WO2022172401A1 - Design device, design method, and program - Google Patents

Design device, design method, and program Download PDF

Info

Publication number
WO2022172401A1
WO2022172401A1 PCT/JP2021/005267 JP2021005267W WO2022172401A1 WO 2022172401 A1 WO2022172401 A1 WO 2022172401A1 JP 2021005267 W JP2021005267 W JP 2021005267W WO 2022172401 A1 WO2022172401 A1 WO 2022172401A1
Authority
WO
WIPO (PCT)
Prior art keywords
directivity
shape
design
predetermined
acoustic signal
Prior art date
Application number
PCT/JP2021/005267
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 野口
達也 加古
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/005267 priority Critical patent/WO2022172401A1/en
Publication of WO2022172401A1 publication Critical patent/WO2022172401A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present invention relates to a microphone array design method for microphone array processing that emphasizes acoustic signals such as voices and music arriving from arbitrary directions, centering on the microphone array.
  • Patent Document 1 is known as a method for emphasizing acoustic signals such as voices and music arriving from arbitrary directions centering on a microphone array.
  • Patent Document 1 a plurality of recesses are provided from the sphere that forms the base to the inside, and microphones are arranged on the bottom of each recess to form a microphone array.
  • the difference in transfer characteristics between the sound source and the microphones is increased, and directivity performance is improved when performing beamforming that emphasizes acoustic signals in arbitrary directions by microphone array processing. make improvements.
  • Non-Patent Document 1 the amount of improvement in directivity performance, particularly the sharpness of directivity, due to various shapes of recesses is unknown.
  • it is possible to emphasize an acoustic signal from any direction there may be a difference in directivity performance for each direction of arrival, resulting in a difference in the amount of emphasis. not considered.
  • An object of the present invention is to provide a design device, a design method, and a program for designing a microphone array.
  • a design device includes: a base having at least N recesses on its surface, where N is an integer of 2 or more; A device for designing a microphone array having N microphones installed one by one on the bottom side.
  • the design device includes a storage unit that stores a predetermined property and predetermined directivity of an acoustic signal, a shape of a concave portion suitable for the predetermined property and predetermined directivity of the acoustic signal, and a property of the acoustic signal to be collected. and an input unit that receives input of desired directivity, and a design unit that refers to the storage unit and designs the shape of the recess suitable for the property of the input acoustic signal to be collected and the desired directivity.
  • the present invention it is possible to design a microphone array by evaluating the amount of directivity performance improvement in various concave shapes without actually manufacturing the microphone array.
  • FIG. 2 is a functional block diagram of the design device according to the first embodiment
  • FIG. 4 is a diagram showing an example of the processing flow of the design device according to the first embodiment
  • FIG. 4A is a plan view and a cross-sectional view of an example of a recess having a conical horn shape
  • FIG. 4 is a diagram for explaining the shape of a recess
  • FIG. 4 is a diagram showing the relationship between the shape of a recess and parameters
  • FIG. 10 is a plan view and a cross-sectional view of an example of a recess having a parabolic horn shape
  • FIG. 10 is a plan view and a cross-sectional view of an example of a recess having a parabolic horn shape
  • FIG. 4 is a diagram for explaining the shape of a recess;
  • FIG. 4 is a diagram showing the relationship between the shape of a recess and parameters;
  • FIG. 10 is a plan view and a cross-sectional view of an example of a recess having an exponential horn shape;
  • FIG. 4 is a diagram for explaining the shape of a recess;
  • FIG. 4 is a diagram showing the relationship between the shape of a recess and parameters;
  • FIG. 4 is a diagram showing directivity characteristics of a microphone array (without a base) consisting only of microphones;
  • FIG. 4 is a diagram showing the directional characteristics of a microphone array composed of microphones and recesses having a conical horn shape;
  • FIG. 4 is a diagram showing the directional characteristics of a microphone array composed of microphones and recesses having a conical horn shape;
  • FIG. 4 is a diagram showing the directional characteristics of a microphone array composed of microphones and recesses having a conical horn shape;
  • FIG. 4 is a diagram showing the directional characteristics of a microphone array composed of microphones and recesses having a conical horn shape;
  • FIG. 4 is a diagram showing the directional characteristics of a microphone array composed of microphones and recesses having a conical horn shape;
  • FIG. 4 is a diagram showing the directional characteristics of a microphone array composed of microphones and recesses having a conical horn shape;
  • FIG. 4 is a diagram showing the directional characteristics of a microphone array composed of microphones and recesses having a conical horn shape;
  • FIG. 4 is a diagram showing the directional characteristics of a microphone array composed of microphones and recesses having a conical horn shape;
  • the shape of the recess indicates the 'n' dB beamwidth of the conical horn.
  • the shape of the recess indicates the 'n' dB beamwidth of the parabolic horn.
  • the shape of the recess indicates the 'n' dB beamwidth of the exponential horn.
  • the shape of the recess shows the 'n' dB beam average deflection of the conical horn.
  • the shape of the recess shows the 'n' dB beam average deflection of the parabolic horn.
  • the shape of the recess indicates the 'n' dB beam average deflection of the exponential horn. 'n' dB beam average bias for beamwidth-sharp parameter for each horn.
  • FIG. 1 is a functional block diagram of a design device 100 according to the first embodiment, and FIG. 2 shows its processing flow.
  • the design device 100 includes an evaluation section 110 , a storage section 120 , an input section 130 , a design section 140 and an output section 150 .
  • the design apparatus 100 receives a simulation result x, which will be described later, as an input, evaluates the directivity characteristics for each shape of the concave portion for each frequency, and stores the evaluation result y in the storage unit 120 .
  • the design apparatus 100 receives input of properties of an acoustic signal desired to be collected by the user and desired directivity via the input unit 130, refers to the storage unit 120, and receives properties and characteristics of the input acoustic signal desired to be collected.
  • a concave shape suitable for desired directivity is designed, and information z about the designed shape is output via the output unit 150 .
  • a design device is, for example, a special device configured by loading a special program into a publicly known or dedicated computer having a central processing unit (CPU: Central Processing Unit), a main memory (RAM: Random Access Memory), etc. is.
  • the design device executes each process under the control of, for example, a central processing unit.
  • Data input to the design device and data obtained in each process are stored, for example, in a main memory device, and the data stored in the main memory device are read out to the central processing unit as necessary and used for other purposes. used for processing.
  • At least a part of each processing unit of the design apparatus may be configured by hardware such as an integrated circuit.
  • Each storage unit provided in the design apparatus can be configured by, for example, a main storage device such as RAM (Random Access Memory), or middleware such as a relational database or key-value store.
  • a main storage device such as RAM (Random Access Memory), or middleware such as a relational database or key-value store.
  • middleware such as a relational database or key-value store.
  • each storage unit does not necessarily have to be provided inside the design device. It is good also as a structure prepared for.
  • FIG. 3 is a diagram for explaining simulation conditions.
  • the simulated microphone array 1 has N microphones 12-n (indicated by black circles in FIG. 3). Note that N is any integer of 2 or more.
  • the analysis area size is 2.8 ⁇ 2.8 m 2 and the surrounding boundary condition is 20 PML (Perfectly Matched Layer).
  • the center position of the microphone array 1 be the center of the analysis area.
  • the grid size ( ⁇ x, ⁇ y, ⁇ z) of the x-axis, y-axis, and z-axis is set to 0.01 m
  • the reflection condition of the base 11 is set to a rigid body
  • a Gaussian pulse is applied to the sound source s
  • the microphone array 1 has a base 11 having N recesses 111-n on its surface, and N microphones 12-n placed one by one on the inner bottom surface of each recess 111-n.
  • N microphones 12-n placed one by one on the inner bottom surface of each recess 111-n.
  • a two-dimensional study is performed, and a microphone array is assumed in which N microphones are arranged in a circle on the same plane with a predetermined interval from each other.
  • a similar simulation can be performed in three dimensions. It can also be applied to spherically arranged microphone arrays.
  • Fig. 3 shows an example of microphone placement, base, and sound source position.
  • n 1,2,3,4.
  • r a 0.2 m.
  • FIG. 3 in order to examine two dimensions, it is assumed that four recesses 111-n are formed so that the centers of the four recesses 111-n are positioned on the same plane (the xy plane in this example). . Further, in FIG. 3, four microphones 12-n are arranged on the inner wall surfaces of the four concave portions 111-n, and the four microphones 12-n are arranged so that the sound collecting parts of the microphones 12-n are positioned on the same plane. are placed.
  • the sound collector is a part that includes a mechanism (for example, a diaphragm or metal foil) that converts air vibration of sound into an electric signal.
  • the sound collecting section is provided, for example, on one end side of the microphone 12-n.
  • a substantially spherical body means a three-dimensional object having a shape close to a sphere although it is not strictly a sphere (substantially a sphere).
  • An example of a substantially spherical body is a three-dimensional body in which the surface shape of the portion other than the concave portion 111-n matches or substantially matches the surface shape of the sphere.
  • the base 11 is made of, for example, a material that sufficiently reflects sound (for example, synthetic resin, metal, wood, etc.).
  • the shape of the recess 111-n may be a conical horn.
  • FIG. 4 is a plan view of an example of a recess 111-n having a conical horn shape.
  • FIG. 4B is a cross-sectional view taken along line 4B-4B of FIG. 4A.
  • the slope of the conical horn (the coefficient of the highest order term in the following equation ( 1 )) is the parameter a1.
  • the conical horn is cut off by a straight line represented by Equation ( 1 ), and the coefficient a1 is a parameter.
  • the directivity is evaluated when the parameter a1 is changed in the range [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4].
  • the shape of the recess 111-n may be a parabolic horn.
  • the shape of the recess 111-n may be formed such that the rate of change in the diameter of the recess 111-n increases from the open end toward the bottom.
  • FIG. 7 is a plan view of an example of a recess 111-n having a parabolic horn shape.
  • FIG. 7B is a cross-sectional view taken along line 7B-7B of FIG. 7A.
  • Equation (2) the coefficient of the highest order term in the following equation ( 2 ) be the parameter a2.
  • the parabolic horn is cut off by a quadratic curve represented by Equation (2), and the coefficient a2 is a parameter.
  • directivity is evaluated when a2 is changed in the range [0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0].
  • the shape of the recess 111-n may be the shape of an exponential horn.
  • the shape of the recess 111-n may be formed such that the rate of change in the diameter of the recess 111-n decreases from the open end toward the bottom.
  • FIG. 10 is a plan view of an example of a recess 111-n having an exponential horn shape.
  • FIG. 10B is a cross-sectional view taken along line 10B-10B of FIG. 10A.
  • the parameter a3 is the coefficient of the highest order term in the exponent part of the following equation ( 3 ).
  • the exponential horn is cut off by an exponential curve represented by Equation ( 3 ), and the coefficient a3 is a parameter.
  • the directivity is evaluated when a3 is changed in the range [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.8, 1.0, 2.0, 4.0].
  • the sound collecting portion of the microphone 12-n is preferably installed so that the distance between the sound collecting portion of the microphone 12-n and the center of the base is 1/2 or less of the radius of the base.
  • the sound collecting portion of the microphone 12-n may be installed such that the distance between the sound collecting portion of the microphone 12-n and the center of the base is larger than 1/2 of the radius of the base.
  • the distance between the sound collecting part of the microphone 12-n and the center of the base part is appropriately determined according to the directivity required for the microphone 12-n.
  • the directivity of the microphone array 1 can be made to be the desired directivity.
  • the microphone 12-n is installed so as to contact the inner bottom surface of the concave portion 111-n in FIG. 3, it may be installed so as not to contact the inner bottom surface of the concave portion 111-n. In either case, the sound collecting portion of the microphone 12-n is placed on a straight line L passing through the center of the base or the vicinity of the center of the base and the center or approximate center of the outer circumference or bottom of the recess 111-n.
  • the shape of the rim on the open end side (surface side) of the concave portion 111-n illustrated in this embodiment is substantially circular.
  • substantially circular means a circular shape or a shape close to a circular shape (substantially circular).
  • An example of a nearly circular shape is an ellipse whose ratio of the long axis to the short axis is equal to or less than a predetermined value ⁇ 1, and a polygon with line symmetry or point symmetry.
  • the edge on the open end side (surface side) is larger than the diameter (for example, diameter) of the sound collecting portion of the microphone 12-n.
  • An example of the diameter of the rim on the open end side (surface side) is twice the diameter (for example, the diameter) of the sound collecting portion of the microphone 12-n, or nearly twice the diameter.
  • the interval (distance) between the sound collecting parts of the microphones 12-n adjacent to each other is substantially the same. That is, the interval between the sound collecting parts of the microphones 12-n adjacent to each other is a predetermined value or its vicinity.
  • the distance between each sound collector and the two adjacent sound collectors is substantially the same.
  • ⁇ Filter calculation> Using the acquired impulse responses, a filter for beamforming is calculated with an arbitrary direction in which the sound source s is located at 36 locations as the target direction of the target sound, and the directional characteristics of beamforming are obtained. Filter calculation conditions are shown below.
  • the filter coefficients using MVDR (Minimum Variance Distortionless Response).
  • the target direction ⁇ 10° is set as the target sound direction, and the others are set as the noise direction.
  • the frequency response from each sound source position is aggregated for each 1/3 octave band and evaluated for each center frequency.
  • ⁇ Simulation result> The directional characteristics are known from the signal (simulation result x) obtained by filtering the signal picked up by the simulated microphone array 1 .
  • FIG. 13 shows the directional characteristics of a microphone array (without base 11) consisting of only four microphones 12-n. Center frequencies are 500Hz and 1kHz.
  • the directivity characteristics are obtained when the target direction is set to 0°, 20°, 40°, 60°, and 80°, and in FIG. 13, the directivity characteristics are superimposed on the horizontal axis with the target direction set to 0°.
  • the vertical axis indicates the sensitivity for each angle. The sensitivity is corrected so that the sensitivity in the target direction is 0 dB.
  • the directional characteristics change as the shape (parameters a 2 and a 3 ) of the concave portion 111-n changes.
  • the evaluation unit 110 receives the simulation result x described above, evaluates the directivity characteristics for each shape of the concave portion for each frequency, and stores the evaluation result y in the storage unit 120 .
  • the evaluation unit 110 receives the simulation result x described above, evaluates the directivity characteristics for each shape of the concave portion for each frequency, and stores the evaluation result y in the storage unit 120 .
  • the following evaluation methods are conceivable.
  • the shape of recess 111-n indicates the 'n' dB beamwidth of the conical horn. “n” shall be -1,-2,...,-10dB.
  • FIG. 25 shows the 'n' dB beam average deflection of the conical horn where the shape of recess 111-n is.
  • “n” shall be -1,-2,...,-10dB.
  • the black circles indicate the average bias in the parameter corresponding to the beamwidth with sharpest directional performance.
  • the center frequency is 500 Hz and below 8 dB, compared to the case without the base, the 'n' dB beam average deviation is 10° or less, and it can be seen that almost the same directional characteristics can be formed.
  • the center frequency is 1000 Hz
  • FIG. 26 shows the 'n' dB beam average deflection of a parabolic horn whose shape is recess 111-n.
  • the center frequency is 500 Hz and below 8 dB, compared to the case without the base, the 'n' dB beam average deviation is 10° or less, and it can be seen that almost the same directional characteristics can be formed.
  • FIG. 28 shows the 'n' dB beam average bias of the sharp beamwidth parameter (see FIG. 24) for each horn.
  • the 'n' dB beam average deviation is generally 10° or less, and it can be seen that nearly identical directional characteristics can be formed.
  • the evaluation unit 110 combines information on the shape of the recess (for example, a 1 , a 2 , a 3 ), the center frequency, and the evaluation result y so that the evaluation of the directivity characteristics for each shape of the recess and for each frequency can be known.
  • the evaluation result y is, for example, a combination of the 'n' dB beamwidth w n and the beamwidth average bias ⁇ n .
  • the parameter with the sharpest directivity and the smallest variation in beam shape of directivity may be stored in the storage unit 120 as the evaluation result y.
  • the input unit 130 receives the input of the property of the acoustic signal that the user wants to collect and the desired directivity (S130), and outputs the input to the design unit 140.
  • the property of an acoustic signal is the center frequency of the acoustic signal to be collected
  • the desired directivity means the sharpness of the desired directivity and the dispersion of the beam shape of the desired directivity.
  • the input unit 130 is an input device such as a keyboard, mouse, and touch panel, and various interfaces that receive input from the input device.
  • the design unit 140 receives the property of the acoustic signal that the user wants to collect and the desired directivity, refers to the storage unit 120, and selects a recess suitable for the property of the input acoustic signal that the user wants to collect and the desired directivity.
  • the shape is designed (s140), and the designed shape of the recess is output. At this time, the shape of the base 11 having a total of N concave portions 111-n and the position of the microphone 12-n may be output.
  • the output unit 150 outputs the shape of the recess designed by the design unit 140 and the shape of the base 11 including the recess 111-n to a presentation unit such as a display, an external memory, a terminal connected via a network, and the like.
  • a presentation unit such as a display, an external memory, a terminal connected via a network, and the like.
  • the shape of the base 11 having N concave portions 111-n may be output to a 3D printer or the like, and the base 11 may be formed by the 3D printer or the like.
  • the numbers and installation positions of the microphones 12-n and recesses 111-n are predetermined, but may be set by the user.
  • the configuration may be such that the user inputs, via the input unit 130, the property of the acoustic signal to be collected, the desired directivity, and the number N of the microphones 12-n to be installed.
  • the installation positions of the recesses 111-n are specified according to the number N of expected inputs, and the installation positions of the microphones are specified according to the shape of the recesses 111-n provided at the installation positions.
  • the simulation result x is obtained by the same simulation as in the first embodiment, evaluated, and stored in the storage unit 120 .
  • the parameters a 1 , a 2 , and a 3 are exemplified as information about the shape of the recess, but the opening of the recess, the inclination inside the recess, the size of the recess, and the like may also be used.
  • the shape of the recess for example, a 1 , a 2 , a 3
  • the center frequency for example, a 3
  • the evaluation result y are combined so that the evaluation of the directivity characteristics for each shape of the recess and for each frequency can be understood.
  • the combination is stored in the storage unit 120
  • the opening of the recess, the inclination inside the recess, the size of the recess, the number of recesses, etc., and the directional characteristics may be formulated and stored in the storage unit 120 .
  • the design unit 140 receives the properties and desired directivity of the acoustic signal that the user wants to collect, refers to the storage unit 120, and formulates the properties and desired directivity of the input acoustic signal that the user wants to collect. , and design the shape of the recess (opening of the recess, inclination of the interior of the recess, size of the recess, number of recesses, etc.) suitable for the properties of the acoustic signal and the desired directivity, and design the shape of the recess to output
  • the base portion 11 is substantially spherical, but may be substantially cylindrical and may be provided with recesses on the side surfaces.
  • a microphone array may be configured by spherically arranging N microphones spaced apart from each other by a predetermined distance.
  • each of the sound collecting parts of the microphones 12-n is arranged at the vertices of a regular polyhedron having N vertices.
  • one may be arranged in each vicinity of the vertex. It is a sphere that circumscribes all the vertices of the regular n-hedron, and uniformity is ensured by arranging the microphones 12-n at the vertices.
  • N is any one of 4, 6, 8, 12, and 20 when one sound collector is arranged at each vertex of the regular polyhedron or in the vicinity of the vertex.
  • the sound collector arranged at each vertex or its vicinity is arranged, for example, in a direction from the center of the regular polyhedron toward its vertex or its vicinity.
  • the present invention can be applied to waves such as radio waves and light waves other than sound waves, and can be applied to the design of a sensor array having a plurality of radio wave sensors or light wave sensors instead of a microphone array having a plurality of microphones. be able to. However, it is necessary to design the reflection and absorption conditions of the base according to the waves.
  • the present invention is not limited to the above embodiments and modifications.
  • the various types of processing described above may not only be executed in chronological order according to the description, but may also be executed in parallel or individually according to the processing capacity of the device that executes the processing or as necessary.
  • appropriate modifications are possible without departing from the gist of the present invention.
  • a program that describes this process can be recorded on a computer-readable recording medium.
  • Any computer-readable recording medium may be used, for example, a magnetic recording device, an optical disk, a magneto-optical recording medium, a semiconductor memory, or the like.
  • this program is carried out, for example, by selling, assigning, lending, etc. portable recording media such as DVDs and CD-ROMs on which the program is recorded.
  • the program may be distributed by storing the program in the storage device of the server computer and transferring the program from the server computer to other computers via the network.
  • a computer that executes such a program for example, first stores the program recorded on a portable recording medium or the program transferred from the server computer once in its own storage device. Then, when executing the process, this computer reads the program stored in its own recording medium and executes the process according to the read program. Also, as another execution form of this program, the computer may read the program directly from a portable recording medium and execute processing according to the program, and the program is transferred from the server computer to this computer. Each time, the processing according to the received program may be executed sequentially. In addition, the above-mentioned processing is executed by a so-called ASP (Application Service Provider) type service, which does not transfer the program from the server computer to this computer, and realizes the processing function only by its execution instruction and result acquisition. may be It should be noted that the program in this embodiment includes information used for processing by a computer and conforming to the program (data that is not a direct instruction to the computer but has the property of prescribing the processing of the computer, etc.).
  • ASP Application Service Provide
  • the device is configured by executing a predetermined program on a computer, but at least a part of these processing contents may be implemented by hardware.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

Provided is a design device for designing a microphone array by assessing the directionality performance improvement amounts of various shapes of recesses without actually producing a microphone array. This design device comprises: a storage unit that stores the property of a predetermined acoustic signal and a predetermined directionality, and the shape of a recess suitable for the property of the predetermined acoustic signal and the predetermined directionality; an input unit that receives an input of the property of an acoustic signal to be collected and a desired directionality; and a design unit that designs the shape of a recess portion suitable for the desired directionality that has been inputted and the inputted property of the acoustic signal to be collected, by referring to the storage unit.

Description

設計装置、設計方法、およびプログラムDESIGN DEVICE, DESIGN METHOD, AND PROGRAM
 本発明は、マイクアレイを中心として、任意の方向から到来する音声や音楽等の音響信号を強調するマイクアレイ処理におけるマイクアレイの設計方法に関する。 The present invention relates to a microphone array design method for microphone array processing that emphasizes acoustic signals such as voices and music arriving from arbitrary directions, centering on the microphone array.
 マイクアレイを中心として、任意の方向から到来する音声や音楽等の音響信号を強調する方法として、特許文献1が知られている。 Patent Document 1 is known as a method for emphasizing acoustic signals such as voices and music arriving from arbitrary directions centering on a microphone array.
 特許文献1では、基部を構成する球体から内部にかけて複数の凹部を設け、各凹部の底にマイクを配置してマイクアレイを形成する。このような配置とすることにより、音源とマイクとの間の伝達特性の違いをマイク間で大きくし、マイクアレイ処理により任意方向の音響信号を強調するビームフォーミングを行う際に、指向性性能の改善を行う。 In Patent Document 1, a plurality of recesses are provided from the sphere that forms the base to the inside, and microphones are arranged on the bottom of each recess to form a microphone array. With this arrangement, the difference in transfer characteristics between the sound source and the microphones is increased, and directivity performance is improved when performing beamforming that emphasizes acoustic signals in arbitrary directions by microphone array processing. make improvements.
特開2020-88561号公報JP 2020-88561 A
 しかしながら、非特許文献1では、凹部の様々な形状による指向性性能の改善量、特に指向性の鋭さについては不明である。また、任意の方向からの音響信号を強調可能であるが、到来方向毎に指向性性能に差が生じ、強調量に差が出てしまう場合があるが、非特許文献1では、この差を考慮していない。 However, in Non-Patent Document 1, the amount of improvement in directivity performance, particularly the sharpness of directivity, due to various shapes of recesses is unknown. In addition, although it is possible to emphasize an acoustic signal from any direction, there may be a difference in directivity performance for each direction of arrival, resulting in a difference in the amount of emphasis. not considered.
 本発明では、マイクアレイを実際に作ることなく、様々な凹部の形状における指向性性能改善量を評価して、ユーザが指定する対象方向の感度が高くなるような指向性を形成することができるマイクアレイを設計する設計装置、設計方法、およびプログラムを提供することを目的とする。 In the present invention, without actually creating a microphone array, it is possible to evaluate the amount of directivity performance improvement in various concave shapes and form directivity that increases the sensitivity in the target direction specified by the user. An object of the present invention is to provide a design device, a design method, and a program for designing a microphone array.
 上記の課題を解決するために、本発明の一態様によれば、設計装置は、Nが2以上の整数であり、少なくとも、N個の凹部を表面に備えた基部と、凹部のそれぞれの内底面側に1個ずつ設置されるN個のマイクと、を有するマイクアレイの設計装置である。設計装置は、所定の音響信号の性質および所定の指向性と、その所定の音響信号の性質および所定の指向性に適した凹部の形状とを記憶する記憶部と、集音したい音響信号の性質および所望の指向性の入力を受け付ける入力部と、記憶部を参照して、入力された集音したい音響信号の性質および所望の指向性に適した凹部の形状を設計する設計部と、を含む。 In order to solve the above problems, according to one aspect of the present invention, a design device includes: a base having at least N recesses on its surface, where N is an integer of 2 or more; A device for designing a microphone array having N microphones installed one by one on the bottom side. The design device includes a storage unit that stores a predetermined property and predetermined directivity of an acoustic signal, a shape of a concave portion suitable for the predetermined property and predetermined directivity of the acoustic signal, and a property of the acoustic signal to be collected. and an input unit that receives input of desired directivity, and a design unit that refers to the storage unit and designs the shape of the recess suitable for the property of the input acoustic signal to be collected and the desired directivity. .
 本発明によれば、マイクアレイを実際に作ることなく、様々な凹部の形状における指向性性能改善量を評価して、マイクアレイを設計することが可能となる。 According to the present invention, it is possible to design a microphone array by evaluating the amount of directivity performance improvement in various concave shapes without actually manufacturing the microphone array.
第一実施形態に係る設計装置の機能ブロック図。FIG. 2 is a functional block diagram of the design device according to the first embodiment; 第一実施形態に係る設計装置の処理フローの例を示す図。FIG. 4 is a diagram showing an example of the processing flow of the design device according to the first embodiment; マイク配置、基部、音源位置の例を示す図。The figure which shows the example of a microphone arrangement, a base, and a sound source position. 形状がコニカルホーンである凹部の例の平面図とその断面図。FIG. 4A is a plan view and a cross-sectional view of an example of a recess having a conical horn shape; 凹部の形状を説明するための図。FIG. 4 is a diagram for explaining the shape of a recess; 凹部の形状とパラメータの関係を示す図。FIG. 4 is a diagram showing the relationship between the shape of a recess and parameters; 形状がパラボラホーンである凹部の例の平面図とその断面図。FIG. 10 is a plan view and a cross-sectional view of an example of a recess having a parabolic horn shape; 凹部の形状を説明するための図。FIG. 4 is a diagram for explaining the shape of a recess; 凹部の形状とパラメータの関係を示す図。FIG. 4 is a diagram showing the relationship between the shape of a recess and parameters; 形状がエクスポーネンシャルホーンである凹部の例の平面図とその断面図。FIG. 10 is a plan view and a cross-sectional view of an example of a recess having an exponential horn shape; 凹部の形状を説明するための図。FIG. 4 is a diagram for explaining the shape of a recess; 凹部の形状とパラメータの関係を示す図。FIG. 4 is a diagram showing the relationship between the shape of a recess and parameters; マイクのみからなるマイクアレイ(基部なし)の指向特性を示す図。FIG. 4 is a diagram showing directivity characteristics of a microphone array (without a base) consisting only of microphones; マイクと形状がコニカルホーンである凹部からなるマイクアレイの指向特性を示す図。FIG. 4 is a diagram showing the directional characteristics of a microphone array composed of microphones and recesses having a conical horn shape; マイクと形状がコニカルホーンである凹部からなるマイクアレイの指向特性を示す図。FIG. 4 is a diagram showing the directional characteristics of a microphone array composed of microphones and recesses having a conical horn shape; マイクと形状がコニカルホーンである凹部からなるマイクアレイの指向特性を示す図。FIG. 4 is a diagram showing the directional characteristics of a microphone array composed of microphones and recesses having a conical horn shape; マイクと形状がコニカルホーンである凹部からなるマイクアレイの指向特性を示す図。FIG. 4 is a diagram showing the directional characteristics of a microphone array composed of microphones and recesses having a conical horn shape; マイクと形状がコニカルホーンである凹部からなるマイクアレイの指向特性を示す図。FIG. 4 is a diagram showing the directional characteristics of a microphone array composed of microphones and recesses having a conical horn shape; マイクと形状がコニカルホーンである凹部からなるマイクアレイの指向特性を示す図。FIG. 4 is a diagram showing the directional characteristics of a microphone array composed of microphones and recesses having a conical horn shape; マイクと形状がコニカルホーンである凹部からなるマイクアレイの指向特性を示す図。FIG. 4 is a diagram showing the directional characteristics of a microphone array composed of microphones and recesses having a conical horn shape; 凹部の形状がコニカルホーンの「n」dBビーム幅を示す図。The shape of the recess indicates the 'n' dB beamwidth of the conical horn. 凹部の形状がパラボラホーンの「n」dBビーム幅を示す図。The shape of the recess indicates the 'n' dB beamwidth of the parabolic horn. 凹部の形状がエクスポーネンシャルホーンの「n」dBビーム幅を示す図。The shape of the recess indicates the 'n' dB beamwidth of the exponential horn. 各ホーンで最適なパラメータの「n」dBビーム幅を示す図。Figure showing the 'n' dB beamwidth for the optimal parameters for each horn. 凹部の形状がコニカルホーンの「n」dBビーム平均偏りを示す図。The shape of the recess shows the 'n' dB beam average deflection of the conical horn. 凹部の形状がパラボラホーンの「n」dBビーム平均偏りを示す図。The shape of the recess shows the 'n' dB beam average deflection of the parabolic horn. 凹部の形状がエクスポーネンシャルホーンの「n」dBビーム平均偏りを示す図。The shape of the recess indicates the 'n' dB beam average deflection of the exponential horn. 各ホーンでビーム幅が鋭いパラメータの「n」dBビーム平均偏りを示す図。'n' dB beam average bias for beamwidth-sharp parameter for each horn. 本手法を適用するコンピュータの構成例を示す図。The figure which shows the structural example of the computer which applies this method.
 以下、本発明の実施形態について、説明する。なお、以下の説明に用いる図面では、同じ機能を持つ構成部や同じ処理を行うステップには同一の符号を記し、重複説明を省略する。以下の説明において、ベクトルや行列の各要素単位で行われる処理は、特に断りが無い限り、そのベクトルやその行列の全ての要素に対して適用されるものとする。 Embodiments of the present invention will be described below. It should be noted that in the drawings used for the following description, the same reference numerals are given to components having the same functions and steps that perform the same processing, and redundant description will be omitted. In the following description, the processing performed for each element of a vector or matrix is applied to all elements of the vector or matrix unless otherwise specified.
<第一実施形態>
 図1は第一実施形態に係る設計装置100の機能ブロック図を、図2はその処理フローを示す。
<First Embodiment>
FIG. 1 is a functional block diagram of a design device 100 according to the first embodiment, and FIG. 2 shows its processing flow.
 設計装置100は、評価部110と記憶部120と入力部130と設計部140と出力部150とを含む。 The design device 100 includes an evaluation section 110 , a storage section 120 , an input section 130 , a design section 140 and an output section 150 .
 設計装置100は、後述するシミュレーション結果xを入力とし、凹部の形状毎の指向特性を周波数毎に評価し、評価結果yを記憶部120に格納する。 The design apparatus 100 receives a simulation result x, which will be described later, as an input, evaluates the directivity characteristics for each shape of the concave portion for each frequency, and stores the evaluation result y in the storage unit 120 .
 設計装置100は、入力部130を介して、ユーザが集音したい音響信号の性質および所望の指向性の入力を受け付け、記憶部120を参照して、入力された集音したい音響信号の性質および所望の指向性に適した凹部の形状を設計し、設計した形状に関する情報zを、出力部150を介して、出力する。 The design apparatus 100 receives input of properties of an acoustic signal desired to be collected by the user and desired directivity via the input unit 130, refers to the storage unit 120, and receives properties and characteristics of the input acoustic signal desired to be collected. A concave shape suitable for desired directivity is designed, and information z about the designed shape is output via the output unit 150 .
 設計装置は、例えば、中央演算処理装置(CPU: Central Processing Unit)、主記憶装置(RAM: Random Access Memory)などを有する公知又は専用のコンピュータに特別なプログラムが読み込まれて構成された特別な装置である。設計装置は、例えば、中央演算処理装置の制御のもとで各処理を実行する。設計装置に入力されたデータや各処理で得られたデータは、例えば、主記憶装置に格納され、主記憶装置に格納されたデータは必要に応じて中央演算処理装置へ読み出されて他の処理に利用される。設計装置の各処理部は、少なくとも一部が集積回路等のハードウェアによって構成されていてもよい。設計装置が備える各記憶部は、例えば、RAM(Random Access Memory)などの主記憶装置、またはリレーショナルデータベースやキーバリューストアなどのミドルウェアにより構成することができる。ただし、各記憶部は、必ずしも設計装置がその内部に備える必要はなく、ハードディスクや光ディスクもしくはフラッシュメモリ(Flash Memory)のような半導体メモリ素子により構成される補助記憶装置により構成し、設計装置の外部に備える構成としてもよい。 A design device is, for example, a special device configured by loading a special program into a publicly known or dedicated computer having a central processing unit (CPU: Central Processing Unit), a main memory (RAM: Random Access Memory), etc. is. The design device executes each process under the control of, for example, a central processing unit. Data input to the design device and data obtained in each process are stored, for example, in a main memory device, and the data stored in the main memory device are read out to the central processing unit as necessary and used for other purposes. used for processing. At least a part of each processing unit of the design apparatus may be configured by hardware such as an integrated circuit. Each storage unit provided in the design apparatus can be configured by, for example, a main storage device such as RAM (Random Access Memory), or middleware such as a relational database or key-value store. However, each storage unit does not necessarily have to be provided inside the design device. It is good also as a structure prepared for.
 まず、入力されるシミュレーション結果xについて説明する。シミュレーション結果xを得るために以下の処理を行う。 First, the input simulation result x will be explained. The following processing is performed to obtain the simulation result x.
 (1)後述するマイクアレイ1が存在するものとし、シミュレーションにより音源からのインパルス応答を取得する。 (1) Assuming that the microphone array 1 described later exists, the impulse response from the sound source is obtained by simulation.
 (2)取得したインパルス応答を用いて、M個の音源の方向をそれぞれ対象方向としてビームフォーミングを行うフィルタを計算する。 (2) Using the acquired impulse responses, calculate filters that perform beamforming with the directions of the M sound sources as the target directions.
 (3)シミュレーションにより、M個の音源から各マイクの到達するインパルス応答をフィルタリングし、フィルタリング後の信号を取得する。フィルタリング後の信号がシミュレーション結果xに相当する。 (3) Through simulation, filter the impulse responses arriving from each microphone from M sound sources, and obtain the signal after filtering. The filtered signal corresponds to the simulation result x.
 以下、各処理を説明する。 Each process will be explained below.
<インパルス応答の取得>
 収音装置の反射や回折を模擬し、インパルス応答(伝達特性)を求めるためにFDTD(Finite Difference Time Domain)シミュレーションを実施する。図3はシミュレーション条件を説明するための図である。シミュレーションのマイクアレイ1は、N個のマイク12-n(図3中、黒丸で示す)を有する。なお、Nは2以上の整数の何れかである。36カ所の音源s(図3中、白丸で示す)の位置から、各マイク12-nに到達するインパルス応答をシミュレーションにより計算する。n=1,2,…,Nとする。
<Acquisition of impulse response>
FDTD (Finite Difference Time Domain) simulation is performed to simulate the reflection and diffraction of the sound pickup device and obtain the impulse response (transmission characteristics). FIG. 3 is a diagram for explaining simulation conditions. The simulated microphone array 1 has N microphones 12-n (indicated by black circles in FIG. 3). Note that N is any integer of 2 or more. An impulse response reaching each microphone 12-n is calculated by simulation from the positions of 36 sound sources s (indicated by white circles in FIG. 3). Let n=1,2,…,N.
 解析領域のサイズを2.8×2.8 m2とし、周囲境界条件を20層PML(Perfectly Matched Layer)とする。マイクアレイ1の中心位置を解析領域の中心とする。シミュレーションではx軸、y軸、z軸の格子サイズ(Δx,Δy,Δz)を0.01mとし、基部11の反射条件を剛体とし、音源sにはガウシアンパルスを印加し、観測点では時間ステップサイズΔt=10-5[s]の時間長の圧力変動を計算する。 The analysis area size is 2.8×2.8 m 2 and the surrounding boundary condition is 20 PML (Perfectly Matched Layer). Let the center position of the microphone array 1 be the center of the analysis area. In the simulation, the grid size (Δx, Δy, Δz) of the x-axis, y-axis, and z-axis is set to 0.01 m, the reflection condition of the base 11 is set to a rigid body, a Gaussian pulse is applied to the sound source s, and the time step size is set to Calculate the pressure fluctuation for a time length of Δt=10 -5 [s].
 以下、マイクアレイ1の詳細について説明する。 The details of the microphone array 1 will be described below.
<マイクアレイ1>
 マイクアレイ1は、N個の凹部111-nを表面に備えた基部11と、凹部111-nのそれぞれの内底面側に1個ずつ設置されるN個のマイク12-nと、を有する。本実施形態では、2次元で検討し、互いに所定の間隔をおいたN個のマイクが同一平面上に円状に配置されたマイクアレイを想定するが、3次元でも同様のシミュレーションを行うことができ、球状に配置されたマイクアレイにも適用可能である。
<Microphone array 1>
The microphone array 1 has a base 11 having N recesses 111-n on its surface, and N microphones 12-n placed one by one on the inner bottom surface of each recess 111-n. In the present embodiment, a two-dimensional study is performed, and a microphone array is assumed in which N microphones are arranged in a circle on the same plane with a predetermined interval from each other. However, a similar simulation can be performed in three dimensions. It can also be applied to spherically arranged microphone arrays.
 図3は、マイク配置、基部、音源位置の例を示す。 Fig. 3 shows an example of microphone placement, base, and sound source position.
 図3の例では、マイクの個数をN=4とし、4つのマイク12-nは半径rmの円のθm=0°,90°,180°,270°の位置に配置される。ただし、n=1,2,3,4である。 In the example of FIG. 3, the number of microphones is N=4, and the four microphones 12-n are arranged at positions of θ m =0°, 90°, 180°, 270° on a circle of radius r m . However, n=1,2,3,4.
 基部11は半径をra=0.2mの略球体からなる。図3では2次元で検討するため、同一平面(この例ではxy平面)上に4個の凹部111-nの中心が位置するように4個の凹部111-nが形成されているものとする。さらに、図3では4個の凹部111-nの内壁面に4つのマイク12-nが配置され、同一平面上にマイク12-nの集音部が位置するように4つのマイク12-nが配置されている。なお、集音部は、音の空気振動を電気信号に変換する機構(例えば、振動板や金属箔)を含む部位である。集音部は、例えばマイク12-nの一端側に設けられている。 The base 11 consists of a substantially spherical body with a radius of r a =0.2 m. In FIG. 3, in order to examine two dimensions, it is assumed that four recesses 111-n are formed so that the centers of the four recesses 111-n are positioned on the same plane (the xy plane in this example). . Further, in FIG. 3, four microphones 12-n are arranged on the inner wall surfaces of the four concave portions 111-n, and the four microphones 12-n are arranged so that the sound collecting parts of the microphones 12-n are positioned on the same plane. are placed. Note that the sound collector is a part that includes a mechanism (for example, a diaphragm or metal foil) that converts air vibration of sound into an electric signal. The sound collecting section is provided, for example, on one end side of the microphone 12-n.
 4個の凹部111-nは互いに所定の間隔で配置され、4個の凹部111-nの形状は互いに略同一(同一またはほぼ同一)であることが望ましい。これにより、音の到来方向による収音ばらつきを低減できる。略球体とは、厳密には球体ではないものの球体に近い形状を持つ立体(ほぼ球体)を意味する。略球体の例は、凹部111-n以外の部分の表面形状が球体の表面形状に一致またはほぼ一致する立体である。 It is desirable that the four recesses 111-n are arranged at predetermined intervals from each other, and that the shapes of the four recesses 111-n are substantially the same (the same or substantially the same). As a result, it is possible to reduce sound pickup variations depending on the sound arrival direction. A substantially spherical body means a three-dimensional object having a shape close to a sphere although it is not strictly a sphere (substantially a sphere). An example of a substantially spherical body is a three-dimensional body in which the surface shape of the portion other than the concave portion 111-n matches or substantially matches the surface shape of the sphere.
 図3ではN=4の例を図示するが、これは本発明を限定するものではない。また、基部11は、例えば、音を十分に反射する材質(例えば、合成樹脂、金属、木など)で構成されている。 Although FIG. 3 shows an example of N=4, this does not limit the present invention. The base 11 is made of, for example, a material that sufficiently reflects sound (for example, synthetic resin, metal, wood, etc.).
 音源sの位置は36個を想定し、36個の音源位置は半径rs=1.0mの円のθs=0°,10°,20°,…,350°の位置に配置される。s=1,2,…,36である。 36 positions of the sound source s are assumed, and the 36 sound source positions are arranged at positions of θ s = 0°, 10°, 20°, . s=1,2,...,36.
<凹部111-nの形状の例1>
 凹部111-nの形状は、コニカルホーンであってもよい。
<Example 1 of the shape of the concave portion 111-n>
The shape of the recess 111-n may be a conical horn.
 図4の(A)は、形状がコニカルホーンである凹部111-nの例の平面図である。図4の(B)は、図4の(A)の4B-4B断面図である。 (A) of FIG. 4 is a plan view of an example of a recess 111-n having a conical horn shape. FIG. 4B is a cross-sectional view taken along line 4B-4B of FIG. 4A.
 この例では、コニカルホーンの傾き(以下の式(1)の最高次の項の係数)をパラメータa1とする。図5のように、xy平面上で考える場合、コニカルホーンは式(1)で表せる直線で切り取られることとなり、係数a1がパラメータとなる。ここでは、パラメータa1を範囲[0.1, 0.15, 0.2,0.25, 0.3, 0.35, 0.4]で変化させたときの指向性について評価する。 In this example, the slope of the conical horn (the coefficient of the highest order term in the following equation ( 1 )) is the parameter a1. As shown in FIG. 5, when considered on the xy plane, the conical horn is cut off by a straight line represented by Equation ( 1 ), and the coefficient a1 is a parameter. Here, the directivity is evaluated when the parameter a1 is changed in the range [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4].
y=a1x+b    (1)
言い換えると、式(1)で表される直線を、x軸を中心に360°回転させて形成される立体をθm=0°,90°,180°,270°で半径raの略球体から切り取った形状となるように、基部11を形成する。図6はa1=[0.1, 0.15, 0.2,0.25, 0.3, 0.35, 0.4]における基部11のxy平面の断面図を表す。
y=a1x+b ( 1 )
In other words, the solid formed by rotating the straight line represented by equation (1) by 360° around the x -axis is a sphere The base 11 is formed so as to have a shape cut from the . FIG. 6 shows a cross-sectional view of the base 11 in the xy plane at a 1 =[0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4].
<凹部111-nの形状の例2>
 凹部111-nの形状は、パラボラホーンであってもよい。言い換えれば、凹部111-nの形状は、開放端側から底面側に向かうに従って、凹部111-nの径の変化率が大きくなるように形成されていてもよい。
<Example 2 of the shape of the concave portion 111-n>
The shape of the recess 111-n may be a parabolic horn. In other words, the shape of the recess 111-n may be formed such that the rate of change in the diameter of the recess 111-n increases from the open end toward the bottom.
 図7の(A)は、形状がパラボラホーンである凹部111-nの例の平面図である。図7の(B)は、図7の(A)の7B-7B断面図である。 (A) of FIG. 7 is a plan view of an example of a recess 111-n having a parabolic horn shape. FIG. 7B is a cross-sectional view taken along line 7B-7B of FIG. 7A.
 この例では、以下の式(2)の最高次の項の係数をパラメータa2とする。図8のように、xy平面上で考える場合、パラボラホーンは式(2)で表せる2次曲線で切り取られることとなり、係数a2がパラメータとなる。ここでは、a2を範囲[0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0]で変化させたときの指向性について評価する。 In this example, let the coefficient of the highest order term in the following equation ( 2 ) be the parameter a2. As shown in FIG. 8, when considered on the xy plane, the parabolic horn is cut off by a quadratic curve represented by Equation (2), and the coefficient a2 is a parameter. Here, directivity is evaluated when a2 is changed in the range [0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0].
y=a2x2+b    (2)
言い換えると、式(2)で表される曲線を、y軸を中心に360°回転させて形成される立体をθm=0°,90°,180°,270°で半径raの略球体から切り取った形状となるように、基部11を形成する。図9はa2=[0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0]における基部11のxy平面の断面図を表す。
y= a2x2 +b ( 2 )
In other words, the solid formed by rotating the curve expressed by equation (2) by 360° about the y -axis is a sphere The base 11 is formed so as to have a shape cut from the . FIG. 9 shows a cross-sectional view of the base 11 in the xy plane at a 2 =[0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0].
<凹部111-nの形状の例3>
 凹部111-nの形状は、エクスポーネンシャルホーンの形状であってもよい。言い換えれば、凹部111-nの形状は、開放端側から底面側に向かうに従って、凹部111-nの径の変化率が小さくなるように形成されていてもよい。
<Example 3 of the shape of the concave portion 111-n>
The shape of the recess 111-n may be the shape of an exponential horn. In other words, the shape of the recess 111-n may be formed such that the rate of change in the diameter of the recess 111-n decreases from the open end toward the bottom.
 図10の(A)は、形状がエクスポーネンシャルホーンである凹部111-nの例の平面図である。図10の(B)は、図10の(A)の10B-10B断面図である。 (A) of FIG. 10 is a plan view of an example of a recess 111-n having an exponential horn shape. FIG. 10B is a cross-sectional view taken along line 10B-10B of FIG. 10A.
 この例では、以下の式(3)の指数部の最高次の項の係数をパラメータa3とする。図11のように、xy平面上で考える場合、エクスポーネンシャルホーンは式(3)で表せる指数曲線で切り取られることとなり、係数a3がパラメータとなる。ここでは、a3を範囲[0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.8,1.0,2.0,4.0]で変化させたときの指向性について評価する。 In this example, the parameter a3 is the coefficient of the highest order term in the exponent part of the following equation ( 3 ). As shown in FIG. 11, when considered on the xy plane, the exponential horn is cut off by an exponential curve represented by Equation ( 3 ), and the coefficient a3 is a parameter. Here, the directivity is evaluated when a3 is changed in the range [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.8, 1.0, 2.0, 4.0].
y=ea_3(x-b)    (3)
ただし、上付き添え字a_3はa3を意味する。言い換えると、式(3)で表される曲線を、x軸を中心に360°回転させて形成される立体をθm=0°,90°,180°,270°で半径raの略球体から切り取った形状となるように、基部11を形成する。図12はa3=[0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.8,1.0,2.0,4.0]における基部11のxy平面の断面図を表す。
y=e a_3(xb) (3)
However, the superscript a_3 means a3 . In other words, the solid formed by rotating the curve expressed by Equation (3) by 360° about the x-axis is a sphere The base 11 is formed so as to have a shape cut from the . FIG. 12 represents a cross-sectional view of the base 11 in the xy plane at a 3 =[0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.8, 1.0, 2.0, 4.0].
<例1から例3に共通する構成>
 以下、凹部111-nの形状の例1から例3に共通する構成について説明する。本実施形態においては、マイク12-nの集音部は、基部の中央または当該基部の中央の近傍と、凹部111-nの外周若しくは底部の中心ないし略中心を通る直線L上に設置される。
<Structure Common to Examples 1 to 3>
The configuration common to Examples 1 to 3 of the shape of the concave portion 111-n will be described below. In this embodiment, the sound collecting portion of the microphone 12-n is placed on a straight line L passing through the center of the base or near the center of the base and the center or approximate center of the outer periphery or bottom of the recess 111-n. .
 また、マイク12-nの集音部は、マイク12-nの集音部と基部の中央との距離が基部の半径の1/2以下となるように設置されることがのぞましい。 Also, the sound collecting portion of the microphone 12-n is preferably installed so that the distance between the sound collecting portion of the microphone 12-n and the center of the base is 1/2 or less of the radius of the base.
 もちろん、マイク12-nの集音部は、マイク12-nの集音部と基部の中央との距離が基部の半径の1/2よりも大きくなるように設置されてもよい。 Of course, the sound collecting portion of the microphone 12-n may be installed such that the distance between the sound collecting portion of the microphone 12-n and the center of the base is larger than 1/2 of the radius of the base.
 マイク12-nの集音部と基部の中央との距離が小さくなるほど、マイク12-nの指向性は強くなり、マイク12-nの指向性の幅は狭くなる。このため、マイク12-nの集音部と基部の中央との距離は、マイク12-nに求める指向性に応じて適宜定められる。 The smaller the distance between the sound collecting part of the microphone 12-n and the center of the base part, the stronger the directivity of the microphone 12-n and the narrower the directivity width of the microphone 12-n. Therefore, the distance between the sound collecting portion of the microphone 12-n and the center of the base portion is appropriately determined according to the directivity required for the microphone 12-n.
 このように、マイク12-nの集音部と基部の中央との距離及び凹部111-nの形状を変えることで、マイクアレイ1の指向性を所望の指向性にすることができる。 Thus, by changing the distance between the sound collecting portion of the microphone 12-n and the center of the base and the shape of the concave portion 111-n, the directivity of the microphone array 1 can be made to be the desired directivity.
 マイク12-nは、図3では凹部111-nの内底面に接するように設置されているが、凹部111-nの内底面に接しないように設置されてもよい。何れの場合も、マイク12-nの集音部は、基部の中央または当該基部の中央の近傍と、凹部111-nの外周若しくは底部の中心ないし略中心を通る直線L上に設置される。 Although the microphone 12-n is installed so as to contact the inner bottom surface of the concave portion 111-n in FIG. 3, it may be installed so as not to contact the inner bottom surface of the concave portion 111-n. In either case, the sound collecting portion of the microphone 12-n is placed on a straight line L passing through the center of the base or the vicinity of the center of the base and the center or approximate center of the outer circumference or bottom of the recess 111-n.
 本実施形態で例示する凹部111-nの開放端側(表面側)の縁の形状は略円形である。ただし、略円形とは、円形または円形に近い形状(ほぼ円形)を意味する。円形に近い形状の例は、短軸に対する長軸の比率が所定値γ1以下の楕円、線対称又は点対称となる多角形である。ただし、γ1は1より大きな実数である。γ1の例はγ1=1.1,1.2,1.3,1.4,1.5などである。開放端側(表面側)の縁は、マイク12-nの集音部の径(例えば、直径)よりも大きい。開放端側(表面側)の縁の径の一例は、マイク12-nの集音部の径(例えば、直径)の2倍または2倍の近傍である。 The shape of the rim on the open end side (surface side) of the concave portion 111-n illustrated in this embodiment is substantially circular. However, "substantially circular" means a circular shape or a shape close to a circular shape (substantially circular). An example of a nearly circular shape is an ellipse whose ratio of the long axis to the short axis is equal to or less than a predetermined value γ1, and a polygon with line symmetry or point symmetry. However, γ1 is a real number larger than 1. Examples of γ1 are γ1=1.1, 1.2, 1.3, 1.4, 1.5, and so on. The edge on the open end side (surface side) is larger than the diameter (for example, diameter) of the sound collecting portion of the microphone 12-n. An example of the diameter of the rim on the open end side (surface side) is twice the diameter (for example, the diameter) of the sound collecting portion of the microphone 12-n, or nearly twice the diameter.
 各マイク12-n(ただし、n=1,…,N)は、各凹部111-n(ただし、n=1,…,N)の内底面側に1個ずつ設置(固定)されている。ただし、互いに隣接するマイク12-nの集音部間の間隔(距離)は略同一である。すなわち、互いに隣接するマイク12-nの集音部間の間隔は所定値またはその近傍である。各集音部とそれに隣り合っている2個の他の集音部との間隔は互に略同一である。なお、αとβとが略同一とは、αとβとが同一であること、またはαとβとがほぼ同一であることを意味する。αとβとがほぼ同一とは、αとβとの差分δ=|α-β|がαに対して0%よりも大きくγ2%以下であることを意味する。γ2の例はγ2=1,3,5,10,20,30,40,50である。 Each microphone 12-n (where n=1, . However, the interval (distance) between the sound collecting parts of the microphones 12-n adjacent to each other is substantially the same. That is, the interval between the sound collecting parts of the microphones 12-n adjacent to each other is a predetermined value or its vicinity. The distance between each sound collector and the two adjacent sound collectors is substantially the same. Note that α and β are substantially the same means that α and β are the same, or that α and β are substantially the same. That α and β are almost the same means that the difference δ=|α−β| between α and β is greater than 0% and less than or equal to γ2% with respect to α. Examples of γ2 are γ2=1,3,5,10,20,30,40,50.
<フィルタ計算>
 取得したインパルス応答を用いて、36カ所の音源sが位置する任意の方向を目的音の対象方向として、ビームフォーミングを行うフィルタを計算し、ビームフォーミングの指向特性を求める。フィルタ計算の条件を以下に示す。
<Filter calculation>
Using the acquired impulse responses, a filter for beamforming is calculated with an arbitrary direction in which the sound source s is located at 36 locations as the target direction of the target sound, and the directional characteristics of beamforming are obtained. Filter calculation conditions are shown below.
 MVDR(Minimum Variance Distortionless Response:最小分散無歪応答法)を用いて、フィルタ係数を計算する。その際、対象方向±10°を目的音方向、それ以外を雑音方向と設定する。フィルタを用いたときの、各音源位置からの周波数応答を1/3オクターブバンド毎に集約し、中心周波数毎に評価する。 Calculate the filter coefficients using MVDR (Minimum Variance Distortionless Response). At that time, the target direction ±10° is set as the target sound direction, and the others are set as the noise direction. When the filter is used, the frequency response from each sound source position is aggregated for each 1/3 octave band and evaluated for each center frequency.
<シミュレーション結果>
 シミュレーションのマイクアレイ1で収音した信号をフィルタリングして得られる信号(シミュレーション結果x)から指向特性が分かる。
<Simulation result>
The directional characteristics are known from the signal (simulation result x) obtained by filtering the signal picked up by the simulated microphone array 1 .
 図13は、4つのマイク12-nのみからなるマイクアレイ(基部11なし)の指向特性を示す。中心周波数が、500Hz、1kHzの指向特性を示している。対象方向を0°,20°,40°,60°,80°としたときの指向特性を求め、図13では横軸に対象方向を0°として、指向特性を重ねて表示している。縦軸は角度ごとの感度を示している。感度は対象方向の感度を0dBとするように補正している。なお、基部11が無いため、4つのマイク12-nは、各凹部111-nに固定されておらず、半径rm=0.1mの円のθm=0°,90°,180°,270°の位置に配置される。 FIG. 13 shows the directional characteristics of a microphone array (without base 11) consisting of only four microphones 12-n. Center frequencies are 500Hz and 1kHz. The directivity characteristics are obtained when the target direction is set to 0°, 20°, 40°, 60°, and 80°, and in FIG. 13, the directivity characteristics are superimposed on the horizontal axis with the target direction set to 0°. The vertical axis indicates the sensitivity for each angle. The sensitivity is corrected so that the sensitivity in the target direction is 0 dB. Note that since there is no base 11, the four microphones 12-n are not fixed to the recesses 111-n, and θ m =0°, 90°, 180°, 270° of a circle with a radius of r m =0.1 m. It is placed at the position of °.
 図14~図20は、凹部111-nの形状が、コニカルホーンであり、
y=a1x+b    (1)
式(1)で表される直線を、x軸を中心に360°回転させて形成される立体をθm=0°,90°,180°,270°で半径raの略球体から切り取った形状の基部11と4つのマイクとからなるマイクアレイの指向特性を示す。図14~図20は、それぞれa1=0.1, 0.15, 0.2,0.25, 0.3, 0.35, 0.4に対応する。図14~図20から、凹部111-nの形状が変化することで指向特性が変化することが分かる。
14 to 20, the shape of the concave portion 111-n is a conical horn,
y=a1x+b ( 1 )
A solid formed by rotating the straight line represented by the formula (1) by 360° about the x-axis is cut from an approximate sphere with a radius of r a at θ m =0°, 90°, 180°, and 270°. The directional characteristics of a microphone array consisting of a shaped base 11 and four microphones are shown. 14 to 20 correspond to a 1 =0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, respectively. From FIGS. 14 to 20, it can be seen that the directional characteristics change as the shape of the concave portion 111-n changes.
 凹部111-nの形状がパラボラホーンやエクスポーネンシャルホーンの場合にも凹部111-nの形状(パラメータa2,a3)が変化することで指向特性が変化する。 Even when the shape of the concave portion 111-n is a parabolic horn or an exponential horn, the directional characteristics change as the shape (parameters a 2 and a 3 ) of the concave portion 111-n changes.
 次に、設計装置100の評価部110について説明する。 Next, the evaluation unit 110 of the design device 100 will be explained.
<評価部110および記憶部120>
 評価部110は、上述のシミュレーション結果xを入力とし、凹部の形状毎の指向特性を周波数毎に評価し、評価結果yを記憶部120に格納する。例えば以下の評価方法が考えられる。
<Evaluation Unit 110 and Storage Unit 120>
The evaluation unit 110 receives the simulation result x described above, evaluates the directivity characteristics for each shape of the concave portion for each frequency, and stores the evaluation result y in the storage unit 120 . For example, the following evaluation methods are conceivable.
(1)指向性の鋭さを評価する。指向性の鋭さを比較するために、「n」dBビーム幅を導入する。これは、マイクアレイの指向特性をアンテナの指向特性で用いられる3dBビーム幅と同様に考える。つまり、対象方向0°に対して、「n」dB減衰する角度の平均を求める。対象方向t[°]に対して、「n」dB減衰するプラス方向の角度をαn_tとし、マイナス方向の角度をβn_t(値は負の数)とするとき、「n」dBビーム幅wnを次式で求める。
Figure JPOXMLDOC01-appb-M000001

なお、mは指向性計算を行った対象方向の総数である。図3の例では、m=36である。「n」dBビーム幅wnが小さいほど、鋭い指向特性が実現できていると評価できる。
(1) Evaluate the sharpness of directivity. To compare the directivity sharpness, we introduce the 'n' dB beamwidth. This considers the directivity of the microphone array to be similar to the 3 dB beamwidth used in the directivity of the antenna. That is, the average of angles that are attenuated by "n" dB is obtained with respect to the target direction of 0°. With respect to the target direction t [°], when the positive direction angle that attenuates “n” dB is α n_t and the negative direction angle is β n_t (value is a negative number), the “n” dB beam width w Calculate n by the following formula.
Figure JPOXMLDOC01-appb-M000001

Note that m is the total number of target directions for which the directivity calculation was performed. In the example of FIG. 3, m=36. It can be evaluated that the smaller the “n” dB beam width w n is, the sharper the directional characteristics are realized.
 図21は、凹部111-nの形状がコニカルホーンの「n」dBビーム幅を示す。「n」は-1,-2,…,-10dBとする。黒丸は、最も鋭い指向性能となるビーム幅が最小の点を示している。基部が無い場合と比較し、鋭い指向特性が形成できることがわかる。中心周波数が500Hz, 1000Hzに対して、それぞれ、a1=0.25,a2=0.2において、相対的に鋭い指向特性が実現できていることがわかる。 In FIG. 21, the shape of recess 111-n indicates the 'n' dB beamwidth of the conical horn. “n” shall be -1,-2,…,-10dB. A black circle indicates the point where the beam width is the smallest, resulting in the sharpest directional performance. It can be seen that a sharper directional characteristic can be formed compared to the case where there is no base. It can be seen that relatively sharp directional characteristics are achieved at a 1 =0.25 and a 2 =0.2 for center frequencies of 500 Hz and 1000 Hz, respectively.
 図22は、凹部111-nの形状がパラボラホーンの「n」dBビーム幅を示す。中心周波数が1000Hzに対して、a2=4.0において、相対的に鋭い指向特性が実現できていることがわかる。 FIG. 22 shows the 'n' dB beamwidth of the parabolic horn where the shape of the recess 111-n is. It can be seen that a relatively sharp directional characteristic is achieved at a 2 =4.0 with a center frequency of 1000 Hz.
 図23は、凹部111-nの形状がエクスポーネンシャルホーンの「n」dBビーム幅を示す。中心周波数が500Hz, 1000Hzに対して、それぞれ、a3=0.15,a3=0.1において、相対的に鋭い指向特性が実現できていることがわかる。 In FIG. 23, the shape of recess 111-n indicates the 'n' dB beamwidth of the exponential horn. It can be seen that relatively sharp directional characteristics are achieved at a 3 =0.15 and a 3 =0.1 for center frequencies of 500 Hz and 1000 Hz, respectively.
 図6,9,12と図21~図23とから、凹部の開口が狭いほうが鋭い指向特性を示すが、凹部の開口が狭すぎると性能が落ちる傾向がわかる。 From FIGS. 6, 9, 12 and 21 to 23, it can be seen that the narrower the opening of the recess, the sharper the directional characteristics, but the tendency of performance to drop if the opening of the recess is too narrow.
 図24は、各ホーンで最適なパラメータの「n」dBビーム幅を示す。中心周波数が500Hz, 1000Hzに対して、それぞれ、a1=0.25のコニカルホーン、a2=4.0のパラボラホーンが最も鋭い指向特性が実現できていることがわかる。 FIG. 24 shows the optimal parameter 'n' dB beamwidth for each horn. It can be seen that the conical horn with a 1 =0.25 and the parabolic horn with a 2 =4.0 achieve the sharpest directional characteristics at center frequencies of 500 Hz and 1000 Hz, respectively.
(2)何れの対象方向に対しても、同じような指向性のビーム形状を示すことが望ましい。そこで、任意方向に対して形成する指向性のビーム形状のバラつきを評価する。指向性のビーム形状のバラつきを評価するために、「n」dBビーム平均偏りを導入する。対象方向t[°]に対して、「n」dB減衰するプラス方向の角度をαn_tとし、マイナス方向の角度をβn_t(値は負の数)とするとき、「n」dBビーム平均偏りθnを次式で求める。
Figure JPOXMLDOC01-appb-M000002

「n」dBビーム平均偏りθnが小さいほどのバラつき形成する指向性のビーム形状のバラつきが小さい(指向性のビーム形状が等しい)ことを示す。
(2) It is desirable to exhibit similar directional beam shapes in any target direction. Therefore, the variation in the shape of the directivity beam formed in an arbitrary direction is evaluated. To assess the directional beam shape variation, we introduce the 'n' dB beam average bias. With respect to the target direction t [°], let α n_t be the angle in the positive direction that attenuates “n” dB, and let β n_t be the angle in the negative direction (value is a negative number), then “n” dB beam average deflection Calculate θ n by the following equation.
Figure JPOXMLDOC01-appb-M000002

“n” dB indicates that the smaller the beam average bias θ n is, the smaller the variation in the directional beam shape formed (the directional beam shapes are equal).
 図25は、凹部111-nの形状がコニカルホーンの「n」dBビーム平均偏りを示す。「n」は-1,-2,…,-10dBとする。黒丸は、最も鋭い指向性能となるビーム幅に対応するパラメータにおける平均偏りを示している。8dB以下では、中心周波数が500Hzにおいて、基部が無い場合と比較し、「n」dBビーム平均偏りが10°以下となり、ほぼ同一の指向特性が形成できることがわかる。中心周波数が1000Hzに対して、a1=0.1以外の場合、「n」dBビーム平均偏りが10°以下となり、ほぼ同一の指向特性が形成できることがわかる。a1=0.1の場合のように、凹部111-nの形状の開きが小さい場合は、基部による反射の回数が増大し、その影響が大きくなるためと考えられる。 FIG. 25 shows the 'n' dB beam average deflection of the conical horn where the shape of recess 111-n is. “n” shall be -1,-2,…,-10dB. The black circles indicate the average bias in the parameter corresponding to the beamwidth with sharpest directional performance. When the center frequency is 500 Hz and below 8 dB, compared to the case without the base, the 'n' dB beam average deviation is 10° or less, and it can be seen that almost the same directional characteristics can be formed. When the center frequency is 1000 Hz, when a 1 =0.1, the "n" dB beam average deviation is 10° or less, and almost the same directional characteristics can be formed. This is thought to be because, as in the case of a 1 =0.1, when the shape difference of the concave portion 111-n is small, the number of times of reflection by the base portion increases and the effect thereof becomes large.
 図26は、凹部111-nの形状がパラボラホーンの「n」dBビーム平均偏りを示す。8dB以下では、中心周波数が500Hzにおいて、基部が無い場合と比較し、「n」dBビーム平均偏りが10°以下となり、ほぼ同一の指向特性が形成できることがわかる。中心周波数が1000Hzに対して、鋭い指向性を形成するa2=4.0が、「n」dBビーム平均偏りの値も小さく、ほぼ同一の指向特性が形成できることがわかる。 FIG. 26 shows the 'n' dB beam average deflection of a parabolic horn whose shape is recess 111-n. When the center frequency is 500 Hz and below 8 dB, compared to the case without the base, the 'n' dB beam average deviation is 10° or less, and it can be seen that almost the same directional characteristics can be formed. With a center frequency of 1000 Hz, a 2 =4.0, which forms a sharp directivity, has a small "n" dB beam average bias value, and almost the same directivity can be formed.
 図27は、凹部111-nの形状がエクスポーネンシャルホーンの「n」dBビーム平均偏りを示す。ビーム幅の小さい、a3=0.1, a3=0.15の場合に、「n」dBビーム平均偏りも小さくなっていることがわかる。 FIG. 27 shows that the shape of recess 111-n indicates the 'n' dB beam average deflection of the exponential horn. It can be seen that for small beamwidths, a 3 =0.1, a 3 =0.15, the 'n' dB beam average bias is also small.
 図28は、各ホーンでビーム幅が鋭いパラメータ(図24参照)の「n」dBビーム平均偏りを示す。8dB以下では、概して「n」dBビーム平均偏りは10°以下であり、ほぼ同一の指向特性が形成できることがわかる。 FIG. 28 shows the 'n' dB beam average bias of the sharp beamwidth parameter (see FIG. 24) for each horn. At 8 dB or less, the 'n' dB beam average deviation is generally 10° or less, and it can be seen that nearly identical directional characteristics can be formed.
 評価部110は、凹部の形状毎かつ周波数毎の指向特性の評価が分かるように、凹部の形状に関する情報(例えば、a1,a2,a3)と中心周波数と評価結果yとの組合せを記憶部120に格納する。評価結果yは、例えば、「n」dBビーム幅wnとビーム幅平均偏りθnの組合せである。また、例えば、最も指向性が鋭く、かつ、最も指向性のビーム形状のバラつきが小さいパラメータを評価結果yとして記憶部120に格納してもよい。 The evaluation unit 110 combines information on the shape of the recess (for example, a 1 , a 2 , a 3 ), the center frequency, and the evaluation result y so that the evaluation of the directivity characteristics for each shape of the recess and for each frequency can be known. Stored in the storage unit 120 . The evaluation result y is, for example, a combination of the 'n' dB beamwidth w n and the beamwidth average bias θ n . Further, for example, the parameter with the sharpest directivity and the smallest variation in beam shape of directivity may be stored in the storage unit 120 as the evaluation result y.
<入力部130>
 入力部130は、ユーザが集音したい音響信号の性質および所望の指向性の入力を受け付け(S130)、設計部140に出力する。例えば、音響信号の性質とは集音したい音響信号の中心周波数であり、所望の指向性とは所望の指向性の鋭さや所望の指向性のビーム形状のバラつきを意味する。入力部130は、キーボードやマウス、タッチパネルなどの入力装置や、入力装置からの入力を受け付ける各種インターフェースである。
<Input unit 130>
The input unit 130 receives the input of the property of the acoustic signal that the user wants to collect and the desired directivity (S130), and outputs the input to the design unit 140. FIG. For example, the property of an acoustic signal is the center frequency of the acoustic signal to be collected, and the desired directivity means the sharpness of the desired directivity and the dispersion of the beam shape of the desired directivity. The input unit 130 is an input device such as a keyboard, mouse, and touch panel, and various interfaces that receive input from the input device.
<設計部140>
 設計部140は、ユーザが集音したい音響信号の性質および所望の指向性を受け取り、記憶部120を参照して、入力された集音したい音響信号の性質および所望の指向性に適した凹部の形状を設計し(s140)、設計した凹部の形状を出力する。このとき、合わせてN個の凹部111-nを備える基部11の形状、マイク12-nの位置を出力してもよい。
<Design Department 140>
The design unit 140 receives the property of the acoustic signal that the user wants to collect and the desired directivity, refers to the storage unit 120, and selects a recess suitable for the property of the input acoustic signal that the user wants to collect and the desired directivity. The shape is designed (s140), and the designed shape of the recess is output. At this time, the shape of the base 11 having a total of N concave portions 111-n and the position of the microphone 12-n may be output.
 集音したい音響信号の性質および所望の指向性が、中心周波数を500Hzとし、指向性が鋭く、かつ、指向性のビーム形状のバラつきが小さいことを示す場合には、図21~図28の評価結果を参照して、凹部の形状をエクスポーネンシャルホーンとし、a3=0.15を出力する。このような構成により、開口部の狭い形状で、鋭い指向性かつ、ばらつきの少ない指向性形状を形成できる。 If the characteristics of the acoustic signal to be collected and the desired directivity indicate that the center frequency is 500 Hz, the directivity is sharp, and the beam shape variation of the directivity is small, the evaluation of FIGS. 21 to 28 Referring to the result, the shape of the concave portion is assumed to be an exponential horn, and a 3 =0.15 is output. With such a configuration, it is possible to form a directivity shape with a narrow opening, sharp directivity and little variation.
<出力部150>
 出力部150は、設計部140で設計した凹部の形状や凹部111-nを備える基部11の形状をディスプレイ等の提示部や、外部メモリや、ネットワークを介して接続されている端末等に出力する。例えば、N個の凹部111-nを備える基部11の形状を3Dプリンタ等に出力し、3Dプリンタ等で基部11を形成してもよい。
<Output unit 150>
The output unit 150 outputs the shape of the recess designed by the design unit 140 and the shape of the base 11 including the recess 111-n to a presentation unit such as a display, an external memory, a terminal connected via a network, and the like. . For example, the shape of the base 11 having N concave portions 111-n may be output to a 3D printer or the like, and the base 11 may be formed by the 3D printer or the like.
<効果>
 このような構成とすることで、マイクアレイを実際に作ることなく、様々な凹部の形状による指向性の鋭さ、指向性形状のばらつきの影響を評価して、マイクアレイを設計することが可能となる。ユーザの所望する指向性が、鋭く、かつ、指向性のビーム形状のバラつきが小さいことを示す場合には、上述の構成により、到来方向毎の指向性性能の差が小さいマイクアレイを設計することができる。
<effect>
By adopting such a configuration, it is possible to design a microphone array by evaluating the effects of the sharpness of directivity and variations in the shape of the directivity due to the shape of various recesses, without actually fabricating the microphone array. Become. When the directivity desired by the user indicates that the directivity is sharp and the variation in the beam shape of the directivity is small, a microphone array with a small difference in directivity performance for each direction of arrival is designed by the above configuration. can be done.
<変形例>
 本実施形態では、マイク12-nおよび凹部111-nの個数と設置位置が予め決まっているものとして説明したが、ユーザが設定する構成としてもよい。例えば、入力部130を介して、ユーザが集音したい音響信号の性質および所望の指向性とともに、設置したいマイク12-nの個数Nを入力する構成としてもよい。この場合、入力が想定される個数Nに合わせて凹部111-nの設置位置が特定され、設置位置に設けられる凹部111-nの形状に合わせてマイクの設置位置が特定される。例えば、N=9の場合、9つのマイク12-nは半径rmの円のθm=0°,40°,80°,120°,160°,200°,240°,280°,320°の位置に配置され、内壁面に9つのマイク12-nが配置されるように9個の凹部111-nが形成される。そして、第一実施形態と同様のシミュレーションにより、シミュレーション結果xを得、評価し、記憶部120に格納する。
<Modification>
In the present embodiment, the numbers and installation positions of the microphones 12-n and recesses 111-n are predetermined, but may be set by the user. For example, the configuration may be such that the user inputs, via the input unit 130, the property of the acoustic signal to be collected, the desired directivity, and the number N of the microphones 12-n to be installed. In this case, the installation positions of the recesses 111-n are specified according to the number N of expected inputs, and the installation positions of the microphones are specified according to the shape of the recesses 111-n provided at the installation positions. For example, when N=9, the nine microphones 12-n are θ m =0°, 40°, 80°, 120°, 160°, 200°, 240°, 280°, 320° of a circle with radius r m , and nine recesses 111-n are formed so that nine microphones 12-n are arranged on the inner wall surface. Then, the simulation result x is obtained by the same simulation as in the first embodiment, evaluated, and stored in the storage unit 120 .
 また、本実施形態では、凹部の形状に関する情報として、パラメータa1,a2,a3を例示しているが、凹部の開口、凹部内部の傾き、凹部の大きさ等を用いてもよい。 In this embodiment, the parameters a 1 , a 2 , and a 3 are exemplified as information about the shape of the recess, but the opening of the recess, the inclination inside the recess, the size of the recess, and the like may also be used.
 また、本実施形態では、凹部の形状毎かつ周波数毎の指向特性の評価が分かるように、凹部の形状に関する情報(例えば、a1,a2,a3)と中心周波数と評価結果yとの組合せを記憶部120に格納しているが、凹部の開口、凹部内部の傾き、凹部の大きさ、凹部の個数等と指向特性とを定式化し、記憶部120に格納してもよい。この場合、設計部140は、ユーザが集音したい音響信号の性質および所望の指向性を受け取り、記憶部120を参照して、入力された集音したい音響信号の性質および所望の指向性を定式に当てはめて計算し、音響信号の性質および所望の指向性に適した凹部の形状(凹部の開口、凹部内部の傾き、凹部の大きさ、凹部の個数等)を設計し、設計した凹部の形状を出力する。 In addition, in the present embodiment, information on the shape of the recess (for example, a 1 , a 2 , a 3 ), the center frequency, and the evaluation result y are combined so that the evaluation of the directivity characteristics for each shape of the recess and for each frequency can be understood. Although the combination is stored in the storage unit 120 , the opening of the recess, the inclination inside the recess, the size of the recess, the number of recesses, etc., and the directional characteristics may be formulated and stored in the storage unit 120 . In this case, the design unit 140 receives the properties and desired directivity of the acoustic signal that the user wants to collect, refers to the storage unit 120, and formulates the properties and desired directivity of the input acoustic signal that the user wants to collect. , and design the shape of the recess (opening of the recess, inclination of the interior of the recess, size of the recess, number of recesses, etc.) suitable for the properties of the acoustic signal and the desired directivity, and design the shape of the recess to output
 本実施形態では、基部11を略球体としているが、略円柱として側面に凹部を設けてもよい。 In the present embodiment, the base portion 11 is substantially spherical, but may be substantially cylindrical and may be provided with recesses on the side surfaces.
 また、互いに所定の間隔をおいたN個のマイクを球状に配置してマイクアレイを構成してもよい。この場合、互いに隣接するマイク12-nの集音部間の間隔を略同一にするためには、例えば、マイク12-nの集音部のそれぞれを、N個の頂点を持つ正多面体の頂点または当該頂点の近傍のそれぞれに1個ずつ配置すればよい。正n面体のすべての頂点が外接する球で、その頂点部分にマイク12-nを配置することで均一性を担保する。正多面体は、正四面体、正六面体、正八面体、正十二面体、正二十面体しか存在しない。以下に各正多面体の構成面、面数、辺数、頂点数の関係を示す。
Figure JPOXMLDOC01-appb-T000003

 このように、各集音部を正多面体の頂点または当該頂点の近傍のそれぞれに1個ずつ配置する場合、Nは4,6,8,12,20の何れかとなる。各頂点またはその近傍に配置される集音部は、例えば、正多面体の中央からその頂点またはその近傍に向かう方向に向けて配置される。
Alternatively, a microphone array may be configured by spherically arranging N microphones spaced apart from each other by a predetermined distance. In this case, in order to make the intervals between the sound collecting parts of the microphones 12-n adjacent to each other substantially the same, for example, each of the sound collecting parts of the microphones 12-n is arranged at the vertices of a regular polyhedron having N vertices. Alternatively, one may be arranged in each vicinity of the vertex. It is a sphere that circumscribes all the vertices of the regular n-hedron, and uniformity is ensured by arranging the microphones 12-n at the vertices. There are only regular polyhedra: tetrahedron, hexahedron, octahedron, dodecahedron, and icosahedron. The relationship between the constituent faces of each regular polyhedron, the number of faces, the number of sides, and the number of vertices is shown below.
Figure JPOXMLDOC01-appb-T000003

In this way, N is any one of 4, 6, 8, 12, and 20 when one sound collector is arranged at each vertex of the regular polyhedron or in the vicinity of the vertex. The sound collector arranged at each vertex or its vicinity is arranged, for example, in a direction from the center of the regular polyhedron toward its vertex or its vicinity.
 なお、本発明は、音波以外の電波や光波等の波に対して適用可能であり、複数のマイクを有するマイクロホンアレイに代えて、複数の電波センサ若しくは光波センサを有するセンサアレイの設計に適用することができる。ただし、基部の反射吸収条件を波にあわせて設計する必要がある。 The present invention can be applied to waves such as radio waves and light waves other than sound waves, and can be applied to the design of a sensor array having a plurality of radio wave sensors or light wave sensors instead of a microphone array having a plurality of microphones. be able to. However, it is necessary to design the reflection and absorption conditions of the base according to the waves.
<その他の変形例>
 本発明は上記の実施形態及び変形例に限定されるものではない。例えば、上述の各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。その他、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
<Other Modifications>
The present invention is not limited to the above embodiments and modifications. For example, the various types of processing described above may not only be executed in chronological order according to the description, but may also be executed in parallel or individually according to the processing capacity of the device that executes the processing or as necessary. In addition, appropriate modifications are possible without departing from the gist of the present invention.
<プログラム及び記録媒体>
 上述の各種の処理は、図29に示すコンピュータの記憶部2020に、上記方法の各ステップを実行させるプログラムを読み込ませ、制御部2010、入力部2030、出力部2040などに動作させることで実施できる。
<Program and recording medium>
The various processes described above can be performed by loading a program for executing each step of the above method into the storage unit 2020 of the computer shown in FIG. .
 この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。 A program that describes this process can be recorded on a computer-readable recording medium. Any computer-readable recording medium may be used, for example, a magnetic recording device, an optical disk, a magneto-optical recording medium, a semiconductor memory, or the like.
 また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD-ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。 In addition, the distribution of this program is carried out, for example, by selling, assigning, lending, etc. portable recording media such as DVDs and CD-ROMs on which the program is recorded. Further, the program may be distributed by storing the program in the storage device of the server computer and transferring the program from the server computer to other computers via the network.
 このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理の実行時、このコンピュータは、自己の記録媒体に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよく、さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、本形態におけるプログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。 A computer that executes such a program, for example, first stores the program recorded on a portable recording medium or the program transferred from the server computer once in its own storage device. Then, when executing the process, this computer reads the program stored in its own recording medium and executes the process according to the read program. Also, as another execution form of this program, the computer may read the program directly from a portable recording medium and execute processing according to the program, and the program is transferred from the server computer to this computer. Each time, the processing according to the received program may be executed sequentially. In addition, the above-mentioned processing is executed by a so-called ASP (Application Service Provider) type service, which does not transfer the program from the server computer to this computer, and realizes the processing function only by its execution instruction and result acquisition. may be It should be noted that the program in this embodiment includes information used for processing by a computer and conforming to the program (data that is not a direct instruction to the computer but has the property of prescribing the processing of the computer, etc.).
 また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、本装置を構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。 Also, in this embodiment, the device is configured by executing a predetermined program on a computer, but at least a part of these processing contents may be implemented by hardware.

Claims (6)

  1.  Nが2以上の整数であり、少なくとも、N個の凹部を表面に備えた基部と、前記凹部のそれぞれの内底面側に1個ずつ設置されるN個のマイクと、を有するマイクアレイの設計装置であって、
     所定の音響信号の性質および所定の指向性と、その所定の音響信号の性質および所定の指向性に適した凹部の形状とを記憶する記憶部と、
     集音したい音響信号の性質および所望の指向性の入力を受け付ける入力部と、
     前記記憶部を参照して、入力された集音したい音響信号の性質および所望の指向性に適した凹部の形状を設計する設計部と、を含む、
     設計装置。
    A design of a microphone array having a base with at least N recesses on the surface, N being an integer of 2 or more, and N microphones installed one by one on the inner bottom surface of each of the recesses. a device,
    a storage unit for storing a predetermined property and predetermined directivity of an acoustic signal, and a shape of a recess suitable for the predetermined property and predetermined directivity of the acoustic signal;
    an input unit that receives input of properties of an acoustic signal to be collected and desired directivity;
    a design unit that refers to the storage unit and designs the shape of the recess suitable for the properties of the input acoustic signal to be collected and the desired directivity;
    design equipment.
  2.  請求項1の設計装置であって、
     前記所定の音響信号の性質および所定の指向性に適した凹部の形状は、指向性の鋭さと、指向性のビーム形状のバラつきとに基づき評価したものである、
     設計装置。
    The design device of claim 1,
    The shape of the concave portion suitable for the predetermined acoustic signal properties and predetermined directivity is evaluated based on the sharpness of the directivity and the variation in the beam shape of the directivity.
    design equipment.
  3.  Nが2以上の整数であり、少なくとも、N個の凹部を表面に備えた基部と、前記凹部のそれぞれの内底面側に1個ずつ設置されるN個のマイクと、を有するマイクアレイの設計方法であって、
     記憶部には、所定の音響信号の性質および所定の指向性と、その所定の音響信号の性質および所定の指向性に適した凹部の形状とが記憶されるものとし、
     集音したい音響信号の性質および所望の指向性の入力を受け付ける入力ステップと、
     前記記憶部を参照して、入力された集音したい音響信号の性質および所望の指向性に適した凹部の形状を設計する設計ステップと、を含む、
     設計方法。
    A design of a microphone array having a base with at least N recesses on the surface, N being an integer of 2 or more, and N microphones installed one by one on the inner bottom surface of each of the recesses. a method,
    The storage unit stores a predetermined property and predetermined directivity of the acoustic signal, and the shape of the concave portion suitable for the predetermined property and predetermined directivity of the acoustic signal,
    an input step of receiving input of properties of an acoustic signal to be collected and desired directivity;
    a design step of referring to the storage unit and designing the shape of the recess suitable for the property of the input acoustic signal to be collected and the desired directivity;
    design method.
  4.  請求項3の設計方法であって、
     前記所定の音響信号の性質および所定の指向性に適した凹部の形状は、指向性の鋭さと、指向性のビーム形状のバラつきとに基づき評価したものである、
     設計方法。
    The design method of claim 3,
    The shape of the concave portion suitable for the predetermined acoustic signal properties and predetermined directivity is evaluated based on the sharpness of the directivity and the variation in the beam shape of the directivity.
    design method.
  5.  請求項1または請求項2の設計装置としてコンピュータを機能させるためのプログラム。 A program for causing a computer to function as the design device of claim 1 or claim 2.
  6.  Nが2以上の整数であり、少なくとも、N個の凹部を表面に備えた基部と、前記凹部のそれぞれの内底面側に1個ずつ設置されるN個の電波センサ若しくは光波センサと、を有するセンサアレイの設計装置であって、
     所定の電波または光波の性質および所定の指向性と、その所定の電波または光波の性質および所定の指向性に適した凹部の形状とを記憶する記憶部と、
     集音したい電波または光波の性質および所望の指向性の入力を受け付ける入力部と、
     前記記憶部を参照して、入力された集音したい電波または光波の性質および所望の指向性に適した凹部の形状を設計する設計部と、を含む、
     設計装置。
    N is an integer equal to or greater than 2, and has at least a base provided with N recesses on the surface, and N radio wave sensors or light wave sensors installed one by one on the inner bottom surface side of each of the recesses. A sensor array design apparatus comprising:
    a storage unit for storing predetermined radio wave or light wave properties and predetermined directivity, and the shape of a concave portion suitable for the predetermined radio wave or light wave properties and predetermined directivity;
    an input unit that receives input of properties of radio waves or light waves to be collected and desired directivity;
    a design unit that refers to the storage unit and designs the shape of the recess suitable for the property of the input radio wave or light wave to be collected and the desired directivity,
    design equipment.
PCT/JP2021/005267 2021-02-12 2021-02-12 Design device, design method, and program WO2022172401A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005267 WO2022172401A1 (en) 2021-02-12 2021-02-12 Design device, design method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005267 WO2022172401A1 (en) 2021-02-12 2021-02-12 Design device, design method, and program

Publications (1)

Publication Number Publication Date
WO2022172401A1 true WO2022172401A1 (en) 2022-08-18

Family

ID=82838565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005267 WO2022172401A1 (en) 2021-02-12 2021-02-12 Design device, design method, and program

Country Status (1)

Country Link
WO (1) WO2022172401A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190052957A1 (en) * 2016-02-09 2019-02-14 Zylia Spolka Z Ograniczona Odpowiedzialnoscia Microphone probe, method, system and computer program product for audio signals processing
WO2020031719A1 (en) * 2018-08-08 2020-02-13 日本電信電話株式会社 Sound collecting device
WO2020105632A1 (en) * 2018-11-22 2020-05-28 日本電信電話株式会社 Sound pickup device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190052957A1 (en) * 2016-02-09 2019-02-14 Zylia Spolka Z Ograniczona Odpowiedzialnoscia Microphone probe, method, system and computer program product for audio signals processing
WO2020031719A1 (en) * 2018-08-08 2020-02-13 日本電信電話株式会社 Sound collecting device
WO2020105632A1 (en) * 2018-11-22 2020-05-28 日本電信電話株式会社 Sound pickup device

Similar Documents

Publication Publication Date Title
US9936291B2 (en) Spherical microphone array including a sound diffracting structure with cavity
EP2773131B1 (en) Spherical microphone array
US9445198B2 (en) Polyhedral audio system based on at least second-order eigenbeams
US5742693A (en) Image-derived second-order directional microphones with finite baffle
US8472639B2 (en) Microphone arrangement having more than one pressure gradient transducer
Leishman et al. An experimental evaluation of regular polyhedron loudspeakers as omnidirectional sources of sound
US8290195B2 (en) Acoustic radiation pattern adjusting
WO2009062211A1 (en) Position determination of sound sources
US10667043B2 (en) Loudspeaker and sound outputting apparatus having the same
US9161119B2 (en) Phi-based enclosure for speaker systems
EP1889510B1 (en) Sound reproduction with improved performance characteristics
US20180376239A1 (en) Sound collecting apparatus
WO2022172401A1 (en) Design device, design method, and program
Vanderkooy The low-frequency acoustic center: Measurement, theory, and application
EP2208358B1 (en) Microphone arrangement
EP3506650B1 (en) Microphone array
Taguchi et al. Investigation on optimal microphone arrangement of spherical microphone array to achieve shape beamforming
JP6824821B2 (en) speaker
JP6981559B2 (en) Sound collecting device
JP6821836B2 (en) Sound collecting device
EP4138412A1 (en) A method for designing a line array loudspeaker arrangement
CN116783645A (en) Acoustic metamaterial device, method and computer program
Mellow et al. On the scattering of a disk source by a rigid sphere for directivity broadening
Kelly et al. A Highly Directional Loudspeaker for Surround Channel Soundbar Reproduction
Farahikia Scattering and Fluid-Structure Interaction Analyses Using Computational Acoustics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP