WO2022172500A1 - 有機合成化合物の質量分析法 - Google Patents

有機合成化合物の質量分析法 Download PDF

Info

Publication number
WO2022172500A1
WO2022172500A1 PCT/JP2021/034727 JP2021034727W WO2022172500A1 WO 2022172500 A1 WO2022172500 A1 WO 2022172500A1 JP 2021034727 W JP2021034727 W JP 2021034727W WO 2022172500 A1 WO2022172500 A1 WO 2022172500A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
mass spectrometry
matrix
negatively charged
organic
Prior art date
Application number
PCT/JP2021/034727
Other languages
English (en)
French (fr)
Inventor
圭介 島
裕子 福山
Original Assignee
株式会社 島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 島津製作所 filed Critical 株式会社 島津製作所
Priority to CN202180092132.XA priority Critical patent/CN116917726A/zh
Priority to EP21925748.2A priority patent/EP4293350A1/en
Priority to US18/271,386 priority patent/US20240096612A1/en
Priority to JP2022581172A priority patent/JP7487802B2/ja
Publication of WO2022172500A1 publication Critical patent/WO2022172500A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0418Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0431Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed
    • G01N2030/8447Nebulising, aerosol formation or ionisation
    • G01N2030/8452Generation of electrically charged aerosols or ions

Definitions

  • the present invention relates to mass spectrometry of organic synthetic compounds.
  • MALDI-MS matrix-assisted laser desorption ionization mass spectrometry
  • a MALDI-TOF MS matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry
  • an ionization aid called a matrix is selected according to the type of target sample.
  • General solid matrices such as 2,5-dihydroxybenzoic acid, ⁇ -cyano-4-hydroxycinnamic acid and sinapinic acid are used as matrices in MALDI mass spectrometry of synthetic organic compounds.
  • Macromolecules 1995, 28, 8548-8551 discloses MALDI-TOF MS analysis of polystyrene sulfonic acid.
  • MALDI mass spectrometry for organic synthetic compounds, a method for obtaining good mass spectrometry data in terms of S/N ratio and resolution, and a matrix that can be used for this method are desired.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-261824 describes an ionic liquid (TMG/CA, or G 3 CA) is used as a matrix to perform MALDI mass spectrometry targeting sugar chains (Anal. Chem. 2008, 80, 2171-2179 (Non-Patent Document 2)).
  • An object of the present invention is to provide a mass spectrometry method for negatively charged synthetic organic compounds and a matrix that can be used for the method.
  • the present invention includes the following inventions. Mass spectrometry of negatively charged synthetic organic compounds using an ionic liquid containing ions of amines and ions of organic substances containing acidic groups as the liquid matrix.
  • a liquid matrix for MALDI mass spectrometry of negatively charged synthetic organic compounds consisting of an ionic liquid containing ions of amines and ions of organic substances containing acidic groups.
  • an ionic liquid containing amine ions and acidic group-containing organic substance ions is used as a liquid matrix when performing mass spectrometry on a negatively charged synthetic organic compound. This makes it possible to obtain good mass spectrometry data with a high S/N ratio and high resolution. In particular, even if the organic synthetic compound to be analyzed is negatively charged, good mass spectrometry data with a high S/N ratio and high resolution can be obtained, which is a great advantage of the present invention. .
  • a liquid matrix for MALDI mass spectrometry of a negatively charged synthetic organic compound is provided, which is composed of an ionic liquid containing ions of an amine and ions of an acidic group-containing organic substance.
  • the present invention is particularly directed to MALDI mass spectrometry.
  • FIG. 1 shows the negative mode mass spectrum of sodium polystyrene sulfonate when the ionic liquid consisting of 3-aminoquinoline (3-AQ)/p-coumaric acid (CA) in Example 1 is used as a matrix. show. The horizontal axis represents mass/charge (m/z), and the vertical axis represents relative ion intensity (% Int.).
  • FIG. 2 shows a negative mode mass spectrum of sodium polystyrene sulfonate when 2,5-dihydroxybenzoic acid (DHB) in Comparative Example 1 was used as a matrix. The horizontal axis represents mass/charge (m/z), and the vertical axis represents relative ion intensity (% Int.).
  • FIG. 1 shows the negative mode mass spectrum of sodium polystyrene sulfonate when the ionic liquid consisting of 3-aminoquinoline (3-AQ)/p-coumaric acid (CA) in Example 1 is used as a matrix. show. The horizontal axis represents mass
  • FIG. 3(a) shows the phthalocyanine-3,4′, phthalocyanine-3,4′
  • Fig. 4 shows the negative mode mass spectrum of copper(II) tetrasodium 4'',4'''-tetrasulfonate, especially the molecular weight related ions.
  • FIG. 3(b) shows the phthalocyanine- 3 , phthalocyanine-3
  • Fig. 2 shows the negative mode mass spectrum of copper(II) tetrasodium 4',4'',4'''-tetrasulfonate, especially the molecular weight related ions.
  • 3(c) to (g) show common matrices 2,5-dihydroxybenzoic acid (2,5-DHB), sinapinic acid (SA), and ⁇ -cyano in Comparative Example 2, respectively.
  • - phthalocyanine-3,4',4'',4'' when using 4-hydroxycinnamic acid (CHCA), 2,4,6-trihydroxyacetophenone (THAP), norharmane as matrix Negative mode mass spectrum of copper(II) tetrasodium'-tetrasulfonate, especially for molecular weight related ions.
  • the horizontal axis represents mass/charge (m/z), and the vertical axis represents relative ion intensity (% Int.).
  • the S/N value of [M-4Na+3H] - is shown on the right side of each mass spectrum.
  • the object of mass spectrometry is an organic synthetic compound.
  • Synthetic organic compounds include, without particular limitation, a wide variety of compounds.
  • Synthetic organic polymer compounds are molecules with a large molecular weight and a structure composed of many repetitions of units obtained from molecules with a small molecular weight. be.
  • this synthetic polymer is analyzed by a MALDI mass spectrometer, it is detected as a peak group consisting of a plurality of peaks obtained at regular intervals based on the mass value of the monomer on the mass spectrum.
  • organic synthetic polymer compounds include polystyrene, polystyrene sulfonic acid, polyacrylic acid, polymethacrylic acid, polyacrylates such as polymethyl acrylate, polymethacrylates such as polymethyl acrylate, polyethylene, polypropylene, polyvinyl chloride, polyolefins in a broad sense such as polyacrylonitrile; polyesters such as polyethylene terephthalate and polylactic acid; polyurethanes; polyamides such as nylon; polyimides; Of course, various things other than these are included. It does not matter whether the organic synthetic compound is a homopolymer or a copolymer. Among organic synthetic polymer compounds, negatively charged compounds are particularly difficult to be ionized in MALDI mass spectrometry.
  • organic synthetic compounds to be mass spectrometry include non-polymeric synthetic complex compounds such as copper (II) tetrasodium phthalocyanine-3,4',4'',4'''-tetrasulfonate.
  • non-polymeric synthetic complex compounds such as copper (II) tetrasodium phthalocyanine-3,4',4'',4'''-tetrasulfonate.
  • Negatively charged organic synthetic complex compounds, such as copper (II) tetrasodium phthalocyanine-3,4',4'',4'''-tetrasulfonate are difficult to ionize in MALDI mass spectrometry. .
  • mixture samples of organic synthetic compounds are also included as objects of mass spectrometry.
  • sulfonic acids and carboxylic acids in the case of free and salts with counter cations such as sodium ions
  • carboxylic acids such as polystyrene sulfonic acid, polyacrylic acid, polymethacrylic acid, and polylactic acid
  • the synthetic organic compound in which ) is present is negatively charged.
  • Such negatively charged synthetic organic compounds are difficult to ionize in MALDI mass spectrometry. Therefore, in MALDI mass spectrometry, the use of common solid matrices such as 2,5-dihydroxybenzoic acid, ⁇ -cyano-4-hydroxycinnamic acid, and sinapinic acid provides good S/N ratio and resolution. Obtaining mass spectrometry data was difficult.
  • an ionic liquid is used as the matrix.
  • An ionic liquid is a substance that exists in a liquid state at room temperature and is actually a salt.
  • a matrix that is an ionic liquid is referred to as a liquid matrix.
  • an ionic liquid composed of amine ions and ions of an acidic group-containing organic substance is used as the liquid matrix. Any of these amines and acidic group-containing organic substances absorb laser light having a wavelength selected from the ultraviolet to visible region.
  • Said amines are, without particular limitation, 1,1,3,3-tetramethylguanidine (TMG), n-butylamine (BA), ethylamine, N,N-diethylamine (DEA), N,N-diethyl Aniline, N,N-diethylmethylamine, diethylbenzenamine, N,N-dimethylamine, triethylamine, tri-n-butylamine, tri-n-propylamine, ethanolamine, polyether-tailed triethylamine, polyester-tailed triethylamine, aniline , 2,4-dinitroaniline, pyridine, 2-pyridinepropanol (2PP), 2-ethylpyridine (2EP), 2-amino-4-methyl-5-nitropyridine, 3-aminoquinoline (3-AQ), 3 -hydroxypyridine, 1-methylimidazole, 1-butyl-3-methylimidazole, 1-(1-hydroxypropyl)-3-methylimidazole, 1,3-
  • the acidic group-containing organic substance is not particularly limited, and p-coumaric acid (p-CA, trans-4-hydroxycinnamic acid), ⁇ -cyano-4-hydroxycinnamic acid (4- CHCA), ⁇ -cyano-3-hydroxycinnamic acid, 2,5-dihydroxybenzoic acid (DHB), 4-hydroxybenzoic acid, p-hydroxybenzoic acid, p-hydroxyphenylpyruvic acid, 3-hydroxypicolinic acid, 3,5-dimethoxy-4-hydroxycinnamic acid (sinapic acid), 4-hydroxy-3-methoxycinnamic acid (ferulic acid), caffeic acid (3,4-dihydroxycinnamic acid), 5-methoxysalicylic acid , 2-(4-hydroxyphenylazo)benzoic acid (HABA), nicotinic acid, picolinic acid, 3-aminopicolinic acid, 3-hydroxypicolinic acid, 2-aminobenzoic acid, 3-amino-4
  • an ionic liquid composed of a combination of arbitrary ions selected from the aforementioned amines and arbitrary ions selected from the aforementioned acidic group-containing organic substances is used. Also, a plurality of types of the amines or a plurality of types of the acidic group-containing organic substances may be selected.
  • the amine is 3-aminoquinoline (3-AQ) or 1,1,3,3-tetramethylguanidine (TMG), and the acidic group-containing organic substance is p-coumaric acid (p-CA). Combinations may also be used. More preferably, an ionic liquid (3-AQ/CA) containing 3-aminoquinoline (3-AQ) ions and p-coumarate ions (CA) is used as the liquid matrix.
  • the molar ratio between the amine and the acidic group-containing organic substance constituting the liquid matrix is not particularly limited, and may be a mixing ratio that allows the formation of an ionic liquid.
  • the liquid matrix may contain the amine and the acidic group-containing organic substance in a molar ratio of, for example, 1:5 to 20:1, or 1:1 to 20:1.
  • the amine and the acidic group-containing organic substance are in a molar ratio of 1:1 to 10:1, alternatively 3:1 to 10:1, especially 7:1 to 10:1. It may be more preferable to include A person skilled in the art may appropriately determine at what concentration the amine and the acidic group-containing organic substance should be contained in the ionic liquid.
  • the method for preparing the liquid matrix is not particularly limited.
  • a specific preparation method a conventional method for preparing an ionic liquid can be applied.
  • the amine from which the amine ions constituting the ionic liquid are derived and the acidic group-containing organic substance from which the acidic group-containing substance ions are derived are mixed.
  • a method of reacting can be mentioned.
  • amine 3-aminoquinoline (3-AQ) and the acidic group-containing organic substance is p-coumaric acid (p-CA) will be described in more detail below.
  • p-coumaric acid may be added to 3-aminoquinoline, or 3-aminoquinoline may be added to p-coumaric acid.
  • the reaction of both substances can be carried out in a solvent. Therefore, at least one of 3-aminoquinoline and p-coumaric acid may be prepared in advance as a solution, and p-coumaric acid may be added to the 3-aminoquinoline solution, or 3-aminoquinoline may be added to the p-coumaric acid solution. may be added. Alternatively, 3-aminoquinoline and p-coumaric acid may be added simultaneously to the solvent. Mixing of both substances can be carried out at ambient temperature.
  • the ratio of 3-aminoquinoline and p-coumaric acid to be reacted with each other is not particularly limited. They can be mixed in molar ratios of ⁇ 20:1. Considering the S/N ratio, the ratio of 3-aminoquinoline and p-coumaric acid is, for example, 1:1 to 10:1, alternatively 3:1 to 10:1, especially 7:1 to 10:1. It may be more preferable to mix in molar ratios. A person skilled in the art may appropriately determine at what concentration in the solvent the two substances should be reacted.
  • the solvent in this case is not particularly limited, but includes acetonitrile (ACN), acetonitrile (ACN) aqueous solution [eg, 50% (v/v) acetonitrile (ACN) aqueous solution], methanol, methanol aqueous solution, and the like.
  • ACN acetonitrile
  • ACN acetonitrile
  • ACN acetonitrile
  • aqueous solution eg, 50% (v/v) acetonitrile (ACN) aqueous solution
  • methanol methanol aqueous solution
  • the solvent When reacting in a solvent, the solvent can be removed after the reaction. Removal of the solvent can be carried out by evaporation, preferably under reduced pressure. After removing the solvent, the liquid substance can be obtained as an ionic liquid. On the other hand, when the solvent used in the reaction can also be used as a matrix solvent (described later), the solvent may not need to be removed.
  • the liquid matrix and the object of mass spectrometry should be in the form of a mixed solution when droplets are finally formed on the plate for mass spectrometry.
  • Mixed solution droplets containing a liquid matrix and a mass spectrometry target can be prepared by a pre-mix method or an on-target mix method.
  • a mixed solution containing a liquid matrix and a target of mass spectrometry is prepared in advance, and the mixed solution is dropped onto a plate for mass spectrometry to obtain droplets of the mixed solution.
  • a mixed solution can be obtained by mixing a liquid matrix solution and a mass spectrometry target (organic synthetic compound) solution. Each solution can be mixed, for example, in equal volumes.
  • a liquid matrix solution and a mass spectrometry target (organic synthetic compound) solution are separately prepared, and the mixed solution is obtained by superimposing them on the same position on a mass spectrometry plate and dropping them. How to get drops.
  • solvent for the matrix conventionally used solvents can be used without particular limitation.
  • aqueous solutions containing organic solvents such as acetonitrile, methanol and ethanol in water can be used.
  • concentration of the organic solvent in this aqueous solution is, for example, 10 to 90% by volume, preferably 30 to 80% by volume, more preferably 33 to 75% by volume, for example about 50% by volume.
  • solvents for the mass spectrometry target conventionally used solvents can be used without particular limitation.
  • water or an aqueous solution containing an organic solvent such as acetonitrile, methanol, or ethanol in water can be used.
  • concentration of the organic solvent in this aqueous solution is, for example, 10 to 90% by volume, preferably 30 to 80% by volume, more preferably 33 to 75% by volume, for example about 50% by volume.
  • the amount of the liquid matrix contained in the droplet of the mixed solution of the liquid matrix and the object of mass spectrometry (organic synthetic compound) can be, for example, 1 nmol to 10 ⁇ mol/ ⁇ L, preferably 10 nmol to 1 ⁇ mol/ ⁇ L.
  • the amount of the object of mass spectrometry (organic synthetic compound) contained in the droplets of the mixed solution is not particularly limited, but for example, an amount of 0.1 ⁇ g to 1.0 ⁇ g per mixed droplet is acceptable. be.
  • the droplet of the mixed solution used to obtain one spot for mass spectrometry is, for example, 0.1 to 10 ⁇ L, preferably 0.5 to 1.5 ⁇ L, specifically about 0.5 ⁇ L or about 1 ⁇ L. can have a volume of
  • the mass spectrometry plate such as the stainless steel target plate normally used for MALDI mass spectrometry, and the chemically or physically surface-treated target plate.
  • a plate that has been subjected to physical surface treatment such as polishing or mirror finishing so that the surface roughness of the surface of the treatment plate is set to a desired level.
  • the mass spectrometer used in the present invention is not particularly limited as long as it is combined with a MALDI (matrix-assisted laser desorption ionization) ion source.
  • MALDI-TOF matrix-assisted laser desorption ionization-time of flight
  • MALDI-IT matrix-assisted laser desorption ionization-ion trap
  • MALDI-IT-TOF matrix-assisted laser desorption ionization
  • MALDI-FTICR matrix-assisted laser desorption ionization-Fourier transform ion cyclotron resonance
  • 3-aminoquinoline (3-AQ) and p-coumaric acid (CA) were from Sigma-Aldrich.
  • Sodium polystyrene sulfonate was used from Sigma-Aldrich.
  • 2,5-dihydroxybenzoic acid (2,5-DHB) manufactured by Shimadzu GLC was used.
  • Example 1 Analysis of sodium polystyrene sulfonate using 3-AQ/CA]
  • a CA solution containing 1 ⁇ mol/ ⁇ L in 50% (v/v) acetonitrile (ACN)/2 mM ammonium phosphate aqueous solution was mixed at 1:1 (v/v) to form each 3-AQ/CA matrix.
  • a solution was created.
  • Figure 2 shows the mass spectrum of sodium polystyrene sulfonate when 2,5-dihydroxybenzoic acid (DHB) is used as the matrix. Compared with FIG. 1, the S/N ratio of the negatively charged organic synthetic compound sodium polystyrene sulfonate was 20 or less, which was inferior.
  • DVB 2,5-dihydroxybenzoic acid
  • Example 2 Analysis of copper (II) tetrasodium phthalocyanine-3,4',4'',4''-tetrasulfonate]
  • 3-AQ solution containing 1 ⁇ mol/ ⁇ L of 3-aminoquinoline (3-AQ) in 50% (v/v) acetonitrile (ACN)/2 mM ammonium phosphate aqueous solution, and p-coumaric acid (CA) 0
  • a 3-AQ/CA matrix solution was prepared by mixing 1 ⁇ mol/ ⁇ L with a CA solution containing 50% (v/v) acetonitrile (ACN)/2 mM ammonium phosphate aqueous solution at a ratio of 1:1 (v/v). It was created.
  • a liquid matrix G3CA obtained by mixing p-coumaric acid (CA) and 1,1,3,3-tetramethylguanidium (TMG) in methanol at a ratio of 1:3 (mol/mol), A G3CA matrix solution was prepared by dissolving 100 mg/mL in a 50% (v/v) acetonitrile (ACN)/2 mM ammonium phosphate aqueous solution.
  • a 1 mg/mL aqueous solution of copper (II) tetrasodium phthalocyanine-3,4′,4′′,4′′′-tetrasulfonate was prepared as a sample solution.
  • the negatively charged phthalocyanine-3,4′,4′′,4′′′-tetrasodium copper(II) tetrasulfonate can be converted into sulfo
  • a mass spectrum was obtained as molecular weight-related ions in which elimination of groups (sulfone group, sulfonic acid group) was relatively suppressed.
  • CHCA ⁇ -cyano-4-hydroxycinnamic acid
  • ACN acetonitrile
  • THAP 2,4,6-trihydroxyacetophenone
  • Norharmane manufactured by Sigma, a general solid matrix, was dissolved at 10 mg/mL in a 50% (v/v) acetonitrile (ACN) aqueous solution to prepare a norharmane matrix solution.
  • ACN acetonitrile
  • a 1 mg/mL aqueous solution of copper (II) tetrasodium phthalocyanine-3,4′,4′′,4′′′-tetrasulfonate was prepared as a sample solution.
  • Figures 3 (c) to (g) show the mass spectra of copper (II) tetrasodium phthalocyanine-3,4',4'',4'''-tetrasulfonate when using each matrix solution.
  • the present invention includes, for example, the following forms.
  • the amine is 3-aminoquinoline (3AQ), 1,1,3,3-tetramethylguanidine (TMG), n-butylamine (BA), ethylamine, N,N-diethylamine (DEA), N, N-diethylaniline, N,N-diethylmethylamine, diethylbenzenamine, N,N-dimethylamine, triethylamine, tri-n-butylamine, tri-n-propylamine, ethanolamine, polyether-tailed triethylamine, polyester-tailed triethylamine, aniline, 2,4-dinitroaniline, pyridine, 2-pyridinepropanol (2PP), 2-ethylpyridine (2EP), 2-amino-4-methyl-5-nitropyridine, 3-aminoquinoline (3-AQ ), 3-hydroxypyridine, 1-methylimidazole, 1-butyl-3-methylimidazole, 1-(1-hydroxypropyl)-3-methylimidazole, 1,3-d
  • the acidic group-containing organic substance is p-coumaric acid (p-CA), ⁇ -cyano-4-hydroxycinnamic acid (4-CHCA), ⁇ -cyano-3-hydroxycinnamic acid, 2, 5-dihydroxybenzoic acid (DHB), 4-hydroxybenzoic acid, p-hydroxybenzoic acid, p-hydroxyphenylpyruvic acid, 3-hydroxypicolinic acid, 3,5-dimethoxy-4-hydroxycinnamic acid (sinapic acid) , 4-hydroxy-3-methoxycinnamic acid (ferulic acid), caffeic acid (3,4-dihydroxycinnamic acid), 5-methoxysalicylic acid, 2-(4-hydroxyphenylazo)benzoic acid (HABA), nicotinic acid, picolinic acid, 3-aminopicolinic acid, 3-hydroxypicolinic acid, 2-aminobenzoic acid, 3-amino-4-hydroxybenzoic acid, 2,4,6-trihydroxyacetophenone (THAP
  • a liquid matrix for MALDI mass spectrometry of a negatively charged synthetic organic compound which consists of an ionic liquid containing ions of an amine and ions of an organic substance containing an acidic group.
  • the amine is 3-aminoquinoline (3AQ), 1,1,3,3-tetramethylguanidine (TMG), n-butylamine (BA), ethylamine, N,N-diethylamine (DEA), N, N-diethylaniline, N,N-diethylmethylamine, diethylbenzenamine, N,N-dimethylamine, triethylamine, tri-n-butylamine, tri-n-propylamine, ethanolamine, polyether-tailed triethylamine, polyester-tailed triethylamine, aniline, 2,4-dinitroaniline, pyridine, 2-pyridinepropanol (2PP), 2-ethylpyridine (2EP), 2-amino-4-methyl-5-nitropyridine, 3-aminoquinoline (3-AQ ), 3-hydroxypyridine, 1-methylimidazole, 1-butyl-3-methylimidazole, 1-(1-hydroxypropyl)-3-methylimidazole, 1,3-
  • the acidic group-containing organic substance is p-coumaric acid (p-CA), ⁇ -cyano-4-hydroxycinnamic acid (4-CHCA), ⁇ -cyano-3-hydroxycinnamic acid, 2, 5-dihydroxybenzoic acid (DHB), 4-hydroxybenzoic acid, p-hydroxybenzoic acid, p-hydroxyphenylpyruvic acid, 3-hydroxypicolinic acid, 3,5-dimethoxy-4-hydroxycinnamic acid (sinapic acid) , 4-hydroxy-3-methoxycinnamic acid (ferulic acid), caffeic acid (3,4-dihydroxycinnamic acid), 5-methoxysalicylic acid, 2-(4-hydroxyphenylazo)benzoic acid (HABA), nicotinic acid, picolinic acid, 3-aminopicolinic acid, 3-hydroxypicolinic acid, 2-aminobenzoic acid, 3-amino-4-hydroxybenzoic acid, 2,4,6-trihydroxyacetophenone (TH

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

負に帯電している有機合成化合物の質量分析法、及び該方法に用い得るマトリックスを提供する。アミンのイオンと酸性基含有有機物質のイオンとを含むイオン液体を液体マトリックスとして用いる、負に帯電している有機合成化合物の質量分析法。例えば、前記アミンが3-アミノキノリン(3-AQ)であり、前記酸性基含有有機物質がp-クマル酸(p-CA)である。解析すべき前記負に帯電している有機合成化合物は、例えば、有機合成高分子化合物、錯体化合物である。

Description

有機合成化合物の質量分析法
 本発明は、有機合成化合物の質量分析法に関する。
 種々の物質がMALDI-MS(マトリックス支援レーザー脱離イオン化質量分析)により分析されている。
 有機合成化合物の質量分析計による測定には、MALDI-TOF MS(マトリックス支援レーザー脱離イオン化-飛行時間型質量分析)装置が多用されている。MALDI質量分析では、対象となるサンプルの種類に応じて、マトリックスと呼ばれるイオン化補助剤が選択される。有機合成化合物のMALDI質量分析において、マトリックスとしては、2,5-ジヒドロキシ安息香酸、α-シアノ-4-ヒドロキシケイ皮酸やシナピン酸など、一般的な固体マトリックスが使われている。例えば、Macromolecules 1995, 28, 8548-8551(非特許文献1)においては、ポリスチレンスルホン酸のMALDI-TOF MS分析が開示されている。
特開2008-261824号公報
Macromolecules 1995, 28, 8548-8551 Anal. Chem. 2008, 80, 2171-2179 Rapid Commun. Mass Spectrom. 2011, 25, 1152-1158
 有機合成化合物についてのMALDI質量分析において、分析対象となるサンプルの種類に応じて適切なマトリックスを選択する必要があり、試行錯誤を要することもある。
 有機合成化合物についてのMALDI質量分析において、S/N比や分解能の点から良好な質量分析データを取得する方法、及び該方法に用い得るマトリックスが望まれる。
 有機合成化合物の中でも、負に帯電している有機合成化合物については、MALDI質量分析において、S/N比や分解能の点から良好な質量分析データを取得することが難しい。このため、有機合成化合物の中でも特に、負に帯電している有機合成化合物についてのMALDI質量分析において、S/N比や分解能の点から良好な質量分析データを取得する方法、及び該方法に用い得るマトリックスが望まれる。
 一方、ペプチドや糖鎖のMALDI質量分析において、マトリックスとして、イオン液体マトリックスを用いることが知られている。例えば、特開2008-261824号公報(特許文献1)に、アミン(1,1,3,3-テトラメチルグアニジン)のイオンとp-クマル酸のイオンとを含むイオン液体(TMG/CA、あるいはG3CA)をマトリックスとして用い、糖鎖を分析対象としたMALDI質量分析を行うことが記載されている(Anal. Chem. 2008, 80, 2171-2179(非特許文献2))。
 本発明の目的は、負に帯電している有機合成化合物の質量分析法、及び該方法に用い得るマトリックスを提供することにある。
 本発明者は、鋭意検討の結果、負に帯電している有機合成化合物についてのMALDI質量分析において、イオン液体をマトリックスとして用いることにより、高S/N比や高分解能を有する良好な質量分析データを取得することができることを見出し、本発明を完成するに至った。
 本発明は、以下の発明を含む。
 アミンのイオンと酸性基含有有機物質のイオンとを含むイオン液体を液体マトリックスとして用いる、負に帯電している有機合成化合物の質量分析法。
 アミンのイオンと酸性基含有有機物質のイオンとを含むイオン液体からなる、負に帯電している有機合成化合物のMALDI質量分析用液体マトリックス。
 本発明によれば、負に帯電している有機合成化合物を質量分析するに際して、アミンのイオンと酸性基含有有機物質のイオンとを含むイオン液体を液体マトリックスとして用いる。このことにより、高S/N比や高分解能を有する良好な質量分析データを取得することができる。特に、解析すべき前記有機合成化合物が負に帯電しているものであっても、高S/N比や高分解能を有する良好な質量分析データを取得することができ、本発明の利点は大きい。
 本発明によれば、アミンのイオンと酸性基含有有機物質のイオンとを含むイオン液体からなる、負に帯電している有機合成化合物のMALDI質量分析用液体マトリックスが提供される。
 本発明は、特に、MALDI質量分析に向けられる。
図1は、実施例1における3-アミノキノリン(3-AQ)/p-クマル酸(CA)からなるイオン液体をマトリックスとして用いた場合のポリスチレンスルホン酸ナトリウムのネガティブモ-ドでのマススペクトルを示す。横軸は質量/電荷(m/z)、縦軸はイオンの相対強度(%Int.)を表す。 図2は、比較例1における2,5-ジヒドロキシ安息香酸(DHB)をマトリックスとして用いた場合のポリスチレンスルホン酸ナトリウムのネガティブモ-ドでのマススペクトルを示す。横軸は質量/電荷(m/z)、縦軸はイオンの相対強度(%Int.)を表す。 図3(a)は、実施例2における、3-アミノキノリン(3-AQ)とp-クマル酸(CA)からなる液体マトリックス3-AQ/CA用いた場合の、フタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウムの、特に分子量関連イオンの、ネガティブモ-ドのマススペクトルを示す。図3(b)は、実施例2における、p-クマル酸(CA)と1,1,3,3-tetramethylguanidium(TMG)からなる液体マトリックスG3CAをマトリックスとして用いた場合のフタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウムの、特に分子量関連イオンの、ネガティブモ-ドのマススペクトルを示す。また、図3(c)~(g)は、比較例2における、それぞれ、一般的なマトリックスである2,5-ジヒドロキシ安息香酸(2,5-DHB)、シナピン酸(SA)、α-シアノ-4-ヒドロキシケイ皮酸(CHCA)、2,4,6-トリヒドロキシアセトフェノン(THAP)、ノルハルマン(norharmane)をマトリックスとして用いた場合の、フタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウムの、特に分子量関連イオンの、ネガティブモ-ドのマススペクトルを示す。横軸は質量/電荷(m/z)、縦軸はイオンの相対強度(%Int.)を表す。各マススペクトルの右側に、[M-4Na+3H]-のS/Nの値を示した。
[質量分析対象]
 本発明において、質量分析対象は有機合成化合物である。有機合成化合物には、特に限定されることなく、広範囲の種々のものが含まれる。有機合成高分子化合物は、分子量が大きい分子で、分子量が小さい分子から得られる単位の多数回の繰り返しで構成された構造の分子であり、モノマーの重合により生成する化合物(モノマーの重合体)である。この合成高分子をMALDI質量分析装置により分析すると、マススペクトル上で、モノマーの質量値に基づく一定の間隔で得られる複数のピークからなるピーク群として検出される。有機合成高分子化合物を例示すれば、ポリスチレン、ポリスチレンスルホン酸、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチルなどのポリアクリレート、ポリアクリル酸メチルなどのポリメタクリレート、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアクリロニトリルなどの広義のポリオレフィン系; ポリエチレンテレフタレートやポリ乳酸などのポリエステル; ポリウレタン; ナイロンなどのポリアミド; ポリイミド; フェノール樹脂; 尿素樹脂などが挙げられる。もちろん、これら以外の種々のものが含まれる。有機合成化合物が、ホモポリマーであるか、コポリマーであるかを問わない。有機合成高分子化合物のうち、特に負に帯電しているものは、MALDI質量分析においてイオン化されにくい。
 また、質量分析対象の有機合成化合物には、フタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウムのような高分子ではない合成錯体化合物も挙げられる。このフタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウムのように、特に負に帯電している有機合成錯体化合物は、MALDI質量分析においてイオン化されにくい。
 また、質量分析対象として、有機合成化合物の混合物試料も含まれる。
 質量分析対象としての有機合成化合物のうち、ポリスチレンスルホン酸、ポリアクリル酸、ポリメタクリル酸、ポリ乳酸のように、スルホン酸やカルボン酸(遊離の場合、及びナトリウムイオンなどのカウンターカチオンとの塩の場合)が存在している有機合成化合物は、負に帯電している。このような負に帯電している有機合成化合物は、MALDI質量分析においてイオン化されにくい。そのため、MALDI質量分析において、2,5-ジヒドロキシ安息香酸、α-シアノ-4-ヒドロキシケイ皮酸やシナピン酸など、一般的な固体マトリックスを用いると、S/N比や分解能の点から良好な質量分析データを取得することが難しかった。
 また、質量分析対象としての有機合成高分子のうち、平均分子量が大きいものに加え、分子量分散度(Mw/Mn)が大きいものも、MALDI質量分析においてイオン化されにくい。
[液体マトリックス]
 本発明においては、マトリックスとしてイオン液体を用いる。イオン液体は、室温で液体の状態で存在し、その実態は塩である物質をいう。本発明においては、イオン液体であるマトリックスを、液体マトリックスと表記する。
 より具体的には、液体マトリックスとしては、アミンのイオンと酸性基含有有機物質のイオンとから構成されるイオン液体が用いられる。これらのアミン及び酸性基含有有機物質のいずれかは、紫外~可視領域から選ばれる波長を有するレーザー光を吸収する。
 前記のアミンは、特に限定されることなく、1,1,3,3-テトラメチルグアニジン(TMG)、n-ブチルアミン(BA)、エチルアミン、N,N-ジエチルアミン(DEA)、N,N-ジエチルアニリン、N,N-ジエチルメチルアミン、ジエチルベンゼンアミン、N,N-ジメチルアミン、トリエチルアミン、トリ-n-ブチルアミン、トリ-n-プロピルアミン、エタノールアミン、ポリエーテルテールドトリエチルアミン、ポリエステルテールドトリエチルアミン、アニリン、2,4-ジニトロアニリン、ピリジン、2-ピリジンプロパノール(2PP)、2-エチルピリジン(2EP)、2-アミノ-4-メチル-5-ニトロピリジン、3-アミノキノリン(3-AQ)、3-ヒドロキシピリジン、1-メチルイミダゾール、1-ブチル-3-メチルイミダゾール、1-(1-ヒドロキシプロピル)-3-メチルイミダゾール、1,3-ジメチルイミダゾール、1,5-ジアミノナフタレン、6-アザ-2-チオチミン、カルボリン類(ノルハルマン、ハルマン、ハルミン、ハルモル、ハルマリン、ハルマロールなど)などから選択することができる。
 一方、前記の酸性基含有有機物質は、特に限定されることなく、p-クマル酸(p-CA,トランス-4-ヒドロキシケイ皮酸)、α-シアノ-4-ヒドロキシケイ皮酸(4-CHCA)、α-シアノ-3-ヒドロキシケイ皮酸、2,5-ジヒドロキシ安息香酸(DHB)、4-ヒドロキシ安息香酸、p-ヒドロキシ安息香酸、p-ヒドロキシフェニルピルビン酸、3-ヒドロキシピコリン酸、3,5-ジメトキシ-4-ヒドロキシケイ皮酸(シナピン酸)、4-ヒドロキシ-3-メトキシケイ皮酸(フェルラ酸)、カフェイン酸(3,4-ジヒドロキシケイ皮酸)、5-メトキシサリチル酸、2-(4-ヒドロキシフェニルアゾ)安息香酸(HABA)、ニコチン酸、ピコリン酸、3-アミノピコリン酸、3-ヒドロキシピコリン酸、2-アミノ安息香酸、3-アミノ-4-ヒドロキシ安息香酸、2,4,6-トリヒドロキシアセトフェノン(THAP)、1,4-ジヒドロ-2-ナフトエ酸、3-インドールアクリル酸、インドール-2-カルボン酸、チオグリコール酸などから選択することができる。
 液体マトリックスとしては、前記アミンから選択される任意のイオンと前記酸性基含有有機物質から選択される任意のイオンとの組み合わせから構成されるイオン液体が用いられる。また、前記アミンの複数種、又は前記酸性基含有有機物質の複数種を選択してもよい。
 例えば、前記アミンが3-アミノキノリン(3-AQ)又は1,1,3,3-テトラメチルグアニジン(TMG)であり、前記酸性基含有有機物質がp-クマル酸(p-CA)である組み合わせを用いてもよい。より好ましくは、液体マトリックスとして、3-アミノキノリン(3-AQ)イオンとp-クマル酸イオン(CA)とを含むイオン液体(3-AQ/CA)を用いるとよい。
 本発明において、前記液体マトリックスを構成する前記アミンと前記酸性基含有有機物質とのモル比は、特に限定されることはなく、イオン液体を形成し得る混合比とすればよい。例えば、前記液体マトリックスが、前記アミンと前記酸性基含有有機物質とを、例えば1:5~20:1、あるいは1:1~20:1のモル比で含むようにするとよい。S/N比を考慮した場合、前記アミンと前記酸性基含有有機物質とを1:1~10:1、あるいは3:1~10:1、特別には7:1~10:1のモル比で含むことがより好ましい場合がある。イオン液体中どのような濃度で前記アミンと前記酸性基含有有機物質を含ませるかについては、当業者が適宜決定すればよい。
[液体マトリックスの調製]
 液体マトリックスの調製方法としては特に限定されるものではない。具体的な調製方法としては従来からのイオン液体の調製法に準じることができる。例えば、もっとも簡便な調製法の一つとしては、イオン液体を構成するアミンイオンの由来元となる前記アミンと、酸性基含有物質イオンの由来元となる前記酸性基含有有機物質とを混合して反応させる方法が挙げられる。
 前記アミンが3-アミノキノリン(3-AQ)であり、前記酸性基含有有機物質がp-クマル酸(p-CA)である場合を例として、以下により詳しく説明する。
Figure JPOXMLDOC01-appb-C000001
 双方の物質を反応させるためには、p-クマル酸を3-アミノキノリンに加えても良いし、3-アミノキノリンをp-クマル酸に加えてもよい。双方の物質の反応は、溶媒中で行うことができる。そのため、3-アミノキノリン及びp-クマル酸の少なくとも一方を予め溶液として調製して、p-クマル酸を3-アミノキノリン溶液に加えてもよいし、3-アミノキノリンをp-クマル酸溶液に加えてもよい。あるいは、溶媒に3-アミノキノリン及びp-クマル酸を同時に加えてもよい。双方の物質の混合は、常温下で行うことができる。
 互いに反応させるべき3-アミノキノリンとp-クマル酸との比は、特に限定されないが、例えば、3-アミノキノリンとp-クマル酸とを、例えば1:5~20:1、あるいは1:1~20:1のモル比で混合することができる。S/N比を考慮した場合、3-アミノキノリンとp-クマル酸とを、例えば1:1~10:1、あるいは3:1~10:1、特別には7:1~10:1のモル比で混合することがより好ましい場合がある。溶媒中どのような濃度で双方の物質を反応させるかについては、当業者が適宜決定すればよい。
 この際の溶媒としては、特に限定されないが、アセトニトリル(ACN)、アセトニトリル(ACN)水溶液[例えば、50%(v/v)アセトニトリル(ACN)水溶液]、メタノール、メタノール水溶液など挙げられる。当業者が適宜選択すればよい。
 溶媒中で反応させた場合は、反応後、溶媒を除去することができる。溶媒の除去は、留去、好ましくは減圧下における留去によって行うことができる。溶媒の除去を行った後、液状の物質をイオン液体として得ることができる。一方、反応に用いた溶媒を、マトリックス溶媒(後述する)としても用いることができる場合は、溶媒を除去しなくともよい場合がある。
[質量分析用スポットの形成]
 本発明の液体マトリックスの使用においては、質量分析用プレート上に、液体マトリックスと質量分析対象(有機合成化合物)とを含む混合溶液の液滴が形成され、溶媒が除去される(蒸発する)ことによって、レーザーが照射されるべき質量分析用スポットが形成される。
 液体マトリックスと質量分析対象(有機合成化合物)とは、最終的に質量分析用プレート上で液滴を形成した時点で混合溶液の態様になっていればよい。液体マトリックスと質量分析対象(有機合成化合物)とを含む混合溶液の液滴は、プレミックス(pre-mix)法又はオンターゲットミックス(on-target mix)法によって調製することができる。
 プレミックス法は、液体マトリックスと質量分析対象(有機合成化合物)とを含む混合溶液を予め調製し、その混合溶液を質量分析用プレート上に滴下することによって、混合溶液の液滴を得る方法である。混合溶液は、液体マトリックス溶液と質量分析対象(有機合成化合物)溶液とを混合することによって得ることができる。それぞれの溶液は、例えば同体積にて混合することができる。
 一方、オンターゲットミックス法は、液体マトリックス溶液と質量分析対象(有機合成化合物)溶液とを別々に調製し、それぞれを質量分析用プレート上の同じ位置に重ねて滴下することによって、混合溶液の液滴を得る方法である。
 マトリックスのための溶媒としては、従来から用いられてきた溶媒を特に限定することなく用いることができる。例えば、アセトニトリル、メタノ-ル、エタノ-ルなどの有機溶剤を水中に含む水溶液が用いられうる。この水溶液中の有機溶剤の濃度は、例えば10~90体積%、好ましくは30~80体積%、更に好ましくは33~75体積%、一例として50体積%程度である。
 質量分析対象のための溶媒としては、従来から用いられてきた溶媒を特に限定することなく用いることができる。例えば、水、又はアセトニトリル、メタノ-ル、エタノ-ルなどの有機溶剤を水中に含む水溶液が用いられうる。この水溶液中の有機溶剤の濃度は、例えば10~90体積%、好ましくは30~80体積%、更に好ましくは33~75体積%、一例として50体積%程度である。
 液体マトリックスと質量分析対象(有機合成化合物)との混合溶液の液滴中に含まれる液体マトリックスの量は、例えば、1nmol~10μmol/μL、好ましくは10nmol~1μmol/μLでありうる。一方、混合溶液の液滴中に含まれる質量分析対象(有機合成化合物)の量は特に限定されないが、例えば、混合液滴1個あたり0.1μg~1.0μgとなるような量で許容される。
 なお、1個の質量分析用スポットを得るために使用する混合溶液の液滴は、例えば0.1~10μL、好ましくは0.5~1.5μL、具体例としては0.5μL程度あるいは1μL程度の体積とすることができる。
 質量分析用プレートとしては、MALDI質量分析に通常使用されるステンレス鋼ターゲットプレートなどや、化学的あるいは物理的に表面処理がなされたターゲットプレートなど、さまざまなものを使用することができる。また、研磨処理や鏡面仕上げなど、処理プレート表面の表面粗さを所望の程度にする物理的表面処理がなされたものを用いることが好ましい。
[質量分析装置]
 本発明において使用される質量分析装置としては、MALDI(マトリックス支援レーザー脱離イオン化)イオン源が組み合わされたものであれば特に限定されない。例えば、MALDI-TOF(マトリックス支援レーザー脱離イオン化-飛行時間) 型質量分析装置、MALDI-IT(マトリックス支援レーザー脱離イオン化-イオントラップ)型質量分析装置、MALDI-IT-TOF(マトリックス支援レーザー脱離イオン化-イオントラップ-飛行時間)型質量分析装置、MALDI-FTICR(マトリックス支援レーザー脱離イオン化-フーリエ変換イオンサイクロトロン共鳴)型質量分析装置などが挙げられる。
 以下に実施例を示し、本発明を具体的に説明するが、本発明はこれら実施例に制限されるものではない。
3-アミノキノリン(3-AQ)およびp-クマル酸(CA)は、Sigma-Aldrich製を用いた。
ポリスチレンスルホン酸ナトリウムは、Sigma-Aldrich製を用いた。
2,5-ジヒドロキシ安息香酸(2,5-DHB)は、島津GLC製を用いた。
[実施例1:3-AQ/CAを用いたポリスチレンスルホン酸ナトリウムの分析]
(1) 3-アミノキノリン(3-AQ)1μmol/μLを50%(v/v)アセトニトリル(ACN)・2mMリン酸アンモニウム水溶液中に含む3-AQ溶液と、p-クマル酸(CA)0.1μmol/μLを50%(v/v)アセトニトリル(ACN)・2mMリン酸アンモニウム水溶液中に含むCA溶液とを、1:1(v/v)で混合して、各3-AQ/CAマトリックス溶液を作成した。
(2) 測定対象としてポリスチレンスルホン酸ナトリウムの1mg/mLの水溶液を調製し、試料溶液とした。
(3) (1)の3-AQ/CAマトリックス溶液と、(2)のポリスチレンスルホン酸ナトリウム試料溶液を0.5μLずつ、ステンレス製MALDIプレート(島津製作所)上に滴下し、溶媒を揮発させ、マトリックス・試料混合溶液(混合液滴)を得た(on-target mix法)。
(4) AXIMA Confidence(Shimadzu/Kratos, UK)のLinearネガティブ(negative)モ-ドで計測した。
 図1に、3-AQ/CA=1:1(v/v)のマトリックス溶液を用いた場合のポリスチレンスルホン酸ナトリウムのマススペクトルを示す。
 図1より、イオン液体3-AQ/CAを液体マトリックスとして用いると、負に帯電している有機合成化合物ポリスチレンスルホン酸ナトリウムについて、S/N比100以上の良好なマススペクトルが得られた。
[比較例1:2,5-DHBを用いたポリスチレンスルホン酸ナトリウムの分析]
(1) 2,5-ジヒドロキシ安息香酸(2,5-DHB)の20mg/mLの50%(v/v)アセトニトリル(ACN)・0.1%TFA水溶液を調製し、DHBマトリックス溶液とした。
(2) 測定対象としてポリスチレンスルホン酸ナトリウムの1mg/mLの水溶液を調製し、試料溶液とした。
(3) (1)のDHBマトリックス溶液と、(2)のポリスチレンスルホン酸ナトリウム試料溶液を0.5μLずつ、ステンレス製MALDIプレート(島津製作所)上に滴下し混合溶液を得た(on-target mix法)。
(4) AXIMA Confidence(Shimadzu/Kratos, UK)のLinearネガティブ(negative)モ-ドで計測した。
 図2に、2,5-ジヒドロキシ安息香酸(DHB)をマトリックスとして用いた場合のポリスチレンスルホン酸ナトリウムのマススペクトルを示す。図1と比べ、負に帯電している有機合成化合物ポリスチレンスルホン酸ナトリウムについて、S/N比は20以下と劣っていた。
[実施例2:フタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウムの分析]
(1) 3-アミノキノリン(3-AQ)1μmol/μLを50%(v/v)アセトニトリル(ACN)・2mMリン酸アンモニウム水溶液中に含む3-AQ溶液と、p-クマル酸(CA)0.1μmol/μLを50%(v/v)アセトニトリル(ACN)・2mMリン酸アンモニウム水溶液中に含むCA溶液とを、1:1(v/v)で混合して、3-AQ/CAマトリックス溶液を作成した。
(2) p-クマル酸(CA)と1,1,3,3-tetramethylguanidium(TMG)を、メタノ-ル中で1:3(mol/mol)で混合して得られた液体マトリックスG3CAを、100mg/mLで50%(v/v)アセトニトリル(ACN)・2mMリン酸アンモニウム水溶液に溶解して、G3CAマトリックス溶液を作製した。
(3) 測定対象としてフタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウムの1mg/mLの水溶液を調製し、試料溶液とした。
(4) (1)の3-AQ/CAマトリックス溶液、あるいは(2)のG3CAマトリックス溶液と、(3)のフタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウム試料溶液を0.5μLずつ、ステンレス製MALDIプレート(島津製作所)上に滴下し、溶媒を揮発させ、マトリックス・試料混合溶液(混合液滴)を得た(on-target mix法)。
(5)AXIMA Performance(Shimadzu/Kratos, UK)のLinearネガティブ(negative)モードで計測した。
 図3(a)に、3-AQ/CAマトリックス溶液を用いた場合の、図3(b)にG3CAマトリックス溶液を用いた場合の、フタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウムのマススペクトルをそれぞれ示す。
 図3(a)より、液体マトリックス3-AQ/CAを用いると、負に帯電しているフタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウムについて、S/N1000以上で、比較的高感度に、スルホ基(スルホン基、スルホン酸基)の脱離が比較的抑制された分子量関連イオンの良好なマススペクトルが得られた。また、図3(b)より、液体マトリックスG3CAを用いると、負に帯電しているフタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウムは、スルホ基(スルホン基、スルホン酸基)の脱離が比較的抑制された分子量関連イオンとして、マススペクトルが得られた。
[比較例2:フタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウムの分析]
(1) 一般的な固体マトリックスである2,5-ジヒドロキシ安息香酸(2,5-DHB)(LaserBio Labs社製)を、10mg/mLで50%(v/v)アセトニトリル(ACN)水溶液に溶解して、DHBマトリックス溶液を作製した。
(2) 一般的な固体マトリックスであるシナピン酸(SA)(LaserBio Labs社製)を、10mg/mLで50%(v/v)アセトニトリル(ACN)水溶液に溶解して、SAマトリックス溶液を作製した。
(3) 一般的な固体マトリックスであるα-シアノ-4-ヒドロキシケイ皮酸(CHCA)(LaserBio Labs社製)を、10mg/mLで50%(v/v)アセトニトリル(ACN)水溶液に溶解して、CHCAマトリックス溶液を作製した。
(4) 一般的な固体マトリックスである2,4,6-トリヒドロキシアセトフェノン(THAP)(シグマ社製)を、10 mg/mLで50%(v/v)アセトニトリル(ACN)水溶液に溶解して、THAPマトリックス溶液を作製した。
(5) 一般的な固体マトリックスであるノルハルマン(norharmane)(シグマ社製)を、10mg/mLで50%(v/v)アセトニトリル(ACN)水溶液に溶解して、norharmaneマトリックス溶液を作製した。
(6) 測定対象としてフタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウムの1mg/mLの水溶液を調製し、試料溶液とした。
(7) (1)~(5)の各マトリックス溶液と、(6)のフタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウム試料溶液を0.5μLずつ、ステンレス製MALDIプレート(島津製作所)上に滴下し混合溶液を得た(on-target mix法)。
(8) AXIMA Performance(Shimadzu/Kratos, UK)のLinearネガティブ(negative)モードで計測した。
 図3(c)~(g)に、各マトリックス溶液を用いた場合のフタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウムのマススペクトルを示す。
 図3(c)~(g)により、各マトリックス溶液を用いると、負に帯電しているフタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウムの分子量関連イオンのマススペクトルが得られたが、分子量関連イオンピークは、図3(a)の3-AQ/CAマトリックス溶液を用いた場合に比べると、S/Nが低く、スルホ基(スルホン基、スルホン酸基)の脱離されたイオンが比較的高く検出された。また、図3(c)~(g)の各マトリックス溶液を用いた場合は、図3(b)のG3CAマトリックス溶液を用いた場合に比べると、スルホ基(スルホン基、スルホン酸基)の脱離されたイオンが比較的高く検出された。
 図3(a)~(g)の結果から、フタロシアニン-3,4',4'',4'''-四スルホン酸銅(II)四ナトリウムの分子量関連イオンのマススペクトルは、従来の一般的マトリックスに対し、3-AQ/CAマトリックスあるいはG3CAマトリックス溶液を用いた場合に、より良好に得られ、特に3-AQ/CAマトリックスを用いた場合に最も良好に得られることが確認された。
 本発明には、例えば、以下の形態が含まれる。
(1) アミンのイオンと酸性基含有有機物質のイオンとを含むイオン液体を液体マトリックスとして用いる、負に帯電している有機合成化合物の質量分析法。
(2) 前記アミンが、3-アミノキノリン(3AQ)、1,1,3,3-テトラメチルグアニジン(TMG)、n-ブチルアミン(BA)、エチルアミン、N,N-ジエチルアミン(DEA)、N,N-ジエチルアニリン、N,N-ジエチルメチルアミン、ジエチルベンゼンアミン、N,N-ジメチルアミン、トリエチルアミン、トリ-n-ブチルアミン、トリ-n-プロピルアミン、エタノールアミン、ポリエーテルテールドトリエチルアミン、ポリエステルテールドトリエチルアミン、アニリン、2,4-ジニトロアニリン、ピリジン、2-ピリジンプロパノール(2PP)、2-エチルピリジン(2EP)、2-アミノ-4-メチル-5-ニトロピリジン、3-アミノキノリン(3-AQ)、3-ヒドロキシピリジン、1-メチルイミダゾール、1-ブチル-3-メチルイミダゾール、1-(1-ヒドロキシプロピル)-3-メチルイミダゾール、1,3-ジメチルイミダゾール、1,5-ジアミノナフタレン、6-アザ-2-チオチミン、及びカルボリン類からなる群から選ばれる、上記(1)に記載の質量分析法。
(3) 前記酸性基含有有機物質が、p-クマル酸(p-CA)、α-シアノ-4-ヒドロキシケイ皮酸(4-CHCA)、α-シアノ-3-ヒドロキシケイ皮酸、2,5-ジヒドロキシ安息香酸(DHB)、4-ヒドロキシ安息香酸、p-ヒドロキシ安息香酸、p-ヒドロキシフェニルピルビン酸、3-ヒドロキシピコリン酸、3,5-ジメトキシ-4-ヒドロキシケイ皮酸(シナピン酸)、4-ヒドロキシ-3-メトキシケイ皮酸(フェルラ酸)、カフェイン酸(3,4-ジヒドロキシケイ皮酸)、5-メトキシサリチル酸、2-(4-ヒドロキシフェニルアゾ)安息香酸(HABA)、ニコチン酸、ピコリン酸、3-アミノピコリン酸、3-ヒドロキシピコリン酸、2-アミノ安息香酸、3-アミノ-4-ヒドロキシ安息香酸、2,4,6-トリヒドロキシアセトフェノン(THAP)、1,4-ジヒドロ-2-ナフトエ酸、3-インドールアクリル酸、インドール-2-カルボン酸、及びチオグリコール酸からなる群から選ばれる、上記(1)又は(2)に記載の質量分析法。
(4) 前記アミンが3-アミノキノリン(3-AQ)であり、前記酸性基含有有機物質がp-クマル酸(p-CA)である、上記(1)~(3)のいずれかに記載の質量分析法。
(5) 前記液体マトリックスは、前記アミンと前記酸性基含有有機物質とを1:5~20:1のモル比で含む、上記(1)~(4)のいずれかに記載の質量分析法。
(6) 解析すべき前記負に帯電している有機合成化合物は、有機合成高分子化合物である、上記(1)~(5)のいずれかに記載の質量分析法。
(7) 解析すべき前記負に帯電している有機合成化合物は、錯体化合物である、上記(1)~(5)のいずれかに記載の質量分析法。
(8) アミンのイオンと酸性基含有有機物質のイオンとを含むイオン液体からなる、負に帯電している有機合成化合物のMALDI質量分析用液体マトリックス。
(9) 前記アミンが、3-アミノキノリン(3AQ)、1,1,3,3-テトラメチルグアニジン(TMG)、n-ブチルアミン(BA)、エチルアミン、N,N-ジエチルアミン(DEA)、N,N-ジエチルアニリン、N,N-ジエチルメチルアミン、ジエチルベンゼンアミン、N,N-ジメチルアミン、トリエチルアミン、トリ-n-ブチルアミン、トリ-n-プロピルアミン、エタノールアミン、ポリエーテルテールドトリエチルアミン、ポリエステルテールドトリエチルアミン、アニリン、2,4-ジニトロアニリン、ピリジン、2-ピリジンプロパノール(2PP)、2-エチルピリジン(2EP)、2-アミノ-4-メチル-5-ニトロピリジン、3-アミノキノリン(3-AQ)、3-ヒドロキシピリジン、1-メチルイミダゾール、1-ブチル-3-メチルイミダゾール、1-(1-ヒドロキシプロピル)-3-メチルイミダゾール、1,3-ジメチルイミダゾール、1,5-ジアミノナフタレン、6-アザ-2-チオチミン、及びカルボリン類からなる群から選ばれる、上記(8)に記載の液体マトリックス。
(10) 前記酸性基含有有機物質が、p-クマル酸(p-CA)、α-シアノ-4-ヒドロキシケイ皮酸(4-CHCA)、α-シアノ-3-ヒドロキシケイ皮酸、2,5-ジヒドロキシ安息香酸(DHB)、4-ヒドロキシ安息香酸、p-ヒドロキシ安息香酸、p-ヒドロキシフェニルピルビン酸、3-ヒドロキシピコリン酸、3,5-ジメトキシ-4-ヒドロキシケイ皮酸(シナピン酸)、4-ヒドロキシ-3-メトキシケイ皮酸(フェルラ酸)、カフェイン酸(3,4-ジヒドロキシケイ皮酸)、5-メトキシサリチル酸、2-(4-ヒドロキシフェニルアゾ)安息香酸(HABA)、ニコチン酸、ピコリン酸、3-アミノピコリン酸、3-ヒドロキシピコリン酸、2-アミノ安息香酸、3-アミノ-4-ヒドロキシ安息香酸、2,4,6-トリヒドロキシアセトフェノン(THAP)、1,4-ジヒドロ-2-ナフトエ酸、3-インドールアクリル酸、インドール-2-カルボン酸、及びチオグリコール酸からなる群から選ばれる、上記(8)又は(9)に記載の液体マトリックス。
(11) 前記アミンが3-アミノキノリン(3-AQ)、であり、前記酸性基含有有機物質がp-クマル酸(p-CA)である、上記(8)~(10)のいずれかに記載の液体マトリックス。
(12) 前記液体マトリックスは、前記アミンと前記酸性基含有有機物質とを1:5~20:1のモル比で含む、上記(8)~(11)のいずれかに記載の液体マトリックス。

Claims (7)

  1.  アミンのイオンと酸性基含有有機物質のイオンとを含むイオン液体を液体マトリックスとして用いる、負に帯電している有機合成化合物の質量分析法。
  2.  前記アミンが、3-アミノキノリン(3AQ)、1,1,3,3-テトラメチルグアニジン(TMG)、n-ブチルアミン(BA)、エチルアミン、N,N-ジエチルアミン(DEA)、N,N-ジエチルアニリン、N,N-ジエチルメチルアミン、ジエチルベンゼンアミン、N,N-ジメチルアミン、トリエチルアミン、トリ-n-ブチルアミン、トリ-n-プロピルアミン、エタノールアミン、ポリエーテルテールドトリエチルアミン、ポリエステルテールドトリエチルアミン、アニリン、2,4-ジニトロアニリン、ピリジン、2-ピリジンプロパノール(2PP)、2-エチルピリジン(2EP)、2-アミノ-4-メチル-5-ニトロピリジン、3-アミノキノリン(3-AQ)、3-ヒドロキシピリジン、1-メチルイミダゾール、1-ブチル-3-メチルイミダゾール、1-(1-ヒドロキシプロピル)-3-メチルイミダゾール、1,3-ジメチルイミダゾール、1,5-ジアミノナフタレン、6-アザ-2-チオチミン、及びカルボリン類からなる群から選ばれる、請求項1に記載の質量分析法。
  3.  前記酸性基含有有機物質が、p-クマル酸(p-CA)、α-シアノ-4-ヒドロキシケイ皮酸(4-CHCA)、α-シアノ-3-ヒドロキシケイ皮酸、2,5-ジヒドロキシ安息香酸(DHB)、4-ヒドロキシ安息香酸、p-ヒドロキシ安息香酸、p-ヒドロキシフェニルピルビン酸、3-ヒドロキシピコリン酸、3,5-ジメトキシ-4-ヒドロキシケイ皮酸(シナピン酸)、4-ヒドロキシ-3-メトキシケイ皮酸(フェルラ酸)、カフェイン酸(3,4-ジヒドロキシケイ皮酸)、5-メトキシサリチル酸、2-(4-ヒドロキシフェニルアゾ)安息香酸(HABA)、ニコチン酸、ピコリン酸、3-アミノピコリン酸、3-ヒドロキシピコリン酸、2-アミノ安息香酸、3-アミノ-4-ヒドロキシ安息香酸、2,4,6-トリヒドロキシアセトフェノン(THAP)、1,4-ジヒドロ-2-ナフトエ酸、3-インドールアクリル酸、インドール-2-カルボン酸、及びチオグリコール酸からなる群から選ばれる、請求項1に記載の質量分析法。
  4.  前記アミンが3-アミノキノリン(3-AQ)であり、前記酸性基含有有機物質がp-クマル酸(p-CA)である、請求項1に記載の質量分析法。
  5.  前記液体マトリックスは、前記アミンと前記酸性基含有有機物質とを1:5~20:1のモル比で含む、請求項1に記載の質量分析法。
  6.  解析すべき前記負に帯電している有機合成化合物は、有機合成高分子化合物である、請求項1に記載の質量分析法。
  7.  解析すべき前記負に帯電している有機合成化合物は、錯体化合物である、請求項1に記載の質量分析法。
PCT/JP2021/034727 2021-02-10 2021-09-22 有機合成化合物の質量分析法 WO2022172500A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180092132.XA CN116917726A (zh) 2021-02-10 2021-09-22 有机合成化合物的质谱分析法
EP21925748.2A EP4293350A1 (en) 2021-02-10 2021-09-22 Method for mass spectrometry of organic synthetic compound
US18/271,386 US20240096612A1 (en) 2021-02-10 2021-09-22 Method for mass spectrometry of organic synthetic compound
JP2022581172A JP7487802B2 (ja) 2021-02-10 2021-09-22 有機合成化合物の質量分析法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-019934 2021-02-10
JP2021019934 2021-02-10

Publications (1)

Publication Number Publication Date
WO2022172500A1 true WO2022172500A1 (ja) 2022-08-18

Family

ID=82837664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034727 WO2022172500A1 (ja) 2021-02-10 2021-09-22 有機合成化合物の質量分析法

Country Status (5)

Country Link
US (1) US20240096612A1 (ja)
EP (1) EP4293350A1 (ja)
JP (1) JP7487802B2 (ja)
CN (1) CN116917726A (ja)
WO (1) WO2022172500A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261824A (ja) 2007-04-13 2008-10-30 Shimadzu Corp Maldi質量分析用液体マトリックス
JP2010537206A (ja) * 2007-08-27 2010-12-02 ヨハン ヴォルフガング ゲーテ−ウニヴェルジテート フランクフルト アム マイン Maldi質量分析におけるマトリックスとしてのシアノ桂皮酸誘導体の使用
US20120138789A1 (en) * 2010-12-02 2012-06-07 Los Alamos National Security, Llc Phosphonium-Based Ionic Liquids and Uses
US20120202709A1 (en) * 2011-02-09 2012-08-09 Adeptrix Corp. Devices and Methods for Producing and Analyzing Microarrays
JP2015052575A (ja) * 2013-09-09 2015-03-19 株式会社島津製作所 リン酸化ペプチド及び糖鎖の質量分析法
US20190326108A1 (en) * 2016-11-17 2019-10-24 Micromass Uk Limited Axial atmospheric pressure photo-ionization imaging source and inlet device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261824A (ja) 2007-04-13 2008-10-30 Shimadzu Corp Maldi質量分析用液体マトリックス
JP2010537206A (ja) * 2007-08-27 2010-12-02 ヨハン ヴォルフガング ゲーテ−ウニヴェルジテート フランクフルト アム マイン Maldi質量分析におけるマトリックスとしてのシアノ桂皮酸誘導体の使用
US20120138789A1 (en) * 2010-12-02 2012-06-07 Los Alamos National Security, Llc Phosphonium-Based Ionic Liquids and Uses
US20120202709A1 (en) * 2011-02-09 2012-08-09 Adeptrix Corp. Devices and Methods for Producing and Analyzing Microarrays
JP2015052575A (ja) * 2013-09-09 2015-03-19 株式会社島津製作所 リン酸化ペプチド及び糖鎖の質量分析法
US20190326108A1 (en) * 2016-11-17 2019-10-24 Micromass Uk Limited Axial atmospheric pressure photo-ionization imaging source and inlet device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANAL. CHEM., vol. 80, 2008, pages 2171 - 2179
MACROMOLECULES, vol. 28, 1995, pages 8548 - 8551
RAPID COMMUN. MASS SPECTROM., vol. 25, 2011, pages 1152 - 1158

Also Published As

Publication number Publication date
JP7487802B2 (ja) 2024-05-21
US20240096612A1 (en) 2024-03-21
JPWO2022172500A1 (ja) 2022-08-18
CN116917726A (zh) 2023-10-20
EP4293350A1 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
Hillenkamp et al. MALDI MS: a practical guide to instrumentation, methods and applications
Dreisewerd Recent methodological advances in MALDI mass spectrometry
Koestler et al. A high‐resolution scanning microprobe matrix‐assisted laser desorption/ionization ion source for imaging analysis on an ion trap/Fourier transform ion cyclotron resonance mass spectrometer
US6744040B2 (en) Means and method for a quadrupole surface induced dissociation quadrupole time-of-flight mass spectrometer
Lou et al. Generation of CsI cluster ions for mass calibration in matrix-assisted laser desorption/ionization mass spectrometry
CA2498878C (en) Method for increasing ionization efficiency in mass spectroscopy
Dogruel et al. The effects of matrix pH and cation availability on the matrix‐assisted laser desorption/ionization mass spectrometry of poly (methyl methacrylate)
Zhang et al. Matrix‐dependent cationization in MALDI mass spectrometry
Zhu et al. The effect of ammonium salt and matrix in the detection of DNA by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry
US9349578B2 (en) Quantitative analysis method using mass spectrometry wherein laser pulse energy is adjusted
Stevenson et al. Internal energies of analyte ions generated from different matrix‐assisted laser desorption/ionization matrices
Mirza et al. Estimation of the proton affinity values of fifteen matrix-assisted laser desorption/ionization matrices under electrospray ionization conditions using the kinetic method
US20140027631A1 (en) Systems and Methods Extending the Laserspray Ionization Mass Spectrometry Concept from Atmospheric Pressure to Vacuum
Batoy et al. Developments in MALDI mass spectrometry: the quest for the perfect matrix
Macha et al. Application of nonpolar matrices for the analysis of low molecular weight nonpolar synthetic polymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
US11137398B2 (en) Method for analyzing microorganisms
WO2022172500A1 (ja) 有機合成化合物の質量分析法
US9552972B2 (en) Method for ion production
Weidner et al. Infrared‐matrix‐assisted laser desorption/ionization and infrared‐laser desorption/ionization investigations of synthetic polymers
US8110795B2 (en) Laser system for MALDI mass spectrometry
Knochenmuss MALDI ionization mechanisms: an overview
Kim et al. First application of thermal vapor deposition method to matrix‐assisted laser desorption ionization mass spectrometry: determination of molecular mass of bis (p‐methyl benzylidene) sorbitol
Dimzon et al. MALDI–TOF MS for characterization of synthetic polymers in aqueous environment
Kononikhin et al. Multiply charged ions in matrix-assisted laser desorption/ionization generated from electrosprayed sample layers
GB2468394A (en) Pulsed laser system for MALDI mass spectrometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581172

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18271386

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180092132.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021925748

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021925748

Country of ref document: EP

Effective date: 20230911