WO2022172463A1 - Slave device, method for controlling same, and communication abnormality location detection system - Google Patents

Slave device, method for controlling same, and communication abnormality location detection system Download PDF

Info

Publication number
WO2022172463A1
WO2022172463A1 PCT/JP2021/007843 JP2021007843W WO2022172463A1 WO 2022172463 A1 WO2022172463 A1 WO 2022172463A1 JP 2021007843 W JP2021007843 W JP 2021007843W WO 2022172463 A1 WO2022172463 A1 WO 2022172463A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
master device
slave
slave device
unit
Prior art date
Application number
PCT/JP2021/007843
Other languages
French (fr)
Japanese (ja)
Inventor
孝史 武田
竜一 手嶌
一樹 久米
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2022172463A1 publication Critical patent/WO2022172463A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a slave device, its control method, and a communication error detection system.
  • FA Factory Automation
  • various types of devices are controlled that share work processes.
  • an industrial network system also called a field network, is constructed to connect these equipment. ing.
  • a typical industrial network system uses a master-slave network consisting of various slave devices and master devices.
  • a slave device is a device that controls equipment installed in a factory or collects data.
  • the master device is a device called (PLC: Programmable Logic Controller) that centrally manages these slaves.
  • PLC Programmable Logic Controller
  • EtherCAT registered trademark
  • Ethernet/IP is an example of such an industrial network system scheme (ETHERNET: registered trademark).
  • communication cables are stretched between devices to construct a network.
  • Patent Document 1 discloses an acquisition unit that acquires data transmitted and received in a wireless section between a relay device and a terminal device, a storage unit that stores the data, and communication between the relay device and the terminal device.
  • a wireless communication device comprising: a transmission unit that transmits the data stored in the storage unit to a server when a failure occurs.
  • operation states of a communication system formed by a master device that manages communication on a network and at least one slave device that is connected to the network and can communicate according to instructions from the master device are collected.
  • An information processing device wherein the master device and the slave device record a communication log regarding time information and a communication state according to communication processing, and the information processing device receives the communication from at least one of the master device and the slave device.
  • An acquisition unit that acquires a log, a log editing unit that edits the communication log acquired based on the time information, and a communication state in the communication log edited by the log editing unit that indicates that an abnormality has occurred in communication.
  • An information processing apparatus is disclosed that includes a log extraction unit that extracts a communication log within a predetermined period of time from the occurrence of a communication log having communication abnormality information.
  • Patent Document 3 discloses a management device that manages a network including a master device and a slave device connected to the master device, in which network a network configuration diagram display unit that displays a configuration diagram; a state information acquisition unit that acquires state information regarding the state of the slave device; and based on the state information, the state corresponds to the slave device on the network configuration diagram. and a status display section attached to display.
  • the present invention has been made to solve the above problems, and its purpose is to easily identify the location of a communication abnormality.
  • a slave device is one of a plurality of slave devices linked to a master device and serially connected to each other, comprising: a receiving unit that receives a communication frame that is periodically transmitted from a master device and returns to the master device after circulating through the plurality of slave devices; and a case where communication times out without the receiving unit receiving the communication frame. a recording unit for recording reception result information indicating that the communication frame has not been received; and a transmission unit for transmitting the reception result information to the master device.
  • FIG. 1 is a schematic configuration diagram showing an industrial network in a production factory or the like, to which a communication abnormality location identification system according to this application example is applied;
  • FIG. 3 is a block diagram showing the configuration of a master device;
  • FIG. It is a figure which shows the structure of a slave device.
  • FIG. 2 is a diagram showing transmission paths of communication frames in an industrial network system;
  • 4 is a flow chart showing the flow of a series of processes executed by the master device;
  • 4 is a diagram for explaining the flow of processing in a slave device AC;
  • FIG. FIG. 4 is a diagram showing transmission paths of communication frames for each communication cycle;
  • FIG. 4 is a diagram showing an example of a list of communication quality values and reception result information of slave devices collected by the master device;
  • FIG. 1 is a schematic configuration diagram showing an industrial network system 1 in a production factory or the like, to which a communication abnormality point identification system according to this application example is applied.
  • the industrial network system 1 includes a master device 20 and multiple slave devices 40 .
  • Each slave device 40 is controlled by the master device 20 through the industrial network system 1 and constructs various required processes in a production factory or the like.
  • the slave device 40 is provided with a communication unit (not shown in FIG. 1) and connected to another device via a cable 300 .
  • Each slave device 40 is one of the slave devices 40A-40C linked to the master device 20 and serially connected to each other.
  • the slave device 40 receives communication frames that are periodically transmitted from the master device 20 and return to the master device 20 through the slave devices 40A to 40C.
  • Each slave device 40 records reception result information indicating that the communication frame was not received when the communication timed out without receiving the communication frame.
  • Each slave device 40 further transmits reception result information to the master device 20 .
  • the master device 20 can easily identify the location (slave device 40 ) where the communication error occurred in the industrial network system 1 by analyzing the received reception result information.
  • the industrial network system 1 includes a master device 20 and multiple slave devices 40 .
  • EtherCAT registered trademark
  • Ethernet/IP is applied to the industrial network system 1 (ETHERNET: registered trademark, Ethernet: registered trademark).
  • a programmable logic controller can be applied to the master device 20 .
  • Slave devices 40 managed or controlled by master device 20 are linked to master device 20 via hub 30 .
  • the hub 30 is a communication device that branches a communication path from the master device 20 side (upstream side).
  • the master device 20, hub 30, and slave device 40 are connected by a communication cable 300 generally called a LAN cable (Local Area Network Cable). As illustrated, the cable 300 is connected not only on the master side but also on the opposite side (downstream side) of the slave device 40 to link to other slave devices (other devices).
  • LAN cable Local Area Network Cable
  • a plurality of slave devices 40 are connected by a daisy chain method.
  • the slave devices 40A-40C are connected in series with each other.
  • FIG. 1 shows an example in which three slave devices 40 are daisy-chained.
  • these slave devices 40 are described as slave device 40A, slave device 40B, and slave device 40C to distinguish them from each other.
  • the slave device 40A is positioned furthest upstream, the slave device 40B is positioned in the middle, and the slave device 40C is positioned furthest downstream.
  • Slave device 40A is connected to master device 20 via hub 30 .
  • Slave device 40B is connected to both slave devices 40A and 40 .
  • Slave device 40C is connected to slave device 40B.
  • slave device 40A is directly linked to master device 20
  • slave device 40B is indirectly linked to master device 20 via slave device 40A
  • slave device 40C is linked to master device via slave devices 40A and 40B. 20 indirectly linked.
  • the master device 20 may be linked to the server 10, which is an upper information processing system.
  • a communication network method such as Ethernet (registered trademark) or Ethernet/IP can be applied.
  • the display device 11 may similarly be linked to the master device 20 .
  • the display device 11 may further include input means such as a touch panel, and may be capable of inputting instructions to the master device 20 .
  • the master device 20 may be linked to a control computer 50, also called a tool.
  • a control computer 50 also called a tool.
  • another method such as a USB (Universal Serial Bus) connection may be used.
  • a control computer 51 also called a tool, may be connected to the hub 30 by a cable 300 .
  • FIG. 2 is a block diagram showing the configuration of the master device 20.
  • the master device 20 includes a control section 21 , a communication section 22 (transmitting section), a specifying section 23 and a display section 24 .
  • the control unit 21 comprehensively controls various processes in the master device 20 .
  • the communication unit 22 communicates with each slave device 40 .
  • the identification unit 23 identifies the slave device 40 in which the communication abnormality has occurred.
  • the display unit 24 displays various information on the display device 11 .
  • FIG. 3 is a diagram showing the configuration of the slave device 40. As shown in FIG. Of the three slave devices 40, only slave device 40A and slave device 40B are shown in this figure.
  • the slave device 40 includes a control section 41, a communication section 42 (receiving section, transmitting section), and a communication quality monitoring section 43 (monitoring section, recording section). Slave device 40 further comprises a non-volatile memory (not shown).
  • the control unit 41 comprehensively controls the processing in the slave device 40 .
  • the communication unit 42 communicates with other devices connected to the slave device 40 . As shown in FIG. 3, the communication unit 42 of the slave device 40A and the communication unit 42 of the slave device 40B can communicate with each other.
  • the communication unit 42 of the slave device 40A transmits signals to the slave device 40B, and conversely receives signals transmitted from the communication unit 42 of the slave device 40B.
  • the communication unit 42 of the slave device 40B transmits signals to the slave device 40A and conversely receives signals transmitted from the slave device 40A.
  • the communication unit 42 of the slave device 40B receives signals from the slave device 40C and receives signals transmitted from the communication unit 42 of the slave device 40C. Also, the communication unit 42 of the slave device 40A receives signals transmitted from the communication unit 22 of the master device 20 and transmits signals to the master device 20 . Also, the communication unit 42 of the slave device 40C receives signals transmitted from the slave device 40B and transmits signals to the slave device 40B. Since the slave device 40C is a re-downstream device, the communication unit 42 of the slave device 40C does not transmit signals to other devices located downstream of the slave device 40C.
  • FIG. 4 is a diagram showing transmission paths of communication frames in the industrial network system 1.
  • the slave devices 40A-40C control the input and output of information in their own devices. This control is hereinafter referred to as I/O control.
  • I/O control in each of the slave devices 40A-40C is centrally controlled by the master device 20.
  • the master device 20 periodically transmits communication frames for controlling the I/O control of each slave device 40A-40C to each slave device 40A-40C.
  • This communication frame is a kind of control signal flowing through the industrial network system 1 .
  • a communication frame transmitted from the master device 20 circulates through a plurality of slave devices 40 and returns to the master device 20 .
  • a communication frame is first transmitted from the master device 20 to the slave device 40A, and then reaches the slave device 40C via the slave device 40B, as shown in FIG.
  • Slave device 40C sends back the received communication frame to master device 20 . That is, a communication frame is transmitted from slave device 40C to slave device 40B and then reaches master device 20 via slave devices 40B and 40A in sequence.
  • the communication frames periodically transmitted from the master device 20 move in a single stroke within the communication path, and finally return to the master device 20 .
  • the communication frame goes around the communication path starting from the master device 20 and returning to the master device 20 by looping back at the slave device 40C.
  • a communication frame when moving from the master device 20, which is the transmission starting point, toward the most downstream slave device 40C will be referred to as an outgoing communication frame.
  • a communication frame when moving from the slave device 40C to the master device 20 is called a return communication frame.
  • the slave devices 40A-40C have two different communication ports 61 and 52.
  • the communication port 61 is a communication port for the slave devices 40A to 40C to receive outgoing communication frames.
  • a communication port 62 is a communication port for the slave devices 40A to 40C to receive return communication frames.
  • Slave devices 40A and 40B use both communication ports 61 and 52 to receive both outgoing and return communication frames.
  • the slave device 40C uses the communication port 61 to receive outgoing communication frames. That is, slave device 40C does not use communication port 62 and therefore does not receive return communication frames. This is because no other slave device 40 is connected downstream of the slave device 40C.
  • the slave devices 40A to 40C periodically monitor the communication quality value at the communication port used by the device itself to receive communication frames.
  • the communication quality value is a value that indicates the quality of communication in the slave devices 40A-40C.
  • the communication quality value is, for example, an SQI value (Signal Quality Indicator).
  • the communication quality value may be the S/N ratio.
  • the communication quality monitor unit 43 monitors communication quality values.
  • the communication quality monitor unit 43 records the monitored communication quality value in the nonvolatile memory.
  • the communication quality monitor unit 43 records the monitored communication quality value in the non-volatile memory in association with time information indicating the time of monitoring. In this manner, the communication quality monitor unit 43 continuously records the monitor log of the communication quality value in the nonvolatile memory.
  • the communication quality monitor unit 43 monitors any value from 0 to 10, for example, as a communication quality value.
  • "0" represents the lowest communication quality
  • "10" represents the highest communication quality.
  • these values are merely examples of values that can be used as communication quality values.
  • the communication quality monitor unit 43 monitors the communication quality value at the communication port used by the slave device 40 to receive communication frames.
  • the communication quality monitor unit 43 of the slave device 40A monitors the communication quality value at the communication port 61 and the communication quality value at the communication port 62 .
  • the communication quality monitor unit 43 of the slave device 40B also monitors the communication quality value at the communication port 61 and the communication quality value at the communication port 62 .
  • the communication quality monitor unit 43 of the slave device 40C monitors the communication quality value at the communication port 61, but does not monitor the communication quality value at the communication port 62.
  • FIG. In this way, there are a total of five locations where communication quality values are monitored in the industrial network system 1 .
  • FIG. 5 is a flow chart showing a series of processes executed by the master device 20 .
  • the control unit 21 of the master device 20 controls the communication unit 22 so as to transmit a communication frame for I/O control in the slave devices 40A to 40C each time a certain communication cycle time elapses. Based on this control, the communication unit 22 waits until the communication cycle time elapses (S1). When the communication cycle time elapses, the communication unit 22 transmits communication frames to the slave devices 40A to 40C (S2). Each time the communication unit 22 transmits a communication frame, the communication unit 22 acquires time information representing the time when the communication frame was transmitted.
  • the communication unit 22 further associates the acquired time information with the number of the communication cycle in which the communication frame was transmitted (hereinafter referred to as the communication cycle number), and stores them in a predetermined correspondence table.
  • the communication cycle number When the communication frame is transmitted in the n-th communication cycle (n is an integer equal to or greater than 1), the communication unit 42 associates the communication cycle number “n” with time information representing the time when the communication frame was transmitted, and creates a correspondence table. store in For example, when the communication frame is transmitted in the first communication cycle, the communication unit 42 associates the communication cycle number “1” with time information representing the time when the communication frame was transmitted, and stores the time information in the correspondence table.
  • the communication unit 22 determines whether or not it has received the communication frame returned from the slave device 40C (S3). When determining that the communication frame has been received (YES in S3), the communication unit 22 returns to step S1 and waits until the next communication cycle time elapses. In this manner, the communication unit 22 continues to periodically transmit communication frames to the slave devices 40A to 40C at regular communication cycle time intervals.
  • the communication unit 22 determines that it has not received a communication frame from the slave device 40 (NO in S3), it transmits a message to the slave devices 40A to 40C (S4).
  • This message is a message requesting that each of the slave devices 40A to 40C provide the master device 20 with the communication frame reception result and the communication quality value.
  • the communication unit 22 immediately transmits a message when it determines that it does not receive a communication frame for I/O control.
  • the communication unit 22 waits for the recovery of the communication abnormality in the slave devices 40A to 40C, and sends the message after a certain period of time. Send.
  • FIG. 6 is a diagram explaining the flow of processing in the slave devices 40A-40C.
  • the control unit 41 controls the communication unit 42 so as to wait for a certain period of time until receiving the forward communication frame and the return communication frame.
  • the communication unit 42 starts a communication frame reception standby timer (S11). After starting the timer, the communication unit 42 determines whether or not a forward communication frame has been received (S12). When determining that the outgoing communication frame has been received (YES in S12), the communication unit 42 acquires the communication quality value at the time of receiving the outgoing communication frame from the communication quality value monitor log (S13).
  • the communication unit 42 further generates reception result information indicating that the outgoing communication frame has been received, and time information indicating the time at which the outgoing communication frame was received.
  • the communication unit 42 records the reception result information indicating that the outgoing communication frame has been received and the acquired communication quality value in the non-volatile memory in association with the generated time information (S14). After that, the process proceeds to step S19.
  • the communication unit 42 determines whether the forward communication frame is not received (NO in S12), it determines whether the communication has timed out (S15). The communication unit 42 determines that the communication has timed out when the timer expires without receiving the outgoing communication frame. On the other hand, if the timer has not expired, it is determined that the communication has not timed out. When the communication unit 42 determines that the communication has not timed out (NO in S15), the communication unit 42 returns to the process of step S2 and again determines whether or not the outgoing communication frame has been received.
  • the communication unit 42 determines that the communication has timed out (YES in S15), it acquires the communication quality value at the estimated reception time of the outgoing communication frame from the communication quality value monitor log (S16).
  • the "estimated reception time of the forward communication frame” here means the time at which the forward communication frame would have been normally received if there was no time-out. This time can be obtained from the reception time interval when each forward frame was received in the past and the time at which the forward communication frame was received last time. For example, the communication unit 42 may determine the point of time obtained by adding the reception time interval to the time when the forward communication frame was received last time as the "estimated reception point of the forward communication frame".
  • the communication quality monitor unit 43 monitors the communication quality value at regular time intervals regardless of whether or not an outgoing communication frame is received, and associates the monitored communication quality value with time information representing the time at the time of monitoring to perform communication. It is recorded in non-volatile memory as a quality value monitor log. Therefore, the communication unit 42 generates time information representing the estimated reception time of the outgoing communication frame, and uses the communication quality value stored in the communication quality value monitor log in association with this time information as the outgoing communication frame. Acquired as the communication quality value at the estimated reception time of the communication frame.
  • the communication unit 42 further generates reception result information indicating that the outgoing communication frame was not received, and time information indicating the time when the communication timed out.
  • the communication unit 42 records the reception result information indicating that the outgoing communication frame has been received and the acquired communication quality value in the non-volatile memory in association with the generated time information (S17).
  • the communication unit 42 acquires each communication quality value at each time from the time when the communication timed out until a certain time ago from the monitor log of the communication quality value (S18).
  • the communication unit 42 records each acquired communication quality value in the non-volatile memory in association with the time information representing the estimated reception time of the outgoing communication frame (S19). After that, the process proceeds to step S20.
  • the communication unit 42 determines whether or not a return communication frame has been received (S20). When determining that the return communication frame has been received (YES in S20), the communication unit 42 acquires the communication quality value at the time of receiving the return communication frame from the nonvolatile memory (S21). The communication unit 42 further generates reception result information indicating that the return communication frame has been received, and time information indicating the time at which the return communication frame was received. The communication unit 42 records the reception result information indicating that the return communication frame has been received and the acquired communication quality value in the non-volatile memory in association with the generated time information (S22). Master device 20 then executes a predetermined I/O control based on the received communication frame (S23). The communication unit 42 then returns to the process of step S1 and restarts the timer. This prepares for reception of the next communication frame.
  • the communication unit 42 determines whether the return communication frame is not received (NO in S20), it determines whether the communication has timed out (S24). If the timer expires without receiving a return communication frame, the communication unit 42 determines that the communication has timed out. On the other hand, if the timer has not expired, it is determined that the communication has not timed out. When determining that the communication has not timed out (NO in S24), the communication unit 42 returns to the process of step S20 and determines again whether or not a return communication frame has been received. If the communication unit 42 has not received the outgoing communication frame, the timer has already expired, so the determination result in step S24 is always false (NO).
  • the communication unit 42 determines that the communication has timed out (YES in S24), it acquires the communication quality value at the time of estimated reception of the return communication frame from the nonvolatile memory (S25). Since the method of obtaining the estimated reception time of the return communication frame is the same as the method of obtaining the estimated reception time of the forward communication frame described above, detailed description thereof will be omitted.
  • the communication unit 42 further generates reception result information indicating that the return communication frame was not received, and time information indicating the time when the communication timed out.
  • the communication unit 42 records the reception result information indicating that the return communication frame has been received and the acquired communication quality value in the non-volatile memory in association with the generated time information (S26).
  • the communication unit 42 acquires from the nonvolatile memory each communication quality value at each time from when the communication timed out until a certain time ago (S27).
  • the communication unit 42 further associates each acquired communication quality value with the time information and records it in the non-volatile memory (S28).
  • the communication unit 42 then returns to the process of step S1 and restarts the timer. This prepares for reception of the next communication frame.
  • the slave devices 40A and 40B may receive both outgoing communication frames and return communication frames, they operate according to the processing flow shown in FIG.
  • the slave device 40C since the slave device 40C has no possibility of receiving a return communication frame, it operates according to only part of the processing flow shown in FIG. That is, the slave device 40C does not execute each process related to the return communication frame in the process flow shown in FIG. Therefore, the slave device 40C does not record the reception result information and the communication quality value corresponding to the return communication frame in association with the time information.
  • FIG. 7 is a diagram showing transmission paths of communication frames for each communication cycle.
  • the master device 20 transmits a communication frame six times in total for each communication cycle time.
  • the communication frame reaches the slave device 40C and returns to the master device 20 normally. That is, all of the slave devices 40A to 40C can normally receive and transmit communication frames.
  • the communication frame has not reached the slave device 40C and therefore has not been sent back to the master device 20.
  • the slave device 40C cannot normally receive the outgoing communication frame. Therefore, the slave devices 40A and 40B have received the outgoing communication frame, but have not received the return communication frame.
  • the communication frame reaches the slave device 40C and returns to the master device 20 normally. That is, the communication abnormality in the slave device 40C is recovered between the fifth communication cycle and the sixth communication cycle.
  • FIG. 8 is a diagram showing an example of a list of communication quality values and reception result information of the slave devices 40A to 40C collected by the master device 20.
  • FIG. The example in this figure is a list generated when the slave device 40C does not receive a communication frame in the third to fifth communication cycles as shown in FIG.
  • the communication unit 22 of the master device 20 determines not to receive the communication frame returned from the slave device 40, it transmits a message to the slave devices 40A to 40C (S4).
  • the message is transmitted when the communication frame is not received three times in succession. Therefore, in the examples of FIGS. 7 and 8, the communication unit 42 will transmit the message if it does not receive the third, fourth, and fifth communication frames in succession.
  • the transmission path of the message is the same as the destination in the transmission path of the communication frame. That is, master device 20 transmits a message to slave device 40A.
  • the communication unit 42 of the slave device 40A receives the message transmitted from the master device 20 and further transmits the message to the slave device 40B.
  • the communication unit 42 of the slave device 40B receives the message transmitted from the slave device 40A and transmits it to the slave device 40C.
  • the communication unit 42 of the slave device 40C receives the message transmitted from the slave device 40B.
  • Slave device 40C does not transmit received messages to other devices. That is, the slave device 40C is the point of arrival of the message.
  • the slave devices 40A to 40C When the slave devices 40A to 40C receive the message, they transmit to the master device 20 the communication frame reception result information, the communication quality value, and the time information in each communication cycle.
  • the reception result information, communication quality value, and time information for the latest three consecutive communication frames are sent.
  • the communication unit 22 of the master device 20 receives the communication frame reception result information, the communication quality value, and the time information in each communication cycle from the slave devices 40A to 40C (S5).
  • the specifying unit 23 of the master device 20 sorts the received reception status information based on the time information associated with the received reception status information (S6). For example, sorting is performed so that reception result information with older time information is arranged at the beginning. Similarly, each received communication quality value is sorted based on the time information associated with each received reception/non-reception information.
  • the specifying unit 23 further refers to a correspondence table between time information and communication cycle numbers, and converts the time information associated with each piece of reception result information into a communication cycle number. For example, the correspondence table is searched for time information closest to the time information associated with certain reception result information, and the communication cycle number stored in the correspondence table in association with the found time information is acquired. Then, the time information associated with certain reception result information is converted into the acquired communication cycle number. Thereby, the identifying unit 23 can accurately identify the communication cycle number of the communication frame corresponding to each piece of reception result information.
  • the identifying unit 23 generates a table as shown in FIG. 8 as a result of executing these processes.
  • the table in FIG. 8 stores forward communication frame reception result information and communication quality values in the slave devices 40A to 40C in the third to fifth communication cycles. Furthermore, return communication frame reception result information and communication quality values in the slave devices 40A and 40B in the third to fifth communication cycles are stored. Since the slave device 40C does not receive the return communication frame, the table in FIG. 8 does not store the reception result information and the communication quality value of the return communication frame in the slave device 40C.
  • the specifying unit 23 refers to the table of FIG. 8, and in order of the communication cycle number, and in the order of the outgoing communication frames of the slave devices 40A, 40B, and 40C and the incoming communication frames of the slave devices 40A, 40B, and 40C, The result of presence/absence of communication frame reception is confirmed (S7).
  • the communication unit 42 identifies the communication port for receiving the communication frame in which "none" is found first as the communication error cause port (S8).
  • the specifying unit 23 When referring to the table in FIG. 8, the specifying unit 23 first checks the reception result information of the communication frame going to the slave device 40A in the third communication cycle with the smallest communication cycle number. Since this is "yes”, the specifying unit 23 next checks the value of the reception result information of the outgoing communication frame of the slave device 40B for the third communication cycle. Since this is also "yes”, the specifying unit 23 next checks the value of the reception result information of the communication frame to the slave device 40C in the third communication cycle. Since this is "none", the specifying unit 23 stops searching the table. The specifying unit 23 specifies the communication port 61 of the slave device 40C for receiving the outgoing communication frame corresponding to the reception result information that is first recognized as "none" as the communication error cause port. In this way, the identifying unit 23 identifies the slave device 40 in which the communication abnormality has occurred in the industrial network system.
  • the identifying unit 23 acquires the communication quality value of the communication frame to the slave device 40C in the third communication cycle from the table of FIG. 8 as the communication quality value of the communication error cause port.
  • the administrator of the industrial network system 1 can know that some kind of abnormality has occurred in the communication port 61 of the slave device 40C while the industrial network system 1 is in operation.
  • the administrator can further consider that the communication quality value of the communication port 61 of the slave device 40C is "3" and examine whether the abnormality is noise generated in the slave device 40C.
  • the communication units 42 of the daisy-chained slave devices 40A to 40C store the reception result information indicating whether or not the communication frame has been received in the non-volatile memory when the reception of the periodically transmitted communication frame times out. Record. If the communication frame transmitted to the slave devices 40A-40C does not return to the master device 20, the master device 20 acquires the reception result information from each of the slave devices 40A-40C, and further confirms the content of each reception result information. . Thereby, the master device 20 can easily identify the communication port in which the abnormality has occurred in the industrial network system 1 . In this case, the master device 20 does not need to separately transmit an inquiry communication frame to each of the slave devices 40A to 40C in order to confirm that each communication unit 22 has a communication error.
  • the communication unit 22 of the master device 20 can also transmit to the slave devices 40A to 40C communication frames pre-associated with the communication cycle numbers in which the communication frames are transmitted.
  • the communication units 42 of the slave devices 40A to 40C acquire the communication cycle number associated with the received communication frame.
  • the communication unit 42 further associates the acquired communication cycle number with the reception result information and the communication quality value and records them in the non-volatile memory. Further, when receiving a message from the master device 20 , the communication section 42 transmits to the master device 20 the reception result information of the communication frame in each communication cycle, the communication quality value, and the communication cycle number.
  • the specifying unit 23 of the master device 20 can know the communication cycle number corresponding to the reception result information and the communication quality value by referring to each received information. That is, the identification unit 23 does not need to create a correspondence table that associates the communication cycle number with the time information.
  • the display unit 24 can display the table itself shown in FIG. In this case, the administrator can know that an abnormality has occurred in the communication port 61 of the slave device 40C during the transmission period of each of the third to fifth communication frames.
  • the display unit 24 can further display on the display device 11 each communication quality value for a certain period of time before the communication timed out at the communication error cause port together with the communication quality value of the communication error cause port. For example, each communication quality value a certain time before the communication timed out, which is associated with the communication quality value of the communication frame to the slave device 40C in the third communication cycle, is displayed in a graph format. This allows the administrator to know the temporal change in the communication quality value at the communication port 61 of the slave device 40C in which an error has occurred.
  • Each functional block of the slave device 40 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or realized by software. You may
  • control device is equipped with a computer that executes program instructions, which are software that implements each function.
  • This computer includes, for example, one or more processors, and a computer-readable recording medium storing the program.
  • the processor reads the program from the recording medium and executes it, thereby achieving the object of the present invention.
  • a CPU Central Processing Unit
  • a recording medium a "non-temporary tangible medium" such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • a RAM Random Access Memory
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • any transmission medium communication network, broadcast wave, etc.
  • one aspect of the present invention can also be implemented in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • a slave device is one of a plurality of slave devices linked to a master device and serially connected to each other, periodically transmitted from the master device, and a receiving unit for receiving a communication frame that goes through the plurality of slave devices and returns to the master device, and if communication times out without the receiving unit receiving the communication frame, the communication frame is not received. and a transmission unit for transmitting the reception result information to the master device.
  • the slave device receives communication frames periodically transmitted from the master device.
  • the slave device executes, for example, I/O control of its own device based on the received communication frame.
  • the slave device transmits reception result information indicating that the communication frame was not received to the master device.
  • the master device can identify the location (slave device) where the communication error occurred based on the received reception result information.
  • the master device does not need to send a signal such as ping to each slave device to confirm whether or not communication with each slave device is performed normally. Therefore, the master device can easily identify the location (slave device) where the communication error occurred.
  • a monitor unit is further provided for periodically monitoring a communication quality value representing the quality of the communication, and the recording unit records the communication quality value at the time of estimated reception of the communication frame as the reception result. Information is further recorded in association with the information, and the transmission unit transmits the recorded reception result information and the communication quality value to the master device.
  • the administrator can refer to the displayed communication quality value and determine whether noise is the cause of the communication abnormality.
  • the recording unit records the reception result information and the communication quality value in association with time information representing the time of the estimated reception time
  • the transmission unit records the recorded reception result information, the The communication quality value and the time information are transmitted to the master device.
  • the master device can accurately identify the communication cycle number in which the communication abnormality occurred, based on the received time information.
  • the communication quality value is the SQI value.
  • the administrator can refer to the displayed SQI value to determine whether the cause of the communication abnormality is noise.
  • a method of controlling a slave device is a method of controlling one of a plurality of slave devices linked to a master device and connected in series with each other, comprising: receiving a communication frame that is periodically transmitted and that loops through the plurality of slave devices and returns to the master device; and if the communication times out without receiving the communication frame, the communication receives the communication frame. a step of recording reception result information indicating that the transmission was not performed; and a transmission step of transmitting the reception result information to the master device.
  • the master device can easily identify the location (slave device) where the communication error occurred.
  • a communication abnormality identification system is a communication abnormality identification system including any of the slave devices described above and a master device, wherein the master device receives A receiving unit for receiving result information, and a specifying unit for specifying the slave device in which the communication abnormality has occurred based on the received reception result information.
  • the master device can easily identify the location (slave device) where the communication error occurred.

Abstract

The present invention makes it possible to easily identify the location of occurrence of a communication abnormality. A slave device (40) receives a communication frame that is regularly transmitted from a master device (20), passes through slave devices (40A to 40C), and returns to the master device (20). The slave device (40) records reception result information indicating that communication did not receive a communication frame when communication times out without receiving the communication frame. The slave device (40) transmits the reception result information to the master device (20).

Description

スレーブ装置およびその制御方法、ならびに通信異常箇所検出システムSLAVE DEVICE, CONTROL METHOD THEREOF, AND COMMUNICATION ABNORMAL POINT DETECTION SYSTEM
 本発明は、スレーブ装置およびその制御方法、ならびに通信異常検出システムに関する。 The present invention relates to a slave device, its control method, and a communication error detection system.
 ファクトリーオートメーション(Factory Automation:FA)の分野においては、作業の工程を分担する様々な種類の装置の制御が行われる。工場施設等一定の領域において作業に用いられる各種のコントローラ、リモートI/O、および製造装置を連携して動作させるために、これらの装置を接続する、フィールドネットワークとも呼ばれる産業用ネットワークシステムが構築されている。 In the field of Factory Automation (FA), various types of devices are controlled that share work processes. In order to operate various controllers, remote I/O, and manufacturing equipment used for work in a certain area such as a factory facility in cooperation with each other, an industrial network system, also called a field network, is constructed to connect these equipment. ing.
 一般的な産業用ネットワークシステムでは、各種のスレーブ装置と、マスタ装置などから構成されるマスタスレーブ方式のネットワークが用いられる。スレーブ装置は、工場内に設置される設備の制御あるいはデータ収集を行う装置である。マスタ装置は、これらのスレーブを集中管理する、例えば(PLC:Programmable Logic Controller)と呼ばれる装置である。EtherCAT(登録商標)あるいはEthernet/IPはそうした産業用ネットワークシステムの方式の例である(ETHERNET:登録商標)。このような産業用ネットワークシステムにおいては、通信用ケーブルが各装置間に張り巡らされ、ネットワークが構築されている。 A typical industrial network system uses a master-slave network consisting of various slave devices and master devices. A slave device is a device that controls equipment installed in a factory or collects data. The master device is a device called (PLC: Programmable Logic Controller) that centrally manages these slaves. EtherCAT (registered trademark) or Ethernet/IP is an example of such an industrial network system scheme (ETHERNET: registered trademark). In such an industrial network system, communication cables are stretched between devices to construct a network.
 産業用ネットワークシステムの稼働中において、スレーブ装置や通信ケーブルに何らかの通信異常が発生することがある。このような通信異常が発生した箇所を特定するための技術が、いくつか提案されている。  While the industrial network system is in operation, some kind of communication abnormality may occur in the slave device or communication cable. Several techniques have been proposed for identifying the location where such communication anomalies have occurred.
 特許文献1には、中継装置と端末装置との間の無線区間で送受信されるデータを取得する取得部と、前記データを記憶する記憶部と、前記中継装置と前記端末装置との間に通信障害が発生した場合に、前記記憶部に記憶された前記データをサーバに送信する送信部と、を有することを特徴とする無線通信装置が開示される。 Patent Document 1 discloses an acquisition unit that acquires data transmitted and received in a wireless section between a relay device and a terminal device, a storage unit that stores the data, and communication between the relay device and the terminal device. A wireless communication device is disclosed, comprising: a transmission unit that transmits the data stored in the storage unit to a server when a failure occurs.
 特許文献2には、ネットワーク上の通信を管理するマスタ装置と、前記ネットワークと接続され前記マスタ装置の指示に従い通信が可能な少なくとも1つのスレーブ装置とで形成される通信システムの動作状態を収集する情報処理装置であって、前記マスタ装置および前記スレーブ装置は、通信処理に従い時刻情報および通信状態に関する通信ログを記録し、前記情報処理装置は、前記マスタ装置および前記スレーブ装置の少なくとも一方から前記通信ログを取得する取得部と、時刻情報に基づいて取得した通信ログを編集するログ編集部と、前記ログ編集部により編集された通信ログのうち通信状態として通信に異常が生じていることを示す通信異常情報を有する通信ログの発生から所定時間内の通信ログを抽出するログ抽出部とを備える、情報処理装置が開示される。 In Patent Document 2, operation states of a communication system formed by a master device that manages communication on a network and at least one slave device that is connected to the network and can communicate according to instructions from the master device are collected. An information processing device, wherein the master device and the slave device record a communication log regarding time information and a communication state according to communication processing, and the information processing device receives the communication from at least one of the master device and the slave device. An acquisition unit that acquires a log, a log editing unit that edits the communication log acquired based on the time information, and a communication state in the communication log edited by the log editing unit that indicates that an abnormality has occurred in communication. An information processing apparatus is disclosed that includes a log extraction unit that extracts a communication log within a predetermined period of time from the occurrence of a communication log having communication abnormality information.
 特許文献3には、マスタ装置と、前記マスタ装置に接続されるスレーブ装置とを含むネットワークを管理する管理装置であって、ユーザにより作成された設計上の前記ネットワークの設計情報に基づいて、ネットワーク構成図を表示するネットワーク構成図表示部と、前記スレーブ装置の状態に関する状態情報を取得する状態情報取得部と、前記状態情報に基づいて、前記ネットワーク構成図上で前記状態を前記スレーブ装置と対応付けて表示する状態表示部と、を備えることを特徴とする管理装置が開示される。 Patent Document 3 discloses a management device that manages a network including a master device and a slave device connected to the master device, in which network a network configuration diagram display unit that displays a configuration diagram; a state information acquisition unit that acquires state information regarding the state of the slave device; and based on the state information, the state corresponds to the slave device on the network configuration diagram. and a status display section attached to display.
日本国公開特許公報「特開2018-148485号公報」Japanese Patent Publication "JP 2018-148485" 日本国公開特許公報「特開2015-1758号公報」Japanese patent publication "JP 2015-1758" 日本国公開特許公報「特開2019-169089号公報」Japanese Patent Publication "JP 2019-169089"
 上述した従来技術では、通信異常の発生箇所の特定が難しいという問題がある。 With the conventional technology described above, there is the problem that it is difficult to identify the location where a communication error has occurred.
 本発明は、前記の課題を解決するためになされたものであり、その目的は、通信異常の発生箇所を容易に特定することにある。 The present invention has been made to solve the above problems, and its purpose is to easily identify the location of a communication abnormality.
 本発明の一態様に係るスレーブ装置は、前記の課題を解決するために、マスタ装置にリンクされ、かつ互いに直列的に接続される複数のスレーブ装置のうちの1つのスレーブ装置であって、前記マスタ装置から定期的に送信され、かつ前記複数のスレーブ装置を一巡して前記マスタ装置に戻る通信フレームを受信する受信部と、前記受信部が前記通信フレームを受信することなく通信がタイムアウトした場合、前記通信フレームを受信しなかったことを表す受信結果情報を記録する記録部と、前記受信結果情報を前記マスタ装置に送信する送信部とを備えている。 In order to solve the above problems, a slave device according to an aspect of the present invention is one of a plurality of slave devices linked to a master device and serially connected to each other, comprising: a receiving unit that receives a communication frame that is periodically transmitted from a master device and returns to the master device after circulating through the plurality of slave devices; and a case where communication times out without the receiving unit receiving the communication frame. a recording unit for recording reception result information indicating that the communication frame has not been received; and a transmission unit for transmitting the reception result information to the master device.
 本発明の一態様によれば、通信異常の発生箇所を容易に特定するという効果を奏する。  According to one aspect of the present invention, it is possible to easily identify the location of the communication abnormality.
本適用例に係る通信異常箇所特定システムが適用される、生産工場等における産業用ネットワークを示す概略構成図である。1 is a schematic configuration diagram showing an industrial network in a production factory or the like, to which a communication abnormality location identification system according to this application example is applied; FIG. マスタ装置の構成を示すブロック図である。3 is a block diagram showing the configuration of a master device; FIG. スレーブ装置の構成を図である。It is a figure which shows the structure of a slave device. 産業用ネットワークシステムにおける通信フレームの送信経路を示す図である。FIG. 2 is a diagram showing transmission paths of communication frames in an industrial network system; マスタ装置によって実行される一連の処理の流れを示すフローチャートである。4 is a flow chart showing the flow of a series of processes executed by the master device; スレーブ装置ACにおける処理の流れを説明する図である。4 is a diagram for explaining the flow of processing in a slave device AC; FIG. 通信サイクルごとの通信フレームの送信経路を示す図である。FIG. 4 is a diagram showing transmission paths of communication frames for each communication cycle; マスタ装置によって収集されたスレーブ装置の通信品質値および受信結果情報の一覧の一例を示す図である。FIG. 4 is a diagram showing an example of a list of communication quality values and reception result information of slave devices collected by the master device;
 〔実施形態〕
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)が、図面に基づいて説明される。
[Embodiment]
Hereinafter, an embodiment (hereinafter also referred to as "this embodiment") according to one aspect of the present invention will be described based on the drawings.
 §1 適用例
 まず、本発明が適用される場面の一例が述べられる。図1は、本適用例に係る通信異常箇所特定システムが適用される、生産工場等における産業用ネットワークシステム1を示す概略構成図である。産業用ネットワークシステム1は、マスタ装置20と、複数のスレーブ装置40を含んで構成されている。各スレーブ装置40は、産業用ネットワークシステム1を通じてマスタ装置20により制御され、生産工場等における所要の様々な工程を構築している。スレーブ装置40には、図1には不図示の通信部が設けられており、ケーブル300を介して他機に接続されている。
§1 Application Example First, an example of a scene to which the present invention is applied will be described. FIG. 1 is a schematic configuration diagram showing an industrial network system 1 in a production factory or the like, to which a communication abnormality point identification system according to this application example is applied. The industrial network system 1 includes a master device 20 and multiple slave devices 40 . Each slave device 40 is controlled by the master device 20 through the industrial network system 1 and constructs various required processes in a production factory or the like. The slave device 40 is provided with a communication unit (not shown in FIG. 1) and connected to another device via a cable 300 .
 各スレーブ装置40は、マスタ装置20にリンクされ、かつ互いに直列的に接続されるスレーブ装置40A~40Cのうちの1つのスレーブ装置40である。スレーブ装置40は、マスタ装置20から定期的に送信され、かつスレーブ装置40A~40Cを一巡してマスタ装置20に戻る通信フレームを受信する。各スレーブ装置40は、通信フレームを受信することなく通信がタイムアウトした場合、通信フレームを受信しなかったことを表す受信結果情報を記録する。各スレーブ装置40は、さらに、受信結果情報をマスタ装置20に送信する。これによりマスタ装置20は、受信した受信結果情報を解析することによって、産業用ネットワークシステム1において通信異常が発生した箇所(スレーブ装置40)を容易に特定することができる。 Each slave device 40 is one of the slave devices 40A-40C linked to the master device 20 and serially connected to each other. The slave device 40 receives communication frames that are periodically transmitted from the master device 20 and return to the master device 20 through the slave devices 40A to 40C. Each slave device 40 records reception result information indicating that the communication frame was not received when the communication timed out without receiving the communication frame. Each slave device 40 further transmits reception result information to the master device 20 . As a result, the master device 20 can easily identify the location (slave device 40 ) where the communication error occurred in the industrial network system 1 by analyzing the received reception result information.
 §2 構成例
 (産業用ネットワーク)
 実施形態に係る通信異常箇所特定システムが適用される、産業用ネットワークシステム1について、図1を用いてさらに詳細に説明する。産業用ネットワークシステム1は、マスタ装置20と、複数のスレーブ装置40を含んで構成されている。産業用ネットワークシステム1には、具体例として、EtherCAT(登録商標)あるいはEthernet/IPが適用される(ETHERNET:登録商標、イーサネット:登録商標)。
§2 Configuration example (industrial network)
An industrial network system 1 to which a communication abnormality location identification system according to an embodiment is applied will be described in more detail using FIG. The industrial network system 1 includes a master device 20 and multiple slave devices 40 . As a specific example, EtherCAT (registered trademark) or Ethernet/IP is applied to the industrial network system 1 (ETHERNET: registered trademark, Ethernet: registered trademark).
 マスタ装置20には、プログラマブルロジックコントローラ(Programmable Logic Controller)を適用することができる。マスタ装置20により管理あるいは制御されるスレーブ装置40は、ハブ30を介してマスタ装置20にリンクしている。ハブ30は、マスタ装置20側(上流側)からの通信路の分岐を行う通信装置である。 A programmable logic controller can be applied to the master device 20 . Slave devices 40 managed or controlled by master device 20 are linked to master device 20 via hub 30 . The hub 30 is a communication device that branches a communication path from the master device 20 side (upstream side).
 マスタ装置20、ハブ30、およびスレーブ装置40の各装置間は、一般にLANケーブル(Local Area Network Cable)と呼称される通信用のケーブル300によって接続されている。図示されるように、スレーブ装置40はマスタ側のみならず、その反対側(下流側)にもケーブル300が接続されて、さらに他のスレーブ装置(他機)にリンクしている。 The master device 20, hub 30, and slave device 40 are connected by a communication cable 300 generally called a LAN cable (Local Area Network Cable). As illustrated, the cable 300 is connected not only on the master side but also on the opposite side (downstream side) of the slave device 40 to link to other slave devices (other devices).
 複数のスレーブ装置40は、デイジーチェイン方式によって接続されている。言い換えれば、スレーブ装置40A~40Cは、互いに直列に接続されている。図1には、3台のスレーブ装置40がデイジーチェイン接続される例を示す。以下では、これらのスレーブ装置40を、スレーブ装置40A、スレーブ装置40B、スレーブ装置40Cと記載して互いに区別する。 A plurality of slave devices 40 are connected by a daisy chain method. In other words, the slave devices 40A-40C are connected in series with each other. FIG. 1 shows an example in which three slave devices 40 are daisy-chained. Hereinafter, these slave devices 40 are described as slave device 40A, slave device 40B, and slave device 40C to distinguish them from each other.
 3台のスレーブ装置40のうち、スレーブ装置40Aは最も上流に位置し、スレーブ装置40Bは中間に位置し、スレーブ装置40Cは最も下流に位置する。スレーブ装置40Aは、ハブ30を介してマスタ装置20に接続されている。スレーブ装置40Bは、スレーブ装置40Aおよび40の双方に接続されている。スレーブ装置40Cは、スレーブ装置40Bに接続されている。したがって、スレーブ装置40Aはマスタ装置20に直接的にリンクされ、スレーブ装置40Bはスレーブ装置40Aを介してマスタ装置20に間接的にリンクされ、スレーブ装置40Cはスレーブ装置40Aおよび40Bを介してマスタ装置20に間接的にリンクされている。 Of the three slave devices 40, the slave device 40A is positioned furthest upstream, the slave device 40B is positioned in the middle, and the slave device 40C is positioned furthest downstream. Slave device 40A is connected to master device 20 via hub 30 . Slave device 40B is connected to both slave devices 40A and 40 . Slave device 40C is connected to slave device 40B. Thus, slave device 40A is directly linked to master device 20, slave device 40B is indirectly linked to master device 20 via slave device 40A, and slave device 40C is linked to master device via slave devices 40A and 40B. 20 indirectly linked.
 マスタ装置20には、上位の情報処理システムであるサーバ10がリンクしていてもよい。マスタ装置20とサーバ10とのリンクには、例示としてイーサネット(登録商標)や、Ethernet/IPのような通信ネットワーク方式が適用され得る。マスタ装置20には、同様にして、表示装置11がリンクしていてもよい。表示装置11は、タッチパネルのような入力手段をさらに備え、マスタ装置20に対する指示の入力が可能となっていてもよい。 The master device 20 may be linked to the server 10, which is an upper information processing system. For the link between the master device 20 and the server 10, a communication network method such as Ethernet (registered trademark) or Ethernet/IP can be applied. The display device 11 may similarly be linked to the master device 20 . The display device 11 may further include input means such as a touch panel, and may be capable of inputting instructions to the master device 20 .
 また、マスタ装置20には、同様にして、ツールとも称される制御用コンピュータ50がリンクしていてもよい。なお、マスタ装置20と表示装置11とのリンク、あるいはマスタ装置20と制御用コンピュータ50とのリンクには、USB(Universal Serial Bus)による接続等の別の方法が用いられてもよい。さらに、ツールとも称される制御用コンピュータ51が、ハブ30にケーブル300によって接続されてもよい。 Similarly, the master device 20 may be linked to a control computer 50, also called a tool. For the link between the master device 20 and the display device 11, or the link between the master device 20 and the control computer 50, another method such as a USB (Universal Serial Bus) connection may be used. Additionally, a control computer 51 , also called a tool, may be connected to the hub 30 by a cable 300 .
 (マスタ装置20およびスレーブ装置40の構成)
 図2は、マスタ装置20の構成を示すブロック図である。マスタ装置20は、制御部21、通信部22(送信部)、特定部23、および表示部24を備えている。制御部21は、マスタ装置20における各種の処理を統括的に制御する。通信部22は、各スレーブ装置40と通信する。特定部23は、通信異常が発生したスレーブ装置40を特定する。表示部24は、各種の情報を表示装置11に表示する。
(Configuration of master device 20 and slave device 40)
FIG. 2 is a block diagram showing the configuration of the master device 20. As shown in FIG. The master device 20 includes a control section 21 , a communication section 22 (transmitting section), a specifying section 23 and a display section 24 . The control unit 21 comprehensively controls various processes in the master device 20 . The communication unit 22 communicates with each slave device 40 . The identification unit 23 identifies the slave device 40 in which the communication abnormality has occurred. The display unit 24 displays various information on the display device 11 .
 図3は、スレーブ装置40の構成を図である。この図には、3台のスレーブ装置40のうちスレーブ装置40Aおよびスレーブ装置40Bのみを示す。スレーブ装置40は、制御部41、通信部42(受信部、送信部)、および通信品質モニタ部43(モニタ部、記録部)を備えている。スレーブ装置40は、さらに、図示しない不揮発性メモリを備えている。制御部41は、スレーブ装置40における処理を統括的に制御する。通信部42は、スレーブ装置40に接続される他の装置と通信する。図3に示すように、スレーブ装置40Aの通信部42とスレーブ装置40Bの通信部42とは、互いに通信することができる。すなわち、スレーブ装置40Aの通信部42はスレーブ装置40Bに信号を送信したり、逆にスレーブ装置40Bの通信部42から送信された信号を受信したりする。同様に、スレーブ装置40Bの通信部42は、スレーブ装置40Aに信号を送信したり、逆にスレーブ装置40Aから送信された信号を受信したりする。 FIG. 3 is a diagram showing the configuration of the slave device 40. As shown in FIG. Of the three slave devices 40, only slave device 40A and slave device 40B are shown in this figure. The slave device 40 includes a control section 41, a communication section 42 (receiving section, transmitting section), and a communication quality monitoring section 43 (monitoring section, recording section). Slave device 40 further comprises a non-volatile memory (not shown). The control unit 41 comprehensively controls the processing in the slave device 40 . The communication unit 42 communicates with other devices connected to the slave device 40 . As shown in FIG. 3, the communication unit 42 of the slave device 40A and the communication unit 42 of the slave device 40B can communicate with each other. That is, the communication unit 42 of the slave device 40A transmits signals to the slave device 40B, and conversely receives signals transmitted from the communication unit 42 of the slave device 40B. Similarly, the communication unit 42 of the slave device 40B transmits signals to the slave device 40A and conversely receives signals transmitted from the slave device 40A.
 図示しないが、スレーブ装置40Bの通信部42は、スレーブ装置40Cに信号を受信したり、スレーブ装置40Cの通信部42から送信された信号を受信したりする。また、スレーブ装置40Aの通信部42は、マスタ装置20の通信部22から送信された信号を受信したり、マスタ装置20に信号を送信したりする。また、スレーブ装置40Cの通信部42は、スレーブ装置40Bから送信された信号を受信したり、スレーブ装置40Bに信号を送信したりする。スレーブ装置40Cは再下流の装置であるため、スレーブ装置40Cの通信部42は、スレーブ装置40Cよりも下流に位置する他の装置に信号を送信することはない。 Although not shown, the communication unit 42 of the slave device 40B receives signals from the slave device 40C and receives signals transmitted from the communication unit 42 of the slave device 40C. Also, the communication unit 42 of the slave device 40A receives signals transmitted from the communication unit 22 of the master device 20 and transmits signals to the master device 20 . Also, the communication unit 42 of the slave device 40C receives signals transmitted from the slave device 40B and transmits signals to the slave device 40B. Since the slave device 40C is a re-downstream device, the communication unit 42 of the slave device 40C does not transmit signals to other devices located downstream of the slave device 40C.
 <通信フレームの送信経路>
 図4は、産業用ネットワークシステム1における通信フレームの送信経路を示す図である。産業用ネットワークシステム1において、スレーブ装置40A~40Cは、自装置における情報の入力および出力を制御する。以下、この制御をI/O制御と称する。各スレーブ装置40A~40CにおけるI/O制御は、マスタ装置20によって統括的に制御される。すなわち各スレーブ装置40A~40Cは、マスタ装置20から送信される所定の制御信号に基づいて、自装置におけるI/O制御を実行する。
<Communication frame transmission route>
FIG. 4 is a diagram showing transmission paths of communication frames in the industrial network system 1. As shown in FIG. In the industrial network system 1, the slave devices 40A-40C control the input and output of information in their own devices. This control is hereinafter referred to as I/O control. I/O control in each of the slave devices 40A-40C is centrally controlled by the master device 20. FIG. That is, each slave device 40A-40C executes I/O control in its own device based on a predetermined control signal transmitted from the master device 20. FIG.
 マスタ装置20は、各スレーブ装置40A~40CのI/O制御を制御するための通信フレームを、各スレーブ装置40A~40Cに定期的に送信する。この通信フレームは、産業用ネットワークシステム1を流れる制御信号の一種である。マスタ装置20から送信された通信フレームは、複数のスレーブ装置40を一巡してマスタ装置20に戻る。通信フレームは、図4に示すように、まずマスタ装置20からスレーブ装置40Aに送信され、それからスレーブ装置40Bを経由してスレーブ装置40Cに届く。スレーブ装置40Cは、受信した通信フレームをマスタ装置20に送り返す。すなわち、通信フレームはスレーブ装置40Cからスレーブ装置40Bに送信され、それからスレーブ装置40Bおよび40Aを順に介してマスタ装置20に届く。このように、マスタ装置20から定期送信される通信フレームは、通信経路内を一筆書きを描くように移動し、かつ最終的にマスタ装置20に戻ってくる。言い換えれば、通信フレームは、マスタ装置20から始まりスレーブ装置40Cで折り返してマスタ装置20に戻る通信経路内を、一周する。 The master device 20 periodically transmits communication frames for controlling the I/O control of each slave device 40A-40C to each slave device 40A-40C. This communication frame is a kind of control signal flowing through the industrial network system 1 . A communication frame transmitted from the master device 20 circulates through a plurality of slave devices 40 and returns to the master device 20 . A communication frame is first transmitted from the master device 20 to the slave device 40A, and then reaches the slave device 40C via the slave device 40B, as shown in FIG. Slave device 40C sends back the received communication frame to master device 20 . That is, a communication frame is transmitted from slave device 40C to slave device 40B and then reaches master device 20 via slave devices 40B and 40A in sequence. In this way, the communication frames periodically transmitted from the master device 20 move in a single stroke within the communication path, and finally return to the master device 20 . In other words, the communication frame goes around the communication path starting from the master device 20 and returning to the master device 20 by looping back at the slave device 40C.
 以下では、送信出発点であるマスタ装置20から最下流のスレーブ装置40Cに向かって移動する際の通信フレームを、行きの通信フレームと称する。また、スレーブ装置40Cからマスタ装置20に向かって移動する際の通信フレームを、帰りの通信フレームと称する。これらの名称は同一の通信フレームをその送信経路に即して区別するための表現である。すなわち、行きの通信フレームと帰りの通信フレームとは、互いに同一の通信フレームである。 Hereinafter, a communication frame when moving from the master device 20, which is the transmission starting point, toward the most downstream slave device 40C will be referred to as an outgoing communication frame. A communication frame when moving from the slave device 40C to the master device 20 is called a return communication frame. These names are expressions for distinguishing the same communication frame according to its transmission path. That is, the forward communication frame and the return communication frame are the same communication frame.
 図4に示すように、スレーブ装置40A~40Cは、2つの異なる通信ポート61および52を有する。通信ポート61は、スレーブ装置40A~40Cが行きの通信フレームを受信するための通信ポートである。通信ポート62は、スレーブ装置40A~40Cが帰りの通信フレームを受信するための通信ポートである。スレーブ装置40Aおよび40Bは、通信ポート61および52の双方を使用して、行きの通信フレームおよび帰りの通信フレームの双方を受信する。スレーブ装置40Cは、通信ポート61は使用して行きの通信フレームを受信する。すなわちスレーブ装置40Cは、通信ポート62を使用せず、したがって帰りの通信フレームを受信しない。スレーブ装置40Cのさらに下流に他のスレーブ装置40が接続されないからである。 As shown in FIG. 4, the slave devices 40A-40C have two different communication ports 61 and 52. The communication port 61 is a communication port for the slave devices 40A to 40C to receive outgoing communication frames. A communication port 62 is a communication port for the slave devices 40A to 40C to receive return communication frames. Slave devices 40A and 40B use both communication ports 61 and 52 to receive both outgoing and return communication frames. The slave device 40C uses the communication port 61 to receive outgoing communication frames. That is, slave device 40C does not use communication port 62 and therefore does not receive return communication frames. This is because no other slave device 40 is connected downstream of the slave device 40C.
 スレーブ装置40A~40Cは、自装置が通信フレームを受信するために用いる通信ポートにおける通信品質値を、周期的にモニタをする。通信品質値は、スレーブ装置40A~40Cにおける通信の品質を示す値である。通信品質値は、例えばSQI値(Signal Quality Indicator)である。通信品質値は、S/N比であってもよい。上述したように、通信品質モニタ部43が、通信品質値をモニタする。通信品質モニタ部43は、モニタした通信品質値を不揮発性メモリに記録する。通信品質モニタ部43は、モニタした通信品質値を、モニタ時点の時刻を表す時刻情報に関連付けて、不揮発性メモリに記録する。このようにして、通信品質モニタ部43は、通信品質値のモニタログを継続的に不揮発性メモリに記録する。 The slave devices 40A to 40C periodically monitor the communication quality value at the communication port used by the device itself to receive communication frames. The communication quality value is a value that indicates the quality of communication in the slave devices 40A-40C. The communication quality value is, for example, an SQI value (Signal Quality Indicator). The communication quality value may be the S/N ratio. As described above, the communication quality monitor unit 43 monitors communication quality values. The communication quality monitor unit 43 records the monitored communication quality value in the nonvolatile memory. The communication quality monitor unit 43 records the monitored communication quality value in the non-volatile memory in association with time information indicating the time of monitoring. In this manner, the communication quality monitor unit 43 continuously records the monitor log of the communication quality value in the nonvolatile memory.
 通信品質モニタ部43は、通信品質値として、例えば0~10のいずれかの値をモニタする。通信品質値の数値が大きいほど、通信品質はより高い。本例では「0」は最低の通信品質を表し、「10」は最高の通信品質を表す。ただしこれらの値は、あくまでも通信品質値として採用可能な値の一例に過ぎない。 The communication quality monitor unit 43 monitors any value from 0 to 10, for example, as a communication quality value. The larger the communication quality value, the higher the communication quality. In this example, "0" represents the lowest communication quality and "10" represents the highest communication quality. However, these values are merely examples of values that can be used as communication quality values.
 通信品質モニタ部43は、スレーブ装置40が通信フレームの受信に使用する通信ポートにおける通信品質値をモニタする。スレーブ装置40Aの通信品質モニタ部43は、通信ポート61における通信品質値と、通信ポート62における通信品質値をモニタする。スレーブ装置40Bの通信品質モニタ部43もまた、通信ポート61における通信品質値と、通信ポート62における通信品質値をモニタする。しかしスレーブ装置40Cの通信品質モニタ部43は、通信ポート61における通信品質値をモニタするが、通信ポート62における通信品質値はモニタしない。このように、産業用ネットワークシステム1において通信品質値がモニタされる箇所は全部で5箇所である。 The communication quality monitor unit 43 monitors the communication quality value at the communication port used by the slave device 40 to receive communication frames. The communication quality monitor unit 43 of the slave device 40A monitors the communication quality value at the communication port 61 and the communication quality value at the communication port 62 . The communication quality monitor unit 43 of the slave device 40B also monitors the communication quality value at the communication port 61 and the communication quality value at the communication port 62 . However, the communication quality monitor unit 43 of the slave device 40C monitors the communication quality value at the communication port 61, but does not monitor the communication quality value at the communication port 62. FIG. In this way, there are a total of five locations where communication quality values are monitored in the industrial network system 1 .
 §3 制御例
 図5は、マスタ装置20によって実行される一連の処理の流れを示すフローチャートである。マスタ装置20の制御部21は、スレーブ装置40A~40CにおけるI/O制御のための通信フレームを、一定の通信サイクル時間が経過するたびに送信するように、通信部22を制御する。通信部22は、この制御に基づいて、通信サイクル時間が経過するまで待機する(S1)。通信部22は、通信サイクル時間が経過すると、通信フレームをスレーブ装置40A~40Cに送信する(S2)。通信部22は、通信フレームを送信するたびに、通信フレームを送信した時点の時刻を表す時刻情報を取得する。通信部22は、さらに、通信フレームを送信した通信サイクルの番号(以下、通信サイクル番号)に、取得した時刻情報を関連付けて、所定の対応テーブルに格納する。通信部42は、n回目(nは1以上の整数)の通信サイクルにおいて通信フレームを送信した場合、通信サイクル番号「n」に、通信フレームを送信した時刻を表す時刻情報を関連付けて、対応テーブルに格納する。通信部42は、例えば、1回目の通信サイクルにおいて通信フレームを送信した場合、通信サイクル番号「1」に、通信フレームを送信した時刻を表す時刻情報を関連付けて、対応テーブルに格納する。
§3 Control Example FIG. 5 is a flow chart showing a series of processes executed by the master device 20 . The control unit 21 of the master device 20 controls the communication unit 22 so as to transmit a communication frame for I/O control in the slave devices 40A to 40C each time a certain communication cycle time elapses. Based on this control, the communication unit 22 waits until the communication cycle time elapses (S1). When the communication cycle time elapses, the communication unit 22 transmits communication frames to the slave devices 40A to 40C (S2). Each time the communication unit 22 transmits a communication frame, the communication unit 22 acquires time information representing the time when the communication frame was transmitted. The communication unit 22 further associates the acquired time information with the number of the communication cycle in which the communication frame was transmitted (hereinafter referred to as the communication cycle number), and stores them in a predetermined correspondence table. When the communication frame is transmitted in the n-th communication cycle (n is an integer equal to or greater than 1), the communication unit 42 associates the communication cycle number “n” with time information representing the time when the communication frame was transmitted, and creates a correspondence table. store in For example, when the communication frame is transmitted in the first communication cycle, the communication unit 42 associates the communication cycle number “1” with time information representing the time when the communication frame was transmitted, and stores the time information in the correspondence table.
 通信部22は、通信フレームの送信後、スレーブ装置40Cから返信された通信フレームを受信した否かを判定する(S3)。通信部22は、通信フレームを受信したと判定した場合(S3でYES)、ステップS1に戻って、次の通信サイクル時間が経過するまで待機する。このように、通信部22は、通信フレームを、一定の通信サイクル時間の間隔でスレーブ装置40A~40Cに定期的に送信し続ける。 After transmitting the communication frame, the communication unit 22 determines whether or not it has received the communication frame returned from the slave device 40C (S3). When determining that the communication frame has been received (YES in S3), the communication unit 22 returns to step S1 and waits until the next communication cycle time elapses. In this manner, the communication unit 22 continues to periodically transmit communication frames to the slave devices 40A to 40C at regular communication cycle time intervals.
 通信部22は、スレーブ装置40から通信フレームを受信しないと判定した場合(S3でNO)、スレーブ装置40A~40Cにメッセージを送信する(S4)。このメッセージは、各スレーブ装置40A~40Cにおける通信フレームの受信結果および通信品質値をマスタ装置20に提供することを求めるメッセージである。ある態様では、通信部22は、I/O制御のための通信フレームを受信しないと判定したら、メッセージを直ちに送信する。他の態様では、通信部22は、I/O制御のための通信フレームを受信しないと判定した後、スレーブ装置40A~40Cにおける通信異常の回復を待機するために、一定時間の経過後にメッセージを送信する。 When the communication unit 22 determines that it has not received a communication frame from the slave device 40 (NO in S3), it transmits a message to the slave devices 40A to 40C (S4). This message is a message requesting that each of the slave devices 40A to 40C provide the master device 20 with the communication frame reception result and the communication quality value. In one aspect, the communication unit 22 immediately transmits a message when it determines that it does not receive a communication frame for I/O control. In another aspect, after determining that the communication frame for I/O control has not been received, the communication unit 22 waits for the recovery of the communication abnormality in the slave devices 40A to 40C, and sends the message after a certain period of time. Send.
 図5を参照したマスタ装置20の処理の流れの説明を、ここでいったん中断する。残りのステップS6~S9の各処理については、スレーブ装置40A~40Cにおける処理の流れを説明した後、改めて説明する。 The description of the processing flow of the master device 20 with reference to FIG. 5 will be temporarily interrupted here. The remaining steps S6 to S9 will be explained again after explaining the flow of the processes in the slave devices 40A to 40C.
 図6は、スレーブ装置40A~40Cにおける処理の流れを説明する図である。スレーブ装置40において、制御部41は、行きの通信フレームおよび帰りの通信フレームを受信するまで一定期間待機するように、通信部42を制御する。この制御に基づいて、通信部42は、通信フレーム受信待機用のタイマーを開始する(S11)。通信部42は、タイマーの開始後、行きの通信フレームを受信したか否かを判定する(S12)。通信部42は、行きの通信フレームを受信したと判定した場合(S12でYES)、行きの通信フレームを受信した時点での通信品質値を、通信品質値のモニタログから取得する(S13)。通信部42は、さらに、行きの通信フレームを受信したことを表す受信結果情報と、行きの通信フレームを受信した時点での時刻を表す時刻情報とを生成する。通信部42は、行きの通信フレームを受信したことを表す受信結果情報と、取得した通信品質値とを、生成した時刻情報に関連付けて不揮発性メモリに記録する(S14)。この後、処理はステップS19に進む。 FIG. 6 is a diagram explaining the flow of processing in the slave devices 40A-40C. In the slave device 40, the control unit 41 controls the communication unit 42 so as to wait for a certain period of time until receiving the forward communication frame and the return communication frame. Based on this control, the communication unit 42 starts a communication frame reception standby timer (S11). After starting the timer, the communication unit 42 determines whether or not a forward communication frame has been received (S12). When determining that the outgoing communication frame has been received (YES in S12), the communication unit 42 acquires the communication quality value at the time of receiving the outgoing communication frame from the communication quality value monitor log (S13). The communication unit 42 further generates reception result information indicating that the outgoing communication frame has been received, and time information indicating the time at which the outgoing communication frame was received. The communication unit 42 records the reception result information indicating that the outgoing communication frame has been received and the acquired communication quality value in the non-volatile memory in association with the generated time information (S14). After that, the process proceeds to step S19.
 通信部42は、行きの通信フレームを受信しないと判定した場合(S12でNO)、通信がタイムアウトしたか否かを判定する(S15)。通信部42は、行きの通信フレームを受信することなくタイマーが終了した場合、通信がタイムアウトしたと判定する。一方、タイマーが終了していない場合、通信タイムアウトしていないと判定する。通信部42は、通信がタイムアウトしていないと判定した場合(S15でNO)、ステップS2の処理に戻って、再び、行きの通信フレームを受信したか否かを判定する。 When the communication unit 42 determines that the forward communication frame is not received (NO in S12), it determines whether the communication has timed out (S15). The communication unit 42 determines that the communication has timed out when the timer expires without receiving the outgoing communication frame. On the other hand, if the timer has not expired, it is determined that the communication has not timed out. When the communication unit 42 determines that the communication has not timed out (NO in S15), the communication unit 42 returns to the process of step S2 and again determines whether or not the outgoing communication frame has been received.
 通信部42は、通信がタイムアウトしたと判定した場合(S15でYES)、行きの通信フレームの推定受信時点の時刻での通信品質値を、通信品質値のモニタログから取得する(S16)。ここでいう「行きの通信フレームの推定受信時点」とは、もしタイムアウトがなければ行きの通信フレームを正常に受信していた時点を意図している。この時刻は、個々の行きのフレームを過去に受信していた際の受信時刻の間隔と、行きの通信フレームを前回受信した時刻とから、求めることができる。例えば通信部42は、行きの通信フレームを前回受信した時刻に受信時刻の間隔を加算した時点を、「行きの通信フレームの推定受信時点」として求めればよい。 When the communication unit 42 determines that the communication has timed out (YES in S15), it acquires the communication quality value at the estimated reception time of the outgoing communication frame from the communication quality value monitor log (S16). The "estimated reception time of the forward communication frame" here means the time at which the forward communication frame would have been normally received if there was no time-out. This time can be obtained from the reception time interval when each forward frame was received in the past and the time at which the forward communication frame was received last time. For example, the communication unit 42 may determine the point of time obtained by adding the reception time interval to the time when the forward communication frame was received last time as the "estimated reception point of the forward communication frame".
 通信品質モニタ部43は、行きの通信フレームの受信有無に拘わらず、一定時間間隔で通信品質値をモニタすると共に、モニタした通信品質値を、モニタ時の時刻を表す時刻情報に関連付けて、通信品質値のモニタログとして不揮発性メモリに記録している。そこで、通信部42は、行きの通信フレームの推定受信時点の時刻を表す時刻情報を生成し、そしてこの時刻情報に関連付けられて通信品質値のモニタログに格納される通信品質値を、行きの通信フレームの推定受信時点の通信品質値として取得する。 The communication quality monitor unit 43 monitors the communication quality value at regular time intervals regardless of whether or not an outgoing communication frame is received, and associates the monitored communication quality value with time information representing the time at the time of monitoring to perform communication. It is recorded in non-volatile memory as a quality value monitor log. Therefore, the communication unit 42 generates time information representing the estimated reception time of the outgoing communication frame, and uses the communication quality value stored in the communication quality value monitor log in association with this time information as the outgoing communication frame. Acquired as the communication quality value at the estimated reception time of the communication frame.
 通信部42は、さらに、行きの通信フレームを受信しなかったことを表す受信結果情報と、通信がタイムアウトした時点の時刻を表す時刻情報とを生成する。通信部42は、行きの通信フレームを受信したことを表す受信結果情報と、取得した通信品質値とを、生成した時刻情報に関連付けて不揮発性メモリに記録する(S17)。通信部42は、次に、通信がタイムアウトした時点から一定時間前までの各時刻における各通信品質値を、通信品質値のモニタログから取得する(S18)。通信部42は、取得した各通信品質値を、行きの通信フレームの推定受信時点の時刻を表す時刻情報にさらに関連付けて不揮発性メモリに記録する(S19)。この後、処理はステップS20に進む。 The communication unit 42 further generates reception result information indicating that the outgoing communication frame was not received, and time information indicating the time when the communication timed out. The communication unit 42 records the reception result information indicating that the outgoing communication frame has been received and the acquired communication quality value in the non-volatile memory in association with the generated time information (S17). Next, the communication unit 42 acquires each communication quality value at each time from the time when the communication timed out until a certain time ago from the monitor log of the communication quality value (S18). The communication unit 42 records each acquired communication quality value in the non-volatile memory in association with the time information representing the estimated reception time of the outgoing communication frame (S19). After that, the process proceeds to step S20.
 通信部42は、行きの通信フレームを受信した(または受信しなかった)後、帰りの通信フレームを受信したか否かを判定する(S20)。通信部42は、帰りの通信フレームを受信したと判定した場合(S20でYES)、帰りの通信フレームを受信した時点での通信品質値を、不揮発性メモリから取得する(S21)。通信部42は、さらに、帰りの通信フレームを受信したことを表す受信結果情報と、帰りの通信フレームを受信した時点での時刻を表す時刻情報とを生成する。通信部42は、帰りの通信フレームを受信したことを表す受信結果情報と、取得した通信品質値とを、生成した時刻情報に関連付けて不揮発性メモリに記録する(S22)。マスタ装置20は、次に、受信した通信フレームに基づいて、所定のI/O制御を実行する(S23)。通信部42は、この後ステップS1の処理に戻って、タイマーを再び開始する。これにより、次の通信フレームの受信を準備する。 After receiving (or not receiving) an outgoing communication frame, the communication unit 42 determines whether or not a return communication frame has been received (S20). When determining that the return communication frame has been received (YES in S20), the communication unit 42 acquires the communication quality value at the time of receiving the return communication frame from the nonvolatile memory (S21). The communication unit 42 further generates reception result information indicating that the return communication frame has been received, and time information indicating the time at which the return communication frame was received. The communication unit 42 records the reception result information indicating that the return communication frame has been received and the acquired communication quality value in the non-volatile memory in association with the generated time information (S22). Master device 20 then executes a predetermined I/O control based on the received communication frame (S23). The communication unit 42 then returns to the process of step S1 and restarts the timer. This prepares for reception of the next communication frame.
 通信部42は、帰りの通信フレームを受信しないと判定した場合(S20でNO)、通信がタイムアウトしたか否かを判定する(S24)。通信部42は、帰りの通信フレームを受信することなくタイマーが終了した場合、通信がタイムアウトしたと判定する。一方、タイマーが終了していない場合、通信はタイムアウトしていないと判定する。通信部42は、通信がタイムアウトしていないと判定した場合(S24でNO)、ステップS20の処理に戻って、再び、帰りの通信フレームを受信したか否かを判定する。なお、通信部42が行きの通信フレームの受信していない場合、タイマーはすでに終了しているので、ステップS24の判定結果は必ず偽(NO)になる。 When the communication unit 42 determines that the return communication frame is not received (NO in S20), it determines whether the communication has timed out (S24). If the timer expires without receiving a return communication frame, the communication unit 42 determines that the communication has timed out. On the other hand, if the timer has not expired, it is determined that the communication has not timed out. When determining that the communication has not timed out (NO in S24), the communication unit 42 returns to the process of step S20 and determines again whether or not a return communication frame has been received. If the communication unit 42 has not received the outgoing communication frame, the timer has already expired, so the determination result in step S24 is always false (NO).
 通信部42は、通信がタイムアウトしたと判定した場合(S24でYES)、帰りの通信フレームを推定受信時点の通信品質値を不揮発性メモリから取得する(S25)。帰りの通信フレームの推定受信時点の求め方は、前述した行きの通信フレームの推定受信時点の求め方と同一であるため、詳細な説明を省略する。通信部42は、さらに、帰りの通信フレームを受信しなかったことを表す受信結果情報と、通信がタイムアウトした時点の時刻を表す時刻情報とを生成する。通信部42は、帰りの通信フレームを受信したことを表す受信結果情報と、取得した通信品質値とを、生成した時刻情報に関連付けて不揮発性メモリに記録する(S26)。通信部42は、次に、通信がタイムアウトした時点から一定時間前までの各時刻における各通信品質値を、不揮発性メモリから取得する(S27)。通信部42は、取得した各通信品質値を、時刻情報にさらに関連付けて不揮発性メモリに記録する(S28)。通信部42は、この後ステップS1の処理に戻って、タイマーを再び開始する。これにより、次の通信フレームの受信を準備する。 When the communication unit 42 determines that the communication has timed out (YES in S24), it acquires the communication quality value at the time of estimated reception of the return communication frame from the nonvolatile memory (S25). Since the method of obtaining the estimated reception time of the return communication frame is the same as the method of obtaining the estimated reception time of the forward communication frame described above, detailed description thereof will be omitted. The communication unit 42 further generates reception result information indicating that the return communication frame was not received, and time information indicating the time when the communication timed out. The communication unit 42 records the reception result information indicating that the return communication frame has been received and the acquired communication quality value in the non-volatile memory in association with the generated time information (S26). Next, the communication unit 42 acquires from the nonvolatile memory each communication quality value at each time from when the communication timed out until a certain time ago (S27). The communication unit 42 further associates each acquired communication quality value with the time information and records it in the non-volatile memory (S28). The communication unit 42 then returns to the process of step S1 and restarts the timer. This prepares for reception of the next communication frame.
 スレーブ装置40Aおよび40Bは、行きの通信フレームおよび帰りの通信フレームの双方を受信する可能性があるため、図6に示す処理フローに適宜従って動作する。一方、スレーブ装置40Cは、帰りの通信フレームを受信する可能性がないため、図6に示す処理フローのうち一部のみに適宜従って動作する。すなわちスレーブ装置40Cは、図6に示す処理フローのうち、帰りの通信フレームに関する各処理を実行しない。したがって、スレーブ装置40Cは、帰りの通信フレームに対応する受信結果情報および通信品質値を時刻情報に関連付けて記録することはない。 Since the slave devices 40A and 40B may receive both outgoing communication frames and return communication frames, they operate according to the processing flow shown in FIG. On the other hand, since the slave device 40C has no possibility of receiving a return communication frame, it operates according to only part of the processing flow shown in FIG. That is, the slave device 40C does not execute each process related to the return communication frame in the process flow shown in FIG. Therefore, the slave device 40C does not record the reception result information and the communication quality value corresponding to the return communication frame in association with the time information.
 図7は、通信サイクルごとの通信フレームの送信経路を示す図である。この図の例では、マスタ装置20は、通信サイクル時間ごとの通信フレームの送信を、合計で6回実行している。1回目の通信サイクルおよび2回目の通信サイクルでは、通信フレームはスレーブ装置40Cまで到達し、さらにマスタ装置20に正常に戻っている。すなわち、スレーブ装置40A~40Cは、いずれも通信フレームを正常に受信し、かつ送信することができている。3回目~5回目の通信サイクルでは、通信フレームは、スレーブ装置40Cに届いておらず、したがってマスタ装置20に返送されていない。すなわち、スレーブ装置40Cは行きの通信フレームを正常に受信できていない。したがって、スレーブ装置40Aおよび40Bは、行きの通信フレームは受信できているが、帰りの通信フレームを受信できていない。6回目の通信サイクルでは、通信フレームはスレーブ装置40Cまで到達し、さらにマスタ装置20に正常に戻っている。すなわち、5回目の通信サイクルと6回目の通信サイクルとの間で、スレーブ装置40Cにおける通信異常が回復している。 FIG. 7 is a diagram showing transmission paths of communication frames for each communication cycle. In the example shown in this figure, the master device 20 transmits a communication frame six times in total for each communication cycle time. In the first communication cycle and the second communication cycle, the communication frame reaches the slave device 40C and returns to the master device 20 normally. That is, all of the slave devices 40A to 40C can normally receive and transmit communication frames. In the third to fifth communication cycles, the communication frame has not reached the slave device 40C and therefore has not been sent back to the master device 20. FIG. That is, the slave device 40C cannot normally receive the outgoing communication frame. Therefore, the slave devices 40A and 40B have received the outgoing communication frame, but have not received the return communication frame. In the sixth communication cycle, the communication frame reaches the slave device 40C and returns to the master device 20 normally. That is, the communication abnormality in the slave device 40C is recovered between the fifth communication cycle and the sixth communication cycle.
 図8は、マスタ装置20によって収集されたスレーブ装置40A~40Cの通信品質値および受信結果情報の一覧の一例を示す図である。本図の例は、図7に示すように3回目~5回目の通信サイクルにおいてスレーブ装置40Cが通信フレームを受信しない場合に生成される一覧である。 FIG. 8 is a diagram showing an example of a list of communication quality values and reception result information of the slave devices 40A to 40C collected by the master device 20. FIG. The example in this figure is a list generated when the slave device 40C does not receive a communication frame in the third to fifth communication cycles as shown in FIG.
 ここで、図5に示すマスタ装置20の処理の説明に戻る。上述したように、マスタ装置20の通信部22は、スレーブ装置40から返信された通信フレームを受信しないと判定した場合、スレーブ装置40A~40Cにメッセージを送信する(S4)。ここでは、通信フレームを3回続けて受信しなかった場合にメッセージを送信するものとする。したがって、図7および図8の例では、通信部42は、3回目、4回目、および5回目の通信フレームを続けて受信しない場合に、メッセージを送信することになる。メッセージの送信経路は、通信フレームの送信経路における行きの箇所と同一である。すなわち、マスタ装置20はスレーブ装置40Aにメッセージを送信する。スレーブ装置40Aの通信部42は、マスタ装置20から送信されたメッセージを受信し、さらにスレーブ装置40Bにメッセージを送信する。スレーブ装置40Bの通信部42は、スレーブ装置40Aから送信されたメッセージを受信し、スレーブ装置40Cに送信する。スレーブ装置40Cの通信部42は、スレーブ装置40Bから送信されたメッセージを受信する。スレーブ装置40Cは、受信したメッセージを他の装置に送信しない。すなわちスレーブ装置40Cはメッセージの到着点である。 Here, we return to the description of the processing of the master device 20 shown in FIG. As described above, when the communication unit 22 of the master device 20 determines not to receive the communication frame returned from the slave device 40, it transmits a message to the slave devices 40A to 40C (S4). Here, it is assumed that the message is transmitted when the communication frame is not received three times in succession. Therefore, in the examples of FIGS. 7 and 8, the communication unit 42 will transmit the message if it does not receive the third, fourth, and fifth communication frames in succession. The transmission path of the message is the same as the destination in the transmission path of the communication frame. That is, master device 20 transmits a message to slave device 40A. The communication unit 42 of the slave device 40A receives the message transmitted from the master device 20 and further transmits the message to the slave device 40B. The communication unit 42 of the slave device 40B receives the message transmitted from the slave device 40A and transmits it to the slave device 40C. The communication unit 42 of the slave device 40C receives the message transmitted from the slave device 40B. Slave device 40C does not transmit received messages to other devices. That is, the slave device 40C is the point of arrival of the message.
 スレーブ装置40A~40Cは、メッセージを受信した場合、各通信サイクルにおける通信フレームの受信結果情報、通信品質値、および時刻情報を、マスタ装置20に送信する。ここでは、通信部22が通信フレームを3回続けて受信しない場合にメッセージを送信することに対応して、直近の3つの連続した通信フレーム分の受信結果情報、通信品質値、および時刻情報が送信される。マスタ装置20の通信部22は、各通信サイクルにおける通信フレームの受信結果情報、通信品質値、および時刻情報を、スレーブ装置40A~40Cから受信する(S5)。 When the slave devices 40A to 40C receive the message, they transmit to the master device 20 the communication frame reception result information, the communication quality value, and the time information in each communication cycle. Here, in response to transmitting a message when the communication unit 22 does not receive three communication frames consecutively, the reception result information, communication quality value, and time information for the latest three consecutive communication frames are sent. The communication unit 22 of the master device 20 receives the communication frame reception result information, the communication quality value, and the time information in each communication cycle from the slave devices 40A to 40C (S5).
 マスタ装置20の特定部23は、受信した各受信有無情報に関連付けられる時刻情報を基準として、受信した各受信有無情報をソートする(S6)。例えば、時刻情報がより古い受信結果情報がより先頭の方に配置されるようにソートする。同様に、受信した各受信有無情報に関連付けられる時刻情報を基準として、受信した各通信品質値をソートする。特定部23は、さらに、時刻情報と通信サイクル番号との対応テーブルを参照して、各受信結果情報に関連付けられる時刻情報を、通信サイクル番号に変換する。例えば、ある受信結果情報に関連付けられる時刻情報に最も近い時刻情報を対応テーブルから検索し、見つかった時刻情報に関連付けて対応テーブルに格納される通信サイクル番号を取得する。そして、ある受信結果情報に関連付けられる時刻情報を、取得した通信サイクル番号に変換する。これにより特定部23は、各受信結果情報に対応する通信フレームの通信サイクル番号を正確に特定することができる。 The specifying unit 23 of the master device 20 sorts the received reception status information based on the time information associated with the received reception status information (S6). For example, sorting is performed so that reception result information with older time information is arranged at the beginning. Similarly, each received communication quality value is sorted based on the time information associated with each received reception/non-reception information. The specifying unit 23 further refers to a correspondence table between time information and communication cycle numbers, and converts the time information associated with each piece of reception result information into a communication cycle number. For example, the correspondence table is searched for time information closest to the time information associated with certain reception result information, and the communication cycle number stored in the correspondence table in association with the found time information is acquired. Then, the time information associated with certain reception result information is converted into the acquired communication cycle number. Thereby, the identifying unit 23 can accurately identify the communication cycle number of the communication frame corresponding to each piece of reception result information.
 特定部23は、これらの処理を実行した結果、図8に示すようなテーブルを生成する。図8のテーブルには、3回目~5回目の通信サイクルにおける、スレーブ装置40A~40Cにおける行きの通信フレーム受信結果情報および通信品質値が格納されている。さらに、3回目~5回目の通信サイクルにおける、スレーブ装置40Aおよび40Bにおける帰りの通信フレーム受信結果情報および通信品質値が格納されている。スレーブ装置40Cは帰りの通信フレームを受信しないので、図8のテーブルには、スレーブ装置40Cにおける帰りの通信フレームの受信結果情報および通信品質値は格納されていない。 The identifying unit 23 generates a table as shown in FIG. 8 as a result of executing these processes. The table in FIG. 8 stores forward communication frame reception result information and communication quality values in the slave devices 40A to 40C in the third to fifth communication cycles. Furthermore, return communication frame reception result information and communication quality values in the slave devices 40A and 40B in the third to fifth communication cycles are stored. Since the slave device 40C does not receive the return communication frame, the table in FIG. 8 does not store the reception result information and the communication quality value of the return communication frame in the slave device 40C.
 特定部23は、図8のテーブルを参照して、通信サイクル番号の小さい順に、かつスレーブ装置40A、40B、40Cの行きの通信フレーム、スレーブ装置40A、40B、40Cの帰りの通信フレームの順に、通信フレーム受信の有無の結果を確認する(S7)。通信部42は、最初に「無し」が見つかった通信フレームを受信するための通信ポートを、通信異常原因ポートと認定する(S8)。 The specifying unit 23 refers to the table of FIG. 8, and in order of the communication cycle number, and in the order of the outgoing communication frames of the slave devices 40A, 40B, and 40C and the incoming communication frames of the slave devices 40A, 40B, and 40C, The result of presence/absence of communication frame reception is confirmed (S7). The communication unit 42 identifies the communication port for receiving the communication frame in which "none" is found first as the communication error cause port (S8).
 図8のテーブルを参照する場合、特定部23は、まず、最も通信サイクル番号の小さい3回目の通信サイクルにおける、スレーブ装置40Aの行きの通信フレームの受信結果情報を確認する。これは「あり」であるため、特定部23は次に、3回目の通信サイクルを対象に、スレーブ装置40Bの行きの通信フレームの受信結果情報の値を調べる。これも「あり」であるため、特定部23は次に、3回目の通信サイクルにおけるスレーブ装置40Cの行きの通信フレームの受信結果情報の値を調べる。これは「無し」であるため、特定部23はテーブルの探索を停止する。特定部23は、最初に「無し」と認定された受信結果情報に対応する行きの通信フレームを受信するためのスレーブ装置40Cの通信ポート61を、通信異常原因ポートとして特定する。このように、特定部23は、産業用ネットワークシステムにおいて通信異常が発生したスレーブ装置40を特定する。 When referring to the table in FIG. 8, the specifying unit 23 first checks the reception result information of the communication frame going to the slave device 40A in the third communication cycle with the smallest communication cycle number. Since this is "yes", the specifying unit 23 next checks the value of the reception result information of the outgoing communication frame of the slave device 40B for the third communication cycle. Since this is also "yes", the specifying unit 23 next checks the value of the reception result information of the communication frame to the slave device 40C in the third communication cycle. Since this is "none", the specifying unit 23 stops searching the table. The specifying unit 23 specifies the communication port 61 of the slave device 40C for receiving the outgoing communication frame corresponding to the reception result information that is first recognized as "none" as the communication error cause port. In this way, the identifying unit 23 identifies the slave device 40 in which the communication abnormality has occurred in the industrial network system.
 特定部23は、3回目の通信サイクルにおけるスレーブ装置40Cの行きの通信フレームの通信品質値を、通信異常原因ポートの通信品質値として、図8のテーブルから取得する。表示部24は、認定された通信異常原因ポートと、そのポートの通信品質値とを、表示装置11に表示する(S9)。例えば「スレーブ装置40Cの通信ポート61に異常発生、通信品質値=3」などと表示される。産業用ネットワークシステム1の管理者は、この表示を確認することによって、産業用ネットワークシステム1の稼働中に、スレーブ装置40Cの通信ポート61に何らかの異常が発生したことを知ることができる。管理者はさらに、スレーブ装置40Cの通信ポート61の通信品質値が「3」であることを考慮して、その異常がスレーブ装置40Cにおいて発生したノイズであるか否かを検討することができる。 The identifying unit 23 acquires the communication quality value of the communication frame to the slave device 40C in the third communication cycle from the table of FIG. 8 as the communication quality value of the communication error cause port. The display unit 24 displays the recognized communication error cause port and the communication quality value of the port on the display device 11 (S9). For example, a message such as "Abnormal occurrence in communication port 61 of slave device 40C, communication quality value=3" is displayed. By checking this display, the administrator of the industrial network system 1 can know that some kind of abnormality has occurred in the communication port 61 of the slave device 40C while the industrial network system 1 is in operation. The administrator can further consider that the communication quality value of the communication port 61 of the slave device 40C is "3" and examine whether the abnormality is noise generated in the slave device 40C.
 以上のように、デイジーチェイン接続されたスレーブ装置40A~40Cの通信部42は、定期送信される通信フレームの受信がタイムアウトした場合に、通信フレームの受信有無を示す受信結果情報を不揮発性メモリに記録する。マスタ装置20は、スレーブ装置40A~40Cに送信した通信フレームがマスタ装置20に戻って来ない場合、各スレーブ装置40A~40Cから受信結果情報を取得し、さらに各受信結果情報の内容を確認する。これによりマスタ装置20は、産業用ネットワークシステム1において異常が発生した通信ポートを容易に特定することができる。その際、マスタ装置20は、各通信部22に通信異常が発生していることを確かめるために、各スレーブ装置40A~40Cに問い合わせの通信フレームを別途送信する必要がない。 As described above, the communication units 42 of the daisy-chained slave devices 40A to 40C store the reception result information indicating whether or not the communication frame has been received in the non-volatile memory when the reception of the periodically transmitted communication frame times out. Record. If the communication frame transmitted to the slave devices 40A-40C does not return to the master device 20, the master device 20 acquires the reception result information from each of the slave devices 40A-40C, and further confirms the content of each reception result information. . Thereby, the master device 20 can easily identify the communication port in which the abnormality has occurred in the industrial network system 1 . In this case, the master device 20 does not need to separately transmit an inquiry communication frame to each of the slave devices 40A to 40C in order to confirm that each communication unit 22 has a communication error.
 <変形例>
 マスタ装置20の通信部22は、通信フレームが送信される通信サイクルの番号が予め関連付けられた通信フレームを、スレーブ装置40A~40Cに送信することもできる。この場合、スレーブ装置40A~40Cの通信部42は、通信フレームを受信した場合、受信した通信フレームに関連付けられる通信サイクル番号を取得する。通信部42は、さらに、受信結果情報および通信品質値に、取得した通信サイクル番号を関連付けて不揮発性メモリに記録する。また、通信部42は、マスタ装置20からメッセージをした場合、各通信サイクルにおける通信フレームの受信結果情報、通信品質値、および通信サイクル番号を、マスタ装置20に送信する。したがってマスタ装置20の特定部23は、受信した各情報を参照することによって、受信結果情報および通信品質値に対応する通信サイクル番号を知ることができる。すなわち、特定部23は、通信サイクル番号と時刻情報と関連付けた対応テーブルを作成する必要がない。
<Modification>
The communication unit 22 of the master device 20 can also transmit to the slave devices 40A to 40C communication frames pre-associated with the communication cycle numbers in which the communication frames are transmitted. In this case, when receiving a communication frame, the communication units 42 of the slave devices 40A to 40C acquire the communication cycle number associated with the received communication frame. The communication unit 42 further associates the acquired communication cycle number with the reception result information and the communication quality value and records them in the non-volatile memory. Further, when receiving a message from the master device 20 , the communication section 42 transmits to the master device 20 the reception result information of the communication frame in each communication cycle, the communication quality value, and the communication cycle number. Therefore, the specifying unit 23 of the master device 20 can know the communication cycle number corresponding to the reception result information and the communication quality value by referring to each received information. That is, the identification unit 23 does not need to create a correspondence table that associates the communication cycle number with the time information.
 表示部24は、図8に示すテーブルそのものを表示装置11に表示することができる。この場合、管理者は、3回目から5回目の各通信フレームの送信期間中に、スレーブ装置40Cの通信ポート61において異常が発生したことを知ることができる。 The display unit 24 can display the table itself shown in FIG. In this case, the administrator can know that an abnormality has occurred in the communication port 61 of the slave device 40C during the transmission period of each of the third to fifth communication frames.
 表示部24は、通信異常原因ポートにおいて通信がタイムアウトした時点から一定時間前の各通信品質値を、通信異常原因ポートの通信品質値と共に表示装置11にさらに表示することができる。例えば、3回目の通信サイクルにおけるスレーブ装置40Cの行きの通信フレームの通信品質値に関連付けられている、通信がタイムアウトした時点から一定時間前の各通信品質値を、グラフ形式で表示する。これにより、管理者は、異常が発生したスレーブ装置40Cの通信ポート61における通信品質値の時間的変化を知ることができる。 The display unit 24 can further display on the display device 11 each communication quality value for a certain period of time before the communication timed out at the communication error cause port together with the communication quality value of the communication error cause port. For example, each communication quality value a certain time before the communication timed out, which is associated with the communication quality value of the communication frame to the slave device 40C in the third communication cycle, is displayed in a graph format. This allows the administrator to know the temporal change in the communication quality value at the communication port 61 of the slave device 40C in which an error has occurred.
 〔実現例〕
 スレーブ装置40の各機能ブロック(特に、通信部42および通信品質モニタ部43)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of implementation]
Each functional block of the slave device 40 (in particular, the communication unit 42 and the communication quality monitor unit 43) may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or realized by software. You may
 後者の場合、制御装置は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、前記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、前記コンピュータにおいて、前記プロセッサが前記プログラムを前記記録媒体から読み取って実行することにより、本発明の目的が達成される。 In the latter case, the control device is equipped with a computer that executes program instructions, which are software that implements each function. This computer includes, for example, one or more processors, and a computer-readable recording medium storing the program. In the computer, the processor reads the program from the recording medium and executes it, thereby achieving the object of the present invention.
 前記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。前記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。 As the processor, for example, a CPU (Central Processing Unit) can be used. As the recording medium, a "non-temporary tangible medium" such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
 また、前記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、前記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して前記コンピュータに供給されてもよい。なお、本発明の一態様は、前記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In addition, a RAM (Random Access Memory) for expanding the program may be further provided. Also, the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. Note that one aspect of the present invention can also be implemented in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
 〔まとめ〕
 本発明の一態様に係るスレーブ装置は、マスタ装置にリンクされ、かつ互いに直列的に接続される複数のスレーブ装置のうちの1つのスレーブ装置であって、前記マスタ装置から定期的に送信され、かつ前記複数のスレーブ装置を一巡して前記マスタ装置に戻る通信フレームを受信する受信部と、前記受信部が前記通信フレームを受信することなく通信がタイムアウトした場合、前記通信フレームを受信しなかったことを表す受信結果情報を記録する記録部と、前記受信結果情報を前記マスタ装置に送信する送信部とを備えている。
〔summary〕
A slave device according to an aspect of the present invention is one of a plurality of slave devices linked to a master device and serially connected to each other, periodically transmitted from the master device, and a receiving unit for receiving a communication frame that goes through the plurality of slave devices and returns to the master device, and if communication times out without the receiving unit receiving the communication frame, the communication frame is not received. and a transmission unit for transmitting the reception result information to the master device.
 前記の構成によれば、スレーブ装置は、マスタ装置から定期的に送信される通信フレームを受信する。スレーブ装置は、受信した通信フレームに基づいて例えば自装置のI/O制御を実行する。スレーブ装置は、通信フレームを受信することなく通信がタイムアウトした場合、通信フレームを受信しなかったことを表す受信結果情報をマスタ装置に送信する。マスタ装置は、受信した受信結果情報に基づいて、通信異常が発生した箇所(スレーブ装置)を特定することができる。その際、マスタ装置は、個々のスレーブ装置との通信が正常に行われるか否かを確かめるためのping等の信号を、各スレーブ装置に送信する必要がない。したがってマスタ装置は、通信異常が発生した箇所(スレーブ装置)を容易に特定することができる。 According to the above configuration, the slave device receives communication frames periodically transmitted from the master device. The slave device executes, for example, I/O control of its own device based on the received communication frame. When communication times out without receiving a communication frame, the slave device transmits reception result information indicating that the communication frame was not received to the master device. The master device can identify the location (slave device) where the communication error occurred based on the received reception result information. In this case, the master device does not need to send a signal such as ping to each slave device to confirm whether or not communication with each slave device is performed normally. Therefore, the master device can easily identify the location (slave device) where the communication error occurred.
 一実施形態において、前記通信の品質を表す通信品質値を定期的にモニタするモニタ部をさらに備えており、前記記録部は、前記通信フレームの推定受信時点での前記通信品質値を前記受信結果情報に関連付けてさらに記録し、前記送信部は、記録された前記受信結果情報および前記通信品質値を前記マスタ装置に送信する。 In one embodiment, a monitor unit is further provided for periodically monitoring a communication quality value representing the quality of the communication, and the recording unit records the communication quality value at the time of estimated reception of the communication frame as the reception result. Information is further recorded in association with the information, and the transmission unit transmits the recorded reception result information and the communication quality value to the master device.
 前記の構成によれば、マスタ装置が通信品質値を表示すれば、管理者は、表示された通信品質値を参照して、通信異常の原因がノイズか否かを判断することができる。 According to the above configuration, if the master device displays the communication quality value, the administrator can refer to the displayed communication quality value and determine whether noise is the cause of the communication abnormality.
 一実施形態において、前記記録部は、前記受信結果情報および通信品質値を、前記推定受信時点の時刻を表す時刻情報に関連付けて記録し、前記送信部は、記録された前記受信結果情報、前記通信品質値、および前記時刻情報を前記マスタ装置に送信する。 In one embodiment, the recording unit records the reception result information and the communication quality value in association with time information representing the time of the estimated reception time, and the transmission unit records the recorded reception result information, the The communication quality value and the time information are transmitted to the master device.
 前記の構成によれば、マスタ装置は、受信した時刻情報に基づいて、通信異常が発生した通信サイクルの番号を正確に特定することができる。 According to the above configuration, the master device can accurately identify the communication cycle number in which the communication abnormality occurred, based on the received time information.
 一実施形態において、前記通信品質値はSQI値である。 In one embodiment, the communication quality value is the SQI value.
 前記の構成によれば、管理者は、表示されたSQI値を参照して、通信異常の原因がノイズか否かを判断することができる。 According to the above configuration, the administrator can refer to the displayed SQI value to determine whether the cause of the communication abnormality is noise.
 本発明の一態様に係るスレーブ装置の制御方法は、マスタ装置にリンクされ、かつ互いに直列的に接続される複数のスレーブ装置のうちの1つのスレーブ装置の制御方法であって、前記マスタ装置から定期的に送信され、かつ前記複数のスレーブ装置を一巡して前記マスタ装置に戻る通信フレームを受信するステップと、前記通信フレームを受信することなく通信がタイムアウトした場合、前記通信が通信フレームを受信しなかったことを表す受信結果情報を記録するステップと、前記受信結果情報を前記マスタ装置に送信する送信ステップとを有する。 A method of controlling a slave device according to an aspect of the present invention is a method of controlling one of a plurality of slave devices linked to a master device and connected in series with each other, comprising: receiving a communication frame that is periodically transmitted and that loops through the plurality of slave devices and returns to the master device; and if the communication times out without receiving the communication frame, the communication receives the communication frame. a step of recording reception result information indicating that the transmission was not performed; and a transmission step of transmitting the reception result information to the master device.
 前記の構成によれば、マスタ装置は、通信異常が発生した箇所(スレーブ装置)を容易に特定することができる。 According to the above configuration, the master device can easily identify the location (slave device) where the communication error occurred.
 本発明の一態様に係る通信異常特定システムは、上述したいずれかのスレーブ装置と、マスタ装置とを備えている通信異常特定システムであって、前記マスタ装置は、前記スレーブ装置から送信された受信結果情報を受信する受信部と、受信された前記受信結果情報に基づいて、通信異常が発生した前記スレーブ装置を特定する特定部とを備えている。 A communication abnormality identification system according to an aspect of the present invention is a communication abnormality identification system including any of the slave devices described above and a master device, wherein the master device receives A receiving unit for receiving result information, and a specifying unit for specifying the slave device in which the communication abnormality has occurred based on the received reception result information.
 前記の構成によれば、マスタ装置は、通信異常が発生した箇所(スレーブ装置)を容易に特定することができる。 According to the above configuration, the master device can easily identify the location (slave device) where the communication error occurred.
 本発明は前述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。各実施形態にそれぞれ開示された技術的手段を組み合わせることによって、新しい技術的特徴を形成することもできる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims. Embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention. A new technical feature can be formed by combining the technical means disclosed in each embodiment.
1 産業用ネットワークシステム
10 サーバ
11 表示装置
20 マスタ装置
21、41 制御部
22、42 通信部
23 特定部
24 表示部
30 ハブ
40、40A、40B、40C スレーブ装置
43 通信品質モニタ部
50、51、52 制御用コンピュータ
61、62 通信ポート
300 ケーブル
1 Industrial network system 10 Server 11 Display device 20 Master devices 21, 41 Control units 22, 42 Communication unit 23 Identification unit 24 Display unit 30 Hubs 40, 40A, 40B, 40C Slave device 43 Communication quality monitor units 50, 51, 52 Control computers 61, 62 Communication port 300 Cable

Claims (6)

  1.  マスタ装置にリンクされ、かつ互いに直列的に接続される複数のスレーブ装置のうちの1つのスレーブ装置であって、
     前記マスタ装置から定期的に送信され、かつ前記複数のスレーブ装置を一巡して前記マスタ装置に戻る通信フレームを受信する受信部と、
     前記受信部が前記通信フレームを受信することなく通信がタイムアウトした場合、前記通信フレームを受信しなかったことを表す受信結果情報を記録する記録部と、
     前記受信結果情報を前記マスタ装置に送信する送信部とを備えているスレーブ装置。
    one slave device of a plurality of slave devices linked to the master device and serially connected to each other,
    a receiving unit that receives a communication frame that is periodically transmitted from the master device and returns to the master device after circulating through the plurality of slave devices;
    a recording unit that records reception result information indicating that the communication frame has not been received when communication times out without the receiving unit receiving the communication frame;
    a transmitting unit configured to transmit the reception result information to the master device.
  2.  前記通信の品質を表す通信品質値を定期的にモニタするモニタ部をさらに備えており、
     前記記録部は、前記通信フレームの推定受信時点の前記通信品質値を前記受信結果情報に関連付けてさらに記録し、
     前記送信部は、記録された前記受信結果情報および前記通信品質値を、前記マスタ装置に送信する請求項1に記載のスレーブ装置。
    further comprising a monitor unit that periodically monitors a communication quality value representing the quality of the communication;
    The recording unit further records the communication quality value at the estimated reception time of the communication frame in association with the reception result information,
    2. The slave device according to claim 1, wherein the transmission unit transmits the recorded reception result information and the communication quality value to the master device.
  3.  前記記録部は、前記受信結果情報と、前記推定受信時点の前記通信品質値とを、前記推定受信時点の時刻を表す時刻情報に関連付けて記録し、
     前記送信部は、記録された前記受信結果情報、前記通信品質値、および前記時刻情報を前記マスタ装置に送信する請求項2に記載のスレーブ装置。
    The recording unit records the reception result information and the communication quality value at the estimated reception time in association with time information representing the time at the estimated reception time,
    3. The slave device according to claim 2, wherein the transmission unit transmits the recorded reception result information, the communication quality value, and the time information to the master device.
  4.  前記通信品質値はSQI値である請求項2または3に記載のスレーブ装置。 The slave device according to claim 2 or 3, wherein the communication quality value is an SQI value.
  5.  マスタ装置にリンクされ、かつ互いに直列的に接続される複数のスレーブ装置のうちの1つのスレーブ装置の制御方法であって、
     前記マスタ装置から定期的に送信され、かつ前記複数のスレーブ装置を一巡して前記マスタ装置に戻る通信フレームを受信するステップと、
     前記通信フレームを受信することなく通信がタイムアウトした場合、前記通信フレームを受信しなかったことを表す受信結果情報を記録するステップと、
     前記受信結果情報を前記マスタ装置に送信する送信ステップとを有する制御方法。
    A method of controlling one of a plurality of slave devices linked to a master device and serially connected to each other, comprising:
    receiving a communication frame periodically transmitted from the master device and looping through the plurality of slave devices and returning to the master device;
    when communication times out without receiving the communication frame, recording reception result information indicating that the communication frame was not received;
    and a transmission step of transmitting the reception result information to the master device.
  6.  請求項1~4のいずれか1項に記載のスレーブ装置と、マスタ装置とを備えている通信異常箇所特定システムであって、
     前記マスタ装置は、
      前記スレーブ装置から送信された受信結果情報を受信する受信部と、
      受信された前記受信結果情報に基づいて、通信異常が発生した前記スレーブ装置を特定する特定部とを備えている通信異常箇所検出システム。
    A communication abnormality point identification system comprising a slave device according to any one of claims 1 to 4 and a master device,
    The master device
    a receiving unit that receives reception result information transmitted from the slave device;
    and a specifying unit that specifies the slave device in which the communication error has occurred based on the received reception result information.
PCT/JP2021/007843 2021-02-10 2021-03-02 Slave device, method for controlling same, and communication abnormality location detection system WO2022172463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021020092A JP2022122692A (en) 2021-02-10 2021-02-10 Slave device and control method thereof, and communication abnormal place detection system
JP2021-020092 2021-02-10

Publications (1)

Publication Number Publication Date
WO2022172463A1 true WO2022172463A1 (en) 2022-08-18

Family

ID=82837593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007843 WO2022172463A1 (en) 2021-02-10 2021-03-02 Slave device, method for controlling same, and communication abnormality location detection system

Country Status (2)

Country Link
JP (1) JP2022122692A (en)
WO (1) WO2022172463A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187613A1 (en) * 2018-03-26 2019-10-03 住友電気工業株式会社 Vehicle-mounted communication system, switch device, communication control method, and communication control program
WO2020235178A1 (en) * 2019-05-23 2020-11-26 オムロン株式会社 Information processing device, information processing system, notification method, and information processing program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187613A1 (en) * 2018-03-26 2019-10-03 住友電気工業株式会社 Vehicle-mounted communication system, switch device, communication control method, and communication control program
WO2020235178A1 (en) * 2019-05-23 2020-11-26 オムロン株式会社 Information processing device, information processing system, notification method, and information processing program

Also Published As

Publication number Publication date
JP2022122692A (en) 2022-08-23

Similar Documents

Publication Publication Date Title
CN108377255B (en) Information processing apparatus, information processing method, and recording medium
AU2015234371B2 (en) Apparatus and method for analyzing a control network
US10116488B2 (en) System for analyzing an industrial control network
CN108376111B (en) Information processing apparatus, information processing method, and computer-readable storage medium
CN101977128B (en) Interface detection method and device for communication equipment
JP5365234B2 (en) Token error detection / recovery method between terminal devices
CN104950832B (en) Steel plant&#39;s control system
WO2022172463A1 (en) Slave device, method for controlling same, and communication abnormality location detection system
CN111373700B (en) Communication system, controlled device, and control method of communication system
WO2019176386A1 (en) Control system, control method, and control program
EP3190472B1 (en) System for analyzing an industrial control network
CN113381880B (en) Internet of things equipment management method, device and system
JP2008181299A (en) Communication error information output program, communication error information output method, and communication error information output device
KR101294308B1 (en) Facilities control system and operating method of the system
CN112165422A (en) One-master multi-slave temperature control system and address automatic matching method
JP5072722B2 (en) Monitoring system and master station
JP6497142B2 (en) Communication monitoring device, communication monitoring program, and communication monitoring method
WO2022190503A1 (en) Information processing device, information processing method, and information processing program
WO2023248547A1 (en) Control system, relay device, and communication method
CN117061316A (en) Apparatus and method for identifying device communication failures in a communication network
US10289635B2 (en) Control apparatus and control system aggregating working data of manufacturing cells
JPH04329098A (en) Remote monitor
JPH01112844A (en) Communication control equipment
JP2008289025A (en) Transmission control system and monitoring control method
JPH0311841A (en) Local area network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925712

Country of ref document: EP

Kind code of ref document: A1