2003は、ジェネレータ2001に入力する最適な潜在変数z´を求めるモデル(潜在変数モデル)である。エンコーダ2003は、記憶媒体203に蓄積されたGNSS測位データを潜在空間にマッピングして、GNSS測位データを入力したときに、入力されたデータに対応する潜在変数z´を出力できるように学習する。 The encoder 2003 is a model (latent variable model) for obtaining the optimum latent variable z' to be input to the generator 2001. The encoder 2003 maps the GNSS positioning data accumulated in the storage medium 203 to the latent space, and learns so that when the GNSS positioning data is input, the latent variable z' corresponding to the input data can be output.
 また、学習部200は、ジェネレータ2001、ディスクリミネータ2002、及びエンコーダ2003をさらに学習させる処理を行う。以下、この学習処理の流れについて、図5を参照しながら説明する。 In addition, the learning unit 200 performs processing for further learning the generator 2001, the discriminator 2002, and the encoder 2003. The flow of this learning process will be described below with reference to FIG.
 まず、ジェネレータ2001は、第1の実施形態と同様に、入力された潜在変数zに基づいて疑似GNSS測位データx´を生成する(ステップS201)。 First, the generator 2001 generates pseudo GNSS positioning data x' based on the input latent variable z, as in the first embodiment (step S201).
 また、エンコーダ2003は、入力されたGNSS測位データxから、このデータに対応する潜在変数z´を求める(ステップS202)。 Also, the encoder 2003 obtains the latent variable z' corresponding to the input GNSS positioning data x (step S202).
 次に、ディスクリミネータ2002に、GNSS測位データと潜在変数との組み合わせからなるデータが入力される(ステップS202)。ここで入力されるデータは、ジェネレータ2001が生成した疑似GNSS測位データx´とその生成に用いられた潜在変数zからなる組(x´,z)、又は、エンコーダ2003に入力されたGNSS測位データxとそれに対応する潜在変数z´からなる組(x,z´)である。 Next, data consisting of a combination of GNSS positioning data and latent variables is input to the discriminator 2002 (step S202). The data input here is a set (x', z) consisting of the pseudo GNSS positioning data x' generated by the generator 2001 and the latent variable z used for its generation, or the GNSS positioning data input to the encoder 2003 It is a tuple (x,z') consisting of x and its corresponding latent variable z'.
 ディスクリミネータ2002は、入力されたデータが、GNSS測位データx(本物)であるか、疑似GNSS測位データx´であるか識別し、識別結果Pを出力する(ステップS204)。 The discriminator 2002 identifies whether the input data is GNSS positioning data x (genuine) or pseudo GNSS positioning data x', and outputs identification result P (step S204).
 ディスクリミネータ2002及びジェネレータ2001は、第1の実施形態と同様に、それぞれの学習フェーズにおいて、識別結果Pに基づいて学習を行う(ステップS205、S206)。 The discriminator 2002 and the generator 2001 perform learning based on the identification result P in each learning phase, as in the first embodiment (steps S205 and S206).
 また、エンコーダ2003の学習フェーズにおいて、エンコーダ2003は、ディスクリミネータ2002によりGNSS測位データxが本物のデータであると識別されるように、GNSS測位データxを潜在空間にマッピングし、適切な潜在変数z´を出力できるように学習を行う。 Also, in the learning phase of the encoder 2003, the encoder 2003 maps the GNSS positioning data x into the latent space and appropriate latent variables Learning is performed so that z' can be output.
 学習部200は、上述の各ステップを繰り返し実行することにより、ジェネレータ2001、ディスクリミネータ2002、及びエンコーダ2003を交互に学習させる。これにより、学習部200は、より本物に近い疑似GNSS測位データx´を生成可能な生成モデルを学習するとともに、より適切な潜在変数z´を出力可能な潜在変数モデルを学習することができる。学習済みのジェネレータ2001(生成モデル)及びエンコーダ2003(潜在変数モデル)は、記憶媒体203に記憶され、センタサーバ20が後述の異常検知処理を行う際に生成部201により利用される。 The learning unit 200 alternately learns the generator 2001, the discriminator 2002, and the encoder 2003 by repeatedly executing the above steps. As a result, the learning unit 200 can learn a generative model capable of generating more realistic pseudo GNSS positioning data x', and learn a latent variable model capable of outputting a more appropriate latent variable z'. The learned generator 2001 (generative model) and encoder 2003 (latent variable model) are stored in the storage medium 203 and used by the generator 201 when the center server 20 performs anomaly detection processing, which will be described later.
(異常検知処理)
 図6は、本開示の第2の実施形態に係る異常検知処理の一例を示す図である。
 以下、図6を参照しながら、異常検知システム1におけるGNSS測位データの異常検知処理の流れについて説明する。なお、この異常検知処理は、前述した学習処理(図5)が完了した後に行われる。
(abnormality detection processing)
FIG. 6 is a diagram illustrating an example of anomaly detection processing according to the second embodiment of the present disclosure.
Hereinafter, the flow of anomaly detection processing of GNSS positioning data in the anomaly detection system 1 will be described with reference to FIG. This abnormality detection process is performed after the learning process (FIG. 5) described above is completed.
 まず、車載器10の状態観測部102は、GNSS測位データを取得する(ステップS211)とともに、センサ情報を取得する(ステップS212)。また、状態観測部102は、GNSS測位データの異常を検知するための評価データをセンタサーバ20に送信する(ステップS213)。これらの処理は、第1の実施形態(図4)のステップS111~S113と同様である。 First, the state observation unit 102 of the vehicle-mounted device 10 acquires GNSS positioning data (step S211) and acquires sensor information (step S212). Also, the state observation unit 102 transmits evaluation data for detecting an abnormality in the GNSS positioning data to the center server 20 (step S213). These processes are the same as steps S111 to S113 of the first embodiment (FIG. 4).
 次に、センタサーバ20の生成部201は、学習部200によって学習済みの潜在変数モデルに対し、車載器10から取得したGNSS測位データを入力して、このGNSS測位データに対応する潜在変数z´を求める(ステップS214)。 Next, the generation unit 201 of the center server 20 inputs the GNSS positioning data acquired from the vehicle-mounted device 10 to the latent variable model learned by the learning unit 200, and generates a latent variable z' corresponding to this GNSS positioning data. is obtained (step S214).
 また、生成部201は、潜在変数モデルから出力された潜在変数z´を生成モデルに入力して、この潜在変数z´から疑似GNSS測位データx´を生成する(ステップS215)。 The generation unit 201 also inputs the latent variable z' output from the latent variable model to the generation model, and generates pseudo GNSS positioning data x' from this latent variable z' (step S215).
 次に、センタサーバ20の異常判定部202は、車載器10から取得した実測データであるGNSS測位データxと、生成部201が生成した疑似GNSS測位データx´とを対比して、GNSS測位データxの異常の有無を判定する(ステップS216)。本実施形態では、生成部201は、潜在変数z´に基づく一つの疑似GNSS測位データのみを生成している。このため、異常判定部202は、GNSS測位データxと、生成された一つの疑似GNSS測位データx´とを対比するのみでよい。判定が完了すると、異常判定部202は、異常の有無を示す判定結果を含む異常検知情報を車載器10に送信する(ステップS217)。車載器10の出力部103は、センタサーバ20から異常検知情報を受信すると、この情報を出力して車両Aの搭乗者に提示する(ステップS218)。これらの具体的な処理は、第1の実施形態(図4)のステップS115~S117と同様である。 Next, the abnormality determination unit 202 of the center server 20 compares the GNSS positioning data x, which is the actual measurement data acquired from the vehicle-mounted device 10, with the pseudo GNSS positioning data x′ generated by the generation unit 201, and determines the GNSS positioning data. It is determined whether there is an abnormality in x (step S216). In this embodiment, the generator 201 generates only one piece of pseudo GNSS positioning data based on the latent variable z'. For this reason, the abnormality determination unit 202 only needs to compare the GNSS positioning data x with one generated pseudo GNSS positioning data x'. When the determination is completed, the abnormality determination unit 202 transmits abnormality detection information including the determination result indicating the presence or absence of abnormality to the vehicle-mounted device 10 (step S217). Upon receiving the abnormality detection information from the center server 20, the output unit 103 of the vehicle-mounted device 10 outputs this information and presents it to the passengers of the vehicle A (step S218). These specific processes are the same as steps S115 to S117 of the first embodiment (FIG. 4).
 異常検知システム1は、状態観測部102がGNSS測位データを取得する度に、又は、所定時間毎に、図6に示す一連の処理を実行し、GNSS測位データの異常の有無を判定する。 The anomaly detection system 1 executes the series of processes shown in FIG. 6 each time the state observation unit 102 acquires GNSS positioning data or at predetermined time intervals to determine whether there is an anomaly in the GNSS positioning data.
(作用効果)
 以上のように、本実施形態に係る異常検知システム1において、学習部200は、GNSS測位データを用いて潜在変数モデルをさらに学習する。また、生成部201は、潜在変数モデルから出力された潜在変数z´を生成モデルに入力して、疑似GNSS測位データx´を生成する。
 本実施形態に係る異常検知システム1は、学習済みの潜在変数モデルを用いてGNSS測位データから潜在変数z´を特定することができるので、第1の実施形態のように、複数の潜在変数それぞれに基づく複数の疑似GNSS測位データを生成し、全ての疑似GNSS測位データとGNSS測位データとを対比させる必要がない。このため、異常検知システム1は、生成部201及び異常判定部202における処理負荷を大幅に低減させることができる。
(Effect)
As described above, in the anomaly detection system 1 according to this embodiment, the learning unit 200 further learns the latent variable model using GNSS positioning data. The generation unit 201 also inputs the latent variable z' output from the latent variable model to the generation model to generate the pseudo GNSS positioning data x'.
Since the anomaly detection system 1 according to the present embodiment can identify the latent variable z′ from the GNSS positioning data using a learned latent variable model, each of the plurality of latent variables There is no need to generate a plurality of pseudo-GNSS positioning data based on and compare all pseudo-GNSS positioning data with the GNSS positioning data. Therefore, the anomaly detection system 1 can significantly reduce the processing load on the generation unit 201 and the anomaly determination unit 202 .
<第3の実施形態>
 次に、本開示の第3の実施形態に係る異常検知システム1について、図7を参照しながら説明する。
 第1及び第2の実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
<Third Embodiment>
Next, an abnormality detection system 1 according to a third embodiment of the present disclosure will be described with reference to FIG.
Components common to those of the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 第1及び第2の実施形態に係る異常検知システム1では、センタサーバ20が複数の車載器10それぞれにおいて収集されるGNSS測位データの異常の有無を判定していた。これに対し、本実施形態に係る異常検知システム1では、複数の車載器10それぞれが、自身が取得したGNSS測位データの異常の有無を判定する。 In the anomaly detection system 1 according to the first and second embodiments, the center server 20 determines whether or not there is an anomaly in the GNSS positioning data collected by each of the plurality of vehicle-mounted devices 10 . On the other hand, in the abnormality detection system 1 according to the present embodiment, each of the plurality of vehicle-mounted devices 10 determines whether there is an abnormality in the GNSS positioning data acquired by itself.
 また、本実施形態に係るセンタサーバ20の学習部200は、第1又は第2の実施形態に係る学習部200と同様の機能構成を有している。学習部200が生成モデル及び潜在変数モデルの学習を完了すると、これら学習済みのモデルは各車載器10に配布されて、車載器10の記憶媒体104に記憶される。 Also, the learning unit 200 of the center server 20 according to this embodiment has the same functional configuration as the learning unit 200 according to the first or second embodiment. When the learning unit 200 completes learning of the generative model and the latent variable model, these learned models are distributed to each vehicle-mounted device 10 and stored in the storage medium 104 of the vehicle-mounted device 10 .
(異常検知システムの機能構成)
 図7は、本開示の第3の実施形態に係る異常検知システムの機能構成を示す図である。
 図7に示すように、本実施形態に係る車載器10は、生成部111及び異常判定部112をさらに備えている。
(Functional configuration of anomaly detection system)
FIG. 7 is a diagram showing the functional configuration of an anomaly detection system according to the third embodiment of the present disclosure.
As shown in FIG. 7 , the vehicle-mounted device 10 according to the present embodiment further includes a generation section 111 and an abnormality determination section 112 .
 生成部111及び異常判定部112は、第1又は第2の実施形態に係るセンタサーバ20の生成部201及び異常判定部202と同様の機能を有している。 The generation unit 111 and the abnormality determination unit 112 have the same functions as the generation unit 201 and the abnormality determination unit 202 of the center server 20 according to the first or second embodiment.
 すなわち、センタサーバ20から生成モデルのみが配布されている場合、生成部111は、第1の実施形態(図4)のステップS114と同じ処理を行い、複数の疑似GNSS測位データx´を生成する。また、異常判定部112は、第1の実施形態(図4)のステップS115と同じ処理を行い、状態観測部102が取得したGNSS測位データxと、複数の疑似GNSS測位データx´それぞれとを対比して、異常の有無を判定する。 That is, when only the generation model is distributed from the center server 20, the generation unit 111 performs the same processing as in step S114 of the first embodiment (FIG. 4) to generate a plurality of pseudo GNSS positioning data x'. . In addition, the abnormality determination unit 112 performs the same processing as in step S115 of the first embodiment (FIG. 4), and determines the GNSS positioning data x acquired by the state observation unit 102 and each of the plurality of pseudo GNSS positioning data x′. By comparison, the presence or absence of abnormality is determined.
 また、センタサーバ20から生成モデル及び潜在変数モデルが配布されている場合、生成部111は、第2の実施形態(図6)のステップS214と同じ処理を行い、GNSS測位データを潜在変数モデルに入力して潜在変数z´を得る。また、生成部111は、この潜在変数z´を生成モデルに入力して、一つの疑似GNSS測位データx´を生成する。異常判定部112は、第2の実施形態(図6)のステップS216と同じ処理を行い、状態観測部102が取得したGNSS測位データxと、疑似GNSS測位データx´とを対比して、異常の有無を判定する。 Further, when the generation model and the latent variable model are distributed from the center server 20, the generation unit 111 performs the same processing as in step S214 of the second embodiment (FIG. 6), and transforms the GNSS positioning data into the latent variable model. Input to obtain the latent variable z'. The generation unit 111 also inputs this latent variable z' to the generation model to generate one piece of pseudo GNSS positioning data x'. The abnormality determination unit 112 performs the same processing as in step S216 of the second embodiment ( FIG. 6 ), compares the GNSS positioning data x acquired by the state observation unit 102 with the pseudo GNSS positioning data x′, and determines whether there is an abnormality. Determine the presence or absence of
(作用効果)
 以上のように、本実施形態に係る車載器10は、GNSS測位データを収集する状態観測部102と、学習済みの生成モデルを用いて疑似GNSS測位データを生成する生成部111と、新たに取得されたGNSS測位データxと疑似GNSS測位データx´との対比に基づいて、当該GNSS測位データxが異常であるか否かを判定する異常判定部112とを備える。
 このようにすることで、各車両Aに搭載された車載器10が、自身が収集したGNSS測位データの異常を検知することが可能となる。これにより、異常検知システム1は、車載器10とセンタサーバ20との間で頻繁に評価データ(GNSS測位データ)を送受信する必要がなくなるので、通信量を大幅に低減させることができる。また、センタサーバ20が複数の車載器10の異常検出処理を行う態様と比較して、各車載器10に異常検出処理の負荷を分散させることができるので、センタサーバ20の処理負荷を大幅に低減させることができる。
(Effect)
As described above, the vehicle-mounted device 10 according to the present embodiment includes the state observation unit 102 that collects GNSS positioning data, the generation unit 111 that generates pseudo GNSS positioning data using a learned generation model, and a newly acquired and an abnormality determination unit 112 that determines whether or not the GNSS positioning data x is abnormal based on a comparison between the GNSS positioning data x and the pseudo GNSS positioning data x'.
By doing in this way, the onboard equipment 10 mounted in each vehicle A can detect abnormality of the GNSS positioning data which self collected. This eliminates the need for the abnormality detection system 1 to frequently transmit and receive evaluation data (GNSS positioning data) between the vehicle-mounted device 10 and the center server 20, thereby significantly reducing the amount of communication. In addition, compared to the mode in which the center server 20 performs abnormality detection processing for a plurality of vehicle-mounted devices 10, the load of the abnormality detection processing can be distributed to each vehicle-mounted device 10, so the processing load of the center server 20 can be greatly reduced. can be reduced.
<ハードウェア構成>
 図8は、本開示の一実施形態に係る車載器及びセンタサーバのハードウェア構成の一例を示す図である。
 図8に示すように、コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、インタフェース904を備える。
<Hardware configuration>
FIG. 8 is a diagram illustrating an example of a hardware configuration of a vehicle-mounted device and a center server according to an embodiment of the present disclosure;
As shown in FIG. 8, computer 900 includes CPU 901 , main memory 902 , auxiliary memory 903 , and interface 904 .
 上述の各実施形態に係る車載器10及びセンタサーバ20は、それぞれ、コンピュータ900に実装される。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。また、CPU901は、プログラムに従って、上述した各記憶部に対応する記憶領域を主記憶装置902に確保する。 The vehicle-mounted device 10 and the center server 20 according to each of the above-described embodiments are each implemented in a computer 900. The operation of each processing unit described above is stored in the auxiliary storage device 903 in the form of a program. The CPU 901 reads out the program from the auxiliary storage device 903, develops it in the main storage device 902, and executes the above processing according to the program. In addition, the CPU 901 secures storage areas corresponding to the storage units described above in the main storage device 902 according to the program.
 プログラムは、コンピュータ900に発揮させる機能の一部を実現するためのものであってもよい。たとえば、プログラムは、補助記憶装置903に既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、コンピュータ900は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、CPU901によって実現される機能の一部または全部が当該集積回路によって実現されてよい。 The program may be for realizing a part of the functions to be exhibited by the computer 900. For example, the program may function in combination with another program already stored in the auxiliary storage device 903 or in combination with another program installed in another device. In other embodiments, the computer 900 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration. Examples of PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array). In this case, part or all of the functions implemented by the CPU 901 may be implemented by the integrated circuit.
 補助記憶装置903の例としては、磁気ディスク、光磁気ディスク、光ディスク、半導体メモリ等が挙げられる。補助記憶装置903は、コンピュータ900のバスに直接接続された内部メディアであってもよいし、インタフェース904または通信回線を介してコンピュータ900に接続される外部記憶装置910であってもよい。また、このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、補助記憶装置903は、一時的でない有形の記憶媒体である。 Examples of the auxiliary storage device 903 include magnetic disks, magneto-optical disks, optical disks, and semiconductor memories. Auxiliary storage device 903 may be an internal medium directly connected to the bus of computer 900, or an external storage device 910 connected to computer 900 via interface 904 or a communication line. Further, when this program is delivered to the computer 900 via a communication line, the computer 900 receiving the delivery may develop the program in the main storage device 902 and execute the above process. In at least one embodiment, secondary storage 903 is a non-transitory, tangible storage medium.
 また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。
さらに、当該プログラムは、前述した機能を補助記憶装置903に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。
Also, the program may be for realizing part of the functions described above.
Furthermore, the program may be a so-called difference file (difference program) that implements the above-described functions in combination with another program already stored in the auxiliary storage device 903 .
 以上のとおり、本発明に係るいくつかの実施形態を説明したが、これら全ての実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態及びその変形例は、発明の要旨および技術的範囲に含まれる。 As described above, several embodiments according to the present invention have been described, but all these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the gist and technical scope of the invention.
 たとえば、上述の各実施形態において、学習部200は、正常時のGNSS測位データを学習データとして用いる例について説明したが、これに限られることはない。たとえば、状態観測部102は、異常時のGNSS測位データをさらに収集してもよい。この異常時のGNSS測位データには、「異常」であることを示すラベルを付加する。また、学習部200は、ジェネレータ2001が「異常」のラベルが付されたGNSS測位データに近い疑似GNSS測位データを生成した場合にペナルティを与える。これにより、ジェネレータ2001(生成モデル)は、正常時のGNSS測位データに近い疑似GNSS測位データのみを生成するように学習することができる。 For example, in each of the above-described embodiments, the example in which the learning unit 200 uses normal GNSS positioning data as learning data has been described, but the present invention is not limited to this. For example, the state observation unit 102 may further collect GNSS positioning data at the time of abnormality. A label indicating "abnormal" is added to the GNSS positioning data in the abnormal state. Also, the learning unit 200 gives a penalty when the generator 2001 generates pseudo GNSS positioning data close to the GNSS positioning data labeled "abnormal". Thereby, the generator 2001 (generative model) can be learned to generate only pseudo GNSS positioning data close to the GNSS positioning data in the normal state.
 また、上述の各実施形態において、異常判定部202、112がGNSS測位データxと疑似GNSS測位データx´との一致度に基づいて異常の有無を判定する例について説明したが、これに限られることはない。他の実施形態では、異常判定部202、112は、学習部200により学習された識別器(ディスクリミネータ2002)を用いて異常の有無を判定するようにしてもよい。たとえば、識別器(ディスクリミネータ2002)は、入力されたデータが本物であると識別する確率を識別結果Pとして出力する。このとき、異常判定部202、112は、GNSS測位データxが本物である確率P1が、疑似GNSS測位データx´が本物である確率P2よりも低い場合、GNSS測位データxは異常であると判定する。また、異常判定部202、112は、多少の誤差を許容するために、確率P1が確率P2よりも所定値以上低い場合に、GNSS測位データxが異常であると判定してもよい。 Further, in each of the above-described embodiments, an example in which the abnormality determination units 202 and 112 determine the presence or absence of an abnormality based on the degree of matching between the GNSS positioning data x and the pseudo GNSS positioning data x' has been described, but the present invention is limited to this. never. In another embodiment, the abnormality determination units 202 and 112 may determine the presence or absence of an abnormality using a discriminator (discriminator 2002) learned by the learning unit 200. FIG. For example, the discriminator (discriminator 2002) outputs as the discrimination result P the probability of discriminating the input data as authentic. At this time, when the probability P1 that the GNSS positioning data x is genuine is lower than the probability P2 that the pseudo GNSS positioning data x' is genuine, the abnormality determination units 202 and 112 determine that the GNSS positioning data x is abnormal. do. Moreover, in order to allow some error, the abnormality determination units 202 and 112 may determine that the GNSS positioning data x is abnormal when the probability P1 is lower than the probability P2 by a predetermined value or more.
<付記>
 上述の実施形態に記載の異常検知システム、車載器、異常検知方法、及びプログラムは、たとえば以下のように把握される。
<Appendix>
The anomaly detection system, vehicle-mounted device, anomaly detection method, and program described in the above-described embodiments are grasped as follows, for example.
 本開示の第1の態様によれば、異常検知システム(1)は、車両に搭載されたGNSSレシーバ(100)を介して、GNSS衛星から受信した衛星信号に関する情報、及び当該衛星信号から推定される前記車両の位置に関する情報を含むGNSS測位データを収集する状態観測部(102)と、前記GNSS測位データを用いて学習された生成モデルにより、疑似GNSS測位データを生成する生成部(111、201)と、新たなGNSS測位データが取得された場合に、生成された前記疑似GNSS測位データとの対比に基づいて、新たに取得された当該GNSS測位データが異常であるか否かを判定する異常判定部(112、202)と、を備える。 According to the first aspect of the present disclosure, an anomaly detection system (1) includes information about satellite signals received from GNSS satellites via a GNSS receiver (100) mounted on a vehicle, and estimated from the satellite signals. A state observation unit (102) that collects GNSS positioning data including information about the position of the vehicle, and a generation unit (111, 201) that generates pseudo GNSS positioning data by a generation model trained using the GNSS positioning data. ) and, when new GNSS positioning data is acquired, based on the comparison with the generated pseudo GNSS positioning data, abnormality to determine whether the newly acquired GNSS positioning data is abnormal and a determination unit (112, 202).
 このようにすることで、異常検知システムは、GNSSレシーバにより実測されたGNSS測位データが疑似GNSS測位データと乖離している場合、GNSS測位データが異常であることを検知することができる。 By doing so, the anomaly detection system can detect that the GNSS positioning data is anomalous when the GNSS positioning data actually measured by the GNSS receiver deviates from the pseudo GNSS positioning data.
 本開示の第2の態様によれば、第1の態様に係る異常検知システム(1)は、前記状態観測部(102)が収集した正常な前記GNSS測位データを用いて前記生成モデルを学習する学習部(200)をさらに備える。 According to the second aspect of the present disclosure, the anomaly detection system (1) according to the first aspect learns the generative model using the normal GNSS positioning data collected by the state observation unit (102). It further comprises a learning unit (200).
 このようにすることで、異常検知システムは、GNSSレシーバの状態が正常である場合に取得されると推定されるデータを模擬した疑似GNSS測位データを生成可能な生成モデルを学習することができる。よって、異常検知システムは、このように学習された生成モデルを用いることにより、正常時のデータを模擬した疑似GNSS測位データから、実測されたGNSS測位データが乖離している場合は、GNSS測位データが異常であると精度よく判定することができる。 By doing so, the anomaly detection system can learn a generation model that can generate pseudo GNSS positioning data simulating the data estimated to be obtained when the GNSS receiver is in a normal state. Therefore, the anomaly detection system, by using the generative model learned in this way, from the pseudo GNSS positioning data simulating the normal data, when the actually measured GNSS positioning data deviates, GNSS positioning data can be accurately determined as abnormal.
 本開示の第3の態様によれば、第2の態様に係る異常検知システム(1)において、前記状態観測部(102)は、前記GNSS測位データの測位誤差をさらに収集し、前記学習部(200)は、前記測位誤差をさらに用いて前記生成モデルを学習する。 According to the third aspect of the present disclosure, in the anomaly detection system (1) according to the second aspect, the state observation unit (102) further collects positioning errors of the GNSS positioning data, and the learning unit ( 200) further uses the positioning error to learn the generative model.
 このようにすることで、異常検知システムは、実際のGNSSレシーバの測位誤差も精度よく模擬することができる。そうすると、異常検知システムは、より本物に近い疑似GNSS測位データを生成することができるので、異常検知の精度を向上させることができる。 By doing so, the anomaly detection system can accurately simulate the positioning error of the actual GNSS receiver. Then, the anomaly detection system can generate pseudo GNSS positioning data that is closer to the real thing, so that the accuracy of anomaly detection can be improved.
 本開示の第4の態様によれば、第2又は第3の態様に係る異常検知システム(1)において、前記状態観測部(102)は、前記GNSSレシーバ(100)の特性を検出可能なレシーバ情報をさらに収集し、前記学習部(200)は、前記レシーバ情報をさらに用いて前記生成モデルを学習する。 According to a fourth aspect of the present disclosure, in the anomaly detection system (1) according to the second or third aspect, the state observation unit (102) is a receiver capable of detecting characteristics of the GNSS receiver (100) Collecting further information, the learning unit (200) further uses the receiver information to learn the generative model.
 このようにすることで、異常検知システムは、GNSSレシーバの特性に応じた、より本物に近い疑似GNSS測位データを生成することができる。この結果、GNSSレシーバ毎の特性の違いを考慮した異常検知が可能となり、異常検知の精度を向上させることができる。 By doing so, the anomaly detection system can generate more realistic pseudo GNSS positioning data according to the characteristics of the GNSS receiver. As a result, it is possible to perform anomaly detection in consideration of the difference in characteristics of each GNSS receiver, and improve the accuracy of anomaly detection.
 本開示の第5の態様によれば、第2から第4のいずれか一の態様に係る異常検知システム(1)において、前記状態観測部(102)は、前記GNSSレシーバ(100)の取付環境を示す取付環境情報をさらに収集し、前記学習部(200)は、前記取付環境情報をさらに用いて前記生成モデルを学習する。 According to a fifth aspect of the present disclosure, in the anomaly detection system (1) according to any one of the second to fourth aspects, the state observation unit (102) is installed in the installation environment of the GNSS receiver (100). and the learning unit (200) further uses the mounting environment information to learn the generative model.
 このようにすることで、異常検知システムは、GNSSレシーバの取付環境に応じた、より本物に近い疑似GNSS測位データを生成することができる。この結果、GNSSレシーバの取付環境を考慮した異常検知が可能となり、異常検知の精度を向上させることができる。 By doing so, the anomaly detection system can generate more realistic pseudo GNSS positioning data according to the installation environment of the GNSS receiver. As a result, it is possible to perform anomaly detection in consideration of the installation environment of the GNSS receiver, and improve the accuracy of anomaly detection.
 本開示の第6の態様によれば、第2から第5のいずれか一の態様に係る異常検知システム(1)において、前記状態観測部(102)は、前記車両の周辺環境に関する周辺環境情報をさらに収集し、前記学習部(200)は、前記周辺環境情報をさらに用いて前記生成モデルを学習する。 According to a sixth aspect of the present disclosure, in the anomaly detection system (1) according to any one of the second to fifth aspects, the state observation unit (102) provides surrounding environment information about the surrounding environment of the vehicle is further collected, and the learning unit (200) further uses the surrounding environment information to learn the generative model.
 このようにすることで、異常検知システムは、車両の周辺環境に応じた、より本物に近い疑似GNSS測位データを生成することができる。この結果、車両周辺の遮蔽状況を考慮した異常検知が可能となり、異常検知の精度を向上させることができる。 By doing so, the anomaly detection system can generate more realistic pseudo GNSS positioning data that is more realistic according to the surrounding environment of the vehicle. As a result, it is possible to perform anomaly detection in consideration of the shielding situation around the vehicle, thereby improving the accuracy of anomaly detection.
 本開示の第7の態様によれば、第2から第6のいずれか一の態様に係る異常検知システム(1)において、前記学習部(200)は、前記GNSS測位データを用いて、前記疑似GNSS測位データを生成するための潜在変数を出力する潜在変数モデルをさらに学習し、前記生成部(111、201)は、前記潜在変数モデルから出力された前記潜在変数を前記生成モデルに入力して、前記疑似GNSS測位データを生成する。 According to the seventh aspect of the present disclosure, in the anomaly detection system (1) according to any one of the second to sixth aspects, the learning unit (200) uses the GNSS positioning data to use the pseudo A latent variable model that outputs latent variables for generating GNSS positioning data is further learned, and the generation unit (111, 201) inputs the latent variables output from the latent variable model to the generation model. , to generate the pseudo-GNSS positioning data.
 潜在変数が特定できない場合、生成部は潜在変数を一つずつ変更して、各潜在変数に基づく複数の疑似GNSS測位データを生成し、GNSS測位データと複数の疑似GNSS測位データそれぞれとを個別に対比する必要があった。しかしながら、上述の態様に係る異常検知システムは、学習済みの潜在変数モデルを用いて潜在変数を特定することができるので、生成部及び異常判定部における処理負荷を大幅に低減させることができる。 If the latent variables cannot be identified, the generation unit changes the latent variables one by one to generate a plurality of pseudo-GNSS positioning data based on each latent variable, and separately generates the GNSS positioning data and the plurality of pseudo-GNSS positioning data. I had to compare. However, the anomaly detection system according to the above aspect can identify latent variables using a learned latent variable model, so it is possible to greatly reduce the processing load on the generation unit and the anomaly determination unit.
 本開示の第8の態様によれば、車載器(10)は、車両に搭載されたGNSSレシーバ(100)を介して、GNSS衛星から受信した衛星信号に関する情報、及び当該衛星信号から推定される前記車両の位置に関する情報を含むGNSS測位データを収集する状態観測部(102)と、前記GNSS測位データを用いて学習された生成モデルにより、疑似GNSS測位データを生成する生成部(111)と、新たなGNSS測位データが取得された場合に、生成された前記疑似GNSS測位データとの対比に基づいて、当該GNSS測位データが異常であるか否かを判定する異常判定部(112)と、を備える。 According to the eighth aspect of the present disclosure, the vehicle-mounted device (10) is estimated from the information about the satellite signal received from the GNSS satellite and the satellite signal via the GNSS receiver (100) mounted on the vehicle A state observation unit (102) that collects GNSS positioning data including information about the position of the vehicle, a generation unit (111) that generates pseudo GNSS positioning data by a generation model trained using the GNSS positioning data, an abnormality determination unit (112) that determines, when new GNSS positioning data is acquired, whether or not the GNSS positioning data is abnormal based on comparison with the generated pseudo GNSS positioning data; Prepare.
 このようにすることで、各車両に搭載された車載器が、自身が収集したGNSS測位データの異常を検知することが可能となる。これにより、異常検知システムは、車載器とセンタサーバとの間で頻繁に評価データ(GNSS測位データ)を送受信する必要がなくなるので、通信量を大幅に低減させることができる。また、各車載器に異常検出処理の負荷を分散させることができる。 By doing so, it is possible for the on-board equipment installed in each vehicle to detect anomalies in the GNSS positioning data it has collected. This eliminates the need for the anomaly detection system to frequently transmit and receive evaluation data (GNSS positioning data) between the vehicle-mounted device and the center server, thereby significantly reducing the amount of communication. Moreover, the load of abnormality detection processing can be distributed to each vehicle-mounted device.
 本開示の第9の態様によれば、異常検知方法は、車両に搭載されたGNSSレシーバ(100)を介して、GNSS衛星から受信した衛星信号に関する情報、及び当該衛星信号から推定される前記車両の位置に関する情報を含むGNSS測位データを収集するステップと、前記GNSS測位データを用いて学習された生成モデルにより、疑似GNSS測位データを生成するステップと、新たなGNSS測位データが取得された場合に、生成された前記疑似GNSS測位データとの対比に基づいて、当該GNSS測位データが異常であるか否かを判定するステップと、を有する。 According to a ninth aspect of the present disclosure, an anomaly detection method includes information about satellite signals received from GNSS satellites via a GNSS receiver (100) mounted on a vehicle, and the vehicle estimated from the satellite signals. a step of collecting GNSS positioning data including information about the position of the GNSS positioning data; generating pseudo-GNSS positioning data by a generative model trained using the GNSS positioning data; and determining whether the GNSS positioning data is abnormal based on comparison with the generated pseudo GNSS positioning data.
 本開示の第10の態様によれば、プログラムは、車両に搭載されたGNSSレシーバ(100)を介して、GNSS衛星から受信した衛星信号に関する情報、及び当該衛星信号から推定される前記車両の位置に関する情報を含むGNSS測位データを収集するステップと、前記GNSS測位データを用いて学習された生成モデルにより、疑似GNSS測位データを生成するステップと、新たなGNSS測位データが取得された場合に、生成された前記疑似GNSS測位データとの対比に基づいて、当該GNSS測位データが異常であるか否かを判定するステップと、を車載器(10)のコンピュータ(900)に実行させる。 According to a tenth aspect of the present disclosure, the program, via a GNSS receiver (100) mounted on a vehicle, provides information about satellite signals received from GNSS satellites and the position of the vehicle estimated from the satellite signals. generating pseudo-GNSS positioning data by a generative model trained using the GNSS positioning data; generating, when new GNSS positioning data is obtained, generating The computer (900) of the vehicle-mounted device (10) is made to perform a step of determining whether or not the GNSS positioning data is abnormal based on the comparison with the pseudo GNSS positioning data thus obtained.
 本開示に係る異常検知システム、車載器、異常検知方法、及びプログラムによれば、学習済みの生成モデルにより生成された疑似GNSS測位データを用いて、実測されたGNSS測位データの異常を検知することができる。 According to the anomaly detection system, vehicle-mounted device, anomaly detection method, and program according to the present disclosure, an anomaly in actually measured GNSS positioning data is detected using pseudo GNSS positioning data generated by a learned generation model. can be done.
1 異常検知システム
10 車載器
100 GNSSレシーバ
101 センサ情報取得部
102 状態観測部
103 出力部
104 記憶媒体
111 生成部
112 異常判定部
20 センタサーバ
200 学習部
2001 ジェネレータ
2002 ディスクリミネータ
2003 エンコーダ
201 生成部
202 異常判定部
203 記憶媒体
30 車載センサ
40 GNSS衛星
900 コンピュータ
901 CPU
902 主記憶装置
903 補助記憶装置
904 インタフェース
910 外部記憶装置
1 Anomaly detection system 10 Onboard device 100 GNSS receiver 101 Sensor information acquisition unit 102 State observation unit 103 Output unit 104 Storage medium 111 Generation unit 112 Abnormality determination unit 20 Center server 200 Learning unit 2001 Generator 2002 Discriminator 2003 Encoder 201 Generation unit 202 Abnormality determination unit 203 Storage medium 30 In-vehicle sensor 40 GNSS satellite 900 Computer 901 CPU
902 Main storage device 903 Auxiliary storage device 904 Interface 910 External storage device

Claims (10)

  1.  車両に搭載されたGNSSレシーバを介して、GNSS衛星から受信した衛星信号に関する情報、及び当該衛星信号から推定される前記車両の位置に関する情報を含むGNSS測位データを収集する状態観測部と、
     前記GNSS測位データを用いて学習された生成モデルにより、疑似GNSS測位データを生成する生成部と、
     新たなGNSS測位データが取得された場合に、生成された前記疑似GNSS測位データとの対比に基づいて、新たに取得された当該GNSS測位データが異常であるか否かを判定する異常判定部と、
     を備える異常検知システム。
    a state observer that collects GNSS positioning data, including information about satellite signals received from GNSS satellites and information about the position of the vehicle deduced from the satellite signals, via a GNSS receiver mounted on the vehicle;
    A generation unit that generates pseudo GNSS positioning data by a generation model learned using the GNSS positioning data;
    an abnormality determination unit that, when new GNSS positioning data is acquired, determines whether or not the newly acquired GNSS positioning data is abnormal based on comparison with the generated pseudo GNSS positioning data; ,
    anomaly detection system.
  2.  前記状態観測部が収集した正常な前記GNSS測位データを用いて前記生成モデルを学習する学習部をさらに備える、
     請求項1に記載の異常検知システム。
    Further comprising a learning unit that learns the generative model using the normal GNSS positioning data collected by the state observation unit,
    The anomaly detection system according to claim 1.
  3.  前記状態観測部は、前記GNSS測位データの測位誤差をさらに収集し、
     前記学習部は、前記測位誤差をさらに用いて前記生成モデルを学習する、
     請求項2に記載の異常検知システム。
    The state observation unit further collects positioning errors of the GNSS positioning data,
    The learning unit further uses the positioning error to learn the generative model.
    The anomaly detection system according to claim 2.
  4.  前記状態観測部は、前記GNSSレシーバの特性を検出可能なレシーバ情報をさらに収集し、
     前記学習部は、前記レシーバ情報をさらに用いて前記生成モデルを学習する、
     請求項2又は3に記載の異常検知システム。
    The state observation unit further collects receiver information capable of detecting characteristics of the GNSS receiver,
    The learning unit learns the generative model further using the receiver information.
    The anomaly detection system according to claim 2 or 3.
  5.  前記状態観測部は、前記GNSSレシーバの取付環境を示す取付環境情報をさらに収集し、
     前記学習部は、前記取付環境情報をさらに用いて前記生成モデルを学習する、
     請求項2から4のいずれか一項に記載の異常検知システム。
    The state observation unit further collects mounting environment information indicating the mounting environment of the GNSS receiver,
    The learning unit learns the generative model further using the mounting environment information.
    The anomaly detection system according to any one of claims 2 to 4.
  6.  前記状態観測部は、前記車両の周辺環境に関する周辺環境情報をさらに収集し、
     前記学習部は、前記周辺環境情報をさらに用いて前記生成モデルを学習する、請求項2から5のいずれか一項に記載の異常検知システム。
    The state observation unit further collects surrounding environment information about the surrounding environment of the vehicle,
    The anomaly detection system according to any one of claims 2 to 5, wherein the learning unit learns the generative model further using the surrounding environment information.
  7.  前記学習部は、前記GNSS測位データを用いて、前記疑似GNSS測位データを生成するための潜在変数を出力する潜在変数モデルをさらに学習し、
     前記生成部は、前記潜在変数モデルから出力された前記潜在変数を前記生成モデルに入力して、前記疑似GNSS測位データを生成する、
     請求項2から6のいずれか一項に記載の異常検知システム。
    The learning unit uses the GNSS positioning data to further learn a latent variable model that outputs latent variables for generating the pseudo GNSS positioning data,
    The generation unit inputs the latent variables output from the latent variable model to the generation model to generate the pseudo GNSS positioning data.
    The anomaly detection system according to any one of claims 2 to 6.
  8.  車両に搭載されたGNSSレシーバを介して、GNSS衛星から受信した衛星信号に関する情報、及び当該衛星信号から推定される前記車両の位置に関する情報を含むGNSS測位データを収集する状態観測部と、
     前記GNSS測位データを用いて学習された生成モデルにより、疑似GNSS測位データを生成する生成部と、
     新たなGNSS測位データが取得された場合に、生成された前記疑似GNSS測位データとの対比に基づいて、当該GNSS測位データが異常であるか否かを判定する異常判定部と、
     を備える車載器。
    a state observer that collects GNSS positioning data, including information about satellite signals received from GNSS satellites and information about the position of the vehicle deduced from the satellite signals, via a GNSS receiver mounted on the vehicle;
    A generation unit that generates pseudo GNSS positioning data by a generation model learned using the GNSS positioning data;
    When new GNSS positioning data is acquired, an abnormality determination unit that determines whether or not the GNSS positioning data is abnormal based on comparison with the generated pseudo GNSS positioning data;
    In-vehicle device with
  9.  車両に搭載されたGNSSレシーバを介して、GNSS衛星から受信した衛星信号に関する情報、及び当該衛星信号から推定される前記車両の位置に関する情報を含むGNSS測位データを収集するステップと、
     前記GNSS測位データを用いて学習された生成モデルにより、疑似GNSS測位データを生成するステップと、
     新たなGNSS測位データが取得された場合に、生成された前記疑似GNSS測位データとの対比に基づいて、当該GNSS測位データが異常であるか否かを判定するステップと、
     を有する異常検知方法。
    collecting GNSS positioning data, via a GNSS receiver onboard a vehicle, including information about satellite signals received from GNSS satellites and information about the position of the vehicle deduced from the satellite signals;
    generating pseudo GNSS positioning data by a generative model trained using the GNSS positioning data;
    When new GNSS positioning data is acquired, determining whether the GNSS positioning data is abnormal based on comparison with the generated pseudo GNSS positioning data;
    An anomaly detection method comprising:
  10.  車両に搭載されたGNSSレシーバを介して、GNSS衛星から受信した衛星信号に関する情報、及び当該衛星信号から推定される前記車両の位置に関する情報を含むGNSS測位データを収集するステップと、
     前記GNSS測位データを用いて学習された生成モデルにより、疑似GNSS測位データを生成するステップと、
     新たなGNSS測位データが取得された場合に、生成された前記疑似GNSS測位データとの対比に基づいて、当該GNSS測位データが異常であるか否かを判定するステップと、
     を車載器のコンピュータに実行させるプログラム。
    collecting GNSS positioning data, via a GNSS receiver onboard a vehicle, including information about satellite signals received from GNSS satellites and information about the position of the vehicle deduced from the satellite signals;
    generating pseudo GNSS positioning data by a generative model trained using the GNSS positioning data;
    When new GNSS positioning data is acquired, determining whether the GNSS positioning data is abnormal based on comparison with the generated pseudo GNSS positioning data;
    A program that causes the on-board computer to execute
PCT/JP2021/006068 2021-02-18 2021-02-18 Abnormality detection system, vehicle-mounted device, abnormality detection method, and program WO2022176093A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/006068 WO2022176093A1 (en) 2021-02-18 2021-02-18 Abnormality detection system, vehicle-mounted device, abnormality detection method, and program
JP2023500209A JP7467756B2 (en) 2021-02-18 2021-02-18 Anomaly detection system, on-board device, anomaly detection method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/006068 WO2022176093A1 (en) 2021-02-18 2021-02-18 Abnormality detection system, vehicle-mounted device, abnormality detection method, and program

Publications (1)

Publication Number Publication Date
WO2022176093A1 true WO2022176093A1 (en) 2022-08-25

Family

ID=82930370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006068 WO2022176093A1 (en) 2021-02-18 2021-02-18 Abnormality detection system, vehicle-mounted device, abnormality detection method, and program

Country Status (2)

Country Link
JP (1) JP7467756B2 (en)
WO (1) WO2022176093A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003215228A (en) * 2002-01-23 2003-07-30 Hitachi Ltd Mobile terminal with position indication function and position indication method
US20120253656A1 (en) * 2011-03-31 2012-10-04 Google Inc. Mobile state determination of location aware devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003215228A (en) * 2002-01-23 2003-07-30 Hitachi Ltd Mobile terminal with position indication function and position indication method
US20120253656A1 (en) * 2011-03-31 2012-10-04 Google Inc. Mobile state determination of location aware devices

Also Published As

Publication number Publication date
JP7467756B2 (en) 2024-04-15
JPWO2022176093A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
US11435482B2 (en) Method for verifying the plausibility of GNSS position signals
Ghaleb et al. Improved vehicle positioning algorithm using enhanced innovation-based adaptive Kalman filter
US20160005314A1 (en) Vehicle data system and method
US11170639B2 (en) Transportation threat detection system
JP7346397B2 (en) Intrusion point identification device and intrusion point identification method
US9535160B2 (en) Positioning system with fraud detection mechanism for a critical application
CN106605155A (en) Method for verifying the plausibility of GNSS position signals
CN112669594B (en) Method, device, equipment and storage medium for predicting traffic road conditions
DK2924662T3 (en) ONBOARD DEVICE AND PROCEDURE FOR FUNCTION MONITORING IN A ROAD CIRCUIT SYSTEM
Stipancic et al. Impact of congestion and traffic flow on crash frequency and severity: application of smartphone-collected GPS travel data
US11668842B2 (en) Method for satellite-based determination of a vehicle position
Kamel et al. CaTch: a confidence range tolerant misbehavior detection approach
CN114945802A (en) System, apparatus and method for identifying and updating design applicability of autonomous vehicles
CN110296708A (en) Lines of operation planing method, device and storage medium
CN111739293A (en) Data fusion method and device
KR100754365B1 (en) terminal for collecting traffic information, traffic information providing system using the terminal and method thereof
WO2022176093A1 (en) Abnormality detection system, vehicle-mounted device, abnormality detection method, and program
JP2019040378A (en) Computer program, travel road determination method, travel road determination device, on-vehicle device, and data structure
CA2792902A1 (en) Method and system for detecting fraudulent position data of a mobile device
Villar et al. Taximeter verification using imprecise data from GPS
Yu Improved positioning of land vehicle in ITS using digital map and other accessory information
Villar et al. Taximeter verification with GPS and soft computing techniques
Raiyn A Performance Analysis of GNSS Positioning Data Used for ISA
Grazia et al. Comparing different GPS solutions for the Cooperative Awareness Messages Distribution
Gabela et al. Position integrity for cooperative land vehicle networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202303729P

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 21926531

Country of ref document: EP

Kind code of ref document: A1