WO2022173056A1 - 肌状態推定方法、装置、プログラム、システム、学習済みモデル生成方法、および学習済みモデル - Google Patents

肌状態推定方法、装置、プログラム、システム、学習済みモデル生成方法、および学習済みモデル Download PDF

Info

Publication number
WO2022173056A1
WO2022173056A1 PCT/JP2022/005909 JP2022005909W WO2022173056A1 WO 2022173056 A1 WO2022173056 A1 WO 2022173056A1 JP 2022005909 W JP2022005909 W JP 2022005909W WO 2022173056 A1 WO2022173056 A1 WO 2022173056A1
Authority
WO
WIPO (PCT)
Prior art keywords
nose
skin condition
user
features
skin
Prior art date
Application number
PCT/JP2022/005909
Other languages
English (en)
French (fr)
Inventor
典子 長谷川
祐輔 原
拓馬 星野
Original Assignee
株式会社資生堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社資生堂 filed Critical 株式会社資生堂
Priority to US18/262,620 priority Critical patent/US20240074694A1/en
Priority to CN202280010218.8A priority patent/CN116801800A/zh
Priority to JP2022580719A priority patent/JPWO2022173056A1/ja
Publication of WO2022173056A1 publication Critical patent/WO2022173056A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/442Evaluating skin mechanical properties, e.g. elasticity, hardness, texture, wrinkle assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1032Determining colour for diagnostic purposes

Definitions

  • the present invention relates to a skin condition estimation method, device, program, system, learned model generation method, and learned model.
  • Patent Literature 1 predicts future wrinkle formation and wrinkle levels around the eyes and mouth from ultrasound images.
  • Patent Document 1 an ultrasonic diagnostic device is required, and it was not easy to easily predict skin conditions that are likely to occur in the future.
  • an object of the present invention is to easily obtain the skin condition.
  • a method includes identifying features of a user's nose and estimating the skin condition of the user based on the features of the user's nose.
  • the skin condition can be easily estimated from the characteristics of the nose.
  • FIG. 4 is a flow chart showing the flow of skin condition estimation processing according to an embodiment of the present invention.
  • FIG. 4 is a diagram for explaining features of a nose according to one embodiment of the present invention.
  • FIG. 4 is a diagram for explaining extraction of a nose region according to one embodiment of the present invention;
  • FIG. 4 is a diagram for explaining extraction of a nose region according to one embodiment of the present invention.
  • 4 is a diagram for explaining calculation of a nose feature amount according to one embodiment of the present invention.
  • 4 is an example of nose features for each face type according to one embodiment of the present invention;
  • 4 is an example of a face estimated from nose features according to an embodiment of the present invention; It is a figure which shows the hardware constitutions of the skin condition estimation apparatus which concerns on one Embodiment of this invention.
  • the “skin condition” is at least one of wrinkles, spots, sagging, dark circles, nasolabial folds, dullness, firmness, moisture, sebum, melanin, blood circulation, blood vessels, blood, pores, and skin color.
  • skin condition includes wrinkles, spots, sagging, dark circles, nasolabial folds, dullness, firmness, moisture, sebum, melanin, blood circulation, blood vessels, blood, pores, and skin color. It is the presence/absence and degree of elements.
  • the “skin condition” is the condition of the skin in any one of a part of the face, the entire face, and a plurality of parts of the face.
  • the “skin condition” may be the future skin condition of the user or the current skin condition of the user. In the present invention, the skin condition is estimated from the nose characteristics based on the correlation between the nose characteristics and the skin condition.
  • FIG. 1 is a diagram showing the overall configuration according to one embodiment of the present invention.
  • the skin condition estimation device 10 estimates the skin condition of the user 20 from the features of the user's 20 nose.
  • the skin condition estimation device 10 is a smart phone or the like having a camera function.
  • the skin condition estimation device 10 will be described in detail later with reference to FIG.
  • the skin condition estimation device 10 is one device (for example, a smartphone having a camera function, etc.) will be described. device and a digital camera). Further, the camera function may be a function of photographing the skin three-dimensionally or a function of photographing the skin two-dimensionally. Also, a device (such as a server) other than the skin condition estimation device 10 may execute a part of the processing executed by the skin condition estimation device 10 described herein.
  • FIG. 2 is a diagram showing functional blocks of the skin condition estimation device 10 according to one embodiment of the present invention.
  • the skin condition estimation device 10 can include an image acquisition unit 101 , a nose feature identification unit 102 , a skin condition estimation unit 103 , a skeleton estimation unit 104 and an output unit 105 . Further, the skin condition estimation apparatus 10 can function as an image acquisition unit 101, a nose feature identification unit 102, a skin condition estimation unit 103, a skeleton estimation unit 104, and an output unit 105 by executing programs. Each of these will be described below.
  • the image acquisition unit 101 acquires an image including the user's 20 nose.
  • the image including the nose may be an image in which the nose and other parts are photographed (for example, an image in which the entire face is photographed), or an image in which only the nose is photographed (for example, a display of the skin condition estimation device 10).
  • An image photographed so that the nose area of the user 20 fits within a predetermined area displayed on the device) may also be used.
  • the image acquisition unit 101 is not required if the features of the nose are identified from other than the image.
  • the nose feature identification unit 102 identifies the features of the user's 20 nose. For example, the nose feature identification unit 102 identifies the features of the nose of the user 20 from the image information (for example, pixel values of the image) of the image including the nose of the user 20 acquired by the image acquisition unit 101 .
  • image information for example, pixel values of the image
  • the skin condition estimation unit 103 estimates the skin condition of the user 20 based on the nose features of the user 20 identified by the nose feature identification unit 102 . For example, the skin condition estimation unit 103 classifies the skin condition of the user 20 based on the features of the nose of the user 20 specified by the nose feature specifying unit 102 .
  • the skin condition estimating unit 103 estimates the skin condition of the user 20 (for example, the skin condition caused by the shape of the facial skeleton) based on the shape of the facial skeleton of the user 20 estimated by the skeleton estimating unit 104. ) can also be estimated.
  • the skeleton estimation unit 104 estimates the shape of the facial skeleton of the user 20 based on the features of the nose of the user 20 specified by the nose feature specifying unit 102 . For example, the skeleton estimation unit 104 classifies the shape of the facial skeleton of the user 20 based on the features of the nose of the user 20 specified by the nose feature specifying unit 102 .
  • the output unit 105 outputs (for example, displays) information on the skin condition of the user 20 estimated by the skin condition estimation unit 103 .
  • the skin condition is at least one of wrinkles, spots, sagging, dark circles, nasolabial folds, dullness, firmness, moisture, sebum, melanin, blood circulation, blood vessels, blood, texture, pores, and skin color.
  • the skin condition includes wrinkles at the corners of the eyes, wrinkles under the eyes, wrinkles on the forehead, wrinkles on the eye holes, sagging eye bags, dark circles in the eyes, nasolabial folds (nasolabial folds, around the mouth), and nose.
  • the skin condition estimation unit 103 estimates the skin condition from the nose characteristics based on the correlation between the nose characteristics and the skin condition.
  • the skin condition estimating unit 103 estimates the skin condition based on the correspondence relationship between the nose features and the skin condition stored in advance in the skin condition estimating device 10 or the like. It should be noted that the skin condition may be estimated based not only on the features of the nose, but also on the features of the nose and part of the features of the face.
  • the correspondence may be a pre-determined database or a machine-learned model.
  • the characteristics of the nose (which may be a part of the characteristics of the nose and facial features) and the skin condition are associated with each other based on the results of experiments conducted on subjects.
  • the trained model is a prediction model that outputs information on skin condition when information on nose features (which may be part of nose features and facial features) is input.
  • a computer such as skin condition estimation device 10 can generate a trained model.
  • a computer such as the skin condition estimating apparatus 10 obtains teacher data whose input data is the nose feature (which may be part of the nose feature and facial features) and whose output data is the skin condition. Then, machine learning is performed using the teacher data to generate a trained model that outputs the skin condition when the nose features (the nose features and part of the facial features are acceptable) are input. can. In this way, machine learning is performed using training data in which the input data is nose features (which may be nose features and part of facial features) and the output data is skin conditions. nose features and some facial features) are input, a trained model is generated that outputs the skin condition.
  • the skin condition estimating unit 103 may also estimate the skin condition based on the correspondence relationship between the shape of the facial skeleton and the skin condition stored in advance in the skin condition estimating device 10 or the like. can.
  • the correspondence may be a pre-determined database or a machine-learned model.
  • the database associates the shape of the facial skeleton with the skin condition based on the results of experiments conducted on the subject.
  • the learned model is a prediction model that outputs skin condition information when shape information relating to the skeleton of the face is input.
  • a computer such as skin condition estimation device 10 can generate a trained model.
  • a computer such as the skin condition estimating apparatus 10 acquires teacher data whose input data is a shape related to the skeleton of the face and whose output data is the condition of the skin, and performs machine learning using the teacher data. , it is possible to generate a trained model that outputs the skin condition when the shape of the facial skeleton is input. In this way, machine learning is performed using training data in which the input data is the shape related to the facial skeleton and the output data is the skin condition, so that when the shape related to the facial skeleton is input, the skin condition is output.
  • a trained model is generated.
  • the estimated skin condition may be the future skin condition of the user 20 or the current skin condition of the user 20 .
  • the correspondence between the nose features (or the shape of the facial skeleton estimated from the nose features) and the skin condition is created based on the data of a person older than the actual age of the user 20 ( For example, if the age of the test subject in the experiment or the age of the person whose learning data is used for machine learning is higher than the actual age of the user 20, the future skin of the user 20 is estimated.
  • the correspondence relationship between the features of the nose (or the shape of the facial skeleton estimated from the features of the nose) and the skin condition is created based on the data of a person of the same age as the real age of the user 20.
  • the current skin of the user 20 is estimated. be.
  • the skin condition may be estimated based not only on the features of the nose, but also on the features of the nose and part of the features of the face.
  • the skin condition estimating unit 103 can estimate that wrinkles are likely to appear at the corners of the eyes when the root of the nose and the bridge of the nose are high. Further, for example, the skin condition estimation unit 103 estimates that if the shape of the cheek is such that the high position of the cheekbone is at the top, there is a wrinkle at the corner of the eye or there is a possibility that it will become wrinkled in the future (turn ON/OFF judgment) can be made.
  • the skin condition estimating unit 103 can estimate that wrinkles are more likely to occur under the eyes when the wings of the nose are more rounded or, for example, when the eyes are larger.
  • the skin condition estimating unit 103 can estimate that the eye socket has a shape characteristic such as being horizontally long or small, but that the eye socket is large and the vertical and horizontal widths are similar, and there are many wrinkles under the eyes. Also, for example, the skin condition estimation unit 103 can estimate wrinkles under the eyes based on the facial contour. Also, for example, the skin condition estimation unit 103 can estimate that the wider the distance between the eyes, the less wrinkles under the eyes.
  • the skin condition estimation unit 103 can estimate sagging eye bags based on the roundness of the nasal alar and the height of the bridge of the nose. Specifically, the skin condition estimation unit 103 can estimate that the larger the sum of the roundness of the nasal alar and the height of the bridge of the nose, the looser the eye bags.
  • the skin condition estimation unit 103 can estimate that the eye bags are likely to sag when the face contour is oval and the face is long.
  • the skin condition estimation unit 103 can estimate HbCO2 (reduced hemoglobin) based on the height of the bridge of the nose and the roundness of the alar.
  • the skin condition estimation unit 103 can estimate HbSO2 (oxygen saturation) based on the facial contour.
  • the skin condition estimating unit 103 can estimate that the water content is lower as the bridge of the nose is lower, the wings of the nose are rounder, or the distance between the eyes is greater.
  • the skin condition estimation unit 103 can estimate the skin moisture content based on the height of the skull index and the aspect ratio of the face.
  • the skin condition estimation unit 103 can estimate sebum based on the roundness of the nasal alar.
  • the skin condition estimation unit 103 can estimate sebum based on the facial contour.
  • the skin condition estimating unit 103 can estimate that the melanin index is higher when the nasal alar is rounder and the nasal bridge is higher, the melanin amount is higher, and the melanin index is lower when the nasal bridge is lower and the distance between the eyes is narrower.
  • the skin condition estimation unit 103 can estimate that the thicker the upper and lower lips, the higher the melanin index and the greater the amount of melanin. Also, for example, the skin condition estimation unit 103 can estimate that the thinner the upper and lower lips are, the lower the melanin index is.
  • the skin condition estimating unit 103 can estimate that dark circles are likely to appear when the alar of the nose is rounded.
  • the skin condition estimation unit 103 can estimate that the face line tends to sag when the bridge of the nose is low and the distance between the eyes is wide, or when the angle of the chin is rounded.
  • the skin condition estimation unit 103 can estimate that the higher the bridge of the nose, the higher the oxygen content in the blood.
  • the skin condition estimating unit 103 can estimate the blood vessel density from the position of change in the size of the nasal alar or the height of the root of the nose, and the larger the nasal alar, the higher the blood vessel density.
  • the skin condition estimation unit 103 can estimate the epidermal thickness from the size of the nasal alar.
  • the skin condition estimating unit 103 can estimate the number of blood vessels branching from the position of change in the height of the root of the nose.
  • the skin condition estimating unit 103 comprehensively determines wrinkles, spots, sagging, dark circles, nasolabial folds, dullness, firmness, moisture
  • Skin conditions can be expressed as sebum, melanin, blood circulation, blood vessels, blood, pores, and skin color.
  • - Wrinkles represented by one or more items of wrinkles at the corners of the eyes, under the eyes, forehead, and eyeholes.
  • Blemishes represented by one or more items of uneven brown color, uneven red color, and melanin.
  • Sagging represented by one or more items of eye bags, chin, and marionette lines.
  • ⁇ Bears One or two items of brown eyes and blue eyes.
  • - Nasolabial folds represented by one or two items of nasolabial folds nasolabial folds and mouth nasolabial folds.
  • Dullness represented by one or more items of transparency, melanin, color unevenness, skin color, oxygen saturation, water content, number of skin bumps.
  • Firmness represented by one or more of moisture, sebum, sagging, and skin viscoelasticity.
  • Moisture represented by one or two items of water content, water retention capacity (TEWL), number of skin bumps, and pH.
  • TEWL water retention capacity
  • ⁇ Texture represented by one or more items such as the number of skin mounds and water content.
  • ⁇ Skin color expressed by one or more of the following items: skin tone, skin brightness, melanin, blood oxygen content, and HbO2 (oxygenated hemoglobin content).
  • - Sebum expressed from one or two items of sebum amount and pores.
  • normal skin, dry skin, oily skin, and mixed skin may be classified based on moisture and sebum.
  • Melanin Melanin index, amount of melanin, uneven color, one or two items.
  • Blood circulation expressed by at least one or two items of HbSO2 Index (blood oxygen saturation index), Hb Index (hemoglobin amount), HbO2 (oxygenated hemoglobin amount), blood oxygen amount, and skin color.
  • Blood vessel represented by one or more items of density of blood vessels, number of capillaries, number of blood vessel branches, distance between blood vessels and epidermis, and epidermis thickness.
  • ⁇ Blood HDL cholesterol
  • the skin condition estimating unit 103 can express skin characteristics such as skin strength and skin weakness from the characteristics of the nose. For example, when the characteristic of the nose is type 1, the evaluation value of wrinkles at the corners of the eyes is lower than the average evaluation value, so it is represented as the strength of the skin. When the characteristic of the nose is type 2, the evaluation value of wrinkles at the corners of the eyes is higher than the average evaluation value, so it is expressed as weak skin. The strengths and weaknesses of the skin can be expressed for each part of the face.
  • the strengths of the skin are wrinkles and blemishes on the corners of the eyes and forehead, and the weaknesses of the skin are dark circles, nasolabial folds, nasolabial folds, sagging around the mouth, and water retention.
  • the skin condition estimating unit 103 can estimate a general skin index (in this case, loose skin) from these skin conditions.
  • the strengths of the skin are sagging cheeks, moisture retention, blood circulation, and blemishes, and the weaknesses are wrinkles and blemishes on the corners of the eyes and forehead.
  • the skin condition estimating unit 103 can estimate a comprehensive skin index (in this case, wrinkle-type skin) from these skin conditions.
  • the skeleton estimating unit 104 estimates the shape of the facial skeleton from the features of the nose based on the correlation between the features of the nose and the shape of the facial skeleton.
  • the shapes related to the skeleton of the face include orbits, cheekbones, nasal bones, piriform mouth (mouth that opens toward the face of the nasal cavity), cranial index, maxilla, mandible, lips, corners of the mouth, Eyes, Mongolian folds (folds of the skin where the upper eyelids cover the inner corners of the eyes), facial contours, and the positional relationship between the eyes and eyebrows (for example, the eyes and eyebrows are far apart, close, etc.) At least one of the characteristics of the shape of each bone, the positional relationship of the skeleton, the angle, and the like.
  • An example of the shape related to the skeleton of the face is shown below. Note that the contents in parentheses are an example of estimated specific contents.
  • the skeleton estimation unit 104 estimates the shape of the facial skeleton based on the correspondence relationship between the features of the nose and the shape of the facial skeleton stored in advance in the skin condition estimating device 10 or the like. Note that the shape of the facial skeleton may be estimated based on not only the features of the nose but also the features of the nose and part of the features of the face.
  • the correspondence may be a pre-determined database or a machine-learned model. Based on the results of experiments conducted on subjects, the database associates features of the nose (which may be part of the features of the nose and facial features) with shapes related to the skeleton of the face. . Also, the trained model is a prediction model that outputs shape information related to the skeleton of the face when nose feature information (which may be part of the nose feature and facial features) is input. Note that the correspondence between the features of the nose and the shape of the facial skeleton may be created for each group classified based on factors that can affect the skeleton (for example, Caucasoid, Mongoloid, Negroid, Australoid, etc.). .
  • a computer such as skin condition estimation device 10 can generate a trained model.
  • a computer such as the skin condition estimating apparatus 10 receives teacher data whose input data is the features of the nose (which may be part of the features of the nose and facial features) and whose output data is the shape related to the skeleton of the face. is obtained, and machine learning is performed using the teacher data to generate a trained model that outputs a shape related to the skeleton of the face when the nose feature (a part of the nose feature and facial features) is input. can be generated.
  • machine learning is performed using training data in which the input data is the features of the nose (the features of the nose and part of the features of the face may be used), and the output data is the shape of the facial skeleton.
  • a trained model is generated that outputs a shape related to the skeleton of the face when the features (which may be the features of the nose and part of the facial features) are input.
  • the skeleton estimating unit 104 can estimate the skull index based on the height or lowness of the nasal root or the position of change in the height of the nasal root, and the height or lowness of the bridge of the nose. Specifically, the skeleton estimation unit 104 estimates that the higher the nasal root and/or the nasal bridge, the lower the skull index.
  • the skeleton estimation unit 104 can estimate whether the corners of the mouth are raised or lowered based on the width of the bridge of the nose. Specifically, the skeleton estimation unit 104 estimates that the wider the bridge of the nose, the lower the corners of the mouth.
  • the skeleton estimating unit 104 determines the size and thickness of the lips (1. Large and thick upper and lower lips, 2. Thick lower lip, 3. Thin small) can be estimated.
  • the skeleton estimation unit 104 can estimate the presence or absence of Mongolian folds based on the root of the nose. Specifically, the skeleton estimation unit 104 estimates that there is a Mongolian fold when it is determined that the root of the nose is low.
  • the skeleton estimation unit 104 classifies the shape of the mandible (for example, classifies into three) based on the height or height of the bridge of the nose, the height of the root of the nose, and the roundness and size of the alar. can do.
  • the skeleton estimation unit 104 can estimate the pyriform mouth based on the height of the bridge of the nose.
  • the skeleton estimation unit 104 can estimate the inter-eye distance based on the height of the bridge of the nose. Specifically, the skeleton estimation unit 104 estimates that the lower the bridge of the nose, the wider the distance between the eyes.
  • the skeleton estimation unit 104 can estimate the roundness of the forehead based on the height of the root of the nose and the height of the bridge of the nose.
  • the skeleton estimation unit 104 can estimate the distance between the eyes and the eyebrows and the shape of the eyebrows based on the height and depth of the bridge of the nose, the size of the wings of the nose, and the position of change in the height of the root of the nose.
  • FIG. 3 is a flowchart showing the flow of skin condition estimation processing according to one embodiment of the present invention.
  • step 1 (S1) the nose feature identification unit 102 extracts feature points (for example, feature points of the inner corners of the eyebrows, the inner corners of the eyes, and the tip of the nose) from the image including the nose.
  • feature points for example, feature points of the inner corners of the eyebrows, the inner corners of the eyes, and the tip of the nose
  • step 2 (S2) the nose feature identification unit 102 extracts the nose region based on the feature points extracted in S1.
  • the image including the nose is an image in which only the nose is captured (for example, an image in which the nose region of the user 20 is captured within a predetermined region displayed on the display device of the skin condition estimation device 10). , the image in which only the nose is captured is used as it is (that is, S1 can be omitted).
  • step 3 the nose feature identification unit 102 reduces the number of gradations of the image of the nose region extracted in S2 (eg, binarizes).
  • the nose feature identifying unit 102 uses at least one of brightness, luminance, RGB Blue, and RGB Green to reduce the number of gradations of the image of the nose region. Note that S3 may be omitted.
  • the nasal feature identifying unit 102 identifies the nasal features (nasal skeleton). Specifically, the nose feature identification unit 102 calculates the feature amount of the nose based on the image information (for example, pixel values of the image) of the image of the nose region. For example, the nose feature identification unit 102 calculates the average value of pixel values in the nose region, the number of pixels equal to or greater than a predetermined value, the cumulative pixel value, the amount of change in pixel values, etc., as the feature amount of the nose.
  • the image information for example, pixel values of the image
  • the nose feature identification unit 102 calculates the average value of pixel values in the nose region, the number of pixels equal to or greater than a predetermined value, the cumulative pixel value, the amount of change in pixel values, etc., as the feature amount of the nose.
  • the skeleton estimation unit 104 estimates the shape of the facial skeleton. Note that S5 may be omitted.
  • step 6 (S6) the skin condition estimating unit 103 determines the skin condition (for example, future skin condition) based on the features of the nose identified in S4 (or the shape related to the facial skeleton estimated in S5). trouble).
  • the skin condition for example, future skin condition
  • the nasal feature is at least one of a nasal root, a nasal bridge, a nasal tip, and an alar.
  • FIG. 4 is a diagram for explaining features of the nose according to one embodiment of the present invention.
  • FIG. 4 shows the positions of the root of the nose, the bridge of the nose, the tip of the nose, and the wings of the nose.
  • the nasal root is the part at the base of the nose.
  • the features of the nose are at least one of the height of the nasal root, the low nasal root, the width of the nasal root, and the changing position of the nasal root where the nasal root changes to be higher.
  • the bridge of the nose is the part between the eyebrows and the tip of the nose.
  • the nasal feature is at least one of a nasal bridge height, a nasal bridge low, and a nasal bridge width.
  • the nasal tip is the tip of the nose (nose tip).
  • the nasal characteristic is at least one of the roundness or kurtosis of the nasal tip and the orientation of the nasal tip.
  • the wings of the nose are the swollen areas on either side of the head of the nose.
  • the nasal characteristic is at least one of the roundness or kurtosis of the alar and the size of the alar.
  • FIG. 5 is a diagram for explaining extraction of a nose region according to one embodiment of the present invention.
  • a nose feature identification unit 102 extracts a nose region in an image including the nose.
  • the nose region may be the entire nose as shown in FIG. 5(a), or a portion of the nose (for example, the right half or the left half) as shown in FIG. 5(b).
  • FIG. 6 is a diagram for explaining calculation of a nose feature amount according to one embodiment of the present invention.
  • step 11 (S11) the nose region in the image including the nose is extracted.
  • step 12 the number of gradations of the image of the nose region extracted in S11 is reduced (binarized, for example). Note that S12 may be omitted.
  • the feature amount of the nose is calculated.
  • the pixel cumulative value is expressed with 0 on the high brightness side of the image and 255 on the low brightness side.
  • the nose feature identification unit 102 performs normalization for each of multiple regions (for example, the divided regions in S12).
  • the nose feature identifying unit 102 determines the average pixel value, the number of pixels equal to or greater than a predetermined value, the X direction
  • At least one pixel cumulative value in the and Y directions, the amount of change in the pixel value in at least one of the X and Y directions, and the like are calculated as feature amounts of the nose.
  • the pixel cumulative value in the X direction at each position in the Y direction is calculated.
  • the feature amount of the nasal root is the feature amount of the upper (closer to the eye) area among the divided areas of S12
  • the feature amount of the nose bridge is the upper or central part of the divided area of S12.
  • the feature amounts of the nasal tip and alar are the feature amounts of the lower (closer to the mouth) area among the divided areas of S12.
  • Height of root of nose The height and height are determined from the amount of change in pixel values in the Y direction in the upper region of the nose. The height or lowness may be calculated as a numerical value, or may be classified as high or low. As for the position of change in the height of the nose root, it can be seen that the value of nose 2 immediately changes in the Y direction in S13, and the position of change in the height of the nose root is in the upper part.
  • Width of nose root The area above the nose is divided into a plurality of areas (2 to 4, etc.) in the X direction, and the width is determined from the pattern of the average pixel values of each area.
  • ⁇ Height of nose bridge The height and height are determined from the average value of the accumulated pixel values in the central region of the nose. The height or lowness may be calculated as a numerical value, or may be classified as high or low.
  • Width of nose bridge The area in the center of the nose is divided into a plurality of areas (2 to 4, etc.) in the X direction, and the width is determined from the pattern of the average pixel values of each area.
  • Nose tip roundness or kurtosis Determined from other nasal features (height of the nose bridge, roundness or kurtosis of the alar), the lower the bridge and the rounder the alar, the more rounded.
  • ⁇ Direction of nose tip In the region of the central part of the nose, it is obtained from the width from the lowest point of the nose at a predetermined ratio to the maximum value of the pixel cumulative value in the X direction. .
  • Alar roundness or kurtosis Roundness or kurtosis is determined from the amount of change in Y-direction value in the lower nose region.
  • Alar size Determined from the ratio of the number of pixels below a predetermined value in the central portion of the lower region. The larger the number of pixels, the larger the nostrils.
  • shape related to the skeleton of the face refers to at least one of “the shape of the facial skeleton itself” and “the shape of the face resulting from the skeleton”.
  • shape related to facial skeleton can include face type.
  • the user's face is classified into a plurality of face types (specifically, "the shape of the facial skeleton itself” and “the shape of the face resulting from the skeleton") based on the features of the user's nose. It is possible to estimate which of the face types is classified based on at least one of them.
  • the face type will be described below with reference to FIGS. 7 and 8. FIG.
  • FIG. 7 is an example of nose features for each face type according to one embodiment of the present invention.
  • FIG. 7 shows the features of the nose of each face type (face types A to L).
  • face type may be estimated using all (four) of the nasal bridge, the alar, the nasal root, and the nasal tip, or partly (for example, two of the nasal bridge and the nasal alar, two of the nasal bridge and the nasal tip).
  • face type may be estimated using only the bridge of the nose, only the alar of the nose, etc.).
  • the face type is estimated from the features of the nose.
  • the roundness of the eyes round
  • the inclination of the eyes downward
  • the size of the eyes small
  • the shape of the eyebrows arched
  • the position of the eyebrows and eyes apart
  • the shape of the face Contour Estimated to be ROUND.
  • the roundness of the eyes sharp
  • the inclination of the eyes considerably raised
  • the size of the eyes large
  • the shape of the eyebrows sharp
  • the position of the eyebrows and the eyes fairly close
  • the face CONTOURS Estimated RECTANGLE.
  • FIG. 8 is an example of a face estimated from nose features according to one embodiment of the present invention.
  • based on the features of the user's nose it is possible to infer which face type the user's face is among the various face types shown in FIG. .
  • face types classified based on nose features can be used to guide makeup or present skin characteristics (e.g., what facial features a face type has, what facial features It can present makeup guides and skin characteristics based on what kind of impression you have or your face type).
  • the skin condition can be easily estimated from the characteristics of the nose.
  • the future skin condition is estimated from the characteristics of the nose, and cosmetics that can more effectively suppress future skin troubles are selected, and beauty treatments such as massage are determined. be able to.
  • FIG. 9 is a diagram showing the hardware configuration of the skin condition estimation device 10 according to one embodiment of the present invention.
  • the skin condition estimation device 10 has a CPU (Central Processing Unit) 1001 , a ROM (Read Only Memory) 1002 and a RAM (Random Access Memory) 1003 .
  • the CPU 1001, ROM 1002, and RAM 1003 form a so-called computer.
  • the skin condition estimation device 10 can have an auxiliary storage device 1004 , a display device 1005 , an operation device 1006 , an I/F (Interface) device 1007 and a drive device 1008 .
  • Each piece of hardware of the skin condition estimation device 10 is connected to each other via a bus B.
  • the CPU 1001 is an arithmetic device that executes various programs installed in the auxiliary storage device 1004 .
  • the ROM 1002 is a non-volatile memory.
  • the ROM 1002 functions as a main storage device that stores various programs, data, etc. necessary for the CPU 1001 to execute various programs installed in the auxiliary storage device 1004 .
  • the ROM 1002 functions as a main storage device that stores boot programs such as BIOS (Basic Input/Output System) and EFI (Extensible Firmware Interface).
  • BIOS Basic Input/Output System
  • EFI Extensible Firmware Interface
  • the RAM 1003 is a volatile memory such as DRAM (Dynamic Random Access Memory) or SRAM (Static Random Access Memory).
  • the RAM 1003 functions as a main storage device that provides a work area that is developed when various programs installed in the auxiliary storage device 1004 are executed by the CPU 1001 .
  • the auxiliary storage device 1004 is an auxiliary storage device that stores various programs and information used when various programs are executed.
  • the display device 1005 is a display device that displays the internal state of the skin condition estimation device 10 and the like.
  • the operating device 1006 is an input device through which a person who operates the skin condition estimation device 10 inputs various instructions to the skin condition estimation device 10 .
  • the I/F device 1007 is a communication device for connecting to a network and communicating with other devices.
  • a drive device 1008 is a device for setting a storage medium 1009 .
  • the storage medium 1009 here includes media such as CD-ROMs, flexible disks, magneto-optical disks, etc., which record information optically, electrically or magnetically.
  • the storage medium 1009 may also include a semiconductor memory that electrically records information such as an EPROM (Erasable Programmable Read Only Memory), a flash memory, or the like.
  • auxiliary storage device 1004 Various programs to be installed in the auxiliary storage device 1004 are installed by, for example, setting the distributed storage medium 1009 in the drive device 1008 and reading the various programs recorded in the storage medium 1009 by the drive device 1008. be done. Alternatively, various programs installed in the auxiliary storage device 1004 may be installed by being downloaded from the network via the I/F device 1007 .
  • the skin condition estimation device 10 has an imaging device 1010 .
  • a photographing device 1010 photographs the user 20 .
  • skin condition estimation device 20 user 101 image acquisition unit 102 nose feature identification unit 103 skin condition estimation unit 104 skeleton estimation unit 105 output unit 1001 CPU 1002 ROMs 1003 RAM 1004 auxiliary storage device 1005 display device 1006 operation device 1007 I/F device 1008 drive device 1009 storage medium 1010 imaging device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

肌の状態を容易に得る。本発明の一実施形態に係る方法は、ユーザの鼻の特徴を特定するステップと、前記ユーザの鼻の特徴に基づいて、前記ユーザの肌の状態を推定するステップと、を含む。

Description

肌状態推定方法、装置、プログラム、システム、学習済みモデル生成方法、および学習済みモデル
 本発明は、肌状態推定方法、装置、プログラム、システム、学習済みモデル生成方法、および学習済みモデルに関する。
 従来、適切な肌の手入れ等のために、肌の状態を予測する技術が知られている。例えば、特許文献1では、超音波画像から、将来の目や口の周辺におけるシワの形成やシワのレベルを予測している。
特開2011-200284号公報
 しかしながら、特許文献1では、超音波診断装置が必要であり、簡易に今後起こりやすい肌の状態を予測することは容易ではなかった。
 そこで、本発明では、肌の状態を容易に得ることを目的とする。
 本発明の一実施形態に係る方法は、ユーザの鼻の特徴を特定するステップと、前記ユーザの鼻の特徴に基づいて、前記ユーザの肌の状態を推定するステップと、を含む。
 本発明では、鼻の特徴から、肌の状態を容易に推定することができる。
本発明の一実施形態に係る全体の構成を示す図である。 本発明の一実施形態に係る肌状態推定装置の機能ブロックを示す図である。 本発明の一実施形態に係る肌状態推定の処理の流れを示すフローチャートである。 本発明の一実施形態に係る鼻の特徴について説明するための図である。 本発明の一実施形態に係る鼻領域の抽出について説明するための図である。 本発明の一実施形態に係る鼻特徴量の算出について説明するための図である。 本発明の一実施形態に係る各顔タイプの鼻の特徴の一例である。 本発明の一実施形態に係る鼻の特徴から推定された顔の一例である。 本発明の一実施形態に係る肌状態推定装置のハードウェア構成を示す図である。
 以下、各実施形態について添付の図面を参照しながら説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省略する。
<用語の説明>
「肌の状態」とは、シワ、シミ、たるみ、クマ、ほうれい線、くすみ、ハリ、水分、皮脂、メラニン、血行、血管、血液、毛穴、肌の色の少なくとも1つである。例えば、「肌の状態」とは、シワ、シミ、たるみ、クマ、ほうれい線、くすみ、ハリ、水分、皮脂、メラニン、血行、血管、血液、毛穴、肌の色といった肌の状態を構成する要素の有無、度合いである。また、「肌の状態」とは、顔の一部と、顔全体と、顔の複数の箇所と、のいずれかにおける肌の状態である。なお、「肌の状態」とは、ユーザの未来の肌の状態であってもよいし、ユーザの現在の肌の状態であってもよい。本発明では、鼻の特徴と肌の状態との相関に基づいて、鼻の特徴から肌の状態を推定する。
<全体構成>
 図1は、本発明の一実施形態に係る全体の構成を示す図である。肌状態推定装置10は、ユーザ20の鼻の特徴から、ユーザ20の肌の状態を推定する。例えば、肌状態推定装置10は、カメラ機能を有するスマートフォン等である。後段で、図2を参照しながら、肌状態推定装置10について詳細に説明する。
 なお、本明細書では、肌状態推定装置10が1つの機器(例えば、カメラ機能を有するスマートフォン等)である場合を説明するが、肌状態推定装置10が複数の機器(例えば、カメラ機能を有さない機器とデジタルカメラ)から構成されてもよい。また、カメラ機能は、肌を3次元的に撮影する機能であってもよいし、2次元的に撮影する機能であってもよい。また、肌状態推定装置10以外の装置(サーバ等)が、本明細書で説明する肌状態推定装置10が実行する処理のうちの一部の処理を実行するようにしてもよい。
<肌状態推定装置10の機能ブロック>
 図2は、本発明の一実施形態に係る肌状態推定装置10の機能ブロックを示す図である。肌状態推定装置10は、画像取得部101と、鼻特徴特定部102と、肌状態推定部103と、骨格推定部104と、出力部105と、を備えることができる。また、肌状態推定装置10は、プログラムを実行することで、画像取得部101、鼻特徴特定部102、肌状態推定部103、骨格推定部104、出力部105、として機能することができる。以下、それぞれについて説明する。
 画像取得部101は、ユーザ20の鼻を含む画像を取得する。なお、鼻を含む画像は、鼻と鼻以外とが撮影された画像(例えば、顔全体が撮影された画像)でもよいし、鼻のみが撮影された画像(例えば、肌状態推定装置10の表示装置に表示された所定の領域内にユーザ20の鼻の領域がおさまるように撮影された画像)でもよい。なお、鼻の特徴が画像以外から特定される場合には、画像取得部101は不要である。
 鼻特徴特定部102は、ユーザ20の鼻の特徴を特定する。例えば、鼻特徴特定部102は、画像取得部101が取得したユーザ20の鼻を含む画像の画像情報(例えば、画像の画素値)から、ユーザ20の鼻の特徴を特定する。
 肌状態推定部103は、鼻特徴特定部102が特定したユーザ20の鼻の特徴に基づいて、ユーザ20の肌の状態を推定する。例えば、肌状態推定部103は、鼻特徴特定部102が特定したユーザ20の鼻の特徴に基づいて、ユーザ20の肌の状態を分類する。
 なお、肌状態推定部103は、骨格推定部104が推定したユーザ20の顔の骨格に関する形状に基づいて、ユーザ20の肌の状態(例えば、顔の骨格の形状に起因している肌の状態)を推定することもできる。
 骨格推定部104は、鼻特徴特定部102が特定したユーザ20の鼻の特徴に基づいて、ユーザ20の顔の骨格に関する形状を推定する。例えば、骨格推定部104は、鼻特徴特定部102が特定したユーザ20の鼻の特徴に基づいて、ユーザ20の顔の骨格に関する形状を分類する。
 出力部105は、肌状態推定部103が推定したユーザ20の肌の状態の情報を出力(例えば、表示)する。
<肌の状態>
 ここで、肌の状態について説明する。例えば、肌の状態は、シワ、シミ、たるみ、クマ、ほうれい線、くすみ、ハリ、水分、皮脂、メラニン、血行、血管、血液、キメ、毛穴、肌の色の少なくとも1つである。より詳細には、例えば、肌の状態は、目尻のシワ、目の下のシワ、額のシワ、アイホールのシワ、目袋のたるみ、目のクマ、ほうれい線(鼻唇溝、口元)、鼻唇溝の深さ、マリオネットラインのたるみ、あごのたるみ、HbSO2 Index (血中酸素飽和度指数)、Hb Index(ヘモグロビン量)、HbO2 (酸化ヘモグロビン量)、肌の色み、肌の明るさ、水分の保持力(TEWL)、皮丘の数、皮膚の粘弾性、血中の酸素量、血管の密度、毛細血管数、血管分岐数、血管と表皮間の距離、表皮厚、HDLコレステロール、皮脂、水分量、メラニンインデックス(メラニンの指標)、毛穴、透明度、色むら(茶み、赤み)、pH等である。肌状態推定部103は、鼻の特徴と肌の状態との相関に基づいて、鼻の特徴から肌の状態を推定する。
<鼻の特徴と肌の状態との対応関係>
 ここで、鼻の特徴と肌の状態との対応関係について説明する。肌状態推定部103は、事前に肌状態推定装置10等に記憶されている鼻の特徴と肌の状態との対応関係に基づいて、肌の状態を推定する。なお、鼻の特徴だけでなく、鼻の特徴および顔の特徴の一部に基づいて、肌の状態を推定するようにしてもよい。
 対応関係は、事前に決められたデータベースであってもよいし、機械学習された学習済みモデルであってもよい。データベースは、被験者に対して行われた実験の結果等に基づいて、鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)と、肌の状態と、が紐づけられている。また、学習済みモデルは、鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)の情報が入力されると、肌の状態の情報が出力される予測モデルである。
<<学習済みモデルの生成>>
 本発明の一実施形態では、肌状態推定装置10等のコンピュータは、学習済みモデルを生成することができる。具体的には、肌状態推定装置10等のコンピュータは、入力データが鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)であり、出力データが肌の状態である教師データを取得し、該教師データを用いて機械学習して、鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)が入力されると肌の状態が出力される学習済みモデルを生成することができる。このように、入力データが鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)であり、出力データが肌の状態である教師データを用いて機械学習することによって、鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)が入力されると肌の状態が出力される学習済みモデルが生成される。
<顔の骨格に関する形状と肌の状態との対応関係>
 ここで、顔の骨格に関する形状と肌の状態との対応関係について説明する。上述したように、肌状態推定部103は、事前に肌状態推定装置10等に記憶されている顔の骨格に関する形状と肌の状態との対応関係に基づいて、肌の状態を推定することもできる。
 対応関係は、事前に決められたデータベースであってもよいし、機械学習された学習済みモデルであってもよい。データベースは、被験者に対して行われた実験の結果等に基づいて、顔の骨格に関する形状と、肌の状態と、が紐づけられている。また、学習済みモデルは、顔の骨格に関する形状の情報が入力されると、肌の状態の情報が出力される予測モデルである。
<<学習済みモデルの生成>>
 本発明の一実施形態では、肌状態推定装置10等のコンピュータは、学習済みモデルを生成することができる。具体的には、肌状態推定装置10等のコンピュータは、入力データが顔の骨格に関する形状であり、出力データが肌の状態である教師データを取得し、該教師データを用いて機械学習して、顔の骨格に関する形状が入力されると肌の状態が出力される学習済みモデルを生成することができる。このように、入力データが顔の骨格に関する形状であり、出力データが肌の状態である教師データを用いて機械学習することによって、顔の骨格に関する形状が入力されると肌の状態が出力される学習済みモデルが生成される。
<未来の肌の状態と現在の肌の状態>
 なお、推定される肌の状態は、ユーザ20の未来の肌の状態であってもよいし、ユーザ20の現在の肌の状態であってもよい。鼻の特徴(あるいは鼻の特徴から推定された顔の骨格に関する形状)と肌の状態との対応関係が、ユーザ20の実年齢よりも高い年齢の者のデータをもとに作成されている(例えば、実験の被験者の年齢、あるいは、機械学習するときの学習用データになった者の年齢がユーザ20の実年齢よりも高い)場合には、ユーザ20の未来の肌が推定される。一方、鼻の特徴(あるいは鼻の特徴から推定された顔の骨格に関する形状)と肌の状態との対応関係が、ユーザ20の実年齢と同一の年齢の者のデータをもとに作成されている(例えば、実験の被験者の年齢、あるいは、機械学習するときの学習用データになった者の年齢がユーザ20の実年齢と同一である)場合には、ユーザ20の現在の肌が推定される。なお、鼻の特徴だけでなく、鼻の特徴および顔の特徴の一部に基づいて、肌の状態を推定するようにしてもよい。
 以下、鼻の特徴(あるいは鼻の特徴から推定された顔の骨格に関する形状)と肌の状態との対応関係に基づく推定例を説明する。
<<肌の状態の推定例1>>
 例えば、肌状態推定部103は、鼻根と鼻梁が高いときに目尻にシワが出やすいと推定することができる。また、例えば、肌状態推定部103は、頬の形状が頬骨の高い位置が上部にある形状の場合、目尻のシワがある、または、将来シワになる可能性があると推定(ON/OFFを判断)することができる。
<<肌の状態の推定例2>>
 例えば、肌状態推定部103は、鼻翼が丸みがあるほど、また、例えば目が大きい場合、目の下にシワが出来やすいと推定することができる。
 例えば、肌状態推定部103は、眼窩は横長、小さいなど形状の特徴があるが、眼窩が大きく縦と横の幅が近い形状で目の下のシワが多いと推定することができる。また、例えば、肌状態推定部103は、顔輪郭に基づいて、目の下のシワを推定することができる。また、例えば、肌状態推定部103は、目間距離が広いほど、目の下のシワが少ないと推定することができる。
<<肌の状態の推定例3>>
 例えば、肌状態推定部103は、鼻翼の丸さ、および、鼻梁の高さに基づいて、目袋のたるみを推定することができる。具体的には、肌状態推定部103は、鼻翼の丸さと鼻梁の高さの和が大きいほど、目袋がたるんでいると推定することができる。
 例えば、肌状態推定部103は、顔輪郭がオーバル、面長の場合に目袋がたるみやすいと推定することができる。
<<肌の状態の推定例4>>
 例えば、肌状態推定部103は、鼻梁の低さ、および、鼻翼の丸さに基づいて、HbCO2(還元ヘモグロビン)を推定することができる。
 例えば、肌状態推定部103は、顔輪郭に基づいて、HbSO2 (酸素飽和度)を推定することができる。
<<肌の状態の推定例5>>
 例えば、肌状態推定部103は、鼻梁が低く、鼻翼が丸い、または目間距離が離れているほど水分量が低いと推定することができる。
 例えば、肌状態推定部103は、頭蓋骨指数の高さ、顔の縦横比に基づいて、肌水分量を推定することができる。
<<肌の状態の推定例6>>
 例えば、肌状態推定部103は、鼻翼の丸さに基づいて、皮脂を推定することができる。
 例えば、肌状態推定部103は、顔輪郭に基づいて、皮脂を推定することができる。
<<肌の状態の推定例7>>
 例えば、肌状態推定部103は、鼻翼が丸く鼻梁が高いほどメラニンインデックスは高く
メラニン量が多い、鼻梁が低く目間距離が狭いほどメラニンインデックスは低いと推定することができる。
 例えば、肌状態推定部103は、唇が上下ともに厚いほど、メラニンインデックスが高くメラニン量が多いと推定することができる。また、例えば、肌状態推定部103は、唇が上下ともに薄いほど、メラニンインデックスが低いと推定することができる。
<<肌の状態の推定例8>>
 例えば、肌状態推定部103は、鼻翼が丸い場合に目のクマが出やすいと推定することができる。
<<肌の状態の推定例9>>
 例えば、肌状態推定部103は、鼻梁が低く目間距離が広めの場合、または、顎の角度に丸みがある場合にフェイスラインがたるみやすいと推定することができる。
<<肌の状態の推定例10>>
 例えば、肌状態推定部103は、鼻梁が高いほど血中酸素量が多いと推定することができる。
<<肌の状態の推定例11>>
 例えば、肌状態推定部103は、鼻翼の大きさまたは鼻根の高さの変化位置から血管密度を推定することができ、鼻翼が大きいほど血管密度が高い。
<<肌の状態の推定例12>>
 例えば、肌状態推定部103は、鼻翼の大きさから表皮厚を推定することができる。
<<肌の状態の推定例13>>
 例えば、肌状態推定部103は、鼻根の高さの変化位置から血管分岐数を推定することができる。
<<総合的な肌の状態の推定>>
 本発明の一実施形態では、肌状態推定部103は、上記の推定例1~9等で推定した値から、総合的にシワ、シミ、たるみ、クマ、ほうれい線、くすみ、ハリ、水分、皮脂、メラニン、血行、血管、血液、毛穴、肌の色として肌の状態を表すことができる。以下、一例を示す。
・シワ:目尻、目の下、額、アイホールのシワの1つまたは2つ以上の項目から表す。
・シミ:茶色の色むら、赤みの色むら、メラニンの1つまたは2つ以上の項目から表す。
・たるみ:目袋、あご、マリオネットラインの1つまたは2つ以上の項目から表す。
・クマ:目の茶クマ、青クマの1つまたは2つの項目から表す。
・ほうれい線:鼻唇溝のほうれい線、口元のほうれい線の1つまたは2つの項目から表す。
・くすみ:透明度、メラニン、色むら、肌の色、酸素飽和度、水分、皮丘の数の1つまたは2つ以上の項目から表す。
・ハリ:水分、皮脂、たるみ、皮膚の粘弾性の1つまたは2つ以上の項目から表す。
・水分:水分量、水分の保持力(TEWL)、皮丘の数、pHの1つまたは2つの項目から表す。
・キメ:皮丘の数、水分の1つまたは2つ以上の項目から表す。
・肌の色:肌の色み、肌の明るさ、メラニン、血中の酸素量、HbO2(酸化ヘモグロビン量) の1つまたは2つ以上の項目から表す。
・皮脂:皮脂量、毛穴の1つまたは2つの項目から表す。
なお、水分と皮脂から標準肌、乾燥肌、脂性肌、混合肌を分類してもよい。
・メラニン:メラニンインデックス、メラニン量、色むらの1つまたは2つの項目から表す。
・血行:HbSO2 Index (血中酸素飽和度指数)、Hb Index(ヘモグロビン量)、HbO2 (酸化ヘモグロビン量)、血中酸素量、肌の色の少なくとも1つまたは2つの項目から表す。
・血管:血管の密度、毛細血管数、血管分岐数、血管と表皮間の距離、表皮厚の1つまたは2つ以上の項目から表す。
・血液:HDLコレステロール
 本発明の一実施形態では、肌状態推定部103は、鼻の特徴から、肌の強み、肌の弱みのように肌の特徴を表すことができる。例えば、鼻の特徴がタイプ1の場合、目尻のシワの評価値が平均評価値よりも低いため、肌の強みとして表す。鼻の特徴がタイプ2の場合、目尻のシワの評価値が平均評価値よりも高いため、肌の弱みとして表す。肌の強み、弱みは、顔の各所ごとに表すことができる。タイプ1の場合、肌の強みは、目尻や額のシワ、シミであり、肌の弱みは、クマ、鼻唇溝のほうれい線、口回りのたるみ、水分保持力である。肌状態推定部103は、これらの肌の状態から肌の総合指標(この場合、たるみタイプの肌)を推定することができる。タイプ2の場合、肌の強みは、頬のたるみ、水分保持力、血行、シミであり、肌の弱みは、目尻や額のシワ、シミである。肌状態推定部103は、これらの肌の状態から肌の総合指標(この場合、しわタイプの肌)を推定することができる。
<顔の骨格に関する形状>
 ここで、顔の骨格に関する形状について説明する。「顔の骨格に関する形状」とは、顔の骨格そのものの形状と、該骨格に起因する顔の形状と、のうちの少なくとも一方をいう。骨格推定部104は、鼻の特徴と顔の骨格に関する形状との相関に基づいて、鼻の特徴から顔の骨格に関する形状を推定する。
 例えば、顔の骨格に関する形状は、眼窩と、頬骨と、鼻骨と、梨状口(鼻腔の顔面側に開く口)と、頭蓋骨指数と、上顎骨と、下顎骨と、唇と、口角と、目と、蒙古ひだ(上まぶたが目頭を覆う部分にある皮膚のひだ)と、顔輪郭と、目と眉の位置関係(例えば、目と眉が離れている、近い等)と、のうちの少なくとも1つにおける、各骨の形状の特徴、骨格の位置関係、角度等である。以下、顔の骨格に関する形状の一例を示す。なお、かっこ内は、推定される具体的な内容の一例である。
・眼窩(横長、正方形、丸みを帯びている)
・頬骨、頬(ピーク位置、丸み)
・鼻骨(幅、形状)
・梨状口(形状)
・頭蓋骨指数(頭蓋骨の幅/奥行=70、75、80、85、90)
・上顎骨、上顎(眼窩との位置関係、鼻唇角)
・下顎骨、下顎(奥行長さ、奥行角度、前方角度、輪郭形状(エラ))
・前頭部(額の丸み、額の形状)
・眉(目と眉の距離、眉形状、眉濃さ)
・唇(上下ともに厚い、下唇が厚い、上下ともに薄い、横に大きい、小さい)
・口角(上り、下がり、標準)
・目(面積、角度、眉と目の距離、目間距離)
・蒙古ひだ(有り、無し)
・顔輪郭(Rectangle、Round、Obal、Heart、Square、Average、Natural、Long)
<鼻の特徴と顔の骨格に関する形状との対応関係>
 ここで、鼻の特徴と顔の骨格に関する形状との対応関係について説明する。骨格推定部104は、事前に肌状態推定装置10等に記憶されている鼻の特徴と顔の骨格に関する形状との対応関係に基づいて、顔の骨格に関する形状を推定する。なお、鼻の特徴だけでなく、鼻の特徴および顔の特徴の一部に基づいて、顔の骨格に関する形状を推定するようにしてもよい。
 対応関係は、事前に決められたデータベースであってもよいし、機械学習された学習済みモデルであってもよい。データベースは、被験者に対して行われた実験の結果等に基づいて、鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)と、顔の骨格に関する形状と、が紐づけられている。また、学習済みモデルは、鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)の情報が入力されると、顔の骨格に関する形状の情報が出力される予測モデルである。なお、鼻の特徴と顔の骨格に関する形状との対応関係は、骨格に影響しうる要因をもとに分類した集団(例えば、コーカソイド、モンゴロイド、ニグロイド、オーストラロイド等)ごとに作成されてもよい。
<<学習済みモデルの生成>>
 本発明の一実施形態では、肌状態推定装置10等のコンピュータは、学習済みモデルを生成することができる。具体的には、肌状態推定装置10等のコンピュータは、入力データが鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)であり、出力データが顔の骨格に関する形状である教師データを取得し、該教師データを用いて機械学習して、鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)が入力されると顔の骨格に関する形状が出力される学習済みモデルを生成することができる。このように、入力データが鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)であり、出力データが顔の骨格に関する形状である教師データを用いて機械学習することによって、鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)が入力されると顔の骨格に関する形状が出力される学習済みモデルが生成される。
 以下、鼻の特徴と顔の骨格に関する形状との対応関係に基づく推定例を説明する。
<<顔の骨格に関する形状の推定例1>>
 例えば、骨格推定部104は、鼻根の高さまたは低さまたは鼻根の高さの変化位置、および、鼻梁の高さまたは低さに基づいて、頭蓋骨指数を推定することができる。具体的には、骨格推定部104は、鼻根と鼻梁の少なくとも一方が高いほど、頭蓋骨指数が低いと推定する。
<<顔の骨格に関する形状の推定例2>>
 例えば、骨格推定部104は、鼻梁の幅に基づいて、口角の上りまたは下がりを推定することができる。具体的には、骨格推定部104は、鼻梁の幅が広いほど、口角が下がっていると推定する。
<<顔の骨格に関する形状の推定例3>>
 例えば、骨格推定部104は、鼻翼の丸さ、および、鼻尖の尖度に基づいて、唇の大きさおよび厚さ(1.上下ともに大きく厚い、2.下唇が厚い、3.上下ともに薄く小さい)を推定することができる。
<<顔の骨格に関する形状の推定例4>>
 例えば、骨格推定部104は、鼻根に基づいて、蒙古ひだの有無を推定することができる。具体的には、骨格推定部104は、鼻根が低いと判定された場合に、蒙古ひだが有ると推定する。
<<顔の骨格に関する形状の推定例5>>
 例えば、骨格推定部104は、鼻梁の低さまたは高さ、および、鼻根の高さ、および、鼻翼の丸さおよび大きさに基づいて、下顎の形状を分類(例えば、3つに分類)することができる。
<<顔の骨格に関する形状の推定例6>>
 例えば、骨格推定部104は、鼻梁の高さに基づいて、梨状口を推定することができる。
<<顔の骨格に関する形状の推定例7>>
 例えば、骨格推定部104は、鼻梁の低さに基づいて、目間距離を推定することができる。具体的には、骨格推定部104は、鼻梁が低いほど、目間距離が広いと推定する。
<<顔の骨格に関する形状の推定例8>>
 例えば、骨格推定部104は、鼻根の高さおよび鼻梁の高さに基づいて、前頭部の丸みを推定することができる。
<<顔の骨格に関する形状の推定例9>>
 例えば、骨格推定部104は、鼻梁の高さ、低さ、鼻翼の大きさ、鼻根の高さの変化位置に基づいて、目と眉の距離、眉形状を推定することができる。
 <処理方法>
 図3は、本発明の一実施形態に係る肌状態推定の処理の流れを示すフローチャートである。
 ステップ1(S1)において、鼻特徴特定部102は、鼻を含む画像から特徴点(例えば、眉頭、目頭、鼻先の特徴点)を抽出する。
 ステップ2(S2)において、鼻特徴特定部102は、S1で抽出された特徴点をもとに、鼻の領域を抽出する。
 なお、鼻を含む画像が、鼻のみが撮影された画像(例えば、肌状態推定装置10の表示装置に表示された所定の領域内にユーザ20の鼻の領域がおさまるように撮影された画像)である場合には、鼻のみが撮影された画像がそのまま用いられる(つまり、S1は、省略されうる)。
 ステップ3(S3)において、鼻特徴特定部102は、S2で抽出された鼻の領域の画像の階調数を下げる(例えば、2値化する)。例えば、鼻特徴特定部102は、明度と、輝度と、RGBのBlueと、RGBのGreenと、のうちの少なくとも1つを用いて、鼻の領域の画像の階調数を下げる。なお、S3は、省略されうる。
 ステップ4(S4)において、鼻特徴特定部102は、鼻の特徴(鼻の骨格)を特定する。具体的には、鼻特徴特定部102は、鼻の領域の画像の画像情報(例えば、画像の画素値)をもとに、鼻の特徴量を算出する。例えば、鼻特徴特定部102は、鼻の領域の画素値の平均値、所定の値以下または以上の画素数、画素累積値、画素値の変化量等を、鼻の特徴量として算出する。
 ステップ5(S5)において、骨格推定部104は、顔の骨格に関する形状を推定する。なお、S5は、省略されうる。
 ステップ6(S6)において、肌状態推定部103は、S4で特定された鼻の特徴(あるいは、S5で推定された顔の骨格に関する形状)に基づいて、肌の状態(例えば、未来の肌の悩み)を推定する。
<鼻の特徴>
 ここで、鼻の特徴について説明する。例えば、鼻の特徴は、鼻根と、鼻梁と、鼻尖と、鼻翼と、のうちの少なくとも1つである。
 図4は、本発明の一実施形態に係る鼻の特徴について説明するための図である。図4では、鼻根と、鼻梁と、鼻尖と、鼻翼と、の位置を示す。
<<鼻根>>
 鼻根は、鼻の付け根の部分である。例えば、鼻の特徴は、鼻根の高さと、鼻根の低さと、鼻根の幅と、鼻根が高く変化する、鼻根の変化位置と、のうちの少なくとも1つである。
<<鼻梁>>
 鼻梁は、眉間と鼻先の間の部分である。例えば、鼻の特徴は、鼻梁の高さと、鼻梁の低さと、鼻梁の幅と、のうちの少なくとも1つである。
<<鼻尖>>
 鼻尖は、鼻の先端部(鼻先)である。例えば、鼻の特徴は、鼻尖の丸みまたは尖度と、鼻尖の向きと、のうちの少なくとも1つである。
<<鼻翼>>
 鼻翼は、鼻のあたまの両側のふくれている部分である。例えば、鼻の特徴は、鼻翼の丸みまたは尖度と、鼻翼の大きさと、のうちの少なくとも1つである。
<鼻領域の抽出>
 図5は、本発明の一実施形態に係る鼻領域の抽出について説明するための図である。鼻特徴特定部102は、鼻を含む画像における鼻の領域を抽出する。例えば、鼻の領域は、図5の(a)のように、鼻全体でもよいし、図5の(b)のように、鼻の一部(例えば、右半分または左半分)でもよい。
<鼻特徴量の算出>
 図6は、本発明の一実施形態に係る鼻特徴量の算出について説明するための図である。
 ステップ11(S11)において、鼻を含む画像における鼻の領域が抽出される。
 ステップ12(S12)において、S11で抽出された鼻の領域の画像の階調数が下げられる(例えば、2値化される)。なお、S12は、省略されうる。
 ステップ13(S13)において、鼻の特徴量が算出される。なお、図6では、画像の高明度側を0、低明度側を255、として画素累積値を表している。例えば、鼻特徴特定部102は、複数の領域(例えば、S12の分割された領域)ごとに正規化を行う。次に、鼻特徴特定部102は、領域ごとに、(例えば、画像の低明度側または高明度側のデータを用いて)画素値の平均値、所定の値以下または以上の画素数、X方向とY方向の少なくとも一方の画素累積値、X方向とY方向の少なくとも一方の画素値の変化量等を、鼻の特徴量として算出する。図6のS13では、Y方向の各位置におけるX方向の画素累積値が計算されている。
 以下、各特徴量の算出方法について説明する。
 例えば、鼻根の特徴量は、S12の分割された領域のうちの上部(眼寄り)の領域の特徴量であり、鼻梁の特徴量は、S12の分割された領域のうちの上部または中央部の領域の特徴量であり、鼻尖および鼻翼の特徴量は、S12の分割された領域のうちの下部(口寄り)の領域の特徴量である。これら鼻の特徴量は目間距離で正規化を行う。
・鼻根の高さ:鼻の上部の領域におけるY方向の画素値の変化量から高さ、低さが判断される。なお、高さまたは低さが数値として算出されてもよいし、高いまたは低いに分類されてもよい。鼻根の高さの変化位置は、S13では鼻2はY方向で値がすぐに変化し、鼻根の高さの変化位置が上部にあることが分かる。
・鼻根の幅:鼻の上部の領域をX方向で複数(2~4等)に分割し、各領域の画素値の平均値のパターンから幅が判断される。
・鼻梁の高さ:鼻の中央部の領域の画素累積値の平均値から高さ、低さが判断される。なお、高さまたは低さが数値として算出されてもよいし、高いまたは低いに分類されてもよい。
・鼻梁の幅:鼻の中央部の領域をX方向で複数(2~4等)に分割し、各領域の画素値の平均値のパターンから幅が判断される。
・鼻尖の丸みまたは尖度:他の鼻の特徴(鼻梁の高さ、鼻翼の丸みまたは尖度)から求められ、鼻梁が低く鼻翼が丸いほど丸みを帯びている。
・鼻尖の向き:鼻の中央部の領域において、X方向の画素累積値の最大値に対して所定の割合の位置の鼻の最下点からの幅から求められ、幅が広いほど上向きである。
・鼻翼の丸みまたは尖度:鼻の下部の領域におけるY方向の値の変化量から丸みまたは尖度が判断される。
・鼻翼の大きさ:下部の領域の中央部分において所定の値以下となる画素数の割合から判断される。画素数が多いほど鼻翼が大きい。
<<顔タイプ>>
 上述したように、「顔の骨格に関する形状」とは、"顔の骨格そのものの形状"と、"骨格に起因する顔の形状"と、のうちの少なくとも一方をいう。「顔の骨格に関する形状」は、顔タイプを含むことができる。
 本発明の一実施形態では、ユーザの鼻の特徴に基づき、ユーザの顔が複数の顔タイプ(具体的には、"顔の骨格そのものの形状"と"骨格に起因する顔の形状"とのうちの少なくとも一方に基づき分類される顔タイプ)のうちのいずれの顔タイプであるかを推定することができる。以下、図7~図8を参照しながら顔タイプについて説明する。
 図7は、本発明の一実施形態に係る各顔タイプの鼻の特徴の一例である。図7は、各顔タイプ(顔タイプA~Lの各タイプ)の鼻の特徴を示す。なお、鼻梁と鼻翼と鼻根と鼻尖との全て(4つ)を用いて顔タイプが推定されてもよいし、一部(例えば、鼻梁と鼻翼との2つ、鼻梁と鼻根との2つ、鼻梁のみ、鼻翼のみ等)を用いて顔タイプが推定されてもよい。
 このように、鼻の特徴から、顔タイプを推定する。例えば、顔タイプAの鼻の特徴からは、目の丸み:丸い、目の傾き:下がり、目の大きさ:小さい、眉の形状:アーチ状、眉と目の位置:離れている、顔の輪郭:ROUNDと推定される。また、例えば、顔タイプLの鼻の特徴からは、目の丸み:シャープ、目の傾き:かなり上がり、目の大きさ:大きい、眉の形状:シャープ、眉と目の位置:かなり近い、顔の輪郭:RECTANGLEと推定される。
 図8は、本発明の一実施形態に係る鼻の特徴から推定された顔の一例である。本発明の一実施形態では、ユーザの鼻の特徴に基づいて、ユーザの顔が図8に示されるような種々の顔タイプの顔のうちのいずれの顔タイプであるかを推定することができる。
 このように、生活習慣や撮影時の状況に影響を受けにくい鼻の特徴量から顔タイプを分類することができる。例えば、鼻の特徴に基づいて分類された顔タイプを、メイクのガイドや肌の特性を提示するときに利用することができる(例えば、どのような顔の特徴を有する顔タイプであるか、どのような印象を与えるか顔タイプであるかに基づき、メイクのガイドや肌の特性を提示することができる)。
<効果>
 このように、本発明では、鼻の特徴から肌の状態を容易に推定することができる。本発明の一実施形態では、鼻の特徴から未来の肌の状態を推定して、未来の肌の悩みをより効果的に抑えることができる化粧品を選択したり、マッサージ等の美容法を決定することができる。
<ハードウェア構成>
 図9は、本発明の一実施形態に係る肌状態推定装置10のハードウェア構成を示す図である。肌状態推定装置10は、CPU(Central Processing Unit)1001、ROM(Read Only Memory)1002、RAM(Random Access Memory)1003を有する。CPU1001、ROM1002、RAM1003は、いわゆるコンピュータを形成する。
 また、肌状態推定装置10は、補助記憶装置1004、表示装置1005、操作装置1006、I/F(Interface)装置1007、ドライブ装置1008を有することができる。
 なお、肌状態推定装置10の各ハードウェアは、バスBを介して相互に接続されている。
 CPU1001は、補助記憶装置1004にインストールされている各種プログラムを実行する演算デバイスである。
 ROM1002は、不揮発性メモリである。ROM1002は、補助記憶装置1004にインストールされている各種プログラムをCPU1001が実行するために必要な各種プログラム、データ等を格納する主記憶デバイスとして機能する。具体的には、ROM1002は、BIOS(Basic Input/Output System)やEFI(Extensible Firmware Interface)等のブートプログラム等を格納する、主記憶デバイスとして機能する。
 RAM1003は、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)等の揮発性メモリである。RAM1003は、補助記憶装置1004にインストールされている各種プログラムがCPU1001によって実行される際に展開される作業領域を提供する、主記憶デバイスとして機能する。
 補助記憶装置1004は、各種プログラムや、各種プログラムが実行される際に用いられる情報を格納する補助記憶デバイスである。
 表示装置1005は、肌状態推定装置10の内部状態等を表示する表示デバイスである。
 操作装置1006は、肌状態推定装置10を操作する者が肌状態推定装置10に対して各種指示を入力する入力デバイスである。
 I/F装置1007は、ネットワークに接続し、他の装置と通信を行うための通信デバイスである。
 ドライブ装置1008は記憶媒体1009をセットするためのデバイスである。ここでいう記憶媒体1009には、CD-ROM、フレキシブルディスク、光磁気ディスク等のように情報を光学的、電気的あるいは磁気的に記録する媒体が含まれる。また、記憶媒体1009には、EPROM (Erasable Programmable Read Only Memory)、フラッシュメモリ等のように情報を電気的に記録する半導体メモリ等が含まれていてもよい。
 なお、補助記憶装置1004にインストールされる各種プログラムは、例えば、配布された記憶媒体1009がドライブ装置1008にセットされ、該記憶媒体1009に記録された各種プログラムがドライブ装置1008により読み出されることでインストールされる。あるいは、補助記憶装置1004にインストールされる各種プログラムは、I/F装置1007を介して、ネットワークよりダウンロードされることでインストールされてもよい。
 肌状態推定装置10は、撮影装置1010を有する。撮影装置1010は、ユーザ20を撮影する。
 以上、本発明の実施例について詳述したが、本発明は上述した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 本国際出願は2021年2月15日に出願された日本国特許出願2021-021916号に基づく優先権を主張するものであり、2021-021916号の全内容をここに本国際出願に援用する。
10 肌状態推定装置
20 ユーザ
101 画像取得部
102 鼻特徴特定部
103 肌状態推定部
104 骨格推定部
105 出力部
1001 CPU
1002 ROM
1003 RAM
1004 補助記憶装置
1005 表示装置
1006 操作装置
1007 I/F装置
1008 ドライブ装置
1009 記憶媒体
1010 撮影装置

Claims (15)

  1.  ユーザの鼻の特徴を特定するステップと、
     前記ユーザの鼻の特徴に基づいて、前記ユーザの肌の状態を推定するステップと
     を含む方法。
  2.  前記ユーザの鼻を含む画像を取得するステップをさらに含み、
     前記ユーザの鼻の特徴は、前記画像の画像情報から特定される、請求項1に記載の方法。
  3.  前記ユーザの肌の状態は、前記ユーザの未来の肌の状態である、請求項1または2に記載の方法。
  4.  前記肌の状態は、シワ、シミ、たるみ、クマ、ほうれい線、くすみ、ハリ、水分、皮脂、メラニン、血行、血管、血液、キメ、毛穴、肌の色の少なくとも1つである、請求項1から3のいずれか一項に記載の方法。
  5.  前記肌の状態から肌の総合指標を推定するステップをさらに含む、請求項4に記載の方法。
  6.  前記肌の状態は、顔の一部と、顔全体と、顔の複数の箇所と、のいずれかにおける肌の状態である、請求項1から5のいずれか一項に記載の方法。
  7.  前記ユーザの鼻の特徴に基づいて、前記ユーザの顔の骨格に関する形状を推定するステップをさらに含み、
     前記ユーザの肌の状態の推定は、前記ユーザの顔の骨格に関する形状に基づいている、請求項1から6のいずれか一項に記載の方法。
  8.  前記ユーザの肌の状態は、前記ユーザの顔の骨格に関する形状に起因している、請求項7に記載の方法。
  9.  前記鼻の特徴は、鼻根と、鼻梁と、鼻尖と、鼻翼とのうちの少なくとも1つである、請求項1から8のいずれか一項に記載の方法。
  10.  前記ユーザの肌の状態は、前記鼻の特徴が入力されると前記肌の状態が出力される学習済みモデルを用いて推定される、請求項1から9のいずれか一項に記載の方法。
  11.  ユーザの鼻の特徴を特定する特定部と、
     前記ユーザの鼻の特徴に基づいて、前記ユーザの肌の状態を推定する推定部と
     を備えた肌状態推定装置。
  12.  コンピュータを
     ユーザの鼻の特徴を特定する特定部、
     前記ユーザの鼻の特徴に基づいて、前記ユーザの肌の状態を推定する推定部
     として機能させるためのプログラム。
  13.  肌状態推定装置とサーバとを含むシステムであって、
     ユーザの鼻の特徴を特定する特定部と、
     前記ユーザの鼻の特徴に基づいて、前記ユーザの肌の状態を推定する推定部と
     を備えたシステム。
  14.  入力データが鼻の特徴であり、出力データが肌の状態である教師データを取得するステップと、
     前記教師データを用いて機械学習して、前記鼻の特徴が入力されると前記肌の状態が出力される学習済みモデルを生成するステップと
     を含む方法。
  15.  入力データが鼻の特徴であり、出力データが肌の状態である教師データを用いて機械学習することによって生成された、前記鼻の特徴が入力されると前記肌の状態が出力される学習済みモデル。
PCT/JP2022/005909 2021-02-15 2022-02-15 肌状態推定方法、装置、プログラム、システム、学習済みモデル生成方法、および学習済みモデル WO2022173056A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/262,620 US20240074694A1 (en) 2021-02-15 2022-02-15 Skin state estimation method, device, program, system, trained model generation method, and trained model
CN202280010218.8A CN116801800A (zh) 2021-02-15 2022-02-15 皮肤状态推定方法、装置、程序、系统、已学习模型生成方法及已学习模型
JP2022580719A JPWO2022173056A1 (ja) 2021-02-15 2022-02-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021021916 2021-02-15
JP2021-021916 2021-02-15

Publications (1)

Publication Number Publication Date
WO2022173056A1 true WO2022173056A1 (ja) 2022-08-18

Family

ID=82838389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005909 WO2022173056A1 (ja) 2021-02-15 2022-02-15 肌状態推定方法、装置、プログラム、システム、学習済みモデル生成方法、および学習済みモデル

Country Status (4)

Country Link
US (1) US20240074694A1 (ja)
JP (1) JPWO2022173056A1 (ja)
CN (1) CN116801800A (ja)
WO (1) WO2022173056A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219781A (ja) * 2013-05-07 2014-11-20 エヌ・ティ・ティ・コミュニケーションズ株式会社 肌解析装置、肌解析システム、肌解析方法および肌解析プログラム
JP2018079298A (ja) * 2016-11-07 2018-05-24 株式会社 資生堂 肌水分量計測装置、ウェアラブルデバイス、肌水分量測定方法、肌水分量評価方法、肌水分量モニタリングシステム、肌水分量評価ネットワークシステム、及び肌水分量評価プログラム
WO2020209378A1 (ja) * 2019-04-12 2020-10-15 株式会社 資生堂 Upe測定により皮膚状態を決定する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219781A (ja) * 2013-05-07 2014-11-20 エヌ・ティ・ティ・コミュニケーションズ株式会社 肌解析装置、肌解析システム、肌解析方法および肌解析プログラム
JP2018079298A (ja) * 2016-11-07 2018-05-24 株式会社 資生堂 肌水分量計測装置、ウェアラブルデバイス、肌水分量測定方法、肌水分量評価方法、肌水分量モニタリングシステム、肌水分量評価ネットワークシステム、及び肌水分量評価プログラム
WO2020209378A1 (ja) * 2019-04-12 2020-10-15 株式会社 資生堂 Upe測定により皮膚状態を決定する方法

Also Published As

Publication number Publication date
CN116801800A (zh) 2023-09-22
JPWO2022173056A1 (ja) 2022-08-18
US20240074694A1 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
US8391639B2 (en) Method and apparatus for realistic simulation of wrinkle aging and de-aging
CN101779218B (zh) 化妆模拟系统及其化妆模拟方法
US9400923B2 (en) Patient interface identification system
CN112784773B (zh) 图像处理方法及装置、存储介质、终端
EP1248237B1 (en) Method for measuring volumetric changes in portions of a human body
WO2000076398A1 (en) Skin imaging and analysis systems and methods
US20200146622A1 (en) System and method for determining the effectiveness of a cosmetic skin treatment
CN106934073A (zh) 基于三维立体图像的人脸对比系统、方法及移动终端
KR101301821B1 (ko) 안색 정보 생성 장치 및 그 방법, 안색 정보를 이용한 건강 상태 판단 장치 및 그 방법, 건강 분류 함수 생성 장치 및 그 방법
KR20180103672A (ko) 시술에 대한 결과 정보를 제공하는 방법, 시스템 및 비일시성의 컴퓨터 판독 가능 기록 매체
KR20150072463A (ko) 안면 영상을 이용하는 건강 상태 판단 장치 및 건강 상태 판단 방법
KR102118099B1 (ko) 안면, 목, 두피, 모발의 피부진단 및 분석 장치
CN103955675A (zh) 一种人脸特征提取方法
US20230200908A1 (en) Computing platform for improved aesthetic outcomes and patient safety in medical and surgical cosmetic procedures
US9330300B1 (en) Systems and methods of analyzing images
CN113344837B (zh) 人脸图像处理方法及装置、计算机可读存储介质、终端
WO2022173056A1 (ja) 肌状態推定方法、装置、プログラム、システム、学習済みモデル生成方法、および学習済みモデル
WO2022173055A1 (ja) 骨格推定方法、装置、プログラム、システム、学習済みモデル生成方法、および学習済みモデル
CN109953743A (zh) 中医面像采集分析装置及方法
US20240032856A1 (en) Method and device for providing alopecia information
US20230200907A1 (en) Computing platform for improved aesthetic outcomes and patient safety in medical and surgical cosmetic procedures
JP7226745B2 (ja) 三次元顔形態の判別装置、方法、プログラム、およびシステム
US20240296574A1 (en) Information processing apparatus, information processing method, and recording medium
Chen Autonomic activity from human videos
CA2376661A1 (en) Method for measuring changes in portions of a human body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752878

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580719

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280010218.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18262620

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752878

Country of ref document: EP

Kind code of ref document: A1