WO2022172728A1 - Train control system - Google Patents

Train control system Download PDF

Info

Publication number
WO2022172728A1
WO2022172728A1 PCT/JP2022/002208 JP2022002208W WO2022172728A1 WO 2022172728 A1 WO2022172728 A1 WO 2022172728A1 JP 2022002208 W JP2022002208 W JP 2022002208W WO 2022172728 A1 WO2022172728 A1 WO 2022172728A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
reliability
control
sensor
unit
Prior art date
Application number
PCT/JP2022/002208
Other languages
French (fr)
Japanese (ja)
Inventor
健二 今本
潤 小池
泰志 近江
敬一 勝田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021021436A external-priority patent/JP7377233B2/en
Priority claimed from JP2021021438A external-priority patent/JP2022123955A/en
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022172728A1 publication Critical patent/WO2022172728A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains

Definitions

  • the present invention relates to a train control system that detects foreign matter existing around the track on which the train runs and ensures the safety of the train based on the detection results.
  • Patent Literature 1 discloses a technique for determining the presence or absence of an obstacle based on a result of comparison between an image in a pre-recorded image database and an image captured by a camera mounted on a train.
  • an imaging device is provided at the head of a train, and an image recognition database is provided on the train in which the track images captured by the imaging device are recorded in synchronization with absolute kilometers. It is characterized by comparing the image recognized by the device with the image recognition database, and actuating the brake when a different image is detected.
  • the present invention for solving the above problems is a train control system for controlling the running of a train running on a track, comprising a sensor unit for acquiring information on the surrounding environment of the train, and based on the sensor information received from the sensor unit. , a trouble judgment unit that evaluates the reliability, which is a numerical value of the likelihood of the trouble judgment result of the presence or absence of trouble around the track on which the train runs, as a magnitude relationship compared with the judgment standard, and the reliability evaluation result.
  • a control instruction storage section for storing train control contents as control instruction rules, and a train control section for controlling train speed based on the control instruction rules, trouble determination results, and reliability.
  • the present invention provides a train control system that eliminates oversight of obstacles and appropriately reflects even sensor information suspected of excessive detection in control based on a comprehensive viewpoint of safety and operability. can provide.
  • FIG. 3 is a graph and a table in which the determination criteria, which are fixed values in FIG. 2, are changed according to the detection distance and the train speed.
  • 3A and 3B are graphs and a table in which the determination criterion, which is set to one fixed value in FIG. 2, is changed stepwise;
  • FIG. 3 is a graph and a table to which a highly accurate sensor characteristic interval is applied to FIG. 2;
  • FIG. 6 is a flow chart showing processing of the system shown in FIGS. 1 to 5; FIG.
  • FIG. 1 is a functional block diagram illustrating the configuration of this system.
  • the train 10 is composed of one or more train cars (hereinafter referred to as cars).
  • This system can basically be configured simply with only the on-board equipment of the train 10 .
  • the on-board device of the train 10 includes a sensor section 101, a trouble determination section 102, a control instruction storage section 103, and a train control section 104.
  • the train 10 is a vehicle that transports passengers and freight traveling along a railroad track, and is equipped with a braking device that reduces the running speed of the train 10 based on instructions from the train control unit 104 .
  • the system shown in FIG. 1 is basically composed of only the on-board equipment of the train 10, each component may be distributed and installed within the ground equipment.
  • Ground facilities can be enumerated along railway lines, stations, control rooms, and the like.
  • the sensor unit 101 may be installed at a railroad crossing, and the function of the control instruction storage unit 103 may be provided in the form of a cloud service on a network.
  • the train 10 is configured to separately include a communication unit for communicating with each unit.
  • any specific system configuration may be used as long as the configuration realizes the functions of each unit. Therefore, detailed description related to the communication unit is omitted.
  • the sensor unit 101 uses sensors mounted on the train 10 to acquire sensor information when monitoring the area around the train 10 . It is desirable that the sensor used has performance suitable for object detection. For example, various means such as cameras, millimeter wave radar, LIDAR, and ultrasonic sensors can be applied, and multiple sensors can be used in combination. .
  • the sensor unit 101 transmits sensor information obtained during forward monitoring to the trouble determination unit 102 .
  • the sensor information differs depending on the type of sensor used. For example, when a camera is used, it is image information of an object, and when a millimeter wave radar or LIDAR is used, it is reflection intensity and distance information from an object.
  • the obstacle determination unit 102 determines whether there is an obstacle around the track on which the train 10 runs, and secondarily evaluates the reliability of this primary determination result. When it is determined that there is an obstacle, the distance from the train 10 to the obstacle is also estimated. The trouble determination unit 102 transmits the trouble determination result, the distance estimation result, and the reliability evaluation result to the train control unit 104 . Note that the primary determination process and the secondary evaluation process are distinguished for convenience of explanation, and do not have to be strictly distinguished. In addition to sensor information, this system adds a lot of objective information and uses the results of AI processing in multiple stages to ensure the safety of trains.
  • Technology for object detection used in other fields such as automobiles can be used for the judgment of the presence or absence of obstacles by the obstacle judgment unit 102 and the process of estimating the distance from the train 10 to obstacles.
  • DNN Deep Neural Network
  • obstacle recognition methods that use a DNN (Deep Neural Network) to recognize objects on images from monocular images
  • obstacle recognition methods that detect the presence and distance of objects from LIDAR point cloud data.
  • DNN is one of the means used for machine learning, and by extracting and learning the features of the object, it is possible to recognize various objects and improve the accuracy of obstacle detection.
  • any method is acceptable as long as an obstacle in front of the train can be detected.
  • Technology for object detection used in other fields such as automobiles can also be used for the process of secondary evaluation of the reliability of the primary judgment result of the presence or absence of trouble by the trouble determination unit 102 .
  • a reliability calculation method of calculating reliability based on the degree of similarity between an acquired camera image and pre-learned data there is a reliability calculation method of calculating the reliability based on the number of point cloud data obtained by reflection from an object determined as an obstacle and the reflection intensity.
  • the reliability of the primary determination result may be secondarily lowered as the distance increases.
  • the results of determining whether there is an obstacle for the sensor information received at different timings are checked, and if an obstacle is continuously detected (that is, if the obstacle can be tracked as the same object), the reliability is evaluated highly.
  • sensor unit 101 uses a plurality of sensors
  • sensor fusion technology can be used.
  • a secondary evaluation for reliability may be performed. In the present invention, it is sufficient that the reliability of the primary determination result of the presence/absence of trouble can be evaluated secondarily, and the method is not limited.
  • the primary judgment processing by the obstacle judgment unit 102 and the secondary evaluation processing of the reliability of the primary judgment result have been described. was described as an example. Not limited to this, the same evaluation process can be performed even if a function to confirm that there is no obstruction and set "no obstruction" is assumed. For example, if known trackside structures are properly detected, with a high degree of confidence "no trouble” (i.e., there is no object between the known trackside structures and the train 10) and artificial intelligence (AI : Artificial Intelligence).
  • AI Artificial Intelligence
  • the trouble determination unit 102 may determine the presence or absence of obstacles and position information using not only newly acquired sensor information but also past sensor information. For example, a method such as a Kalman filter may be used to estimate the operating state of the obstacle using past sensor information. For example, when past sensor information detects an object moving in a straight line, even if the sensor information cannot be obtained at a certain moment, the object still exists at the position predicted from the past sensor information. , and the subsequent processing may be executed.
  • a method such as a Kalman filter may be used to estimate the operating state of the obstacle using past sensor information. For example, when past sensor information detects an object moving in a straight line, even if the sensor information cannot be obtained at a certain moment, the object still exists at the position predicted from the past sensor information. , and the subsequent processing may be executed.
  • Information other than sensor information may be used in the process of secondary evaluation of the reliability of the primary determination result of the presence or absence of a failure by the failure determination unit 102 .
  • the reliability may be evaluated based on environmental information such as weather information, travel time zone and travel location.
  • information that generally lowers the detection reliability compared to normal times includes weather information that changes over time during bad weather such as rain and snowfall, nighttime, early morning, and evening (hours affected by backlight), etc.
  • weather information that changes over time during bad weather such as rain and snowfall, nighttime, early morning, and evening (hours affected by backlight), etc.
  • There is information on the running time zone of In addition to visibility information around stations, which does not change in a short period of time but needs to be updated as appropriate, there is also travel point information such as in tunnels and mountainous areas. It is preferable that the present system evaluates the reliability while adjusting the reliability based on such factors of deterioration of the detection reliability.
  • the present system may evaluate the reliability based on the latest real-time environmental information acquired during driving.
  • the control instruction storage unit 103 stores a combination of a determination criterion of reliability for the primary trouble determination result and a train control content when a secondary evaluation of reliability exceeding or falling below the criterion is obtained. , are stored as control instruction rules.
  • This method An example of a train control method (hereinafter also referred to as "this method") according to an embodiment of the present invention will be described using FIG.
  • Fig. 2 shows a graph in which the sensor's determination reliability curve is superimposed on the operation curve of this system in Fig. 1.
  • a table of control instruction rules in which control details are associated with comparison results between the fixed criterion A and the determination reliability. For example, a train control method is conceivable in which the brake is operated in the case of a failure determination result with a reliability exceeding a certain criterion A, and coasting is performed in the case of a reliability lower than that.
  • Criteria A shown in the graph of Fig. 2 functions as a threshold for numerically fluctuating reliability. In this system, if the judgment criterion (threshold) A is high, judgment results with low reliability are ignored or taken lightly. Conversely, if the criterion (threshold value) A is low, even low-reliability determination results are emphasized and reflected in the control. In this system, the criterion A acts like the acuity and strictness of the control rule, so it is necessary to determine whether the result of applying it tends to over-detect or miss an obstacle.
  • the criterion A it is desirable to set the criterion A to an optimum value based on the degree of impact on the operation delay time as a result of applying this system, as well as the presence or absence of backup by the driver. For example, even if this system detects excessively, if the driver confirms and properly cancels the reflection in the operation control, ideal safe driving may be possible.
  • the reliability of the failure determination result by the failure determination unit 102 is expected to vary depending on the route environment and operating conditions, such as the difference in the frequency of false detections due to the number of structures along the route. It is desirable to set the determination criterion A in consideration of the acquisition status of the reliability in normal times based on the driving results.
  • the control instruction storage unit 103 stores the distance from the train 10 to the obstacle and the train speed in order to start braking based on the stoppable distance of the train 10 when setting the reliability criterion A for the obstacle determination result. should be set to the optimum value based on Another example of this method will be described with reference to FIG.
  • FIG. 3 is a graph and a table showing determination criteria F that are changed according to the detected distance and train speed, instead of the determination criteria A that are fixed values in FIG.
  • the detection distance here is the distance from the sensor unit 101 mounted on the train 10 to the obstacle detected by it. change to
  • the detection distance is the distance to the object while the sensor is detecting the object. Even an object that should be detected is outside the range of the maximum detection distance if it is too far away for the sensor to detect. That is, here, the detection distance within the range that can actually be detected is used, and is distinguished from the maximum detection distance, which means the capability of the sensor.
  • sensor performance specifications are represented by the maximum detection distance based on range resolution, the maximum detection speed based on velocity resolution, and the maximum detection angle based on angle resolution. Therefore, the reliability of sensor information obtained by a sensor with constant distance resolution and speed resolution decreases as the detection distance increases and as the train speed increases. On the other hand, from the viewpoint of safety, which is a different dimension from the reliability of sensor information, the longer the detection distance and the slower the train speed, the higher the safety.
  • the reliability of the sensor information output in a quantifiable manner can be determined as either high or low depending on the magnitude relationship compared to a certain threshold. If the reliability is high, the sensor information is weighted so as to be emphasized and reflected in the control, but if not, it is neglected or ignored.
  • a threshold for judging reliability in this manner is called a judgment criterion F.
  • FIG. This criterion F may be varied stepwise or steplessly according to the situation.
  • a high criterion F is applied. If the criterion F is high, it is not strongly reflected in the control unless the information is more reliable. If the brake is applied from that point, it is possible to stop at a point far enough away from the obstacle, so at best, continue powering suppression or coasting until the AI can determine whether the obstacle is a person, a vehicle, or a small animal. It is a judgment that is also acceptable.
  • the criterion F is low, even if the reliability of the sensor information is so low that it falls below it, it is reflected in the control unless it is clearly determined that it is a false alarm. For example, when an obstacle is obtained as sensor information at a close distance before a railroad crossing, even if the AI cannot determine whether the obstacle is a person, a vehicle, or a small animal, the emergency brake is activated for the time being.
  • the failure determination sensor When it is presumed that the operating state of the train 10 is clearly secured with a high degree of safety, and the criterion F for reliability is set high, the failure determination sensor with a degree of reliability higher than that is set. Do not apply the brakes unless information is available. As a result, the system is less susceptible to over-controlling. Conversely, when it is estimated that the safety level based on the current operating state of the train 10 is low and the reliability criterion F is set low, the sensor information of the obstacle is obtained with a correspondingly low level of reliability. The brakes are activated quickly even in the state of being caught. As a result, the system is easy to secure.
  • this system can continuously change the reliability criterion F according to the distance to obstacles and the train speed. By doing so, even in a running environment where it is difficult to obtain a highly reliable judgment, if there is a risk of a collision due to approaching, this system will lower the judgment criterion F to ensure safe train control. It becomes possible.
  • this system When setting the reliability criterion F, this system considers the acquisition status of reliability in normal times based on the driving results on the actual route. It is desirable to In other words, this system uses train speed, vehicle performance (deceleration, vehicle weight, running resistance, etc.) and line alignment information (slope, curve, etc.) as parameters for calculating the possible stopping distance for each point. , a criterion F may be set.
  • control instruction storage unit 103 optimally sets the contents of train control based on the distance from the train 10 to the obstacle and the train speed, the stop possible distance and the necessary deceleration of the train 10 are calculated using the formulas (1) to Calculate in (3).
  • Ls[m] is the possible stopping distance
  • Li[m] is the idling distance
  • Lb[m] is the braking distance
  • v[m/s] is the train speed
  • ti[s] is the idling time
  • ⁇ [ m/s 2 ] is the deceleration.
  • the idling time refers to the time from when the train control unit 104 outputs a control instruction to when the train 10 actually starts decelerating. Based on the calculated required deceleration, the strength of the braking force or corresponding braking notch is selected.
  • FIG. 4 is a graph and a table showing determination criteria A to C that are changed stepwise instead of the single fixed determination criteria A in FIG.
  • the criteria for determination reliability are fixed at A in FIG. 2, F is variable in FIG.
  • F is variable in FIG.
  • the control instruction storage unit 103 changes the stored control content according to the result of comparing the determination reliability based on the sensor output (sensor information) of the sensor unit 101 with the determination reliability A to C. Create a run curve to read and run.
  • This method is similar to the concept of "possible driving” that is commonly performed in manual driving of a car.
  • This "driving with possible danger” means to drive while always paying attention to the surrounding situation and foreseeing danger. 4
  • the sensor unit 101 detects some obstacle in front of the train 10 and the train 10 is less than the criterion C at the initial detection point, power running is suppressed.
  • the contents of the train control are changed to coasting.
  • the contents of the train control are changed to the regular brake.
  • the contents of the train control are changed to an emergency brake.
  • the control instruction storage unit 103 uses a method of setting the optimum value A based on the distance from the train 10 to the obstacle and the train speed when setting the reliability criterion for the obstacle determination result, and two or more determination methods. It may be set in combination with the method of setting the criteria A to C.
  • the control instruction storage unit 103 also sets, as the control contents to be recorded as the control instruction rule, the control contents in the case where only the judgment result of reliability less than a certain criterion can be obtained regardless of the trouble judgment result. is desirable. For example, even if it is determined that there is no problem, if the reliability of the determination result is low, power running suppression or coasting may be considered. In addition, when it is determined that "there is a problem" in the previous determination, even if it is determined that the reliability is low and "there is no problem", it is conceivable that the control contents immediately before are retained.
  • the control content recorded as the control instruction rule may be a "multi-stage brake control method" that relaxes the brake control when the train speed drops below a predetermined value after a predetermined brake control.
  • a target point and a target speed are designated as control contents, and the brake start point and braking force are optimized so that the train control unit 104 can decelerate to the point. It is good also as a “single step brake control system" which determines.
  • the first feature of the present invention is to optimally select various brake control methods according to reliability. Another example of this method will be described with reference to FIG. In relation to this, the second feature of the present invention is to obtain good results by setting a sensor characteristic interval (FIG. 5) with good sensor characteristics and high reliability so as to take advantage of the goodness of the sensor.
  • FOG. 5 sensor characteristic interval
  • FIG. 5 is a graph and table to which highly accurate sensor characteristic intervals are applied to FIG.
  • the control instruction storage unit 103 uses a running curve based on the sensor characteristics (detection distance, viewing angle, train speed, processing time, etc.) mounted on the train 10 as the control contents to be recorded as control instruction rules. can be specified. If the vehicle is driven so that the driving curve falls within the "sensor characteristic interval" shown in FIG. 5, the object detection and trouble determination are highly reliable, and safety can be easily ensured. Therefore, the distance range in which the sensor characteristics are optimal is set as the sensor characteristic section, which is the optimal environment assumed by this system. That is, the train 10 runs in an appropriate speed range, making it easier to ensure safety.
  • the sensor characteristic interval can be set based on the performance specifications (specs) of the sensor such as maximum detection distance and maximum detection speed. For example, if a camera is used as a sensor in this system, only low-reliability detection is possible at a distance of around 1 km based on the performance specifications of the camera. Suppose it can be detected with high reliability. In such a system, after detecting at a point about 1 km from the obstacle, it is conceivable to specify a running curve that approaches the point at a distance of 500 m from the obstacle at a train speed of 70 km/h or less.
  • a driving curve can be specified in a similar manner.
  • LIDAR which can detect objects within a detection distance of 300 m and at a speed of 80 km/h or less with high reliability, it is preferable to specify a driving curve that approaches the point at a distance of 300 m at 70 km/h or less.
  • This system which is equipped with such a combination of sensors, can detect objects and determine obstacles with higher reliability by combining both sensors. It is desirable to set such sensor characteristics and their combinations in consideration of performance specifications by sensor manufacturers, performance evaluations based on driving results, and the like.
  • the train control unit 104 controls the train 10 based on the trouble determination result received from the trouble judgment unit 102, the distance estimation result, the reliability evaluation result, the control instruction rule received from the control instruction storage unit 103, and the running speed of the train 10.
  • Train control instructions are generated to control the train 10 .
  • the generated train control instruction may be sent to an ATO device (automatic train operation device) to automatically control, or the driver may be provided with driving support information such as an alarm. Manual brake control may be prompted.
  • Whether to apply automatic control or manual control may be decided before the train runs, or the driver may decide manually after the train starts running. Further, when receiving the reliability information, the train control unit 104 may determine whether to apply automatic control or manual control based on the reliability.
  • train control is normally performed by automatic control, but if the reliability of the failure determination result is lower than a predetermined value, it is determined that the system may have made an error, and the system manually instructs the driver to Operation such as prompting switching to control is conceivable.
  • specific devices for the braking/driving means of the train 10 include inverters, motors, and friction brakes.
  • the train control unit 104 When the obstacle determination unit 102 determines that there is no obstacle in front of the train 10, the train control unit 104 generates a brake release instruction to control the train 10 based on the train running speed and the reliability evaluation result. good. According to such processing of the train control unit 104, the effect of being able to quickly return to normal running from the suppressed operation state can be expected.
  • the train control unit 104 determines that there is a "problem" in the previous processing cycle and issues a brake instruction, the obstacle is removed and it is confirmed that there was a temporary sensor error detection. If it is confirmed that the train is running safely, it is expected that the brakes will be released to avoid unnecessary deceleration and return to normal running as soon as possible.
  • the above is the configuration of the train control system and the description of each component.
  • FIG. 6 is a flowchart showing the processing of the system shown in FIGS. 1-5.
  • the processing shown in FIG. 6 is executed at regular intervals.
  • Step 900 is executed by the sensor unit 101
  • steps 901 to 904 are executed by the trouble determination unit 102
  • steps 905 to 906 are executed by the train control unit 104 .
  • step 900 current sensor information is obtained from the sensor unit 101.
  • step 901 based on the sensor information acquired by the sensor unit 101 , it is primarily determined whether there is an object that hinders the running of the train 10 .
  • step 902 based on the primary determination result in step 901 , if “problem” is determined, the process proceeds to step 903 , and if “no problem” is determined, the process proceeds to step 904 .
  • step 903 determining that there is an obstacle
  • the distance between the train 10 and the detected obstacle is estimated based on the sensor information, and the process proceeds to step 904.
  • step 904 the reliability of the trouble determination result is secondarily evaluated based on the sensor information and more objective criteria.
  • step 905 a train control instruction for the train 10 is generated based on the trouble determination result, the distance estimation result, the reliability evaluation result, the control instruction rule received from the control instruction storage unit 103, and the running speed of the train 10. to control.
  • the results of intrusion determination and brake instructions are presented to the driver by screen display, voice information, alarms, etc. on the cab. Also good.
  • step 906 the running speed of the train 10 is controlled based on the contents of the train control instruction (braking instruction or brake release).
  • the train control instruction braking instruction or brake release.
  • This system realizes safe and stable train control according to the operating environment and sensor characteristics by controlling the brakes according to the reliability of the trouble determination result in such a procedure.
  • a train control system (this system) according to an embodiment of the present invention can be summarized as follows.
  • This system includes a train 10 , a sensor section 101 , a trouble determination section 102 , a control instruction storage section 103 and a train control section 104 .
  • a train 10 runs on a track.
  • the sensor unit 101 acquires information on the surrounding environment of the train 10 .
  • the obstacle determination unit 102 Based on the sensor information received from the sensor unit 101 , the obstacle determination unit 102 primarily determines whether there is an obstacle around the track on which the train 10 runs, and stores the result in the control instruction storage unit 103 .
  • the trouble determination unit 102 considers the certainty of the primary trouble judgment result obtained in this way, and considers the environment such as the weather and the running position of the train, etc., and determines the reliability based on more objective judgment criteria. Secondarily evaluate the degree.
  • control instruction storage unit 103 optimally sets train control details based on the detected distance from the train 10 to the obstacle and the train speed.
  • the failure determination unit 102 secondarily evaluates the reliability of the primary failure determination result read from the control instruction storage unit 103 based on whether it exceeds or falls below a more objective criterion. , is stored in the control instruction storage unit 103 .
  • control instruction rule is stored in the control instruction storage unit 103 .
  • the train control unit 104 controls the train speed based on the control instruction rule, the obstacle determination result, and the reliability of the obstacle determination result.
  • This system configured as described above can prevent obstacles from being overlooked and over-detected on a practical level in a well-balanced manner.
  • this system when the image recognition database and the image taken while driving are compared and judged to obtain a trouble judgment result, by appropriately setting the judgment criteria, if the judgment criteria are not completely matched, is too strict, making it easier to avoid over-detection defects. Conversely, the system tends to be too lenient to tolerate substantial differences, thus avoiding the problem of missing actual obstacles.
  • this system the reliability of the trouble determination result by the external sensor is appropriately evaluated based on the current situation, enabling the operation of the optimum braking force according to the driving environment and sensor characteristics.
  • this system eliminates the overlooking of obstacles, and on the contrary, even sensor information that is suspected of being overdetected is appropriately reflected in control based on a comprehensive viewpoint of safety and operability. Let As a result, this system can realize safe and stable train control.
  • the obstacle determination section 102 estimates the detected distance between the train 10 and obstacles and the train speed.
  • the control instruction storage unit 103 sets and stores in a readable manner a reliability criterion for the primary failure determination result based on the detected distance between the train 10 and the obstacle and the train speed.
  • the threshold for secondarily judging reliability is called a criterion.
  • control instruction storage unit 103 necessary information is stored in the control instruction storage unit 103 so that the determination criterion (threshold value) can be varied stepwise or steplessly according to the situation.
  • the stored contents are updated accordingly.
  • the criterion F for the reliability of the obstacle determination result is the distance from the train 10 to the obstacle, and the optimum value F should be set based on the train speed. If the reliability of the failure determination result is high, the sensor information is weighted so as to be emphasized and reflected in the train control, but if not, it is neglected or ignored.
  • a high criterion is applied. If the criterion is high, it is not strongly reflected in the control unless the information is more reliable than the criterion. Conversely, when the distance to the obstacle is short or the train speed is high, a low criterion is applied. If the criterion is low, even if the reliability of the sensor information is so low that it falls below the criterion, it is reflected in train control unless it is clearly determined that it is an erroneous alarm.
  • the system may collide with an obstacle unless the brakes are strongly applied. do.
  • the present system changes the weighting for reflecting the trouble determination result in the control depending on whether the reliability of the sensor information and the trouble judgment result based on the sensor information is high or low.
  • the reliability criterion is set low. Therefore, the system will not miss even if the sensor information of the obstruction is obtained with a correspondingly low level of confidence, and will actuate the brakes in an agile manner. As a result, the system is easy to secure.
  • this system can continuously change the reliability criteria according to the distance to obstacles and train speed. By doing so, even in a running environment where it is difficult to obtain a highly reliable judgment, if there is a risk of collision due to approaching, this system can control the train while ensuring safety by lowering the judgment criteria. becomes.
  • the secondary evaluation of the reliability of the primary failure determination result is output by the failure determination unit 102 .
  • the control instruction storage unit 103 preferably sets the strength of the braking force according to the reliability level.
  • the contents of train control are reflected as follows for each setting of the criteria A to C of the three ranks illustrated in Fig. 4. That is, when the trouble determination result exceeds the highest criterion A, the emergency brake is applied. If the trouble determination result exceeds the second criterion B, the brake is used for normal use. If the trouble determination result exceeds the third determination criterion C, the content of the train control is coasting operation. If the trouble determination result is less than the third determination criterion C, the content of train control is to suppress power running.
  • this system can speed up the speed control at an early stage with train control contents such as power running suppression, coasting operation, and regular braking in a range where the influence on operation can be suppressed.
  • train control contents such as power running suppression, coasting operation, and regular braking in a range where the influence on operation can be suppressed.
  • the trouble determination unit 102 receives at least one of weather information, time information, or travel location. Based on the above information, the presence or absence of obstacles around the track on which the train 10 runs is determined, and the reliability of the obstacle determination result is secondarily evaluated.
  • a system is more realistic and practical. For example, it is possible to effectively adopt a method of judging "no problem" when a known structure along the railroad is properly detected, and judging "has a problem” in the opposite case.
  • a trouble determination method using sensor information whose reliability fluctuates based on weather information or time information can also be effectively adopted in this system.
  • the control instruction storage unit 103 detects a detectable distance or viewing angle assumed by the sensor unit 101 or train speed
  • the running curve of the train 10 may be designated based on at least one piece of information of the processing time.
  • the control instruction storage unit 103 may designate a running curve based on the characteristics of the sensors mounted on the train 10 (detection distance, viewing angle, train speed, processing time, etc.).
  • the distance range in which the sensor characteristics are optimal is set as the sensor characteristic section, which is the optimal detection range assumed by this system.
  • the sensor characteristic section shown in FIG. 5 is easy to take advantage of the sensor, so the train 10 can be controlled with high accuracy.
  • the driving curve is kept within the "sensor characteristic section” shown in FIG. 5, the object detection and trouble determination are highly reliable, and safety can be easily ensured. That is, according to this system, if the train 10 is run in an appropriate speed range in the sensor characteristic section, it is easy to perform precise control, and it is easy to ensure safety.
  • This method is a train control method for controlling running of the train 10 running on the track, and has the following processes.
  • the sensor unit 101 acquires information on the surrounding environment of the train 10 (step 900).
  • the obstacle determination section 102 primarily determines whether or not there is an obstacle around the track on which the train 10 runs (step 901).
  • the trouble determination unit 102 evaluates the degree of reliability of the certainty of the trouble judgment result regarding the presence or absence of a primary trouble by comparing the magnitude relation with a more objective secondary judgment criterion (step 904).
  • the control instruction storage unit 103 stores, as a control instruction rule, a combination of the judgment criteria, the evaluation obtained by the comparison, and the train control content to be applied based on the evaluation.
  • the train control unit 104 reads out the control instruction rule according to the reliability of the trouble determination result from the control instruction storage unit 103, and controls the train speed based on the control instruction rule (step 906).
  • the sensor system (a combination of the sensor unit 101 and the trouble determination unit 102), which is also applied to this train control system, detects people and dangerous objects, outputs a primary trouble judgment result, and puts the controlled object in a safe state.
  • the purpose is to protect people by doing so, and the sensor function and accuracy are secondarily objectively evaluated in accordance with the sensor system standard IEC62998.
  • the sensor system that acquires information on the surrounding environment of the train 10 uses the sensor information received from the sensor unit 101 to determine not only the accuracy of the primary sensor functions, but also Regarding the reliability of the obstacle determination result by detecting people and dangerous objects, we will conduct a secondary objective evaluation, taking into consideration the environment and train conditions. This system operates trains according to control details that are appropriately weighted according to this evaluation.
  • YOLO You-Only-Look-Once
  • YOLO is a relatively new image recognition algorithm and has the following advantages. First, high precision and fast processing. Secondly, since the information of the entire image is captured and predicted, the problem of erroneously detecting the background as an object can be reduced. In other words, YOLO can learn and verify from the information of the entire image including the background, so it can rationally recognize the relationship between the background and the object based on learning.
  • the reliability of the sensor changes depending on the environmental conditions.
  • the sensor characteristics mainly refer to the performance in a range in which the sensor can easily demonstrate its detection ability with high accuracy, that is, in a range of high utility value.
  • areas of strength related to detection distance and speed are defined as sensor characteristics.
  • a characteristic technique of the present invention is a technique for activating the optimum braking force according to the driving environment of the vehicle and the sensor characteristics based on the reliability of the information detected by the sensor according to the sensor characteristics. It should be noted that the control in which the braking intensity is changed in stages to obtain the optimum braking force is suitable for railway vehicles because it is easy to adapt to the driving operation involving the number of notches.
  • this train control system recognizes sensor characteristics that are not necessarily compatible with all environments, and then controls the train using the area in which the sensor is good at detecting distances from obstacles and train speed.
  • the contents of control for the train are, for example, contents such as emergency braking, normal braking, coasting, and power running suppression.
  • the stop possible detection distance and the necessary deceleration of the train 10 are calculated by the above formulas (1) to (3).
  • sensors Prior to formulating these formulas, sensors are objectively evaluated secondarily in terms of sensor functions and trouble determination accuracy based on the sensor information that they primarily output, as well as the environment and train conditions. If the sensor information and trouble determination result are highly reliable, they are weighted and quickly reflected in the control.
  • This train control system is basically premised on unmanned operation, but it is not necessarily limited to that, and a driver may coexist in addition to fully automated operation. In that case, the content of control is presented as driving assistance information to the driver who is intervening on the route through which the content of control is transmitted to the traveling device.
  • control instruction storage unit 103 is a computer-equivalent unit formed by combining a storage unit storing programs with a processor unit (CPU) and an input/output interface. This computer-equivalent part may be realized by a one-chip microcomputer, may be used as part of another computer, or may be realized by hardware circuits alone.
  • each function has been described using the expression “kkk unit”, but these functions may be realized by executing one or more computer programs by the processor unit, or may be realized by one or more hardware circuits. May be. Note that the description of each function is an example, and a plurality of functions may be combined into one function, or one function may be divided into a plurality of functions.
  • the present invention is not limited to the above-described embodiments, and includes various modifications. These embodiments are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The present invention invention provides a train control system that controls the travel of a train traveling on a track, the train control system comprising: a sensor unit that acquires information about the environment around the train; an obstacle determination unit that, on the basis of sensor information received from the sensor unit, evaluates a degree of reliability quantifying the certainty of an obstacle determination result pertaining to whether obstacles are present around the track on which the train is traveling, the degree of reliability being evaluated as a relationship of magnitude compared with a determination reference; a control instruction storage unit that stores, as a control instruction rule, train control details associated with the result of evaluating the degree of reliability; and a train control unit that controls the speed of the train on the basis of the control instruction rule, the obstacle determination result, and the degree of reliability.

Description

列車制御システムtrain control system
 本発明は、列車が走行する軌道周辺に存在する異物を検知し、検知結果に基づいて列車の安全を確保するための列車制御システムに関する。 The present invention relates to a train control system that detects foreign matter existing around the track on which the train runs and ensures the safety of the train based on the detection results.
 軌道上を列車等が走行する軌道輸送システムでは、軌道周辺に障害物があった場合、その障害物に衝突しようと接近する列車等を軌道から回避させるような操舵は出来ないため、列車等が走行する前方を監視し続けて支障物等の有無を検知することが、その安全性や運用性を向上させるために重要である。障害物を検知する手段として、例えば、カメラやLIDAR(Light Detection and Ranging)、ミリ波レーダ等のセンサが使用される。これらのセンサ出力を数値化したセンサ情報に基づいて、障害物の有無を閾値判定することが考えられる。 In a track transportation system in which trains, etc., run on the track, if there is an obstacle around the track, it is not possible to steer the approaching train, etc. to avoid the obstacle from the track. It is important for improving the safety and operability to continuously monitor the road ahead and detect the presence or absence of obstacles and the like. Sensors such as cameras, LIDAR (Light Detection and Ranging), and millimeter wave radars are used as means for detecting obstacles. Based on sensor information obtained by digitizing these sensor outputs, it is conceivable to determine the presence or absence of an obstacle with a threshold value.
 そこで、軌道輸送システムのひとつである鉄道において、軌道周辺の物体を検知する技術として、特許文献1に記載された踏切内の障害物検知装置が提案されている。特許文献1では、あらかじめ記録された画像データベースの画像と、列車に搭載したカメラで撮影された画像との比較結果に基づき、障害物の有無を判定する技術が開示されている。特許文献1の技術は、列車先頭部に撮像装置が具備され、撮像装置による軌道画像を絶対キロ程に同期して記録した画像認識データベースを車上に設け、列車走行中、撮像装置を通じて画像認識装置が認識した画像と画像認識データベースとを比較し、異なる画像を検知した時点でブレーキを作動させることを特徴としている。 Therefore, in the railroad, which is one of the railroad transportation systems, an obstacle detection device in railroad crossings described in Patent Document 1 has been proposed as a technology for detecting objects around the railroad tracks. Patent Literature 1 discloses a technique for determining the presence or absence of an obstacle based on a result of comparison between an image in a pre-recorded image database and an image captured by a camera mounted on a train. In the technique of Patent Document 1, an imaging device is provided at the head of a train, and an image recognition database is provided on the train in which the track images captured by the imaging device are recorded in synchronization with absolute kilometers. It is characterized by comparing the image recognized by the device with the image recognition database, and actuating the brake when a different image is detected.
特開2010-063260号公報Japanese Unexamined Patent Application Publication No. 2010-063260
 しかしながら、特許文献1の技術において、画像認識データベースと、走行中に撮影した画像との比較を行う際、完全に画像が一致する場合のみ同一画像と判定する比較判定処理とした場合、わずかな汚れや植生等により頻繁に障害物と過剰検知する可能性がある。一方、ある程度の差異を許容するような比較判定処理とした場合、障害物に対する感受性が低下するため、障害物まで接近してから比較判定するとした場合、ブレーキ操作が間に合わないおそれがあり、列車の速度を抑制する等、列車の運行を制限せざるを得ないこともある。そこで、本発明の目的は、障害物を発見するための感受性を高めつつ、より列車の運用を損なわないようにできる列車制御システムを提供することにある。 However, in the technique of Patent Document 1, when comparing an image recognition database with an image taken while driving, if the comparison and determination processing is performed to determine that the image is the same image only when the images match completely, a slight amount of dirt may be detected. and vegetation, etc., may cause frequent and excessive detection of obstacles. On the other hand, if the comparative judgment process allows a certain amount of difference, the sensitivity to obstacles will decrease. In some cases, we have no choice but to limit the operation of trains, such as by controlling speed. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a train control system capable of improving the sensitivity for detecting obstacles while preventing the operation of trains from being impaired.
 上記課題を解決する本発明は、軌道上を走行する列車の走行を制御する列車制御システムであって、列車の周辺環境の情報を取得するセンサ部と、センサ部より受信したセンサ情報に基づいて、列車が走行する軌道周辺における支障有無の支障判定結果に対する確からしさを数値化した信頼度を、判定基準と比較した大小関係として評価する支障判定部と、信頼度の評価結果に対応付けられた列車制御内容を制御指示ルールとして記憶する制御指示記憶部と、制御指示ルール、支障判定結果、及び信頼度に基づいて列車速度を制御する列車制御部と、を備える。 The present invention for solving the above problems is a train control system for controlling the running of a train running on a track, comprising a sensor unit for acquiring information on the surrounding environment of the train, and based on the sensor information received from the sensor unit. , a trouble judgment unit that evaluates the reliability, which is a numerical value of the likelihood of the trouble judgment result of the presence or absence of trouble around the track on which the train runs, as a magnitude relationship compared with the judgment standard, and the reliability evaluation result. A control instruction storage section for storing train control contents as control instruction rules, and a train control section for controlling train speed based on the control instruction rules, trouble determination results, and reliability.
 本発明により、支障物に対する見逃しを根絶させ、逆に過剰検知の疑いがあるセンサ情報であっても、安全性と運用性との総合的観点に基づいて、制御に適宜反映させる列車制御システムを提供できる。 The present invention provides a train control system that eliminates oversight of obstacles and appropriately reflects even sensor information suspected of excessive detection in control based on a comprehensive viewpoint of safety and operability. can provide.
本発明の実施形態に係る列車制御システム(以下、「本列車制御システム」又は「本システム」ともいう)の構成を例示する機能ブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a functional block diagram which illustrates the structure of the train control system (henceforth "this train control system" or "this system") which concerns on embodiment of this invention. 図1の本システムによる運転曲線にセンサの判定信頼度の曲線を重ねたグラフのほか、固定された判定基準と判定信頼度との比較結果に制御内容を対応付けた制御指示ルールの表である。In addition to the graph in which the curve of the judgment reliability of the sensor is superimposed on the operation curve by this system of FIG. . 図2において固定値とした判定基準を、検知距離と列車速度に応じて変化させたグラフ及び表である。FIG. 3 is a graph and a table in which the determination criteria, which are fixed values in FIG. 2, are changed according to the detection distance and the train speed. 図2において1つの固定値とした判定基準を、段階的に変化させたグラフ及び表である。3A and 3B are graphs and a table in which the determination criterion, which is set to one fixed value in FIG. 2, is changed stepwise; 図2に対し、高精度のセンサ特性区間を適用したグラフ及び表である。FIG. 3 is a graph and a table to which a highly accurate sensor characteristic interval is applied to FIG. 2; 図1~図5に示した本システムの処理を示すフローチャートである。FIG. 6 is a flow chart showing processing of the system shown in FIGS. 1 to 5; FIG.
 まず、図1を用いて、本システムの構成と各構成要素の役割について説明する。図1は、本システムの構成を例示する機能ブロック図である。列車10は、編成された1以上の鉄道車両(以下、車両)より構成される。本システムは、基本的に列車10の車上装置のみで簡素に構成できる。 First, using Fig. 1, the configuration of this system and the role of each component will be explained. FIG. 1 is a functional block diagram illustrating the configuration of this system. The train 10 is composed of one or more train cars (hereinafter referred to as cars). This system can basically be configured simply with only the on-board equipment of the train 10 .
 列車10の車上装置は、センサ部101、支障判定部102、制御指示記憶部103、及び列車制御部104を備える。図示しないが、列車10は、線路に沿って走行する旅客や貨物を輸送する車両であり、列車制御部104の指示に基づき、列車10の走行速度を減速するブレーキ装置を備える。 The on-board device of the train 10 includes a sensor section 101, a trouble determination section 102, a control instruction storage section 103, and a train control section 104. Although not shown, the train 10 is a vehicle that transports passengers and freight traveling along a railroad track, and is equipped with a braking device that reduces the running speed of the train 10 based on instructions from the train control unit 104 .
 図1の本システムは、基本的に列車10の車上装置のみで構成されるが、各構成要素を地上設備内に分散設置しても良い。地上設備は、沿線や駅、司令室等が列挙できる。例えば、センサ部101は踏切に設置されていても良いし、制御指示記憶部103はネットワーク上でクラウドサービスの形式で機能が提供されても良い。各部が列車10の外部に設置される場合、列車10は各部と通信するための通信部を別途備える構成とする。本発明では、各部が備える機能を実現する構成となっていればよく、具体的なシステム構成は問わない。したがって、通信部に関連する詳細な説明は省略する。 Although the system shown in FIG. 1 is basically composed of only the on-board equipment of the train 10, each component may be distributed and installed within the ground equipment. Ground facilities can be enumerated along railway lines, stations, control rooms, and the like. For example, the sensor unit 101 may be installed at a railroad crossing, and the function of the control instruction storage unit 103 may be provided in the form of a cloud service on a network. When each unit is installed outside the train 10, the train 10 is configured to separately include a communication unit for communicating with each unit. In the present invention, any specific system configuration may be used as long as the configuration realizes the functions of each unit. Therefore, detailed description related to the communication unit is omitted.
 センサ部101は、列車10に搭載されたセンサを用いて列車10周辺監視時のセンサ情報を取得する。使用するセンサは物体検知に適した性能を持つことが望ましく、例えば、カメラ、ミリ波レーダ、LIDAR、超音波センサ等の様々な手段が適用でき、また、複数のセンサを組み合わせて用いても良い。 The sensor unit 101 uses sensors mounted on the train 10 to acquire sensor information when monitoring the area around the train 10 . It is desirable that the sensor used has performance suitable for object detection. For example, various means such as cameras, millimeter wave radar, LIDAR, and ultrasonic sensors can be applied, and multiple sensors can be used in combination. .
 センサ部101は、前方監視時に得られたセンサ情報を支障判定部102へ送信する。センサ情報は、使用するセンサ種別によって異なり、例えば、カメラを用いた場合は物体の画像情報、ミリ波レーダやLIDARを用いた場合は物体からの反射強度や距離情報となる。 The sensor unit 101 transmits sensor information obtained during forward monitoring to the trouble determination unit 102 . The sensor information differs depending on the type of sensor used. For example, when a camera is used, it is image information of an object, and when a millimeter wave radar or LIDAR is used, it is reflection intensity and distance information from an object.
 支障判定部102は、センサ部101より受信したセンサ情報に基づき、列車10が走行する軌道周辺における支障有無を判定し、この一次的な判定結果に対する信頼度を二次的に評価する。支障物有りと判定した場合は列車10から支障物までの距離推定も行う。支障判定部102は、支障判定結果、距離推定結果、信頼度評価結果を列車制御部104へ送信する。なお、一次的な判定処理と、二次的な評価処理とは、説明の便宜上の区別であり、厳格に区別されなくても良い。本システムは、センサ情報のほか、多くの客観情報を加えて、多段階にAI処理した結果を制御に生かすことにより、列車の安全を確保する。 Based on the sensor information received from the sensor unit 101, the obstacle determination unit 102 determines whether there is an obstacle around the track on which the train 10 runs, and secondarily evaluates the reliability of this primary determination result. When it is determined that there is an obstacle, the distance from the train 10 to the obstacle is also estimated. The trouble determination unit 102 transmits the trouble determination result, the distance estimation result, and the reliability evaluation result to the train control unit 104 . Note that the primary determination process and the secondary evaluation process are distinguished for convenience of explanation, and do not have to be strictly distinguished. In addition to sensor information, this system adds a lot of objective information and uses the results of AI processing in multiple stages to ensure the safety of trains.
 支障判定部102による支障有無の判定、及び列車10から支障物までの距離推定の処理は、自動車等の他分野で使用されている物体検知のための技術が使用可能である。例えば、ステレオカメラを用いて視差画像を作成し、視差画像から前方の物体の形状や位置を認識する、といった支障認識方法がある。 Technology for object detection used in other fields such as automobiles can be used for the judgment of the presence or absence of obstacles by the obstacle judgment unit 102 and the process of estimating the distance from the train 10 to obstacles. For example, there is an obstacle recognition method of creating parallax images using a stereo camera and recognizing the shape and position of an object in front from the parallax images.
 また、単眼画像からDNN(Deep Neural Network)を使用して画像上の物体を認識する支障認識方法や、LIDARの点群データから物体の有無や距離を検知する支障認識方法もある。このとき、DNNとは、機械学習に用いられる手段の1つであり、対象物の特徴を抽出して学習することで、様々な対象物を認識し、障害物検知精度の向上を可能にする。本発明では、列車前方の支障物を検知できればよく、その方法は問わない。 There are also obstacle recognition methods that use a DNN (Deep Neural Network) to recognize objects on images from monocular images, and obstacle recognition methods that detect the presence and distance of objects from LIDAR point cloud data. At this time, DNN is one of the means used for machine learning, and by extracting and learning the features of the object, it is possible to recognize various objects and improve the accuracy of obstacle detection. . In the present invention, any method is acceptable as long as an obstacle in front of the train can be detected.
 支障判定部102による支障有無の一次的な判定結果に対する信頼度を二次的に評価する処理についても、自動車等の他分野で使用されている物体検知のための技術が使用可能である。例えば、カメラを用いる場合は、取得したカメラ画像と事前学習データとの類似度に基づき信頼度を算出する信頼度算出方法がある。また、LIDARやミリ波レーダを用いる場合は、支障物と判定された物体からの反射により得られた点群データの個数や反射強度に基づき信頼度を算出する信頼度算出方法がある。 Technology for object detection used in other fields such as automobiles can also be used for the process of secondary evaluation of the reliability of the primary judgment result of the presence or absence of trouble by the trouble determination unit 102 . For example, when using a camera, there is a reliability calculation method of calculating reliability based on the degree of similarity between an acquired camera image and pre-learned data. Further, when LIDAR or millimeter wave radar is used, there is a reliability calculation method of calculating the reliability based on the number of point cloud data obtained by reflection from an object determined as an obstacle and the reflection intensity.
 また、列車10と支障物との推定距離に基づき、例えば、遠方であるほど一次的な判定結果の信頼度を二次的に下げても良い。また、異なるタイミングで受信したセンサ情報に対する支障有無の判定結果を確認し、連続して支障物として検知される場合(すなわち、支障物が同一物体としてトラッキング可能な場合)は信頼度を高く評価しても良い。 Also, based on the estimated distance between the train 10 and the obstacle, for example, the reliability of the primary determination result may be secondarily lowered as the distance increases. In addition, the results of determining whether there is an obstacle for the sensor information received at different timings are checked, and if an obstacle is continuously detected (that is, if the obstacle can be tracked as the same object), the reliability is evaluated highly. can be
 また、センサ部101が複数のセンサを用いている場合は、センサフュージョン技術が使用可能であり、例えば、1つのセンサ単体で支障有無を判定した場合より複数のセンサで判定した場合の方を高い信頼度とする二次的な評価を行っても良い。本発明では、支障有無の一次的な判定結果に対する信頼度を二次的に評価できればよく、その方法は問わない。 In addition, when the sensor unit 101 uses a plurality of sensors, sensor fusion technology can be used. A secondary evaluation for reliability may be performed. In the present invention, it is sufficient that the reliability of the primary determination result of the presence/absence of trouble can be evaluated secondarily, and the method is not limited.
 ここまでは、支障判定部102による支障有無の一次的な判定処理、及び一次的な判定結果に対する信頼度の二次的な評価処理について、支障物そのものを発見して「支障有り」とする機能を例示して説明した。これに限らず、支障物が無いことを確認して「支障無し」とする機能を前提にしても、同様の評価処理が可能である。例えば、既知の沿線構造物が適切に検出された場合に、高い信頼度で「支障無し」(すなわち、既知の沿線構造物と列車10との間には物体が存在しない)と人工知能(AI:Artificial Intelligence)により判定しても良い。 Up to this point, the primary judgment processing by the obstacle judgment unit 102 and the secondary evaluation processing of the reliability of the primary judgment result have been described. was described as an example. Not limited to this, the same evaluation process can be performed even if a function to confirm that there is no obstruction and set "no obstruction" is assumed. For example, if known trackside structures are properly detected, with a high degree of confidence "no trouble" (i.e., there is no object between the known trackside structures and the train 10) and artificial intelligence (AI : Artificial Intelligence).
 この場合、取得したセンサ出力(以下、「センサ情報」という)に基づく信頼度がある判定基準(閾値)以上のとき、「支障無し」と判定されなければ、どちらともいえないグレーゾーンを設けることなく反対解釈して「支障有り」と論理判定しても良い。同様に、信頼度がある判定基準以上のとき、「支障有り」と判定されなければ「支障無し」と論理判定しても良い。 In this case, when the reliability based on the acquired sensor output (hereinafter referred to as "sensor information") is above a certain criterion (threshold), if it is not judged as "no problem", a gray zone that cannot be said either way should be provided. It is also possible to make a logical determination that "there is a problem" by interpreting it in the opposite direction. Similarly, when the reliability is equal to or higher than a certain criterion, if it is not determined as "problem", it may be logically determined as "no problem".
 本システムにおいて、二次的な評価結果は、列車制御に重みづけて反映される。支障判定部102による支障有無の一次的な判定処理、及び一次的な判定結果に対する信頼度がある判定基準以下のときは、その判定結果を列車制御に反映させずに棄却するか軽視するようなグレーゾーンを設けることが合理的である。例えば、悪天候や夜間であることが原因で、既知の沿線構造物が適切に検出されなかった場合、「支障有り」との判定は不適切であるので、信頼度を下げるかゼロにすべきである。 In this system, secondary evaluation results are weighted and reflected in train control. When the reliability of the primary judgment processing of the presence or absence of trouble by the obstacle judgment unit 102 and the reliability of the primary judgment result is below a certain judgment standard, the judgment result is not reflected in the train control and is rejected or taken lightly. It makes sense to have a gray zone. For example, if a known trackside structure is not properly detected due to bad weather or nighttime, it is inappropriate to judge that there is a problem, so the reliability should be reduced or set to zero. be.
 支障判定部102は、新しく取得したセンサ情報だけでなく、過去のセンサ情報を使用して障害物の有無や位置情報を判断しても良い。例えば、カルマンフィルタ等の手法を活用し、過去のセンサ情報も用いて障害物の動作状態を推定しても良い。例えば、過去のセンサ情報において直線的に移動してくる物体を検知していたとき、ある瞬間にセンサ情報が取得できなかった場合でも、過去のセンサ情報から予測される位置に物体が存在するものと推定して以降の処理を実行しても良い。 The trouble determination unit 102 may determine the presence or absence of obstacles and position information using not only newly acquired sensor information but also past sensor information. For example, a method such as a Kalman filter may be used to estimate the operating state of the obstacle using past sensor information. For example, when past sensor information detects an object moving in a straight line, even if the sensor information cannot be obtained at a certain moment, the object still exists at the position predicted from the past sensor information. , and the subsequent processing may be executed.
 支障判定部102による支障有無の一次的な判定結果に対する信頼度を二次的に評価する処理において、センサ情報以外の情報を用いても良い。例えば、天候情報、走行時間帯及び走行地点等の環境情報に基づいて信頼度を評価しても良い。 Information other than sensor information may be used in the process of secondary evaluation of the reliability of the primary determination result of the presence or absence of a failure by the failure determination unit 102 . For example, the reliability may be evaluated based on environmental information such as weather information, travel time zone and travel location.
 すなわち、一般的に平常時より検知信頼度が低下する場合の情報として、時間とともに変化する雨天や降雪等の悪天候時の天候情報や、夜間、早朝及び夕方(逆光の影響がある時間帯)等の走行時間帯の情報がある。また、短時間では変化しないが適宜に更新が必要な、駅周辺の視界情報のほか、トンネル内や山間部等の走行地点情報もある。本システムは、このような検知信頼度の低下要因に基づいて、信頼度を加減しながら評価することが好ましい。 In other words, information that generally lowers the detection reliability compared to normal times includes weather information that changes over time during bad weather such as rain and snowfall, nighttime, early morning, and evening (hours affected by backlight), etc. There is information on the running time zone of In addition to visibility information around stations, which does not change in a short period of time but needs to be updated as appropriate, there is also travel point information such as in tunnels and mountainous areas. It is preferable that the present system evaluates the reliability while adjusting the reliability based on such factors of deterioration of the detection reliability.
 なお、走行経路が事前に確認されている場合に限り、カーナビゲーションシステムに利用されるような、走行地点等に依存する環境情報を予め用意して記憶整備すれば、本システムにおける検知信頼度の評価のために参照利用することも可能である。このような記憶情報に限らず、本システムでは、走行中に取得した最新リアルタイムの環境情報に基づいて、信頼度を評価しても良い。 Only when the driving route is confirmed in advance, it is possible to improve the detection reliability of this system by preparing and storing environmental information that depends on the driving location, etc., such as that used by the car navigation system. It is also possible to use it as a reference for evaluation. In addition to such stored information, the present system may evaluate the reliability based on the latest real-time environmental information acquired during driving.
 制御指示記憶部103は、一次的な支障判定結果に対する信頼度の判定基準と、その判定基準を上回る、もしくは下回る信頼度の二次的な評価が得られた場合における列車制御内容との組み合わせを、制御指示ルールとして記憶する。図2を用いて、本発明の実施形態に係る列車制御方法(以下、「本方法」ともいう)の例を説明する(一例として、「支障有り」と判定された場合の動作を図示)。 The control instruction storage unit 103 stores a combination of a determination criterion of reliability for the primary trouble determination result and a train control content when a secondary evaluation of reliability exceeding or falling below the criterion is obtained. , are stored as control instruction rules. An example of a train control method (hereinafter also referred to as "this method") according to an embodiment of the present invention will be described using FIG.
 図2は、図1の本システムによる運転曲線に、センサの判定信頼度の曲線を重ねたグラフを示す。図2のグラフの下方には、固定された判定基準Aと判定信頼度との比較結果に、制御内容を対応付けた制御指示ルールの表も示す。例えば、ある判定基準Aを上回る信頼度の支障判定結果の場合はブレーキ作動させ、それを下回る信頼度の場合は惰行運転を行う、といった列車制御方法が考えられる。 Fig. 2 shows a graph in which the sensor's determination reliability curve is superimposed on the operation curve of this system in Fig. 1. Below the graph in FIG. 2, there is also shown a table of control instruction rules in which control details are associated with comparison results between the fixed criterion A and the determination reliability. For example, a train control method is conceivable in which the brake is operated in the case of a failure determination result with a reliability exceeding a certain criterion A, and coasting is performed in the case of a reliability lower than that.
 図2のグラフに示す判定基準Aは、数値変動する信頼度に対する閾値として機能する。本システムにおいて、判定基準(閾値)Aが高ければ、信頼度の低い判定結果は無視又は軽視される。逆に、判定基準(閾値)Aが低ければ、信頼度の低い判定結果でも重視して制御に反映される。本システムにおいて、その判定基準Aは、制御規則の鋭敏さや厳格さのように作用するので、適用した結果が、支障物に対する見逃しと過剰検知の何れに偏る傾向であるかを見極める必要がある。  Criteria A shown in the graph of Fig. 2 functions as a threshold for numerically fluctuating reliability. In this system, if the judgment criterion (threshold) A is high, judgment results with low reliability are ignored or taken lightly. Conversely, if the criterion (threshold value) A is low, even low-reliability determination results are emphasized and reflected in the control. In this system, the criterion A acts like the acuity and strictness of the control rule, so it is necessary to determine whether the result of applying it tends to over-detect or miss an obstacle.
 さらに、判定基準Aは、本システムに適用した結果による運行遅延時間への影響度合いのほか、運転士によるバックアップの有無等に基づいて最適値に設定することが望ましい。例えば、本システムで過剰検知しても、運転士が確認の上、運転制御への反映を適切に解除するならば、理想的な安全運行ができることもある。 In addition, it is desirable to set the criterion A to an optimum value based on the degree of impact on the operation delay time as a result of applying this system, as well as the presence or absence of backup by the driver. For example, even if this system detects excessively, if the driver confirms and properly cancels the reflection in the operation control, ideal safe driving may be possible.
 また、支障判定部102による支障判定結果に対する信頼度は、例えば、沿線構造物の多寡による誤検知発生頻度の違い等、路線環境や運用条件によって異なる反応が想定されることから、実路線での走行実績に基づき平常時における信頼度の取得状況も考慮して、判定基準Aを設定することが望ましい。 In addition, the reliability of the failure determination result by the failure determination unit 102 is expected to vary depending on the route environment and operating conditions, such as the difference in the frequency of false detections due to the number of structures along the route. It is desirable to set the determination criterion A in consideration of the acquisition status of the reliability in normal times based on the driving results.
 制御指示記憶部103は、支障判定結果に対する信頼度の判定基準Aを設定する際、列車10の停止可能距離に基づいてブレーキを開始するために、列車10から支障物までの距離、及び列車速度に基づいて最適値に設定すると良い。図3を用いて、本方法の他の例を説明する。 The control instruction storage unit 103 stores the distance from the train 10 to the obstacle and the train speed in order to start braking based on the stoppable distance of the train 10 when setting the reliability criterion A for the obstacle determination result. should be set to the optimum value based on Another example of this method will be described with reference to FIG.
 図3は、図2において固定値とした判定基準Aに代えて、検知距離と列車速度に応じて変化させた判定基準Fを示したグラフ及び表である。ここでいう検知距離は、列車10に搭載されたセンサ部101から、それが検知した支障物までの距離であるので、接近中に初めて検知してから到達するまでの間、ゼロへ向かって減少するように変化する。 FIG. 3 is a graph and a table showing determination criteria F that are changed according to the detected distance and train speed, instead of the determination criteria A that are fixed values in FIG. The detection distance here is the distance from the sensor unit 101 mounted on the train 10 to the obstacle detected by it. change to
 すなわち、検知距離とは、センサが対象物を検知している最中の対象物までの距離である。検知すべき対象物であっても、センサが検知できない遠方であれば、最大検知距離の範囲外となる。つまり、ここでは実際に検知できている範囲内での検知距離を用いることとし、センサの能力を意味する最大検知距離とは区別する。 In other words, the detection distance is the distance to the object while the sensor is detecting the object. Even an object that should be detected is outside the range of the maximum detection distance if it is too far away for the sensor to detect. That is, here, the detection distance within the range that can actually be detected is used, and is distinguished from the maximum detection distance, which means the capability of the sensor.
 このように、センサの性能仕様(スペック)は、距離分解能に基づく最大検知距離、速度分解能に基づく最大検知速度のほか、角度分解能に基づく最大検知角度で代表される。したがって、距離分解能や速度分解能が一定のセンサで得られるセンサ情報は、検知距離が長いほど、また列車速度が速いほどに、信頼度が低下する。一方、センサ情報に対する信頼度とは別次元である安全度の観点からは、検知距離が遠く、かつ列車速度が遅いほどに安全度は高い。 In this way, sensor performance specifications (specs) are represented by the maximum detection distance based on range resolution, the maximum detection speed based on velocity resolution, and the maximum detection angle based on angle resolution. Therefore, the reliability of sensor information obtained by a sensor with constant distance resolution and speed resolution decreases as the detection distance increases and as the train speed increases. On the other hand, from the viewpoint of safety, which is a different dimension from the reliability of sensor information, the longer the detection distance and the slower the train speed, the higher the safety.
 数値化可能に出力されるセンサ情報に対する信頼度は、ある閾値と比べた大小関係で高いか低いか何れかの判定結果が得られる。その信頼度が高いならセンサ情報を重視するように重みづけて制御に反映させるが、そうでなければ軽視、又は無視する。このように信頼度を判定する閾値を判定基準Fと呼ぶ。この判定基準Fは、状況に応じて段階的、又は無段階に変動させても良い。 The reliability of the sensor information output in a quantifiable manner can be determined as either high or low depending on the magnitude relationship compared to a certain threshold. If the reliability is high, the sensor information is weighted so as to be emphasized and reflected in the control, but if not, it is neglected or ignored. A threshold for judging reliability in this manner is called a judgment criterion F. FIG. This criterion F may be varied stepwise or steplessly according to the situation.
 例えば、列車10から支障物までの距離が遠い、もしくは列車速度が遅い場合は高い判定基準Fを適用する。判定基準Fが高ければ、それを上回る信頼性のある情報でない限り、制御に強くは反映させない。その地点からブレーキ作動させた場合、支障物から十分離れた地点で停車可能だから、せいぜい、その支障物が人か車両か小動物かについてAI判別がつくまでは、力行抑制又は惰行運転を継続しても容認されるといった判断である。 For example, when the distance from the train 10 to the obstacle is long, or when the train speed is slow, a high criterion F is applied. If the criterion F is high, it is not strongly reflected in the control unless the information is more reliable. If the brake is applied from that point, it is possible to stop at a point far enough away from the obstacle, so at best, continue powering suppression or coasting until the AI can determine whether the obstacle is a person, a vehicle, or a small animal. It is a judgment that is also acceptable.
 逆に、距離が近い、もしくは列車速度が速い場合は低い判定基準Fを適用する。判定基準Fが低いければ、それを下回るほどにセンサ情報の信頼性が低くても、明らかに誤報と断定できない限り、制御に反映させる。例えば、踏切手前の至近距離で支障物がセンサ情報として得られたとき、その支障物が人か車両か小動物かについてAI判別がつかなくても、とりあえず非常ブレーキを作動させる。 Conversely, if the distance is short or the train speed is fast, apply the low criterion F. If the criterion F is low, even if the reliability of the sensor information is so low that it falls below it, it is reflected in the control unless it is clearly determined that it is a false alarm. For example, when an obstacle is obtained as sensor information at a close distance before a railroad crossing, even if the AI cannot determine whether the obstacle is a person, a vehicle, or a small animal, the emergency brake is activated for the time being.
 その地点からブレーキ作動させる場合、強めにブレーキ作動させないと支障物と衝突する可能性があるので、その事態を回避するための判断である。センサ情報に対する信頼度の判定結果が高いか低いかにより、センサ情報を制御に反映させる重みづけを変えるような上述の制御形態について、安全度を考慮すると、つぎのように換言できる。 If the brakes are applied from that point, there is a possibility of colliding with an obstacle unless the brakes are applied strongly, so this decision was made to avoid that situation. Considering safety, the above-described control mode in which the weight for reflecting sensor information in control is changed depending on whether the reliability determination result for sensor information is high or low can be rephrased as follows.
 列車10の運転状態が、明らかに高い安全度を確保されていると推定されて、信頼度の判定基準Fを高く設定されている場合、それを上回るほどに高い信頼度を伴う支障判定のセンサ情報が得られない限り、ブレーキ作動させない。その結果、本システムは、過剰制御する不具合が低減される。逆に、列車10の現在運転状態に基づく安全度が低いと推定されて、信頼度の判定基準Fが低く設定されている場合、それに応じた低レベルの信頼度で支障物のセンサ情報から得られた状態でも機敏にブレーキ作動する。その結果、本システムは安全性を確保し易い。 When it is presumed that the operating state of the train 10 is clearly secured with a high degree of safety, and the criterion F for reliability is set high, the failure determination sensor with a degree of reliability higher than that is set. Do not apply the brakes unless information is available. As a result, the system is less susceptible to over-controlling. Conversely, when it is estimated that the safety level based on the current operating state of the train 10 is low and the reliability criterion F is set low, the sensor information of the obstacle is obtained with a correspondingly low level of reliability. The brakes are activated quickly even in the state of being caught. As a result, the system is easy to secure.
 図3に示すように、本システムは、支障物との距離及び列車速度に応じて信頼度の判定基準Fを連続的に変更できる。そうすることにより、高い信頼度の判定取得が困難な走行環境においても、接近して衝突の危険性がある場合、本システムは、判定基準Fを下げることにより、安全性を確保した列車制御が可能となる。 As shown in Figure 3, this system can continuously change the reliability criterion F according to the distance to obstacles and the train speed. By doing so, even in a running environment where it is difficult to obtain a highly reliable judgment, if there is a risk of a collision due to approaching, this system will lower the judgment criterion F to ensure safe train control. It becomes possible.
 本システムは、信頼度の判定基準Fを設定する際、実路線での走行実績に基づき平常時における信頼度の取得状況を考慮するが、これに加えて、各地点別の判定基準Fを設定することが望ましい。すなわち、本システムは、各地点別に停止可能距離を算出するためのパラメータとして、列車速度、車両性能(減速度、車両重量、走行抵抗等)及び路線の線形情報(勾配、曲線等)に基づいて、判定基準Fを設定すれば良い。 When setting the reliability criterion F, this system considers the acquisition status of reliability in normal times based on the driving results on the actual route. It is desirable to In other words, this system uses train speed, vehicle performance (deceleration, vehicle weight, running resistance, etc.) and line alignment information (slope, curve, etc.) as parameters for calculating the possible stopping distance for each point. , a criterion F may be set.
 制御指示記憶部103は、列車10から支障物までの距離、及び列車速度に基づいて列車制御内容を最適に設定する際、列車10の停止可能距離及び必要となる減速度は数式(1)~(3)で算出する。 When the control instruction storage unit 103 optimally sets the contents of train control based on the distance from the train 10 to the obstacle and the train speed, the stop possible distance and the necessary deceleration of the train 10 are calculated using the formulas (1) to Calculate in (3).
   Ls=Li+Lb …(1)
   Li=v×ti …(2)
   Lb=v2/2β …(3)
Ls = Li + Lb (1)
Li=v×ti …(2)
Lb= v2 /2β (3)
 ここで、Ls[m]は停止可能距離、Li[m]は空走距離、Lb[m]は制動距離、v[m/s]は列車速度、ti[s]は空走時間、β[m/s2]は減速度である。空走時間は、列車制御部104が制御指示を出力してから、実際に列車10が減速を開始するまでの時間を指す。算出された必要減速度に基づき、ブレーキ力の強さもしくは対応するブレーキノッチを選択する。 where Ls[m] is the possible stopping distance, Li[m] is the idling distance, Lb[m] is the braking distance, v[m/s] is the train speed, ti[s] is the idling time, β[ m/s 2 ] is the deceleration. The idling time refers to the time from when the train control unit 104 outputs a control instruction to when the train 10 actually starts decelerating. Based on the calculated required deceleration, the strength of the braking force or corresponding braking notch is selected.
 制御指示記憶部103は、支障判定結果に対する信頼度の判定基準Fを設定する際、制御指示記憶部103は、支障判定結果に対する信頼度の高さに応じてブレーキ力の強さを設定しても良い。図4を用いて、本方法の他の例を説明する。図4は、図2において1つの固定値とした判定基準Aに代えて、段階的に変化させた判定基準A~Cを示したグラフ及び表である。 When the control instruction storage unit 103 sets the reliability criterion F for the failure determination result, the control instruction storage unit 103 sets the strength of the braking force according to the reliability of the failure determination result. Also good. Another example of this method will be described with reference to FIG. FIG. 4 is a graph and a table showing determination criteria A to C that are changed stepwise instead of the single fixed determination criteria A in FIG.
 判定信頼度の判定基準について、図2ではAに固定し、図3では変動するFとし、図4ではA~Cの3ランクに区別して設定される。本システムは、図4で制御指示ルールの表に示すように、A~Cのランク別の判定信頼度の判定結果に応じて、より具体的に対応付けた制御内容が制御指示記憶部103に記憶されている。本システムにおいて、制御指示記憶部103は、センサ部101のセンサ出力(センサ情報)に基づいた判定信頼度を判定信頼度A~Cと比較した判定結果に応じて、記憶されている制御内容を読み出して実行させるような運転曲線を作成する。  The criteria for determination reliability are fixed at A in FIG. 2, F is variable in FIG. In this system, as shown in the table of control instruction rules in FIG. remembered. In this system, the control instruction storage unit 103 changes the stored control content according to the result of comparing the determination reliability based on the sensor output (sensor information) of the sensor unit 101 with the determination reliability A to C. Create a run curve to read and run.
 すなわち、図4に例示する3ランクに区別した判定基準A~Cの設定毎に、一番高い判定基準Aを上回る信頼度の支障判定結果の場合は、列車制御内容を非常ブレーキとする。同様に、2番目の判定基準Bを上回る場合は、列車制御内容を常用ブレーキとする。同様に、3番目の判定基準Cを上回る場合は、列車制御内容を惰行運転とする。同様に、3番目の判定基準Cを下回る場合は、列車制御内容を力行抑制とする。 That is, for each setting of criteria A to C classified into three ranks illustrated in Fig. 4, in the case of a trouble determination result with reliability exceeding criteria A, which is the highest, the content of train control is emergency braking. Similarly, when the second criterion B is exceeded, the train control content is set to the regular brake. Similarly, when the third criterion C is exceeded, the content of train control is coasting. Similarly, if the value falls below the third criterion C, train control content is set to power running suppression.
 本方法は、自動車の手動運転で一般的に行われる「かもしれない運転」と類似した考え方である。この「かもしれない運転」とは、常に周囲の状況に気を配り危険を予知しながら運転することをいう。図4における信頼度の支障判定結果について、センサ部101が列車10の前方に何らかの支障物を検出し、列車10が初回検知地点において判定基準Cを下回っている段階では力行抑制する。 This method is similar to the concept of "possible driving" that is commonly performed in manual driving of a car. This "driving with possible danger" means to drive while always paying attention to the surrounding situation and foreseeing danger. 4, the sensor unit 101 detects some obstacle in front of the train 10 and the train 10 is less than the criterion C at the initial detection point, power running is suppressed.
 列車10が支障地点に近づくにつれて、判定基準Cを上回ったならば、惰行運転に列車制御内容を変える。列車10がさらに支障地点に近づいて、判定基準Bを上回ると、常用ブレーキに列車制御内容を変える。さらに、列車10が支障地点に最接近することにより、判定基準Aを上回ると、非常ブレーキに列車制御内容を変える。 As the train 10 approaches the obstacle point, if the criterion C is exceeded, the contents of the train control are changed to coasting. When the train 10 further approaches the trouble point and exceeds the criterion B, the contents of the train control are changed to the regular brake. Furthermore, when the train 10 is closest to the obstacle point and exceeds the criterion A, the contents of the train control are changed to an emergency brake.
 このように、判定信頼度についての判定結果から低い信頼度しか得られない場合でも、運行への影響が抑えられる範囲で早期に速度を落とし始めることで、推定される支障地点へ低速で接近しながら多くのセンサ情報を得ることができ、より高い信頼度による確実な列車制御が可能となる。 In this way, even if only a low reliability is obtained from the judgment results regarding the judgment reliability, by starting to reduce the speed at an early stage within the range where the influence on the operation can be suppressed, it is possible to approach the estimated trouble point at a low speed. However, a large amount of sensor information can be obtained, and reliable train control with higher reliability is possible.
 制御指示記憶部103は、支障判定結果に対する信頼度の判定基準を設定する際、列車10から支障物までの距離、及び列車速度に基づいて最適値Aに設定する方法と、2つ以上の判定基準A~Cを設定する方法とを組み合わせて設定しても良い。 The control instruction storage unit 103 uses a method of setting the optimum value A based on the distance from the train 10 to the obstacle and the train speed when setting the reliability criterion for the obstacle determination result, and two or more determination methods. It may be set in combination with the method of setting the criteria A to C.
 制御指示記憶部103は、制御指示ルールとして記録する制御内容として、支障判定結果に拠らず、ある判定基準未満の信頼度の判定結果しか得られない場合の制御内容についても設定しておくことが望ましい。例えば、「支障無し」と判定された場合においても、その判定結果の信頼度が低い場合は、力行抑制や惰行運転とすることが考えられる。また、直前の判定で「支障有り」と判定されていた場合は、信頼度が低い「支障無し」と判定された場合でも、直前の制御内容を保持するといったことが考えられる。 The control instruction storage unit 103 also sets, as the control contents to be recorded as the control instruction rule, the control contents in the case where only the judgment result of reliability less than a certain criterion can be obtained regardless of the trouble judgment result. is desirable. For example, even if it is determined that there is no problem, if the reliability of the determination result is low, power running suppression or coasting may be considered. In addition, when it is determined that "there is a problem" in the previous determination, even if it is determined that the reliability is low and "there is no problem", it is conceivable that the control contents immediately before are retained.
 制御指示記憶部103は、制御指示ルールとして記録する制御内容として、所定ブレーキ制御後に列車速度が所定値以下になるとブレーキ制御を緩解するような「多段ブレーキ制御方式」としても良い。また、そのような多段制御方式に限定せず、制御内容として目標地点及び目標速度を指定し、列車制御部104側では地点までに速度へ減速できるように、ブレーキ開始地点及びブレーキ力を最適に決定するような「一段ブレーキ制御方式」としても良い。 In the control instruction storage unit 103, the control content recorded as the control instruction rule may be a "multi-stage brake control method" that relaxes the brake control when the train speed drops below a predetermined value after a predetermined brake control. In addition, without being limited to such a multi-stage control method, a target point and a target speed are designated as control contents, and the brake start point and braking force are optimized so that the train control unit 104 can decelerate to the point. It is good also as a "single step brake control system" which determines.
 本システム又は本方法では、信頼度に基づき適切な列車制御を選択できれば良く、制御指示ルールとして記録する制御内容が「多段ブレーキ制御方式」か「一段ブレーキ制御方式」か、何れであるかは問わない。つまり、本発明の第1の特徴は、信頼度に応じて各種のブレーキ制御方式を最適に選択することにある。図5を用いて、本方法の他の例を説明する。これに関連し、本発明の第2の特徴は、センサの良さを生かすように、センサ特性が良好で信頼度の高いセンサ特性区間(図5)を設定して好結果を得ることにある。 In this system or method, it suffices if appropriate train control can be selected based on reliability, and it does not matter whether the control content recorded as the control instruction rule is a "multi-stage brake control system" or a "single-stage brake control system." do not have. That is, the first feature of the present invention is to optimally select various brake control methods according to reliability. Another example of this method will be described with reference to FIG. In relation to this, the second feature of the present invention is to obtain good results by setting a sensor characteristic interval (FIG. 5) with good sensor characteristics and high reliability so as to take advantage of the goodness of the sensor.
 図5は、図2に対し、高精度のセンサ特性区間を適用したグラフ及び表である。センサの良さを生かすように、制御指示記憶部103は、制御指示ルールとして記録する制御内容として、列車10に搭載するセンサ特性(検知距離、視野角、列車速度、処理時間等)に基づく運転曲線を指定しても良い。図5に示す「センサ特性区間」に運転曲線を収めるように運転すれば、物体検知及び支障判定が高信頼であるため、より安全を確保し易い。そのため、センサ特性が最適となる距離範囲を、本システムが想定する最適な環境であるセンサ特性区間にする。すなわち、列車10が適切な速度域で走行することにより、より安全を確保し易い。 FIG. 5 is a graph and table to which highly accurate sensor characteristic intervals are applied to FIG. In order to make the best use of the sensor, the control instruction storage unit 103 uses a running curve based on the sensor characteristics (detection distance, viewing angle, train speed, processing time, etc.) mounted on the train 10 as the control contents to be recorded as control instruction rules. can be specified. If the vehicle is driven so that the driving curve falls within the "sensor characteristic interval" shown in FIG. 5, the object detection and trouble determination are highly reliable, and safety can be easily ensured. Therefore, the distance range in which the sensor characteristics are optimal is set as the sensor characteristic section, which is the optimal environment assumed by this system. That is, the train 10 runs in an appropriate speed range, making it easier to ensure safety.
 センサ特性区間は、最大検知距離、及び最大検知速度といったセンサの性能仕様(スペック)に基づいて、設定できる。例えば、本システムにセンサとしてカメラを用いた場合、そのカメラの性能仕様に基づいて、距離1km前後の地点では低い信頼度の検知のみ可能であり、距離500m以内かつ速度70km/h以下であれば高い信頼度で検知可能だとする。そのような本システムにおいて、支障物から1km前後の地点で検知をした後は、支障物からの距離500m地点を列車速度70km/h以下で接近するような運転曲線を指定することが考えられる。 The sensor characteristic interval can be set based on the performance specifications (specs) of the sensor such as maximum detection distance and maximum detection speed. For example, if a camera is used as a sensor in this system, only low-reliability detection is possible at a distance of around 1 km based on the performance specifications of the camera. Suppose it can be detected with high reliability. In such a system, after detecting at a point about 1 km from the obstacle, it is conceivable to specify a running curve that approaches the point at a distance of 500 m from the obstacle at a train speed of 70 km/h or less.
 また、本システムに、上述した性能仕様のカメラと、それとは異なる複数のセンサを組み合わせた場合も、類似の要領で運転曲線を指定できる。例えば、検知距離300m以内かつ速度80km/h以下であれば高い信頼度で検知可能なLIDARを使用する場合、距離300m地点を70km/h以下で接近するような運転曲線を指定することが好ましい。 In addition, even if this system is combined with a camera with the above-mentioned performance specifications and multiple sensors with different specifications, a driving curve can be specified in a similar manner. For example, when using LIDAR, which can detect objects within a detection distance of 300 m and at a speed of 80 km/h or less with high reliability, it is preferable to specify a driving curve that approaches the point at a distance of 300 m at 70 km/h or less.
 そのような組み合わせのセンサを備える本システムは、両センサを組み合わせたことで、より高い信頼度で物体検知及び支障判定が可能となる。そのようなセンサ特性、及びそれらの組み合わせについては、センサメーカによる性能仕様、走行実績に基づく性能評価等を考慮し、設定することが望ましい。 This system, which is equipped with such a combination of sensors, can detect objects and determine obstacles with higher reliability by combining both sensors. It is desirable to set such sensor characteristics and their combinations in consideration of performance specifications by sensor manufacturers, performance evaluations based on driving results, and the like.
 列車制御部104は、支障判定部102より受信した支障判定結果、距離推定結果、信頼度評価結果、制御指示記憶部103より受信した制御指示ルール、及び列車10の走行速度に基づき、列車10の列車制御指示を生成して列車10を制御する。ブレーキを制御する方法として、例えば、生成した列車制御指示をATO装置(自動列車運転装置)へ送信して自動制御しても良いし、運転士に対して警報等の運転支援情報を提示して手動によるブレーキ制御を促しても良い。 The train control unit 104 controls the train 10 based on the trouble determination result received from the trouble judgment unit 102, the distance estimation result, the reliability evaluation result, the control instruction rule received from the control instruction storage unit 103, and the running speed of the train 10. Train control instructions are generated to control the train 10 . As a method of controlling the brake, for example, the generated train control instruction may be sent to an ATO device (automatic train operation device) to automatically control, or the driver may be provided with driving support information such as an alarm. Manual brake control may be prompted.
 自動制御と手動制御のどちらを適用するかは、列車走行前に決定しておいても良いし、走行開始後に運転士が手動で決定しても良い。また、列車制御部104は、信頼度情報を受信する場合、信頼度に基づき自動制御と手動制御のどちらを適用するかを決定しても良い。 Whether to apply automatic control or manual control may be decided before the train runs, or the driver may decide manually after the train starts running. Further, when receiving the reliability information, the train control unit 104 may determine whether to apply automatic control or manual control based on the reliability.
 例えば、通常時は自動制御による列車制御を行うが、支障判定結果に対する信頼度が所定値より低い場合はシステムによる判断が誤っている可能性があると判断し、システムから運転士に対して手動制御への切替えを促すといった運用が考えられる。列車10の制駆動手段の具体的装置の例としては、インバータ、モータ、摩擦ブレーキが挙げられる。 For example, train control is normally performed by automatic control, but if the reliability of the failure determination result is lower than a predetermined value, it is determined that the system may have made an error, and the system manually instructs the driver to Operation such as prompting switching to control is conceivable. Examples of specific devices for the braking/driving means of the train 10 include inverters, motors, and friction brakes.
 列車制御部104は、支障判定部102が列車10の前方に「支障無し」と判定した場合、列車走行速度や信頼度評価結果に基づき、ブレーキ解除指示を生成して列車10を制御しても良い。このような列車制御部104の処理によれば、抑制された運行状態から早期に平常走行へ復帰できる効果が期待できる。 When the obstacle determination unit 102 determines that there is no obstacle in front of the train 10, the train control unit 104 generates a brake release instruction to control the train 10 based on the train running speed and the reliability evaluation result. good. According to such processing of the train control unit 104, the effect of being able to quickly return to normal running from the suppressed operation state can be expected.
 例えば、列車制御部104が前の処理周期において「支障有り」と判定してブレーキ指示を行った後、障害物が除去されるほか、一時的なセンサ誤検知であったことが確認されることにより列車走行の安全性が確認された場合、ブレーキ解除して不要な減速を避け、早期に平常走行へ復帰できる効果が期待できる。以上が、列車制御システムの構成と各構成要素の説明である。 For example, after the train control unit 104 determines that there is a "problem" in the previous processing cycle and issues a brake instruction, the obstacle is removed and it is confirmed that there was a temporary sensor error detection. If it is confirmed that the train is running safely, it is expected that the brakes will be released to avoid unnecessary deceleration and return to normal running as soon as possible. The above is the configuration of the train control system and the description of each component.
 つぎに、図6を用いて、列車制御システムの処理の流れを説明する。図6は、図1~図5に示した本システムの処理を示すフローチャートである。図6に示す処理は一定周期で実行される。ステップ900はセンサ部101、ステップ901からステップ904は支障判定部102、ステップ905からステップ906は列車制御部104により実行される。 Next, the processing flow of the train control system will be explained using FIG. FIG. 6 is a flowchart showing the processing of the system shown in FIGS. 1-5. The processing shown in FIG. 6 is executed at regular intervals. Step 900 is executed by the sensor unit 101 , steps 901 to 904 are executed by the trouble determination unit 102 , and steps 905 to 906 are executed by the train control unit 104 .
 ステップ900では、センサ部101より現時点におけるセンサ情報を取得する。ステップ901では、センサ部101が取得したセンサ情報に基づき、列車10の走行を支障する物体の有無を一次的に判定する。ステップ902では、ステップ901での一次的な判定結果に基づき、「支障有り」と判定した場合はステップ903の処理に進み、「支障無し」と判定した場合はステップ904に進む。 At step 900, current sensor information is obtained from the sensor unit 101. At step 901 , based on the sensor information acquired by the sensor unit 101 , it is primarily determined whether there is an object that hinders the running of the train 10 . In step 902 , based on the primary determination result in step 901 , if “problem” is determined, the process proceeds to step 903 , and if “no problem” is determined, the process proceeds to step 904 .
 ステップ903(「支障有り」と判定)では、センサ情報に基づき、列車10と検出した支障物との距離を推定し、ステップ904に進む。ステップ904では、センサ情報に基づくほか、より客観的な判定基準に基づいて、支障判定結果に対する信頼度を二次的に評価する。 In step 903 (determining that there is an obstacle), the distance between the train 10 and the detected obstacle is estimated based on the sensor information, and the process proceeds to step 904. In step 904, the reliability of the trouble determination result is secondarily evaluated based on the sensor information and more objective criteria.
 ステップ905では、支障判定結果、距離推定結果、信頼度評価結果、制御指示記憶部103より受信した制御指示ルール、及び列車10の走行速度に基づき、列車10の列車制御指示を生成して列車10を制御する。なお、有人運転ならば、列車制御指示により直接列車10を制御する代わりに、運転台での画面表示や音声情報、警報等により、運転士に対して侵入判定結果やブレーキ指示内容を提示しても良い。 In step 905, a train control instruction for the train 10 is generated based on the trouble determination result, the distance estimation result, the reliability evaluation result, the control instruction rule received from the control instruction storage unit 103, and the running speed of the train 10. to control. In the case of manned operation, instead of directly controlling the train 10 by train control instructions, the results of intrusion determination and brake instructions are presented to the driver by screen display, voice information, alarms, etc. on the cab. Also good.
 ステップ906では、列車制御指示内容(ブレーキ指示もしくはブレーキ緩解)に基づき、列車10の走行速度を制御する。以上が、本列車制御システムにより実行される列車制御動作のフロー例の説明である。本システムは、このような手順で、支障判定結果に対する信頼度に応じてブレーキを制御することにより、運用環境やセンサ特性に応じた安全かつ安定した列車制御を実現する。 At step 906, the running speed of the train 10 is controlled based on the contents of the train control instruction (braking instruction or brake release). The above is the description of the flow example of the train control operation executed by the present train control system. This system realizes safe and stable train control according to the operating environment and sensor characteristics by controlling the brakes according to the reliability of the trouble determination result in such a procedure.
 本発明の実施形態に係る列車制御システム(本システム)は、つぎのように総括できる。
[1]本システムは、列車10と、センサ部101と、支障判定部102と、制御指示記憶部103と、列車制御部104と、を備える。列車10は軌道上を走行する。センサ部101は、列車10の周辺環境の情報を取得する。支障判定部102は、センサ部101より受信したセンサ情報に基づき、列車10が走行する軌道周辺における支障有無を一次的に判定し、制御指示記憶部103に記憶する。さらに、支障判定部102は、このように得られた一次的な支障判定結果の確からしさに対し、天候等の環境や列車の走行位置等も考慮し、より客観的な判定基準に基づいて信頼度を二次的に評価する。
A train control system (this system) according to an embodiment of the present invention can be summarized as follows.
[1] This system includes a train 10 , a sensor section 101 , a trouble determination section 102 , a control instruction storage section 103 and a train control section 104 . A train 10 runs on a track. The sensor unit 101 acquires information on the surrounding environment of the train 10 . Based on the sensor information received from the sensor unit 101 , the obstacle determination unit 102 primarily determines whether there is an obstacle around the track on which the train 10 runs, and stores the result in the control instruction storage unit 103 . Further, the trouble determination unit 102 considers the certainty of the primary trouble judgment result obtained in this way, and considers the environment such as the weather and the running position of the train, etc., and determines the reliability based on more objective judgment criteria. Secondarily evaluate the degree.
 信頼度は、数値化されて演算処理可能である。また、制御指示記憶部103は、列車10から支障物までの検知距離、及び列車速度に基づいて列車制御内容を最適に設定する。支障判定部102は、制御指示記憶部103から読み出された一次的な支障判定結果の信頼度を、より客観的な判定基準に対して上回るか、下回るかに基づいて二次的に評価し、制御指示記憶部103に記憶する。  Reliability can be digitized and processed. Further, the control instruction storage unit 103 optimally sets train control details based on the detected distance from the train 10 to the obstacle and the train speed. The failure determination unit 102 secondarily evaluates the reliability of the primary failure determination result read from the control instruction storage unit 103 based on whether it exceeds or falls below a more objective criterion. , is stored in the control instruction storage unit 103 .
 また、信頼度の評価と、その評価に応じて適用される列車制御内容と、の組み合わせを制御指示ルールとする。この制御指示ルールは、制御指示記憶部103に記憶される。また、列車制御部104は、制御指示ルール、支障判定結果、及び支障判定結果に対する信頼度に基づき、列車速度を制御する。 Also, the combination of the reliability evaluation and the train control content to be applied according to the evaluation is set as the control instruction rule. This control instruction rule is stored in the control instruction storage unit 103 . Also, the train control unit 104 controls the train speed based on the control instruction rule, the obstacle determination result, and the reliability of the obstacle determination result.
 上述のように構成された本システムは、支障物に対する見逃しと過剰検知を実用レベルでバランス良く防止できる。例えば、本システムにおいて、画像認識データベースと、走行中に撮影した画像と、を比較判定処理して支障判定結果を得る場合、判定基準を適切に設定することにより、完全一致以外は「支障物有り」と厳格過ぎて、過剰検知する不具合を避け易くなる。逆に、本システムにおいて、相当の差異まで許容するように甘過ぎて、実際の障害物を見逃す不具合を避け易くなる。 This system configured as described above can prevent obstacles from being overlooked and over-detected on a practical level in a well-balanced manner. For example, in this system, when the image recognition database and the image taken while driving are compared and judged to obtain a trouble judgment result, by appropriately setting the judgment criteria, if the judgment criteria are not completely matched, is too strict, making it easier to avoid over-detection defects. Conversely, the system tends to be too lenient to tolerate substantial differences, thus avoiding the problem of missing actual obstacles.
 本システムによれば、外界センサによる支障判定結果に対する信頼度が、現状に基づいて適切に評価されることにより、走行環境やセンサ特性に応じた最適な制動力を作動可能にする。そうすることにより、本システムは、支障物に対する見逃しを根絶させ、逆に過剰検知の疑いがあるセンサ情報であっても、安全性と運用性との総合的観点に基づいて、制御に適宜反映させる。その結果、本システムによれば、安全かつ安定した列車制御を実現できる。  According to this system, the reliability of the trouble determination result by the external sensor is appropriately evaluated based on the current situation, enabling the operation of the optimum braking force according to the driving environment and sensor characteristics. By doing so, this system eliminates the overlooking of obstacles, and on the contrary, even sensor information that is suspected of being overdetected is appropriately reflected in control based on a comprehensive viewpoint of safety and operability. Let As a result, this system can realize safe and stable train control.
[2]上記[1]の本システムにおいて、支障判定部102は、センサ部101より受信したセンサ情報に基づき、列車10と支障物との検知距離、及び列車速度を推定する。また、制御指示記憶部103は、列車10と支障物との検知距離、及び列車速度に基づき、一次的な支障判定結果に対する信頼度の判定基準を設定し、読み出し可能に記憶する。なお、本システムにおいて、このように信頼度を二次的に判定する閾値を判定基準と呼ぶ。 [2] In the present system of [1] above, based on the sensor information received from the sensor section 101, the obstacle determination section 102 estimates the detected distance between the train 10 and obstacles and the train speed. In addition, the control instruction storage unit 103 sets and stores in a readable manner a reliability criterion for the primary failure determination result based on the detected distance between the train 10 and the obstacle and the train speed. In this system, the threshold for secondarily judging reliability is called a criterion.
 多くのセンサでは、障害物までの距離や、悪天候又は、夜間等の周辺環境変動に伴い、検知性能や検知結果の信頼度が変動する。検知結果の信頼度が変動する前提のセンサ情報による閾値判定において、固定された閾値を適用すると、列車の走行に支障を及ぼさない理想的な判定結果を得ることが困難である。そのため、支障判定結果に対する信頼度の判定基準として、一律に固定された閾値(図2のA)を適用することは必ずしも適切でない。 With many sensors, the detection performance and reliability of detection results fluctuate due to the distance to obstacles, bad weather, and changes in the surrounding environment such as at night. If a fixed threshold value is applied to threshold determination based on sensor information on the premise that the reliability of detection results fluctuates, it is difficult to obtain an ideal determination result that does not interfere with train running. Therefore, it is not necessarily appropriate to apply a uniformly fixed threshold value (A in FIG. 2) as a reliability criterion for the trouble determination result.
 そこで、本システムでは、この判定基準(閾値)を、状況に応じて段階的、又は無段階に変動させることが可能なように、制御指示記憶部103に必要な情報が記憶されており、その記憶内容は適宜に更新される。 Therefore, in this system, necessary information is stored in the control instruction storage unit 103 so that the determination criterion (threshold value) can be varied stepwise or steplessly according to the situation. The stored contents are updated accordingly.
 図3に示すように、制御指示記憶部103において、支障判定結果に対する信頼度の判定基準Fは、列車10の停止可能距離に基づきブレーキを開始するために、列車10から支障物までの距離、及び列車速度に基づいて最適値Fに設定すると良い。支障判定結果に対する信頼度が高いならセンサ情報を重視するように重みづけて列車制御に反映させるが、そうでなければ軽視、又は無視する。 As shown in FIG. 3, in the control instruction storage unit 103, the criterion F for the reliability of the obstacle determination result is the distance from the train 10 to the obstacle, and the optimum value F should be set based on the train speed. If the reliability of the failure determination result is high, the sensor information is weighted so as to be emphasized and reflected in the train control, but if not, it is neglected or ignored.
 例えば、列車10から支障物までの距離が遠い、もしくは列車速度が遅い場合は、高い判定基準を適用する。判定基準が高ければ、それを上回る信頼性のある情報でない限り、制御に強くは反映させない。逆に、支障物までの距離が近い、もしくは列車速度が速い場合は、低い判定基準を適用する。判定基準が低いければ、それを下回るほどにセンサ情報の信頼性が低くても、明らかに誤報と断定できない限り、列車制御に反映させる。 For example, if the distance from the train 10 to the obstacle is long, or if the train speed is slow, a high criterion is applied. If the criterion is high, it is not strongly reflected in the control unless the information is more reliable than the criterion. Conversely, when the distance to the obstacle is short or the train speed is high, a low criterion is applied. If the criterion is low, even if the reliability of the sensor information is so low that it falls below the criterion, it is reflected in train control unless it is clearly determined that it is an erroneous alarm.
 本システムは、列車10が支障地点まで近い地点において、初めてブレーキ作動させる場合、強めにブレーキを作動させないと支障物に衝突する可能性があるので、その事態を回避できるように判断して列車制御する。このように、本システムは、センサ情報及びそれに基づく支障判定結果に対する信頼度が高いか低いかにより、支障判定結果を制御に反映させる重みづけを変える。 When the train 10 operates the brakes for the first time at a point near the obstacle point, the system may collide with an obstacle unless the brakes are strongly applied. do. In this way, the present system changes the weighting for reflecting the trouble determination result in the control depending on whether the reliability of the sensor information and the trouble judgment result based on the sensor information is high or low.
 図3グラフの左方に示すように、本システムは、列車10の運転状態が、明らかに高い安全度を確保されていると推定されている場合、信頼度の判定基準を高く設定されている。したがって、本システムは、それを上回るほどに高い信頼度を伴う支障判定のセンサ情報が得られない限り、ブレーキ作動させない。その結果、本システムは、過剰制御する不具合をより確実に低減される。 As shown on the left side of the graph in FIG. 3, in this system, when it is estimated that the operating state of the train 10 clearly ensures a high degree of safety, the reliability criterion is set high. . Therefore, the system will not apply the brakes unless sensor information is obtained for fault determination with a higher degree of reliability than that. As a result, the system more reliably reduces the problem of excessive control.
 逆に、図3グラフの右方に示すように、列車10の現在運転状態に基づく安全度が低いと推定されている場合、信頼度の判定基準が低く設定されている。したがって、本システムは、それに応じた低レベルの信頼度で支障物のセンサ情報から得られた場合でも、見逃すことなく機敏にブレーキ作動させる。その結果、本システムは安全性を確保し易い。 Conversely, as shown on the right side of the graph in FIG. 3, when the safety level is estimated to be low based on the current operating state of the train 10, the reliability criterion is set low. Therefore, the system will not miss even if the sensor information of the obstruction is obtained with a correspondingly low level of confidence, and will actuate the brakes in an agile manner. As a result, the system is easy to secure.
 図3に示すように、本システムは、支障物との距離及び列車速度に応じて信頼度の判定基準を連続的に変更できる。そうすることにより、高い信頼度の判定取得が困難な走行環境においても、接近して衝突の危険性がある場合、本システムは、判定基準を下げることにより、安全性を確保した列車制御が可能となる。 As shown in Fig. 3, this system can continuously change the reliability criteria according to the distance to obstacles and train speed. By doing so, even in a running environment where it is difficult to obtain a highly reliable judgment, if there is a risk of collision due to approaching, this system can control the train while ensuring safety by lowering the judgment criteria. becomes.
[3]上記[1]の本システムにおいて、一次的な支障判定結果に対する信頼度の二次的な評価は、支障判定部102が出力する。その出力された信頼度の評価に基づいて、制御指示記憶部103は、信頼度の高さに応じたブレーキ力の強さを設定することが好ましい。 [3] In the present system of [1] above, the secondary evaluation of the reliability of the primary failure determination result is output by the failure determination unit 102 . Based on the output reliability evaluation, the control instruction storage unit 103 preferably sets the strength of the braking force according to the reliability level.
 図4に例示する3ランクの判定基準A~Cの設定毎に、列車制御内容をつぎのように反映させる。すなわち、支障判定結果が一番高い判定基準Aを上回る場合は、非常ブレーキとする。支障判定結果が2番目の判定基準Bを上回る場合は、常用ブレーキとする。支障判定結果が3番目の判定基準Cを上回る場合は、列車制御内容を惰行運転とする。支障判定結果が3番目の判定基準Cを下回る場合は、列車制御内容を力行抑制とする。 The contents of train control are reflected as follows for each setting of the criteria A to C of the three ranks illustrated in Fig. 4. That is, when the trouble determination result exceeds the highest criterion A, the emergency brake is applied. If the trouble determination result exceeds the second criterion B, the brake is used for normal use. If the trouble determination result exceeds the third determination criterion C, the content of the train control is coasting operation. If the trouble determination result is less than the third determination criterion C, the content of train control is to suppress power running.
 このように、本システムは、支障判定結果に対する低い信頼度しか得られない場合でも、運行への影響が抑えられる範囲、例えば力行抑制、惰行運転、及び常用ブレーキといった列車制御内容で、早期に速度を落とし始めることにより、推定される支障地点へ低速で接近しながら多くのセンサ情報を得ることができる。その結果、本システムは、より高い信頼度の支障判定結果によって初めて非常ブレーキを作動させる、といった確実な列車制御が可能となる。 In this way, even if only a low degree of reliability is obtained for the trouble determination result, this system can speed up the speed control at an early stage with train control contents such as power running suppression, coasting operation, and regular braking in a range where the influence on operation can be suppressed. By starting to drop , a lot of sensor information can be obtained while approaching the probable obstruction point at a slow speed. As a result, this system enables reliable train control, such as actuating the emergency brake only after a highly reliable trouble determination result.
[4]上記[1]~[3]の本システムにおいて、支障判定部102は、センサ部101より受信した一次的なセンサ情報に加えて、天候情報もしくは時刻情報もしくは走行地点のうち少なくとも1つ以上の情報に基づき、列車10が走行する軌道周辺における支障有無を判定し、かつその支障判定結果に対する信頼度を二次的に評価する。このような本システムは、より現実対応能力が高まり、実用的である。例えば、既知の沿線構造物が適切に検出された場合は「支障無し」とし、その逆の場合は「支障有り」と判定する手法も有効に採用できる。つまり、天候情報もしくは時刻情報に基づいて信頼度が変動するセンサ情報を用いた支障判定の手法も、本システムにおいて有効に採用できる。 [4] In the system of [1] to [3] above, in addition to the primary sensor information received from the sensor unit 101, the trouble determination unit 102 receives at least one of weather information, time information, or travel location. Based on the above information, the presence or absence of obstacles around the track on which the train 10 runs is determined, and the reliability of the obstacle determination result is secondarily evaluated. Such a system is more realistic and practical. For example, it is possible to effectively adopt a method of judging "no problem" when a known structure along the railroad is properly detected, and judging "has a problem" in the opposite case. In other words, a trouble determination method using sensor information whose reliability fluctuates based on weather information or time information can also be effectively adopted in this system.
[5]上記[1]~[4]の本システムにおいて、制御指示記憶部103は、制御指示ルールとして記録する制御内容として、センサ部101が想定する検知可能な検知距離もしくは視野角もしくは列車速度もしくは処理時間のうち少なくとも1つ以上の情報に基づき、列車10の運転曲線を指定すると良い。換言すると、制御指示記憶部103は、列車10に搭載するセンサ特性(検知距離、視野角、列車速度、処理時間等)に基づく運転曲線を指定すると良い。 [5] In the present system of the above [1] to [4], the control instruction storage unit 103, as the control content to be recorded as the control instruction rule, detects a detectable distance or viewing angle assumed by the sensor unit 101 or train speed Alternatively, the running curve of the train 10 may be designated based on at least one piece of information of the processing time. In other words, the control instruction storage unit 103 may designate a running curve based on the characteristics of the sensors mounted on the train 10 (detection distance, viewing angle, train speed, processing time, etc.).
 例えば、センサ特性が最適となる距離範囲を、本システムが想定する最適な検知範囲であるセンサ特性区間にする。そうすると、本システムにおいて、図5に示すセンサ特性区間は、センサの長所を生かし易いので、列車10を高精度に制御することが可能である。本システムにおいて、図5に示す「センサ特性区間」に運転曲線を収めるように運転すれば、物体検知及び支障判定が高信頼であるため、より安全を確保し易い。つまり、本システムによれば、そのセンサ特性区間において、列車10を適切な速度域で走行させると、精密に制御し易く、より安全を確保し易い。 For example, the distance range in which the sensor characteristics are optimal is set as the sensor characteristic section, which is the optimal detection range assumed by this system. Then, in this system, the sensor characteristic section shown in FIG. 5 is easy to take advantage of the sensor, so the train 10 can be controlled with high accuracy. In this system, if the driving curve is kept within the "sensor characteristic section" shown in FIG. 5, the object detection and trouble determination are highly reliable, and safety can be easily ensured. That is, according to this system, if the train 10 is run in an appropriate speed range in the sensor characteristic section, it is easy to perform precise control, and it is easy to ensure safety.
 本発明の実施形態に係る列車制御方法(本方法)は、つぎのように総括できる。
[6]本方法は、軌道上を走行する列車10の走行を制御する列車制御方法であり、つぎの処理を有する。まず、センサ部101が、列車10の周辺環境の情報を取得する(ステップ900)。つぎに、支障判定部102が、センサ部101より受信したセンサ情報に基づき、列車10が走行する軌道周辺における支障有無を一次的に判定する(ステップ901)。
The train control method (this method) according to the embodiment of the present invention can be summarized as follows.
[6] This method is a train control method for controlling running of the train 10 running on the track, and has the following processes. First, the sensor unit 101 acquires information on the surrounding environment of the train 10 (step 900). Next, based on the sensor information received from the sensor section 101, the obstacle determination section 102 primarily determines whether or not there is an obstacle around the track on which the train 10 runs (step 901).
 つぎに、支障判定部102が、一次的な支障有無についての支障判定結果の確からしさに対する信頼度をより客観的で二次的な判定基準と大小関係を比較して評価する(ステップ904)。この判定基準と、それとの比較で得られた評価と、その評価に基づいて適用される列車制御内容と、の組み合わせを、制御指示ルールとして、制御指示記憶部103が記憶する。つぎに、列車制御部104が、支障判定結果に対する信頼度に応じた制御指示ルールを、制御指示記憶部103から読み出して、その制御指示ルールに基づいて列車速度を制御する(ステップ906)。 Next, the trouble determination unit 102 evaluates the degree of reliability of the certainty of the trouble judgment result regarding the presence or absence of a primary trouble by comparing the magnitude relation with a more objective secondary judgment criterion (step 904). The control instruction storage unit 103 stores, as a control instruction rule, a combination of the judgment criteria, the evaluation obtained by the comparison, and the train control content to be applied based on the evaluation. Next, the train control unit 104 reads out the control instruction rule according to the reliability of the trouble determination result from the control instruction storage unit 103, and controls the train speed based on the control instruction rule (step 906).
 鉄道路線において、夜間や悪天候下においてセンサ情報の取得が不安定になる場合がある。その場合、ステップ900~901における支障有無に関する判定結果に対し、取得したセンサ情報に基づいて、支障判定の信頼度に応じた適切な制動力を設定することで、運用環境やセンサ特性に応じた安全かつ安定した列車制御方法を実現できる。センサ情報から得られた検知距離や列車速度に基づいて、支障有無の判定結果に対する信頼度の評価を変え、その評価に応じて列車制御への反映に重みづけする。 On railway lines, the acquisition of sensor information may become unstable at night or in bad weather. In that case, based on the acquired sensor information, an appropriate braking force according to the reliability of the trouble determination is set for the judgment results regarding the presence or absence of trouble in steps 900 to 901. A safe and stable train control method can be realized. Based on the detected distance and train speed obtained from sensor information, the evaluation of the reliability of the determination result of the presence or absence of trouble is changed, and the reflection in train control is weighted according to the evaluation.
 本方法では、安全度の高い状況ならば、支障有無の判定結果に対し、信頼度の高い内容のみを制御に反映させることにより、過剰検知による正常運行への阻害を避ける。逆に、安全度が低く緊迫した状況ならば、支障有無の判定結果に対し、信頼度が低い内容であっても制御に反映させて支障物の見落としを避ける。本方法は、このようにして、支障物に対する見逃しを根絶させ、その一方で、過剰検知の疑いがあるセンサ情報であっても、安全性と運用性との総合的観点に基づいて、制御に適宜反映させる。その結果、本方法によれば、安全かつ安定した列車制御を実現できる。 With this method, if there is a high level of safety, only the content with a high degree of reliability is reflected in the control to avoid obstruction to normal operation due to excessive detection. Conversely, if the safety level is low and the situation is tense, even if the contents of the determination result of the presence/absence of obstacles are reflected in the control even if the reliability is low, it is possible to avoid overlooking obstacles. In this way, the present method eradicates oversight of obstacles, and on the other hand, even sensor information suspected of overdetection can be used for control based on a comprehensive viewpoint of safety and operability. Reflect as appropriate. As a result, according to this method, safe and stable train control can be achieved.
[補足]
 本列車制御システムにも適用されるセンサシステム(センサ部101と支障判定部102の組み合わせ)は、人や危険物体を検出し、一次的な支障判定結果を出力し、制御対象を安全な状態にすることで、人を保護することが目的であり、センサシステム規格IEC62998に準拠して、センサ機能や精度について二次的に客観評価される。つまり、列車10の周辺環境の情報を取得するセンサシステムは、そのセンサ部101より受信したセンサ情報に基づき、支障判定部102やその他の機能部により、一次的なセンサ機能の精度だけでなく、人や危険物体を検出した支障判定結果の信頼性について、環境や列車の状況等も考慮して二次的に客観評価する。本システムは、この評価に応じて適切に重みづけされた制御内容により列車を運行する。
[supplement]
The sensor system (a combination of the sensor unit 101 and the trouble determination unit 102), which is also applied to this train control system, detects people and dangerous objects, outputs a primary trouble judgment result, and puts the controlled object in a safe state. The purpose is to protect people by doing so, and the sensor function and accuracy are secondarily objectively evaluated in accordance with the sensor system standard IEC62998. In other words, the sensor system that acquires information on the surrounding environment of the train 10 uses the sensor information received from the sensor unit 101 to determine not only the accuracy of the primary sensor functions, but also Regarding the reliability of the obstacle determination result by detecting people and dangerous objects, we will conduct a secondary objective evaluation, taking into consideration the environment and train conditions. This system operates trains according to control details that are appropriately weighted according to this evaluation.
 センサシステム規格IEC62998の目的を実現する上で、人や危険物体を検出するためには、「YOLO(You-Only-Look-Once)」を用いることが好ましい。「YOLO」は、比較的新しい画像認識のアルゴリズムであり、つぎの長所がある。第1に高精度で処理が早い。第2に画像全体の情報を捉えて予測するので、背景を物体と誤検出する不具合が低減できる。すなわち、「YOLO」では、背景も含めた画像全体の情報から学習や検証が可能であるため、背景と物体との関係を学習に基づいて合理的に認識できる。 In order to achieve the purpose of the sensor system standard IEC62998, it is preferable to use "YOLO (You-Only-Look-Once)" to detect people and dangerous objects. "YOLO" is a relatively new image recognition algorithm and has the following advantages. First, high precision and fast processing. Secondly, since the information of the entire image is captured and predicted, the problem of erroneously detecting the background as an object can be reduced. In other words, YOLO can learn and verify from the information of the entire image including the background, so it can rationally recognize the relationship between the background and the object based on learning.
 センサは、環境状況等に応じて信頼度が変化する。ここでいう、センサ特性とは、主にそのセンサにとって、検出能力を高精度に発揮し易い領域、いわば利用価値の高い領域での性能をいう。例えば、検知距離や速度に関する得意の領域がセンサ特性として規定される。本発明の特徴的技術は、センサ特性に応じてセンサから検出された情報の信頼度に基づいて、車両の走行環境やセンサ特性に応じた最適な制動力を作動可能にする技術である。なお、最適な制動力を得るために制動強度を段階的に変化する制御は、鉄道車両において、ノッチ段数を伴う運転操作になじみ易いので好適である。 The reliability of the sensor changes depending on the environmental conditions. Here, the sensor characteristics mainly refer to the performance in a range in which the sensor can easily demonstrate its detection ability with high accuracy, that is, in a range of high utility value. For example, areas of strength related to detection distance and speed are defined as sensor characteristics. A characteristic technique of the present invention is a technique for activating the optimum braking force according to the driving environment of the vehicle and the sensor characteristics based on the reliability of the information detected by the sensor according to the sensor characteristics. It should be noted that the control in which the braking intensity is changed in stages to obtain the optimum braking force is suitable for railway vehicles because it is easy to adapt to the driving operation involving the number of notches.
 換言すると、本列車制御システムは、必ずしも全環境に対応可能でないセンサ特性を認識した上で、支障物との検知距離や列車速度に関し、センサの得意な領域を用いて列車を制御する。列車に対する制御内容は、例えは、非常ブレーキ、通常ブレーキ、惰行運転、及び力行抑制といった内容である。その際、列車10の停止可能検知距離及び必要となる減速度は、上記数式(1)~(3)で算出される。これらの数式以前に、センサは、それが一次的に出力するセンサ情報のほか、環境や列車の状況等に基づき、センサ機能、及び支障判定の精度について二次的に客観評価される。信頼度の高いセンサ情報、及び支障判定結果ならば、それに重みづけして迅速に制御に反映させるが、逆ならば、制御へ反映させる度合いを軽くするか無視される。 In other words, this train control system recognizes sensor characteristics that are not necessarily compatible with all environments, and then controls the train using the area in which the sensor is good at detecting distances from obstacles and train speed. The contents of control for the train are, for example, contents such as emergency braking, normal braking, coasting, and power running suppression. At that time, the stop possible detection distance and the necessary deceleration of the train 10 are calculated by the above formulas (1) to (3). Prior to formulating these formulas, sensors are objectively evaluated secondarily in terms of sensor functions and trouble determination accuracy based on the sensor information that they primarily output, as well as the environment and train conditions. If the sensor information and trouble determination result are highly reliable, they are weighted and quickly reflected in the control.
 本列車制御システムは、基本的に無人運転が前提であるが、必ずしもそれに限定されるものでなく、完全自動運転に加えて運転士も並存して構わない。その場合、制御内容が走行装置へ伝達される経路に介在する運転士に対して、制御内容を運転支援情報として提示する。 This train control system is basically premised on unmanned operation, but it is not necessarily limited to that, and a driver may coexist in addition to fully automated operation. In that case, the content of control is presented as driving assistance information to the driver who is intervening on the route through which the content of control is transmitted to the traveling device.
 本システムの構成において、「記憶部」相当の機能があるならば、1以上のメモリを含むものであると良い。その記憶部における少なくとも1つのメモリは、揮発性メモリであっても良いし、不揮発性メモリであっても良い。また、「制御指示記憶部103」は、プログラムを記憶した記憶部に、プロセッサ部(CPU)や入出力インターフェースを組み合わせて形成されたコンピュータ相当部である。このコンピュータ相当部は、1チップマイコンで実現しても良く、他のコンピュータの一部を兼用利用しても良く、あるいは、ハードウェア回路のみで同等機能を実現させても構わない。 In the configuration of this system, if there is a function equivalent to a "storage unit", it should include one or more memories. At least one memory in the storage unit may be a volatile memory or a non-volatile memory. The "control instruction storage unit 103" is a computer-equivalent unit formed by combining a storage unit storing programs with a processor unit (CPU) and an input/output interface. This computer-equivalent part may be realized by a one-chip microcomputer, may be used as part of another computer, or may be realized by hardware circuits alone.
 また、「kkk部」の表現にて機能を説明したが、それらの機能は、1以上のコンピュータプログラムがプロセッサ部によって実行されることで実現されても良いし、1以上のハードウェア回路によって実現されても良い。なお、各機能の説明は一例であり、複数の機能が1つの機能にまとめられたり、1つの機能が複数の機能に分割されたりしても良い。 In addition, the functions have been described using the expression “kkk unit”, but these functions may be realized by executing one or more computer programs by the processor unit, or may be realized by one or more hardware circuits. May be. Note that the description of each function is an example, and a plurality of functions may be combined into one function, or one function may be divided into a plurality of functions.
 本発明は上述した実施形態に限定されるものではなく、様々な変形例が含まれる。それらの実施形態は本発明で分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。 The present invention is not limited to the above-described embodiments, and includes various modifications. These embodiments are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
10…列車、101…センサ部、102…支障判定部、103…制御指示記憶部、104…列車制御部、900~906…各ステップ DESCRIPTION OF SYMBOLS 10... Train 101... Sensor part 102... Trouble determination part 103... Control instruction storage part 104... Train control part 900-906... Each step

Claims (6)

  1.  軌道上を走行する列車の走行を制御する列車制御システムであって、
     前記列車の周辺環境の情報を取得するセンサ部と、
     前記センサ部より受信したセンサ情報に基づいて、前記列車が走行する軌道周辺における支障有無の支障判定結果に対する確からしさを数値化した信頼度を、判定基準と比較した大小関係として評価する支障判定部と、
     前記信頼度の評価結果に対応付けられた列車制御内容を制御指示ルールとして記憶する制御指示記憶部と、
     前記制御指示ルール、前記支障判定結果、及び前記信頼度に基づいて列車速度を制御する列車制御部と、
     を備える列車制御システム。
    A train control system for controlling running of a train running on a track,
    a sensor unit that acquires information about the surrounding environment of the train;
    Based on the sensor information received from the sensor unit, a trouble judgment unit that evaluates the degree of reliability, which is a numerical value of the likelihood of the trouble judgment result of the presence or absence of trouble around the track on which the train runs, as a magnitude relationship compared with a judgment criterion. When,
    a control instruction storage unit that stores, as a control instruction rule, train control content associated with the reliability evaluation result;
    a train control unit that controls a train speed based on the control instruction rule, the trouble determination result, and the reliability;
    A train control system with
  2.  前記支障判定部は、前記センサ情報に基づいて前記列車から支障物までの検知距離、及び前記列車速度を推定し、
     前記制御指示記憶部は、前記検知距離、及び前記列車速度に基づいて前記信頼度を判定するための判定基準を設定する、
     請求項1に記載の列車制御システム。
    The obstacle determination unit estimates the detected distance from the train to the obstacle and the train speed based on the sensor information,
    The control instruction storage unit sets a criterion for determining the reliability based on the detected distance and the train speed.
    The train control system according to claim 1.
  3.  前記制御指示記憶部は、前記信頼度の高さに応じてブレーキ力の強さを設定する、
     請求項1に記載の列車制御システム。
    The control instruction storage unit sets the strength of the braking force according to the reliability level.
    The train control system according to claim 1.
  4.  前記支障判定部は、前記センサ部より受信したセンサ情報に加えて、天候情報もしくは時刻情報もしくは走行地点のうち少なくとも1つ以上の情報に基づき、前記列車が走行する軌道周辺における支障有無を判定し、かつ前記信頼度を評価する、
     請求項1乃至3の何れか1項に記載の列車制御システム。
    In addition to the sensor information received from the sensor unit, the obstacle determination unit determines whether or not there is an obstacle around the track on which the train runs, based on at least one or more of weather information, time information, and travel point information. , and assessing the reliability;
    The train control system according to any one of claims 1 to 3.
  5.  前記制御指示記憶部は、前記制御指示ルールとして制御内容を記録し、前記センサ部が想定する検知可能な検知距離と視野角と列車速度と処理時間とのうち少なくとも1つ以上の情報に基づいて前記制御内容を実行させるように前記列車の運転曲線を規定する、
     請求項1乃至4の何れか1項に記載の列車制御システム。
    The control instruction storage unit records control details as the control instruction rule, and is based on information on at least one or more of detection distance, viewing angle, train speed, and processing time assumed by the sensor unit. Prescribing a running curve of the train so as to execute the control content,
    The train control system according to any one of claims 1 to 4.
  6.  軌道上を走行する列車の走行を制御する列車制御方法であって、
     センサ部が、前記列車の周辺環境の情報を取得し、
     支障判定部が、前記センサ部より受信したセンサ情報に基づいて前記列車が走行する軌道周辺における支障有無を一次的に判定し、
     前記支障有無に関する前記一次的な支障判定結果の確からしさを数値化した信頼度をより客観的で二次的な判定基準と比較した大小関係により評価し、
     制御指示記憶部が、前記判定基準と、前記信頼度の前記評価と、該評価に対応付けられた列車制御内容との組み合わせを制御指示ルールとして記憶し、
     列車制御部が、前記評価に応じた前記制御指示ルールに基づいて列車速度を制御する、
     列車制御方法。
     
    A train control method for controlling running of a train running on a track,
    A sensor unit acquires information on the surrounding environment of the train,
    A trouble determination unit primarily determines whether there is a trouble around the track on which the train runs based on the sensor information received from the sensor unit,
    Evaluating the degree of reliability that quantifies the certainty of the primary failure determination result regarding the presence or absence of the failure based on a magnitude relationship compared with a more objective secondary determination criterion,
    A control instruction storage unit stores, as a control instruction rule, a combination of the criterion, the evaluation of the reliability, and train control details associated with the evaluation,
    The train control unit controls the train speed based on the control instruction rule according to the evaluation;
    train control method.
PCT/JP2022/002208 2021-02-15 2022-01-21 Train control system WO2022172728A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021021436A JP7377233B2 (en) 2021-02-15 2021-02-15 train control system
JP2021-021436 2021-02-15
JP2021021438A JP2022123955A (en) 2021-02-15 2021-02-15 train control system
JP2021-021438 2021-02-15

Publications (1)

Publication Number Publication Date
WO2022172728A1 true WO2022172728A1 (en) 2022-08-18

Family

ID=82838776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002208 WO2022172728A1 (en) 2021-02-15 2022-01-21 Train control system

Country Status (1)

Country Link
WO (1) WO2022172728A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164013A (en) * 2019-03-29 2020-10-08 株式会社日立製作所 Train control system and railway vehicle loaded with the same
JP2020205694A (en) * 2019-06-17 2020-12-24 株式会社日立製作所 Train control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164013A (en) * 2019-03-29 2020-10-08 株式会社日立製作所 Train control system and railway vehicle loaded with the same
JP2020205694A (en) * 2019-06-17 2020-12-24 株式会社日立製作所 Train control system

Similar Documents

Publication Publication Date Title
CN108189835B (en) Automatic driving collision avoidance control method and system
US10710580B2 (en) Tailgating situation handling by an automated driving vehicle
CN113895451B (en) Safety redundancy and fault diagnosis system and method based on automatic driving system
US7667636B2 (en) Vehicle control system
US8396655B2 (en) Motor vehicle control system
US9501935B2 (en) Intelligent forward collision warning system
CN108137054B (en) Replacement of sensor measurement data
US11410556B2 (en) Vehicle front blind spot detection and warning system
CN111547053B (en) Automatic driving control method and system based on vehicle-road cooperation
CN112622930A (en) Unmanned vehicle driving control method, device and equipment and automatic driving vehicle
WO2016042352A1 (en) System and method for avoiding a collision for a vehicle
JP7256699B2 (en) train control system
CN113895450A (en) Safety redundancy system and control method for unmanned vehicle sensing system
Emzivat et al. Dynamic driving task fallback for an automated driving system whose ability to monitor the driving environment has been compromised
JP2008040646A (en) Vehicle control unit
WO2022172728A1 (en) Train control system
US20200339126A1 (en) Method for Driving on an Opposite Lane in a Controlled Manner
CN112346080A (en) Self-adaptive obstacle avoidance method based on single-line laser radar
JP7165907B2 (en) VEHICLE CONTROL DEVICE, VEHICLE, VEHICLE CONTROL METHOD AND PROGRAM
JP7377233B2 (en) train control system
JP2022123955A (en) train control system
CN113734207B (en) Vehicle safety protection system and method and vehicle
Tagiew Mainline automatic train horn and brake performance metric
EP4108505A1 (en) Train control system
KR102643361B1 (en) Adaptive intervention determination method of vehicle accident avoidance system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22751245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22751245

Country of ref document: EP

Kind code of ref document: A1