WO2022174738A1 - 智能面板以及空间电磁波调控系统 - Google Patents

智能面板以及空间电磁波调控系统 Download PDF

Info

Publication number
WO2022174738A1
WO2022174738A1 PCT/CN2022/075227 CN2022075227W WO2022174738A1 WO 2022174738 A1 WO2022174738 A1 WO 2022174738A1 CN 2022075227 W CN2022075227 W CN 2022075227W WO 2022174738 A1 WO2022174738 A1 WO 2022174738A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic
units
unit
types
electromagnetic unit
Prior art date
Application number
PCT/CN2022/075227
Other languages
English (en)
French (fr)
Inventor
杨军
陈艺戬
窦建武
方敏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22755511.7A priority Critical patent/EP4297291A1/en
Priority to US18/547,012 priority patent/US20240235620A9/en
Publication of WO2022174738A1 publication Critical patent/WO2022174738A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/148Reflecting surfaces; Equivalent structures with means for varying the reflecting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element

Definitions

  • the present application relates to the field of communication technology, for example, to a smart panel and a space electromagnetic wave regulation system.
  • Intelligent surface is a new concept proposed in the field of wireless communication in recent years. It is expected to become the sixth generation of mobile communication technology in the future because of its potential to intelligently control the electromagnetic environment of space, and to have the advantages of low profile and low cost. (6-Generation, 6G) The key technology of wireless communication.
  • the current smart panel includes the same type of electromagnetic units, and the smart panel has insufficient ability to control space electromagnetic wave signals, so that the ability of the smart panel to control the space electromagnetic environment cannot be fully exerted.
  • the embodiments of the present application provide an intelligent panel and a space electromagnetic wave control system, aiming at realizing a smart panel with greatly improved control ability of space electromagnetic wave signals, and further improved control ability of space electromagnetic environment.
  • the embodiment of the present application provides a smart panel, including:
  • Class M electromagnetic unit where M is greater than or equal to 2;
  • the type of the electromagnetic unit of the M category is distinguished by at least one of the geometry of the electromagnetic unit, the modulation method of the electromagnetic unit, and the type of electromagnetic parameters regulated by the electromagnetic unit.
  • the embodiment of the present application also provides a space electromagnetic wave regulation system, including the smart panel described in any of the above technical solutions;
  • the smart panel is used for regulating the electromagnetic wave signal emitted by the first node and then reflecting or transmitting it to the second node; and/or, the smart panel is also used for the electromagnetic wave signal emitted by the second node. Reflect or transmit to the first node after performing regulation.
  • the smart panel provided in this embodiment includes at least two types of electromagnetic units. Compared with only one type of electromagnetic unit, the technology in this embodiment is effective for the four attributes of phase, amplitude, polarization direction, and frequency of electromagnetic wave signals. There may be more combinations of at least one change amount, and with the increase of the type of electromagnetic units and the arrangement of different types of electromagnetic units in the smart panel, the smart panel has different effects on the phase, amplitude, polarization direction and frequency of the electromagnetic wave signal. The control of at least one of them is more precise, which improves the control ability of the smart panel for space electromagnetic wave signals, thereby realizing a smart panel with greatly improved control ability for space electromagnetic wave signals and space electromagnetic environment. At the same time, the same number of electromagnetic units can have stronger regulation capability, and the smart panel in this embodiment also has the effect of reducing production costs.
  • FIG. 1 is a schematic structural diagram of a smart panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an electromagnetic unit provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another smart panel provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another smart panel provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another smart panel provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another smart panel provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another smart panel provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a space electromagnetic wave regulation system provided by an embodiment of the present application.
  • the smart panel includes electromagnetic units of the same type, and the smart panel has insufficient control capability for space electromagnetic wave signals, resulting in the inability to fully exert the smart panel's ability to control the space electromagnetic environment.
  • the reason is that the related art includes one type of electromagnetic unit, that is, the geometry of the electromagnetic unit, the regulation method of the electromagnetic unit, and the type of electromagnetic parameters regulated by the electromagnetic unit are the same.
  • the control ability of the intelligent panel is insufficient, resulting in the inability to give full play to the ability of the intelligent panel to control the electromagnetic environment of the space.
  • the embodiment of the present application provides a smart panel, which aims to realize a smart panel with a great improvement in the control ability of incident electromagnetic waves, and then a great improvement in the control ability of the electromagnetic environment in space.
  • FIG. 1 is a schematic structural diagram of a smart panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an electromagnetic unit provided by an embodiment of the present application.
  • the smart panel includes: an M-type electromagnetic unit, where M is greater than or equal to 2; the type of the M-type electromagnetic unit is determined by at least one of the geometry of the electromagnetic unit, the regulation method of the electromagnetic unit, and the type of electromagnetic parameters regulated by the electromagnetic unit a distinction.
  • the electromagnetic unit includes a dielectric material layer 2 and a patch layer 1 located on a first surface of the dielectric material layer 2 .
  • the value of M is 2, and the smart panel includes two kinds of electromagnetic units, namely, the electromagnetic unit 10 and the electromagnetic unit 20 .
  • the electromagnetic unit 10 and the electromagnetic unit 20 have patch layers 1 of different shapes, and therefore belong to different types of electromagnetic units.
  • the value of M is 2, and the smart panel includes two kinds of electromagnetic units, namely, the electromagnetic unit 11 and the electromagnetic unit 21 .
  • the electromagnetic unit 11 and the electromagnetic unit 21 have patch layers of different shapes, and the shapes of the electromagnetic units are also different, so they belong to different electromagnetic units.
  • the different shapes of the patch layer 1 in the electromagnetic unit will lead to different geometric shapes of the electromagnetic unit.
  • the different shapes of the patch layers 1 of different electromagnetic units lead to different geometric shapes of the electromagnetic units.
  • the shape of the patch layer 1 of the electromagnetic unit includes polygonal shapes such as circle, triangle, trapezoid, and hexagon.
  • the embodiment of the present application does not specifically limit the shape of the patch layer 1 .
  • Different types of electromagnetic units have different regulation effects on the same incident electromagnetic wave. Using different types of electromagnetic units to form a smart panel can regulate electromagnetic waves more efficiently and accurately.
  • the regulation mode of the electromagnetic unit may include at least one of electronic component regulation, liquid crystal regulation and regulation by micro-electromechanical system.
  • the input level of the electronic component can be changed through the control circuit, and the electronic component changes its state in response to the input level, thereby adjusting the electromagnetic properties of the entire electromagnetic unit.
  • the arrangement state of the liquid crystal molecules can be changed by adjusting the voltage difference on both sides of the liquid crystal material to change the dielectric constant thereof, thereby adjusting the electromagnetic properties of the entire electromagnetic unit.
  • the MEMS can be a MEMS motor or a MEMS switch. The input level of the MEMS is changed through a control circuit, and the MEMS changes its state in response to the input level, thereby adjusting the electromagnetic properties of the entire electromagnetic unit.
  • the MEMS motor can change the rotation direction and speed of the output shaft in response to the input level
  • the MEMS switch can change the internal connection state of the electromagnetic unit in response to the input level, thereby adjusting the electromagnetic properties of the entire electromagnetic unit.
  • the properties of the electromagnetic unit are different, and the regulation effect on the incident electromagnetic wave signal is different, that is, the change amount of at least one of the four properties of the phase, amplitude, polarization direction and frequency of the electromagnetic wave signal is different.
  • Fig. 2a and Fig. 2b show a schematic structural diagram of an electromagnetic unit regulated by electronic components.
  • Figures 2c and 2d show the electromagnetic cells controlled by liquid crystals.
  • the electromagnetic unit includes a dielectric material layer 2 and a patch layer 1 located on a first surface of the dielectric material layer 2 .
  • the electromagnetic unit regulated by liquid crystal includes a liquid crystal layer 4, a patch layer 1 on a first surface of the liquid crystal layer 4 and an electrode layer 5 on a second surface opposite to the first surface.
  • the grounding plate 3 does not need to be provided in FIG. 2 .
  • a grounding plate 3 When the electromagnetic unit is used to reflect electromagnetic waves, a grounding plate 3 needs to be provided for reflecting electromagnetic waves incident from the patch layer 1 .
  • a level signal received by an electronic component such as a diode can control the switching state of the diode, thereby changing the properties of the electromagnetic unit.
  • the regulation of electronic components in the embodiments of the present application is not limited to regulation of diodes, and may also include regulation of electronic components such as resistors, capacitors, diodes, and triodes. Among them, regulation of varactors can realize multi-stage phase regulation. In the electromagnetic unit in Fig. 2c and Fig.
  • the level signal between the patch layer 1 and the electrode layer 5 can regulate the turning of the liquid crystal molecules in the liquid crystal layer 4, thereby changing the properties of the electromagnetic unit.
  • the patch layer 1 may include one or more layers of patches, and the same layer of patches also includes at least one patch.
  • the connection state between the patches can be controlled by electronic components or MEMS.
  • different patches are connected by electronic components. Among them, the patches in FIG. 1a are connected by diodes, and the patches in FIG. 1b are connected by capacitors or diodes.
  • the types of electromagnetic parameters regulated by the electromagnetic unit include at least one of amplitude, phase, polarization direction, and frequency.
  • the smart panel provided in this embodiment includes at least two types of electromagnetic units. Compared with the electromagnetic unit including only one type, the technology in this embodiment has four effects on the phase, amplitude, polarization direction, and frequency of the electromagnetic wave signal.
  • the smart panel has different effects on the phase, amplitude, and polarization direction of the electromagnetic wave signal.
  • the control of at least one of the frequencies is more precise, which improves the control ability of the smart panel for space electromagnetic wave signals, thereby realizing a smart panel that greatly improves the control ability of space electromagnetic wave signals and the space electromagnetic environment,
  • the same number of electromagnetic units can have stronger control capability, and the smart panel in this embodiment also has the effect of reducing production costs.
  • the electromagnetic unit shown in FIG. 1a is square, and the electromagnetic unit shown in FIG. 2 is triangular and trapezoidal.
  • the embodiment of the present application does not limit the overall shape of the electromagnetic unit and the overall shape of the smart panel.
  • FIG. 3 is a schematic structural diagram of another smart panel provided by an embodiment of the present application.
  • Fig. 3a, Fig. 3b, Fig. 3c are different smart panels
  • the numbers in Fig. 3d are marks corresponding to the positions of the electromagnetic units in Fig. 3c.
  • the shapes of the patch layers 1 of different electromagnetic units are different.
  • the patch or the entire electromagnetic unit is rotated by a preset angle relative to the center of the basic electromagnetic unit to form a deformed electromagnetic unit; and/or, the patch or the entire basic electromagnetic unit is formed.
  • a deformed electromagnetic unit is formed after the electromagnetic unit is mirror-reversed with respect to the preset inversion axis of the plane where the basic electromagnetic unit is located.
  • the value of P is 1
  • the value of Q is 1
  • the electromagnetic unit 30 is a basic electromagnetic unit
  • the electromagnetic unit 31 is a deformed electromagnetic unit.
  • the electromagnetic unit 30 is rotated 90° counterclockwise relative to the center of the electromagnetic unit 30 to form the electromagnetic unit 31 .
  • Electromagnetic unit 41 is formed by mirror image flipping of electromagnetic unit 40 with respect to the flipping axis of which the XOY plane is parallel to the Y axis.
  • the electromagnetic unit 40 is rotated counterclockwise by 90° on the basis of mirror image flipping with respect to the inversion axis of which the XOY plane is parallel to the Y axis to form the electromagnetic unit 42 .
  • the electromagnetic unit 40 is rotated 90° clockwise relative to the center of the electromagnetic unit 40 to form the electromagnetic unit 43 .
  • the value of P is 1, and the value of Q is 8, wherein the electromagnetic unit 50 is the basic electromagnetic unit, the electromagnetic unit 51, the electromagnetic unit 52A, the electromagnetic unit 52B, the electromagnetic unit 52C, the electromagnetic unit 53A, the electromagnetic unit 53B, The electromagnetic unit 53C and the electromagnetic unit 54 are deformation electromagnetic units.
  • the electromagnetic unit 50 is rotated 90° clockwise relative to the center of the electromagnetic unit 50 to form the electromagnetic unit 51 .
  • the type of each electromagnetic unit in Fig. 3c is shown in Fig. 3d.
  • the basic electromagnetic unit is rotated by a preset angle relative to the center of the basic electromagnetic unit to form a deformed electromagnetic unit; and/or, the basic electromagnetic unit is mirror-reversed relative to a preset flip axis of the plane where the basic electromagnetic unit is located to form a deformed electromagnetic unit, and the deformed electromagnetic unit is formed.
  • the geometry of the basic electromagnetic unit is different to form a smart panel of the M-type electromagnetic unit.
  • the smart panel improves the control ability of the smart panel for space electromagnetic wave signals, thereby realizing a control of space electromagnetic wave signals and space electromagnetic environment.
  • the deformed electromagnetic unit is obtained by deforming the basic electromagnetic unit, which reduces the complexity of the design of different types of electromagnetic units.
  • the electromagnetic unit 50 is the basic electromagnetic unit, and the electromagnetic unit 51 , the electromagnetic unit 52A, the electromagnetic unit 52B, the electromagnetic unit 52C, the electromagnetic unit 53A, the electromagnetic unit 53B, the electromagnetic unit 53C, and the electromagnetic unit 54 are deformed electromagnetic units.
  • the overall size of the patch layer of the electromagnetic unit 50 is reduced according to a preset ratio to form the deformed electromagnetic unit 52A. And/or, the overall size of the electromagnetic unit 50 is reduced according to a preset ratio to form the deformed electromagnetic unit 52A.
  • the electromagnetic unit 52B and the electromagnetic unit 52C are formed by rotating a preset angle relative to the center of the electromagnetic unit 50 .
  • FIG. 3c only shows that the overall size of the patch layer in the basic electromagnetic unit is reduced according to a preset ratio to form a deformed electromagnetic unit; and/or, the overall size of the basic electromagnetic unit is reduced according to a preset ratio to form a deformed electromagnetic unit
  • the electromagnetic unit may also include the case where the overall size of the patch layer in the basic electromagnetic unit is enlarged according to a preset ratio to form a deformed electromagnetic unit; and/or the overall size of the basic electromagnetic unit is enlarged according to a preset ratio to form a deformed electromagnetic unit .
  • the electromagnetic unit 60 is the electromagnetic unit 60, and the overall size of the patch layer in the basic electromagnetic unit 60 is enlarged according to a preset ratio to form the deformed electromagnetic unit 61; and/or, the overall size of the basic electromagnetic unit 60 is as follows: The preset ratio is enlarged to form the deformation electromagnetic unit 61 .
  • the overall size of the patch layer in the basic electromagnetic unit is enlarged or reduced according to a preset ratio to form a deformed electromagnetic unit; and/or, the overall size of the basic electromagnetic unit is enlarged or reduced according to a preset ratio to form a deformed electromagnetic unit, and the deformed electromagnetic unit is formed.
  • the geometric shapes of the unit and the basic electromagnetic unit are different to form a smart panel of the M-type electromagnetic unit.
  • the smart panel improves the control ability of the smart panel for space electromagnetic wave signals, thereby realizing a space electromagnetic wave signal and space electromagnetic environment.
  • the control ability of the smart panel has been greatly improved.
  • the deformed electromagnetic unit is obtained by deforming the basic electromagnetic unit, which reduces the complexity of the design of different types of electromagnetic units.
  • the electromagnetic unit 50 is the basic electromagnetic unit, and the electromagnetic unit 51 , the electromagnetic unit 52A, the electromagnetic unit 52B, the electromagnetic unit 52C, the electromagnetic unit 53A, the electromagnetic unit 53B, the electromagnetic unit 53C, and the electromagnetic unit 54 are deformed electromagnetic units. Wherein, the local curvature and local radius of the patch layer of the electromagnetic unit 50 are changed to form the deformed electromagnetic unit 53A.
  • the electromagnetic unit 53B and the electromagnetic unit 53C are formed by rotating a preset angle relative to the center of the electromagnetic unit 50 .
  • the electromagnetic unit 54 is formed by rotating 90° counterclockwise relative to the center of the electromagnetic unit 50 on the basis that the local curvature and local radius of the patch layer of the electromagnetic unit 50 are changed and the overall size of the patch layer is reduced according to a preset ratio.
  • the local shape of the patch layer in the basic electromagnetic unit is changed to form a deformed electromagnetic unit, so as to form a smart panel of the M-type electromagnetic unit.
  • a smart panel that greatly improves the ability to control space electromagnetic wave signals and the electromagnetic environment in space. At the same time, the same number of electromagnetic units can have stronger control capabilities.
  • the smart panel in this embodiment also has the ability to reduce production. cost effect.
  • the deformed electromagnetic unit is obtained by deforming the basic electromagnetic unit, which reduces the complexity of the design of different types of electromagnetic units.
  • K 1 types are non-dynamically adjustable electromagnetic units
  • a dynamically adjustable electromagnetic unit the control methods of the electromagnetic unit include electronic component control, liquid crystal control electromagnetic unit, and control by a micro-electromechanical system.
  • the electronic component When the electronic component is used for regulation, the input level of the electronic component can be changed through the control circuit, and the electronic component changes its state in response to the input level, thereby adjusting the electromagnetic properties of the entire electromagnetic unit.
  • the liquid crystal When the liquid crystal is used for regulation, the arrangement state of the liquid crystal molecules can be changed by adjusting the voltage difference on both sides of the liquid crystal material to change its dielectric constant, thereby adjusting the electromagnetic properties of the entire electromagnetic unit.
  • the MEMS can be a MEMS motor or a MEMS switch.
  • the input level of the MEMS is changed through a control circuit, and the MEMS changes its state in response to the input level, thereby adjusting the electromagnetic properties of the entire electromagnetic unit.
  • the MEMS motor can change the rotation direction and speed of the output shaft in response to the input level
  • the MEMS switch can change the internal connection state of the electromagnetic unit in response to the input level, thereby adjusting the electromagnetic properties of the entire electromagnetic unit.
  • the properties of the electromagnetic unit are different, and the regulation effect on the incident electromagnetic wave signal is different, that is, the change amount of at least one of the four properties of the phase, amplitude, polarization direction and frequency of the electromagnetic wave signal is different.
  • the properties of the electromagnetic unit cannot be changed, and the amount of change in at least one of the four properties of the electromagnetic wave signal, including phase, amplitude, polarization direction, and frequency, cannot be changed.
  • electromagnetic units with different geometric shapes have different properties of electromagnetic units, and have different control effects on the incident electromagnetic wave signal, that is, the amount of change in at least one of the four properties of the phase, amplitude, polarization direction and frequency of the electromagnetic wave signal is different.
  • the electromagnetic units of the smart panel can also include K 1 electromagnetic units that cannot be dynamically adjusted and K 2 electromagnetic units that are dynamically adjustable, which further improves the
  • the smart panel has the ability to regulate and control space electromagnetic wave signals, thereby realizing a smart panel that greatly improves the control ability of space electromagnetic wave signals and the space electromagnetic environment.
  • the P types of basic electromagnetic units and the Q types of deformed electromagnetic units have K types of different reflectances or transmittances, where 1 ⁇ K ⁇ P+Q.
  • the transmittance and reflectivity of the electromagnetic unit can be changed by selecting the dielectric material layer 2 with different dielectric constants. Combined with the grounding plate 3 , electromagnetic units with different transmittance and reflectivity can be formed. This combination It is especially suitable for regulating the amplitude of electromagnetic signals.
  • electromagnetic units with different geometric shapes have different properties of electromagnetic units, and have different control effects on the incident electromagnetic wave signal, that is, the amount of change in at least one of the four properties of the phase, amplitude, polarization direction and frequency of the electromagnetic wave signal is different.
  • the smart panel includes M types of electromagnetic units with different geometries, the P types of basic electromagnetic units and the Q types of deformed electromagnetic units have K types of different reflectivity or transmittance, which further improves the control of the smart panel for space electromagnetic wave signals. The ability to control the space electromagnetic wave signal and the space electromagnetic environment can be greatly improved.
  • K 3 types are active electromagnetic units that can emit electromagnetic signals
  • electromagnetic units with different geometric shapes have different properties of electromagnetic units, and have different control effects on the incident electromagnetic wave signal, that is, the amount of change in at least one of the four properties of the phase, amplitude, polarization direction and frequency of the electromagnetic wave signal is different.
  • the smart panel includes M types of electromagnetic units with different geometries, among the P types of basic electromagnetic units and Q types of deformed electromagnetic units, K 3 types are active electromagnetic units that can emit electromagnetic signals, and K 4 types are unable to emit electromagnetic signals.
  • the passive electromagnetic unit is based on the realization of a smart panel that can greatly improve the ability to control space electromagnetic wave signals and the space electromagnetic environment and can emit electromagnetic wave signals. Because the cost of passive electromagnetic units is relatively low, the cost is reduced. the cost of the entire smart panel.
  • the electromagnetic unit in the embodiment of the present application may determine the distance between the electromagnetic unit and the adjacent electromagnetic unit on the plane of the smart panel according to the electromagnetic unit category to which it belongs.
  • the spacing between adjacent electromagnetic units is determined by the unit spacing matrix D, wherein the unit spacing matrix D is a two-dimensional matrix of M*M, and the ith row and the jth column of the matrix D
  • the element d ij is used to determine the spacing between the ith type of electromagnetic unit and the jth type of electromagnetic unit when arranged adjacently.
  • the distance between adjacent electromagnetic units is determined according to the unit distance matrix D, which facilitates the rapid preparation of smart panels whose distances meet the preset requirements, avoids mutual interference between electromagnetic units, and affects the regulation effect of electromagnetic wave signals, thereby realizing a Smart panel with stable control ability.
  • FIG. 4 is a schematic structural diagram of another smart panel provided by an embodiment of the present application.
  • electromagnetic units of the same type are arranged at equal intervals; in the second direction in the plane where the smart panel is located, the same Type electromagnetic units are arranged at unequal intervals, wherein a predetermined angle is formed between the second direction and the first direction.
  • the electromagnetic units of the same type are arranged at an equal fourth interval L4 in the first direction in the plane where the smart panel is located, that is, in the Y direction.
  • the electromagnetic units of the same type are arranged at unequal intervals, and the intervals are respectively a first interval L1, a second interval L2 and a third interval L3.
  • the first distance L1, the second distance L2 and the third distance L3 are not equal.
  • the first direction and the second direction are vertically arranged, but the specific value of the angle between the first direction and the second direction is not limited in this embodiment.
  • the wavelength of the electromagnetic wave is ⁇
  • the first distance L1 is 0.1 ⁇
  • the second distance L2 is 0.2 ⁇
  • the third distance L3 is 0.4 ⁇
  • the fourth distance L4 is 0.54 ⁇ .
  • the electromagnetic units of the same type are arranged at unequal intervals, so that more combinations of control effects can be formed, so as to realize a smart panel with more precise control capabilities.
  • FIG. 5 is a schematic structural diagram of another smart panel provided by an embodiment of the present application.
  • the electromagnetic units in each block area are of the same type;
  • the M-type electromagnetic units are arranged in a cross, and two adjacent electromagnetic units are of the same type.
  • the types of units are different; the electromagnetic units on the same linear area are of the same type, and the linear area includes at least one of linear, curvilinear and annular.
  • the M-type electromagnetic units in the smart panel are arranged in two block-shaped areas.
  • the M-type electromagnetic units in the smart panel are arranged in a cross, and two adjacent electromagnetic units are of different types.
  • the M-type electromagnetic units in the smart panel are arranged in a linear area along the X direction, wherein FIG. 4 shows a linear linear area.
  • the linear region in the embodiment of the present application may also include a curved shape or a ring shape.
  • the properties of the electromagnetic unit are different, and the regulation effect on the incident electromagnetic wave signal is different, that is, the phase of the electromagnetic wave signal is different.
  • the M-type electromagnetic units are arranged in M layers on the smart panel, and electromagnetic units of the same type are arranged on the same layer.
  • the smart panel shown in FIG. 7a is composed of an electromagnetic unit array composed of an upper electromagnetic unit 70 and a lower electromagnetic unit 71, wherein the electromagnetic unit 70 includes a patch layer 701 and a dielectric material layer 702, and the electromagnetic unit 71 includes a patch layer.
  • the sheet layer 711 and the dielectric material layer 712, and the bottom layer is the ground plate 72.
  • the smart panel shown in Figure 7b uses the same two types of electromagnetic units as in Figure 7a to form an array by layered arrangement, but uses different arrangements.
  • One is to increase the spacing of the electromagnetic units in the horizontal direction, and the other is to vertically
  • the centers of the directional electromagnetic units are not on the same vertical line, but staggered by a certain distance.
  • the smart panel can reduce the interference of the upper electromagnetic unit on the regulation effect of the lower electromagnetic unit.
  • M-type electromagnetic units form M electromagnetic unit groups, wherein each electromagnetic unit group includes a type of electromagnetic unit; or, M-type electromagnetic units form N electromagnetic unit groups, each An electromagnetic unit group includes at least two types of electromagnetic units, and N is an integer less than or equal to M.
  • each electromagnetic unit group includes one type of electromagnetic unit, and the same electromagnetic unit group can be controlled uniformly, so as to simplify the control method of the smart panel.
  • the M-type electromagnetic units form N electromagnetic unit groups, and each electromagnetic unit group includes at least two types of electromagnetic units, which can increase the control capability of each electromagnetic unit group, thereby increasing the control capability of the entire smart panel.
  • each electromagnetic unit arranged in a block area, each in a cross arrangement, and each in a linear arrangement may be divided into a group according to a specific regulation target, or it may be divided into a group.
  • the electromagnetic units that are arranged in adjacent or non-adjacent block areas, are arranged in a cross, and are arranged in a line are divided into a group.
  • the electromagnetic unit group receives a control command from the controller to change the state of the electromagnetic units in the group, and implement regulation and control on the incident electromagnetic waves.
  • the electromagnetic characteristic parameters to be adjusted of the incident electromagnetic wave are adjusted in a unified response to the regulation command.
  • Embodiments of the present application also provide a control method for a smart panel.
  • the control method of the smart panel includes the following steps:
  • Step 110 Acquire the target electromagnetic unit that needs to receive the regulation command according to the regulation target of the electromagnetic wave by the smart panel and the mapping relation table between the pre-stored regulation function and the pre-stored regulation command.
  • the position of the base station, the position of the terminal, the number and position of the smart panel, as well as the incident electromagnetic wave signal and the outgoing electromagnetic wave signal establish a mathematical model, and obtain the pre-stored adjustment function and pre-stored adjustment command. mapping table.
  • Step 120 Determine each electromagnetic unit group according to the target electromagnetic unit.
  • Step 130 Determine, according to each electromagnetic unit group, the control instruction received by each electromagnetic unit group.
  • Step 140 Control the electromagnetic unit group to receive the controller control instruction to change the state of the electromagnetic units in the group according to the regulation instructions received by each electromagnetic unit group, and to perform regulation and control on the incident electromagnetic waves.
  • the number of target electromagnetic units to be regulated is less than or equal to the number of electromagnetic units included in the smart panel, and the number of types of target electromagnetic units to be regulated is less than or equal to the number of electromagnetic units included in the smart panel, And the number of electromagnetic units included in each type of target electromagnetic units to be regulated is less than or equal to the number of electromagnetic units included in each type of electromagnetic units included in the smart panel.
  • FIG. 8 is a schematic structural diagram of a space electromagnetic wave regulation system provided by an embodiment of the present application.
  • the space electromagnetic wave control system includes the smart panel 100 described in any of the above technical solutions; further includes a first node 200 and a second node 300, the first node 200 is used for transmitting and/or receiving electromagnetic wave signals into space, The second node 300 is used for transmitting and/or receiving electromagnetic wave signals to the space; the smart panel 100 is used for regulating the electromagnetic wave signal emitted by the first node 200 and then reflecting or transmitting it to the second node 300; and/or, the smart panel 100 further The electromagnetic wave signal emitted by the second node 300 is regulated and then reflected or transmitted to the first node 200 .
  • the electromagnetic unit 101 of the smart panel 100 is composed of a metal or dielectric material with a specific shape, and is connected to the electronic component 40.
  • the electronic component is controlled by the controller 400 on the panel, which can realize the electromagnetic properties of the electromagnetic unit (such as the average magnetic permeability). , the average dielectric constant) adjustment.
  • Electronic components include resistors, capacitors, diodes, triodes, and the like.
  • the varactor diode can realize multi-stage phase regulation.
  • the space electromagnetic wave regulation system provided by the embodiment of the present application includes the smart panel 100 described in any of the above technical solutions, and the smart panel 100 includes at least two types of electromagnetic units 101 .
  • the technology in the example can have more combinations for the changes of at least one of the four properties of the electromagnetic wave signal, such as phase, amplitude, polarization direction and frequency.
  • the smart panel can control at least one of the phase, amplitude, polarization direction and frequency of the electromagnetic wave signal more accurately, which improves the control ability of the smart panel for spatial electromagnetic wave signals, thereby realizing a
  • the space electromagnetic wave signal and the space electromagnetic wave regulation system which greatly improves the regulation ability of the space electromagnetic environment.
  • the first node 200 includes a wireless base station and/or an energy transmitting device
  • the second node 300 includes a mobile terminal and/or an energy receiving device; or, the second node 300 includes a wireless base station and/or an energy receiving device.
  • the first node 200 includes a mobile terminal and/or an energy receiving device.
  • the above technical solutions are to realize a space electromagnetic wave control system composed of a mobile terminal, a smart panel 100 and an energy receiving device, a space electromagnetic wave control system composed of a mobile terminal, a smart panel 100 and a mobile terminal, and an energy receiving device, the smart panel 100 and One or more of the space electromagnetic wave regulation systems composed of the energy receiving devices realize the composition diversity of the space electromagnetic wave regulation systems.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components Components execute cooperatively.
  • Some or all physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit .
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • Computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include but are not limited to random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), electrically erasable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), flash memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Video Disk (DVD) or other optical disk storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device , or any other medium that can be used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请提供了一种智能面板以及空间电磁波调控系统。该智能面板包括:M类电磁单元,其中,M大于或等于2;M类电磁单元的类型由电磁单元的几何形状、电磁单元的调控方式以及电磁单元调控的电磁参数类型中的至少一种区分。

Description

智能面板以及空间电磁波调控系统
本申请要求在2021年02月22日提交中国专利局、申请号为202110198942.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,例如涉及一种智能面板以及空间电磁波调控系统。
背景技术
智能面板(Intelligent surface,IS)是近几年无线通信领域提出的新概念,因其具有智能调控空间电磁环境的潜力,且具有低剖面、低成本的优点,有望成为未来第六代移动通信技术(6-Generation,6G)无线通信的关键技术。
但是目前的智能面板包括相同类型的电磁单元,该智能面板对空间电磁波信号的调控能力不足,导致无法充分发挥智能面板调控空间电磁环境的能力。
发明内容
本申请实施例提供一种智能面板以及空间电磁波调控系统,旨在实现一种对空间电磁波信号的调控能力有较大提升,进而对空间电磁环境的调控能力有很大提升的智能面板。
本申请实施例提供了一种智能面板,包括:
M类电磁单元,其中M大于或等于2;
M类所述电磁单元的类型由电磁单元的几何形状、电磁单元的调控方式以及电磁单元调控的电磁参数类型中的至少一种区分。
本申请实施例还提供了一种空间电磁波调控系统,包括上述技术方案任意所述的智能面板;
还包括第一节点和第二节点,所述第一节点用于向空间发射和/或接收电磁波信号,所述第二节点用于向空间发射和/或接收电磁波信号;
所述智能面板用于对所述第一节点发射的电磁波信号实施调控后反射或者透射到所述第二节点;和/或,所述智能面板还用于对所述第二节点发射的电磁波信号实施调控后反射或者透射到所述第一节点。
本实施例提供的智能面板包括至少两类电磁单元,相比只包含一种类型的 电磁单元来说,本实施例中的技术对于电磁波信号的相位、振幅、极化方向以及频率四个属性中至少一个的改变量可以存在更多组合,且随着电磁单元的类型的增加以及不同类型的电磁单元在智能面板的排列方式不同,该智能面板对于电磁波信号的相位、振幅、极化方向以及频率中的至少一个的调控更为精准,提高了该智能面板对于空间电磁波信号的调控能力,进而实现了一种对空间电磁波信号以及对空间电磁环境的调控能力有很大提升的智能面板,与此同时,相同数量的电磁单元可以具有更强的调控能力,本实施例中的智能面板还具有降低生产成本的效果。
附图说明
图1是本申请实施例提供的一种智能面板的结构示意图;
图2是本申请实施例提供的一种电磁单元的结构示意图;
图3是本申请实施例提供的另一种智能面板的结构示意图;
图4是本申请实施例提供的又一种智能面板的结构示意图;
图5是本申请实施例提供的又一种智能面板的结构示意图;
图6是本申请实施例提供的又一种智能面板的结构示意图;
图7是本申请实施例提供的又一种智能面板的结构示意图;
图8是本申请实施例提供的一种空间电磁波调控系统的结构示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
智能面板包括相同类型的电磁单元,该智能面板对空间电磁波信号的调控能力不足,导致无法充分发挥智能面板调控空间电磁环境的能力。究其原因,相关技术中包含一种类型的电磁单元,即电磁单元的几何形状、电磁单元的调控方式以及电磁单元调控的电磁参数类型是相同的,因此相关技术中的智能面板对空间电磁波信号的调控能力不足,导致无法充分发挥智能面板调控空间电磁环境的能力。
针对上述技术问题,本申请实施例提供了一种智能面板,旨在实现一种对 入射电磁波的调控能力有较大提升,进而对空间电磁环境的调控能力有很大提升的智能面板。
图1是本申请实施例提供的一种智能面板的结构示意图。图2是本申请实施例提供的一种电磁单元的结构示意图。参见图1,该智能面板包括:M类电磁单元,其中M大于或等于2;M类电磁单元的类型由电磁单元的几何形状、电磁单元的调控方式以及电磁单元调控的电磁参数类型中的至少一种区分。
参见图2,电磁单元包括介质材料层2和位于介质材料层2的第一表面的贴片层1。
结合图2,并参见图1,图1a示出的智能面板中,M的取值为2,智能面板包括两种电磁单元,即电磁单元10和电磁单元20。其中电磁单元10和电磁单元20具有不同形状的贴片层1,因此属于不同类型的电磁单元。图1b示出的智能面板中,M的取值为2,智能面板包括两种电磁单元,即电磁单元11和电磁单元21。其中电磁单元11和电磁单元21具有不同形状的贴片层,电磁单元形状也不同,因此属于不同的电磁单元。需要说明的是,电磁单元中贴片层1的形状不同、部分或者全部的尺寸不同以及截面图形相对某一中心的摆放位置不同均会导致电磁单元的几何形状不同。图1示出的智能面板中,不同的电磁单元的贴片层1的形状不同导致电磁单元的几何形状不同。其中,电磁单元的贴片层1的形状包括圆形、三角形、梯形、六边形等多边形形状。本申请实施例对于贴片层1的形状不作具体限定。不同类型的电磁单元对相同的入射电磁波具有不同的调控效果,利用不同类型的电磁单元组成智能面板可以更高效、更精准的对电磁波实施调控。
电磁单元的调控方式可以包括电子元件调控、液晶调控和由微机电系统调控中至少一种。
可选的,M类电磁单元包括K 5种由电子元件调控的电磁单元、K 6种由液晶调控的电磁单元和K 7种由微机电系统调控的电磁单元,其中K 5≥0,K 6≥0,K 7≥0,且K 5+K 6+K 7=M。
利用电子元件调控时,可通过控制电路改变电子元件的输入电平,电子元件响应输入电平改变其状态,进而调整整个电磁单元的电磁属性。利用液晶调控时,可通过调整液晶材料两侧的电压差改变液晶分子的排列状态而改变其介电常数,进而调整整个电磁单元的电磁属性。微机电系统可以是微机电马达或者微机电开关,通过控制电路改变微机电系统的输入电平,微机电系统响应输入电平改变其状态,进而调整整个电磁单元的电磁属性。其中,微机电马达响应输入电平可以改变输出轴的旋转方向和旋转速度,微机电开关响应输入电平可以改变电磁单元内部的连接状态,进而调整整个电磁单元的电磁属性。电磁 单元的属性不同,对入射电磁波信号的调控效果不同,即对电磁波信号的相位、振幅、极化方向以及频率四个属性中至少一个的改变量不同。
参见图2,图2a和图2b示出的是由电子元件调控的电磁单元的结构示意图。图2c和图2d示出的是由液晶调控的电磁单元。参见图2a和图2b,电磁单元包括介质材料层2和位于介质材料层2的第一表面的贴片层1。参见图2c和图2d,由液晶调控的电磁单元包括液晶层4和位于液晶层4的第一表面的贴片层1和与第一表面相对的第二表面的电极层5。需要说明的是,当电磁单元用于电磁波透射时,图2中无需设置接地板3。当电磁单元用于反射电磁波时,需要设置接地板3,用于反射从贴片层1入射的电磁波。图2a和图2b中的电磁单元,以二极管为例的电子元件接收的电平信号可调控二极管的开关状态,进而改变电磁单元的属性。但是本申请实施例中的电子元件调控不限于二极管调控,还可以包括电阻、电容、二极管以及三极管等电子元件调控,其中,变容二极管调控可以实现多级相位调控。在图2c和图2d中的电磁单元中,贴片层1和电极层5之间的电平信号可以调控液晶层4中液晶分子的转向,进而改变电磁单元的属性。其中,贴片层1可以包括一层或者多层贴片,同一层贴片也包括至少一个贴片。贴片之间的连接状态可以由电子元件或者微机电系统控制。示例性的,参见图1,不同贴片之间通过电子元件连接。其中,图1a中的贴片之间通过二极管连接,图1b的贴片之间通过电容或者二极管连接。
电磁单元调控的电磁参数类型包括振幅、相位、极化方向以及频率中的至少一种。可选的,电磁单元类型包括K 8种调控电磁波振幅的电磁单元、K 9种调控电磁波相位的电磁单元、K 10种调控电磁波频率的电磁单元和K 11种调控电磁波极化方向的电磁单元,其中K 8≥0,K 9≥0,K 10≥0,K 11≥0,且K 8+K 9+K 10+K 11=P+Q。
具体的,几何形状、电磁单元的调控方式以及电磁单元调控的电磁参数类型中的至少一种不同的电磁单元其属性不同,对入射电磁波信号的调控效果不同,即对电磁波信号的相位、振幅、极化方向以及频率四个属性中至少一个的改变量不同。因此,本实施例提供的智能面板包括至少两类电磁单元,相比只包含一种类型的电磁单元来说,本实施例中的技术对于电磁波信号的相位、振幅、极化方向以及频率四个属性中至少一个的改变量可以存在更多组合,且随着电磁单元的类型的增加以及不同类型的电磁单元在智能面板的排列方式不同,该智能面板对于电磁波信号的相位、振幅、极化方向以及频率中的至少一个的调控更为精准,提高了该智能面板对于空间电磁波信号的调控能力,进而实现了一种对空间电磁波信号以及对空间电磁环境的调控能力有很大提升的智能面板,与此同时,相同数量的电磁单元可以具有更强的调控能力,本实施例中的智能面板还具有降低生产成本的效果。
需要说明的是,图1a示出的电磁单元是方形的,图2示出的电磁单元是三角形和梯形的,本申请实施例对于电磁单元的整体形状和智能面板的整体形状不作限定。
下面对几何形状不同的电磁单元进一步细化。图3是本申请实施例提供的另一种智能面板的结构示意图。其中,图3a、图3b、图3c为不同的智能面板,图3d的数字是与图3c中电磁单元位置对应的标记。需要说明的是,图1示出的智能面板中,不同的电磁单元的贴片层1的形状不同。图3示出的电磁单元中是针对同一形状的贴片,将其贴片或者整个电磁单元相对基础电磁单元的中心旋转预设角度形成变形电磁单元;和/或,将其贴片或者整个基础电磁单元相对基础电磁单元所在平面的预设翻转轴镜像翻转后形成变形电磁单元。
参见图3,M类电磁单元包括P种基础电磁单元和Q种变形电磁单元,其中P≥1、Q≥1且P+Q=M,或者P=M且Q=0;基础电磁单元相对基础电磁单元的中心旋转预设角度形成变形电磁单元;和/或,基础电磁单元相对基础电磁单元所在平面的预设翻转轴镜像翻转后形成变形电磁单元。
示例性的,参见图3a,P的取值为1,Q的取值为1,电磁单元30为基础电磁单元,电磁单元31为变形电磁单元。电磁单元30相对电磁单元30的中心逆时针旋转90°形成电磁单元31。
参见图3b,P的取值为1,Q的取值为3,其中电磁单元40为基础电磁单元,电磁单元41、电磁单元42和电磁单元43是变形电磁单元。电磁单元40相对其所在XOY平面与Y轴平行的翻转轴镜像翻转后形成电磁单元41。电磁单元40相对其所在XOY平面与Y轴平行的翻转轴镜像翻转的基础上,逆时针旋转90°形成电磁单元42。电磁单元40相对电磁单元40的中心顺时针旋转90°形成电磁单元43。
参见图3c,P取值为1,Q的取值为8,其中电磁单元50为基础电磁单元,电磁单元51、电磁单元52A、电磁单元52B、电磁单元52C、电磁单元53A、电磁单元53B、电磁单元53C、以及电磁单元54是变形电磁单元。其中,电磁单元50相对电磁单元50的中心顺时针旋转90°形成电磁单元51。其中,图3c中各电磁单元的类型如图3d所示。
具体的,基础电磁单元相对基础电磁单元的中心旋转预设角度形成变形电磁单元;和/或,基础电磁单元相对基础电磁单元所在平面的预设翻转轴镜像翻转后形成变形电磁单元,变形电磁单元和基础电磁单元的几何形状不同,以构成M类电磁单元的智能面板,该智能面板提高了该智能面板对于空间电磁波信号的调控能力,进而实现了一种对空间电磁波信号以及对空间电磁环境的调控能力有很大提升的智能面板。且变形电磁单元由基础电磁单元变形得到,降低 了不同类型的电磁单元设计的复杂度。
可选的,在上述技术方案的基础上,M类电磁单元包括P种基础电磁单元和Q种变形电磁单元,其中P≥1、Q≥1且P+Q=M,或者P=M且Q=0;基础电磁单元中的贴片层的整体尺寸按照预设比例放大或缩小形成变形电磁单元;和/或,基础电磁单元的整体尺寸按照预设比例放大或缩小形成变形电磁单元。
参见图3c,P取值为1,Q的取值为8。其中电磁单元50为基础电磁单元,电磁单元51、电磁单元52A、电磁单元52B、电磁单元52C、电磁单元53A、电磁单元53B、电磁单元53C、以及电磁单元54是变形电磁单元。其中,电磁单元50的贴片层的整体尺寸按照预设比例缩小形成变形电磁单元52A。和/或,电磁单元50的整体尺寸按照预设比例缩小形成变形电磁单元52A。
电磁单元50的贴片层的整体尺寸按照预设比例缩小的基础上,相对电磁单元50的中心旋转预设角度形成电磁单元52B和电磁单元52C。
需要说明的是,图3c中仅仅示出了基础电磁单元中的贴片层的整体尺寸按照预设比例缩小形成变形电磁单元;和/或,基础电磁单元的整体尺寸按照预设比例缩小形成变形电磁单元的情况。但是本实施例中还可以包括基础电磁单元中的贴片层的整体尺寸按照预设比例放大形成变形电磁单元;和/或,基础电磁单元的整体尺寸按照预设比例放大形成变形电磁单元的情况。示例性的,图6中基础电磁单元为电磁单元60,基础电磁单元60中的贴片层的整体尺寸按照预设比例放大形成变形电磁单元61;和/或,基础电磁单元60的整体尺寸按照预设比例放大形成变形电磁单元61。
具体的,基础电磁单元中的贴片层的整体尺寸按照预设比例放大或缩小形成变形电磁单元;和/或,基础电磁单元的整体尺寸按照预设比例放大或缩小形成变形电磁单元,变形电磁单元和基础电磁单元的几何形状不同,以构成M类电磁单元的智能面板,该智能面板提高了该智能面板对于空间电磁波信号的调控能力,进而实现了一种对空间电磁波信号以及对空间电磁环境的调控能力有很大提升的智能面板。且变形电磁单元由基础电磁单元变形得到,降低了不同类型的电磁单元设计的复杂度。
可选的,在上述技术方案的基础上,M类电磁单元包括P种基础电磁单元和Q种变形电磁单元,其中,P≥1、Q≥1且P+Q=M,或者P=M且Q=0;基础电磁单元中的贴片层的局部形状发生改变形成变形电磁单元,其中,基础电磁单元中的贴片层的局部形状发生改变的类型包括局部长度、局部宽度、局部曲率以及局部半径中的至少一种。
参见图3c,P取值为1,Q的取值为8。其中电磁单元50为基础电磁单元, 电磁单元51、电磁单元52A、电磁单元52B、电磁单元52C、电磁单元53A、电磁单元53B、电磁单元53C、以及电磁单元54是变形电磁单元。其中,电磁单元50的贴片层的局部曲率以及局部半径发生改变形成变形电磁单元53A。
电磁单元50的贴片层的局部曲率以及局部半径发生改变的基础上,相对电磁单元50的中心旋转预设角度形成电磁单元53B和电磁单元53C。
电磁单元50的贴片层的局部曲率以及局部半径发生改变以及其贴片层的整体尺寸按照预设比例缩小的基础上,相对电磁单元50的中心逆时针旋转90°形成电磁单元54。
具体的,基础电磁单元中的贴片层的局部形状发生改变形成变形电磁单元,以构成M类电磁单元的智能面板,该智能面板提高了该智能面板对于空间电磁波信号的调控能力,进而实现了一种对空间电磁波信号以及对空间电磁环境的调控能力有很大提升的智能面板,与此同时,相同数量的电磁单元可以具有更强的调控能力,本实施例中的智能面板还具有降低生产成本的效果。且变形电磁单元由基础电磁单元变形得到,降低了不同类型的电磁单元设计的复杂度。
可选的,在上述技术方案的基础上,P种基础电磁单元和Q种变形电磁单元中K 1种为不可动态调控的电磁单元,K 2种为动态可调的电磁单元,其中K 1≥0,K 2≥0,且K 1+K 2=P+Q。
具体的,动态可调的电磁单元,电磁单元的调控方式包括电子元件调控、液晶调控的电磁单元和由微机电系统调控。利用电子元件调控时,可通过控制电路改变电子元件的输入电平,电子元件响应输入电平改变其状态,进而调整整个电磁单元的电磁属性。利用液晶调控时,可通过调整液晶材料两侧的电压差改变液晶分子的排列状态而改变其及介电常数,进而调整整个电磁单元的电磁属性。微机电系统可以是微机电马达或者微机电开关,通过控制电路改变微机电系统的输入电平,微机电系统响应输入电平改变其状态,进而调整整个电磁单元的电磁属性。其中,微机电马达响应输入电平可以改变输出轴的旋转方向和旋转速度,微机电开关响应输入电平可以改变电磁单元内部的连接状态,进而调整整个电磁单元的电磁属性。电磁单元的属性不同,对入射电磁波信号的调控效果不同,即对电磁波信号的相位、振幅、极化方向以及频率四个属性中至少一个的改变量不同。不可动态调控的电磁单元,一旦制作完成之后,电磁单元的属性不能改变,电磁波信号的相位、振幅、极化方向以及频率四个属性中至少一个的改变量也是不可以改变的。
具体的,几何形状不同的电磁单元,电磁单元的属性不同,对入射电磁波信号的调控效果不同,即对于电磁波信号的相位、振幅、极化方向以及频率四个属性中至少一个的改变量不同,在智能面板包括M类几何形状不同的电磁单 元的基础上,智能面板的电磁单元还可以包含K 1种为不可动态调控的电磁单元以及K 2种为动态可调的电磁单元,进一步提高了该智能面板对于空间电磁波信号的调控能力,进而实现了一种对空间电磁波信号以及对空间电磁环境的调控能力有很大提升的智能面板。
可选的,在上述技术方案的基础上,P种基础电磁单元和Q种变形电磁单元具有K种不同的反射率或者透射率,其中1≤K≤P+Q。
参见图2,可以通过选用具有不同介电常数的介质材料层2来改变电磁单元的透射率和反射率,结合接地板3,就可以形成具有不同透射率和反射率的电磁单元,这种组合尤其适用于调控电磁信号幅度。
具体的,几何形状不同的电磁单元,电磁单元的属性不同,对入射电磁波信号的调控效果不同,即对于电磁波信号的相位、振幅、极化方向以及频率四个属性中至少一个的改变量不同,在智能面板包括M类几何形状不同的电磁单元的基础上,P种基础电磁单元和Q种变形电磁单元具有K种不同的反射率或者透射率,进一步提高了该智能面板对于空间电磁波信号的调控能力,进而实现了一种对空间电磁波信号以及对空间电磁环境的调控能力有很大提升的智能面板。
可选的,在上述技术方案的基础上,P种基础电磁单元和Q种变形电磁单元中K 3种为有源电磁单元,可发射电磁信号,K 4种为无源电磁单元,不能发射电磁信号,其中K 3≥0,K 4≥0,且K 3+K 4=P+Q。
具体的,几何形状不同的电磁单元,电磁单元的属性不同,对入射电磁波信号的调控效果不同,即对于电磁波信号的相位、振幅、极化方向以及频率四个属性中至少一个的改变量不同,在智能面板包括M类几何形状不同的电磁单元的基础上,P种基础电磁单元和Q种变形电磁单元中K 3种为可发射电磁信号的有源电磁单元,K 4种为不能发射电磁信号的无源电磁单元,在实现一种对空间电磁波信号以及对空间电磁环境的调控能力有很大提升且可发射电磁波信号的智能面板的基础上,由于无源电磁单元成本相对较低,进而降低了整个智能面板的成本。
为了使得智能面板具有稳定的调控能力,本申请实施例中的电磁单元可以根据其所属的电磁单元类别确定其与相邻电磁单元在智能面板所在平面上的间距。
可选的,在上述技术方案的基础上,相邻电磁单元的间距由单元间距矩阵D确定,其中,单元间距矩阵D为M*M的二维矩阵,矩阵D的第i行、第j列元素d ij用于确定第i类电磁单元与第j类电磁单元相邻排布时的间距。
具体的,根据单元间距矩阵D来确定相邻电磁单元的间距,便于快速制备间距符合预设规定的智能面板,避免电磁单元之间相互干扰,影响对电磁波信号的调控效果,进而实现了一种具有稳定调控能力的智能面板。
图4是本申请实施例提供的又一种智能面板的结构示意图。可选的,在上述技术方案的基础上,参见图4,在智能面板所在平面内的第一方向上,同类型的电磁单元等间距排列;在智能面板所在平面内的第二方向上,同类型的电磁单元不等间距排列,其中,第二方向和第一方向之间呈预设夹角。
示例性的,参见图4,在智能面板所在平面内的第一方向上,即Y方向上,同类型的电磁单元以等间距第四间距L4排列。在智能面板所在平面内的第二方向上,即X方向上,同类型的电磁单元不等间距排列,间距分别有第一间距L1,第二间距L2以及第三间距L3。且第一间距L1,第二间距L2以及第三间距L3是不相等的。示例性的,图4中,第一方向和第二方向垂直设置,但是本实施例中并不限定第一方向和第二方向之间夹角的具体数值。示例性的,电磁波的波长为λ,第一间距L1为0.1λ,第二间距L2为0.2λ,第三间距L3为0.4λ,第四间距L4为0.54λ。
具体的,上述技术方案,在第二方向上,将同类型的电磁单元按照不等间距排列,可以形成更多的调控效果组合,以实现具有更精准调控能力的智能面板。
下面具体细化智能面板上,不同类型的电磁单元的具体排布方式。
图5是本申请实施例提供的又一种智能面板的结构示意图。可选的,在上述技术方案的基础上,M类电磁单元中K 12类呈块状区域排布、K 13类呈交叉排布、K 14类呈线状排布,其中K 12≥0,K 13≥0,K 14≥0,且K 12+K 13+K 14=M;每一块状区域内的电磁单元的类型相同;M类电磁单元呈交叉排布,相邻的两个电磁单元的类型不同;同一线状区域上的电磁单元类型相同,线状区域包括直线形、曲线形和环形中的至少一种。
参见图3a,智能面板中的M类电磁单元呈两个块状区域排布。参见图5,智能面板中的M类电磁单元中呈交叉排布,相邻的两个电磁单元类型不同。参见图4,智能面板中的M类电磁单元呈沿X方向的线状区域排布,其中图4示出的是直线形的线状区域。但是本申请实施例中的线状区域还可以包括曲线形或者环形。
具体的,几何形状、电磁单元的调控方式以及电磁单元调控的电磁参数类型中的至少一种不同的电磁单元,电磁单元的属性不同,对入射电磁波信号的调控效果不同,即对于电磁波信号的相位、振幅、极化方向以及频率四个属性 中至少一个的改变量不同。将不同类型的电磁单元呈块状区域排布、呈交叉排布以及呈线状排布至少一种方式进行排布,以该排布方式为依据,同一区域的电磁单元组合在一起形成电磁单元组,便于调控时按照电磁单元组进行调控,可以降低智能面板调控方法的复杂度。
为了进一步提高智能面板的调控能力,本申请实施例还提供了如下技术方案:
可选的,在上述技术方案的基础上,M类电磁单元在智能面板上分为M层排布,相同类型的电磁单元排布在同一层。
具体的,将同一类型的电磁单元排布在同一层,降低智能面板的工艺难度,可以快速完成同一类型的电磁单元的制备。示例性的,参见图7,图7a所示智能面板由上层电磁单元70和下层电磁单元71构成电磁单元阵列,其中,电磁单元70包括贴片层701和介质材料层702,电磁单元71包括贴片层711和介质材料层712,最下层为接地板72。图7b所示智能面板采用了和图7a相同的两类电磁单元分层排布构成阵列,但是采用了不同的排布方式,其一是水平方向增大了电磁单元的间距,其二是垂直方向电磁单元的中心不在同一垂线上,而是错开了一定的距离,相比图7a的智能面板,该智能面板能减少上层电磁单元对下层电磁单元调控效果的干扰。
可选的,在上述技术方案的基础上,M类电磁单元组成M个电磁单元组,其中,每一个电磁单元组包含一类电磁单元;或者,M类电磁单元组成N个电磁单元组,每一个电磁单元组包括至少两类电磁单元,N为小于或等于M的整数。
具体的,每一个电磁单元组包含一类电磁单元,可以对同一电磁单元组实施统一调控,以简化智能面板的控制方法。或者M类电磁单元组成N个电磁单元组,每一个电磁单元组包括至少两类电磁单元,可以增加每一个电磁单元组的调控能力,进而增加整个智能面板的调控能力。示例性的,具体的电磁单元组可以根据具体的调控目标将每一呈块状区域排布、每一呈交叉排布、每一呈线状排布的电磁单元划分为一组,也可以将相邻或者不相邻的块状区域排布、呈交叉排布、呈线状排布的电磁单元划分为一组。
下面具体介绍智能面板的调控方法。可选的,在上述技术方案的基础上,电磁单元组接收控制器控制指令改变组内电磁单元状态,对入射电磁波实施调控。
不论不同电磁单元的类型相同或者不同,根据电磁单元所在的分组,以电磁单元组为单位,统一响应调控指令对入射电磁波的待调整电磁特性参数进行 调整。电磁单元的分组越多,每一分组内的电磁单元的类型越多的智能面板对入射电磁波的调控能力和对空间电磁环境的调控能力的效果越明显。
本申请实施例还提供了一种智能面板的控制方法。该智能面板的控制方法包括如下步骤:
步骤110、根据智能面板对电磁波的调控目标以及预存调节功能与预存调控指令的映射关系表,获取需要接收调控指令的目标电磁单元。
具体的,可以通过对智能面板所在的通信系统中,基站的位置、终端的位置、智能面板的数量和位置、以及入射电磁波信号和出射电磁波信号,建立数学模型,得到预存调节功能与预存调控指令的映射关系表。
步骤120、根据目标电磁单元,确定各个电磁单元组。
步骤130、根据各个电磁单元组,确定各个电磁单元组接收的调控指令。
步骤140、根据各个电磁单元组接收的调控指令,控制电磁单元组接收控制器控制指令改变组内电磁单元状态,对入射电磁波实施调控。
可选的,需要调控的目标电磁单元的数量小于或等于所述智能面板包括的电磁单元的数量,需要调控的目标电磁单元的类型数量小于或等于所述智能面板包括的电磁单元的类型数量,且需要调控的目标电磁单元中每一个类型包括的电磁单元的数量小于或等于所述智能面板包括的电磁单元中每一个类型包括的电磁单元的数量。
本申请实施例还提供了一种空间电磁波调控系统。图8是本申请实施例提供的一种空间电磁波调控系统的结构示意图。参见图8,该空间电磁波调控系统包括上述技术方案中任意所述的智能面板100;还包括第一节点200和第二节点300,第一节点200用于向空间发射和/或接收电磁波信号,第二节点300用于向空间发射和/或接收电磁波信号;智能面板100用于对第一节点200发射的电磁波信号实施调控后反射或者透射到第二节点300;和/或,智能面板100还用于对第二节点300发射的电磁波信号实施调控后反射或者透射到第一节点200。
其中,智能面板100的电磁单元101由特定形状的金属或者介质材料构成,并与电子元件40相连,电子元件由面板上的控制器400控制,可实现电磁单元的电磁属性(如平均磁导率、平均介电常数)的调整。电子元件包括电阻、电容、二极管、三极管等。其中,变容二极管可以实现多级相位调控。
本申请实施例提供的空间电磁波调控系统包括上述技术方案中任意所述的智能面板100,该智能面板100包括至少两类电磁单元101,相比只包含一种类 型的电磁单元来说,本实施例中的技术对于电磁波信号的相位、振幅、极化方向以及频率四个属性中至少一个的改变量可以存在更多组合,且随着电磁单元的类型的增加以及不同类型的电磁单元在智能面板的排列方式不同,该智能面板对于电磁波信号的相位、振幅、极化方向以及频率中的至少一个的调控更为精准,提高了该智能面板对于空间电磁波信号的调控能力,进而实现了一种对空间电磁波信号以及对空间电磁环境的调控能力有很大提升的空间电磁波调控系统。
可选的,在上述技术方案的基础上,第一节点200包括无线基站和/或能量发射装置,第二节点300包括移动终端和/或能量接收装置;或者,第二节点300包括无线基站和/或能量发射装置,第一节点200包括移动终端和/或能量接收装置。
具体的,上述技术方案以实现移动终端、智能面板100和能量接收装置组成的空间电磁波调控系统,移动终端、智能面板100和移动终端组成的空间电磁波调控系统,以及能量接收装置、智能面板100和能量接收装置组成的空间电磁波调控系统中一种或多种,实现了空间电磁波调控系统的组成多样性。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、电可擦只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他存储器技术、紧凑磁盘只读存储器(Compact Disc Read Only Memory,CD-ROM)、数字多功能盘(Digital Video Disk,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介 质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (17)

  1. 一种智能面板,包括:
    M类电磁单元,其中,M大于或等于2;
    所述M类电磁单元的类型由电磁单元的几何形状、电磁单元的调控方式以及电磁单元调控的电磁参数类型中的至少一种区分。
  2. 根据权利要求1所述的智能面板,其中,所述M类电磁单元包括P种基础电磁单元和Q种变形电磁单元,其中,P≥1、Q≥1且P+Q=M,或者P=M且Q=0;
    所述基础电磁单元通过以下至少一种方式形成所述变形电磁单元:
    所述基础电磁单元相对所述基础电磁单元的中心旋转预设角度形成所述变形电磁单元;
    或,所述基础电磁单元相对所述基础电磁单元所在平面的预设翻转轴镜像翻转后形成所述变形电磁单元。
  3. 根据权利要求1所述的智能面板,其中,所述M类电磁单元包括P种基础电磁单元和Q种变形电磁单元,其中,P≥1、Q≥1且P+Q=M,或者P=M且Q=0;
    所述基础电磁单元通过以下至少一种方式形成所述变形电磁单元:
    所述基础电磁单元中的贴片层的整体尺寸按照预设比例放大或缩小形成所述变形电磁单元;
    或,所述基础电磁单元的整体尺寸按照预设比例放大或缩小形成所述变形电磁单元。
  4. 根据权利要求1所述的智能面板,其中,所述M类电磁单元包括P种基础电磁单元和Q种变形电磁单元,其中,P≥1、Q≥1且P+Q=M,或者P=M且Q=0;
    所述基础电磁单元中的贴片层的局部形状发生改变形成所述变形电磁单元,其中,所述基础电磁单元中的贴片层的局部形状发生改变的类型包括局部长度、局部宽度、局部曲率以及局部半径中的至少一种。
  5. 根据权利要求2-4中任一项所述的智能面板,其中,所述P种基础电磁单元和所述Q种变形电磁单元中K 1种为不可动态调控的电磁单元,K 2种为动态可调的电磁单元,其中,K 1≥0,K 2≥0,且K 1+K 2=P+Q。
  6. 根据权利要求2-4中任一项所述的智能面板,其中,所述P种基础电磁单元和所述Q种变形电磁单元具有K种不同的反射率或者透射率,其中, 1≤K≤P+Q。
  7. 根据权利要求2-4中任一项所述的智能面板,其中,所述P种基础电磁单元和所述Q种变形电磁单元中K 3种为有源电磁单元,可发射电磁信号,K 4种为无源电磁单元,不能发射电磁信号,其中,K 3≥0,K 4≥0,且K 3+K 4=P+Q。
  8. 根据权利要求1所述的智能面板,其中,所述M类电磁单元包括K 5种由电子元件调控的电磁单元、K 6种由液晶调控的电磁单元和K 7种由微机电系统调控的电磁单元,其中,K 5≥0,K 6≥0,K 7≥0,且K 5+K 6+K 7=M。
  9. 根据权利要求1所述的智能面板,其中,所述M类电磁单元的类型包括K 8种调控电磁波振幅的电磁单元、K 9种调控电磁波相位的电磁单元、K 10种调控电磁波频率的电磁单元和K 11种调控电磁波极化方向的电磁单元,其中,K 8≥0,K 9≥0,K 10≥0,K 11≥0,且K 8+K 9+K 10+K 11=M。
  10. 根据权利要求1所述的智能面板,其中,相邻电磁单元的间距由单元间距矩阵确定,其中,所述单元间距矩阵为M*M的二维矩阵,所述单元间距矩阵的第i行、第j列元素d ij用于确定第i类电磁单元与第j类电磁单元在相邻排布的情况下的间距。
  11. 根据权利要求10所述的智能面板,其中,在所述智能面板所在平面内的第一方向上,同类型的电磁单元等间距排列;
    在所述智能面板所在平面内的第二方向上,同类型的电磁单元不等间距排列,其中,所述第二方向和所述第一方向之间呈预设夹角。
  12. 根据权利要求1所述的智能面板,其中,所述M类电磁单元中K 12类呈块状区域排布、K 13类呈交叉排布、K 14类呈线状排布,其中,K 12≥0,K 13≥0,K 14≥0,且K 12+K 13+K 14=M;
    每一个块状区域内的电磁单元的类型相同;
    所述M类电磁单元呈交叉排布,相邻的两个电磁单元的类型不同;
    同一个线状区域上的电磁单元的类型相同,其中,所述线状区域包括直线形、曲线形和环形中的至少一种。
  13. 根据权利要求1所述的智能面板,其中,所述M类电磁单元在所述智能面板上分为M层排布,相同类型的电磁单元排布在同一层。
  14. 根据权利要求1所述的智能面板,其中,所述M类电磁单元组成M个电磁单元组,其中,每一个电磁单元组包括一类电磁单元;
    或者,所述M类电磁单元组成N个电磁单元组,每一个电磁单元组包括至少两类电磁单元,所述N为小于或等于M的整数。
  15. 根据权利要求14所述的智能面板,其中,所述电磁单元组设置为接收控制器控制指令改变组内电磁单元状态,对入射电磁波实施调控。
  16. 一种空间电磁波调控系统,包括权利要求1-15中任一项所述的智能面板;
    还包括第一节点和第二节点,所述第一节点设置为向空间发射、或接收、或发射和接收电磁波信号,所述第二节点设置为向空间发射、或接收、或发射和接收电磁波信号;
    所述智能面板设置为以下至少之一:对所述第一节点发射的电磁波信号实施调控使实施调控后的电磁波信号反射或者透射到所述第二节点;或,对所述第二节点发射的电磁波信号实施调控使实施调控后后的电磁波信号反射或者透射到所述第一节点。
  17. 根据权利要求16所述的空间电磁波调控系统,其中,所述第一节点包括以下至少之一:无线基站、或能量发射装置,所述第二节点包括以下至少之一:移动终端、或能量接收装置;
    或者,所述第二节点包括以下至少之一:无线基站、或能量发射装置,所述第一节点包括以下至少之一:移动终端、或能量接收装置。
PCT/CN2022/075227 2021-02-22 2022-01-30 智能面板以及空间电磁波调控系统 WO2022174738A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22755511.7A EP4297291A1 (en) 2021-02-22 2022-01-30 Intelligent surface and spatial electromagnetic wave regulation system
US18/547,012 US20240235620A9 (en) 2021-02-22 2022-01-30 Intelligent surface and spatial electromagnetic wave manipulation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110198942.5 2021-02-22
CN202110198942.5A CN114976659A (zh) 2021-02-22 2021-02-22 智能面板以及空间电磁波调控系统

Publications (1)

Publication Number Publication Date
WO2022174738A1 true WO2022174738A1 (zh) 2022-08-25

Family

ID=82932123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075227 WO2022174738A1 (zh) 2021-02-22 2022-01-30 智能面板以及空间电磁波调控系统

Country Status (4)

Country Link
US (1) US20240235620A9 (zh)
EP (1) EP4297291A1 (zh)
CN (1) CN114976659A (zh)
WO (1) WO2022174738A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111817768A (zh) * 2020-06-03 2020-10-23 北京交通大学 一种用于智能反射表面无线通信的信道估计方法
CN111930052A (zh) * 2020-09-17 2020-11-13 中兴通讯股份有限公司 智能面板、智能面板的控制方法以及通信系统
CN111930053A (zh) * 2020-09-17 2020-11-13 中兴通讯股份有限公司 智能面板、智能面板的控制方法以及通信系统
CN112073091A (zh) * 2020-11-11 2020-12-11 华东交通大学 一种高铁场景下智能表面辅助的空间调制天线选择方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111817768A (zh) * 2020-06-03 2020-10-23 北京交通大学 一种用于智能反射表面无线通信的信道估计方法
CN111930052A (zh) * 2020-09-17 2020-11-13 中兴通讯股份有限公司 智能面板、智能面板的控制方法以及通信系统
CN111930053A (zh) * 2020-09-17 2020-11-13 中兴通讯股份有限公司 智能面板、智能面板的控制方法以及通信系统
CN112073091A (zh) * 2020-11-11 2020-12-11 华东交通大学 一种高铁场景下智能表面辅助的空间调制天线选择方法

Also Published As

Publication number Publication date
CN114976659A (zh) 2022-08-30
US20240235620A9 (en) 2024-07-11
US20240137076A1 (en) 2024-04-25
EP4297291A1 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
WO2017197999A1 (zh) 调节电磁波的方法和超材料
CN107885008B (zh) 一种级联液晶光学相控阵天线、成型及应用方法
US10312588B2 (en) Phased-array antenna and multi-face array antenna device
CN105958208B (zh) 一种频率选择透波角度的单层超材料表面结构
CN107046176A (zh) 基于微晶材料的波束扫描微带平面反射阵天线及制作方法
CN111930052A (zh) 智能面板、智能面板的控制方法以及通信系统
CN109193173B (zh) 一种基于相位可调超表面的微波段吸波器件及方法
CN106054490A (zh) 一种基于光学相控阵的大角度波束控制系统
CN110957585A (zh) 一种基于液晶材料的平面反射阵天线
US20190384098A1 (en) Liquid crystal panel and method for manufacturing the same
US12088375B2 (en) Beamforming method and apparatus
WO2022174738A1 (zh) 智能面板以及空间电磁波调控系统
CN207116706U (zh) 阵列天线的馈电网络
CN103094713A (zh) K波段平面贴片透镜天线
CN203013937U (zh) 一种k波段平面贴片透镜天线
US20210288292A1 (en) Display panel and display device
CN113078461A (zh) 一种基于镜像对称法的高效反射阵列天线单元
CN114639962B (zh) 一种基于相位梯度超表面的二维波束可重构Fabry-Perot谐振腔天线
CN102800974B (zh) 一种基站天线
US20220320753A1 (en) Cell rotation and frequency compensation in diode designs
CN112928482B (zh) 用于多波束赋形的反射型微波段可编程1-bit超表面
CN104345508A (zh) 基于波前调节的电控液晶激光整形芯片
TWI781725B (zh) 顯示裝置
WO2024029448A1 (ja) 電波伝送システム、及び、反射器
CN118380776A (zh) 空间滤波器的驱动方法、驱动装置、空间滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755511

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18547012

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022755511

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022755511

Country of ref document: EP

Effective date: 20230922