WO2022173056A1 - 肌状態推定方法、装置、プログラム、システム、学習済みモデル生成方法、および学習済みモデル - Google Patents
肌状態推定方法、装置、プログラム、システム、学習済みモデル生成方法、および学習済みモデル Download PDFInfo
- Publication number
- WO2022173056A1 WO2022173056A1 PCT/JP2022/005909 JP2022005909W WO2022173056A1 WO 2022173056 A1 WO2022173056 A1 WO 2022173056A1 JP 2022005909 W JP2022005909 W JP 2022005909W WO 2022173056 A1 WO2022173056 A1 WO 2022173056A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nose
- skin condition
- user
- features
- skin
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000001815 facial effect Effects 0.000 claims description 49
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 claims description 38
- NOQGZXFMHARMLW-UHFFFAOYSA-N Daminozide Chemical compound CN(C)NC(=O)CCC(O)=O NOQGZXFMHARMLW-UHFFFAOYSA-N 0.000 claims description 23
- 230000037303 wrinkles Effects 0.000 claims description 22
- 210000004204 blood vessel Anatomy 0.000 claims description 15
- 238000007665 sagging Methods 0.000 claims description 13
- 210000004369 blood Anatomy 0.000 claims description 12
- 239000008280 blood Substances 0.000 claims description 12
- 210000002374 sebum Anatomy 0.000 claims description 12
- 238000010801 machine learning Methods 0.000 claims description 10
- 230000017531 blood circulation Effects 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 7
- 238000012549 training Methods 0.000 claims description 5
- 210000001331 nose Anatomy 0.000 description 200
- 210000003491 skin Anatomy 0.000 description 191
- 210000001508 eye Anatomy 0.000 description 47
- 210000004709 eyebrow Anatomy 0.000 description 15
- 238000010586 diagram Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 210000000088 lip Anatomy 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 210000001061 forehead Anatomy 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 108010054147 Hemoglobins Proteins 0.000 description 5
- 102000001554 Hemoglobins Human genes 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 210000004279 orbit Anatomy 0.000 description 5
- 210000003625 skull Anatomy 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 210000004373 mandible Anatomy 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 210000002615 epidermis Anatomy 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 210000002050 maxilla Anatomy 0.000 description 3
- 210000000216 zygoma Anatomy 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 210000000537 nasal bone Anatomy 0.000 description 2
- 241000692783 Chylismia claviformis Species 0.000 description 1
- 206010013786 Dry skin Diseases 0.000 description 1
- 108010064719 Oxyhemoglobins Proteins 0.000 description 1
- 241000320126 Pseudomugilidae Species 0.000 description 1
- 206010039792 Seborrhoea Diseases 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 201000010251 cutis laxa Diseases 0.000 description 1
- 230000037336 dry skin Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 210000002816 gill Anatomy 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 230000037311 normal skin Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000037312 oily skin Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000037373 wrinkle formation Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0077—Devices for viewing the surface of the body, e.g. camera, magnifying lens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/442—Evaluating skin mechanical properties, e.g. elasticity, hardness, texture, wrinkle assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/1032—Determining colour for diagnostic purposes
Definitions
- the present invention relates to a skin condition estimation method, device, program, system, learned model generation method, and learned model.
- Patent Literature 1 predicts future wrinkle formation and wrinkle levels around the eyes and mouth from ultrasound images.
- Patent Document 1 an ultrasonic diagnostic device is required, and it was not easy to easily predict skin conditions that are likely to occur in the future.
- an object of the present invention is to easily obtain the skin condition.
- a method includes identifying features of a user's nose and estimating the skin condition of the user based on the features of the user's nose.
- the skin condition can be easily estimated from the characteristics of the nose.
- FIG. 4 is a flow chart showing the flow of skin condition estimation processing according to an embodiment of the present invention.
- FIG. 4 is a diagram for explaining features of a nose according to one embodiment of the present invention.
- FIG. 4 is a diagram for explaining extraction of a nose region according to one embodiment of the present invention;
- FIG. 4 is a diagram for explaining extraction of a nose region according to one embodiment of the present invention.
- 4 is a diagram for explaining calculation of a nose feature amount according to one embodiment of the present invention.
- 4 is an example of nose features for each face type according to one embodiment of the present invention;
- 4 is an example of a face estimated from nose features according to an embodiment of the present invention; It is a figure which shows the hardware constitutions of the skin condition estimation apparatus which concerns on one Embodiment of this invention.
- the “skin condition” is at least one of wrinkles, spots, sagging, dark circles, nasolabial folds, dullness, firmness, moisture, sebum, melanin, blood circulation, blood vessels, blood, pores, and skin color.
- skin condition includes wrinkles, spots, sagging, dark circles, nasolabial folds, dullness, firmness, moisture, sebum, melanin, blood circulation, blood vessels, blood, pores, and skin color. It is the presence/absence and degree of elements.
- the “skin condition” is the condition of the skin in any one of a part of the face, the entire face, and a plurality of parts of the face.
- the “skin condition” may be the future skin condition of the user or the current skin condition of the user. In the present invention, the skin condition is estimated from the nose characteristics based on the correlation between the nose characteristics and the skin condition.
- FIG. 1 is a diagram showing the overall configuration according to one embodiment of the present invention.
- the skin condition estimation device 10 estimates the skin condition of the user 20 from the features of the user's 20 nose.
- the skin condition estimation device 10 is a smart phone or the like having a camera function.
- the skin condition estimation device 10 will be described in detail later with reference to FIG.
- the skin condition estimation device 10 is one device (for example, a smartphone having a camera function, etc.) will be described. device and a digital camera). Further, the camera function may be a function of photographing the skin three-dimensionally or a function of photographing the skin two-dimensionally. Also, a device (such as a server) other than the skin condition estimation device 10 may execute a part of the processing executed by the skin condition estimation device 10 described herein.
- FIG. 2 is a diagram showing functional blocks of the skin condition estimation device 10 according to one embodiment of the present invention.
- the skin condition estimation device 10 can include an image acquisition unit 101 , a nose feature identification unit 102 , a skin condition estimation unit 103 , a skeleton estimation unit 104 and an output unit 105 . Further, the skin condition estimation apparatus 10 can function as an image acquisition unit 101, a nose feature identification unit 102, a skin condition estimation unit 103, a skeleton estimation unit 104, and an output unit 105 by executing programs. Each of these will be described below.
- the image acquisition unit 101 acquires an image including the user's 20 nose.
- the image including the nose may be an image in which the nose and other parts are photographed (for example, an image in which the entire face is photographed), or an image in which only the nose is photographed (for example, a display of the skin condition estimation device 10).
- An image photographed so that the nose area of the user 20 fits within a predetermined area displayed on the device) may also be used.
- the image acquisition unit 101 is not required if the features of the nose are identified from other than the image.
- the nose feature identification unit 102 identifies the features of the user's 20 nose. For example, the nose feature identification unit 102 identifies the features of the nose of the user 20 from the image information (for example, pixel values of the image) of the image including the nose of the user 20 acquired by the image acquisition unit 101 .
- image information for example, pixel values of the image
- the skin condition estimation unit 103 estimates the skin condition of the user 20 based on the nose features of the user 20 identified by the nose feature identification unit 102 . For example, the skin condition estimation unit 103 classifies the skin condition of the user 20 based on the features of the nose of the user 20 specified by the nose feature specifying unit 102 .
- the skin condition estimating unit 103 estimates the skin condition of the user 20 (for example, the skin condition caused by the shape of the facial skeleton) based on the shape of the facial skeleton of the user 20 estimated by the skeleton estimating unit 104. ) can also be estimated.
- the skeleton estimation unit 104 estimates the shape of the facial skeleton of the user 20 based on the features of the nose of the user 20 specified by the nose feature specifying unit 102 . For example, the skeleton estimation unit 104 classifies the shape of the facial skeleton of the user 20 based on the features of the nose of the user 20 specified by the nose feature specifying unit 102 .
- the output unit 105 outputs (for example, displays) information on the skin condition of the user 20 estimated by the skin condition estimation unit 103 .
- the skin condition is at least one of wrinkles, spots, sagging, dark circles, nasolabial folds, dullness, firmness, moisture, sebum, melanin, blood circulation, blood vessels, blood, texture, pores, and skin color.
- the skin condition includes wrinkles at the corners of the eyes, wrinkles under the eyes, wrinkles on the forehead, wrinkles on the eye holes, sagging eye bags, dark circles in the eyes, nasolabial folds (nasolabial folds, around the mouth), and nose.
- the skin condition estimation unit 103 estimates the skin condition from the nose characteristics based on the correlation between the nose characteristics and the skin condition.
- the skin condition estimating unit 103 estimates the skin condition based on the correspondence relationship between the nose features and the skin condition stored in advance in the skin condition estimating device 10 or the like. It should be noted that the skin condition may be estimated based not only on the features of the nose, but also on the features of the nose and part of the features of the face.
- the correspondence may be a pre-determined database or a machine-learned model.
- the characteristics of the nose (which may be a part of the characteristics of the nose and facial features) and the skin condition are associated with each other based on the results of experiments conducted on subjects.
- the trained model is a prediction model that outputs information on skin condition when information on nose features (which may be part of nose features and facial features) is input.
- a computer such as skin condition estimation device 10 can generate a trained model.
- a computer such as the skin condition estimating apparatus 10 obtains teacher data whose input data is the nose feature (which may be part of the nose feature and facial features) and whose output data is the skin condition. Then, machine learning is performed using the teacher data to generate a trained model that outputs the skin condition when the nose features (the nose features and part of the facial features are acceptable) are input. can. In this way, machine learning is performed using training data in which the input data is nose features (which may be nose features and part of facial features) and the output data is skin conditions. nose features and some facial features) are input, a trained model is generated that outputs the skin condition.
- the skin condition estimating unit 103 may also estimate the skin condition based on the correspondence relationship between the shape of the facial skeleton and the skin condition stored in advance in the skin condition estimating device 10 or the like. can.
- the correspondence may be a pre-determined database or a machine-learned model.
- the database associates the shape of the facial skeleton with the skin condition based on the results of experiments conducted on the subject.
- the learned model is a prediction model that outputs skin condition information when shape information relating to the skeleton of the face is input.
- a computer such as skin condition estimation device 10 can generate a trained model.
- a computer such as the skin condition estimating apparatus 10 acquires teacher data whose input data is a shape related to the skeleton of the face and whose output data is the condition of the skin, and performs machine learning using the teacher data. , it is possible to generate a trained model that outputs the skin condition when the shape of the facial skeleton is input. In this way, machine learning is performed using training data in which the input data is the shape related to the facial skeleton and the output data is the skin condition, so that when the shape related to the facial skeleton is input, the skin condition is output.
- a trained model is generated.
- the estimated skin condition may be the future skin condition of the user 20 or the current skin condition of the user 20 .
- the correspondence between the nose features (or the shape of the facial skeleton estimated from the nose features) and the skin condition is created based on the data of a person older than the actual age of the user 20 ( For example, if the age of the test subject in the experiment or the age of the person whose learning data is used for machine learning is higher than the actual age of the user 20, the future skin of the user 20 is estimated.
- the correspondence relationship between the features of the nose (or the shape of the facial skeleton estimated from the features of the nose) and the skin condition is created based on the data of a person of the same age as the real age of the user 20.
- the current skin of the user 20 is estimated. be.
- the skin condition may be estimated based not only on the features of the nose, but also on the features of the nose and part of the features of the face.
- the skin condition estimating unit 103 can estimate that wrinkles are likely to appear at the corners of the eyes when the root of the nose and the bridge of the nose are high. Further, for example, the skin condition estimation unit 103 estimates that if the shape of the cheek is such that the high position of the cheekbone is at the top, there is a wrinkle at the corner of the eye or there is a possibility that it will become wrinkled in the future (turn ON/OFF judgment) can be made.
- the skin condition estimating unit 103 can estimate that wrinkles are more likely to occur under the eyes when the wings of the nose are more rounded or, for example, when the eyes are larger.
- the skin condition estimating unit 103 can estimate that the eye socket has a shape characteristic such as being horizontally long or small, but that the eye socket is large and the vertical and horizontal widths are similar, and there are many wrinkles under the eyes. Also, for example, the skin condition estimation unit 103 can estimate wrinkles under the eyes based on the facial contour. Also, for example, the skin condition estimation unit 103 can estimate that the wider the distance between the eyes, the less wrinkles under the eyes.
- the skin condition estimation unit 103 can estimate sagging eye bags based on the roundness of the nasal alar and the height of the bridge of the nose. Specifically, the skin condition estimation unit 103 can estimate that the larger the sum of the roundness of the nasal alar and the height of the bridge of the nose, the looser the eye bags.
- the skin condition estimation unit 103 can estimate that the eye bags are likely to sag when the face contour is oval and the face is long.
- the skin condition estimation unit 103 can estimate HbCO2 (reduced hemoglobin) based on the height of the bridge of the nose and the roundness of the alar.
- the skin condition estimation unit 103 can estimate HbSO2 (oxygen saturation) based on the facial contour.
- the skin condition estimating unit 103 can estimate that the water content is lower as the bridge of the nose is lower, the wings of the nose are rounder, or the distance between the eyes is greater.
- the skin condition estimation unit 103 can estimate the skin moisture content based on the height of the skull index and the aspect ratio of the face.
- the skin condition estimation unit 103 can estimate sebum based on the roundness of the nasal alar.
- the skin condition estimation unit 103 can estimate sebum based on the facial contour.
- the skin condition estimating unit 103 can estimate that the melanin index is higher when the nasal alar is rounder and the nasal bridge is higher, the melanin amount is higher, and the melanin index is lower when the nasal bridge is lower and the distance between the eyes is narrower.
- the skin condition estimation unit 103 can estimate that the thicker the upper and lower lips, the higher the melanin index and the greater the amount of melanin. Also, for example, the skin condition estimation unit 103 can estimate that the thinner the upper and lower lips are, the lower the melanin index is.
- the skin condition estimating unit 103 can estimate that dark circles are likely to appear when the alar of the nose is rounded.
- the skin condition estimation unit 103 can estimate that the face line tends to sag when the bridge of the nose is low and the distance between the eyes is wide, or when the angle of the chin is rounded.
- the skin condition estimation unit 103 can estimate that the higher the bridge of the nose, the higher the oxygen content in the blood.
- the skin condition estimating unit 103 can estimate the blood vessel density from the position of change in the size of the nasal alar or the height of the root of the nose, and the larger the nasal alar, the higher the blood vessel density.
- the skin condition estimation unit 103 can estimate the epidermal thickness from the size of the nasal alar.
- the skin condition estimating unit 103 can estimate the number of blood vessels branching from the position of change in the height of the root of the nose.
- the skin condition estimating unit 103 comprehensively determines wrinkles, spots, sagging, dark circles, nasolabial folds, dullness, firmness, moisture
- Skin conditions can be expressed as sebum, melanin, blood circulation, blood vessels, blood, pores, and skin color.
- - Wrinkles represented by one or more items of wrinkles at the corners of the eyes, under the eyes, forehead, and eyeholes.
- Blemishes represented by one or more items of uneven brown color, uneven red color, and melanin.
- Sagging represented by one or more items of eye bags, chin, and marionette lines.
- ⁇ Bears One or two items of brown eyes and blue eyes.
- - Nasolabial folds represented by one or two items of nasolabial folds nasolabial folds and mouth nasolabial folds.
- Dullness represented by one or more items of transparency, melanin, color unevenness, skin color, oxygen saturation, water content, number of skin bumps.
- Firmness represented by one or more of moisture, sebum, sagging, and skin viscoelasticity.
- Moisture represented by one or two items of water content, water retention capacity (TEWL), number of skin bumps, and pH.
- TEWL water retention capacity
- ⁇ Texture represented by one or more items such as the number of skin mounds and water content.
- ⁇ Skin color expressed by one or more of the following items: skin tone, skin brightness, melanin, blood oxygen content, and HbO2 (oxygenated hemoglobin content).
- - Sebum expressed from one or two items of sebum amount and pores.
- normal skin, dry skin, oily skin, and mixed skin may be classified based on moisture and sebum.
- Melanin Melanin index, amount of melanin, uneven color, one or two items.
- Blood circulation expressed by at least one or two items of HbSO2 Index (blood oxygen saturation index), Hb Index (hemoglobin amount), HbO2 (oxygenated hemoglobin amount), blood oxygen amount, and skin color.
- Blood vessel represented by one or more items of density of blood vessels, number of capillaries, number of blood vessel branches, distance between blood vessels and epidermis, and epidermis thickness.
- ⁇ Blood HDL cholesterol
- the skin condition estimating unit 103 can express skin characteristics such as skin strength and skin weakness from the characteristics of the nose. For example, when the characteristic of the nose is type 1, the evaluation value of wrinkles at the corners of the eyes is lower than the average evaluation value, so it is represented as the strength of the skin. When the characteristic of the nose is type 2, the evaluation value of wrinkles at the corners of the eyes is higher than the average evaluation value, so it is expressed as weak skin. The strengths and weaknesses of the skin can be expressed for each part of the face.
- the strengths of the skin are wrinkles and blemishes on the corners of the eyes and forehead, and the weaknesses of the skin are dark circles, nasolabial folds, nasolabial folds, sagging around the mouth, and water retention.
- the skin condition estimating unit 103 can estimate a general skin index (in this case, loose skin) from these skin conditions.
- the strengths of the skin are sagging cheeks, moisture retention, blood circulation, and blemishes, and the weaknesses are wrinkles and blemishes on the corners of the eyes and forehead.
- the skin condition estimating unit 103 can estimate a comprehensive skin index (in this case, wrinkle-type skin) from these skin conditions.
- the skeleton estimating unit 104 estimates the shape of the facial skeleton from the features of the nose based on the correlation between the features of the nose and the shape of the facial skeleton.
- the shapes related to the skeleton of the face include orbits, cheekbones, nasal bones, piriform mouth (mouth that opens toward the face of the nasal cavity), cranial index, maxilla, mandible, lips, corners of the mouth, Eyes, Mongolian folds (folds of the skin where the upper eyelids cover the inner corners of the eyes), facial contours, and the positional relationship between the eyes and eyebrows (for example, the eyes and eyebrows are far apart, close, etc.) At least one of the characteristics of the shape of each bone, the positional relationship of the skeleton, the angle, and the like.
- An example of the shape related to the skeleton of the face is shown below. Note that the contents in parentheses are an example of estimated specific contents.
- the skeleton estimation unit 104 estimates the shape of the facial skeleton based on the correspondence relationship between the features of the nose and the shape of the facial skeleton stored in advance in the skin condition estimating device 10 or the like. Note that the shape of the facial skeleton may be estimated based on not only the features of the nose but also the features of the nose and part of the features of the face.
- the correspondence may be a pre-determined database or a machine-learned model. Based on the results of experiments conducted on subjects, the database associates features of the nose (which may be part of the features of the nose and facial features) with shapes related to the skeleton of the face. . Also, the trained model is a prediction model that outputs shape information related to the skeleton of the face when nose feature information (which may be part of the nose feature and facial features) is input. Note that the correspondence between the features of the nose and the shape of the facial skeleton may be created for each group classified based on factors that can affect the skeleton (for example, Caucasoid, Mongoloid, Negroid, Australoid, etc.). .
- a computer such as skin condition estimation device 10 can generate a trained model.
- a computer such as the skin condition estimating apparatus 10 receives teacher data whose input data is the features of the nose (which may be part of the features of the nose and facial features) and whose output data is the shape related to the skeleton of the face. is obtained, and machine learning is performed using the teacher data to generate a trained model that outputs a shape related to the skeleton of the face when the nose feature (a part of the nose feature and facial features) is input. can be generated.
- machine learning is performed using training data in which the input data is the features of the nose (the features of the nose and part of the features of the face may be used), and the output data is the shape of the facial skeleton.
- a trained model is generated that outputs a shape related to the skeleton of the face when the features (which may be the features of the nose and part of the facial features) are input.
- the skeleton estimating unit 104 can estimate the skull index based on the height or lowness of the nasal root or the position of change in the height of the nasal root, and the height or lowness of the bridge of the nose. Specifically, the skeleton estimation unit 104 estimates that the higher the nasal root and/or the nasal bridge, the lower the skull index.
- the skeleton estimation unit 104 can estimate whether the corners of the mouth are raised or lowered based on the width of the bridge of the nose. Specifically, the skeleton estimation unit 104 estimates that the wider the bridge of the nose, the lower the corners of the mouth.
- the skeleton estimating unit 104 determines the size and thickness of the lips (1. Large and thick upper and lower lips, 2. Thick lower lip, 3. Thin small) can be estimated.
- the skeleton estimation unit 104 can estimate the presence or absence of Mongolian folds based on the root of the nose. Specifically, the skeleton estimation unit 104 estimates that there is a Mongolian fold when it is determined that the root of the nose is low.
- the skeleton estimation unit 104 classifies the shape of the mandible (for example, classifies into three) based on the height or height of the bridge of the nose, the height of the root of the nose, and the roundness and size of the alar. can do.
- the skeleton estimation unit 104 can estimate the pyriform mouth based on the height of the bridge of the nose.
- the skeleton estimation unit 104 can estimate the inter-eye distance based on the height of the bridge of the nose. Specifically, the skeleton estimation unit 104 estimates that the lower the bridge of the nose, the wider the distance between the eyes.
- the skeleton estimation unit 104 can estimate the roundness of the forehead based on the height of the root of the nose and the height of the bridge of the nose.
- the skeleton estimation unit 104 can estimate the distance between the eyes and the eyebrows and the shape of the eyebrows based on the height and depth of the bridge of the nose, the size of the wings of the nose, and the position of change in the height of the root of the nose.
- FIG. 3 is a flowchart showing the flow of skin condition estimation processing according to one embodiment of the present invention.
- step 1 (S1) the nose feature identification unit 102 extracts feature points (for example, feature points of the inner corners of the eyebrows, the inner corners of the eyes, and the tip of the nose) from the image including the nose.
- feature points for example, feature points of the inner corners of the eyebrows, the inner corners of the eyes, and the tip of the nose
- step 2 (S2) the nose feature identification unit 102 extracts the nose region based on the feature points extracted in S1.
- the image including the nose is an image in which only the nose is captured (for example, an image in which the nose region of the user 20 is captured within a predetermined region displayed on the display device of the skin condition estimation device 10). , the image in which only the nose is captured is used as it is (that is, S1 can be omitted).
- step 3 the nose feature identification unit 102 reduces the number of gradations of the image of the nose region extracted in S2 (eg, binarizes).
- the nose feature identifying unit 102 uses at least one of brightness, luminance, RGB Blue, and RGB Green to reduce the number of gradations of the image of the nose region. Note that S3 may be omitted.
- the nasal feature identifying unit 102 identifies the nasal features (nasal skeleton). Specifically, the nose feature identification unit 102 calculates the feature amount of the nose based on the image information (for example, pixel values of the image) of the image of the nose region. For example, the nose feature identification unit 102 calculates the average value of pixel values in the nose region, the number of pixels equal to or greater than a predetermined value, the cumulative pixel value, the amount of change in pixel values, etc., as the feature amount of the nose.
- the image information for example, pixel values of the image
- the nose feature identification unit 102 calculates the average value of pixel values in the nose region, the number of pixels equal to or greater than a predetermined value, the cumulative pixel value, the amount of change in pixel values, etc., as the feature amount of the nose.
- the skeleton estimation unit 104 estimates the shape of the facial skeleton. Note that S5 may be omitted.
- step 6 (S6) the skin condition estimating unit 103 determines the skin condition (for example, future skin condition) based on the features of the nose identified in S4 (or the shape related to the facial skeleton estimated in S5). trouble).
- the skin condition for example, future skin condition
- the nasal feature is at least one of a nasal root, a nasal bridge, a nasal tip, and an alar.
- FIG. 4 is a diagram for explaining features of the nose according to one embodiment of the present invention.
- FIG. 4 shows the positions of the root of the nose, the bridge of the nose, the tip of the nose, and the wings of the nose.
- the nasal root is the part at the base of the nose.
- the features of the nose are at least one of the height of the nasal root, the low nasal root, the width of the nasal root, and the changing position of the nasal root where the nasal root changes to be higher.
- the bridge of the nose is the part between the eyebrows and the tip of the nose.
- the nasal feature is at least one of a nasal bridge height, a nasal bridge low, and a nasal bridge width.
- the nasal tip is the tip of the nose (nose tip).
- the nasal characteristic is at least one of the roundness or kurtosis of the nasal tip and the orientation of the nasal tip.
- the wings of the nose are the swollen areas on either side of the head of the nose.
- the nasal characteristic is at least one of the roundness or kurtosis of the alar and the size of the alar.
- FIG. 5 is a diagram for explaining extraction of a nose region according to one embodiment of the present invention.
- a nose feature identification unit 102 extracts a nose region in an image including the nose.
- the nose region may be the entire nose as shown in FIG. 5(a), or a portion of the nose (for example, the right half or the left half) as shown in FIG. 5(b).
- FIG. 6 is a diagram for explaining calculation of a nose feature amount according to one embodiment of the present invention.
- step 11 (S11) the nose region in the image including the nose is extracted.
- step 12 the number of gradations of the image of the nose region extracted in S11 is reduced (binarized, for example). Note that S12 may be omitted.
- the feature amount of the nose is calculated.
- the pixel cumulative value is expressed with 0 on the high brightness side of the image and 255 on the low brightness side.
- the nose feature identification unit 102 performs normalization for each of multiple regions (for example, the divided regions in S12).
- the nose feature identifying unit 102 determines the average pixel value, the number of pixels equal to or greater than a predetermined value, the X direction
- At least one pixel cumulative value in the and Y directions, the amount of change in the pixel value in at least one of the X and Y directions, and the like are calculated as feature amounts of the nose.
- the pixel cumulative value in the X direction at each position in the Y direction is calculated.
- the feature amount of the nasal root is the feature amount of the upper (closer to the eye) area among the divided areas of S12
- the feature amount of the nose bridge is the upper or central part of the divided area of S12.
- the feature amounts of the nasal tip and alar are the feature amounts of the lower (closer to the mouth) area among the divided areas of S12.
- Height of root of nose The height and height are determined from the amount of change in pixel values in the Y direction in the upper region of the nose. The height or lowness may be calculated as a numerical value, or may be classified as high or low. As for the position of change in the height of the nose root, it can be seen that the value of nose 2 immediately changes in the Y direction in S13, and the position of change in the height of the nose root is in the upper part.
- Width of nose root The area above the nose is divided into a plurality of areas (2 to 4, etc.) in the X direction, and the width is determined from the pattern of the average pixel values of each area.
- ⁇ Height of nose bridge The height and height are determined from the average value of the accumulated pixel values in the central region of the nose. The height or lowness may be calculated as a numerical value, or may be classified as high or low.
- Width of nose bridge The area in the center of the nose is divided into a plurality of areas (2 to 4, etc.) in the X direction, and the width is determined from the pattern of the average pixel values of each area.
- Nose tip roundness or kurtosis Determined from other nasal features (height of the nose bridge, roundness or kurtosis of the alar), the lower the bridge and the rounder the alar, the more rounded.
- ⁇ Direction of nose tip In the region of the central part of the nose, it is obtained from the width from the lowest point of the nose at a predetermined ratio to the maximum value of the pixel cumulative value in the X direction. .
- Alar roundness or kurtosis Roundness or kurtosis is determined from the amount of change in Y-direction value in the lower nose region.
- Alar size Determined from the ratio of the number of pixels below a predetermined value in the central portion of the lower region. The larger the number of pixels, the larger the nostrils.
- shape related to the skeleton of the face refers to at least one of “the shape of the facial skeleton itself” and “the shape of the face resulting from the skeleton”.
- shape related to facial skeleton can include face type.
- the user's face is classified into a plurality of face types (specifically, "the shape of the facial skeleton itself” and “the shape of the face resulting from the skeleton") based on the features of the user's nose. It is possible to estimate which of the face types is classified based on at least one of them.
- the face type will be described below with reference to FIGS. 7 and 8. FIG.
- FIG. 7 is an example of nose features for each face type according to one embodiment of the present invention.
- FIG. 7 shows the features of the nose of each face type (face types A to L).
- face type may be estimated using all (four) of the nasal bridge, the alar, the nasal root, and the nasal tip, or partly (for example, two of the nasal bridge and the nasal alar, two of the nasal bridge and the nasal tip).
- face type may be estimated using only the bridge of the nose, only the alar of the nose, etc.).
- the face type is estimated from the features of the nose.
- the roundness of the eyes round
- the inclination of the eyes downward
- the size of the eyes small
- the shape of the eyebrows arched
- the position of the eyebrows and eyes apart
- the shape of the face Contour Estimated to be ROUND.
- the roundness of the eyes sharp
- the inclination of the eyes considerably raised
- the size of the eyes large
- the shape of the eyebrows sharp
- the position of the eyebrows and the eyes fairly close
- the face CONTOURS Estimated RECTANGLE.
- FIG. 8 is an example of a face estimated from nose features according to one embodiment of the present invention.
- based on the features of the user's nose it is possible to infer which face type the user's face is among the various face types shown in FIG. .
- face types classified based on nose features can be used to guide makeup or present skin characteristics (e.g., what facial features a face type has, what facial features It can present makeup guides and skin characteristics based on what kind of impression you have or your face type).
- the skin condition can be easily estimated from the characteristics of the nose.
- the future skin condition is estimated from the characteristics of the nose, and cosmetics that can more effectively suppress future skin troubles are selected, and beauty treatments such as massage are determined. be able to.
- FIG. 9 is a diagram showing the hardware configuration of the skin condition estimation device 10 according to one embodiment of the present invention.
- the skin condition estimation device 10 has a CPU (Central Processing Unit) 1001 , a ROM (Read Only Memory) 1002 and a RAM (Random Access Memory) 1003 .
- the CPU 1001, ROM 1002, and RAM 1003 form a so-called computer.
- the skin condition estimation device 10 can have an auxiliary storage device 1004 , a display device 1005 , an operation device 1006 , an I/F (Interface) device 1007 and a drive device 1008 .
- Each piece of hardware of the skin condition estimation device 10 is connected to each other via a bus B.
- the CPU 1001 is an arithmetic device that executes various programs installed in the auxiliary storage device 1004 .
- the ROM 1002 is a non-volatile memory.
- the ROM 1002 functions as a main storage device that stores various programs, data, etc. necessary for the CPU 1001 to execute various programs installed in the auxiliary storage device 1004 .
- the ROM 1002 functions as a main storage device that stores boot programs such as BIOS (Basic Input/Output System) and EFI (Extensible Firmware Interface).
- BIOS Basic Input/Output System
- EFI Extensible Firmware Interface
- the RAM 1003 is a volatile memory such as DRAM (Dynamic Random Access Memory) or SRAM (Static Random Access Memory).
- the RAM 1003 functions as a main storage device that provides a work area that is developed when various programs installed in the auxiliary storage device 1004 are executed by the CPU 1001 .
- the auxiliary storage device 1004 is an auxiliary storage device that stores various programs and information used when various programs are executed.
- the display device 1005 is a display device that displays the internal state of the skin condition estimation device 10 and the like.
- the operating device 1006 is an input device through which a person who operates the skin condition estimation device 10 inputs various instructions to the skin condition estimation device 10 .
- the I/F device 1007 is a communication device for connecting to a network and communicating with other devices.
- a drive device 1008 is a device for setting a storage medium 1009 .
- the storage medium 1009 here includes media such as CD-ROMs, flexible disks, magneto-optical disks, etc., which record information optically, electrically or magnetically.
- the storage medium 1009 may also include a semiconductor memory that electrically records information such as an EPROM (Erasable Programmable Read Only Memory), a flash memory, or the like.
- auxiliary storage device 1004 Various programs to be installed in the auxiliary storage device 1004 are installed by, for example, setting the distributed storage medium 1009 in the drive device 1008 and reading the various programs recorded in the storage medium 1009 by the drive device 1008. be done. Alternatively, various programs installed in the auxiliary storage device 1004 may be installed by being downloaded from the network via the I/F device 1007 .
- the skin condition estimation device 10 has an imaging device 1010 .
- a photographing device 1010 photographs the user 20 .
- skin condition estimation device 20 user 101 image acquisition unit 102 nose feature identification unit 103 skin condition estimation unit 104 skeleton estimation unit 105 output unit 1001 CPU 1002 ROMs 1003 RAM 1004 auxiliary storage device 1005 display device 1006 operation device 1007 I/F device 1008 drive device 1009 storage medium 1010 imaging device
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Dermatology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
「肌の状態」とは、シワ、シミ、たるみ、クマ、ほうれい線、くすみ、ハリ、水分、皮脂、メラニン、血行、血管、血液、毛穴、肌の色の少なくとも1つである。例えば、「肌の状態」とは、シワ、シミ、たるみ、クマ、ほうれい線、くすみ、ハリ、水分、皮脂、メラニン、血行、血管、血液、毛穴、肌の色といった肌の状態を構成する要素の有無、度合いである。また、「肌の状態」とは、顔の一部と、顔全体と、顔の複数の箇所と、のいずれかにおける肌の状態である。なお、「肌の状態」とは、ユーザの未来の肌の状態であってもよいし、ユーザの現在の肌の状態であってもよい。本発明では、鼻の特徴と肌の状態との相関に基づいて、鼻の特徴から肌の状態を推定する。
図1は、本発明の一実施形態に係る全体の構成を示す図である。肌状態推定装置10は、ユーザ20の鼻の特徴から、ユーザ20の肌の状態を推定する。例えば、肌状態推定装置10は、カメラ機能を有するスマートフォン等である。後段で、図2を参照しながら、肌状態推定装置10について詳細に説明する。
図2は、本発明の一実施形態に係る肌状態推定装置10の機能ブロックを示す図である。肌状態推定装置10は、画像取得部101と、鼻特徴特定部102と、肌状態推定部103と、骨格推定部104と、出力部105と、を備えることができる。また、肌状態推定装置10は、プログラムを実行することで、画像取得部101、鼻特徴特定部102、肌状態推定部103、骨格推定部104、出力部105、として機能することができる。以下、それぞれについて説明する。
ここで、肌の状態について説明する。例えば、肌の状態は、シワ、シミ、たるみ、クマ、ほうれい線、くすみ、ハリ、水分、皮脂、メラニン、血行、血管、血液、キメ、毛穴、肌の色の少なくとも1つである。より詳細には、例えば、肌の状態は、目尻のシワ、目の下のシワ、額のシワ、アイホールのシワ、目袋のたるみ、目のクマ、ほうれい線(鼻唇溝、口元)、鼻唇溝の深さ、マリオネットラインのたるみ、あごのたるみ、HbSO2 Index (血中酸素飽和度指数)、Hb Index(ヘモグロビン量)、HbO2 (酸化ヘモグロビン量)、肌の色み、肌の明るさ、水分の保持力(TEWL)、皮丘の数、皮膚の粘弾性、血中の酸素量、血管の密度、毛細血管数、血管分岐数、血管と表皮間の距離、表皮厚、HDLコレステロール、皮脂、水分量、メラニンインデックス(メラニンの指標)、毛穴、透明度、色むら(茶み、赤み)、pH等である。肌状態推定部103は、鼻の特徴と肌の状態との相関に基づいて、鼻の特徴から肌の状態を推定する。
ここで、鼻の特徴と肌の状態との対応関係について説明する。肌状態推定部103は、事前に肌状態推定装置10等に記憶されている鼻の特徴と肌の状態との対応関係に基づいて、肌の状態を推定する。なお、鼻の特徴だけでなく、鼻の特徴および顔の特徴の一部に基づいて、肌の状態を推定するようにしてもよい。
本発明の一実施形態では、肌状態推定装置10等のコンピュータは、学習済みモデルを生成することができる。具体的には、肌状態推定装置10等のコンピュータは、入力データが鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)であり、出力データが肌の状態である教師データを取得し、該教師データを用いて機械学習して、鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)が入力されると肌の状態が出力される学習済みモデルを生成することができる。このように、入力データが鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)であり、出力データが肌の状態である教師データを用いて機械学習することによって、鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)が入力されると肌の状態が出力される学習済みモデルが生成される。
ここで、顔の骨格に関する形状と肌の状態との対応関係について説明する。上述したように、肌状態推定部103は、事前に肌状態推定装置10等に記憶されている顔の骨格に関する形状と肌の状態との対応関係に基づいて、肌の状態を推定することもできる。
本発明の一実施形態では、肌状態推定装置10等のコンピュータは、学習済みモデルを生成することができる。具体的には、肌状態推定装置10等のコンピュータは、入力データが顔の骨格に関する形状であり、出力データが肌の状態である教師データを取得し、該教師データを用いて機械学習して、顔の骨格に関する形状が入力されると肌の状態が出力される学習済みモデルを生成することができる。このように、入力データが顔の骨格に関する形状であり、出力データが肌の状態である教師データを用いて機械学習することによって、顔の骨格に関する形状が入力されると肌の状態が出力される学習済みモデルが生成される。
なお、推定される肌の状態は、ユーザ20の未来の肌の状態であってもよいし、ユーザ20の現在の肌の状態であってもよい。鼻の特徴(あるいは鼻の特徴から推定された顔の骨格に関する形状)と肌の状態との対応関係が、ユーザ20の実年齢よりも高い年齢の者のデータをもとに作成されている(例えば、実験の被験者の年齢、あるいは、機械学習するときの学習用データになった者の年齢がユーザ20の実年齢よりも高い)場合には、ユーザ20の未来の肌が推定される。一方、鼻の特徴(あるいは鼻の特徴から推定された顔の骨格に関する形状)と肌の状態との対応関係が、ユーザ20の実年齢と同一の年齢の者のデータをもとに作成されている(例えば、実験の被験者の年齢、あるいは、機械学習するときの学習用データになった者の年齢がユーザ20の実年齢と同一である)場合には、ユーザ20の現在の肌が推定される。なお、鼻の特徴だけでなく、鼻の特徴および顔の特徴の一部に基づいて、肌の状態を推定するようにしてもよい。
例えば、肌状態推定部103は、鼻根と鼻梁が高いときに目尻にシワが出やすいと推定することができる。また、例えば、肌状態推定部103は、頬の形状が頬骨の高い位置が上部にある形状の場合、目尻のシワがある、または、将来シワになる可能性があると推定(ON/OFFを判断)することができる。
例えば、肌状態推定部103は、鼻翼が丸みがあるほど、また、例えば目が大きい場合、目の下にシワが出来やすいと推定することができる。
例えば、肌状態推定部103は、鼻翼の丸さ、および、鼻梁の高さに基づいて、目袋のたるみを推定することができる。具体的には、肌状態推定部103は、鼻翼の丸さと鼻梁の高さの和が大きいほど、目袋がたるんでいると推定することができる。
例えば、肌状態推定部103は、鼻梁の低さ、および、鼻翼の丸さに基づいて、HbCO2(還元ヘモグロビン)を推定することができる。
例えば、肌状態推定部103は、鼻梁が低く、鼻翼が丸い、または目間距離が離れているほど水分量が低いと推定することができる。
例えば、肌状態推定部103は、鼻翼の丸さに基づいて、皮脂を推定することができる。
例えば、肌状態推定部103は、鼻翼が丸く鼻梁が高いほどメラニンインデックスは高く
メラニン量が多い、鼻梁が低く目間距離が狭いほどメラニンインデックスは低いと推定することができる。
例えば、肌状態推定部103は、鼻翼が丸い場合に目のクマが出やすいと推定することができる。
例えば、肌状態推定部103は、鼻梁が低く目間距離が広めの場合、または、顎の角度に丸みがある場合にフェイスラインがたるみやすいと推定することができる。
例えば、肌状態推定部103は、鼻梁が高いほど血中酸素量が多いと推定することができる。
例えば、肌状態推定部103は、鼻翼の大きさまたは鼻根の高さの変化位置から血管密度を推定することができ、鼻翼が大きいほど血管密度が高い。
例えば、肌状態推定部103は、鼻翼の大きさから表皮厚を推定することができる。
例えば、肌状態推定部103は、鼻根の高さの変化位置から血管分岐数を推定することができる。
本発明の一実施形態では、肌状態推定部103は、上記の推定例1~9等で推定した値から、総合的にシワ、シミ、たるみ、クマ、ほうれい線、くすみ、ハリ、水分、皮脂、メラニン、血行、血管、血液、毛穴、肌の色として肌の状態を表すことができる。以下、一例を示す。
・シワ:目尻、目の下、額、アイホールのシワの1つまたは2つ以上の項目から表す。
・シミ:茶色の色むら、赤みの色むら、メラニンの1つまたは2つ以上の項目から表す。
・たるみ:目袋、あご、マリオネットラインの1つまたは2つ以上の項目から表す。
・クマ:目の茶クマ、青クマの1つまたは2つの項目から表す。
・ほうれい線:鼻唇溝のほうれい線、口元のほうれい線の1つまたは2つの項目から表す。
・くすみ:透明度、メラニン、色むら、肌の色、酸素飽和度、水分、皮丘の数の1つまたは2つ以上の項目から表す。
・ハリ:水分、皮脂、たるみ、皮膚の粘弾性の1つまたは2つ以上の項目から表す。
・水分:水分量、水分の保持力(TEWL)、皮丘の数、pHの1つまたは2つの項目から表す。
・キメ:皮丘の数、水分の1つまたは2つ以上の項目から表す。
・肌の色:肌の色み、肌の明るさ、メラニン、血中の酸素量、HbO2(酸化ヘモグロビン量) の1つまたは2つ以上の項目から表す。
・皮脂:皮脂量、毛穴の1つまたは2つの項目から表す。
なお、水分と皮脂から標準肌、乾燥肌、脂性肌、混合肌を分類してもよい。
・メラニン:メラニンインデックス、メラニン量、色むらの1つまたは2つの項目から表す。
・血行:HbSO2 Index (血中酸素飽和度指数)、Hb Index(ヘモグロビン量)、HbO2 (酸化ヘモグロビン量)、血中酸素量、肌の色の少なくとも1つまたは2つの項目から表す。
・血管:血管の密度、毛細血管数、血管分岐数、血管と表皮間の距離、表皮厚の1つまたは2つ以上の項目から表す。
・血液:HDLコレステロール
ここで、顔の骨格に関する形状について説明する。「顔の骨格に関する形状」とは、顔の骨格そのものの形状と、該骨格に起因する顔の形状と、のうちの少なくとも一方をいう。骨格推定部104は、鼻の特徴と顔の骨格に関する形状との相関に基づいて、鼻の特徴から顔の骨格に関する形状を推定する。
・眼窩(横長、正方形、丸みを帯びている)
・頬骨、頬(ピーク位置、丸み)
・鼻骨(幅、形状)
・梨状口(形状)
・頭蓋骨指数(頭蓋骨の幅/奥行=70、75、80、85、90)
・上顎骨、上顎(眼窩との位置関係、鼻唇角)
・下顎骨、下顎(奥行長さ、奥行角度、前方角度、輪郭形状(エラ))
・前頭部(額の丸み、額の形状)
・眉(目と眉の距離、眉形状、眉濃さ)
・唇(上下ともに厚い、下唇が厚い、上下ともに薄い、横に大きい、小さい)
・口角(上り、下がり、標準)
・目(面積、角度、眉と目の距離、目間距離)
・蒙古ひだ(有り、無し)
・顔輪郭(Rectangle、Round、Obal、Heart、Square、Average、Natural、Long)
ここで、鼻の特徴と顔の骨格に関する形状との対応関係について説明する。骨格推定部104は、事前に肌状態推定装置10等に記憶されている鼻の特徴と顔の骨格に関する形状との対応関係に基づいて、顔の骨格に関する形状を推定する。なお、鼻の特徴だけでなく、鼻の特徴および顔の特徴の一部に基づいて、顔の骨格に関する形状を推定するようにしてもよい。
本発明の一実施形態では、肌状態推定装置10等のコンピュータは、学習済みモデルを生成することができる。具体的には、肌状態推定装置10等のコンピュータは、入力データが鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)であり、出力データが顔の骨格に関する形状である教師データを取得し、該教師データを用いて機械学習して、鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)が入力されると顔の骨格に関する形状が出力される学習済みモデルを生成することができる。このように、入力データが鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)であり、出力データが顔の骨格に関する形状である教師データを用いて機械学習することによって、鼻の特徴(鼻の特徴および顔の特徴の一部でもよい)が入力されると顔の骨格に関する形状が出力される学習済みモデルが生成される。
例えば、骨格推定部104は、鼻根の高さまたは低さまたは鼻根の高さの変化位置、および、鼻梁の高さまたは低さに基づいて、頭蓋骨指数を推定することができる。具体的には、骨格推定部104は、鼻根と鼻梁の少なくとも一方が高いほど、頭蓋骨指数が低いと推定する。
例えば、骨格推定部104は、鼻梁の幅に基づいて、口角の上りまたは下がりを推定することができる。具体的には、骨格推定部104は、鼻梁の幅が広いほど、口角が下がっていると推定する。
例えば、骨格推定部104は、鼻翼の丸さ、および、鼻尖の尖度に基づいて、唇の大きさおよび厚さ(1.上下ともに大きく厚い、2.下唇が厚い、3.上下ともに薄く小さい)を推定することができる。
例えば、骨格推定部104は、鼻根に基づいて、蒙古ひだの有無を推定することができる。具体的には、骨格推定部104は、鼻根が低いと判定された場合に、蒙古ひだが有ると推定する。
例えば、骨格推定部104は、鼻梁の低さまたは高さ、および、鼻根の高さ、および、鼻翼の丸さおよび大きさに基づいて、下顎の形状を分類(例えば、3つに分類)することができる。
例えば、骨格推定部104は、鼻梁の高さに基づいて、梨状口を推定することができる。
例えば、骨格推定部104は、鼻梁の低さに基づいて、目間距離を推定することができる。具体的には、骨格推定部104は、鼻梁が低いほど、目間距離が広いと推定する。
例えば、骨格推定部104は、鼻根の高さおよび鼻梁の高さに基づいて、前頭部の丸みを推定することができる。
例えば、骨格推定部104は、鼻梁の高さ、低さ、鼻翼の大きさ、鼻根の高さの変化位置に基づいて、目と眉の距離、眉形状を推定することができる。
図3は、本発明の一実施形態に係る肌状態推定の処理の流れを示すフローチャートである。
ここで、鼻の特徴について説明する。例えば、鼻の特徴は、鼻根と、鼻梁と、鼻尖と、鼻翼と、のうちの少なくとも1つである。
鼻根は、鼻の付け根の部分である。例えば、鼻の特徴は、鼻根の高さと、鼻根の低さと、鼻根の幅と、鼻根が高く変化する、鼻根の変化位置と、のうちの少なくとも1つである。
鼻梁は、眉間と鼻先の間の部分である。例えば、鼻の特徴は、鼻梁の高さと、鼻梁の低さと、鼻梁の幅と、のうちの少なくとも1つである。
鼻尖は、鼻の先端部(鼻先)である。例えば、鼻の特徴は、鼻尖の丸みまたは尖度と、鼻尖の向きと、のうちの少なくとも1つである。
鼻翼は、鼻のあたまの両側のふくれている部分である。例えば、鼻の特徴は、鼻翼の丸みまたは尖度と、鼻翼の大きさと、のうちの少なくとも1つである。
図5は、本発明の一実施形態に係る鼻領域の抽出について説明するための図である。鼻特徴特定部102は、鼻を含む画像における鼻の領域を抽出する。例えば、鼻の領域は、図5の(a)のように、鼻全体でもよいし、図5の(b)のように、鼻の一部(例えば、右半分または左半分)でもよい。
図6は、本発明の一実施形態に係る鼻特徴量の算出について説明するための図である。
・鼻根の幅:鼻の上部の領域をX方向で複数(2~4等)に分割し、各領域の画素値の平均値のパターンから幅が判断される。
・鼻梁の高さ:鼻の中央部の領域の画素累積値の平均値から高さ、低さが判断される。なお、高さまたは低さが数値として算出されてもよいし、高いまたは低いに分類されてもよい。
・鼻梁の幅:鼻の中央部の領域をX方向で複数(2~4等)に分割し、各領域の画素値の平均値のパターンから幅が判断される。
・鼻尖の丸みまたは尖度:他の鼻の特徴(鼻梁の高さ、鼻翼の丸みまたは尖度)から求められ、鼻梁が低く鼻翼が丸いほど丸みを帯びている。
・鼻尖の向き:鼻の中央部の領域において、X方向の画素累積値の最大値に対して所定の割合の位置の鼻の最下点からの幅から求められ、幅が広いほど上向きである。
・鼻翼の丸みまたは尖度:鼻の下部の領域におけるY方向の値の変化量から丸みまたは尖度が判断される。
・鼻翼の大きさ:下部の領域の中央部分において所定の値以下となる画素数の割合から判断される。画素数が多いほど鼻翼が大きい。
上述したように、「顔の骨格に関する形状」とは、"顔の骨格そのものの形状"と、"骨格に起因する顔の形状"と、のうちの少なくとも一方をいう。「顔の骨格に関する形状」は、顔タイプを含むことができる。
このように、本発明では、鼻の特徴から肌の状態を容易に推定することができる。本発明の一実施形態では、鼻の特徴から未来の肌の状態を推定して、未来の肌の悩みをより効果的に抑えることができる化粧品を選択したり、マッサージ等の美容法を決定することができる。
図9は、本発明の一実施形態に係る肌状態推定装置10のハードウェア構成を示す図である。肌状態推定装置10は、CPU(Central Processing Unit)1001、ROM(Read Only Memory)1002、RAM(Random Access Memory)1003を有する。CPU1001、ROM1002、RAM1003は、いわゆるコンピュータを形成する。
20 ユーザ
101 画像取得部
102 鼻特徴特定部
103 肌状態推定部
104 骨格推定部
105 出力部
1001 CPU
1002 ROM
1003 RAM
1004 補助記憶装置
1005 表示装置
1006 操作装置
1007 I/F装置
1008 ドライブ装置
1009 記憶媒体
1010 撮影装置
Claims (15)
- ユーザの鼻の特徴を特定するステップと、
前記ユーザの鼻の特徴に基づいて、前記ユーザの肌の状態を推定するステップと
を含む方法。 - 前記ユーザの鼻を含む画像を取得するステップをさらに含み、
前記ユーザの鼻の特徴は、前記画像の画像情報から特定される、請求項1に記載の方法。 - 前記ユーザの肌の状態は、前記ユーザの未来の肌の状態である、請求項1または2に記載の方法。
- 前記肌の状態は、シワ、シミ、たるみ、クマ、ほうれい線、くすみ、ハリ、水分、皮脂、メラニン、血行、血管、血液、キメ、毛穴、肌の色の少なくとも1つである、請求項1から3のいずれか一項に記載の方法。
- 前記肌の状態から肌の総合指標を推定するステップをさらに含む、請求項4に記載の方法。
- 前記肌の状態は、顔の一部と、顔全体と、顔の複数の箇所と、のいずれかにおける肌の状態である、請求項1から5のいずれか一項に記載の方法。
- 前記ユーザの鼻の特徴に基づいて、前記ユーザの顔の骨格に関する形状を推定するステップをさらに含み、
前記ユーザの肌の状態の推定は、前記ユーザの顔の骨格に関する形状に基づいている、請求項1から6のいずれか一項に記載の方法。 - 前記ユーザの肌の状態は、前記ユーザの顔の骨格に関する形状に起因している、請求項7に記載の方法。
- 前記鼻の特徴は、鼻根と、鼻梁と、鼻尖と、鼻翼とのうちの少なくとも1つである、請求項1から8のいずれか一項に記載の方法。
- 前記ユーザの肌の状態は、前記鼻の特徴が入力されると前記肌の状態が出力される学習済みモデルを用いて推定される、請求項1から9のいずれか一項に記載の方法。
- ユーザの鼻の特徴を特定する特定部と、
前記ユーザの鼻の特徴に基づいて、前記ユーザの肌の状態を推定する推定部と
を備えた肌状態推定装置。 - コンピュータを
ユーザの鼻の特徴を特定する特定部、
前記ユーザの鼻の特徴に基づいて、前記ユーザの肌の状態を推定する推定部
として機能させるためのプログラム。 - 肌状態推定装置とサーバとを含むシステムであって、
ユーザの鼻の特徴を特定する特定部と、
前記ユーザの鼻の特徴に基づいて、前記ユーザの肌の状態を推定する推定部と
を備えたシステム。 - 入力データが鼻の特徴であり、出力データが肌の状態である教師データを取得するステップと、
前記教師データを用いて機械学習して、前記鼻の特徴が入力されると前記肌の状態が出力される学習済みモデルを生成するステップと
を含む方法。 - 入力データが鼻の特徴であり、出力データが肌の状態である教師データを用いて機械学習することによって生成された、前記鼻の特徴が入力されると前記肌の状態が出力される学習済みモデル。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/262,620 US20240074694A1 (en) | 2021-02-15 | 2022-02-15 | Skin state estimation method, device, program, system, trained model generation method, and trained model |
CN202280010218.8A CN116801800A (zh) | 2021-02-15 | 2022-02-15 | 皮肤状态推定方法、装置、程序、系统、已学习模型生成方法及已学习模型 |
JP2022580719A JPWO2022173056A1 (ja) | 2021-02-15 | 2022-02-15 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021021916 | 2021-02-15 | ||
JP2021-021916 | 2021-02-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022173056A1 true WO2022173056A1 (ja) | 2022-08-18 |
Family
ID=82838389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/005909 WO2022173056A1 (ja) | 2021-02-15 | 2022-02-15 | 肌状態推定方法、装置、プログラム、システム、学習済みモデル生成方法、および学習済みモデル |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240074694A1 (ja) |
JP (1) | JPWO2022173056A1 (ja) |
CN (1) | CN116801800A (ja) |
WO (1) | WO2022173056A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014219781A (ja) * | 2013-05-07 | 2014-11-20 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | 肌解析装置、肌解析システム、肌解析方法および肌解析プログラム |
JP2018079298A (ja) * | 2016-11-07 | 2018-05-24 | 株式会社 資生堂 | 肌水分量計測装置、ウェアラブルデバイス、肌水分量測定方法、肌水分量評価方法、肌水分量モニタリングシステム、肌水分量評価ネットワークシステム、及び肌水分量評価プログラム |
WO2020209378A1 (ja) * | 2019-04-12 | 2020-10-15 | 株式会社 資生堂 | Upe測定により皮膚状態を決定する方法 |
-
2022
- 2022-02-15 US US18/262,620 patent/US20240074694A1/en active Pending
- 2022-02-15 CN CN202280010218.8A patent/CN116801800A/zh active Pending
- 2022-02-15 WO PCT/JP2022/005909 patent/WO2022173056A1/ja active Application Filing
- 2022-02-15 JP JP2022580719A patent/JPWO2022173056A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014219781A (ja) * | 2013-05-07 | 2014-11-20 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | 肌解析装置、肌解析システム、肌解析方法および肌解析プログラム |
JP2018079298A (ja) * | 2016-11-07 | 2018-05-24 | 株式会社 資生堂 | 肌水分量計測装置、ウェアラブルデバイス、肌水分量測定方法、肌水分量評価方法、肌水分量モニタリングシステム、肌水分量評価ネットワークシステム、及び肌水分量評価プログラム |
WO2020209378A1 (ja) * | 2019-04-12 | 2020-10-15 | 株式会社 資生堂 | Upe測定により皮膚状態を決定する方法 |
Also Published As
Publication number | Publication date |
---|---|
CN116801800A (zh) | 2023-09-22 |
JPWO2022173056A1 (ja) | 2022-08-18 |
US20240074694A1 (en) | 2024-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8391639B2 (en) | Method and apparatus for realistic simulation of wrinkle aging and de-aging | |
CN101779218B (zh) | 化妆模拟系统及其化妆模拟方法 | |
US9400923B2 (en) | Patient interface identification system | |
CN112784773B (zh) | 图像处理方法及装置、存储介质、终端 | |
EP1248237B1 (en) | Method for measuring volumetric changes in portions of a human body | |
WO2000076398A1 (en) | Skin imaging and analysis systems and methods | |
US20200146622A1 (en) | System and method for determining the effectiveness of a cosmetic skin treatment | |
CN106934073A (zh) | 基于三维立体图像的人脸对比系统、方法及移动终端 | |
KR101301821B1 (ko) | 안색 정보 생성 장치 및 그 방법, 안색 정보를 이용한 건강 상태 판단 장치 및 그 방법, 건강 분류 함수 생성 장치 및 그 방법 | |
KR20180103672A (ko) | 시술에 대한 결과 정보를 제공하는 방법, 시스템 및 비일시성의 컴퓨터 판독 가능 기록 매체 | |
KR20150072463A (ko) | 안면 영상을 이용하는 건강 상태 판단 장치 및 건강 상태 판단 방법 | |
KR102118099B1 (ko) | 안면, 목, 두피, 모발의 피부진단 및 분석 장치 | |
CN103955675A (zh) | 一种人脸特征提取方法 | |
US20230200908A1 (en) | Computing platform for improved aesthetic outcomes and patient safety in medical and surgical cosmetic procedures | |
US9330300B1 (en) | Systems and methods of analyzing images | |
CN113344837B (zh) | 人脸图像处理方法及装置、计算机可读存储介质、终端 | |
WO2022173056A1 (ja) | 肌状態推定方法、装置、プログラム、システム、学習済みモデル生成方法、および学習済みモデル | |
WO2022173055A1 (ja) | 骨格推定方法、装置、プログラム、システム、学習済みモデル生成方法、および学習済みモデル | |
CN109953743A (zh) | 中医面像采集分析装置及方法 | |
US20240032856A1 (en) | Method and device for providing alopecia information | |
US20230200907A1 (en) | Computing platform for improved aesthetic outcomes and patient safety in medical and surgical cosmetic procedures | |
JP7226745B2 (ja) | 三次元顔形態の判別装置、方法、プログラム、およびシステム | |
US20240296574A1 (en) | Information processing apparatus, information processing method, and recording medium | |
Chen | Autonomic activity from human videos | |
CA2376661A1 (en) | Method for measuring changes in portions of a human body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22752878 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022580719 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280010218.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18262620 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22752878 Country of ref document: EP Kind code of ref document: A1 |