WO2022173201A3 - Procédé de pronostic du diabète sucré de type 2 après une chirurgie du cancer de l'estomac - Google Patents

Procédé de pronostic du diabète sucré de type 2 après une chirurgie du cancer de l'estomac Download PDF

Info

Publication number
WO2022173201A3
WO2022173201A3 PCT/KR2022/001945 KR2022001945W WO2022173201A3 WO 2022173201 A3 WO2022173201 A3 WO 2022173201A3 KR 2022001945 W KR2022001945 W KR 2022001945W WO 2022173201 A3 WO2022173201 A3 WO 2022173201A3
Authority
WO
WIPO (PCT)
Prior art keywords
stomach cancer
diabetes mellitus
cancer surgery
diabetes
prognosis
Prior art date
Application number
PCT/KR2022/001945
Other languages
English (en)
Korean (ko)
Other versions
WO2022173201A2 (fr
Inventor
권영근
박성수
권진원
Original Assignee
고려대학교 산학협력단
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단, 경북대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2022173201A2 publication Critical patent/WO2022173201A2/fr
Publication of WO2022173201A3 publication Critical patent/WO2022173201A3/fr

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4058Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
    • A61B5/4064Evaluating the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4088Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Databases & Information Systems (AREA)
  • Neurology (AREA)
  • Physiology (AREA)
  • Software Systems (AREA)
  • Cardiology (AREA)
  • Theoretical Computer Science (AREA)
  • Neurosurgery (AREA)
  • Psychology (AREA)
  • Optics & Photonics (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Vascular Medicine (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Developmental Disabilities (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Child & Adolescent Psychology (AREA)
  • Emergency Medicine (AREA)

Abstract

La présente invention divulgue un procédé de pronostic du diabète sucré de type 2 après une chirurgie du cancer de l'estomac. Le procédé comprend les étapes dans lesquelles : (a) une partie de classification de cible classifie une population de patients cibles en un groupe de base et un groupe de vérification selon la période de chirurgie du cancer de l'estomac; (b) une partie de sélection de variables sélectionne une variable préopératoire pour effectuer un pronostic du diabète sucré pendant une certaine période de temps après une chirurgie du cancer de l'estomac dans les groupes de patients cibles classifiés; (c) une partie de calcul de score reçoit les variables préopératoires sélectionnées et calcule un score de prédiction de diabète pour évaluer des symptômes progressifs du diabète en fonction de la valeur de référence de chaque variable; et (d) une partie de vérification de capacité de prédiction reçoit le score de prédiction de diabète calculé et calcule la zone sous la courbe caractéristique d'opération de récepteur pour le groupe de base et le groupe de vérification pour vérifier l'utilité du système de score. Selon la présente invention, diverses procédures de progression du diabète sucré de type 2 qui peuvent se produire après une chirurgie du cancer de l'estomac peuvent être efficacement prédites, ce qui permet d'améliorer considérablement la gestion pertinente des taux de glycémie et d'empêcher les effets secondaires attribués à des prescriptions répétées de médicaments pour le diabète sucré après une chirurgie.
PCT/KR2022/001945 2021-02-10 2022-02-09 Procédé de pronostic du diabète sucré de type 2 après une chirurgie du cancer de l'estomac WO2022173201A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210018747A KR102510347B1 (ko) 2021-02-10 2021-02-10 위암 수술 이후 제2형 당뇨병 예후의 예측 방법
KR10-2021-0018747 2021-02-10

Publications (2)

Publication Number Publication Date
WO2022173201A2 WO2022173201A2 (fr) 2022-08-18
WO2022173201A3 true WO2022173201A3 (fr) 2022-10-06

Family

ID=82837800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001945 WO2022173201A2 (fr) 2021-02-10 2022-02-09 Procédé de pronostic du diabète sucré de type 2 après une chirurgie du cancer de l'estomac

Country Status (2)

Country Link
KR (1) KR102510347B1 (fr)
WO (1) WO2022173201A2 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150332020A1 (en) * 2014-05-16 2015-11-19 Corcept Therapeutics, Inc. Systems and methods of managing treatment of a chronic condition by symptom tracking
KR20180079208A (ko) * 2016-12-30 2018-07-10 서울대학교산학협력단 대사이상 질환의 질병 위험도를 예측하는 장치 및 방법
KR20190062461A (ko) * 2016-09-28 2019-06-05 미디얼 리서치 리미티드 의료 데이터 마이닝을 위한 시스템 및 방법
KR20210001959A (ko) * 2019-06-27 2021-01-06 서울대학교산학협력단 위암의 다층 다요인 패널과 Computational biological network modeling을 통한 위암 발암에 대한 에티옴 모형

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528117A (ja) 2008-07-15 2011-11-10 メタノミクス ヘルス ゲーエムベーハー 胃バイパス及びそれに関連する状態を診断する手段及び方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150332020A1 (en) * 2014-05-16 2015-11-19 Corcept Therapeutics, Inc. Systems and methods of managing treatment of a chronic condition by symptom tracking
KR20190062461A (ko) * 2016-09-28 2019-06-05 미디얼 리서치 리미티드 의료 데이터 마이닝을 위한 시스템 및 방법
KR20180079208A (ko) * 2016-12-30 2018-07-10 서울대학교산학협력단 대사이상 질환의 질병 위험도를 예측하는 장치 및 방법
KR20210001959A (ko) * 2019-06-27 2021-01-06 서울대학교산학협력단 위암의 다층 다요인 패널과 Computational biological network modeling을 통한 위암 발암에 대한 에티옴 모형

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM JONG WON, CHEONG JAE-HO, HYUNG WOO JIN, CHOI SEUNG-HO, HOON SUNG, JONG NOH, KIM WON, JW KIM, JH CHEONG, WJ HYUNG, SH CHOI, NOH: "Outcome after gastrectomy in gastric cancer patients with type 2 diabetes", WORLD JOURNAL OF GASTROENTEROLOGY, WJG PRESS, CN, vol. 18, no. 1, 1 January 2012 (2012-01-01), CN , pages 49, XP055972779, ISSN: 1007-9327, DOI: 10.3748/wjg.v18.i1.49 *

Also Published As

Publication number Publication date
KR20220115723A (ko) 2022-08-18
WO2022173201A2 (fr) 2022-08-18
KR102510347B1 (ko) 2023-03-20

Similar Documents

Publication Publication Date Title
Wilkins Jr et al. Evaluation of a “shotgun” regimen for sudden hearing loss
Obrador et al. Level of renal function at the initiation of dialysis in the US end-stage renal disease population
Amorim et al. Planned caesarean section versus planned vaginal birth for severe pre‐eclampsia
Hoffman et al. A machine learning algorithm for predicting maternal readmission for hypertensive disorders of pregnancy
Chelune et al. Does presurgical IQ predict seizure outcome after temporal lobectomy? Evidence from the Bozeman Epilepsy Consortium
Srinivas et al. Vaginal birth after caesarean delivery: does maternal age affect safety and success?
Choi et al. Early decision in clinical trials when the treatment differences are small: experience of a controlled trial in head trauma
Hutchinson et al. Epidemiology of gunshot wounds to the hand
AbuRahma et al. Natural history of carotid artery stenosis contralateral to endarterectomy: results from two randomized prospective trials
Ng et al. Predicting medical emergency team calls, cardiac arrest calls and re-admission after intensive care discharge: creation of a tool to identify at-risk patients
WO2022173201A3 (fr) Procédé de pronostic du diabète sucré de type 2 après une chirurgie du cancer de l'estomac
Huang et al. Ability of a machine learning algorithm to predict the need for perioperative red blood cells transfusion in pelvic fracture patients: A multicenter cohort study in China
Pouliot et al. Incidence and outcomes of gestational diabetes mellitus using the new international association of diabetes in pregnancy study group criteria in Hôpital Maisonneuve-Rosemont
Svetkey et al. Effects of gender and ethnic group on blood pressure control in the elderly
Ciampi et al. A new approach to training back‐propagation artificial neural networks: empirical evaluation on ten data sets from clinical studies
Mitchell et al. Effectiveness of Angle-Based Minimally Invasive Glaucoma Surgery after Laser Trabeculoplasty: An Analysis of the IRIS® Registry (Intelligent Research in Sight)
Antonyuk Patient-centered approach to the management of acute kidney injury in the Covid-19 outcomes
Kim A new approach to health analysis predicting data mining and machine learning technologies
Konik et al. Medicalizing women’s weight: Bariatric surgery and weight-loss drugs
Lüscher et al. Global Cardiovascular Risk
Gui et al. Reviewed by: Background: Predicting the perioperative requirement for red blood cells (RBCs) transfusion in patients with the pelvic fracture may be challenging. In this study, we constructed a perioperative RBCs transfusion predictive model (ternary classifications) based on a machine learning algorithm. Materials and Methods: This study included perioperative adult patients with pelvic
Yeman et al. Prevalence and Determinants of Maternal and Perinatal Outcome of Preeclampsia at a Teaching Hospital in Ethiopia [3T]
Suzuki et al. Platelet/lymphocyte ratio on day-1 after pancreatectomy was predictive factor for pancreatic fistula
Savitsky et al. Characterizing Perioperative Blood Glucose on an Enhanced Recovery After Surgery Pathway for Cesarean Delivery [06P]
Emezienna Association between placental syndrome and 2-year neurodevelopmental outcome in patients with primary maternal CMV infection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752961

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752961

Country of ref document: EP

Kind code of ref document: A2