WO2022172891A1 - In vivo indwelling member and method for manufacturing same - Google Patents

In vivo indwelling member and method for manufacturing same Download PDF

Info

Publication number
WO2022172891A1
WO2022172891A1 PCT/JP2022/004689 JP2022004689W WO2022172891A1 WO 2022172891 A1 WO2022172891 A1 WO 2022172891A1 JP 2022004689 W JP2022004689 W JP 2022004689W WO 2022172891 A1 WO2022172891 A1 WO 2022172891A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
stent cover
axial direction
fiber
tubular
Prior art date
Application number
PCT/JP2022/004689
Other languages
French (fr)
Japanese (ja)
Inventor
周平 松下
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2022172891A1 publication Critical patent/WO2022172891A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/852Two or more distinct overlapping stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other

Definitions

  • the present invention relates to an in vivo indwelling article and a manufacturing method thereof.
  • a known method for treating a lesion in a biological lumen such as a blood vessel is to percutaneously introduce a therapeutic instrument such as a catheter into the biological lumen and treat the lesion from within the biological lumen.
  • a therapeutic instrument such as a catheter
  • the lesion is a stenotic lesion
  • the stenotic lesion is dilated with a balloon
  • a stent which is a medical device implanted in the body, is often placed in order to prevent restenosis after balloon dilation.
  • the surface of the stent is often coated with a drug that suppresses the migration and proliferation of vascular smooth muscle cells that cause restenosis.
  • drug-coated stents are known as drug-eluting stents.
  • a stent has a tubular structure in which struts, which are linear structural elements, are formed in wavy and annular shapes and can be contracted and expanded in the radial direction.
  • Patent Document 1 proposes an in-vivo indwelling device having a structure in which a stent is covered with a fabric woven with fibers or a knitted fabric (knit) woven with fibers as a stent cover having voids.
  • the area surrounded by fibers, which corresponds to the voids in the stent cover, is smaller than the area surrounded by the struts, which corresponds to the voids in the stent. Therefore, debris generated by pressing of the struts is trapped in the stent cover, preventing migration of the debris into the blood.
  • the stent cover has voids, endothelial cells infiltrate through the voids of the stent cover after the in-vivo indwelling article is placed. This results in earlier endothelialization than without voids in the stent cover, reducing the risk of thrombosis.
  • the fibers are alternately folded to form loops that are continuous in the circumferential direction, so that the loops are continuous in the circumferential direction.
  • a specific loop during weaving of fibers and a loop formed at the same circumferential position after an arbitrary number of consecutive loops intersect while being displaced in the axial direction.
  • the loops present at the ends in the axial direction do not have adjacent loops on one side in the axial direction, the loops may expand radially outward. If an in vivo tissue or the like is caught in the radially outwardly widened loop during delivery of the catheter, there is a risk of causing breakage of the knit or detachment of the stent.
  • An object of the present invention is to provide an in-vivo indwelling device and a manufacturing method thereof.
  • An indwelling device that achieves the above object includes a tubular stent that extends axially, has a distal end and a proximal end, is configured to be radially expandable and contractible, and has a gap; an indwelling article having a distal end and a proximal end and formed to be radially expandable and contractible and having a void, tubular, and made of a fiber stent cover, the stent cover comprising: The fibers are continuous in a wavy line in the circumferential direction of the stent cover while being folded, and are knitted into a long fiber and at least one short fiber arranged at an axial end of the stent cover.
  • the short fibers are defined as loops, and the short fibers are located at the ends in the axial direction and connect the loops that are adjacent in the circumferential direction and have a convex shape on the end side.
  • the loops located at the ends of the stent cover in the axial direction are constrained by other loops that are adjacent in the circumferential direction and connected via the short fibers. It is difficult to spread radially outward. Therefore, the risk of damage to the stent cover or detachment of the stent due to catching of tissue in the living body or the like is reduced. Also, the existence of voids within the loops and voids adjacent to the loops is maintained. Therefore, the delay of endothelialization is suppressed and the risk of thrombosis is suppressed because the invasiveness of endothelial cells is not impaired.
  • the short fiber may be located on the end side of the axial position where the loop at the end of the stent cover in the axial direction intersects another loop axially adjacent to the loop. If the radially outward expansion of the loop at the axial end occurs in the absence of short fibers, the loop will extend from the axial position where it intersects another axially adjacent loop to the end. It tries to expand radially outward at the side position. By providing the short fibers on the end portion side, the moment required for the loop to expand radially outward increases, thereby enhancing the effect of preventing the stent cover from expanding.
  • the length from the end of the short fiber on the axial end side of the stent cover to the folded portion on the end side of the loop connected by the short fiber may be shorter than the axial length of the loop. good. This reduces the risk of damage to the stent cover or detachment of the stent due to catching of tissue in the living body.
  • the position of the ends of the short fibers on the central side in the axial direction of the stent cover may be closer to the ends than the center position in the axial direction of the loops to which the short fibers connect. This increases the moment required for the loops located at the ends to expand radially outward, thereby increasing the effect of preventing the stent cover from expanding.
  • the short fiber has a convex shape with one convex portion facing the central side in the axial direction of the stent cover, and is connected only to two adjacent loops, and the end of the short fiber is connected to the loop. may be located on the end side of the folded portion on the end side of the stent cover.
  • the short fibers are at the ends. Compared to the case where the inner loop is divided along the circumferential direction, the reduction in the area of the void within the loop is suppressed. Therefore, the decrease in the invasiveness of endothelial cells is suppressed, and early endothelialization is promoted. And the risk of thrombus generation is further suppressed.
  • the radial thickness of the long fibers and the short fibers at the axial ends of the stent cover may be smaller than the radial thickness of the long fibers other than the ends. This reduces the outer diameter of the end portion and improves the passageability during delivery, so that the in-vivo implant can treat more peripheral lesions.
  • All the loops located at the ends in the axial direction of the stent cover may be connected by the short fibers. This further reduces the risk of the loop spreading radially outward. Therefore, the risk of damage to the stent cover or detachment of the stent due to catching of tissue in the living body or the like is reduced.
  • the loops at the ends of the adjacent stent covers may have fixed loop-to-loop connections. This further reduces the risk of the loop spreading radially outward. Therefore, the risk of damage to the stent cover or detachment of the stent due to tissue in the body being caught by the loops is reduced.
  • the stent cover may be within the axial length of the stent. This can prevent the axial ends of the stent cover from spreading undesirably outward in the radial direction. Therefore, the risk of damage to the stent cover or detachment of the stent due to catching of tissue in the living body or the like on the stent cover is reduced.
  • the stent cover may be made of a biodegradable material. As a result, the stent cover decomposes and disappears after the indwelling article is placed in the living body, thereby reducing the risk of a foreign body reaction starting from the stent cover.
  • a method for manufacturing an indwelling device that achieves the above object includes a tubular stent that extends axially, has a distal end and a proximal end, is formed to be capable of radial expansion and contraction, and has gaps.
  • all the crossing positions in the axial direction and the circumferential direction of the tubular fibrous members in each of the connecting regions may be connected. This results in an in-vivo implant in which all loops are connected by short fibers, further reducing the risk of loops spreading radially outward. Therefore, the risk of damage to the stent cover or detachment of the stent due to catching of tissue in the living body or the like on the stent cover is reduced.
  • the intersecting position may be welded with an ultrasonic welder. This shortens the time required for the connection process. Also, thermal effects around the weld sites are reduced, reducing the risk of unintentionally reducing stent cover voids and impairing endothelial cell infiltration.
  • the ultrasonic welding machine having a contact surface with a contact surface width wider than the width of the axial direction of the gap of the tubular fiber member is used, and in each connection region, the contact surface width is The contact surface may be brought into contact with the fibers and welded parallel to the axis of the member. As a result, even if the ultrasonic welding machine makes contact with the tubular fibrous member at any position in the axial direction, the intersecting position is reliably welded.
  • the contact surface having the contact surface width narrower than the width in the axial direction of the region in which 10 voids of the tubular fibrous member are continuous in the axial direction may be used.
  • the axial length of the connecting region is not excessively long, and the central region of the stent cover, which is excellent in expandability and contractibility and is not welded at the crossing points, is secured widely.
  • FIG. 1 is a plan view showing an indwelling instrument and a balloon catheter according to an embodiment
  • FIG. FIG. 2 is a plan view showing an indwelling article in a living body
  • 1 is a plan view showing a stent
  • FIG. FIG. 4 is a plan view showing a portion of the stent cover
  • FIG. 4 is a plan view showing a portion of the stent cover
  • FIG. 11 is a plan view showing a modification of the stent cover
  • FIG. 4 is a diagram illustrating a method for manufacturing an indwelling device, in which (A) shows a state in which a protective tube and a core metal member are inserted into a tubular fiber member, and (B) shows a state in which a connection region is welded by an ultrasonic welding machine. , (C) shows the state in which the core metal member has been removed from the tubular fibrous member, (D) shows the state in which the tubular fibrous member has been cut, and (E) shows the completed stent cover after removing the protective tube.
  • FIG. 4 is a perspective view showing an ultrasonic welding machine and a tubular fibrous member;
  • FIG. 3 is a plan view showing part of another example of an indwelling instrument.
  • FIG. 2 is a cross-sectional view of the indwelling device and balloon catheter in a contracted state, taken along line BB of FIG. 1;
  • the indwelling device 10 is used to treat lesions such as constrictions and obstructions occurring in blood vessels, bile ducts, trachea, esophagus, urethra, or other body lumens.
  • the indwelling device 10 is used by being mounted on a known catheter. As an example, the indwelling device 10 is placed on the outer peripheral surface of the balloon 2 of the balloon catheter 1 and inserted into the body lumen, as shown in FIG.
  • a balloon catheter 1 has a balloon 2 at the distal end of a long shaft 3 that can be expanded by fluid supplied through the interior of the shaft 3 .
  • the indwelling device 10 is placed on the outer peripheral surface of the deflated balloon 2 .
  • the balloon 2 expands the lesion together with the indwelling object 10 by expanding at the lesion. Thereafter, when the balloon 2 is deflated, the indwelling device 10 is separated from the balloon 2 in an expanded state to maintain the patency of the lesion.
  • the indwelling device 10 has a stent 20 and a stent cover 30 covering the stent 20, as shown in FIG.
  • the stent 20 is, as shown in FIG.
  • the stent 20 is mounted on the outer peripheral surface of the deflated balloon 2 .
  • the stent 20 is formed in a circular tubular shape as a whole with linear struts 21 .
  • the strut 21 is composed of a plurality of annular bodies 22 arranged in the axial direction of the balloon 2 and connecting elements 23 connecting the annular bodies 22 adjacent in the axial direction.
  • the form of the stent 20 is not limited to this.
  • the stent 20 may be a so-called self-expanding stent 20 that expands by the restoring force of a superelastic alloy.
  • Each annular body 22 is formed by continuously arranging a plurality of linear elements 24 in the circumferential direction while folding them. Axially adjacent annular bodies 22 are integrally connected by connecting elements 23 . Adjacent annular bodies 22 are connected by connecting elements 23 at at least one point on the circumference along the circumferential direction intersecting the axial direction.
  • the widths of the wires of the linear elements 24 and the connecting elements 23 are not particularly limited, but are, for example, 30 to 500 ⁇ m.
  • the wire lengths of the linear elements 24 and the connecting elements 23 are not particularly limited, but are, for example, 0.2 to 20 mm.
  • the thickness of the wires of the linear elements 24 and the connecting elements 23 is not particularly limited, but is, for example, 30 to 500 ⁇ m.
  • the outer diameter of stent 20 when expanded is approximately the same as the inner diameter of stent cover 30 when expanded, but may be larger or smaller.
  • the axial length of stent 20 when expanded is approximately the same as the axial length of stent cover 30 when expanded, but may be longer or shorter.
  • the stent 20 is placed on the outer surface of the contracted balloon 2 in a radially contracted state.
  • the stent 20 widens the angle formed by the linear elements 24 adjacent in the circumferential direction, and the stent 20 expands radially.
  • known materials can be applied, for example, metal materials such as stainless steel, cobalt-chromium alloys, and nickel-titanium alloys, polymer materials such as polylactic acid and polycaprolactone, and the like.
  • the stent cover 30, as shown in FIGS. 2 and 4-5, is formed in a tubular shape with a plurality of voids 32 by flexible fibers 31. As shown in FIG. Stent cover 30 has a central portion 33 between its axial distal and proximal ends. Stent cover 30 is within the axial length of stent 20 .
  • the fibers 31 of the stent cover 30 have long fibers 31A that are knitted into a tubular shape in a knit form, and a plurality of short fibers 31B that are arranged at the distal and proximal ends of the stent cover 30 in the axial direction.
  • the long fibers 31A extend from the folded portion 34B on the one axial end side of the long fiber 31A to the other folded portion 34B on the one axial end side via the folded portion 34A on the other axial end side. It has a plurality of loops 34 separated by length. The orientation of the one end and the orientation of the other end are not fixed and may be set each time.
  • the plurality of loops 34 are continuously arranged in the circumferential direction of the stent cover 30 and arranged in a spiral. The original loop 34 and the loop 34 formed at the same circumferential position after the arbitrary number of continuous loops 34 cross each other while being displaced in the axial direction.
  • the knit has a tubular structure in which the loops 34 are connected in the circumferential direction and the axial direction.
  • a plurality of circumferentially continuous loops 34 form different rows 38 every 360 degrees.
  • Gap 32 is the area inside loop 34 .
  • Loops 34 include a plurality of end loops 37 at each axial end of stent cover 30 .
  • Each end loop 37 is divided by the length from the folded portion 34B on the central portion 33 side to the other folded portion 34B on the central portion 33 side via the folded portion 34A on the end side. It has a convex shape toward
  • the stent cover 30 has a plurality of end voids 35 and a plurality of adjacent regions 36 at each axial end, as shown in FIG.
  • the end gap 35 is the gap 32 formed by the end loop 37 which is convex towards the end and is the area inside the end loop 37 .
  • the adjacent region 36 is the gap 32 located between two circumferentially adjacent end gaps 35, as shown in FIG. That is, the adjacent region 36 is divided by the length from the folded portion 34A on the end side to the other folded portion 34A on the end side via the folded portion 34B on the central portion 33 side. It is the inner area of the loop 34 which is convex toward it. At each end of stent cover 30, end voids 35 and adjacent regions 36 alternate circumferentially.
  • Each short fiber 31B is connected to two circumferentially adjacent end loops 37 at a crossing position 39 in the connection range A of each axial end of the stent cover 30 . That is, the short fiber 31B is located between two circumferentially adjacent end loops 37 and connects the two end loops 37 . Each short fiber 31B is connected to one of the end loops 37 at four crossing points 39. As shown in FIG. The number of intersection positions 39 at which the end loops 37 are connected to each short fiber 31B is not limited, and may be at least one. Such connection between fibers means that the fibers are fixed to each other, and is formed by applying a method such as fusion fixation or adhesive fixation.
  • connection range A the long fibers 31A may be connected to each other at the long fiber crossing positions 40 where the long fibers 31A cross each other like the crossing positions 39.
  • the preferred range of the connection range A where the intersecting fibers 31 are connected is from each of the axial ends of the stent cover 30, moving from the end loops 37 of the stent cover 30 to the central part 33 side in the axial direction by four.
  • the range includes up to the long fiber crossing position 40 where the fiber 31 of the previous loop 34 that has been moved and the fiber 31 of the previous loop 34 that has been moved five times crosses.
  • the short fibers 31B are small pieces cut and separated from the fibers 31 arranged at each end of the indwelling device 10 in the axial direction.
  • the short fiber 31B is formed by cutting the loop 34 when cutting out the stent cover 30 having a predetermined length in the axial direction from the long tubular fiber member 60 (see FIG. 7) woven into a tubular shape. .
  • the interval between the rows 38 aligned in the axial direction during expansion that is, the wale width W, which is the length of the fibers 31 extending in the circumferential direction that are displaced in the axial direction for each turn, is not particularly limited, but is, for example, 0.015 to 8. 0 mm, preferably 0.15 to 0.95 mm.
  • the course width C which is the interval between the loops 34 arranged in the circumferential direction when expanded, is not particularly limited, but is, for example, 0.01 to 5.0 mm, preferably 0.1 to 0.6 mm.
  • the end loop 37 and another loop 34 arranged on the central portion 33 side of the end loop 37 and adjacent to the end loop 37 in the axial direction intersect.
  • a distance L1 from the position P3 to the position P2 is assumed to be about 1/4 of the wale width W.
  • the distance L1 is not particularly limited, it is preferably 0.00375 to 2.0 mm, more preferably 0.0375 to 0.2375 mm.
  • the position P3 of the ends of the short fibers 31B on the axially central side of the stent cover 30 is the axial center position P6 of the end loops 37 to which the short fibers 31B connect (an intermediate position between the positions P4 and P1). Although it is preferable that it is closer to the edge, it is not limited to this. That is, the distance L4 from the position P3 to the position P1 is preferably longer than 1/2 of the distance L3 from the position P4 to the position P1, but is not limited to this. The distance L4 is assumed to be about 3/4 of the wale width W. Although the distance L4 is not particularly limited, it is preferably 0.01125 to 6.0 mm, more preferably 0.1125 to 0.7125 mm.
  • the distance L5 is not particularly limited, it is preferably 0.0075 to 4.0 mm, more preferably 0.075 to 0.475 mm.
  • Each short fiber 31B has a convex shape with one convex portion facing the axial center side of the stent cover 30, and connects only two adjacent end loops 37, and both ends of each short fiber 31B is located on the end side of the connecting end loop 37 from the folded portion 34A on the end side of the stent cover 30 .
  • the two end loops 37 connected by the short fibers 31B may not be adjacent to each other.
  • the short fibers 31B may connect three or more end loops.
  • the radial thickness of the long fibers 31A and the short fibers 31B in the connection range A from the axial ends of the stent cover 30 to the central portion 33 is greater than the radial thickness of the long fibers 31A in the central portion 33. small.
  • the radial thickness of the long fibers 31A and the short fibers 31B within the connection range A is equal to the radial thickness of the long fibers 31A within the central portion 33, or It may be larger than the thickness in the radial direction.
  • the stent cover 30 may have loop-to-loop connecting portions 31C in which circumferentially adjacent end loops 37 are directly connected to each other, as in the modification shown in FIG.
  • the fiber diameter of the fiber 31 is not particularly limited, it is, for example, 0.007 to 0.1 mm, preferably 0.01 to 0.03 mm.
  • the outer diameter of the stent cover 30 when expanded is not particularly limited, but is, for example, 1.00 to 50.00 mm, preferably 2.25 to 4.00 mm.
  • the axial length of the stent cover 30 is not particularly limited, but is, for example, 5-250 mm, preferably 12-38 mm.
  • the constituent material of the fibers 31 forming the stent cover 30 is not particularly limited, but biodegradable materials and non-biodegradable materials can be applied.
  • Biodegradable materials are, for example, polyglycolic acid (PGA), polylactic acid (PLA), polycaprolactone (PCL), polydioxanone (PDO), trimethylene carbonate (PTMC), or copolymers thereof (bipolymer , terpolymers, quaternary copolymers) include glycolic acid-lactic acid copolymer (PGA-LA), glycolic acid-caprolactone copolymer (PGA-CL), and the like.
  • PGA polyglycolic acid
  • PLA polylactic acid
  • PCL polycaprolactone
  • PDO polydioxanone
  • PTMC trimethylene carbonate
  • copolymers thereof include glycolic acid-lactic acid copolymer (PGA-LA), glycolic acid-caprolactone copolymer (PGA-CL), and the like.
  • polyglycolic acid glycolic acid-lactic acid copolymer or glycolic acid-caprolactone copolymer is particularly preferred, and polyglycolic acid is more preferred.
  • the elongation at break of polyglycolic acid is about 40%.
  • Non-biodegradable materials include, for example, polyethylene terephthalate (PET), polyolefin (PO), acrylic oxide, polytetrafluoroethylene (PTFE), polyethylene co-vinyl acetate (PEVA), polyethylene elastomer, polyethylene oxide polybutylene terephthalate copolymer ( PEO-PBT), polyethylene oxide polylactic acid copolymer (PEO-PLA), polybutyl methacrylate (PBMA), polyurethane (PU), silicone-polycarbonate urethane copolymer (SPCU), medical grade polycarbonate urethane (PCU), Carboxylic acid moieties comprising one or more of polyamide (PA), polyetheretherketone (PEEK), polyacrylic acid (PAA), polymethacrylic acid (PMA), maleic acid, heronic acid, taconic acid and/or monomers thereof , thermoplastic polymers, thermoset polymers, polyolefin elastomers, polyesters, polyurethanes,
  • the stent cover 30 and the stent 20 may be fixed in whole or in part by known techniques such as gluing, fusing, or tying with thread. Securing the stent cover 30 and the stent 20 reduces the risk of the stent cover 30 falling off the stent 20 during delivery.
  • the short fibers 31B of the stent cover 30 connect circumferentially adjacent end loops 37 of the axial ends of the stent cover 30. is doing. As a result, the end loops 37 are constrained by other end loops 37 that are adjacent in the circumferential direction and connected via the short fibers 31B, so that the end loops 37 are less likely to expand radially outward.
  • a tubular stent 20 and a tubular fibrous member 60 formed in a tubular shape by weaving fibers 31 in a knit so as to have voids 32 are prepared (preparation step).
  • a stainless steel core member 100 covered with a PTFE protective tube 101 is inserted into the lumen of the tubular fiber member 60 (insertion step).
  • the protection tube 101 is made of PTFE, it prevents the molten material from adhering to the core metal member 100 .
  • the material of the protective tube 101 is not limited to PTFE as long as it is a material to which the melted material is difficult to stick. Also, the protective tube 101 may not be provided.
  • the material of the cored bar member 100 is not limited to stainless steel.
  • the axial length of the tubular fiber member 60 is set to a length that allows a plurality of stent covers 30 to be cut out.
  • a horn 110 of an ultrasonic welding machine is pressed against a plurality of connection regions CR on the outer peripheral surface of the tubular fibrous member 60 which are spaced apart in the axial direction.
  • Horn 110 has a contact surface 111 that contacts tubular fibrous member 60 .
  • the contact surface 111 is formed as an arc-shaped concave surface in the circumferential direction of the tubular fiber member 60 .
  • the contact surface width S of the contact surface 111 is wider than the width of the gap 32 (wale width W) of the tubular fiber member 60 .
  • the contact surface 111 even if the contact surface 111 comes into contact with the tubular fiber member 60 at any position in the axial direction, the contact surface 111 reliably comes into contact with the intersecting position.
  • ultrasonic vibration is applied while pressing the contact surface 111 against the fiber 31 of the tubular fiber member 60 by an ultrasonic welding machine.
  • the tubular fiber member 60 is heated by the vibration caused by the ultrasonic waves, a softening and melting phenomenon occurs, and the fibers 31 at the crossing positions are connected to each other (connecting step).
  • the surroundings of the contact surface 111 are less affected by heat, and the time required for welding is short.
  • the contact surface 111 of the horn 110 contacts the outer peripheral surface of the tubular fibrous member 60 such that the contact surface width S is parallel to the axis of the tubular fibrous member 60 .
  • the contact surface width S is the axial width of a region in which a plurality of, preferably 15, more preferably 10, and even more preferably 8 voids 32 of the tubular fibrous member 60 are continuous in the axial direction. Narrower than width, but not limited to this.
  • the tubular fiber member 60 and the horn 110 are relatively rotated, and a plurality of points in the circumferential direction of the connecting region CR are welded.
  • the axial position of the horn 110 is fixed.
  • the fibers 31 at the crossing positions are connected to each other in the entire circumference of the connection region CR of the tubular fiber member 60 .
  • the axial length of the connection region CR is about twice the axial length of the connection range A to be finally formed.
  • the radial thickness of the fibers 31 in the connection region CR becomes smaller than the radial thickness of the fibers 31 other than the connection region CR due to the pressing of the horn 110 .
  • the core metal member 100 is removed from the tubular fiber member 60 (removal step). At this time, since the protective tube 101 is provided between the tubular fiber member 60 and the core metal member 100 , the core metal member 100 can be easily pulled out from the tubular fiber member 60 .
  • the tubular fiber member 60 is cut together with the protective tube 101 at the axial connection region CR of the tubular fiber member 60 (cutting step). The cutting position is approximately the center in the axial direction of each connection region CR. Thereby, both sides of the cut portion form a connection range A in which the fibers 31 in contact with each other at the axial ends of the different stent covers 30 are welded together.
  • the step of removing the metal core member 100 from the tubular fiber member 60 may be performed after the tubular fiber member 60 is cut. In this case, the tubular fiber member 60 is cut together with the cored bar member 100 .
  • the protective tube 101 is removed from the stent cover 30 formed from the tubular fiber member 60 that has been cut.
  • the protection tube 101 may be removed from the tubular fiber member 60 together with the core metal member 100 or after the core metal member 100 is removed in the removal step.
  • the outer periphery of the stent 20 is covered with the stent cover 30 and attached (attachment step). Thereby, the indwelling device 10 having the stent 20 and the stent cover 30 is completed.
  • the ends of the cut member in the axial direction may be ultrasonically welded to form the connection range A in which the fibers 31 in contact are welded together.
  • a plurality of horns 110 may be arranged side by side in the circumferential direction on the connection region CR, and the fibers 31 at intersecting positions may be simultaneously welded together at a plurality of circumferential locations in the connection region CR.
  • the tubular fibrous member 60 and the plurality of horns 110 may then be rotated relative to one another.
  • vibration of the tubular fiber member 60 due to ultrasonic vibration is suppressed, and variations in axial length and position of the connection region CR are suppressed in the circumferential direction.
  • laser welding may be used instead of ultrasonic welding for connecting the fibers 31 at the crossing positions.
  • vibration is not applied to the tubular fiber member 60, variations in axial length and position of the connection region CR are suppressed in the circumferential direction. Also, the risk of damaging the material is reduced.
  • the method of connecting the long fibers 31A and the short fibers 31B is not limited to ultrasonic welding or laser welding, and may be, for example, hot air welding, vibration welding, induction welding, high frequency welding, or heat welding.
  • a method of connecting the long fibers 31A and the short fibers 31B a method of directly connecting the materials of the long fibers 31A and the short fibers 31B without using other members such as adhesives is preferable. .
  • the indwelling device 10 was manufactured by the manufacturing method described above.
  • the material of the fibers 31 of the prepared tubular fiber member 60 was PET, the fiber diameter was 27 ⁇ m, the course width C was 150 ⁇ m, and the wale width W was 250 ⁇ m.
  • a protective tube 101 and a metal core member 100 were inserted into the tubular fiber member 60, and a horn 110 of an ultrasonic welding machine was pressed against the outer peripheral surface.
  • the contact surface width S of the horn 110 was 2 mm
  • the radius of curvature of the contact surface 111 was 2 mm
  • the width of the contact surface 111 perpendicular to the contact surface width S was 3 mm in horizontal distance.
  • the frequency of the ultrasonic welding machine was 40 kHz, and the welding time was 1 second.
  • the connection position CR was cut at the center in the axial direction.
  • a stent cover 30 was obtained in which the fibers 31 that were in contact at the connection range A were connected.
  • the short fibers 31B formed by the cutting process connected the end loops 37 of the circumferentially adjacent long fibers 31A.
  • the obtained stent cover 30 was put on the separately prepared stent 20 to obtain the indwelling device 10 .
  • the indwelling device 10 is a tubular stent 20 that extends in the axial direction, has a distal end and a proximal end, is formed to be expandable and contractible in the radial direction, and has gaps. and an axially extending stent cover 30 having a distal end and a proximal end, configured to be radially expandable and contractible, tubular with voids 32, and formed of fibers 31.
  • the fibers 31 of the stent cover 30 are folded back and continued in a wavy line in the circumferential direction of the stent cover 30.
  • the fiber divided by the length up to the other folded portion 34B on one end side is defined as a loop, and the short fiber 31B is located at the end in the axial direction and adjacent in the circumferential direction, the end
  • the end loops 37 that are convex on the sides are connected to each other.
  • the end loops 37 located at the ends in the axial direction of the stent cover 30 are circumferentially adjacent to each other and connected via the short fibers 31B. Since it is restrained by the partial loop 37, it is difficult to expand radially outward. Therefore, the risk of damage to the stent cover 30 or detachment of the stent 20 due to catching of tissue in the living body or the like is reduced. Also, the existence of the end voids 35 within the end loops 37 and the adjacent regions 36 adjacent to the end loops 37 is maintained. Therefore, the delay of endothelialization is suppressed and the risk of thrombosis is suppressed because the invasiveness of endothelial cells is not impaired.
  • the short fiber 31B extends from the axial position P2 where the end loop 37 at the end of the stent cover 30 in the axial direction and another loop 34 axially adjacent to the end loop 37 intersect. on the side.
  • the loop 34 moves toward the end from the axial position where it intersects another axially adjacent loop 34 as a fulcrum. Attempts to expand radially outward.
  • the distance L2 from the end of the short fiber 31B on the end side in the axial direction of the stent cover 30 to the folded portion 34A on the end side of the end loop 37 to which the short fiber 31B connects is shorter than the axial distance L3 of . This reduces the risk of damage to the stent cover 30 and detachment of the stent 20 due to catching of tissue in the living body.
  • the position P3 of the ends of the short fibers 31B on the central side in the axial direction of the stent cover 30 is closer to the end than the axial center position P6 of the loops 34 to which the short fibers 31B connect.
  • the short fiber 31B has a convex shape having one convex portion facing the central side in the axial direction of the stent cover 30, and is connected only to two adjacent end loops 37, and the end of the short fiber 31B is
  • the connecting end loops 37 may be located on the end side of the folded portion 34A on the end side of the stent cover 30 .
  • the position P3 of the ends of the short fibers 31B on the axial center side of the stent cover 30 is located on the end side of the axial center position P6 of the loops 34 to which the short fibers 31B connect.
  • the short fibers 31B are arranged so as to divide the inside of the end loop 37 along the circumferential direction, the area of the void 32 in the end loop 37 is suppressed from decreasing. Therefore, the decrease in the invasiveness of endothelial cells is suppressed, and early endothelialization is promoted. And the risk of thrombus generation is further suppressed.
  • the radial thickness of the long fibers 31A and the short fibers 31B at the axial ends of the stent cover 30 is smaller than the radial thickness of the long fibers 31A other than the ends.
  • all the end loops 37 located at the ends of the stent cover 30 in the axial direction are connected by short fibers 31B. This further reduces the risk of the end loops 37 spreading radially outwards. Therefore, the risk of damage to the stent cover 30 or detachment of the stent 20 due to catching of tissue in the living body or the like is reduced.
  • end loops 37 at the ends of adjacent stent covers 30 may have loop-to-loop connections 31C fixed to each other. This further reduces the risk of the end loops 37 spreading radially outwards. Therefore, the risk of causing damage to the stent cover 30 or detachment of the stent 20 due to the end loops 37 being caught by tissue in the living body or the like is reduced.
  • the stent cover 30 is within the axial length of the stent 20 .
  • the axial ends of the stent cover 30 can be prevented from spreading undesirably outward in the radial direction. Therefore, the risk of causing damage to the stent cover 30 or detachment of the stent 20 due to catching of tissue in the living body or the like on the stent cover 30 is reduced.
  • the stent cover 30 may be made of a biodegradable material. As a result, the stent cover 30 decomposes and disappears after the indwelling device 10 is left in the living body, thereby reducing the risk of a foreign body reaction starting from the stent cover 30 .
  • the manufacturing method of the indwelling device 10 includes the tubular stent 20 which extends axially, has a distal end and a proximal end, is formed so as to be expandable and contractible in the radial direction, and has gaps, and the gaps 32 .
  • a cutting step of cutting the tubular fibrous member 60 with an attaching step of attaching the stent cover 30 obtained after the cutting step to the stent 20, and a stage after the connecting step and before the attaching step, the tubular fibrous member 60 or a withdrawal step of withdrawing the core metal member 100 from the stent cover 30 .
  • the intersecting position 39 between the loop fiber 31 at the cut position and the loop fiber 31 axially adjacent thereto is connected. Therefore, the fibers 31 of the loops that were in the position where they were cut are prevented from remaining as fragments that can be dislodged from the stent cover 30 .
  • the risk of the fragment flying into the living body and blocking the lumen of the living body after being indwelled in the living body is reduced.
  • the intersection position 39 is welded with an ultrasonic welding machine. This shortens the time required for the connection process. In addition, the thermal effect around the weld site is reduced, and the risk of unintentionally reducing the voids 32 of the stent cover 30 and impairing the infiltration of endothelial cells is reduced.
  • an ultrasonic welding machine having a contact surface 111 having a contact surface width S that is wider than the axial width of the gap 32 of the tubular fiber member 60 is used.
  • the contact surface 111 is brought into contact with the fiber 31 and welded so that S is parallel to the axis of the tubular fiber member 60 .
  • the contact surface 111 having a contact surface width S narrower than the axial width of the region in which ten voids 32 of the tubular fiber member 60 are continuous in the axial direction may be used.
  • a wide area of the central portion 33 of the stent cover 30 with excellent expandability and shrinkability is ensured without welding the intersection points 39 because the axial length of the connection area CR is limited. be.
  • the shape of the short fibers 31B is not particularly limited, and may be straight, wavy, zigzag, or the like.
  • the short fibers 31B may extend in the circumferential direction of the stent cover 30 and be formed into a ring shape.
  • connection range A where the long fibers 31A and the short fibers 31B of the stent cover 30 are connected may be reduced in diameter to have a folded portion 30A, as shown in FIG.
  • the diameter of the stent cover 30 in the connection range A is expanded so that the folded portion 30A is opened.
  • the connection area A may be reduced in diameter without having a folding structure.
  • the surface or inside of the stent 20 or the stent cover 30 may contain a known drug such as an immunosuppressant.
  • Balloon Catheter Balloon 3 Shaft 10 Indwelling Object 20 Stent 30 Stent Cover 31 Fiber 31A Long Fiber 31B Short Fiber 31C Connection between Loops 32 Gap 33 Central Part 34 Loop 35 End Gap (Gap) 36 Adjacent region (void) 37 end loops (loops) 38 row 39 crossing position 40 long fiber crossing position (crossing position) 60 Tubular fiber member 100 Core bar member 110 Horn 111 Contact surface CR Connection region S Contact surface width

Abstract

[Problem] To provide an in vivo indwelling member that inhibits the invasion of a vital tissue, etc. into a void at an end of a stent cover and reduces the risk of the stent cover breakage or stent dropout, and a method for manufacturing the same. [Solution] An in vivo indwelling member (10) comprising a tubular stent (20) and a stent cover (30) that is in a tubular shape with voids (32) and formed of fibers (31), wherein: the fibers (31) include a long fiber (31A) that is knitted so as to continue, while being turned over, in the form of wavy lines toward the circumferential direction of the stent cover (30), and at least one short fiber (31B) disposed at an end in the axial direction of the stent cover (30); a fiber part on the long fiber (31A), said fiber part being divided by the length from a turn-over point (34B) on one end side in the axial direction, through a turn-over point (34A) on the other end side in the axial direction, to another turn-over point (34B) on the one end side in the axial direction, is defined as a loop; and the short fiber (31B), which is positioned at the end in the axial direction, connects together circumferentially adjacent end loops (37) being convex toward the end side.

Description

生体内留置物およびその製造方法In vivo indwelling article and manufacturing method thereof
 本発明は、生体内留置物およびその製造方法に関する。 The present invention relates to an in vivo indwelling article and a manufacturing method thereof.
 血管等の生体管腔における病変部の治療方法として、カテーテルのような治療器具を経皮的に生体管腔に導入し、生体管腔内から病変部を治療する方法が知られている。このような治療方法において、病変部が狭窄病変の場合、狭窄病変をバルーンで拡張し、バルーン拡張後の再狭窄を防ぐ目的で、体内埋込型の医療器具であるステントを留置することが多い。ステントの表面は、再狭窄の原因である血管平滑筋細胞の遊走や増殖を抑制する薬剤を塗布されることが多い。このような薬剤を塗布されたステントは、薬剤溶出ステントとして知られている。 A known method for treating a lesion in a biological lumen such as a blood vessel is to percutaneously introduce a therapeutic instrument such as a catheter into the biological lumen and treat the lesion from within the biological lumen. In such treatment methods, when the lesion is a stenotic lesion, the stenotic lesion is dilated with a balloon, and a stent, which is a medical device implanted in the body, is often placed in order to prevent restenosis after balloon dilation. . The surface of the stent is often coated with a drug that suppresses the migration and proliferation of vascular smooth muscle cells that cause restenosis. Such drug-coated stents are known as drug-eluting stents.
 ステントは、線状の構成要素であるストラットが波状および環状に形成されて、径方向に収縮および拡張することが可能な管状構造を有する。ステントを病変部に留置する際は、術者は、ステントが収縮されて装着されたカテーテルを病変部まで移行(デリバリー)する。ステントが病変部に到達した後に、術者がカテーテルを操作することでステントが拡張し、病変部に留置される。 A stent has a tubular structure in which struts, which are linear structural elements, are formed in wavy and annular shapes and can be contracted and expanded in the radial direction. When a stent is placed in a lesion, an operator moves (delivers) a catheter with a contracted stent to the lesion. After the stent reaches the lesion, the operator manipulates the catheter to expand the stent and leave it in the lesion.
 留置する病変部にプラークが存在する場合、ステントの拡張によってストラットがプラークに押し付けられると、プラークに亀裂が生じてデブリが生じることがある。その結果、ストラットとストラットの間を通過してデブリが血液中に移行し、場合によっては末梢側の血管にトラップされて末梢血管を閉塞し、末梢組織の壊死を発生させる。 When plaque is present in the lesion to be placed, if the struts are pressed against the plaque by expansion of the stent, the plaque may crack and debris may occur. As a result, debris passes between struts and migrates into the blood, and in some cases, is trapped in blood vessels on the peripheral side, occluding the peripheral blood vessels, and causing peripheral tissue necrosis.
 特許文献1では、ステントに、空隙を有するステントカバーとして繊維を織り込んだ織物や繊維を編み込んだ編物(ニット)を被せた構造の生体内留置物が提案されている。ステントカバーの空隙に相当する繊維に囲まれた領域は、ステントの隙間に相当するストラットに囲まれた領域より小さい。このため、ストラットの押し付けで生じるデブリがステントカバーにトラップされ、デブリの血液中への移行が防止される。また、ステントカバーが空隙を有するため、この生体内留置物の留置後は、ステントカバーの空隙から内皮細胞が浸潤する。このため、ステントカバーに空隙がない場合よりも早期に内皮され、血栓発生のリスクが低減される。 Patent Document 1 proposes an in-vivo indwelling device having a structure in which a stent is covered with a fabric woven with fibers or a knitted fabric (knit) woven with fibers as a stent cover having voids. The area surrounded by fibers, which corresponds to the voids in the stent cover, is smaller than the area surrounded by the struts, which corresponds to the voids in the stent. Therefore, debris generated by pressing of the struts is trapped in the stent cover, preventing migration of the debris into the blood. In addition, since the stent cover has voids, endothelial cells infiltrate through the voids of the stent cover after the in-vivo indwelling article is placed. This results in earlier endothelialization than without voids in the stent cover, reducing the risk of thrombosis.
米国特許第10070976号U.S. Patent No. 10070976
 空隙を有するステントカバーとしてのニットは、繊維が交互に折り返されてループを形成しつつ円周方向に連続することで、ループが円周方向に連続する。また、繊維を編み込む際の特定のループと、ループが任意数連続した後の同じ円周方向の位置に形成されるループは、軸方向にずれつつ交差する。このように繊維が連続することで、ニットは円周方向と軸方向にループが連なった螺旋状の構造となっている。このため、ニットの軸方向の端部に存在するループを除き、任意のループは軸方向の両側に隣接するループから拘束を受ける。しかし、軸方向の端部に存在するループは軸方向の片側に隣接するループが存在しないため、ループが径方向外側に広がってしまうことがある。径方向外側に広がったループに、カテーテルのデリバリー中に生体内組織などが引っ掛かると、ニットの破損やステントの脱落を引き起こすリスクがある。 In the knitted stent cover with voids, the fibers are alternately folded to form loops that are continuous in the circumferential direction, so that the loops are continuous in the circumferential direction. In addition, a specific loop during weaving of fibers and a loop formed at the same circumferential position after an arbitrary number of consecutive loops intersect while being displaced in the axial direction. By connecting the fibers in this way, the knit has a helical structure in which loops are connected in the circumferential direction and the axial direction. Thus, except for loops at the axial ends of the knit, any loop is constrained by adjacent loops on both axial sides. However, since the loops present at the ends in the axial direction do not have adjacent loops on one side in the axial direction, the loops may expand radially outward. If an in vivo tissue or the like is caught in the radially outwardly widened loop during delivery of the catheter, there is a risk of causing breakage of the knit or detachment of the stent.
 本発明は、上述した課題を解決するためになされたものであり、ステントカバーの端部の空隙に生体内組織などが入り込むことが抑制され、ステントカバーの破損やステントの脱落のリスクが低減される生体内留置物およびその製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, by suppressing the intrusion of tissues in the living body into gaps at the ends of a stent cover, thereby reducing the risk of breakage of the stent cover and detachment of the stent. An object of the present invention is to provide an in-vivo indwelling device and a manufacturing method thereof.
 上記目的を達成する生体内留置物は、軸方向に延び、先端および基端を有し、径方向への拡張および収縮が可能に形成され、隙間を有する管状のステントと、軸方向に延び、先端および基端を有し、径方向への拡張および収縮が可能に形成され、空隙を有する管状で、繊維により形成されたステントカバーと、を有する生体内留置物であって、前記ステントカバーの繊維は、折り返されつつ前記ステントカバーの円周方向へ波線状に連続し、ニット状に編み込まれた長尺繊維と、前記ステントカバーの軸方向の端部に配置された少なくとも1つの短尺繊維と、を有し、前記長尺繊維上の軸方向の一端側の折り返し部から軸方向の他端側の折り返し部を介して軸方向の一端側の他の折り返し部に至るまでの長さで区分された前記繊維をループと定義し、前記短尺繊維は、軸方向の端部に位置し、円周方向に隣接した、端部側に凸状となる前記ループ同士を接続していることを特徴とする。 An indwelling device that achieves the above object includes a tubular stent that extends axially, has a distal end and a proximal end, is configured to be radially expandable and contractible, and has a gap; an indwelling article having a distal end and a proximal end and formed to be radially expandable and contractible and having a void, tubular, and made of a fiber stent cover, the stent cover comprising: The fibers are continuous in a wavy line in the circumferential direction of the stent cover while being folded, and are knitted into a long fiber and at least one short fiber arranged at an axial end of the stent cover. , and divided by the length from the folded portion on the one end side in the axial direction of the long fiber to the other folded portion on the one end side in the axial direction via the folded portion on the other axial end side The short fibers are defined as loops, and the short fibers are located at the ends in the axial direction and connect the loops that are adjacent in the circumferential direction and have a convex shape on the end side. and
 上記のように構成した生体内留置物は、ステントカバーの軸方向の端部に位置するループが、円周方向に隣接して短尺繊維を介して接続される他のループから拘束を受けるため、径方向外側に広がりにくい。このため、生体内組織などが引っ掛かることによるステントカバーの破損やステントの脱落を引き起こすリスクが低減される。また、ループ内の空隙とループに隣接する空隙の存在が維持される。このため、内皮細胞の浸潤性を損なわないことから内皮化の遅延が抑制され、血栓の発生リスクが抑制される。 In the indwelling device configured as described above, the loops located at the ends of the stent cover in the axial direction are constrained by other loops that are adjacent in the circumferential direction and connected via the short fibers. It is difficult to spread radially outward. Therefore, the risk of damage to the stent cover or detachment of the stent due to catching of tissue in the living body or the like is reduced. Also, the existence of voids within the loops and voids adjacent to the loops is maintained. Therefore, the delay of endothelialization is suppressed and the risk of thrombosis is suppressed because the invasiveness of endothelial cells is not impaired.
 前記短尺繊維は、前記ステントカバーの軸方向の端部のループと、当該ループと軸方向に隣接する他のループとが交差する軸方向の位置より端部側にあってもよい。短尺繊維がない状態で軸方向の端部のループの径方向外側への広がりが起こる場合、当該ループは、軸方向に隣接する他のループと交差する軸方向位置を支点として、それより端部側の位置で径方向外側に広がろうとする。短尺繊維が端部側に設けられることで、当該ループが径方向外側に広がるために必要なモーメントが増加することにより、ステントカバーの広がりを防止する効果が高まる。 The short fiber may be located on the end side of the axial position where the loop at the end of the stent cover in the axial direction intersects another loop axially adjacent to the loop. If the radially outward expansion of the loop at the axial end occurs in the absence of short fibers, the loop will extend from the axial position where it intersects another axially adjacent loop to the end. It tries to expand radially outward at the side position. By providing the short fibers on the end portion side, the moment required for the loop to expand radially outward increases, thereby enhancing the effect of preventing the stent cover from expanding.
 前記ステントカバーの軸方向の端部側の前記短尺繊維の端部から、当該短尺繊維が接続する前記ループの端部側の折り返し部までの長さは、前記ループの軸方向長さより短くてもよい。これにより、生体内組織などが引っ掛かることによるステントカバーの破損やステントの脱落を引き起こすリスクが低減される。 The length from the end of the short fiber on the axial end side of the stent cover to the folded portion on the end side of the loop connected by the short fiber may be shorter than the axial length of the loop. good. This reduces the risk of damage to the stent cover or detachment of the stent due to catching of tissue in the living body.
 前記ステントカバーの軸方向の中央側の前記短尺繊維の端部の位置は、前記短尺繊維が接続する前記ループの軸方向の中心位置より端部側にあってもよい。これにより、端部に位置するループが径方向外側に広がるために必要なモーメントが増加することにより、ステントカバーの広がりを防止する効果が高まる。 The position of the ends of the short fibers on the central side in the axial direction of the stent cover may be closer to the ends than the center position in the axial direction of the loops to which the short fibers connect. This increases the moment required for the loops located at the ends to expand radially outward, thereby increasing the effect of preventing the stent cover from expanding.
 前記短尺繊維は、前記ステントカバーの軸方向の中央側に向く凸部を1つ有する凸型形状であり、2つの隣接する前記ループのみと接続し、前記短尺繊維の終端は、接続する前記ループの前記ステントカバーの端部側の折り返し部より端部側に位置してもよい。これに加えて、上述した、ステントカバーの軸方向の中央側の短尺繊維の端部の位置が、短尺繊維が接続するループの軸方向の中心位置より端部側にある場合、短尺繊維が端部ループ内を円周方向に沿って分断するように配置される場合と比較して、ループ内の空隙の面積の減少が抑えられる。このため、内皮細胞の浸潤性の低下が抑制され、より早期の内皮化が促される。そして、血栓の発生リスクが更に抑制される。 The short fiber has a convex shape with one convex portion facing the central side in the axial direction of the stent cover, and is connected only to two adjacent loops, and the end of the short fiber is connected to the loop. may be located on the end side of the folded portion on the end side of the stent cover. In addition to this, when the position of the ends of the short fibers on the axial center side of the stent cover is located on the end side of the axial center position of the loops to which the short fibers connect, the short fibers are at the ends. Compared to the case where the inner loop is divided along the circumferential direction, the reduction in the area of the void within the loop is suppressed. Therefore, the decrease in the invasiveness of endothelial cells is suppressed, and early endothelialization is promoted. And the risk of thrombus generation is further suppressed.
 前記ステントカバーの軸方向の端部の前記長尺繊維および前記短尺繊維の径方向の厚みは、前記端部以外の前記長尺繊維の径方向の厚みより小さくてもよい。これにより、端部の外径が小さくなり、デリバリー時の通過性が向上するため、生体内留置物はより末梢の病変を治療できるようになる。 The radial thickness of the long fibers and the short fibers at the axial ends of the stent cover may be smaller than the radial thickness of the long fibers other than the ends. This reduces the outer diameter of the end portion and improves the passageability during delivery, so that the in-vivo implant can treat more peripheral lesions.
 前記ステントカバーの軸方向の端部に位置する全てのループが前記短尺繊維で接続されていてもよい。これにより、ループが径方向外側に広がるリスクがさらに低下する。このため、生体内組織などが引っ掛かることによるステントカバーの破損やステントの脱落を引き起こすリスクが低減される。 All the loops located at the ends in the axial direction of the stent cover may be connected by the short fibers. This further reduces the risk of the loop spreading radially outward. Therefore, the risk of damage to the stent cover or detachment of the stent due to catching of tissue in the living body or the like is reduced.
 隣接する前記ステントカバーの端部の前記ループ同士が固定されたループ間接続部を有してもよい。これにより、ループが径方向外側に広がるリスクがさらに低下する。このため、生体内組織などがループに引っ掛かることによるステントカバーの破損やステントの脱落を引き起こすリスクが低減される。 The loops at the ends of the adjacent stent covers may have fixed loop-to-loop connections. This further reduces the risk of the loop spreading radially outward. Therefore, the risk of damage to the stent cover or detachment of the stent due to tissue in the body being caught by the loops is reduced.
 前記ステントカバーは、前記ステントの軸方向の長さの範囲内にあってもよい。これにより、ステントカバーの軸方向の端部の径方向外側への望ましくない広がりを抑制できる。このため、生体内組織などがステントカバーに引っ掛かることによるステントカバーの破損やステントの脱落を引き起こすリスクが低減される。 The stent cover may be within the axial length of the stent. This can prevent the axial ends of the stent cover from spreading undesirably outward in the radial direction. Therefore, the risk of damage to the stent cover or detachment of the stent due to catching of tissue in the living body or the like on the stent cover is reduced.
 前記ステントカバーは、生分解性材料により形成されてもよい。これにより、生体内留置物を生体内に留置後、ステントカバーが分解して消失することで、ステントカバーを起点に異物反応が起きるリスクが低減される。 The stent cover may be made of a biodegradable material. As a result, the stent cover decomposes and disappears after the indwelling article is placed in the living body, thereby reducing the risk of a foreign body reaction starting from the stent cover.
 上記目的を達成する生体内留置物の製造方法は、軸方向に延び、先端および基端を有し、径方向への拡張および収縮が可能に形成され、隙間を有する管状のステントおよび、空隙を有するように繊維がニット状に編み込まれて管状に形成された管状繊維部材を準備する準備工程と、前記準備工程後に芯金部材を前記管状繊維部材に挿入する挿入工程と、前記挿入工程後に前記管状繊維部材の軸方向に離れた複数の接続領域で、編み込まれた前記繊維同士の交差位置を接続する接続工程と、前記接続工程後に各々の前記接続領域の範囲内にある軸方向の位置で前記管状繊維部材を切断する切断工程と、前記切断工程後に得られたステントカバーを前記ステントに取り付ける取付工程と、前記接続工程後であって前記取付工程前のいずれかの段階で、前記管状繊維部材または前記ステントカバーから前記芯金部材を抜去する抜去工程と、を有することを特徴とする。 A method for manufacturing an indwelling device that achieves the above object includes a tubular stent that extends axially, has a distal end and a proximal end, is formed to be capable of radial expansion and contraction, and has gaps. a preparation step of preparing a tubular fibrous member in which fibers are woven in a knitted shape so as to have a tubular shape; an inserting step of inserting a metal core member into the tubular fibrous member after the preparing step; a connecting step of connecting intersection positions of the woven fibers at a plurality of axially spaced connecting regions of the tubular fibrous member; a cutting step of cutting the tubular fiber member; an attaching step of attaching the stent cover obtained after the cutting step to the stent; and a removing step of removing the core metal member from the member or the stent cover.
 上記のように構成した生体内留置物の製造方法は、切断された位置にあったループの繊維と、これと軸方向に隣接するループの繊維との交差位置が接続されているため、切断された位置にあったループの繊維が、ステントカバーから遊離し得るフラグメントとして残存することが防止される。これより、本製造方法で得られる生体内留置物においては、生体内へ留置後にフラグメントが生体内に飛ばされて生体管腔を閉塞するリスクが低減される。 In the method for manufacturing an indwelling instrument configured as described above, since the fibers of the loop at the cut position and the fibers of the loop axially adjacent thereto are connected at the crossing positions, the cut fibers are not cut. The fibers of the loops that were in position are prevented from remaining as fragments that can dislodge from the stent cover. As a result, in the in vivo indwelling article obtained by the present production method, the risk of the fragment flying into the living body and blocking the lumen of the living body after indwelling in the living body is reduced.
 前記接続工程において、各々の前記接続領域にある前記管状繊維部材の軸方向および円周方向の全ての前記交差位置を接続してもよい。これにより、全てのループが短尺繊維で接続された生体内留置物が得られ、ループが径方向外側に広がるリスクがさらに低下する。このため、生体内組織などがステントカバーに引っ掛かることによるステントカバーの破損やステントの脱落を引き起こすリスクが低減される。 In the connecting step, all the crossing positions in the axial direction and the circumferential direction of the tubular fibrous members in each of the connecting regions may be connected. This results in an in-vivo implant in which all loops are connected by short fibers, further reducing the risk of loops spreading radially outward. Therefore, the risk of damage to the stent cover or detachment of the stent due to catching of tissue in the living body or the like on the stent cover is reduced.
 前記接続工程において、超音波溶着機で前記交差位置を溶着してもよい。これにより、接続工程に要する時間が短縮される。また、溶着箇所周辺の熱影響が減少し、ステントカバーの空隙が意図せず減少して内皮細胞の浸潤性を損なうリスクが低減される。 In the connecting step, the intersecting position may be welded with an ultrasonic welder. This shortens the time required for the connection process. Also, thermal effects around the weld sites are reduced, reducing the risk of unintentionally reducing stent cover voids and impairing endothelial cell infiltration.
 前記接続工程において、前記管状繊維部材の空隙の前記軸方向の幅より広い接触面幅の接触面を有する前記超音波溶着機を使用し、各々の接続領域において、前記接触面幅が前記管状繊維部材の軸に平行になるように前記接触面を前記繊維に接触させて溶着してもよい。これにより、超音波溶着機が管状繊維部材の軸方向のいずれの位置で接触しても、交差位置が確実に溶着される。 In the connecting step, the ultrasonic welding machine having a contact surface with a contact surface width wider than the width of the axial direction of the gap of the tubular fiber member is used, and in each connection region, the contact surface width is The contact surface may be brought into contact with the fibers and welded parallel to the axis of the member. As a result, even if the ultrasonic welding machine makes contact with the tubular fibrous member at any position in the axial direction, the intersecting position is reliably welded.
 前記接続工程において、前記管状繊維部材の空隙が軸方向に10個連続する領域の前記軸方向の幅より狭い前記接触面幅を有する前記接触面を使用してもよい。これにより、接続領域の軸方向の長さが長くなり過ぎることなく、交差位置が溶着されない拡張性および収縮性に優れるステントカバーの中央部の領域が広く確保される。 In the connecting step, the contact surface having the contact surface width narrower than the width in the axial direction of the region in which 10 voids of the tubular fibrous member are continuous in the axial direction may be used. As a result, the axial length of the connecting region is not excessively long, and the central region of the stent cover, which is excellent in expandability and contractibility and is not welded at the crossing points, is secured widely.
実施形態に係る生体内留置物およびバルーンカテーテルを示す平面図である。1 is a plan view showing an indwelling instrument and a balloon catheter according to an embodiment; FIG. 生体内留置物を示す平面図である。FIG. 2 is a plan view showing an indwelling article in a living body; ステントを示す平面図である。1 is a plan view showing a stent; FIG. ステントカバーの一部を示す平面図である。FIG. 4 is a plan view showing a portion of the stent cover; ステントカバーの一部を示す平面図である。FIG. 4 is a plan view showing a portion of the stent cover; ステントカバーの変形例を示す平面図である。FIG. 11 is a plan view showing a modification of the stent cover; 生体内留置物の製造方法を説明する図であり、(A)は管状繊維部材に保護チューブおよび芯金部材を挿入した状態、(B)は超音波溶着機により接続領域を溶着している状態、(C)は管状繊維部材から芯金部材を除去した状態、(D)は管状繊維部材を切断している状態、(E)は保護チューブを除去して完成したステントカバーを示す。FIG. 4 is a diagram illustrating a method for manufacturing an indwelling device, in which (A) shows a state in which a protective tube and a core metal member are inserted into a tubular fiber member, and (B) shows a state in which a connection region is welded by an ultrasonic welding machine. , (C) shows the state in which the core metal member has been removed from the tubular fibrous member, (D) shows the state in which the tubular fibrous member has been cut, and (E) shows the completed stent cover after removing the protective tube. 超音波溶着機と管状繊維部材を示す斜視図である。FIG. 4 is a perspective view showing an ultrasonic welding machine and a tubular fibrous member; 生体内留置物の他の例の一部を示す平面図である。FIG. 3 is a plan view showing part of another example of an indwelling instrument. 収縮状態にある生体内留置物およびバルーンカテーテルの図1のB-B線に沿う断面図である。FIG. 2 is a cross-sectional view of the indwelling device and balloon catheter in a contracted state, taken along line BB of FIG. 1;
 以下、図面を参照して、本発明の実施の形態を説明する。なお、図面の寸法比率は、説明の都合上、誇張されて実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the dimensional ratios in the drawings may be exaggerated for convenience of explanation and may differ from the actual ratios.
 本実施形態に係る生体内留置物10は、血管、胆管、気管、食道、尿道、またはその他の生体管腔内に生じた狭窄部や閉塞部などの病変を治療するために用いられる。生体内留置物10は、公知のカテーテルに搭載されて使用される。一例として、生体内留置物10は、図1に示すように、バルーンカテーテル1のバルーン2の外周面に載置されて、生体管腔に挿入される。 The indwelling device 10 according to the present embodiment is used to treat lesions such as constrictions and obstructions occurring in blood vessels, bile ducts, trachea, esophagus, urethra, or other body lumens. The indwelling device 10 is used by being mounted on a known catheter. As an example, the indwelling device 10 is placed on the outer peripheral surface of the balloon 2 of the balloon catheter 1 and inserted into the body lumen, as shown in FIG.
 バルーンカテーテル1は、長尺なシャフト3の先端部に、シャフト3の内部を通して供給される流体によって拡張可能なバルーン2を有している。生体内留置物10は、収縮した状態のバルーン2の外周面に載置される。バルーン2は、病変にて拡張することで、生体内留置物10とともに病変を押し広げる。この後、バルーン2が収縮すると、生体内留置物10は拡張した状態でバルーン2から離れ、病変の開通状態を維持する。 A balloon catheter 1 has a balloon 2 at the distal end of a long shaft 3 that can be expanded by fluid supplied through the interior of the shaft 3 . The indwelling device 10 is placed on the outer peripheral surface of the deflated balloon 2 . The balloon 2 expands the lesion together with the indwelling object 10 by expanding at the lesion. Thereafter, when the balloon 2 is deflated, the indwelling device 10 is separated from the balloon 2 in an expanded state to maintain the patency of the lesion.
 生体内留置物10は、図2に示すように、ステント20と、ステント20を覆うステントカバー30とを有している。 The indwelling device 10 has a stent 20 and a stent cover 30 covering the stent 20, as shown in FIG.
 ステント20は、図3に示すように、バルーン2の拡張力によって拡張する、いわゆるバルーン2拡張型のステント20である。ステント20は、収縮状態のバルーン2の外周面に載置される。ステント20は、線状のストラット21により、全体として円管状に形成されている。ストラット21は、バルーン2の軸方向に並ぶ複数の環状体22と、軸方向に隣接する環状体22同士を接続する接続要素23により構成されている。なお、ステント20の形態は、これに限定されない。また、ステント20は超弾性合金の復元力によって拡張する、いわゆる自己拡張型のステント20であってもよい。 The stent 20 is, as shown in FIG. The stent 20 is mounted on the outer peripheral surface of the deflated balloon 2 . The stent 20 is formed in a circular tubular shape as a whole with linear struts 21 . The strut 21 is composed of a plurality of annular bodies 22 arranged in the axial direction of the balloon 2 and connecting elements 23 connecting the annular bodies 22 adjacent in the axial direction. In addition, the form of the stent 20 is not limited to this. Also, the stent 20 may be a so-called self-expanding stent 20 that expands by the restoring force of a superelastic alloy.
 各々の環状体22は、複数の線状要素24を折り返しつつ円周方向に連続して配置して形成されている。軸方向に隣接する環状体22同士は、接続要素23によって一体的に連結されている。隣接する環状体22同士は、軸方向と交差する円周方向に沿った周上の少なくとも1か所で、接続要素23により接続される。 Each annular body 22 is formed by continuously arranging a plurality of linear elements 24 in the circumferential direction while folding them. Axially adjacent annular bodies 22 are integrally connected by connecting elements 23 . Adjacent annular bodies 22 are connected by connecting elements 23 at at least one point on the circumference along the circumferential direction intersecting the axial direction.
 線状要素24および接続要素23の線材の幅は、特に限定されないが、例えば30~500μmである。線状要素24および接続要素23の線材の長さは、特に限定されないが、例えば0.2~20mmである。線状要素24および接続要素23の線材の厚さは、特に限定されないが、例えば30~500μmである。拡張時のステント20の外径は、拡張時のステントカバー30の内径と略同一であるが、これより大きくても小さくてもよい。拡張時のステント20の軸方向の長さは、拡張時のステントカバー30の軸方向の長さと略同一であるが、これより長くても短くてもよい。 The widths of the wires of the linear elements 24 and the connecting elements 23 are not particularly limited, but are, for example, 30 to 500 μm. The wire lengths of the linear elements 24 and the connecting elements 23 are not particularly limited, but are, for example, 0.2 to 20 mm. The thickness of the wires of the linear elements 24 and the connecting elements 23 is not particularly limited, but is, for example, 30 to 500 μm. The outer diameter of stent 20 when expanded is approximately the same as the inner diameter of stent cover 30 when expanded, but may be larger or smaller. The axial length of stent 20 when expanded is approximately the same as the axial length of stent cover 30 when expanded, but may be longer or shorter.
 ステント20は、径方向に収縮された状態で、収縮されたバルーン2の外表面に配置される。バルーン2が拡張すると、ステント20は、円周方向に隣接する線状要素24の成す角度が広がり、ステント20は径方向へ拡張する。 The stent 20 is placed on the outer surface of the contracted balloon 2 in a radially contracted state. When the balloon 2 expands, the stent 20 widens the angle formed by the linear elements 24 adjacent in the circumferential direction, and the stent 20 expands radially.
 ステント20の構成材料は、公知の材料を適用でき、例えばステンレス、コバルトクロム合金、ニッケルチタン合金などの金属材料、ポリ乳酸、ポリカプロラクトンなどの高分子材料、等を適用できる。 For the constituent material of the stent 20, known materials can be applied, for example, metal materials such as stainless steel, cobalt-chromium alloys, and nickel-titanium alloys, polymer materials such as polylactic acid and polycaprolactone, and the like.
 ステントカバー30は、図2、4~5に示すように、柔軟な繊維31により複数の空隙32を有して管状に形成される。ステントカバー30は、軸方向の先端および基端の間に、中央部33を有している。ステントカバー30は、ステント20の軸方向の長さの範囲内にある。 The stent cover 30, as shown in FIGS. 2 and 4-5, is formed in a tubular shape with a plurality of voids 32 by flexible fibers 31. As shown in FIG. Stent cover 30 has a central portion 33 between its axial distal and proximal ends. Stent cover 30 is within the axial length of stent 20 .
 ステントカバー30の繊維31は、ニットの形態で管状に編まれた長尺繊維31Aと、ステントカバー30の軸方向の先端部および基端部に配置される複数の短尺繊維31Bとを有している。 The fibers 31 of the stent cover 30 have long fibers 31A that are knitted into a tubular shape in a knit form, and a plurality of short fibers 31B that are arranged at the distal and proximal ends of the stent cover 30 in the axial direction. there is
 長尺繊維31Aは、長尺繊維31A上の軸方向の一端側の折り返し部34Bから軸方向の他端側の折り返し部34Aを介して軸方向の一端側の他の折り返し部34Bに至るまでの長さで区分された複数のループ34を有している。なお、一端側の向きと他端側の向きは固定されているものではなく、その都度設定されてよい。複数のループ34は、ステントカバー30の円周方向に連続して配置され、螺旋状に並ぶ。元のループ34と、ループ34が任意数連続した後の同じ円周方向の位置に形成されるループ34は、軸方向にずれつつ交差する。このように繊維31が連続することで、ニットは円周方向と軸方向にループ34が連なった管状の構造となる。円周方向に連続する複数のループ34は、360度毎に異なる列38を形成する。空隙32は、ループ34の内側の領域である。 The long fibers 31A extend from the folded portion 34B on the one axial end side of the long fiber 31A to the other folded portion 34B on the one axial end side via the folded portion 34A on the other axial end side. It has a plurality of loops 34 separated by length. The orientation of the one end and the orientation of the other end are not fixed and may be set each time. The plurality of loops 34 are continuously arranged in the circumferential direction of the stent cover 30 and arranged in a spiral. The original loop 34 and the loop 34 formed at the same circumferential position after the arbitrary number of continuous loops 34 cross each other while being displaced in the axial direction. By connecting the fibers 31 in this way, the knit has a tubular structure in which the loops 34 are connected in the circumferential direction and the axial direction. A plurality of circumferentially continuous loops 34 form different rows 38 every 360 degrees. Gap 32 is the area inside loop 34 .
 ループ34は、ステントカバー30の軸方向の各々の端部に、複数の端部ループ37を含んでいる。各々の端部ループ37は、中央部33側の折り返し部34Bから端部側の折り返し部34Aを介して中央部33側の他の折り返し部34Bに至るまでの長さで区分し、端部側へ向かって凸状としている。 Loops 34 include a plurality of end loops 37 at each axial end of stent cover 30 . Each end loop 37 is divided by the length from the folded portion 34B on the central portion 33 side to the other folded portion 34B on the central portion 33 side via the folded portion 34A on the end side. It has a convex shape toward
 ステントカバー30は、図5に示すように、軸方向の各々の端部に、複数の端部空隙35と、複数の隣接領域36とを有する。端部空隙35は、端部に向かって凸状である端部ループ37形成される空隙32であり、端部ループ37の内側の領域である。 The stent cover 30 has a plurality of end voids 35 and a plurality of adjacent regions 36 at each axial end, as shown in FIG. The end gap 35 is the gap 32 formed by the end loop 37 which is convex towards the end and is the area inside the end loop 37 .
 隣接領域36は、図5に示すように、円周方向に隣接する2つの端部空隙35の間に位置する空隙32である。すなわち、隣接領域36は、端部側の折り返し部34Aから中央部33側の折り返し部34Bを介して端部側の他の折り返し部34Aに至るまでの長さで区分される中央部33側へ向かって凸状であるループ34の内側の領域である。ステントカバー30の各々の端部において、端部空隙35および隣接領域36は、円周方向へ交互に配置される。 The adjacent region 36 is the gap 32 located between two circumferentially adjacent end gaps 35, as shown in FIG. That is, the adjacent region 36 is divided by the length from the folded portion 34A on the end side to the other folded portion 34A on the end side via the folded portion 34B on the central portion 33 side. It is the inner area of the loop 34 which is convex toward it. At each end of stent cover 30, end voids 35 and adjacent regions 36 alternate circumferentially.
 各々の短尺繊維31Bは、ステントカバー30の軸方向の各々の端部の接続範囲Aにおいて、円周方向に隣接する2つの端部ループ37と、交差位置39で接続されている。すなわち、短尺繊維31Bは、円周方向に隣接する2つの端部ループ37の間に位置し、2つの端部ループ37を接続している。各々の短尺繊維31Bは、4つの交差位置39で、いずれかの端部ループ37と接続されている。なお、各々の短尺繊維31Bに対して端部ループ37が接続される交差位置39の数は、限定されず、少なくとも1つであればよい。なお、このような繊維同士の接続は、繊維同士が固定されることを意味し、融着固定や接着固定などの方法を適用することにより形成される。 Each short fiber 31B is connected to two circumferentially adjacent end loops 37 at a crossing position 39 in the connection range A of each axial end of the stent cover 30 . That is, the short fiber 31B is located between two circumferentially adjacent end loops 37 and connects the two end loops 37 . Each short fiber 31B is connected to one of the end loops 37 at four crossing points 39. As shown in FIG. The number of intersection positions 39 at which the end loops 37 are connected to each short fiber 31B is not limited, and may be at least one. Such connection between fibers means that the fibers are fixed to each other, and is formed by applying a method such as fusion fixation or adhesive fixation.
 接続範囲Aにおいて、長尺繊維31A同士が交差する長尺繊維交差位置40で長尺繊維31A同士が交差位置39と同様に、接続されていてもよい。交差する繊維31同士が接続される接続範囲Aの好ましい範囲は、ステントカバー30の軸方向の各々の端部から、ステントカバー30の端部ループ37から軸方向の中央部33側に4つ移動した先のループ34の繊維31と、5つ移動した先のループ34の繊維31が交差する長尺繊維交差位置40までを含む範囲以内である。 In the connection range A, the long fibers 31A may be connected to each other at the long fiber crossing positions 40 where the long fibers 31A cross each other like the crossing positions 39. The preferred range of the connection range A where the intersecting fibers 31 are connected is from each of the axial ends of the stent cover 30, moving from the end loops 37 of the stent cover 30 to the central part 33 side in the axial direction by four. The range includes up to the long fiber crossing position 40 where the fiber 31 of the previous loop 34 that has been moved and the fiber 31 of the previous loop 34 that has been moved five times crosses.
 短尺繊維31Bは、生体内留置物10の軸方向の各々の端部に配置される、繊維31から切断されて切り離された小片である。短尺繊維31Bは、管状に編まれた長い管状繊維部材60(図7を参照)から、軸方向に所定の長さを有するステントカバー30を切り出す際に、ループ34が切断させることで形成される。 The short fibers 31B are small pieces cut and separated from the fibers 31 arranged at each end of the indwelling device 10 in the axial direction. The short fiber 31B is formed by cutting the loop 34 when cutting out the stent cover 30 having a predetermined length in the axial direction from the long tubular fiber member 60 (see FIG. 7) woven into a tubular shape. .
 拡張時の軸方向に並ぶ列38の間隔、すなわち円周方向へ延びる繊維31が1周する毎に軸方向へずれる長さであるウェール幅Wは、特に限定されないが、例えば0.015~8.0mmであり、好ましくは0.15~0.95mmである。拡張時の円周方向に並ぶループ34の間隔であるコース幅Cは、特に限定されないが、例えば0.01~5.0mmであり、好ましくは0.1~0.6mmである。 The interval between the rows 38 aligned in the axial direction during expansion, that is, the wale width W, which is the length of the fibers 31 extending in the circumferential direction that are displaced in the axial direction for each turn, is not particularly limited, but is, for example, 0.015 to 8. 0 mm, preferably 0.15 to 0.95 mm. The course width C, which is the interval between the loops 34 arranged in the circumferential direction when expanded, is not particularly limited, but is, for example, 0.01 to 5.0 mm, preferably 0.1 to 0.6 mm.
 短尺繊維31Bの中央部33側の位置P3は、端部ループ37と、端部ループ37の中央部33側に配置されて端部ループ37と軸方向に隣接する他のループ34とが交差する軸方向の位置P2より端部側にあることが好ましいが、これに限定されない。位置P3から位置P2までの距離L1は、ウェール幅Wの1/4程度と想定される。距離L1は、特に限定されないが、好ましくは0.00375~2.0mmであり、より好ましくは0.0375~0.2375mmである。 At a position P3 on the central portion 33 side of the short fiber 31B, the end loop 37 and another loop 34 arranged on the central portion 33 side of the end loop 37 and adjacent to the end loop 37 in the axial direction intersect. Although it is preferable to be on the end side of the position P2 in the axial direction, it is not limited to this. A distance L1 from the position P3 to the position P2 is assumed to be about 1/4 of the wale width W. Although the distance L1 is not particularly limited, it is preferably 0.00375 to 2.0 mm, more preferably 0.0375 to 0.2375 mm.
 ステントカバー30の軸方向の端部側の短尺繊維31Bの端部の位置P5から、当該短尺繊維31Bが接続する端部ループ37の端部側の折り返し部34Aの位置P4までの距離L2は、当該端部ループ37の軸方向の距離L3(端部ループ37の端部側の折り返し部34Aの位置P4から中央部33側の折り返し部34Bの位置P1までの距離L3)より短いことが好ましいが、これに限定されない。距離L2は、0~ウェール幅W程度と想定される。距離L2は、特に限定されないが、好ましくは0~8.0mmであり、より好ましくは0~0.95mmである。距離L3は、ウェール幅Wの5/4程度と想定される。距離L3は、特に限定されないが、好ましくは0.01875~10.0mmであり、より好ましくは0.1875~1.1875mmである。 The distance L2 from the position P5 of the end of the short fiber 31B on the end side in the axial direction of the stent cover 30 to the position P4 of the folded portion 34A on the end side of the end loop 37 connected by the short fiber 31B is It is preferably shorter than the axial distance L3 of the end loop 37 (the distance L3 from the position P4 of the folded portion 34A on the end side of the end loop 37 to the position P1 of the folded portion 34B on the central portion 33 side). , but not limited to. The distance L2 is assumed to be approximately 0 to the wale width W. FIG. Although the distance L2 is not particularly limited, it is preferably 0 to 8.0 mm, more preferably 0 to 0.95 mm. The distance L3 is assumed to be about 5/4 of the wale width W. Although the distance L3 is not particularly limited, it is preferably 0.01875 to 10.0 mm, more preferably 0.1875 to 1.1875 mm.
 ステントカバー30の軸方向の中央側の短尺繊維31Bの端部の位置P3は、短尺繊維31Bが接続する端部ループ37の軸方向の中心位置P6(位置P4と位置P1の間の中間位置)より端部側にあることが好ましいが、これに限定されない。すなわち、位置P3から位置P1までの距離L4は、位置P4から位置P1までの距離L3の1/2よりも大きいことが好ましいが、これに限定されない。距離L4は、ウェール幅Wの3/4程度と想定される。距離L4は、特に限定されないが、好ましくは0.01125~6.0mmであり、より好ましくは0.1125~0.7125mmである。 The position P3 of the ends of the short fibers 31B on the axially central side of the stent cover 30 is the axial center position P6 of the end loops 37 to which the short fibers 31B connect (an intermediate position between the positions P4 and P1). Although it is preferable that it is closer to the edge, it is not limited to this. That is, the distance L4 from the position P3 to the position P1 is preferably longer than 1/2 of the distance L3 from the position P4 to the position P1, but is not limited to this. The distance L4 is assumed to be about 3/4 of the wale width W. Although the distance L4 is not particularly limited, it is preferably 0.01125 to 6.0 mm, more preferably 0.1125 to 0.7125 mm.
 端部ループ37の中央部33側に配置されて端部ループ37と軸方向に隣接する他のループ34とが交差する軸方向の位置P2から、中央部33側の折り返し部34Bの位置P1までの距離L5は、ウェール幅Wの半分程度と想定される。距離L5は、特に限定されないが、好ましくは0.0075~4.0mmであり、より好ましくは0.075~0.475mmである。 From the axial position P2 where the end loop 37 is arranged on the central portion 33 side of the end loop 37 and intersects the other loop 34 axially adjacent to the end loop 37 to the position P1 of the folded portion 34B on the central portion 33 side. is assumed to be about half the wale width W. Although the distance L5 is not particularly limited, it is preferably 0.0075 to 4.0 mm, more preferably 0.075 to 0.475 mm.
 各々の短尺繊維31Bは、ステントカバー30の軸方向の中央側に向く凸部を1つ有する凸型形状であり、2つの隣接する端部ループ37のみと接続し、各々の短尺繊維31Bの両端は、接続する端部ループ37の、ステントカバー30の端部側の折り返し部34Aより端部側に位置する。なお、短尺繊維31Bが接続する2つの端部ループ37は、隣接していなくてもよい。また、短尺繊維31Bは、3つ以上の端部ループを接続してもよい。 Each short fiber 31B has a convex shape with one convex portion facing the axial center side of the stent cover 30, and connects only two adjacent end loops 37, and both ends of each short fiber 31B is located on the end side of the connecting end loop 37 from the folded portion 34A on the end side of the stent cover 30 . Note that the two end loops 37 connected by the short fibers 31B may not be adjacent to each other. Also, the short fibers 31B may connect three or more end loops.
 ステントカバー30の各々の端部に位置する全ての端部ループ37が、短尺繊維31Bで接続されている。なお、端部ループ37の一部が、短尺繊維31Bで接続されていてもよい。 All the end loops 37 located at each end of the stent cover 30 are connected by short fibers 31B. A part of the end loops 37 may be connected by the short fibers 31B.
 ステントカバー30の軸方向の端部から中央部33へ向かう接続範囲A内の長尺繊維31Aおよび短尺繊維31Bの径方向の厚みは、中央部33内の長尺繊維31Aの径方向の厚みより小さい。なお、接続範囲A内の長尺繊維31Aおよび短尺繊維31Bの径方向の厚みは、中央部33内の長尺繊維31Aの径方向の厚みと同等、または中央部33内の長尺繊維31Aの径方向の厚みより大きくてもよい。 The radial thickness of the long fibers 31A and the short fibers 31B in the connection range A from the axial ends of the stent cover 30 to the central portion 33 is greater than the radial thickness of the long fibers 31A in the central portion 33. small. The radial thickness of the long fibers 31A and the short fibers 31B within the connection range A is equal to the radial thickness of the long fibers 31A within the central portion 33, or It may be larger than the thickness in the radial direction.
 なお、ステントカバー30は、図6に示す変形例のように、円周方向に隣接する端部ループ37同士が直接的に接続されたループ間接続部31Cを有してもよい。 It should be noted that the stent cover 30 may have loop-to-loop connecting portions 31C in which circumferentially adjacent end loops 37 are directly connected to each other, as in the modification shown in FIG.
 繊維31の繊維径は、特に限定されないが、例えば0.007~0.1mmであり、好ましくは0.01~0.03mmである。拡張時のステントカバー30の外径は、特に限定されないが、例えば1.00~50.00mmであり、好ましくは2.25~4.00mmである。ステントカバー30の軸方向の長さは、特に限定されないが、例えば5~250mmであり、好ましくは12~38mmである。 Although the fiber diameter of the fiber 31 is not particularly limited, it is, for example, 0.007 to 0.1 mm, preferably 0.01 to 0.03 mm. The outer diameter of the stent cover 30 when expanded is not particularly limited, but is, for example, 1.00 to 50.00 mm, preferably 2.25 to 4.00 mm. The axial length of the stent cover 30 is not particularly limited, but is, for example, 5-250 mm, preferably 12-38 mm.
 ステントカバー30を形成する繊維31の構成材料は、特に限定されないが、生分解性材料や非生分解性材料を適用できる。生分解性材料は、例えばポリグリコール酸(PGA)、ポリ乳酸(PLA)、ポリカプロラクトン(PCL)、ポリジオキサノン(PDO)、トリメチレンカーボネート(PTMC)、またはそれらの共重合体(二元共重合体、三元共重合体、四元共重合体)として、グリコール酸-乳酸共重合体(PGA-LA)、グリコール酸-カプロラクトン共重合体(PGA-CL)、等である。これらの中でも、特に、ポリグリコール酸、グリコール酸-乳酸共重合体またはグリコール酸-カプロラクトン共重合体が好ましく、ポリグリコール酸がより好ましい。なお、ポリグリコール酸の破断伸びは、約40%である。非生分解性材料は、例えばポリエチレンテレフタレート(PET)、ポリオレフィン(PO)、酸化アクリル、ポリテトラフルオロエチレン(PTFE)、ポリエチレンコビニルアセテート(PEVA)、ポリエチレンエラストマー、ポリエチレンオキシドポリブチレンテレフタレート共重合体(PEO-PBT)、ポリエチレンオキシドポリ乳酸共重合体(PEO-PLA)、ポリブチルメタクリレート(PBMA)、ポリウレタン(PU)、シリコン-ポリカーボネートウレタン共重合体(SPCU)、医療グレードのポリカーボネートウレタン(PCU)、ポリアミド(PA)、ポリエーテルエーテルケトン(PEEK)、ポリアクリル酸(PAA)、ポリメタクリル酸(PMA)、マレイン酸、ヘロン酸、タコン酸の1つ以上を含むカルボン酸部分および/またはこれらのモノマー、熱可塑性ポリマー、熱硬化性ポリマー、ポリオレフィンエラストマー、ポリエステル、ポリウレタン、ポリフルオロポリマー、および/またはポリアミドの組み合わせおよび/またはエステル、等である。 The constituent material of the fibers 31 forming the stent cover 30 is not particularly limited, but biodegradable materials and non-biodegradable materials can be applied. Biodegradable materials are, for example, polyglycolic acid (PGA), polylactic acid (PLA), polycaprolactone (PCL), polydioxanone (PDO), trimethylene carbonate (PTMC), or copolymers thereof (bipolymer , terpolymers, quaternary copolymers) include glycolic acid-lactic acid copolymer (PGA-LA), glycolic acid-caprolactone copolymer (PGA-CL), and the like. Among these, polyglycolic acid, glycolic acid-lactic acid copolymer or glycolic acid-caprolactone copolymer is particularly preferred, and polyglycolic acid is more preferred. The elongation at break of polyglycolic acid is about 40%. Non-biodegradable materials include, for example, polyethylene terephthalate (PET), polyolefin (PO), acrylic oxide, polytetrafluoroethylene (PTFE), polyethylene co-vinyl acetate (PEVA), polyethylene elastomer, polyethylene oxide polybutylene terephthalate copolymer ( PEO-PBT), polyethylene oxide polylactic acid copolymer (PEO-PLA), polybutyl methacrylate (PBMA), polyurethane (PU), silicone-polycarbonate urethane copolymer (SPCU), medical grade polycarbonate urethane (PCU), Carboxylic acid moieties comprising one or more of polyamide (PA), polyetheretherketone (PEEK), polyacrylic acid (PAA), polymethacrylic acid (PMA), maleic acid, heronic acid, taconic acid and/or monomers thereof , thermoplastic polymers, thermoset polymers, polyolefin elastomers, polyesters, polyurethanes, polyfluoropolymers, and/or polyamide combinations and/or esters, and the like.
 ステントカバー30とステント20は、接着、融着または糸で結ぶなどの公知の技術で、全体あるいは一部が固定されてもよい。ステントカバー30とステント20が固定されることで、デリバリー中にステントカバー30がステント20から脱落するリスクが減少する。 The stent cover 30 and the stent 20 may be fixed in whole or in part by known techniques such as gluing, fusing, or tying with thread. Securing the stent cover 30 and the stent 20 reduces the risk of the stent cover 30 falling off the stent 20 during delivery.
 次に、本実施形態に係る生体内留置物10の作用を説明する。
 生体内留置物10は、図2、4~5に示すように、ステントカバー30の短尺繊維31Bが、ステントカバー30の軸方向の端部の円周方向に隣接する端部ループ37同士を接続している。これにより、端部ループ37は、円周方向に隣接して短尺繊維31Bを介して接続される他の端部ループ37から拘束を受けるため、径方向外側に広がにくい。このため、バルーンカテーテル1のバルーン2に載置した生体内留置物10を生体管腔内で搬送する際に、生体内組織などが引っ掛かることによるステントカバー30の破損やステント20の脱落を引き起こすリスクが低減される。また、端部ループ37内の空隙32と、端部ループ37に隣接する空隙32の存在が維持される。このため、内皮細胞の浸潤性を損なわないことから内皮化の遅延が抑制され、血栓の発生リスクが抑制される。また、短尺繊維31Bが長尺繊維31Aに接続されているため、短尺繊維31Bがステントカバー30から脱落しない。このため、短尺繊維31Bが生体管腔の抹消へ飛散することによる末梢側の管腔を閉塞するリスクが抑制される。
Next, the action of the indwelling object 10 according to this embodiment will be described.
In the indwelling device 10, as shown in FIGS. 2 and 4 and 5, the short fibers 31B of the stent cover 30 connect circumferentially adjacent end loops 37 of the axial ends of the stent cover 30. is doing. As a result, the end loops 37 are constrained by other end loops 37 that are adjacent in the circumferential direction and connected via the short fibers 31B, so that the end loops 37 are less likely to expand radially outward. Therefore, when the indwelling device 10 placed on the balloon 2 of the balloon catheter 1 is transported inside the lumen of the living body, there is a risk of causing damage to the stent cover 30 and dropping of the stent 20 due to catching of tissues in the living body. is reduced. Also, the existence of voids 32 within end loops 37 and voids 32 adjacent to end loops 37 is maintained. Therefore, the delay of endothelialization is suppressed and the risk of thrombosis is suppressed because the invasiveness of endothelial cells is not impaired. Moreover, since the short fibers 31B are connected to the long fibers 31A, the short fibers 31B do not fall off the stent cover 30. FIG. Therefore, the risk of blockage of the lumen on the peripheral side due to scattering of the short fibers 31B toward the periphery of the biological lumen is suppressed.
 <製造方法>
 次に、図7を参照して、生体内留置物10の製造方法を説明する。
<Manufacturing method>
Next, a method for manufacturing the indwelling device 10 will be described with reference to FIG.
 まず、管状のステント20および、空隙32を有するように繊維31をニット状に編んで管状に形成した管状繊維部材60を準備する(準備工程)。次に、図7(A)に示すように、例えばPTFE製の保護チューブ101を被せたステンレス製の芯金部材100を、管状繊維部材60の内腔に挿入する(挿入工程)。保護チューブ101は、PTFE製であるため、溶融した材料が芯金部材100に固着することを防止する。なお、保護チューブ101の材料は、溶融した材料が固着しにくい材料であれば、PTFEに限定されない。また、保護チューブ101は、設けられなくてもよい。また、芯金部材100の材料は、ステンレスに限定されない。管状繊維部材60の軸方向の長さは、複数のステントカバー30を切り出すことが可能な長さで設定される。 First, a tubular stent 20 and a tubular fibrous member 60 formed in a tubular shape by weaving fibers 31 in a knit so as to have voids 32 are prepared (preparation step). Next, as shown in FIG. 7A, for example, a stainless steel core member 100 covered with a PTFE protective tube 101 is inserted into the lumen of the tubular fiber member 60 (insertion step). Since the protection tube 101 is made of PTFE, it prevents the molten material from adhering to the core metal member 100 . In addition, the material of the protective tube 101 is not limited to PTFE as long as it is a material to which the melted material is difficult to stick. Also, the protective tube 101 may not be provided. Moreover, the material of the cored bar member 100 is not limited to stainless steel. The axial length of the tubular fiber member 60 is set to a length that allows a plurality of stent covers 30 to be cut out.
 次に、図7(B)、図8に示すように、管状繊維部材60の外周面の軸方向に離れた複数の接続領域CRに、超音波溶着機のホーン110を押し付ける。ホーン110は、管状繊維部材60に接触する接触面111を有している。接触面111は、管状繊維部材60の円周方向へ円弧状の凹面で形成される。管状繊維部材60の軸方向において、接触面111の接触面幅Sは、管状繊維部材60の空隙32の幅(ウェール幅W)よりも広い。このため、接触面111が管状繊維部材60の軸方向のいずれかの位置で接触しても、接触面111は交差位置に確実に接触する。次に、超音波溶着機により接触面111を管状繊維部材60の繊維31に押し付けつつ、超音波により加振する。これにより、超音波による振動が管状繊維部材60を発熱させ、軟化溶融現象が起こされて、交差位置の繊維31同士が接続される(接続工程)。このような超音波による溶着では、接触面111の周囲への熱の影響が少なく、また、溶着に要する時間が短い。各々の接続領域CRにおいて、ホーン110の接触面111は、接触面幅Sが管状繊維部材60の軸に平行になるように、管状繊維部材60の外周面に接触する。各々の接続領域CRにおいて、接触面幅Sは、管状繊維部材60の空隙32が軸方向に複数個、好ましくは15個、より好ましくは10個、さらに好ましくは8個連続する領域の軸方向の幅より狭いが、これに限定されない。 Next, as shown in FIGS. 7(B) and 8, a horn 110 of an ultrasonic welding machine is pressed against a plurality of connection regions CR on the outer peripheral surface of the tubular fibrous member 60 which are spaced apart in the axial direction. Horn 110 has a contact surface 111 that contacts tubular fibrous member 60 . The contact surface 111 is formed as an arc-shaped concave surface in the circumferential direction of the tubular fiber member 60 . In the axial direction of the tubular fiber member 60 , the contact surface width S of the contact surface 111 is wider than the width of the gap 32 (wale width W) of the tubular fiber member 60 . Therefore, even if the contact surface 111 comes into contact with the tubular fiber member 60 at any position in the axial direction, the contact surface 111 reliably comes into contact with the intersecting position. Next, while pressing the contact surface 111 against the fiber 31 of the tubular fiber member 60 by an ultrasonic welding machine, ultrasonic vibration is applied. As a result, the tubular fiber member 60 is heated by the vibration caused by the ultrasonic waves, a softening and melting phenomenon occurs, and the fibers 31 at the crossing positions are connected to each other (connecting step). In such ultrasonic welding, the surroundings of the contact surface 111 are less affected by heat, and the time required for welding is short. In each connection region CR, the contact surface 111 of the horn 110 contacts the outer peripheral surface of the tubular fibrous member 60 such that the contact surface width S is parallel to the axis of the tubular fibrous member 60 . In each connection region CR, the contact surface width S is the axial width of a region in which a plurality of, preferably 15, more preferably 10, and even more preferably 8 voids 32 of the tubular fibrous member 60 are continuous in the axial direction. Narrower than width, but not limited to this.
 続いて、管状繊維部材60の接続領域CRの全周をホーン110により超音波溶着するために、管状繊維部材60およびホーン110を相対的に回転させて、接続領域CRの円周方向の複数個所で溶着する。このとき、ホーン110の軸方向の位置は固定される。これにより、管状繊維部材60の接続領域CRの全周において、交差位置の繊維31同士が接続される。接続領域CRの軸方向の長さは、最終的に形成する接続範囲Aの軸方向の長さの約2倍である。 Subsequently, in order to ultrasonically weld the entire circumference of the connecting region CR of the tubular fiber member 60 by the horn 110, the tubular fiber member 60 and the horn 110 are relatively rotated, and a plurality of points in the circumferential direction of the connecting region CR are welded. Weld with At this time, the axial position of the horn 110 is fixed. As a result, the fibers 31 at the crossing positions are connected to each other in the entire circumference of the connection region CR of the tubular fiber member 60 . The axial length of the connection region CR is about twice the axial length of the connection range A to be finally formed.
 接続領域CRの繊維31の径方向の厚みは、ホーン110の押圧により、接続領域CR以外の繊維31の径方向の厚みよりも小さくなる。 The radial thickness of the fibers 31 in the connection region CR becomes smaller than the radial thickness of the fibers 31 other than the connection region CR due to the pressing of the horn 110 .
 次に、図7(C)に示すように、芯金部材100を管状繊維部材60から抜去する(抜去工程)。このとき、管状繊維部材60と芯金部材100の間に保護チューブ101が設けられているため、管状繊維部材60から芯金部材100を引き抜くことが容易である。次に、図7(D)に示すように、管状繊維部材60の軸方向の接続領域CRで、管状繊維部材60を保護チューブ101とともに切断する(切断工程)。切断する位置は、各々の接続領域CRの軸方向の略中央である。これにより、切断部位の両側が、異なるステントカバー30の軸方向の端部の、接触する繊維31同士が溶着された接続範囲Aを形成する。なお、前述の芯金部材100を管状繊維部材60から抜去する工程は、管状繊維部材60を切断した後に行われてもよい。この場合、管状繊維部材60は、芯金部材100とともに切断される。 Next, as shown in FIG. 7(C), the core metal member 100 is removed from the tubular fiber member 60 (removal step). At this time, since the protective tube 101 is provided between the tubular fiber member 60 and the core metal member 100 , the core metal member 100 can be easily pulled out from the tubular fiber member 60 . Next, as shown in FIG. 7D, the tubular fiber member 60 is cut together with the protective tube 101 at the axial connection region CR of the tubular fiber member 60 (cutting step). The cutting position is approximately the center in the axial direction of each connection region CR. Thereby, both sides of the cut portion form a connection range A in which the fibers 31 in contact with each other at the axial ends of the different stent covers 30 are welded together. The step of removing the metal core member 100 from the tubular fiber member 60 may be performed after the tubular fiber member 60 is cut. In this case, the tubular fiber member 60 is cut together with the cored bar member 100 .
 次に、図7(E)に示すように、切断された管状繊維部材60から形成されたステントカバー30から、保護チューブ101を取り除く。なお、保護チューブ101は、抜去工程において、芯金部材100とともに、または芯金部材100の抜去後に管状繊維部材60から抜去されてもよい。この後、ステント20の外周にステントカバー30を被せて取り付ける(取付工程)。これにより、ステント20およびステントカバー30を有する生体内留置物10が完成する。 Next, as shown in FIG. 7(E), the protective tube 101 is removed from the stent cover 30 formed from the tubular fiber member 60 that has been cut. The protection tube 101 may be removed from the tubular fiber member 60 together with the core metal member 100 or after the core metal member 100 is removed in the removal step. After that, the outer periphery of the stent 20 is covered with the stent cover 30 and attached (attachment step). Thereby, the indwelling device 10 having the stent 20 and the stent cover 30 is completed.
 なお、管状繊維部材60を切断した後に、切断した部材の軸方向の端部を超音波溶着することによって、接触する繊維31同士が溶着された接続範囲Aを形成してもよい。 After cutting the tubular fiber member 60, the ends of the cut member in the axial direction may be ultrasonically welded to form the connection range A in which the fibers 31 in contact are welded together.
 また、複数のホーン110が接続領域CR上で円周方向に並べて配置され、接続領域CRの円周方向の複数個所で交差位置の繊維31同士が同時に溶着されてもよい。その後、管状繊維部材60および複数のホーン110を相対的に回転させてもよい。複数のホーン110を用いる場合、超音波振動に伴う管状繊維部材60の振動が抑制され、接続領域CRの軸方向の長さおよび位置のバラつきが円周方向上で抑制される。 Also, a plurality of horns 110 may be arranged side by side in the circumferential direction on the connection region CR, and the fibers 31 at intersecting positions may be simultaneously welded together at a plurality of circumferential locations in the connection region CR. The tubular fibrous member 60 and the plurality of horns 110 may then be rotated relative to one another. When a plurality of horns 110 are used, vibration of the tubular fiber member 60 due to ultrasonic vibration is suppressed, and variations in axial length and position of the connection region CR are suppressed in the circumferential direction.
 また、交差位置の繊維31同士の接続にあたり、超音波融着の代わりにレーザー溶着を用いてもよい。レーザー溶着を用いる場合、管状繊維部材60に対して振動が加わらないため、接続領域CRの軸方向の長さおよび位置のバラつきが円周方向上で抑制される。また素材を損傷するリスクが低減される。 Also, laser welding may be used instead of ultrasonic welding for connecting the fibers 31 at the crossing positions. When laser welding is used, since vibration is not applied to the tubular fiber member 60, variations in axial length and position of the connection region CR are suppressed in the circumferential direction. Also, the risk of damaging the material is reduced.
 また、長尺繊維31Aおよび短尺繊維31Bを接続する方法は、超音波溶着やレーザー溶着に限定されず、例えば、熱風溶着、振動溶着、誘導溶着、高周波溶着または熱溶着等であってもよい。なお、長尺繊維31Aおよび短尺繊維31Bを接続する方法としては、接着剤等の他の部材を使用せずに、長尺繊維31Aおよび短尺繊維31Bの材料同士を直接的に接続する方法が好ましい。 Also, the method of connecting the long fibers 31A and the short fibers 31B is not limited to ultrasonic welding or laser welding, and may be, for example, hot air welding, vibration welding, induction welding, high frequency welding, or heat welding. As a method of connecting the long fibers 31A and the short fibers 31B, a method of directly connecting the materials of the long fibers 31A and the short fibers 31B without using other members such as adhesives is preferable. .
 実施例1として、上述の製造方法により、生体内留置物10を製造した。
 準備した管状繊維部材60の繊維31の材料はPET、繊維径は27μm、コース幅Cは150μm、ウェール幅Wは250μmであった。管状繊維部材60に保護チューブ101および芯金部材100を挿入し、超音波溶着機のホーン110を外周面に押し付けた。ホーン110の接触面幅Sは2mm、接触面111の曲率半径は2mm、接触面111上の接触面幅Sに垂直な方向の幅は水平距離において3mmであった。超音波溶着機の周波数は40kHz、溶着時間は1秒であった。次に、接続位置CRを軸方向の中央で切断した。
As Example 1, the indwelling device 10 was manufactured by the manufacturing method described above.
The material of the fibers 31 of the prepared tubular fiber member 60 was PET, the fiber diameter was 27 μm, the course width C was 150 μm, and the wale width W was 250 μm. A protective tube 101 and a metal core member 100 were inserted into the tubular fiber member 60, and a horn 110 of an ultrasonic welding machine was pressed against the outer peripheral surface. The contact surface width S of the horn 110 was 2 mm, the radius of curvature of the contact surface 111 was 2 mm, and the width of the contact surface 111 perpendicular to the contact surface width S was 3 mm in horizontal distance. The frequency of the ultrasonic welding machine was 40 kHz, and the welding time was 1 second. Next, the connection position CR was cut at the center in the axial direction.
 結果として、接続範囲Aにて接触する繊維31同士が接続されたステントカバー30が得られた。切断工程により形成された短尺繊維31Bは、円周方向に隣接する長尺繊維31Aの端部ループ37同士を接続していた。得られたステントカバー30を、別途準備したステント20に被せて、生体内留置物10を得た。 As a result, a stent cover 30 was obtained in which the fibers 31 that were in contact at the connection range A were connected. The short fibers 31B formed by the cutting process connected the end loops 37 of the circumferentially adjacent long fibers 31A. The obtained stent cover 30 was put on the separately prepared stent 20 to obtain the indwelling device 10 .
 以上のように、本実施形態に係る生体内留置物10は、軸方向に延び、先端および基端を有し、径方向への拡張および収縮が可能に形成され、隙間を有する管状のステント20と、軸方向に延び、先端および基端を有し、径方向への拡張および収縮が可能に形成され、空隙32を有する管状で、繊維31により形成されたステントカバー30と、を有する生体内留置物10であって、ステントカバー30の繊維31は、折り返されつつステントカバー30の円周方向へ波線状に連続し、ニット状に編み込まれた長尺繊維31Aと、ステントカバー30の軸方向の端部に配置された少なくとも1つの短尺繊維31Bと、を有し、長尺繊維31A上の軸方向の一端側の折り返し部34Bから軸方向の他端側の折り返し部34Aを介して軸方向の一端側の他の折り返し部34Bに至るまでの長さで区分された前記繊維をループと定義し、短尺繊維31Bは、軸方向の端部に位置し、円周方向に隣接した、端部側に凸状となる端部ループ37同士を接続している。 As described above, the indwelling device 10 according to the present embodiment is a tubular stent 20 that extends in the axial direction, has a distal end and a proximal end, is formed to be expandable and contractible in the radial direction, and has gaps. and an axially extending stent cover 30 having a distal end and a proximal end, configured to be radially expandable and contractible, tubular with voids 32, and formed of fibers 31. In the indwelling object 10, the fibers 31 of the stent cover 30 are folded back and continued in a wavy line in the circumferential direction of the stent cover 30. and at least one short fiber 31B disposed at the end of the long fiber 31A in the axial direction from the folded portion 34B on the one end side in the axial direction to the folded portion 34A on the other end side in the axial direction The fiber divided by the length up to the other folded portion 34B on one end side is defined as a loop, and the short fiber 31B is located at the end in the axial direction and adjacent in the circumferential direction, the end The end loops 37 that are convex on the sides are connected to each other.
 上記のように構成した生体内留置物10は、ステントカバー30の軸方向の端部に位置する端部ループ37が、円周方向に隣接して短尺繊維31Bを介して接続される他の端部ループ37から拘束を受けるため、径方向外側に広がにくい。このため、生体内組織などが引っ掛かることによるステントカバー30の破損やステント20の脱落を引き起こすリスクが低減される。また、端部ループ37内の端部空隙35と端部ループ37に隣接する隣接領域36の存在が維持される。このため、内皮細胞の浸潤性を損なわないことから内皮化の遅延が抑制され、血栓の発生リスクが抑制される。 In the indwelling device 10 configured as described above, the end loops 37 located at the ends in the axial direction of the stent cover 30 are circumferentially adjacent to each other and connected via the short fibers 31B. Since it is restrained by the partial loop 37, it is difficult to expand radially outward. Therefore, the risk of damage to the stent cover 30 or detachment of the stent 20 due to catching of tissue in the living body or the like is reduced. Also, the existence of the end voids 35 within the end loops 37 and the adjacent regions 36 adjacent to the end loops 37 is maintained. Therefore, the delay of endothelialization is suppressed and the risk of thrombosis is suppressed because the invasiveness of endothelial cells is not impaired.
 また、短尺繊維31Bは、ステントカバー30の軸方向の端部の端部ループ37と、当該端部ループ37と軸方向に隣接する他のループ34とが交差する軸方向の位置P2より端部側にある。軸方向の端部のループ34の径方向外側への広がりが起こる場合、当該ループ34は、軸方向に隣接する他のループ34と交差する軸方向位置を支点として、それより端部側の位置で径方向外側に広がろうとする。短尺繊維31Bが端部側に設けられることで、当該ループ34が径方向外側に広がるために必要なモーメントが増加することにより、ステントカバー30の広がりを防止する効果が高まる。 In addition, the short fiber 31B extends from the axial position P2 where the end loop 37 at the end of the stent cover 30 in the axial direction and another loop 34 axially adjacent to the end loop 37 intersect. on the side. When the radially outward expansion of the loop 34 at the axial end occurs, the loop 34 moves toward the end from the axial position where it intersects another axially adjacent loop 34 as a fulcrum. Attempts to expand radially outward. By providing the short fibers 31B on the end portion side, the moment required for the loops 34 to expand radially outward increases, thereby increasing the effect of preventing the stent cover 30 from expanding.
 また、ステントカバー30の軸方向の端部側の短尺繊維31Bの端部から、当該短尺繊維31Bが接続する端部ループ37の端部側の折り返し部34Aまでの距離L2は、端部ループ37の軸方向の距離L3より短い。これにより、生体内組織などが引っ掛かることによるステントカバー30の破損やステント20の脱落を引き起こすリスクが低減される。 In addition, the distance L2 from the end of the short fiber 31B on the end side in the axial direction of the stent cover 30 to the folded portion 34A on the end side of the end loop 37 to which the short fiber 31B connects is is shorter than the axial distance L3 of . This reduces the risk of damage to the stent cover 30 and detachment of the stent 20 due to catching of tissue in the living body.
 また、ステントカバー30の軸方向の中央側の短尺繊維31Bの端部の位置P3は、短尺繊維31Bが接続するループ34の軸方向の中心位置P6より端部側にある。これにより、端部に位置するループ34が径方向外側に広がるためのモーメントが増加することにより、ステントカバー30の広がりを防止する効果が高まる。 In addition, the position P3 of the ends of the short fibers 31B on the central side in the axial direction of the stent cover 30 is closer to the end than the axial center position P6 of the loops 34 to which the short fibers 31B connect. As a result, the moment for the loops 34 located at the ends to expand radially outward increases, thereby enhancing the effect of preventing the stent cover 30 from expanding.
 また、短尺繊維31Bは、ステントカバー30の軸方向の中央側に向く凸部を1つ有する凸型形状であり、2つの隣接する端部ループ37のみと接続し、短尺繊維31Bの終端は、接続する端部ループ37のステントカバー30の端部側の折り返し部34Aより端部側に位置してもよい。これに加えて、上述した、ステントカバー30の軸方向の中央側の短尺繊維31Bの端部の位置P3が、短尺繊維31Bが接続するループ34の軸方向の中心位置P6より端部側にある場合、短尺繊維31Bが端部ループ37内を円周方向に沿って分断するように配置される場合と比較して、端部ループ37内の空隙32の面積の減少が抑えられる。このため、内皮細胞の浸潤性の低下が抑制され、より早期の内皮化が促される。そして、血栓の発生リスクが更に抑制される。 In addition, the short fiber 31B has a convex shape having one convex portion facing the central side in the axial direction of the stent cover 30, and is connected only to two adjacent end loops 37, and the end of the short fiber 31B is The connecting end loops 37 may be located on the end side of the folded portion 34A on the end side of the stent cover 30 . In addition to this, the position P3 of the ends of the short fibers 31B on the axial center side of the stent cover 30 is located on the end side of the axial center position P6 of the loops 34 to which the short fibers 31B connect. In this case, compared with the case where the short fibers 31B are arranged so as to divide the inside of the end loop 37 along the circumferential direction, the area of the void 32 in the end loop 37 is suppressed from decreasing. Therefore, the decrease in the invasiveness of endothelial cells is suppressed, and early endothelialization is promoted. And the risk of thrombus generation is further suppressed.
 また、ステントカバー30の軸方向の端部の長尺繊維31Aおよび短尺繊維31Bの径方向の厚みは、端部以外の長尺繊維31Aの径方向の厚みより小さい。これにより、端部の外径が小さくなり、デリバリー時の通過性が向上するため、生体内留置物10はより末梢の病変を治療できるようになる。 Further, the radial thickness of the long fibers 31A and the short fibers 31B at the axial ends of the stent cover 30 is smaller than the radial thickness of the long fibers 31A other than the ends. As a result, the outer diameter of the end portion is reduced, and the passageability during delivery is improved, so that the indwelling instrument 10 can treat more peripheral lesions.
 また、ステントカバー30の軸方向の端部に位置する全ての端部ループ37が短尺繊維31Bで接続されている。これにより、端部ループ37が径方向外側に広がるリスクがさらに低下する。このため、生体内組織などが引っ掛かることによるステントカバー30の破損やステント20の脱落を引き起こすリスクが低減される。 In addition, all the end loops 37 located at the ends of the stent cover 30 in the axial direction are connected by short fibers 31B. This further reduces the risk of the end loops 37 spreading radially outwards. Therefore, the risk of damage to the stent cover 30 or detachment of the stent 20 due to catching of tissue in the living body or the like is reduced.
 また、隣接するステントカバー30の端部の端部ループ37同士が固定されたループ間接続部31Cを有してもよい。これにより、端部ループ37が径方向外側に広がるリスクがさらに低下する。このため、生体内組織などが端部ループ37に引っ掛かることによるステントカバー30の破損やステント20の脱落を引き起こすリスクが低減される。 Also, the end loops 37 at the ends of adjacent stent covers 30 may have loop-to-loop connections 31C fixed to each other. This further reduces the risk of the end loops 37 spreading radially outwards. Therefore, the risk of causing damage to the stent cover 30 or detachment of the stent 20 due to the end loops 37 being caught by tissue in the living body or the like is reduced.
 また、ステントカバー30は、ステント20の軸方向の長さの範囲内にある。これにより、ステントカバー30の軸方向の端部の径方向外側への望ましくない広がりを抑制できる。このため、生体内組織などがステントカバー30に引っ掛かることによるステントカバー30の破損やステント20の脱落を引き起こすリスクが低減される。 Also, the stent cover 30 is within the axial length of the stent 20 . As a result, the axial ends of the stent cover 30 can be prevented from spreading undesirably outward in the radial direction. Therefore, the risk of causing damage to the stent cover 30 or detachment of the stent 20 due to catching of tissue in the living body or the like on the stent cover 30 is reduced.
 また、ステントカバー30は、生分解性材料により形成されてもよい。これにより、生体内留置物10を生体内に留置後、ステントカバー30が分解して消失することで、ステントカバー30を起点に異物反応が起きるリスクが低減される。 Also, the stent cover 30 may be made of a biodegradable material. As a result, the stent cover 30 decomposes and disappears after the indwelling device 10 is left in the living body, thereby reducing the risk of a foreign body reaction starting from the stent cover 30 .
 また、生体内留置物10の製造方法は、軸方向に延び、先端および基端を有し、径方向への拡張および収縮が可能に形成され、隙間を有する管状のステント20および、空隙32を有するように繊維がニット状に編み込まれて管状に形成された管状繊維部材60を準備する準備工程と、準備工程後に芯金部材100を管状繊維部材60に挿入する挿入工程と、挿入工程後に管状繊維部材60の軸方向に離れた複数の接続領域CRで、編み込まれた繊維31同士の交差位置39を接続する接続工程と、接続工程後に各々の接続領域CRの範囲内にある軸方向の位置で管状繊維部材60を切断する切断工程と、切断工程後に得られたステントカバー30をステント20に取り付ける取付工程と、接続工程後であって取り付け工程前のいずれかの段階で、管状繊維部材60またはステントカバー30から芯金部材100を抜去する抜去工程と、を有することを特徴とする。 In addition, the manufacturing method of the indwelling device 10 includes the tubular stent 20 which extends axially, has a distal end and a proximal end, is formed so as to be expandable and contractible in the radial direction, and has gaps, and the gaps 32 . a preparation step of preparing a tubular fibrous member 60 formed by knitting fibers in a knitted manner so as to have a tubular shape; an inserting step of inserting the core metal member 100 into the tubular fibrous member 60 after the preparing step; A connecting step of connecting intersection positions 39 of the woven fibers 31 in a plurality of connecting regions CR separated in the axial direction of the fiber member 60, and an axial position within the range of each connecting region CR after the connecting step. a cutting step of cutting the tubular fibrous member 60 with , an attaching step of attaching the stent cover 30 obtained after the cutting step to the stent 20, and a stage after the connecting step and before the attaching step, the tubular fibrous member 60 or a withdrawal step of withdrawing the core metal member 100 from the stent cover 30 .
 上記のように構成した生体内留置物10の製造方法は、切断された位置にあったループの繊維31と、これと軸方向に隣接するループの繊維31との交差位置39が接続されているため、切断された位置にあったループの繊維31が、ステントカバー30から遊離し得るフラグメントとして残存することが防止される。これより、本製造方法で得られる生体内留置物10においては、生体内へ留置後にフラグメントが生体内に飛ばされて生体管腔を閉塞するリスクが低減される。 In the manufacturing method of the indwelling device 10 configured as described above, the intersecting position 39 between the loop fiber 31 at the cut position and the loop fiber 31 axially adjacent thereto is connected. Therefore, the fibers 31 of the loops that were in the position where they were cut are prevented from remaining as fragments that can be dislodged from the stent cover 30 . As a result, in the indwelling device 10 obtained by the present manufacturing method, the risk of the fragment flying into the living body and blocking the lumen of the living body after being indwelled in the living body is reduced.
 また、前述の接続工程において、各々の接続領域CRにある管状繊維部材60の軸方向および円周方向の全ての交差位置39および長尺繊維交差位置40を接続する。これにより、全てのループ34が短尺繊維31Bで接続された生体内留置物10が得られ、ループ34が径方向外側に広がるリスクがさらに低下する。このため、生体内組織などがステントカバー30に引っ掛かることによるステントカバー30の破損やステント20の脱落を引き起こすリスクが低減される。 In addition, in the connecting step described above, all the axial and circumferential crossing positions 39 and long fiber crossing positions 40 of the tubular fiber member 60 in each connecting region CR are connected. As a result, the indwelling device 10 in which all the loops 34 are connected by the short fibers 31B is obtained, and the risk of the loops 34 expanding radially outward is further reduced. Therefore, the risk of causing damage to the stent cover 30 or detachment of the stent 20 due to catching of tissue in the living body or the like on the stent cover 30 is reduced.
 また、前述の接続工程において、超音波溶着機で交差位置39を溶着する。これにより、接続工程に要する時間が短縮される。また、溶着箇所周辺の熱影響が減少し、ステントカバー30の空隙32が意図せず減少して内皮細胞の浸潤性を損なうリスクが低減される。 Also, in the connection process described above, the intersection position 39 is welded with an ultrasonic welding machine. This shortens the time required for the connection process. In addition, the thermal effect around the weld site is reduced, and the risk of unintentionally reducing the voids 32 of the stent cover 30 and impairing the infiltration of endothelial cells is reduced.
 また、前述の接続工程において、管状繊維部材60の空隙32の軸方向の幅より広い接触面幅Sの接触面111を有する超音波溶着機を使用し、各々の接続領域CRにおいて、接触面幅Sが管状繊維部材60の軸に平行になるように接触面111を繊維31に接触させて溶着する。これにより、超音波溶着機が管状繊維部材60の軸方向のいずれの位置で接触しても、交差位置39が確実に溶着される。 Further, in the connecting step described above, an ultrasonic welding machine having a contact surface 111 having a contact surface width S that is wider than the axial width of the gap 32 of the tubular fiber member 60 is used. The contact surface 111 is brought into contact with the fiber 31 and welded so that S is parallel to the axis of the tubular fiber member 60 . As a result, even if the ultrasonic welding machine contacts the tubular fibrous member 60 at any position in the axial direction, the intersecting position 39 is reliably welded.
 また、前述の接続工程において、管状繊維部材60の空隙32が軸方向に10個連続する領域の軸方向の幅より狭い接触面幅Sの接触面111を使用してもよい。これにより、接続領域CRの軸方向の長さが限定されるために長くなり過ぎることなく、交差位置39が溶着されない拡張性および収縮性に優れるステントカバー30の中央部33の領域が広く確保される。 Further, in the connecting step described above, the contact surface 111 having a contact surface width S narrower than the axial width of the region in which ten voids 32 of the tubular fiber member 60 are continuous in the axial direction may be used. As a result, a wide area of the central portion 33 of the stent cover 30 with excellent expandability and shrinkability is ensured without welding the intersection points 39 because the axial length of the connection area CR is limited. be.
 なお、本発明は、上述した実施形態のみに限定されるものではなく、本発明の技術的思想内において当業者により種々変更が可能である。例えば、短尺繊維31Bの形状は、特に限定されず、直線状、波状、またはジグザグ状等であってもよい。また、例えば図9のように、短尺繊維31Bは、ステントカバー30の円周方向へ延在してリング状に形成されてもよい。 It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made by those skilled in the art within the technical concept of the present invention. For example, the shape of the short fibers 31B is not particularly limited, and may be straight, wavy, zigzag, or the like. Alternatively, as shown in FIG. 9, the short fibers 31B may extend in the circumferential direction of the stent cover 30 and be formed into a ring shape.
 また、ステントカバー30の長尺繊維31Aおよび短尺繊維31Bが接続された接続範囲Aは、図10に示すように、折りたたみ部30Aを有するように縮径されてもよい。これにより、接続範囲Aのステントカバー30は、折りたたみ部30Aが開くように拡径する。これにより、繊維31の破断伸びが小さくても、ステントカバー30の端部の拡張径が大きく確保され、ステントカバー30の端部の拡張時の破断が防止される。なお、長尺繊維31Aおよび短尺繊維31Bが伸縮性の高い材料により形成される場合には、接続範囲Aは、折り畳まれる構造を有さずに縮径されてもよい。 Also, the connection range A where the long fibers 31A and the short fibers 31B of the stent cover 30 are connected may be reduced in diameter to have a folded portion 30A, as shown in FIG. As a result, the diameter of the stent cover 30 in the connection range A is expanded so that the folded portion 30A is opened. As a result, even if the breaking elongation of the fiber 31 is small, the expansion diameter of the end portion of the stent cover 30 is ensured to be large, and breakage of the end portion of the stent cover 30 during expansion is prevented. Note that when the long fibers 31A and the short fibers 31B are made of a highly elastic material, the connection area A may be reduced in diameter without having a folding structure.
 また、ステント20またはステントカバー30の表面または内部に、免疫抑制剤などの公知の薬剤が含まれてもよい。 Also, the surface or inside of the stent 20 or the stent cover 30 may contain a known drug such as an immunosuppressant.
 なお、本出願は、2021年2月10日に出願された日本特許出願2021-20192号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2021-20192 filed on February 10, 2021, and the disclosure contents thereof are incorporated by reference.
  1  バルーンカテーテル
  2  バルーン
  3  シャフト
  10  生体内留置物
  20  ステント
  30  ステントカバー
  31  繊維
  31A  長尺繊維
  31B  短尺繊維
  31C  ループ間接続部
  32  空隙
  33  中央部
  34  ループ
  35  端部空隙(空隙)
  36  隣接領域(空隙)
  37  端部ループ(ループ)
  38  列
  39  交差位置
  40  長尺繊維交差位置(交差位置)
  60  管状繊維部材
  100  芯金部材
  110  ホーン
  111  接触面
  CR  接続領域
  S  接触面幅
1 Balloon Catheter 2 Balloon 3 Shaft 10 Indwelling Object 20 Stent 30 Stent Cover 31 Fiber 31A Long Fiber 31B Short Fiber 31C Connection between Loops 32 Gap 33 Central Part 34 Loop 35 End Gap (Gap)
36 Adjacent region (void)
37 end loops (loops)
38 row 39 crossing position 40 long fiber crossing position (crossing position)
60 Tubular fiber member 100 Core bar member 110 Horn 111 Contact surface CR Connection region S Contact surface width

Claims (15)

  1.  軸方向に延び、先端および基端を有し、径方向への拡張および収縮が可能に形成され、隙間を有する管状のステントと、
     軸方向に延び、先端および基端を有し、径方向への拡張および収縮が可能に形成され、空隙を有する管状で、繊維により形成されたステントカバーと、を有する生体内留置物であって、
     前記ステントカバーの繊維は、
     折り返されつつ前記ステントカバーの円周方向へ波線状に連続し、ニット状に編み込まれた長尺繊維と、
     前記ステントカバーの軸方向の端部に配置された少なくとも1つの短尺繊維と、を有し、前記長尺繊維上の軸方向の一端側の折り返し部から軸方向の他端側の折り返し部を介して軸方向の一端側の他の折り返し部に至るまでの長さで区分された前記繊維をループと定義し、
     前記短尺繊維は、軸方向の端部に位置し、円周方向に隣接した、端部側に凸状となる前記ループ同士を接続していることを特徴とする生体内留置物。
    an axially extending tubular stent having distal and proximal ends configured for radial expansion and contraction and having a gap;
    an axially extending, distal and proximal end, configured to be radially expandable and contractible, a voided tubular, fiber-formed stent cover, wherein the stent cover comprises: ,
    The fibers of the stent cover are
    a continuous wavy fiber in the circumferential direction of the stent cover while being folded back and woven into a knit;
    and at least one short fiber arranged at an end in the axial direction of the stent cover, from a folded portion on the one end side in the axial direction of the long fiber through a folded portion on the other end side in the axial direction. The fiber divided by the length up to the other folded part on one end side in the axial direction is defined as a loop,
    The in-vivo indwelling article, wherein the short fibers are located at the ends in the axial direction, and connect the loops adjacent in the circumferential direction, which protrude toward the ends.
  2.  前記短尺繊維は、前記ステントカバーの軸方向の端部のループと、当該ループと軸方向に隣接する他のループとが交差する軸方向の位置より端部側にあることを特徴とする請求項1に記載の生体内留置物。 3. The short fiber is located on the end side of the axial position where the loop at the axial end of the stent cover intersects another loop axially adjacent to the loop. 1. The in vivo indwelling article according to 1.
  3.  前記ステントカバーの軸方向の端部側の前記短尺繊維の端部から、当該短尺繊維が接続する前記ループの端部側の折り返し部までの長さは、前記ループの軸方向長さより短いことを特徴とする請求項1または2に記載の生体内留置物。 The length from the ends of the short fibers on the axial end side of the stent cover to the folded portion on the end side of the loop connected by the short fibers is shorter than the axial length of the loop. 3. The in-vivo indwelling article according to claim 1 or 2.
  4.  前記ステントカバーの軸方向の中央側の前記短尺繊維の端部の位置は、前記短尺繊維が接続する前記ループの軸方向の中心位置より端部側にあることを特徴とする請求項1~3のいずれか1項に記載の生体内留置物。 3. The position of the ends of the short fibers on the central side in the axial direction of the stent cover is on the end side of the center position in the axial direction of the loops to which the short fibers connect. The in-vivo indwelling article according to any one of 1.
  5.  前記短尺繊維は、前記ステントカバーの軸方向の中央側に向く凸部を1つ有する凸型形状であり、2つの隣接する前記ループのみと接続し、前記短尺繊維の終端は、接続する前記ループの前記ステントカバーの端部側の折り返し部より端部側に位置することを特徴とする請求項4に記載の生体内留置物。 The short fiber has a convex shape with one convex portion facing the central side in the axial direction of the stent cover, and is connected only to two adjacent loops, and the end of the short fiber is connected to the loop. 5. The in-vivo indwelling device according to claim 4, wherein the stent cover is located on the end side of the folded portion on the end side of the stent cover.
  6.  前記ステントカバーの軸方向の端部の前記長尺繊維および前記短尺繊維の径方向の厚みは、前記端部以外の前記長尺繊維の径方向の厚みより小さいことを特徴とする請求項1~5のいずれか1項に記載の生体内留置物。 Claims 1 to 3, characterized in that the radial thickness of the long fibers and the short fibers at the axial ends of the stent cover is smaller than the radial thickness of the long fibers other than the ends. 6. The in-vivo indwelling article according to any one of 5.
  7.  前記ステントカバーの軸方向の端部に位置する全ての前記ループが前記短尺繊維で接続されていることを特徴とする請求項1~6のいずれか1項に記載の生体内留置物。 The in-vivo indwelling instrument according to any one of claims 1 to 6, wherein all the loops located at the ends of the stent cover in the axial direction are connected by the short fibers.
  8.  隣接する前記ステントカバーの端部の前記ループ同士が固定されたループ間接続部を有することを特徴とする請求項1~6のいずれか1項に記載の生体内留置物。 The in-vivo indwelling article according to any one of claims 1 to 6, characterized in that the loops at the ends of the adjacent stent covers have fixed inter-loop connections.
  9.  前記ステントカバーは、前記ステントの軸方向の長さの範囲内にあることを特徴とする請求項1~8のいずれか1項に記載の生体内留置物。 The in-vivo implant according to any one of claims 1 to 8, wherein the stent cover is within the axial length of the stent.
  10.  前記ステントカバーは、生分解性材料により形成されることを特徴とする請求項1~9のいずれか1項に記載の生体内留置物。 The in-vivo implant according to any one of claims 1 to 9, wherein the stent cover is made of a biodegradable material.
  11.  軸方向に延び、先端および基端を有し、径方向への拡張および収縮が可能に形成され、隙間を有する管状のステントおよび、空隙を有するように繊維がニット状に編み込まれて管状に形成された管状繊維部材を準備する準備工程と、
     前記準備工程後に芯金部材を前記管状繊維部材に挿入する挿入工程と、
     前記挿入工程後に前記管状繊維部材の軸方向に離れた複数の接続領域で、編み込まれた前記繊維同士の交差位置を接続する接続工程と、
     前記接続工程後に各々の前記接続領域の範囲内にある軸方向の位置で前記管状繊維部材を切断する切断工程と、
     前記切断工程後に得られたステントカバーを前記ステントに取り付ける取付工程と、
     前記接続工程後であって前記取付工程前のいずれかの段階で、前記管状繊維部材または前記ステントカバーから前記芯金部材を抜去する抜去工程と、を有することを特徴とする生体内留置物の製造方法。
    Axially extending, tubular stents formed to be radially expandable and contractible, having distal and proximal ends, having interstitial spaces and fibers knitted to form a tubular shape having voids. a preparatory step of preparing a tubular fibrous member;
    an inserting step of inserting a metal core member into the tubular fiber member after the preparing step;
    a connecting step of connecting crossing positions of the woven fibers in a plurality of connecting regions separated in the axial direction of the tubular fiber member after the inserting step;
    a cutting step of cutting the tubular fibrous member at an axial position within each of the connection regions after the connecting step;
    an attaching step of attaching the stent cover obtained after the cutting step to the stent;
    a removing step of removing the core metal member from the tubular fiber member or the stent cover at any stage after the connecting step and before the attaching step. Production method.
  12.  前記接続工程において、各々の前記接続領域にある前記管状繊維部材の軸方向および円周方向の全ての前記交差位置を接続することを特徴とする請求項11に記載の生体内留置物の製造方法。 12. The method for manufacturing an in-vivo implant according to claim 11, wherein, in the connecting step, all the crossing positions in the axial direction and the circumferential direction of the tubular fibrous members in each of the connecting regions are connected. .
  13.  前記接続工程において、超音波溶着機で前記交差位置を溶着することを特徴とする請求項11または12に記載の生体内留置物の製造方法。 The method for manufacturing an indwelling instrument according to claim 11 or 12, wherein in the connecting step, the intersecting positions are welded by an ultrasonic welder.
  14.  前記接続工程において、前記管状繊維部材の空隙の前記軸方向の幅より広い接触面幅の接触面を有する前記超音波溶着機を使用し、各々の接続領域において、前記接触面幅が前記管状繊維部材の軸に平行になるように前記接触面を前記繊維に接触させることを特徴とする請求項13に記載の生体内留置物の製造方法。 In the connecting step, the ultrasonic welding machine having a contact surface with a contact surface width wider than the width of the axial direction of the gap of the tubular fiber member is used, and in each connection region, the contact surface width is 14. The method for manufacturing an indwelling instrument according to claim 13, wherein the contact surface is brought into contact with the fiber so as to be parallel to the axis of the member.
  15.  前記接続工程において、前記管状繊維部材の空隙が軸方向に10個連続する領域の前記軸方向の幅より狭い前記接触面幅を有する前記接触面を使用することを特徴とする請求項14に記載の生体内留置物の製造方法。 15. The method according to claim 14, wherein, in said connecting step, said contact surface having said contact surface width narrower than said width in said axial direction of a region in which 10 voids of said tubular fibrous member are continuous in said axial direction is used. A method for producing an in vivo indwelling article according to
PCT/JP2022/004689 2021-02-10 2022-02-07 In vivo indwelling member and method for manufacturing same WO2022172891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-020192 2021-02-10
JP2021020192 2021-02-10

Publications (1)

Publication Number Publication Date
WO2022172891A1 true WO2022172891A1 (en) 2022-08-18

Family

ID=82837889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004689 WO2022172891A1 (en) 2021-02-10 2022-02-07 In vivo indwelling member and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2022172891A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100241214A1 (en) * 2006-11-22 2010-09-23 Inspiremd Ltd. Optimized stent jacket
US20140309723A1 (en) * 2010-12-19 2014-10-16 Inspiremd, Ltd. Stent with sheath and metal wire
WO2016178251A2 (en) * 2015-05-06 2016-11-10 Nano Therapeutics Pvt. Ltd. Drug eluting bioresorbable polymer mesh covered embolic protection implantable device
JP2020508747A (en) * 2017-02-21 2020-03-26 シルク・ロード・メディカル・インコーポレイテッドSilk Road Medical, Inc. Vascular implant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100241214A1 (en) * 2006-11-22 2010-09-23 Inspiremd Ltd. Optimized stent jacket
US20140309723A1 (en) * 2010-12-19 2014-10-16 Inspiremd, Ltd. Stent with sheath and metal wire
WO2016178251A2 (en) * 2015-05-06 2016-11-10 Nano Therapeutics Pvt. Ltd. Drug eluting bioresorbable polymer mesh covered embolic protection implantable device
JP2020508747A (en) * 2017-02-21 2020-03-26 シルク・ロード・メディカル・インコーポレイテッドSilk Road Medical, Inc. Vascular implant

Similar Documents

Publication Publication Date Title
US10406008B2 (en) Optimized stent jacket having single fiber mesh
EP2059198B1 (en) Stents with connectors and stabilizing biodegradable elements
US10188534B2 (en) Stent having reduced passage of emboli and stent delivery system
US8524132B2 (en) Method of fabricating an intraluminal scaffold with an enlarged portion
US5871535A (en) Intralumenal drug eluting prosthesis
JP5933558B2 (en) Pattern of bioabsorbable superficial femoral artery stent designed to break the connection
US20090210049A1 (en) Peripheral overlap stent
JP2014531275A (en) Improved scaffold for peripheral applications
EP3664752A1 (en) Uncaging stent
JP4707227B2 (en) Biological duct stent
US10918505B2 (en) Uncaging stent
WO2022172891A1 (en) In vivo indwelling member and method for manufacturing same
EP1991165B1 (en) Endoluminal prostheses for treating vulnerable plaque
WO2004084762A2 (en) Braided stent with looped ends and method for making same
WO2022172890A1 (en) In vivo indwelling object, and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752715

Country of ref document: EP

Kind code of ref document: A1