WO2022172388A1 - Hybrid system - Google Patents

Hybrid system Download PDF

Info

Publication number
WO2022172388A1
WO2022172388A1 PCT/JP2021/005157 JP2021005157W WO2022172388A1 WO 2022172388 A1 WO2022172388 A1 WO 2022172388A1 JP 2021005157 W JP2021005157 W JP 2021005157W WO 2022172388 A1 WO2022172388 A1 WO 2022172388A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
speed
pedal
engine
accelerator pedal
Prior art date
Application number
PCT/JP2021/005157
Other languages
French (fr)
Japanese (ja)
Inventor
正登 小林
章洋 三好
伸 吉田
Original Assignee
株式会社Tbk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tbk filed Critical 株式会社Tbk
Priority to PCT/JP2021/005157 priority Critical patent/WO2022172388A1/en
Priority to KR1020237030039A priority patent/KR20230145102A/en
Priority to JP2022581104A priority patent/JPWO2022172388A1/ja
Publication of WO2022172388A1 publication Critical patent/WO2022172388A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a vehicle hybrid system.
  • Hybrid vehicles equipped with an engine and a motor generator as drive sources have attracted attention.
  • Hybrid vehicles are roughly classified into mild hybrid vehicles and strong hybrid vehicles.
  • Mild hybrid vehicles use the engine as the main drive source.
  • Mainly during deceleration, the motor generator functions as a generator to regenerate energy. is assisted by the output of the motor generator (see Patent Document 1, for example).
  • Patent Document 1 for example.
  • mild hybrid vehicles have the advantage of low cost because they require fewer parts and batteries and have simpler mechanisms.
  • the present invention has been made in view of such problems, and aims to provide a hybrid system that can be diverted to a hybrid vehicle without requiring large-scale modification of an existing non-hybrid vehicle. aim.
  • a hybrid system is a vehicle equipped with an engine as a power source for running. and an assist control device for controlling the generator, wherein the assist control device receives signals from predetermined sensors provided on the vehicle without transmitting/receiving signals to/from other control devices provided on the vehicle.
  • the motor generator is controlled based on the detected signal.
  • a manual transmission in which the gear stage is switched by operating a shift lever and a power transmission path between the engine and the manual transmission are interposed, and the clutch pedal is depressed. Electric power is transferred between a clutch that connects and disconnects power transmission between the engine and the manual transmission according to operation, a clutch sensor that detects the amount of depression of the clutch pedal, and the motor generator.
  • a battery a battery sensor that detects the remaining capacity of the battery, and a vehicle speed sensor that detects the vehicle speed of the vehicle.
  • the assist control device detects that the clutch pedal is not depressed by the clutch sensor.
  • the assist control device detects the remaining amount of the battery by the battery sensor in the idling state of the engine. It is preferable that regenerative power generation of the motor generator is performed when it is detected that the capacity is less than a predetermined amount.
  • a manual transmission in which a shift stage is switched by operating a shift lever, and a power transmission path interposed between the engine and the manual transmission, the clutch pedal is depressed.
  • a clutch that connects and disconnects power transmission between the engine and the manual transmission in response to an operation, and a clutch sensor that detects the amount of depression of the clutch pedal, wherein the assist control device controls
  • the drive timing of the motor generator is determined based on the change in the depressing speed when the clutch pedal is released from the depressed state, and the motor generator is driven at the timing when the depressing speed changes from decreasing to increasing. It is preferable to start powering the generator.
  • the hybrid system includes an accelerator sensor that detects the amount of depression of an accelerator pedal, and a rotation sensor that detects the rotational speed of the engine.
  • an accelerator sensor that detects the amount of depression of an accelerator pedal
  • a rotation sensor that detects the rotational speed of the engine.
  • an accelerator sensor is provided for detecting the amount of depression of an accelerator pedal, and the assist control device detects when the amount of depression when the accelerator pedal is depressed exceeds a specified amount. It is preferable to start the power running drive of the motor generator and stop the power running drive of the motor generator when the accelerator pedal is released.
  • the hybrid system includes an accelerator sensor that detects the amount of depression of an accelerator pedal, and a vehicle speed sensor that detects the vehicle speed of the vehicle, and the assist control device detects that the vehicle speed is within a predetermined speed range.
  • the amount of depression of the accelerator pedal is compared with a preset first determination value, and the vehicle acceleration calculated from the vehicle speed is compared with a preset second determination value. Then, when the amount of depression of the accelerator pedal is less than a first determination value and the acceleration of the vehicle is equal to or greater than a second determination value, it is determined that the vehicle is in a light load state, and the amount of depression of the accelerator pedal is determined. is greater than or equal to a first determination value and the acceleration of the vehicle is less than a second determination value, it is preferable to determine that the vehicle is in the high load state.
  • the hybrid system includes an accelerator sensor that detects the amount of depression of an accelerator pedal, and the assist control device presets a depressing speed when the accelerator pedal is depressed and then released.
  • the assist control device determines that the vehicle has transitioned to constant speed running when the accelerator pedal is depressed back to a predetermined position set in advance, and the assist control device determines that the vehicle is traveling at a constant speed. is determined to have shifted to constant speed running, the motor generator is powered when the accelerator pedal is stepped on, and the power running of the motor generator is stopped when the accelerator pedal is released.
  • an accelerator sensor is provided to detect the amount of depression of an accelerator pedal, and the assist control device is operated when the accelerator pedal is released from a depressed state during power running of the motor generator.
  • the stepping-back speed is compared with a preset predetermined speed, if the stepping-back speed is less than the predetermined speed, the power running drive of the motor generator is stopped, and the stepping-back speed is equal to or higher than the predetermined speed. In this case, it is preferable to stop the power running drive of the motor generator and start the regenerative power generation of the motor generator when the depression amount of the accelerator pedal becomes zero.
  • the hybrid system includes an accelerator sensor that detects the amount of depression of an accelerator pedal, and a vehicle speed sensor that detects the vehicle speed of the vehicle, and the assist control device detects the acceleration from the state where the accelerator pedal is depressed.
  • a vehicle speed of the vehicle when the accelerator pedal starts to be released is stored as a reference vehicle speed, and the vehicle speed of the vehicle is higher than the reference vehicle speed by a predetermined value or more in a state where the depression amount becomes 0 by depressing the accelerator pedal back. It is preferable to start the regenerative power generation of the motor generator when it becomes large.
  • the hybrid system includes an accelerator sensor that detects the amount of depression of an accelerator pedal, and a brake sensor that detects depression of a brake pedal, and the assist control device detects a state in which the accelerator pedal is depressed.
  • the regenerative output of the motor generator is set to a low output to start regenerative power generation, and when the brake pedal is depressed.
  • the regenerative output of the motor generator is switched from low output to high output.
  • a manual transmission in which a shift stage is switched by operating a shift lever, and a power transmission path interposed between the engine and the manual transmission, the clutch pedal is depressed.
  • a clutch that connects and disconnects power transmission between the engine and the manual transmission according to operation, a clutch sensor that detects the amount of depression of the clutch pedal, and a brake sensor that detects the depression of the brake pedal.
  • the assist control device performs power running driving of the motor generator while the brake pedal is depressed and the clutch pedal is depressed by a predetermined amount or more.
  • a manual transmission in which a shift stage is switched by operating a shift lever, and a power transmission path interposed between the engine and the manual transmission, the clutch pedal is depressed.
  • a clutch that connects and disconnects power transmission between the engine and the manual transmission according to an operation; a clutch sensor that detects the amount of depression of the clutch pedal; a vehicle speed sensor that detects the vehicle speed of the vehicle; and a rotation sensor for detecting the rotation speed of the engine, and the assist control device detects that the rotation speed of the engine reaches a predetermined rotation speed when the vehicle speed of the vehicle tends to decrease in a state where the clutch pedal is not depressed. It is preferable to determine that the manual transmission is in a neutral state and limit the power running drive of the motor generator when the number has increased by a number or more.
  • the assist control device controls that the vehicle speed of the vehicle is equal to or higher than a predetermined speed when the vehicle speed of the vehicle does not tend to decrease while the clutch pedal is not depressed.
  • a predetermined speed when the vehicle speed of the vehicle does not tend to decrease while the clutch pedal is not depressed.
  • the assist control device rotates the motor generator in the reverse direction to once rotate the crankshaft of the engine in the reverse direction when the engine is restarted, and then rotates the motor generator. It is preferable to rotate the crankshaft in the normal rotation direction by driving the crankshaft in the normal direction.
  • vehicle information is input from predetermined sensors based on the independent judgment of the assist control device without requiring cooperation with other control devices (without requiring modification of the control system). Based on this, it is possible to determine the operation of the vehicle and control the motor generator, so the mild hybrid system can be retrofitted without the need for large-scale design changes or modifications to existing vehicles. As a result, existing vehicles can be easily converted to hybrid vehicles.
  • FIG. 4 is a flowchart of idling regeneration control; 4 is a time chart showing a specific example of idling regeneration control; 4 is a flowchart of start control; 4 is a time chart showing a specific example of start control; 4 is a flowchart of slip control; 4 is a time chart showing a specific example of slip control; 4 is a flowchart of acceleration assist control; 4 is a time chart showing a specific example of acceleration assist control; 4 is a flowchart of load determination control; 4 is a time chart showing a first specific example of load determination control; 9 is a time chart showing a second specific example of load determination control; 4 is a flowchart of constant-speed travel control; 4 is a time chart showing a specific example of constant speed running control; 4 is a flowchart of deceleration transition control; 4 is a time chart showing a first specific example of deceleration transition control; 9 is a time chart
  • FIG. 1 A vehicle 1 equipped with a hybrid system (mild hybrid system) according to one embodiment of the present invention is shown in FIG. .
  • the vehicle 1 is a mild hybrid vehicle, and is capable of running using only the engine 10 as a power source and running using both the engine 10 and the motor 20 as power sources. In other words, the vehicle 1 does not run only by the power of the motor 20, and in a situation where the power of the engine 10 is insufficient such as when starting or accelerating, or in a situation where improvement in fuel efficiency can be expected by providing assistance during cruising. The power of the engine 10 is assisted by the power of the motor 20 to run.
  • This vehicle 1 is, for example, a large vehicle such as a truck or a bus.
  • the vehicle 1 includes an engine 10, a motor 20, a clutch device 30, a transmission 40, a brake device 50, a vehicle control device 60, and a detector 70.
  • the engine 10 is a multi-cylinder diesel engine that generates driving force for running the vehicle 1 by burning fuel such as light oil.
  • a rotating shaft of a motor 20 is directly connected to an output shaft (crankshaft) of the engine 10 .
  • the motor 20 has a function as an electric motor (powering function) that converts supplied electric power into rotational power and outputs it, and a function as a generator (regenerative function) that converts input rotational power into electric power and outputs it.
  • a motor generator comprising The motor 20 exchanges electric power with a battery 22 via an inverter 21, which will be described later. When functioning as an electric motor, the motor 20 converts electric power supplied from the battery 22 to generate rotational power, adds the rotational power to the rotational power input from the engine 10, and transmits the power to the transmission 40 side. output (assist the output of the engine 10).
  • the motor 20 When the motor 20 functions as a generator, the motor 20 regenerates the rotational power transmitted from the drive wheels 43 to the transmission 40 or the rotational power output from the engine 10 to generate power. is charged to In this embodiment, the regenerative torque of the motor 20 can be controlled to an arbitrary value with a predetermined regenerative torque (maximum regenerative torque) value as the upper limit. Note that the maximum regenerative torque (maximum regenerative braking force) of the motor 20 changes for each rotation speed of the engine 10 .
  • An inverter 21 is connected to the electric circuit connecting the motor 20 and the battery 22 .
  • the inverter 21 is a converter that mutually converts DC power on the battery 22 side and AC power on the motor 20 side.
  • the inverter 21 is electrically connected to an assist ECU 64, which will be described later. Based on a control signal from the assist ECU 64, a drive current (electric power) is supplied from the battery 22 to the motor 20, or regenerative power of the motor 20 is supplied. Electricity is stored in the battery 22 .
  • An input shaft of a transmission 40 is connected to the rotation shaft of the motor 20 via a clutch device 30 .
  • the clutch device 30 is interposed between the rotating shaft of the motor 20 and the input shaft of the transmission 40, and transmits or cuts off the driving force according to the driver's depression and release of the clutch pedal 83.
  • the clutch device 30 of the present embodiment is, for example, a friction engagement multi-plate clutch.
  • the transmission 40 is a manual multi-speed transmission (manual transmission) that has a plurality of gear stages (for example, five forward gears and one reverse gear) and shifts gears according to the operation of a shift lever (not shown) by the driver. ), and the power from the engine 10 is shifted by any one of a plurality of gear stages and output.
  • a propeller shaft 41 is connected to the output shaft of the transmission 40 .
  • a driving force shifted by the transmission 40 is transmitted to a differential 42 via a propeller shaft 41 and distributed to a pair of wheels (driving wheels) 43, respectively.
  • a rear-wheel-drive hybrid vehicle is exemplified, but a front-wheel-drive hybrid vehicle is of course possible.
  • a four-wheel drive (all-wheel drive) hybrid vehicle is also possible, in which case engine power and motor power can be transmitted to the front and rear wheels (motor assist is possible) be).
  • the brake device 50 applies a braking force to each wheel (drive wheel, driven wheel) 43 when the brake pedal 82 is depressed by the driver.
  • Examples of the brake device 50 include an air brake operated by compressed air and a hydraulic brake operated by hydraulic pressure.
  • Vehicle control device 60 includes an engine ECU 61 that controls engine 10, a transmission ECU 62 that controls clutch device 30 and transmission 40, a brake ECU 63 that controls brake device 50, and an assist ECU 64 that controls motor generator 20. Configured.
  • Each of the ECUs 61 to 64 is an electronic circuit mainly composed of a microcomputer including CPU, ROM, RAM, and interfaces such as input/output.
  • the control by the vehicle control device 60 provides an engine running mode in which the vehicle runs only with the output of the engine 10, and an engine running mode in which the output of the engine 10 is assisted with the output of the motor 20, so that both the engine 10 and the motor 20 are operated. It is possible to switch the driving mode between the motor assist driving mode in which the vehicle is driven by the output.
  • a detection unit (various sensors) 70 is electrically connected to the vehicle control device 60 .
  • the detection unit 70 includes an accelerator sensor 71 that detects the operation amount (depression amount, depression amount) of the accelerator pedal 81, a brake sensor 72 that detects the operation (depression, depression amount) of the brake pedal 82, and an operation amount of the clutch pedal 83.
  • a clutch sensor 73 that detects (depression amount, depression amount), a vehicle speed sensor 74 that detects the running speed (vehicle speed) of the vehicle 1, a rotation sensor 75 that detects the rotation speed (rotational speed) of the engine 10 or the motor 20, and It is configured with a battery sensor 76 and the like for detecting the remaining charge amount of the battery 22 and the like.
  • the brake sensor 72 may detect the amount of operation (depression amount, depression amount) of the brake pedal 82 .
  • the number of revolutions (rotational speed) of the engine 10 and the number of revolutions (rotational speed) of the motor 20 match.
  • Information detected by the sensors 71 to 76 is appropriately input to necessary ECUs among the engine ECU 61, the transmission ECU 62, the brake ECU 63, and the assist ECU 64.
  • the assist ECU 64 assists the output of the engine 10 by controlling the power running drive of the motor 20 when the vehicle 1 starts or accelerates, and regenerates the motor 20 when the vehicle 1 decelerates or brakes.
  • the drive (regenerative power generation) is controlled to charge the battery 22 .
  • the assist ECU 64 is not electrically connected to the other ECUs 61-63 and does not transmit or receive signals to or from the other ECUs 61-63. Therefore, the assist ECU 64 of this embodiment controls the power running drive and the regenerative drive of the motor 20 based on the detection signals input from the detection section 70 (sensors 71 to 76).
  • the assist ECU 64, the motor 20, the inverter 21, the battery 22, and the like constitute a mild hybrid system. Thus, existing vehicles (non-hybrid vehicles) are hybridized.
  • the assist ECU 64 determines whether the vehicle 1 is in an idling state (stopped state) based on the information input from the detection unit 70 by its own judgment, and determines the remaining charge of the battery 22. When the amount is low, idling regeneration control is executed to perform regenerative power generation of the motor 20 using the power (idle rotation) of the engine 10 in the idling state.
  • FIG. 2 is a flowchart of idling regeneration control.
  • the assist ECU 64 determines whether or not the clutch pedal 83 is depressed based on the detection information from the clutch sensor 73 (step S101).
  • step S101 NO
  • the vehicle speed increases based on the detection information from the vehicle speed sensor 74. It is determined whether or not it is 0 (0 km/h) (step S102). That is, the assist ECU 63 determines that the vehicle 1 has shifted to the idle state (stopped state) on condition that the vehicle speed is 0 when the clutch pedal 83 is not depressed (when the clutch device 30 is in the engaged state). judge.
  • step S102 determines whether the vehicle speed is 0 (step S102: YES).
  • SOC State Of Charge
  • the SOC is a charging rate expressed as a percentage of the current charge amount (remaining charge amount) with respect to the full charge amount of the battery 22 .
  • SOC is calculated based on the output voltage or output current from battery 22 .
  • the assist ECU 64 determines whether the SOC of the battery 22 has recovered to a predetermined value or higher (step S105).
  • step S105: YES the assist ECU 64 stops regenerative driving of the motor 20 (step S107).
  • step S105: NO the assist ECU 64 determines whether or not the clutch pedal 83 is depressed.
  • step S106: NO the process returns to step S105.
  • step S106 determines that the clutch pedal 83 has been depressed (step S106: YES), that is, if it determines that the clutch device 30 is in the disengaged state, the assist ECU 64 stops regenerative driving of the motor 20 (step S107). It should be noted that in the case of a NO determination in step S101, step S102, or step S103, this processing is terminated as it is.
  • FIG. 3 is a time chart showing a specific example of idling regeneration control.
  • the driver depresses the clutch pedal 83 (not depressing it) and the vehicle speed is 0, so the vehicle 1 transitions to the idling state. It is determined that At this time, when the SOC of the battery 22 is less than the predetermined value S1 (when the remaining capacity of the battery 22 is low), the power output from the motor 20 (idle rotation) is used to regeneratively drive the motor 20. , to charge the battery 22 (time points t11 to t13). At time t13, when the SOC of the battery 22 recovers to the predetermined value S1 or higher, the regenerative driving of the motor 20 is stopped.
  • the assist ECU 64 independently determines that the engine 10 has entered the idling state based on the information input from the detection unit 70 without requiring cooperation with the other ECUs 61 to 63.
  • the assist ECU 64 By making a determination and regeneratively driving the motor 20 using the idling rotation (excess kinetic energy) of the engine 10, the amount of power generated by the motor 20 is sufficiently secured, and the remaining charge amount (electric power) of the battery 22 It is possible to avoid a situation in which there is a shortage of
  • start control of this embodiment will be described.
  • a problem with the conventional technology is that when the output of the engine 10 is assisted by the output of the motor 20 when the vehicle 1 starts moving, the motor 20 must be driven in time with the vehicle 1 starting to run, but the timing of the drive is too early. If the driving timing is too late, the driving force required for starting the vehicle 1 will be insufficient.
  • the assist ECU 64 in order to correct such a problem, the assist ECU 64, at its own judgment, based on the information input from the detection section 70, detects the acceleration of the vehicle 1 from the change point of the operation speed (depressing speed) of the clutch pedal 83. A start timing is detected, and start control is executed to power-drive the motor 20 in accordance with the start timing.
  • FIG. 4 is a flow chart of start control.
  • the assist ECU 64 determines whether or not the vehicle speed is 0 (step S201). When the assist ECU 64 determines that the vehicle speed is 0 (step S201: YES), it determines whether or not the clutch pedal 83 is depressed by a specified amount or more based on the detection information from the clutch sensor 73 (step S202). ). The prescribed amount is set within a range in which the clutch device 30 is in a disengaged state (for example, a range from the boundary position of the half-clutch region to the position where the clutch pedal 83 is fully depressed). That is, the assist ECU 64 determines whether or not the driver has operated the clutch pedal 83 to connect and disconnect the clutch device 30 .
  • step S203 determines whether the clutch pedal 83 has started to be depressed.
  • step S203 determines whether the clutch pedal 83 has started to be released.
  • step S204 determines whether or not.
  • the half-clutch region is a region in which the clutch device 30 is in a half-clutch state in which the power of the engine 10 is partially transmitted between a completely connected state (completely engaged state) and a completely disconnected state (completely released state).
  • the internal memory of the assist ECU 64 stores the stroke amount (depression amount, depression amount) of the clutch pedal 83 corresponding to the half-clutch region.
  • step S204 determines whether or not the depressing speed of the clutch pedal 83 changed from decreasing to increasing (step S205). ).
  • the timing at which the depressing speed of the clutch pedal 83 changes from decreasing to increasing within the half-clutch region is the timing that reflects the driver's intention to start the vehicle 1 .
  • the release operation (release speed) of the clutch pedal 83 is an index that clearly indicates the driver's intention to start the vehicle. Therefore, by detecting the changing point of the release speed of the clutch pedal 83, it is possible to accurately detect the start timing of the vehicle 1 that requires the drive torque (assist torque) of the motor 20.
  • step S205 When the assist ECU 64 determines that the depressing speed of the clutch pedal 83 has increased within the half-clutch region (step S205: YES), it starts power running driving (motor assist) of the motor 20 (step S206). Subsequently, the assist ECU 64 determines whether or not the clutch pedal 83 has been depressed back to a predetermined amount (step S207). This predetermined amount is set near the end point of the half-clutch region. That is, the assist ECU 64 estimates that the clutch device 30 has shifted to the fully engaged state (completely engaged state) as a result of the clutch pedal 83 being depressed back to the predetermined amount.
  • step S207 YES
  • step S208 the power running drive (motor assist) of the motor 20 is stopped. It should be noted that in the case of a NO determination in step S201 or step S202, this processing is terminated as it is.
  • FIG. 5 is a time chart showing a specific example of start control.
  • the driver starts depressing the clutch pedal 83 from the fully depressing state in order to start the vehicle 1 .
  • depressing of the accelerator pedal 81 is started at the same time that the clutch pedal 83 is released.
  • the depression amount of the clutch pedal 83 reaches the half-clutch region.
  • the clutch device 30 starts to be partially connected (engaged), and the driver reduces the depressing speed of the clutch pedal 83 .
  • the motor 20 starts powering (motor assist).
  • the vehicle speed starts increasing from 0 (vehicle 1 starts accelerating).
  • the clutch device 30 shifts to the fully connected state, thereby stopping the power running drive (motor assist) of the motor 20. do.
  • the driver operates the clutch pedal 83 based on the information input from the detection unit 70 based on the independent judgment of the assist ECU 64 without cooperation with the other ECUs 61 to 63.
  • motor assist is provided at a start timing that matches the feeling of the driver without being affected by the amount of wear of the clutch device 30, etc. can be executed, and the vehicle 1 can be started smoothly.
  • the assist ECU 46 determines the preset limit of rotational acceleration of the engine 10 during power running of the motor 20. When the acceleration exceeds the acceleration, it is determined that the wheels 43 have slipped, and the power running drive of the motor 20 is stopped. is continued, and slip control is executed to start regenerative driving of the motor 20 and apply regenerative braking force to the wheels 43 .
  • FIG. 6 is a flow chart of slip control.
  • the assist ECU 64 determines whether the accelerator pedal 81 has been depressed by a predetermined amount or more (step S301). That is, the assist ECU 64 determines whether or not the motor 20 needs to be powered (motor assisted) in order to start or accelerate the vehicle 1 .
  • step S301 YES
  • the assist ECU 64 starts power running driving of the motor 20 (step S302).
  • the assist ECU 64 determines whether or not the rotational acceleration of the engine 10 (rotational acceleration of the motor 20) exceeds a preset limit acceleration based on the information detected by the rotation sensor 75 (step S303).
  • the rotation acceleration of the engine 10 is obtained by differentiating the rotation speed (number of rotations) of the engine 10 detected by the rotation sensor 75 .
  • the assist ECU 64 determines whether or not the accelerator pedal 81 has been depressed back within a predetermined period of time from when the power running drive of the motor 20 was stopped (step S305). That is, the assist ECU 64 determines whether or not the depression amount of the accelerator pedal 81 has decreased within a predetermined time.
  • step S305: NO the assist ECU 64 starts regenerative driving of the motor 20 to generate regenerative braking torque. Rotation is suppressed (step S306).
  • the assist ECU 64 determines whether or not the accelerator pedal 81 has been depressed back during the regenerative driving of the motor 20 (step S307). When the assist ECU 64 determines that the accelerator pedal 81 has been released (step S307: YES), it stops regenerative driving of the motor 20 (step S308). It should be noted that in the case of a NO determination in step S301, step S303, or step S305, this processing is terminated as it is.
  • FIG. 7 is a time chart showing a specific example of slip control.
  • the driver's depression of the accelerator pedal 81 causes the motor 20 to start power running.
  • the rotation acceleration of the engine 10 exceeds the acceleration limit (due to a rapid rise in the rotation speed of the engine 10), so that the assist ECU 64 detects slip of the vehicle 1 and stops the power running of the motor 20. do.
  • the accelerator pedal 81 is not depressed within a predetermined period of time from when the power running drive of the motor 20 is stopped (when the slip of the vehicle 1 is detected), the regenerative drive of the motor 20 is started. The regenerative braking force reduces the rotation speed of the engine 10 .
  • the accelerator pedal 81 is depressed while the motor 20 is being regeneratively driven, the regenerative driving of the motor 20 is stopped.
  • the rotation speed (rotational acceleration ), the drive torque applied to the wheels 43 is reduced by stopping the power running drive (motor assist) of the motor 20, and the regenerative braking torque is applied to the wheels 43 by the regenerative drive of the motor 20.
  • the rotation speed (rotational acceleration ) is reduced by stopping the power running drive (motor assist) of the motor 20, and the regenerative braking torque is applied to the wheels 43 by the regenerative drive of the motor 20.
  • acceleration assist control Next, the acceleration assist control of this embodiment will be described.
  • the output of the engine 10 is assisted by the output of the motor 20 when the vehicle 1 starts moving, etc., acceleration is not possible unless the motor assist is performed at an appropriate timing that meets the driver's acceleration request. There was a problem that the feeling deteriorated and the fuel efficiency improvement effect could not be sufficiently obtained.
  • the assist ECU 64 determines the driver's acceleration request based on the information input from the detection unit 70 by its own judgment, and adjusts the timing according to the acceleration request. Acceleration assist control for powering the motor 20 is executed.
  • FIG. 8 is a flowchart of acceleration assist control.
  • the control shown in the flowchart of FIG. 8 is executed when the vehicle 1 is accelerated based on the driver's acceleration request (the driver's depression of the accelerator pedal 81).
  • the assist ECU 64 determines whether or not the accelerator pedal 81 has been depressed (step S401).
  • step S401 determines that the accelerator pedal 81 has been depressed (step S401: YES)
  • step S402 determines whether or not the depression amount of the accelerator pedal 81 has exceeded a preset specified amount (step S402). . That is, the assist ECU 64 determines whether or not there is a driver's acceleration request based on the depression amount of the accelerator pedal 81 .
  • step S403 When the assist ECU 64 determines that the depression amount of the accelerator pedal 81 has exceeded the specified amount (step S402: YES), it starts power running driving of the motor 20 (step S403). Subsequently, the assist ECU 64 determines whether or not the accelerator pedal 81 has been depressed back (whether or not the amount of depression of the accelerator pedal 81 has decreased) while the motor 20 is being powered (step S404). When the assist ECU 64 determines that the accelerator pedal 81 has been depressed back (step S403: YES), the assist ECU 64 determines that the driver's request for acceleration has ended, and stops the power running of the motor 20 (step S405). It should be noted that, in the case of NO determination in step S401 or step S402, this processing is terminated as it is.
  • FIG. 9 is a time chart showing a specific example of acceleration assist control.
  • the driver starts depressing the accelerator pedal 81 at time t41.
  • the amount of depression of the accelerator pedal 81 exceeds the specified amount AP1, so that the assist ECU 64 determines that there is a driver's acceleration request, and starts power running of the motor 20.
  • the driver depresses the accelerator pedal 81, and the assist ECU 64 determines that the driver's request for acceleration has ended, and stops the motor 20 from being powered.
  • the operation amount of the accelerator pedal 81 by the driver is calculated based on the information input from the detection unit 70 based on the independent judgment of the assist ECU 64 without cooperation with the other ECUs 61 to 63.
  • the assist ECU 64 makes its own judgment and based on the information input from the detection unit 70, the load state (light load state/high load state) of the vehicle 1 is estimated. Execute decision control.
  • FIG. 10 is a flow chart of load determination control.
  • the assist ECU 64 determines whether or not the vehicle speed is within a predetermined speed range based on the detection information from the vehicle speed sensor 74 (step S501).
  • the predetermined speed range is, for example, 20-40 km/h.
  • step S503 the assist ECU determines whether the acceleration of the vehicle 1 is less than the threshold acceleration (step S503).
  • the acceleration of the vehicle 1 is obtained by differentiating the vehicle speed detected by the vehicle speed sensor 74 .
  • an acceleration sensor for detecting acceleration of the vehicle 1 may be provided separately from the vehicle speed sensor 74 .
  • the assist ECU 64 determines that the vehicle 1 is in a high load state (step S504). That is, the assist ECU 64 determines that the vehicle 1 is in a high load state when the acceleration of the vehicle 1 does not reach the threshold acceleration even though the depression amount of the accelerator pedal 81 is equal to or greater than the threshold operation amount.
  • the high-load state refers to, for example, a state in which the vehicle 1 is loaded with cargo (the loaded weight is greater than a predetermined weight), a state in which the road surface is uphill, and the like.
  • the assist ECU 64 determines that the vehicle is in a high load state, the power running drive (motor assist) of the motor 20 is permitted.
  • step 502 determines whether the acceleration of the vehicle 1 is equal to or greater than the threshold acceleration (step S505). ).
  • the assist ECU 64 determines that the acceleration of the vehicle 1 is greater than or equal to the threshold acceleration (step S505: YES)
  • the light load state refers to, for example, an empty state in which the vehicle 1 is not loaded with cargo or the like (load weight is smaller than a predetermined weight), a state in which the road surface is downhill, and the like.
  • the assist ECU 64 determines that the vehicle 1 is in the light load state, the power running drive (motor assist) of the motor 20 is limited. It should be noted that in the case of a NO determination in step S501, step S503, or step S505, this process is terminated as it is.
  • 11 and 12 are time charts showing specific examples of load determination control.
  • the vehicle 1 load determination is performed.
  • the amount of depression of the accelerator pedal 81 is less than the threshold operation amount APth and the acceleration of the vehicle 1 is equal to or greater than the threshold acceleration Gth, so the assist ECU 64 determines that the vehicle 1 is in the light load state.
  • the vehicle 1 load determination is performed.
  • the amount of depression of the accelerator pedal 81 is equal to or greater than the threshold operation amount APth and the acceleration of the vehicle 1 is less than the threshold acceleration Gth, so the assist ECU 64 determines that the vehicle 1 is in a high load state.
  • the load state of the vehicle 1 (light load state/ high load state), it is possible to suppress unnecessary energy consumption and improve fuel efficiency. Further, in the present embodiment, the load state of the vehicle 1 can be determined based on existing vehicle information without adding a weight sensor for detecting the load weight of the vehicle 1 (the weight of the occupant, load, etc.). Therefore, it is possible to reduce the cost of the entire vehicle.
  • the assist ECU 64 calculates It is determined that the vehicle 1 has transitioned to constant speed running, and constant speed running control is executed to maintain the vehicle speed by motor assist with low output.
  • FIG. 13 is a flowchart of constant-speed travel control.
  • the assist ECU 64 determines whether or not the accelerator pedal 81 is depressed by a predetermined amount (first predetermined amount) or more based on the detection information from the accelerator sensor 71 (step S601). When the assist ECU 64 determines that the accelerator pedal 81 has been depressed by a predetermined amount or more (S601: YES), it determines whether the accelerator pedal 81 has started to be released (whether the depression amount has decreased). (step S602). When the assist ECU 64 determines that the accelerator pedal 81 has started to be released (step S602: YES), the accelerator pedal 81 is released at a depressing speed (operation speed while the depressing amount of the accelerator pedal 81 is being reduced). ) is equal to or less than a predetermined speed (step S603).
  • step S604 determines whether the depression amount of the accelerator pedal 81 has decreased to a predetermined determination operation amount.
  • step S604 determines whether the depression amount of the accelerator pedal 81 has decreased to the predetermined determination operation amount.
  • step S605 it is determined that the vehicle 1 has shifted to constant speed travel.
  • step S606 determines whether or not the depression amount of the accelerator pedal 81 has increased by a predetermined amount or more. That is, it is determined whether or not the accelerator pedal 81 has been further depressed in order to keep the vehicle speed constant.
  • step S606 determines that the depression amount of the accelerator pedal 81 has increased by a certain amount or more (step S606: YES).
  • step S607 the assist ECU 64 controls the drive torque of the motor 20 to a low torque.
  • step S608 determines whether or not the accelerator pedal 81 is released while the motor 20 is being powered.
  • step S609 the power running drive of the motor 20 is stopped (step S609). It should be noted that if NO determination is made in step S601, step S602, step S603, step S604, or step S606, this process is terminated as it is.
  • FIG. 14 is a time chart showing a specific example of constant speed travel control.
  • the driver starts depressing the accelerator pedal 81 in order to end the acceleration of the vehicle 1 during acceleration.
  • the accelerator pedal 81 is slowly depressed (the accelerator pedal 81 depression speed is equal to or less than a predetermined speed), and when the depression amount of the accelerator pedal 81 decreases to a predetermined determination operation amount AP2, the vehicle 1 has shifted to constant speed running.
  • the accelerator pedal 81 is further depressed (when the depression amount of the accelerator pedal 81 increases by a certain amount or more) while the vehicle 1 is running at a constant speed, power running of the motor 20 is started.
  • the accelerator pedal 81 is released (when the depression amount of the accelerator pedal 81 decreases by a certain amount or more) while the vehicle 1 is running at a constant speed, the motor 20 is stopped from being powered.
  • the amount of change in accelerator pedal operation by the driver is calculated based on the information input from the detection unit 70 based on the independent judgment of the assist ECU 64 without requiring cooperation with the other ECUs 61 to 63.
  • the assist ECU 64 determines the driving state intended by the driver (coasting) based on the amount of change in accelerator operation by the driver. (running/decelerating running) is discriminated, and deceleration transition control is executed to drive the motor 20 in accordance with the running state intended by the driver.
  • FIG. 15 is a flowchart of deceleration transition control.
  • the assist ECU 64 determines whether or not the motor 20 is being powered (step S701).
  • step S701: YES based on the detection information from the accelerator sensor 71, the amount of depression of the accelerator pedal 81 is equal to or greater than a predetermined amount (second predetermined amount). It is determined whether or not there is (step S702).
  • step S702: YES determines whether or not the accelerator pedal 81 has started to be released (step S703).
  • the assist ECU 64 determines that the accelerator pedal 81 has started to be released (step S703: YES)
  • the assist ECU 64 stops the power running drive of the motor 20 (step S704).
  • the assist ECU 64 determines whether or not the depressing speed of the accelerator pedal 81 is less than a predetermined value (step S705).
  • the assist ECU 64 determines whether the accelerator pedal 81 is completely depressed (whether the depression amount is returned to 0). ) is determined (step S706).
  • the assist ECU 64 determines that the accelerator pedal 81 has been completely released (step S706: YES), it determines that the driver has an intention of coasting (step S707).
  • step S707 when the assist ECU 64 determines that the depressing speed of the accelerator pedal 81 is equal to or higher than the predetermined value (step S707: YES), the assist ECU 64 determines whether the accelerator pedal 81 has been fully depressed (depression amount returns to 0). or not) is determined (step S708). When the assist ECU 64 determines that the accelerator pedal 81 has been completely released (step S708: YES), it determines that the driver intends to decelerate (step S709).
  • step S710 the assist ECU 64 starts regenerative driving of the motor 20 and decelerates the vehicle 1 by the regenerative braking force (step S710).
  • the assist ECU 64 determines whether or not the accelerator pedal 81 is depressed while the motor 20 is regeneratively driven (step S711).
  • step S711 YES
  • step S712 it stops regenerative driving of the motor 20 (step S712). It should be noted that in the case of a NO determination in step S701, step S702, step S703, step S706, or step S708, this process is terminated as it is.
  • 16 and 17 are time charts showing specific examples of deceleration transition control.
  • the motor 20 is powered and the vehicle 1 is traveling at a constant speed.
  • the driver starts depressing the accelerator pedal 81 from the depressing state
  • the power running drive of the motor 20 is stopped.
  • the accelerator pedal 81 is slowly released (if the release speed of the accelerator pedal 81 is less than a predetermined value)
  • the assist ECU 64 will cause the driver to (time t73).
  • the motor 20 is powered and the vehicle 1 is traveling at a constant speed.
  • the power running drive of the motor 20 is stopped.
  • the assist ECU 64 will operate when the accelerator pedal 81 is completely released. It is determined that the driver has the intention of decelerating (time t76).
  • time t76 the regenerative driving of the motor 20 is started.
  • time t77 when the driver depresses the accelerator pedal 81, the regenerative driving of the motor 20 is stopped.
  • the assist ECU 64 makes its own determination, without requiring cooperation with the other ECUs 61 to 63, based on the information input from the detection unit 70, to perform driving control that matches the feeling of the driver. By doing so, it is possible to reduce the number of useless operations and reduce fatigue, and it is possible to improve the energy recovery efficiency by accurately determining the driver's intention to decelerate and performing deceleration regeneration with the motor 20. becomes.
  • the assist ECU 64 stores the vehicle speed when the driver releases the accelerator pedal 81 based on the information input from the detection unit 70 at its own judgment. A speed at which the motor 20 is regeneratively driven to suppress an increase in vehicle speed when the current vehicle speed increases from the stored vehicle speed by exceeding a predetermined threshold even though the accelerator pedal 81 is fully depressed. Carry out maintenance control.
  • FIG. 18 is a flowchart of speed maintenance control.
  • the assist ECU 64 determines whether or not the depression amount of the accelerator pedal 81 is equal to or greater than a predetermined amount (third predetermined amount) based on the detection information from the accelerator sensor 71 (step S801). When the assist ECU 64 determines that the depression amount of the accelerator pedal 81 is equal to or greater than the predetermined amount (step S801: YES), it determines whether or not the accelerator pedal 81 has started to be released (step S802). When the assist ECU 64 determines that the accelerator pedal 81 has started to be released (step S802: YES), the assist ECU 64 temporarily stores the vehicle speed at which the accelerator pedal 81 started to be released as a reference speed (step S803). .
  • the assist ECU 64 determines whether or not the accelerator pedal 81 has been completely depressed (whether or not the depression amount has been returned to 0) (step S804). When it is determined that the accelerator pedal 81 has been completely released (step S804: YES), the assist ECU 64 determines whether or not the current vehicle speed is greater than the reference speed by a predetermined value or more (S805). In this embodiment, 3 km is set as the predetermined value. When the assist ECU 64 determines that the current vehicle speed is greater than the reference speed by a predetermined value or more (step S805: YES), the assist ECU 64 starts regenerative driving of the motor 20 (step S806).
  • the assist ECU 64 determines whether or not the current vehicle speed has decreased to the reference speed due to the regenerative braking force of the motor 20 (step S807). When the assist ECU 64 determines that the current vehicle speed has decreased to the reference speed (step S807: YES), it stops regenerative driving of the motor 20 (step S808). It should be noted that in the case of a NO determination in step S801, step S802, step S804, or step S805, this processing is terminated as it is.
  • FIG. 19 is a time chart showing a specific example of speed maintenance control.
  • the vehicle 1 in motion approaches a downhill, and the driver begins to depress the accelerator pedal 81.
  • the assist ECU 64 temporarily stores the vehicle speed when the accelerator pedal 81 starts to be released as the reference vehicle speed Va.
  • the depression amount of the accelerator pedal 81 is returned to zero.
  • the vehicle 1 accelerates downhill and the current vehicle speed becomes greater than the reference speed Va by a predetermined value ⁇ Vth or more even though the accelerator pedal 81 is not depressed. Start regenerative drive. As a result, the regenerative braking force of the motor 20 acts on the vehicle 1, and the vehicle speed is reduced.
  • the regenerative driving of the motor 20 is stopped.
  • the vehicle 1 travels downhill (downhill travel), based on the information input from the detection unit 70, based on the information input from the detection unit 70, based on the independent judgment of the assist ECU 64 without requiring cooperation with the other ECUs 61 to 63.
  • the motor 20 is regeneratively driven and the regenerative braking force suppresses an increase in vehicle speed, thereby reducing the driver's brake operation.
  • the load can be reduced, and by reducing the frequency of deceleration of the vehicle by the brake device 50, it is possible to suppress wear of the brake pads.
  • the assist ECU 64 monitors the operation state of the accelerator pedal 81 and the brake pedal 82 by the driver based on the information input from the detection unit 70 at its own judgment.
  • the deceleration regeneration control for performing the maximum output regeneration is executed.
  • FIG. 20 is a flowchart of deceleration regeneration control.
  • the assist ECU 64 determines whether or not the accelerator pedal 81 is depressed by a predetermined amount (fourth predetermined amount) or more based on the detection information from the accelerator sensor 71 (step S901). When the assist ECU 64 determines that the accelerator pedal 81 has been depressed by a predetermined amount or more (step S901: YES), it determines whether the accelerator pedal 81 has started to be released (step S902). When the assist ECU 64 determines that the accelerator pedal 81 has started to be released (step S902: YES), the assist ECU 64 determines whether the accelerator pedal 81 is released at a prescribed value or more (step S903). .
  • step S903 When the assist ECU 64 determines that the depressing speed of the accelerator pedal 81 is equal to or higher than the specified value (step S903: YES), the assist ECU 64 sets the regenerative output of the motor 20 to a low output (low regenerative torque) to regenerate the motor 20. Drive (step S904).
  • the assist ECU 64 determines whether or not the brake pedal 82 has been depressed based on the detection information from the brake sensor 72 (step S905).
  • step S905 YES
  • the regenerative output of the motor 20 is set to a high output (high regenerative torque) that is the maximum output, and the motor 20 is regeneratively driven.
  • Step S906 the assist ECU 64 switches the regenerative output of the motor 20 from low output (low regenerative torque) to high output (high regenerative torque) when the brake pedal 82 is depressed. It should be noted that if the determination in step S901, step S902 or step S903 is NO, the process proceeds to step S905. If the determination in step S905 is NO, the process ends.
  • FIG. 21 is a time chart showing a specific example of deceleration regeneration control.
  • the driver starts depressing the accelerator pedal 81 from the depressing state in order to decelerate the running vehicle 1 .
  • the accelerator pedal 81 is suddenly released (the release speed of the accelerator pedal 81 becomes equal to or higher than a specified value), so that the motor 20 is regeneratively driven with a low output (low regenerative torque).
  • the driver depresses the brake pedal 82 to switch the regenerative output of the motor 20 to a high output (high regenerative torque) that is the maximum output, thereby regeneratively driving the motor 20 .
  • the vehicle speed drops below the predetermined speed Vs, and the regenerative drive of the motor 20 is stopped.
  • the accelerator pedal 81 and the brake pedal 82 are operated by the driver based on the information input from the detection unit 70 based on the independent judgment of the assist ECU 64 without requiring cooperation with the other ECUs 61 to 63. is monitored, and the regenerative output of the motor 20 is increased step by step according to the driver's accelerator operation and brake operation, thereby reducing the deceleration shock caused by the regenerative braking force (regenerative torque) of the motor 20. In addition, it is possible to efficiently recover the regenerative energy.
  • Shift assist control Next, the shift assist control of this embodiment will be described.
  • a problem with the conventional technology is that when an inexperienced driver performs a downshift operation to switch the gear stage of the transmission 40 to the low speed side, a large deviation occurs between the rotation of the engine output shaft and the rotation of the transmission input shaft. , there is a problem that a shift shock occurs when the clutch device 30 is connected (reconnected).
  • the assist ECU 64 determines a downshift request based on the driver's brake operation and clutch operation based on the information input from the detection unit 70, based on its own judgment.
  • the clutch device 30 is in the disengaged state, the engine speed is temporarily increased by the motor assist to execute shift assist control to reduce the difference in speed between the engine output shaft and the transmission input shaft.
  • FIG. 22 is a flowchart of shift assist control.
  • the assist ECU 64 determines whether or not the vehicle 1 is running based on the detection information from the vehicle speed sensor 74 (step S1001). When the assist ECU 64 determines that the vehicle 1 is running (step S1001: YES), it determines whether the depression amount of the accelerator pedal 81 is 0 based on the detection information from the accelerator sensor 71 (step S1002). When the assist ECU 64 determines that the depression amount of the accelerator pedal 81 is 0 (step S1002: YES), it determines whether the brake pedal 82 is depressed based on the detection information from the brake sensor 72 (step S1003).
  • step S1003 When the assist ECU 64 determines that the brake pedal 82 is depressed (step S1003: YES), based on the detection information from the clutch sensor 73, the clutch pedal 83 is depressed by a specified amount while the brake pedal 82 is depressed. A determination is made as to whether or not the foot has been stepped on further (step S1004). That is, the assist ECU 64 determines whether or not the driver is performing a downshift operation (shift operation). The specified amount is set within a range in which the clutch device 30 is in a disengaged state (for example, a range from the boundary position of the half-clutch region to the position where the clutch pedal 83 is fully depressed).
  • the assist ECU 64 determines whether or not the driver has operated the clutch pedal 83 to disengage the clutch device 30 .
  • the assist ECU 64 determines that the clutch pedal 83 has been depressed more than the specified amount (step S1004: YES)
  • the assist ECU 64 starts power running of the motor 20 (step S1005). That is, in the present embodiment, the motor 20 is power-running while the depression amount of the clutch pedal 83 exceeds the specified amount.
  • the rotational speed of the engine 10 increases while the clutch device 30 is disengaged, and the rotational difference between the output shaft of the engine 10 and the input shaft of the transmission 40 is suppressed, thereby connecting (reconnecting) the clutch device 30.
  • step S1006 determines whether or not the depression amount of the clutch pedal 83 has been returned to less than a specified amount.
  • step S1006 determines that the amount of depression of the clutch pedal 83 is less than the specified amount (step S1006: YES)
  • step S1007 the assist ECU 64 stops the power running drive of the motor 20 (step S1007). It should be noted that in the case of a NO determination in step S1001, step S1002, step S1003, or step S1004, this processing is terminated as it is.
  • FIG. 23 is a time chart showing a specific example of shift assist control.
  • the driver starts depressing the accelerator pedal 81 after depressing it.
  • the accelerator pedal 81 is completely released (the depression amount of the accelerator pedal 81 is returned to 0).
  • the driver depresses the brake pedal 82 at time t103.
  • the driver starts depressing the clutch pedal 83 while depressing the brake pedal 82 .
  • the amount of depression of the clutch pedal 83 becomes equal to or greater than the specified amount CL1, so that the power running drive of the motor 20 is started.
  • the brake operation and clutch operation by the driver are detected based on the information input from the detection unit 70 based on the independent judgment of the assist ECU 64 without requiring cooperation with the other ECUs 61 to 63.
  • a request for downshifting is determined, and when the clutch device 30 is in the disengaged state, the engine speed is temporarily increased by motor assist to reduce the difference in rotation between the engine output shaft and the transmission input shaft (before and after shifting).
  • the assist ECU 64 determines the vehicle speed and the engine speed when the clutch device 30 is in the connected state (engaged state) based on the information input from the detection unit 70. Based on the relative relationship with the number of revolutions, it is determined that the gear stage of the transmission 40 is in the neutral state, and neutral determination control is executed to limit the power running drive of the motor 20 in the neutral state.
  • FIG. 24 is a flowchart of neutral determination control.
  • the assist ECU 64 determines whether or not the clutch device 30 is in the engaged state based on the information detected by the clutch sensor 73 (step S1101). When the assist ECU 64 determines that the clutch device 30 is in the engaged state (step S1101: YES), it determines whether the vehicle speed tends to decrease based on the detection information from the vehicle speed sensor 74 (step S1102). . For example, the assist ECU 64 determines that there is a decreasing tendency when the amount of change in vehicle speed is negative, and that there is an increasing tendency when the amount of change in vehicle speed is positive.
  • step S1102 determines that the vehicle speed tends to decrease (step S1102: YES)
  • step S1103 determines whether the rotation speed of the engine 10 has increased while the vehicle speed is decreasing.
  • step S1104 determines whether or not the amount of increase in the rotation speed of the engine 10 is equal to or greater than a predetermined value (step S1104).
  • step S1104 determines that the amount of increase in the rotational speed of the engine 10 is equal to or greater than the predetermined value (step S1104: YES)
  • step S1107 determines that the shift stage of the transmission 40 is in the neutral state
  • step S1102 determines whether the vehicle speed is equal to or higher than a predetermined speed. For example, 15 km/m is set as the predetermined speed.
  • step S1105 determines whether or not the rotation speed of the engine 10 is equal to or lower than the idle rotation speed.
  • step S1106 determines that the rotation speed of the engine 10 is equal to or lower than the idle rotation speed.
  • step S1106 determines that the shift stage of the transmission 40 is in the neutral state (step S1107).
  • step S1108 determines whether or not the clutch pedal 83 has been depressed.
  • step S1108 determines that the clutch pedal 83 has been depressed
  • step S1109 determines that the neutral state has been released.
  • step S1105 determines that the neutral state has been canceled
  • step S1106 the power running drive (motor assist) of the motor 20 is permitted.
  • 25 and 26 are time charts showing specific examples of neutral determination control.
  • a situation in which the number of revolutions of the engine 10 sharply increases when the vehicle speed tends to decrease is exemplified by the case where the air conditioner is driven in the neutral state, or the case where the accelerator pedal 81 is depressed in the neutral state.
  • the driver performs a shift operation, and when the clutch pedal 83 is depressed, the determination of the neutral state is cancelled. Thereby, the power running drive of the motor 20 is permitted.
  • the driver depresses the clutch pedal 83 while the vehicle 1 is running. After that, the driver operates the shift lever.
  • the clutch pedal 83 is completely released (engaged state of the clutch device 30).
  • the assist ECU 64 changes the gear position of the transmission 40 to neutral. state. Power running or regenerative driving of the motor 20 is prohibited during the period (t114 to t115) during which the assist ECU 64 determines the neutral state.
  • the driver performs a shift operation, and when the clutch pedal 83 is depressed, the determination of the neutral state is canceled. Thereby, the power running drive of the motor 20 is permitted.
  • the assist ECU 64 makes its own determination, without requiring cooperation with the other ECUs 61 to 63, based on the information input from the detection section 70, when the clutch device 30 is in the engaged state.
  • the assist ECU 64 determines that the shift stage of the transmission 40 has shifted to the neutral state according to the relative relationship between the vehicle speed and the engine speed, power consumption due to unnecessary driving of the motor 20 is suppressed, and the vehicle 1 is operated. It is possible to improve fuel efficiency.
  • 27 and 28 are diagrams showing an operation example when the engine is restarted.
  • the engine 10 of this embodiment includes a piston 11, a connecting rod 12, and a crankshaft 13, as shown in FIG.
  • the piston 11 is arranged in a cylinder (not shown) so as to be reciprocally movable.
  • the connecting rod 12 connects the piston 11 and the crankshaft 13 and transmits the reciprocating motion of the piston 11 to the crankshaft 13 .
  • the crankshaft 13 is rotatably supported by a crankcase (not shown).
  • a rotating shaft of a motor 20 is directly connected to one end of the crankshaft 13 .
  • the crankshaft 13 of the engine 10 and the motor 20 are directly connected, but the engine 10 is restarted from the idling stop state (stopped state).
  • the motor 20 is used to start the engine 10
  • the engine 10 can be restarted more quietly than when a starter motor is used.
  • startability deteriorated.
  • FIG. 27 if there is a cylinder in which the piston 11 is stopped in the middle of the compression stroke, restarting from that position will cause a low-power motor 20 such as that used in a mild hybrid system to operate. starting torque may not be able to rotate the crankshaft 13 .
  • the assist ECU 63 drives the motor 20 in the reverse direction to rotate the crankshaft 13 in the reverse direction by a predetermined angle (play) when the engine 10 is restarted, as shown in FIG.
  • the engine restart control is executed to switch the motor 20 from the reverse rotation drive to the forward rotation drive to rotate the crankshaft 13 in the forward rotation direction.
  • the motor 20 when the engine 10 is restarted, the motor 20 is operated based on the information input from the detection unit 70 based on the independent judgment of the assist ECU 64 without requiring cooperation with the other ECUs 61 to 63.
  • the run-up distance of the crankshaft 13 can be extended to make it easier to gain momentum, thereby increasing the engine speed. 10 startability can be improved.
  • the assist ECU 64 makes its own judgment based on the vehicle information input from the detection unit 70 without requiring cooperation with other ECUs 61 to 63 (without requiring modification of the control system). Since the operation of the vehicle can be determined and the control of the motor 20 can be executed, the mild hybrid system can be retrofitted to the existing vehicle without requiring a large-scale design change or repair. As a result, existing vehicles can be easily converted to hybrid vehicles.

Abstract

This hybrid system is for a vehicle provided with an engine (10) serving as a power source for traveling, the hybrid system comprising: a motor generator (20) that is connected to the engine (10) and is capable of performing power driving and regenerative power generation; and an assistance control device (64) for controlling the motor generator (20). The assistance control device (64) does not perform signal transmission/reception between the assistance control device and other control devices (61-63) that are provided to a vehicle (1), but controls the motor generator (20) on the basis of detection signals received from prescribed sensors (71-75) that are provided to the vehicle (1).

Description

ハイブリッドシステムhybrid system
 本発明は、車両のハイブリッドシステムに関する。 The present invention relates to a vehicle hybrid system.
 近年、燃費向上及び環境保護の観点から、エンジン及びモータジェネレータを駆動源として備えるハイブリッド車両が注目されている。ハイブリッド車両は、大別的には、マイルドハイブリッド車両とストロングハイブリッド車両とに区分される。マイルドハイブリッド車両は、エンジンを主要駆動源としており、主に減速時などにモータジェネレータを発電機として機能させてエネルギーを回生し、発進時や加速時などのエンジンの出力が不足する場面において、エンジンの出力をモータジェネレータの出力で補助するものである(例えば、特許文献1を参照)。このマイルドハイブリッド車両は、ストロングハイブリッド車両と比べて、部品やバッテリの搭載数が少なくて済み、機構がシンプルであるため、低コストという利点がある。 In recent years, from the viewpoint of improving fuel efficiency and protecting the environment, hybrid vehicles equipped with an engine and a motor generator as drive sources have attracted attention. Hybrid vehicles are roughly classified into mild hybrid vehicles and strong hybrid vehicles. Mild hybrid vehicles use the engine as the main drive source. Mainly during deceleration, the motor generator functions as a generator to regenerate energy. is assisted by the output of the motor generator (see Patent Document 1, for example). Compared to strong hybrid vehicles, mild hybrid vehicles have the advantage of low cost because they require fewer parts and batteries and have simpler mechanisms.
特開2014-017987号公報JP 2014-017987 A
 ところで、既存車両(既存の非ハイブリッド車両)をマイルドハイブリッド化する場合、モータジェネレータを制御するためのアシスト制御装置を既存車両に搭載された他の制御装置(エンジン制御装置等)と連携させるため、既存車両に対する大規模な改修が必要となるという課題があった。 By the way, when an existing vehicle (existing non-hybrid vehicle) is converted to a mild hybrid, in order to link the assist control device for controlling the motor generator with other control devices (engine control device, etc.) installed in the existing vehicle, There was a problem that large-scale refurbishment of existing rolling stock was required.
 本発明は、このような課題に鑑みてなされたものであり、既存の非ハイブリッド車両に対して大規模な改修を必要とすることなくハイブリッド車両に転用することのできるハイブリッドシステムを提供することを目的とする。 The present invention has been made in view of such problems, and aims to provide a hybrid system that can be diverted to a hybrid vehicle without requiring large-scale modification of an existing non-hybrid vehicle. aim.
 前記課題を解決するために、本発明に係るハイブリッドシステムは、走行用の動力源としてエンジンを備えた車両において、前記エンジンに連結されて、力行駆動及び回生発電が可能なモータジェネレータと、前記モータジェネレータを制御するアシスト制御装置とを備え、前記アシスト制御装置は、前記車両に設けられた他の制御装置との間で信号の送受信を行わず、前記車両に設けられた所定のセンサ類から受信する検出信号に基づき前記モータジェネレータを制御することを特徴とする。 In order to solve the above-described problems, a hybrid system according to the present invention is a vehicle equipped with an engine as a power source for running. and an assist control device for controlling the generator, wherein the assist control device receives signals from predetermined sensors provided on the vehicle without transmitting/receiving signals to/from other control devices provided on the vehicle. The motor generator is controlled based on the detected signal.
 なお、本発明に係るハイブリッドシステムにおいて、シフトレバーの操作により変速段が切り替えられる手動変速機と、前記エンジンと前記手動変速機との間の動力伝達経路中に介装されて、クラッチペダルの踏み込み操作に応じて前記エンジンと前記手動変速機との間の動力伝達の接続及び切断を行うクラッチと、前記クラッチペダルの踏み込み量を検出するクラッチセンサと、前記モータジェネレータとの間で電力を授受するバッテリと、前記バッテリの残容量を検出するバッテリセンサと、前記車両の車速を検出する車速センサとを備え、前記アシスト制御装置は、前記クラッチセンサにより前記クラッチペダルが踏み込まれていないことが検出され、且つ、前記車速センサにより車速が0であることが検出されたときに前記エンジンがアイドリング状態であると判定し、前記アシスト制御装置は、前記エンジンのアイドリング状態において前記バッテリセンサにより前記バッテリの残容量が所定量未満であることが検出された場合に前記モータジェネレータの回生発電を行うことが好ましい。 In the hybrid system according to the present invention, a manual transmission in which the gear stage is switched by operating a shift lever and a power transmission path between the engine and the manual transmission are interposed, and the clutch pedal is depressed. Electric power is transferred between a clutch that connects and disconnects power transmission between the engine and the manual transmission according to operation, a clutch sensor that detects the amount of depression of the clutch pedal, and the motor generator. A battery, a battery sensor that detects the remaining capacity of the battery, and a vehicle speed sensor that detects the vehicle speed of the vehicle. The assist control device detects that the clutch pedal is not depressed by the clutch sensor. and determining that the engine is in an idling state when the vehicle speed sensor detects that the vehicle speed is 0, and the assist control device detects the remaining amount of the battery by the battery sensor in the idling state of the engine. It is preferable that regenerative power generation of the motor generator is performed when it is detected that the capacity is less than a predetermined amount.
 また、本発明に係るハイブリッドシステムにおいて、シフトレバーの操作により変速段が切り替えられる手動変速機と、前記エンジンと前記手動変速機との間の動力伝達経路中に介装されて、クラッチペダルの踏み込み操作に応じて前記エンジンと前記手動変速機との間の動力伝達の接続及び切断を行うクラッチと、前記クラッチペダルの踏み込み量を検出するクラッチセンサとを備え、前記アシスト制御装置は、前記車両の発進時において、前記クラッチペダルが踏み込まれた状態から踏み戻されるときの当該踏み戻し速度の変化に基づき前記モータジェネレータの駆動タイミングを判定し、当該踏み戻し速度が減少から増加に転じるタイミングで前記モータジェネレータの力行駆動を開始することが好ましい。 Further, in the hybrid system according to the present invention, a manual transmission in which a shift stage is switched by operating a shift lever, and a power transmission path interposed between the engine and the manual transmission, the clutch pedal is depressed. A clutch that connects and disconnects power transmission between the engine and the manual transmission in response to an operation, and a clutch sensor that detects the amount of depression of the clutch pedal, wherein the assist control device controls When starting the vehicle, the drive timing of the motor generator is determined based on the change in the depressing speed when the clutch pedal is released from the depressed state, and the motor generator is driven at the timing when the depressing speed changes from decreasing to increasing. It is preferable to start powering the generator.
 また、本発明に係るハイブリッドシステムにおいて、アクセルペダルの踏み込み量を検出するアクセルセンサと、前記エンジンの回転数を検出する回転センサとを備え、前記アシスト制御装置は、前記アクセルペダルの踏み込み操作に応じて前記モータジェネレータを力行駆動しているときに、前記エンジンの回転加速度が予め設定された限界回転加速度を超過した場合に、前記モータジェネレータの力行駆動を停止し、前記アシスト制御装置は、前記モータジェネレータの力行駆動を停止してから所定時間を経過しても前記アクセルペダルが踏み戻されない場合に、前記モータジェネレータの回生発電を行うことが好ましい。 Further, the hybrid system according to the present invention includes an accelerator sensor that detects the amount of depression of an accelerator pedal, and a rotation sensor that detects the rotational speed of the engine. When the rotational acceleration of the engine exceeds a preset rotational acceleration limit while the motor generator is being power running driven by the motor generator, the power running drive of the motor generator is stopped, and the assist control device stops the power running drive of the motor It is preferable that the motor generator performs regenerative power generation when the accelerator pedal is not depressed even after a predetermined time has elapsed since the power running drive of the generator was stopped.
 また、本発明に係るハイブリッドシステムにおいて、アクセルペダルの踏み込み量を検出するアクセルセンサを備え、前記アシスト制御装置は、前記アクセルペダルが踏み込まれたときの当該踏み込み量が規定量を超過したときに前記モータジェネレータの力行駆動を開始し、前記アクセルペダルが踏み戻されたときに前記モータジェネレータの力行駆動を停止することが好ましい。 Further, in the hybrid system according to the present invention, an accelerator sensor is provided for detecting the amount of depression of an accelerator pedal, and the assist control device detects when the amount of depression when the accelerator pedal is depressed exceeds a specified amount. It is preferable to start the power running drive of the motor generator and stop the power running drive of the motor generator when the accelerator pedal is released.
 また、本発明に係るハイブリッドシステムにおいて、アクセルペダルの踏み込み量を検出するアクセルセンサと、前記車両の車速を検出する車速センサとを備え、前記アシスト制御装置は、前記車両の車速が所定速度範囲内であるときに、前記アクセルペダルの踏み込み量と予め設定された第1判定値とを比較するとともに、前記車両の車速から演算される前記車両の加速度と予め設定された第2判定値とを比較して、前記アクセルペダルの踏み込み量が第1判定値未満であり且つ前記車両の加速度が第2判定値以上である場合に前記車両が軽負荷状態であると判定し、前記アクセルペダルの踏み込み量が第1判定値以上であり且つ前記車両の加速度が第2判定値未満である場合に前記車両が高負荷状態であると判定することが好ましい。 Further, the hybrid system according to the present invention includes an accelerator sensor that detects the amount of depression of an accelerator pedal, and a vehicle speed sensor that detects the vehicle speed of the vehicle, and the assist control device detects that the vehicle speed is within a predetermined speed range. When , the amount of depression of the accelerator pedal is compared with a preset first determination value, and the vehicle acceleration calculated from the vehicle speed is compared with a preset second determination value. Then, when the amount of depression of the accelerator pedal is less than a first determination value and the acceleration of the vehicle is equal to or greater than a second determination value, it is determined that the vehicle is in a light load state, and the amount of depression of the accelerator pedal is determined. is greater than or equal to a first determination value and the acceleration of the vehicle is less than a second determination value, it is preferable to determine that the vehicle is in the high load state.
 また、本発明に係るハイブリッドシステムにおいて、アクセルペダルの踏み込み量を検出するアクセルセンサを備え、前記アシスト制御装置は、前記アクセルペダルが踏み込まれた状態から踏み戻されるときの当該踏み戻し速度が予め設定された基準戻し速度よりも小さく、且つ、前記アクセルペダルが予め設定された所定位置まで踏み戻されたときに、前記車両が定速走行に移行したことを判定し、アシスト制御装置は、前記車両が定速走行に移行したことを判定した場合には、前記アクセルペダルが踏み込まれると前記モータジェネレータを力行駆動し、前記アクセルペダルが踏み戻されると前記モータジェネレータの力行駆動を停止することが好ましい。 Further, the hybrid system according to the present invention includes an accelerator sensor that detects the amount of depression of an accelerator pedal, and the assist control device presets a depressing speed when the accelerator pedal is depressed and then released. The assist control device determines that the vehicle has transitioned to constant speed running when the accelerator pedal is depressed back to a predetermined position set in advance, and the assist control device determines that the vehicle is traveling at a constant speed. is determined to have shifted to constant speed running, the motor generator is powered when the accelerator pedal is stepped on, and the power running of the motor generator is stopped when the accelerator pedal is released. .
 また、本発明に係るハイブリッドシステムにおいて、アクセルペダルの踏み込み量を検出するアクセルセンサを備え、前記アシスト制御装置は、前記モータジェネレータの力行駆動中に、前記アクセルペダルが踏み込まれた状態から踏み戻されるときの当該踏み戻し速度と予め設定された所定速度とを比較して、当該踏み戻し速度が所定速度未満である場合には前記モータジェネレータの力行駆動を停止し、当該踏み戻し速度が所定速度以上である場合には前記モータジェネレータの力行駆動を停止するとともに前記アクセルペダルの踏み込み量が0になったときに前記モータジェネレータの回生発電を開始することが好ましい。 Further, in the hybrid system according to the present invention, an accelerator sensor is provided to detect the amount of depression of an accelerator pedal, and the assist control device is operated when the accelerator pedal is released from a depressed state during power running of the motor generator. When the stepping-back speed is compared with a preset predetermined speed, if the stepping-back speed is less than the predetermined speed, the power running drive of the motor generator is stopped, and the stepping-back speed is equal to or higher than the predetermined speed. In this case, it is preferable to stop the power running drive of the motor generator and start the regenerative power generation of the motor generator when the depression amount of the accelerator pedal becomes zero.
 また、本発明に係るハイブリッドシステムにおいて、アクセルペダルの踏み込み量を検出するアクセルセンサと、前記車両の車速を検出する車速センサとを備え、前記アシスト制御装置は、前記アクセルペダルが踏み込まれた状態から踏み戻され始めるときの前記車両の車速を基準車速として記憶し、前記アクセルペダルが踏み戻されることで当該踏み込み量が0となった状態において、前記車両の車速が前記基準車速よりも所定値以上大きくなった場合に前記モータジェネレータの回生発電を開始することが好ましい。 Further, the hybrid system according to the present invention includes an accelerator sensor that detects the amount of depression of an accelerator pedal, and a vehicle speed sensor that detects the vehicle speed of the vehicle, and the assist control device detects the acceleration from the state where the accelerator pedal is depressed. A vehicle speed of the vehicle when the accelerator pedal starts to be released is stored as a reference vehicle speed, and the vehicle speed of the vehicle is higher than the reference vehicle speed by a predetermined value or more in a state where the depression amount becomes 0 by depressing the accelerator pedal back. It is preferable to start the regenerative power generation of the motor generator when it becomes large.
 また、本発明に係るハイブリッドシステムにおいて、アクセルペダルの踏み込み量を検出するアクセルセンサと、ブレーキペダルの踏み込みを検出するブレーキセンサとを備え、前記アシスト制御装置は、前記アクセルペダルが踏み込まれた状態から踏み戻されるときの当該踏み戻し速度が予め設定された所定戻し速度よりも大きい場合に前記モータジェネレータの回生出力を低出力に設定して回生発電を開始し、前記ブレーキペダルが踏み込まれたときに前記モータジェネレータの回生出力を低出力から高出力に切り替えることが好ましい。 Further, the hybrid system according to the present invention includes an accelerator sensor that detects the amount of depression of an accelerator pedal, and a brake sensor that detects depression of a brake pedal, and the assist control device detects a state in which the accelerator pedal is depressed. When the pedal release speed when the brake pedal is released is greater than a predetermined return speed, the regenerative output of the motor generator is set to a low output to start regenerative power generation, and when the brake pedal is depressed. Preferably, the regenerative output of the motor generator is switched from low output to high output.
 また、本発明に係るハイブリッドシステムにおいて、シフトレバーの操作により変速段が切り替えられる手動変速機と、前記エンジンと前記手動変速機との間の動力伝達経路中に介装されて、クラッチペダルの踏み込み操作に応じて前記エンジンと前記手動変速機との間の動力伝達の接続及び切断を行うクラッチと、前記クラッチペダルの踏み込み量を検出するクラッチセンサと、ブレーキペダルの踏み込みを検出するブレーキセンサとを備え、前記アシスト制御装置は、前記ブレーキペダルが踏み込まれ、且つ、前記クラッチペダルが所定量以上踏み込まれている間、前記モータジェネレータの力行駆動を行うことが好ましい。 Further, in the hybrid system according to the present invention, a manual transmission in which a shift stage is switched by operating a shift lever, and a power transmission path interposed between the engine and the manual transmission, the clutch pedal is depressed. A clutch that connects and disconnects power transmission between the engine and the manual transmission according to operation, a clutch sensor that detects the amount of depression of the clutch pedal, and a brake sensor that detects the depression of the brake pedal. Preferably, the assist control device performs power running driving of the motor generator while the brake pedal is depressed and the clutch pedal is depressed by a predetermined amount or more.
 また、本発明に係るハイブリッドシステムにおいて、シフトレバーの操作により変速段が切り替えられる手動変速機と、前記エンジンと前記手動変速機との間の動力伝達経路中に介装されて、クラッチペダルの踏み込み操作に応じて前記エンジンと前記手動変速機との間の動力伝達の接続及び切断を行うクラッチと、前記クラッチペダルの踏み込み量を検出するクラッチセンサと、前記車両の車速を検出する車速センサと、前記エンジンの回転数を検出する回転センサとを備え、前記アシスト制御装置は、前記クラッチペダルが踏み込まれていない状態において、前記車両の車速が減少傾向であるときに前記エンジンの回転数が所定回転数以上増加した場合に、前記手動変速機がニュートラル状態であると判定し、前記モータジェネレータの力行駆動を制限することが好ましい。 Further, in the hybrid system according to the present invention, a manual transmission in which a shift stage is switched by operating a shift lever, and a power transmission path interposed between the engine and the manual transmission, the clutch pedal is depressed. a clutch that connects and disconnects power transmission between the engine and the manual transmission according to an operation; a clutch sensor that detects the amount of depression of the clutch pedal; a vehicle speed sensor that detects the vehicle speed of the vehicle; and a rotation sensor for detecting the rotation speed of the engine, and the assist control device detects that the rotation speed of the engine reaches a predetermined rotation speed when the vehicle speed of the vehicle tends to decrease in a state where the clutch pedal is not depressed. It is preferable to determine that the manual transmission is in a neutral state and limit the power running drive of the motor generator when the number has increased by a number or more.
 また、本発明に係るハイブリッドシステムにおいて、前記アシスト制御装置は、前記クラッチペダルが踏み込まれていない状態において、前記車両の車速が減少傾向ではない場合には、前記車両の車速が所定速度以上であるときに前記エンジンの回転数が予め設定された所定のアイドル回転数まで低下している場合に、前記手動変速機がニュートラル状態であると判定し、前記モータジェネレータの力行駆動または回生発電を制限することが好ましい。 Further, in the hybrid system according to the present invention, the assist control device controls that the vehicle speed of the vehicle is equal to or higher than a predetermined speed when the vehicle speed of the vehicle does not tend to decrease while the clutch pedal is not depressed. When the number of revolutions of the engine has dropped to a predetermined idle number of revolutions, it is determined that the manual transmission is in a neutral state, and power running or regenerative power generation of the motor generator is limited. is preferred.
 また、本発明に係るハイブリッドシステムにおいて、前記アシスト制御装置は、前記エンジンの再始動時に、前記モータジェネレータを逆転駆動させて当該エンジンのクランクシャフトを一旦逆転方向に回転させた後に、前記モータジェネレータを正転駆動させて前記クランクシャフトを正転方向に回転させることが好ましい。 Further, in the hybrid system according to the present invention, the assist control device rotates the motor generator in the reverse direction to once rotate the crankshaft of the engine in the reverse direction when the engine is restarted, and then rotates the motor generator. It is preferable to rotate the crankshaft in the normal rotation direction by driving the crankshaft in the normal direction.
 本発明に係るハイブリッドシステムによれば、他の制御装置との連携を要することなく(制御系統の改修を必要とせず)、アシスト制御装置独自の判断により、所定のセンサ類から入力される車両情報に基づき、車両の動作を判定してモータジェネレータの制御を実行することができるため、既存の車両に対して大規模な設計変更や改修等を必要とすることなく、マイルドハイブリッドシステムを後付けで搭載することができ、その結果、既存の車両をハイブリッド車両に容易に転用することが可能となる。 According to the hybrid system according to the present invention, vehicle information is input from predetermined sensors based on the independent judgment of the assist control device without requiring cooperation with other control devices (without requiring modification of the control system). Based on this, it is possible to determine the operation of the vehicle and control the motor generator, so the mild hybrid system can be retrofitted without the need for large-scale design changes or modifications to existing vehicles. As a result, existing vehicles can be easily converted to hybrid vehicles.
本実施形態のマイルドハイブリッドシステムを備えた車両の構成図である。1 is a configuration diagram of a vehicle equipped with a mild hybrid system of this embodiment; FIG. アイドリング回生制御のフローチャートである。4 is a flowchart of idling regeneration control; アイドリング回生制御の具体例を示すタイムチャートである。4 is a time chart showing a specific example of idling regeneration control; 発進制御のフローチャートである。4 is a flowchart of start control; 発進制御の具体例を示すタイムチャートである。4 is a time chart showing a specific example of start control; スリップ制御のフローチャートである。4 is a flowchart of slip control; スリップ制御の具体例を示すタイムチャートである。4 is a time chart showing a specific example of slip control; 加速アシスト制御のフローチャートである。4 is a flowchart of acceleration assist control; 加速アシスト制御の具体例を示すタイムチャートである。4 is a time chart showing a specific example of acceleration assist control; 負荷判定制御のフローチャートである。4 is a flowchart of load determination control; 負荷判定制御の第1の具体例を示すタイムチャートである。4 is a time chart showing a first specific example of load determination control; 負荷判定制御の第2の具体例を示すタイムチャートである。9 is a time chart showing a second specific example of load determination control; 定速走行制御のフローチャートである。4 is a flowchart of constant-speed travel control; 定速走行制御の具体例を示すタイムチャートである。4 is a time chart showing a specific example of constant speed running control; 減速移行制御のフローチャートである。4 is a flowchart of deceleration transition control; 減速移行制御の第1の具体例を示すタイムチャートである。4 is a time chart showing a first specific example of deceleration transition control; 減速移行制御の第2の具体例を示すタイムチャートである。9 is a time chart showing a second specific example of deceleration transition control; 速度維持制御のフローチャートである。4 is a flow chart of speed maintenance control; 速度維持制御の具体例を示すタイムチャートである。4 is a time chart showing a specific example of speed maintenance control; 減速回生制御のフローチャートである。4 is a flowchart of deceleration regeneration control; 減速回生制御の具体例を示すタイムチャートである。5 is a time chart showing a specific example of deceleration regeneration control; 変速アシスト制御のフローチャートである。4 is a flowchart of shift assist control; 変速アシスト制御の具体例を示すタイムチャートである。4 is a time chart showing a specific example of shift assist control; ニュートラル判定制御のフローチャートである。4 is a flowchart of neutral determination control; ニュートラル判定制御の第1の具体例を示すタイムチャートである。4 is a time chart showing a first specific example of neutral determination control; ニュートラル判定制御の第2の具体例を示すタイムチャートである。8 is a time chart showing a second specific example of neutral determination control; エンジンの再始動時のクランクシャフトの正転動作を示す図である。FIG. 4 is a diagram showing forward rotation of the crankshaft when the engine is restarted; エンジンの再始動時のクランクシャフトの逆転動作を示す図である。FIG. 5 is a diagram showing the reverse rotation of the crankshaft when the engine is restarted;
 以下、図面を参照して本発明の好ましい実施形態について説明する。本発明の一実施形態に係るハイブリッドシステム(マイルドハイブリッドシステム)を備えた車両1を図1に示しており、まず、この図1を参照して本実施形態に係る車両1の概要構成を説明する。 Preferred embodiments of the present invention will be described below with reference to the drawings. A vehicle 1 equipped with a hybrid system (mild hybrid system) according to one embodiment of the present invention is shown in FIG. .
 車両1は、マイルドハイブリッド車両であり、エンジン10のみを動力源とする走行と、エンジン10とモータ20の2つを動力源とする走行とを実行可能である。つまり、車両1は、モータ20の動力のみで走行を行うことはなく、発進時や加速時等のエンジン10の動力が不足する場面或いは巡航時にアシストを行うことで燃費向上が期待できる場面において、エンジン10の動力をモータ20の動力でアシストして走行するものである。この車両1は、例えば、トラックやバスなどの大型車両である。 The vehicle 1 is a mild hybrid vehicle, and is capable of running using only the engine 10 as a power source and running using both the engine 10 and the motor 20 as power sources. In other words, the vehicle 1 does not run only by the power of the motor 20, and in a situation where the power of the engine 10 is insufficient such as when starting or accelerating, or in a situation where improvement in fuel efficiency can be expected by providing assistance during cruising. The power of the engine 10 is assisted by the power of the motor 20 to run. This vehicle 1 is, for example, a large vehicle such as a truck or a bus.
 車両1は、エンジン10と、モータ20と、クラッチ装置30と、トランスミッション40と、ブレーキ装置50と、車両制御装置60と、検出部70とを備えている。 The vehicle 1 includes an engine 10, a motor 20, a clutch device 30, a transmission 40, a brake device 50, a vehicle control device 60, and a detector 70.
 エンジン10は、例えば軽油等の燃料を燃焼させることにより車両1を走行させるための駆動力を生成する多気筒のディーゼルエンジンである。このエンジン10の出力軸(クランクシャフト)には、モータ20の回転軸が直結されている。 The engine 10 is a multi-cylinder diesel engine that generates driving force for running the vehicle 1 by burning fuel such as light oil. A rotating shaft of a motor 20 is directly connected to an output shaft (crankshaft) of the engine 10 .
 モータ20は、供給される電力を回転動力に変換して出力する電動機としての機能(力行機能)と、入力される回転動力を電力に変換して出力する発電機としての機能(回生機能)とを備えるモータジェネレータである。モータ20は、後述のインバータ21を介してバッテリ22と電力の授受を行う。モータ20は、電動機として機能する場合には、バッテリ22から供給される電力を変換して回転動力を生成し、該回転動力をエンジン10から入力される回転動力に付加して、トランスミッション40側へ出力する(エンジン10の出力をアシストする)。モータ20は、発電機として機能する場合には、駆動輪43からトランスミッション40に伝達された回転動力またはエンジン10から出力された回転動力を回生して発電を行い、該発電された電力がバッテリ22に充電される。本実施形態では、所定の回生トルク(最大回生トルク)の値を上限として、モータ20の回生トルクを任意の値に制御することができる。なお、モータ20の最大回生トルク(最大回生制動力)は、エンジン10の回転数毎に変化する。 The motor 20 has a function as an electric motor (powering function) that converts supplied electric power into rotational power and outputs it, and a function as a generator (regenerative function) that converts input rotational power into electric power and outputs it. A motor generator comprising The motor 20 exchanges electric power with a battery 22 via an inverter 21, which will be described later. When functioning as an electric motor, the motor 20 converts electric power supplied from the battery 22 to generate rotational power, adds the rotational power to the rotational power input from the engine 10, and transmits the power to the transmission 40 side. output (assist the output of the engine 10). When the motor 20 functions as a generator, the motor 20 regenerates the rotational power transmitted from the drive wheels 43 to the transmission 40 or the rotational power output from the engine 10 to generate power. is charged to In this embodiment, the regenerative torque of the motor 20 can be controlled to an arbitrary value with a predetermined regenerative torque (maximum regenerative torque) value as the upper limit. Note that the maximum regenerative torque (maximum regenerative braking force) of the motor 20 changes for each rotation speed of the engine 10 .
 モータ20とバッテリ22とを繋ぐ電気回路上には、インバータ21が接続されている。インバータ21は、バッテリ22側の直流電力とモータ20側の交流電力とを相互に変換する変換器である。インバータ21には、後述のアシストECU64が電気的に接続されており、このアシストECU64からの制御信号に基づき、バッテリ22からモータ20に駆動電流(電力)を供給したり、モータ20の回生電力をバッテリ22に蓄電したりする。このモータ20の回転軸には、クラッチ装置30を介して、トランスミッション40の入力軸が接続されている。 An inverter 21 is connected to the electric circuit connecting the motor 20 and the battery 22 . The inverter 21 is a converter that mutually converts DC power on the battery 22 side and AC power on the motor 20 side. The inverter 21 is electrically connected to an assist ECU 64, which will be described later. Based on a control signal from the assist ECU 64, a drive current (electric power) is supplied from the battery 22 to the motor 20, or regenerative power of the motor 20 is supplied. Electricity is stored in the battery 22 . An input shaft of a transmission 40 is connected to the rotation shaft of the motor 20 via a clutch device 30 .
 クラッチ装置30は、モータ20の回転軸とトランスミッション40の入力軸との間に介装され、運転者によるクラッチペダル83の踏み込み操作及び踏み戻し操作に応じて、駆動力を伝達または遮断する。本実施形態のクラッチ装置30は、例えば、摩擦係合式の多板クラッチである。 The clutch device 30 is interposed between the rotating shaft of the motor 20 and the input shaft of the transmission 40, and transmits or cuts off the driving force according to the driver's depression and release of the clutch pedal 83. The clutch device 30 of the present embodiment is, for example, a friction engagement multi-plate clutch.
 トランスミッション40は、複数の変速段(例えば、前進5段、後進1段)を有して、運転者によるシフトレバー(図示せず)の操作に応じて変速する手動式の多段変速機(マニュアルトランスミッション)であり、エンジン10からの動力を複数の変速段のうちのいずれか1つにより変速して出力する。このトランスミッション40の出力軸には、プロペラシャフト41が接続されている。トランスミッション40にて変速された駆動力は、プロペラシャフト41を介してデファレンシャル42に伝達されて、一対の車輪(駆動輪)43にそれぞれ分配される。なお、本実施形態では、後輪駆動のハイブリッド車両を例示しているが、前輪駆動のハイブリッド車両とすることも勿論可能である。また、四輪駆動(全輪駆動)のハイブリッド車両とすることも可能であり、その場合には前輪および後輪のそれぞれに対してエンジン動力とモータ動力とを伝達可能である(モータアシスト可能である)。 The transmission 40 is a manual multi-speed transmission (manual transmission) that has a plurality of gear stages (for example, five forward gears and one reverse gear) and shifts gears according to the operation of a shift lever (not shown) by the driver. ), and the power from the engine 10 is shifted by any one of a plurality of gear stages and output. A propeller shaft 41 is connected to the output shaft of the transmission 40 . A driving force shifted by the transmission 40 is transmitted to a differential 42 via a propeller shaft 41 and distributed to a pair of wheels (driving wheels) 43, respectively. In this embodiment, a rear-wheel-drive hybrid vehicle is exemplified, but a front-wheel-drive hybrid vehicle is of course possible. A four-wheel drive (all-wheel drive) hybrid vehicle is also possible, in which case engine power and motor power can be transmitted to the front and rear wheels (motor assist is possible) be).
 ブレーキ装置50は、運転者によりブレーキペダル82が踏み込まれたときに各車輪(駆動輪、従動輪)43に制動力を付与する。このブレーキ装置50としては、圧縮空気で作動するエアブレーキや、油圧で作動する油圧ブレーキが例示される。 The brake device 50 applies a braking force to each wheel (drive wheel, driven wheel) 43 when the brake pedal 82 is depressed by the driver. Examples of the brake device 50 include an air brake operated by compressed air and a hydraulic brake operated by hydraulic pressure.
 車両制御装置60は、エンジン10を制御するエンジンECU61と、クラッチ装置30およびトランスミッション40を制御するトランスミッションECU62と、ブレーキ装置50を制御するブレーキECU63と、モータジェネレータ20を制御するアシストECU64とを備えて構成される。各ECU61~64は、CPU、ROM、RAM、及び入出力等のインターフェースを含むマイクロコンピュータを主体とする電子回路である。本実施形態では、車両制御装置60による制御によって、エンジン10の出力のみで車両を走行するエンジン走行モードと、エンジン10の出力をモータ20の出力によりアシストして、エンジン10およびモータ20の双方の出力にて車両を走行するモータアシスト走行モードとの間で、走行モードの切り替えが可能となっている。この車両制御装置60には、検出部(各種のセンサ類)70が電気的に接続されている。 Vehicle control device 60 includes an engine ECU 61 that controls engine 10, a transmission ECU 62 that controls clutch device 30 and transmission 40, a brake ECU 63 that controls brake device 50, and an assist ECU 64 that controls motor generator 20. Configured. Each of the ECUs 61 to 64 is an electronic circuit mainly composed of a microcomputer including CPU, ROM, RAM, and interfaces such as input/output. In the present embodiment, the control by the vehicle control device 60 provides an engine running mode in which the vehicle runs only with the output of the engine 10, and an engine running mode in which the output of the engine 10 is assisted with the output of the motor 20, so that both the engine 10 and the motor 20 are operated. It is possible to switch the driving mode between the motor assist driving mode in which the vehicle is driven by the output. A detection unit (various sensors) 70 is electrically connected to the vehicle control device 60 .
 検出部70は、アクセルペダル81の操作量(踏み込み量、踏み戻し量)を検出するアクセルセンサ71、ブレーキペダル82の操作(踏み込み、踏み戻し)を検出するブレーキセンサ72、クラッチペダル83の操作量(踏み込み量、踏み戻し量)を検出するクラッチセンサ73、車両1の走行速度(車速)を検出する車速センサ74、エンジン10もしくはモータ20の回転数(回転速度)を検出する回転センサ75、及びバッテリ22の残充電量等を検出するバッテリセンサ76等を有して構成されている。ブレーキセンサ72は、ブレーキペダル82の操作量(踏み込み量、踏み戻し量)を検出するものでもよい。なお、本実施形態では、エンジン10の出力軸とモータ20の回転軸とが直結されているため、エンジン10の回転数(回転速度)とモータ20の回転数(回転速度)とが一致する。各センサ71~76の検出情報は、エンジンECU61、トランスミッションECU62、ブレーキECU63、アシストECU64のうちの必要なECUに適宜入力されるようになっている。 The detection unit 70 includes an accelerator sensor 71 that detects the operation amount (depression amount, depression amount) of the accelerator pedal 81, a brake sensor 72 that detects the operation (depression, depression amount) of the brake pedal 82, and an operation amount of the clutch pedal 83. A clutch sensor 73 that detects (depression amount, depression amount), a vehicle speed sensor 74 that detects the running speed (vehicle speed) of the vehicle 1, a rotation sensor 75 that detects the rotation speed (rotational speed) of the engine 10 or the motor 20, and It is configured with a battery sensor 76 and the like for detecting the remaining charge amount of the battery 22 and the like. The brake sensor 72 may detect the amount of operation (depression amount, depression amount) of the brake pedal 82 . In this embodiment, since the output shaft of the engine 10 and the rotation shaft of the motor 20 are directly connected, the number of revolutions (rotational speed) of the engine 10 and the number of revolutions (rotational speed) of the motor 20 match. Information detected by the sensors 71 to 76 is appropriately input to necessary ECUs among the engine ECU 61, the transmission ECU 62, the brake ECU 63, and the assist ECU 64.
 ここで、アシストECU64は、車両1の発進時や加速時等にはモータ20の力行駆動を制御してエンジン10の出力をアシストし、車両1の減速時や制動時等にはモータ20の回生駆動(回生発電)を制御してバッテリ22を充電する。このアシストECU64は、他のECU61~63と電気的に接続されておらず、他のECU61~63との間で信号の送受信を行わない。そのため、本実施形態のアシストECU64は、検出部70(各センサ71~76)から入力される検出信号に基づき、独自の判断でモータ20の力行駆動および回生駆動を制御する。なお、本実施形態では、アシストECU64、モータ20、インバータ21およびバッテリ22等を主体として、マイルドハイブリッドシステムが構成されており、このマイルドハイブリッドシステムを既存の車両(非ハイブリッド車両)に後付けで搭載することにより、既存の車両(非ハイブリッド車両)をハイブリッド化している。 Here, the assist ECU 64 assists the output of the engine 10 by controlling the power running drive of the motor 20 when the vehicle 1 starts or accelerates, and regenerates the motor 20 when the vehicle 1 decelerates or brakes. The drive (regenerative power generation) is controlled to charge the battery 22 . The assist ECU 64 is not electrically connected to the other ECUs 61-63 and does not transmit or receive signals to or from the other ECUs 61-63. Therefore, the assist ECU 64 of this embodiment controls the power running drive and the regenerative drive of the motor 20 based on the detection signals input from the detection section 70 (sensors 71 to 76). In this embodiment, the assist ECU 64, the motor 20, the inverter 21, the battery 22, and the like constitute a mild hybrid system. Thus, existing vehicles (non-hybrid vehicles) are hybridized.
 次に、アシストECU64による車両1の制御方法について説明する。 Next, a method of controlling the vehicle 1 by the assist ECU 64 will be described.
 <1.アイドリング回生制御>
 まず、本実施形態のアイドリング回生制御について説明する。従来技術の問題点として、モータ20の回生駆動を車両の減速時(制動時)にのみ行うと、モータ20による発電量が不十分となり、バッテリ22の残充電量(残容量)が低下して、エンジン10の出力をモータ20の出力で十分にアシストすることができなくなるおそれがあるという問題があった。
<1. Idling regeneration control>
First, the idling regeneration control of this embodiment will be described. A problem with the conventional technology is that if the motor 20 is regeneratively driven only when the vehicle is decelerating (during braking), the amount of power generated by the motor 20 becomes insufficient, and the remaining charge (remaining capacity) of the battery 22 decreases. , there is a possibility that the output of the engine 10 cannot be sufficiently assisted by the output of the motor 20.
 本実施形態では、かかる問題を是正するため、アシストECU64が、独自の判断で、検出部70から入力される情報に基づき、車両1のアイドリング状態(停車状態)を判定し、バッテリ22の残充電量が低下している場合には、当該アイドリング状態のエンジン10の動力(アイドル回転)を利用してモータ20の回生発電を行うアイドリング回生制御を実行する。 In this embodiment, in order to correct such a problem, the assist ECU 64 determines whether the vehicle 1 is in an idling state (stopped state) based on the information input from the detection unit 70 by its own judgment, and determines the remaining charge of the battery 22. When the amount is low, idling regeneration control is executed to perform regenerative power generation of the motor 20 using the power (idle rotation) of the engine 10 in the idling state.
 本実施形態のアイドリング回生制御の手順について、図2を参照して説明する。図2は、アイドリング回生制御のフローチャートである。 A procedure for idling regeneration control in this embodiment will be described with reference to FIG. FIG. 2 is a flowchart of idling regeneration control.
 アシストECU64は、クラッチセンサ73からの検出情報に基づき、クラッチペダル83が踏み込まれているか否かを判定する(ステップS101)。アシストECU64は、クラッチペダル83が踏み込まれていないと判定した場合(ステップS101:NO)、すなわち、クラッチ装置30が接続状態であると判定した場合、車速センサ74からの検出情報に基づき、車速が0(0km/h)であるか否かを判定する(ステップS102)。つまり、アシストECU63は、クラッチペダル83が踏み込まれていないとき(クラッチ装置30が接続状態であるとき)に車速が0であることを条件に、車両1がアイドル状態(停止状態)に移行したことを判定する。 The assist ECU 64 determines whether or not the clutch pedal 83 is depressed based on the detection information from the clutch sensor 73 (step S101). When the assist ECU 64 determines that the clutch pedal 83 is not depressed (step S101: NO), that is, when it determines that the clutch device 30 is in the engaged state, the vehicle speed increases based on the detection information from the vehicle speed sensor 74. It is determined whether or not it is 0 (0 km/h) (step S102). That is, the assist ECU 63 determines that the vehicle 1 has shifted to the idle state (stopped state) on condition that the vehicle speed is 0 when the clutch pedal 83 is not depressed (when the clutch device 30 is in the engaged state). judge.
 アシストECU64は、車速が0であると判定した場合(ステップS102:YES)、バッテリセンサ76からの検出情報に基づき、バッテリ22のSOC(State Of Charge)が所定値未満であるか否かを判定する(ステップS103)。SOCとは、バッテリ22の満充電量に対する現在の充電量(残充電量)を百分率で表現した充電率である。SOCは、バッテリ22からの出力電圧もしくは出力電流に基づき算出される。アシストECU64は、バッテリ22のSOCが所定値未満であると判定した場合(ステップS103:YES)、アイドル状態のエンジン10から出力される動力(アイドル回転)を利用してモータ20の回生駆動(回生発電)を開始する(ステップS104)。それにより、バッテリ22がモータ20により発電される電力によって充電される。 When the assist ECU 64 determines that the vehicle speed is 0 (step S102: YES), it determines whether the SOC (State Of Charge) of the battery 22 is less than a predetermined value based on the detection information from the battery sensor 76. (step S103). The SOC is a charging rate expressed as a percentage of the current charge amount (remaining charge amount) with respect to the full charge amount of the battery 22 . SOC is calculated based on the output voltage or output current from battery 22 . When the assist ECU 64 determines that the SOC of the battery 22 is less than the predetermined value (step S103: YES), the assist ECU 64 regeneratively drives the motor 20 using the power (idle rotation) output from the engine 10 in the idle state. power generation) is started (step S104). Thereby, the battery 22 is charged with the electric power generated by the motor 20 .
 続いて、アシストECU64は、バッテリ22のSOCが所定値以上まで回復したか否かを判定する(ステップS105)。アシストECU64は、SOCが所定値以上まで回復したことを判定した場合(ステップS105:YES)、モータ20の回生駆動を停止する(ステップS107)。一方、アシストECU64は、SOCが所定値未満であることを判定した場合(ステップS105:NO)、クラッチペダル83が踏み込まれたか否かを判定する(ステップS106)。アシストECU64は、クラッチペダル83が踏み込まれていないと判定した場合(ステップS106:NO)、ステップS105に戻る。一方、アシストECU64は、クラッチペダル83が踏み込まれたことを判定した場合(ステップS106:YES)、すなわち、クラッチ装置30が切断状態であると判定した場合、モータ20の回生駆動を停止する(ステップS107)。なお、ステップS101、ステップS102もしくはステップS103でNO判定の場合には、そのまま本処理を終了する。 Subsequently, the assist ECU 64 determines whether the SOC of the battery 22 has recovered to a predetermined value or higher (step S105). When the assist ECU 64 determines that the SOC has recovered to the predetermined value or higher (step S105: YES), the assist ECU 64 stops regenerative driving of the motor 20 (step S107). On the other hand, when the assist ECU 64 determines that the SOC is less than the predetermined value (step S105: NO), it determines whether or not the clutch pedal 83 is depressed (step S106). When the assist ECU 64 determines that the clutch pedal 83 is not depressed (step S106: NO), the process returns to step S105. On the other hand, if the assist ECU 64 determines that the clutch pedal 83 has been depressed (step S106: YES), that is, if it determines that the clutch device 30 is in the disengaged state, the assist ECU 64 stops regenerative driving of the motor 20 (step S107). It should be noted that in the case of a NO determination in step S101, step S102, or step S103, this processing is terminated as it is.
 次に、アシストECU64によるアイドリング回生制御の作用について説明する。図3は、アイドリング回生制御の具体例を示すタイムチャートである。 Next, the action of the idling regeneration control by the assist ECU 64 will be described. FIG. 3 is a time chart showing a specific example of idling regeneration control.
 図3に示すように、時点t11において、運転者によりクラッチペダル83が踏み戻されており(踏み込まれておらず)、且つ、車速が0となっていることで、車両1がアイドリング状態に移行したことが判定される。このとき、バッテリ22のSOCが所定値S1未満である場合(バッテリ22の残容量が低下している場合)、モータ20から出力される動力(アイドル回転)を利用してモータ20を回生駆動し、バッテリ22を充電する(時点t11~t13)。そして、時点t13において、バッテリ22のSOCが所定値S1以上まで回復すると、モータ20の回生駆動を停止する。なお、バッテリ22のSOCが所定値S1まで回復する前であっても、クラッチペダル83が操作された場合(踏み込まれた場合)には、車両1が停車状態から発進することが予測されるため、モータ20の回生駆動を停止する(時点t12)。 As shown in FIG. 3, at time t11, the driver depresses the clutch pedal 83 (not depressing it) and the vehicle speed is 0, so the vehicle 1 transitions to the idling state. It is determined that At this time, when the SOC of the battery 22 is less than the predetermined value S1 (when the remaining capacity of the battery 22 is low), the power output from the motor 20 (idle rotation) is used to regeneratively drive the motor 20. , to charge the battery 22 (time points t11 to t13). At time t13, when the SOC of the battery 22 recovers to the predetermined value S1 or higher, the regenerative driving of the motor 20 is stopped. Even before the SOC of the battery 22 recovers to the predetermined value S1, if the clutch pedal 83 is operated (depressed), it is predicted that the vehicle 1 will start from a stopped state. , the regenerative driving of the motor 20 is stopped (time t12).
 このように本実施形態では、他のECU61~63との連携を要することなく、アシストECU64の独自の判断により、検出部70から入力される情報に基づき、エンジン10がアイドリング状態となったことを判定して、当該エンジン10のアイドル回転(余剰の運動エネルギー)を利用してモータ20を回生駆動させることで、モータ20による発電量を十分に確保して、バッテリ22の残充電量(電力)が不足する事態を未然に回避することが可能となる。 As described above, in the present embodiment, the assist ECU 64 independently determines that the engine 10 has entered the idling state based on the information input from the detection unit 70 without requiring cooperation with the other ECUs 61 to 63. By making a determination and regeneratively driving the motor 20 using the idling rotation (excess kinetic energy) of the engine 10, the amount of power generated by the motor 20 is sufficiently secured, and the remaining charge amount (electric power) of the battery 22 It is possible to avoid a situation in which there is a shortage of
 <2.発進制御>
 次に、本実施形態の発進制御について説明する。従来技術の問題点として、車両1の発進時にエンジン10の出力をモータ20の出力によりアシストする場合、車両1の走行開始に合わせてモータ20を駆動させる必要があるが、その駆動タイミングが早すぎるとモータ20の駆動力を無駄に消費することになり、逆に、駆動タイミングが遅すぎると車両1の発進時に要する駆動力が不足するという問題がある。
<2. Start control>
Next, start control of this embodiment will be described. A problem with the conventional technology is that when the output of the engine 10 is assisted by the output of the motor 20 when the vehicle 1 starts moving, the motor 20 must be driven in time with the vehicle 1 starting to run, but the timing of the drive is too early. If the driving timing is too late, the driving force required for starting the vehicle 1 will be insufficient.
 本実施形態では、かかる問題を是正するため、アシストECU64が、独自の判断で、検出部70から入力される情報に基づき、クラッチペダル83の操作速度(踏み戻し速度)の変化点から車両1の発進タイミングを検出して、この発進タイミングに合わせてモータ20を力行駆動する発進制御を実行する。 In the present embodiment, in order to correct such a problem, the assist ECU 64, at its own judgment, based on the information input from the detection section 70, detects the acceleration of the vehicle 1 from the change point of the operation speed (depressing speed) of the clutch pedal 83. A start timing is detected, and start control is executed to power-drive the motor 20 in accordance with the start timing.
 本実施形態の発進制御の手順について、図4を参照して説明する。図4は、発進制御のフローチャートである。 The procedure of start control in this embodiment will be described with reference to FIG. FIG. 4 is a flow chart of start control.
 アシストECU64は、車速が0であるか否かを判定する(ステップS201)。アシストECU64は、車速が0であることを判定した場合(ステップS201:YES)、クラッチセンサ73からの検出情報に基づき、クラッチペダル83が規定量以上踏み込まれているか否かを判定する(ステップS202)。規定量は、クラッチ装置30が切断状態となる範囲(例えば、クラッチペダル83が半クラッチ領域の境界位置から完全に踏み込まれる位置までの範囲)内に設定されている。つまり、アシストECU64は、運転者がクラッチペダル83を操作して、クラッチ装置30を接続及び切断したか否かを判定する。 The assist ECU 64 determines whether or not the vehicle speed is 0 (step S201). When the assist ECU 64 determines that the vehicle speed is 0 (step S201: YES), it determines whether or not the clutch pedal 83 is depressed by a specified amount or more based on the detection information from the clutch sensor 73 (step S202). ). The prescribed amount is set within a range in which the clutch device 30 is in a disengaged state (for example, a range from the boundary position of the half-clutch region to the position where the clutch pedal 83 is fully depressed). That is, the assist ECU 64 determines whether or not the driver has operated the clutch pedal 83 to connect and disconnect the clutch device 30 .
 アシストECU64は、クラッチペダル83が規定量以上踏み込まれていることを判定した場合(ステップS202:YES)、クラッチペダル83が踏み戻され始めたか否かを判定する(ステップS203)。アシストECU64は、クラッチペダル83の踏み戻しが開始されたことを判定した場合(ステップS203:YES)、当該クラッチペダル83が予め設定された半クラッチ領域(半クラッチ領域の開始点)まで踏み戻されたか否かを判定する(ステップS204)。半クラッチ領域とは、クラッチ装置30が完全接続状態(完全係合状態)と完全切断状態(完全解放状態)との間でエンジン10の動力を部分的に伝達する半クラッチ状態となる領域である。アシストECU64の内部メモリには、半クラッチ領域に対応するクラッチペダル83のストローク量(踏み込み量、踏み戻し量)が記憶されている。なお、変形例として、クラッチペダル83の踏み戻し速度(単位時間当たりの踏み戻し量)が減少したときに、クラッチペダル83が半クラッチ領域まで踏み戻されたことを判定するように構成してもよい。すなわち、運転者は、始めはクラッチペダル83を素早く踏み戻していくが、クラッチ装置30の接続(係合)が開始すると、クラッチペダル83をゆっくりと踏み戻し始めるため、運転者によるクラッチペダル83の踏み戻し速度が減少したことに伴い、クラッチペダル83が半クラッチ領域に達したことを推定することができる。 When the assist ECU 64 determines that the clutch pedal 83 has been depressed more than the specified amount (step S202: YES), it determines whether the clutch pedal 83 has started to be depressed (step S203). When the assist ECU 64 determines that the clutch pedal 83 has started to be released (step S203: YES), the clutch pedal 83 is released to a preset half-clutch region (the starting point of the half-clutch region). It is determined whether or not (step S204). The half-clutch region is a region in which the clutch device 30 is in a half-clutch state in which the power of the engine 10 is partially transmitted between a completely connected state (completely engaged state) and a completely disconnected state (completely released state). . The internal memory of the assist ECU 64 stores the stroke amount (depression amount, depression amount) of the clutch pedal 83 corresponding to the half-clutch region. As a modification, it may be determined that the clutch pedal 83 has been depressed back to the half-clutch region when the depressing speed of the clutch pedal 83 (depression amount per unit time) decreases. good. That is, the driver depresses the clutch pedal 83 quickly at first, but when the connection (engagement) of the clutch device 30 starts, the driver starts depressing the clutch pedal 83 slowly. It can be estimated that the clutch pedal 83 has reached the half-clutch region as the pedal release speed has decreased.
 アシストECU64は、クラッチペダル83が半クラッチ領域まで踏み戻されたことを判定した場合(ステップS204:YES)、クラッチペダル83の踏み戻し速度が減少から増加に転じたか否かを判定する(ステップS205)。ここで、クラッチペダル83の踏み戻し速度が半クラッチ領域内で減少から増加に転じるタイミングは、運転者が車両1を発進させようとする意図を反映したタイミングである。つまり、クラッチペダル83の踏み戻し操作(踏み戻し速度)は、運転者の発進意図を顕著に表した指標であると言える。そのため、クラッチペダル83の踏み戻し速度の変化点を検出することで、モータ20の駆動トルク(アシストトルク)を必要とする車両1の発進タイミングを正確に検出することが可能となる。 When the assist ECU 64 determines that the clutch pedal 83 has been depressed back to the half-clutch region (step S204: YES), the assist ECU 64 determines whether or not the depressing speed of the clutch pedal 83 changed from decreasing to increasing (step S205). ). Here, the timing at which the depressing speed of the clutch pedal 83 changes from decreasing to increasing within the half-clutch region is the timing that reflects the driver's intention to start the vehicle 1 . In other words, it can be said that the release operation (release speed) of the clutch pedal 83 is an index that clearly indicates the driver's intention to start the vehicle. Therefore, by detecting the changing point of the release speed of the clutch pedal 83, it is possible to accurately detect the start timing of the vehicle 1 that requires the drive torque (assist torque) of the motor 20. FIG.
 アシストECU64は、クラッチペダル83の踏み戻し速度が半クラッチ領域内で増加したと判定した場合(ステップS205:YES)、モータ20の力行駆動(モータアシスト)を開始する(ステップS206)。続いて、アシストECU64は、クラッチペダル83が予め定められた所定量まで踏み戻されたか否かを判定する(ステップS207)。この所定量は、半クラッチ領域の終了点の近傍に設定されている。つまり、アシストECU64は、クラッチペダル83が所定量まで踏み戻されたことにより、クラッチ装置30が完全継合状態(完全係合状態)に移行したことを推定する。アシストECU64は、クラッチペダル83が所定量まで踏み戻されたことを判定した場合(ステップS207:YES)、モータ20の力行駆動(モータアシスト)を停止する(ステップS208)。なお、ステップS201もしくはステップS202でNO判定の場合には、そのまま本処理を終了する。 When the assist ECU 64 determines that the depressing speed of the clutch pedal 83 has increased within the half-clutch region (step S205: YES), it starts power running driving (motor assist) of the motor 20 (step S206). Subsequently, the assist ECU 64 determines whether or not the clutch pedal 83 has been depressed back to a predetermined amount (step S207). This predetermined amount is set near the end point of the half-clutch region. That is, the assist ECU 64 estimates that the clutch device 30 has shifted to the fully engaged state (completely engaged state) as a result of the clutch pedal 83 being depressed back to the predetermined amount. When the assist ECU 64 determines that the clutch pedal 83 has been stepped back to the predetermined amount (step S207: YES), the power running drive (motor assist) of the motor 20 is stopped (step S208). It should be noted that in the case of a NO determination in step S201 or step S202, this processing is terminated as it is.
 次に、アシストECU64による発進制御の作用について説明する。図5は、発進制御の具体例を示すタイムチャートである。 Next, the action of the start control by the assist ECU 64 will be explained. FIG. 5 is a time chart showing a specific example of start control.
 図5に示すように、時点t21において、車両1を発進させるため、運転者がクラッチペダル83を完全に踏み込んだ状態から踏み戻し始める。なお、図示省略しているが、クラッチペダル83の踏み戻しと同時に、アクセルペダル81の踏み込みが開始されている。時点t22において、運転者がクラッチペダル83を徐々に踏み戻すと、クラッチペダル83の踏み込み量が半クラッチ領域に到達する。それにより、クラッチ装置30が部分的に接続(係合)を開始することで、運転者がクラッチペダル83の踏み戻し速度を減少させる。時点t23において、運転者が車両1を発進させようとしてクラッチペダル83の踏み戻し速度を増加させたときに、モータ20の力行駆動(モータアシスト)を開始する。それにより、車速が0から上昇を始める(車両1が加速を開始する)。時点t24において、クラッチペダル83の踏み込み量が所定量(半クラッチ領域の終了点)まで戻されると、クラッチ装置30が完全接続状態に移行することで、モータ20の力行駆動(モータアシスト)を停止する。 As shown in FIG. 5, at time t21, the driver starts depressing the clutch pedal 83 from the fully depressing state in order to start the vehicle 1 . Although not shown, depressing of the accelerator pedal 81 is started at the same time that the clutch pedal 83 is released. At time t22, when the driver gradually depresses the clutch pedal 83, the depression amount of the clutch pedal 83 reaches the half-clutch region. As a result, the clutch device 30 starts to be partially connected (engaged), and the driver reduces the depressing speed of the clutch pedal 83 . At time t23, when the driver increases the depressing speed of the clutch pedal 83 to start the vehicle 1, the motor 20 starts powering (motor assist). As a result, the vehicle speed starts increasing from 0 (vehicle 1 starts accelerating). At time t24, when the amount of depression of the clutch pedal 83 is returned to a predetermined amount (the end point of the half-clutch region), the clutch device 30 shifts to the fully connected state, thereby stopping the power running drive (motor assist) of the motor 20. do.
 このように本実施形態によれば、他のECU61~63との連携を要することなく、アシストECU64の独自の判断により、検出部70から入力される情報に基づき、運転者によるクラッチペダル83の操作速度(踏み戻し速度)の変化点に基づき運転者の発進意図を正確に検出することで、クラッチ装置30の摩耗量等の影響を受けることなく、運転者の感覚に合った発進タイミングでモータアシストを実行することができ、車両1をスムーズに発進させることが可能となる。 As described above, according to the present embodiment, the driver operates the clutch pedal 83 based on the information input from the detection unit 70 based on the independent judgment of the assist ECU 64 without cooperation with the other ECUs 61 to 63. By accurately detecting the driver's starting intention based on the change point of the speed (depressing speed), motor assist is provided at a start timing that matches the feeling of the driver without being affected by the amount of wear of the clutch device 30, etc. can be executed, and the vehicle 1 can be started smoothly.
 <3.スリップ制御>
 次に、本実施形態のスリップ制御について説明する。従来技術の問題点として、走行路面の摩擦係数が低い場合に、車両1の発進時あるいは加速時等にモータアシストを行うと、車輪43がスリップ(空転)して車両1の安定性が損なわれるおそれがあるという問題がある。
<3. Slip control>
Next, the slip control of this embodiment will be described. A problem with the conventional technology is that when the friction coefficient of the road surface is low, the wheels 43 slip (idle) and the stability of the vehicle 1 is impaired when the motor assist is performed when the vehicle 1 starts or accelerates. There is a problem that there is a possibility
 本実施形態では、かかる問題を是正するため、アシストECU46が、独自の判断で、検出部70から入力される情報に基づき、モータ20の力行駆動中にエンジン10の回転加速度が予め設定された限界加速度を超過した場合に、車輪43にスリップが発生したことを判定し、モータ20の力行駆動を停止するとともに、それから所定時間以内に運転者がアクセルペダル81を踏み戻さなかった場合には、スリップが継続していると判定し、モータ20の回生駆動を開始して車輪43に回生制動力を付与するスリップ制御を実行する。 In the present embodiment, in order to correct such a problem, the assist ECU 46, at its own judgment, based on the information input from the detection unit 70, determines the preset limit of rotational acceleration of the engine 10 during power running of the motor 20. When the acceleration exceeds the acceleration, it is determined that the wheels 43 have slipped, and the power running drive of the motor 20 is stopped. is continued, and slip control is executed to start regenerative driving of the motor 20 and apply regenerative braking force to the wheels 43 .
 アシストECU64のスリップ制御の手順について、図6を参照して説明する。図6は、スリップ制御のフローチャートである。 A procedure for slip control of the assist ECU 64 will be described with reference to FIG. FIG. 6 is a flow chart of slip control.
 アシストECU64は、アクセルペダル81が所定量以上踏み込まれたか否かを判定する(ステップS301)。すなわち、アシストECU64は、車両1を発進又は加速させるため、モータ20の力行駆動(モータアシスト)を必要とする状態であるか否かを判定する。アシストECU64は、アクセルペダル81が所定量以上踏み込まれたことを判定した場合(ステップS301:YES)、モータ20の力行駆動を開始する(ステップS302)。 The assist ECU 64 determines whether the accelerator pedal 81 has been depressed by a predetermined amount or more (step S301). That is, the assist ECU 64 determines whether or not the motor 20 needs to be powered (motor assisted) in order to start or accelerate the vehicle 1 . When the assist ECU 64 determines that the accelerator pedal 81 has been depressed by a predetermined amount or more (step S301: YES), the assist ECU 64 starts power running driving of the motor 20 (step S302).
 アシストECU64は、回転センサ75からの検出情報に基づき、エンジン10の回転加速度(モータ20の回転加速度)が予め設定された限界加速度を超過したか否かを判定する(ステップS303)。エンジン10の回転加速度は、回転センサ75にて検出されたエンジン10の回転速度(回転数)を微分することにより得られる。アシストECU64は、エンジン10の回転加速度が限界加速度を超過していることを判定した場合(ステップS303:YES)、車両1にスリップが発生していることを推定し、モータ20の力行駆動を停止する(ステップS304)。 The assist ECU 64 determines whether or not the rotational acceleration of the engine 10 (rotational acceleration of the motor 20) exceeds a preset limit acceleration based on the information detected by the rotation sensor 75 (step S303). The rotation acceleration of the engine 10 is obtained by differentiating the rotation speed (number of rotations) of the engine 10 detected by the rotation sensor 75 . When the assist ECU 64 determines that the rotational acceleration of the engine 10 exceeds the acceleration limit (step S303: YES), it presumes that the vehicle 1 is slipping, and stops power running of the motor 20. (step S304).
 アシストECU64は、モータ20の力行駆動を停止した時点から起算して所定時間以内にアクセルペダル81が踏み戻されたか否かを判定する(ステップS305)。すなわち、アシストECU64は、所定時間以内にアクセルペダル81の踏み込み量が減少したか否かを判定する。アシストECU64は、所定時間以内にアクセルペダル81が踏み戻されていないことを判定した場合(ステップS305:NO)、モータ20の回生駆動を開始して回生制動トルクを発生させることで、エンジン10の回転を抑制する(ステップS306)。 The assist ECU 64 determines whether or not the accelerator pedal 81 has been depressed back within a predetermined period of time from when the power running drive of the motor 20 was stopped (step S305). That is, the assist ECU 64 determines whether or not the depression amount of the accelerator pedal 81 has decreased within a predetermined time. When the assist ECU 64 determines that the accelerator pedal 81 has not been depressed within a predetermined period of time (step S305: NO), the assist ECU 64 starts regenerative driving of the motor 20 to generate regenerative braking torque. Rotation is suppressed (step S306).
 アシストECU64は、モータ20の回生駆動中に、アクセルペダル81が踏み戻されたか否かを判定する(ステップS307)。アシストECU64は、アクセルペダル81が踏み戻されたことを判定した場合(ステップS307:YES)、モータ20の回生駆動を停止する(ステップS308)。なお、ステップS301、ステップS303もしくはステップS305でNO判定の場合には、そのまま本処理を終了する。 The assist ECU 64 determines whether or not the accelerator pedal 81 has been depressed back during the regenerative driving of the motor 20 (step S307). When the assist ECU 64 determines that the accelerator pedal 81 has been released (step S307: YES), it stops regenerative driving of the motor 20 (step S308). It should be noted that in the case of a NO determination in step S301, step S303, or step S305, this processing is terminated as it is.
 次に、アシストECU64によるスリップ制御の作用について説明する。図7は、スリップ制御の具体例を示すタイムチャートである。 Next, the effect of slip control by the assist ECU 64 will be described. FIG. 7 is a time chart showing a specific example of slip control.
 図7に示すように、時点t31において、運転者によるアクセルペダル81の踏み込みにより、モータ20の力行駆動が開始される。時点t32において、エンジン10の回転加速度が限界加速度を超過することで(エンジン10の回転数が急激に立ち上がることで)、アシストECU64が車両1のスリップを検出して、モータ20の力行駆動を停止する。時点t33において、モータ20の力行駆動が停止されたとき(車両1のスリップが検出されたとき)から所定時間が経過するまでに、アクセルペダル81が踏み戻されないと、モータ20の回生駆動が開始され、その回生制動力によりエンジン10の回転数が低下する。時点t34において、モータ20の回生駆動中にアクセルペダル81が踏み戻されると、モータ20の回生駆動が停止される。 As shown in FIG. 7, at time t31, the driver's depression of the accelerator pedal 81 causes the motor 20 to start power running. At time t32, the rotation acceleration of the engine 10 exceeds the acceleration limit (due to a rapid rise in the rotation speed of the engine 10), so that the assist ECU 64 detects slip of the vehicle 1 and stops the power running of the motor 20. do. At time t33, if the accelerator pedal 81 is not depressed within a predetermined period of time from when the power running drive of the motor 20 is stopped (when the slip of the vehicle 1 is detected), the regenerative drive of the motor 20 is started. The regenerative braking force reduces the rotation speed of the engine 10 . At time t34, when the accelerator pedal 81 is depressed while the motor 20 is being regeneratively driven, the regenerative driving of the motor 20 is stopped.
 このように本実施形態によれば、他のECU61~63との連携を要することなく、アシストECU64の独自の判断により、検出部70から入力される情報に基づき、エンジン10の回転数(回転加速度)の変化によりスリップが発生したことを判定して、モータ20の力行駆動(モータアシスト)の停止により車輪43に付与する駆動トルクを低下させるとともに、モータ20の回生駆動により車輪43に回生制動トルクを付与することで、車輪43のスリップを効果的に抑制することができ、その結果、車両1の安定性を向上させることが可能となる。 As described above, according to the present embodiment, the rotation speed (rotational acceleration ), the drive torque applied to the wheels 43 is reduced by stopping the power running drive (motor assist) of the motor 20, and the regenerative braking torque is applied to the wheels 43 by the regenerative drive of the motor 20. can effectively suppress the slip of the wheels 43, and as a result, the stability of the vehicle 1 can be improved.
 <4.加速アシスト制御>
 次に、本実施形態の加速アシスト制御について説明する。従来技術の問題点として、車両1の発進時等に、エンジン10の出力をモータ20の出力によりアシストする場合、運転者の加速要求に合った適切なタイミングでモータアシストが行われないと、加速フィーリングが悪化し、燃費改善効果も十分に得られないという問題があった。
<4. Acceleration assist control>
Next, the acceleration assist control of this embodiment will be described. As a problem of the conventional technology, when the output of the engine 10 is assisted by the output of the motor 20 when the vehicle 1 starts moving, etc., acceleration is not possible unless the motor assist is performed at an appropriate timing that meets the driver's acceleration request. There was a problem that the feeling deteriorated and the fuel efficiency improvement effect could not be sufficiently obtained.
 本実施形態では、かかる問題を是正するため、アシストECU64が、独自の判断で、検出部70から入力される情報に基づき、運転者の加速要求を判定して、該加速要求に応じたタイミングにてモータ20を力行駆動する加速アシスト制御を実行する。 In this embodiment, in order to correct such a problem, the assist ECU 64 determines the driver's acceleration request based on the information input from the detection unit 70 by its own judgment, and adjusts the timing according to the acceleration request. Acceleration assist control for powering the motor 20 is executed.
 本実施形態の加速アシスト制御の手順について、図8を参照して説明する。図8は、加速アシスト制御のフローチャートである。なお、図8のフローチャートに示す制御は、運転者の加速要求(運転者によるアクセルペダル81の踏み込み操作)に基づいて車両1を加速させる場面にて実行される。 A procedure for acceleration assist control in this embodiment will be described with reference to FIG. FIG. 8 is a flowchart of acceleration assist control. The control shown in the flowchart of FIG. 8 is executed when the vehicle 1 is accelerated based on the driver's acceleration request (the driver's depression of the accelerator pedal 81).
 アシストECU64は、アクセルペダル81が踏み込まれたか否かを判定する(ステップS401)。アシストECU64は、アクセルペダル81が踏み込まれたことを判定した場合(ステップS401:YES)、当該アクセルペダル81の踏み込み量が予め設定された規定量を超過したか否かを判定する(ステップS402)。つまり、アシストECU64は、アクセルペダル81の踏み込み量に基づき、運転者の加速要求があるか否かを判定する。 The assist ECU 64 determines whether or not the accelerator pedal 81 has been depressed (step S401). When the assist ECU 64 determines that the accelerator pedal 81 has been depressed (step S401: YES), the assist ECU 64 determines whether or not the depression amount of the accelerator pedal 81 has exceeded a preset specified amount (step S402). . That is, the assist ECU 64 determines whether or not there is a driver's acceleration request based on the depression amount of the accelerator pedal 81 .
 アシストECU64は、アクセルペダル81の踏み込み量が規定量を超過したことを判定した場合(ステップS402:YES)、モータ20の力行駆動を開始する(ステップS403)。続いて、アシストECU64は、モータ20の力行駆動中に、アクセルペダル81が踏み戻されたか否か(アクセルペダル81の踏み込み量が減少したか否か)を判定する(ステップS404)。アシストECU64は、アクセルペダル81が踏み戻されたことを判定した場合(ステップS403:YES)、運転者の加速要求が終了したと判断して、モータ20の力行駆動を停止する(ステップS405)。なお、ステップS401もしくはステップS402でNO判定の場合には、そのまま本処理を終了する。 When the assist ECU 64 determines that the depression amount of the accelerator pedal 81 has exceeded the specified amount (step S402: YES), it starts power running driving of the motor 20 (step S403). Subsequently, the assist ECU 64 determines whether or not the accelerator pedal 81 has been depressed back (whether or not the amount of depression of the accelerator pedal 81 has decreased) while the motor 20 is being powered (step S404). When the assist ECU 64 determines that the accelerator pedal 81 has been depressed back (step S403: YES), the assist ECU 64 determines that the driver's request for acceleration has ended, and stops the power running of the motor 20 (step S405). It should be noted that, in the case of NO determination in step S401 or step S402, this processing is terminated as it is.
 次に、アシストECU64による加速アシスト制御の作用について説明する。図9は、加速アシスト制御の具体例を示すタイムチャートである。 Next, the action of acceleration assist control by the assist ECU 64 will be described. FIG. 9 is a time chart showing a specific example of acceleration assist control.
 図9に示すように、時点t41において、運転者がアクセルペダル81を踏み込み始める。時点t42において、アクセルペダル81の踏み込み量が規定量AP1を超過することで、アシストECU64が運転者の加速要求があることを判定して、モータ20の力行駆動を開始する。時点t42において、運転者がアクセルペダル81を踏み戻すことで、アシストECU64が運転者の加速要求が終了したことを判定して、モータ20の力行駆動を停止する。 As shown in FIG. 9, the driver starts depressing the accelerator pedal 81 at time t41. At time t42, the amount of depression of the accelerator pedal 81 exceeds the specified amount AP1, so that the assist ECU 64 determines that there is a driver's acceleration request, and starts power running of the motor 20. FIG. At time t42, the driver depresses the accelerator pedal 81, and the assist ECU 64 determines that the driver's request for acceleration has ended, and stops the motor 20 from being powered.
 このように本実施形態では、他のECU61~63との連携を要することなく、アシストECU64の独自の判断により、検出部70から入力される情報に基づき、運転者によるアクセルペダル81の操作量から運転者の加速要求を判定して、この加速要求に適応したタイミングでモータアシストを実行することで、運転者に与える加速フィーリングを向上させることができるとともに、燃費改善効果を高めることが可能となる。 As described above, in the present embodiment, the operation amount of the accelerator pedal 81 by the driver is calculated based on the information input from the detection unit 70 based on the independent judgment of the assist ECU 64 without cooperation with the other ECUs 61 to 63. By judging the driver's acceleration request and executing the motor assist at a timing adapted to this acceleration request, it is possible to improve the feeling of acceleration given to the driver and improve fuel efficiency. Become.
 <5.負荷判定制御>
 次に、本実施形態の負荷判定制御について説明する。従来技術の問題点として、例えば積載荷重の小さい空車時や下り坂などの車両の負荷が低い状態での走行では、モータアシストを行ったとしても、加速フィーリングの向上や燃費改善効果は低いため、エネルギーを無駄に消費してしまうという問題があった。
<5. Load Judgment Control>
Next, the load determination control of this embodiment will be described. One of the problems with the conventional technology is that, for example, when the vehicle is running with a low load, such as when the vehicle is empty or when the vehicle is running downhill, even if the motor assist is used, the improvement in acceleration feeling and the effect of improving fuel efficiency are low. , there is a problem that energy is wasted.
 本実施形態では、かかる問題を是正するため、アシストECU64が、独自の判断で、検出部70から入力される情報に基づき、車両1の負荷状態(軽負荷状態/高負荷状態)を推定する負荷判定制御を実行する。 In the present embodiment, in order to correct such a problem, the assist ECU 64 makes its own judgment and based on the information input from the detection unit 70, the load state (light load state/high load state) of the vehicle 1 is estimated. Execute decision control.
 本実施形態の負荷判定制御の手順について、図10を参照して説明する。図10は、負荷判定制御のフローチャートである。 A procedure for load determination control in this embodiment will be described with reference to FIG. FIG. 10 is a flow chart of load determination control.
 アシストECU64は、車速センサ74からの検出情報に基づき、車速が予め設定された所定速度範囲内にあるか否かを判定する(ステップS501)。所定速度範囲は、例えば20~40km/hの範囲である。アシストECU64は、車速が所定速度範囲内であることを判定した場合(ステップS501:YES)、アクセルセンサ71からの検出情報に基づき、アクセルペダル81の踏み込み量が予め設定された閾値操作量以上であるか否かを判定する(ステップS502)。アシストECUは、アクセルペダル81の踏み込み量が閾値操作量以上であることを判定した場合(ステップS502:YES)、車両1の加速度が閾値加速度未満であるか否かを判定する(ステップS503)。車両1の加速度は、車速センサ74にて検出される車速を微分することで求められる。なお、変形例として、車速センサ74とは別に、車両1の加速度を検出する加速度センサを設けてもよい。 The assist ECU 64 determines whether or not the vehicle speed is within a predetermined speed range based on the detection information from the vehicle speed sensor 74 (step S501). The predetermined speed range is, for example, 20-40 km/h. When the assist ECU 64 determines that the vehicle speed is within the predetermined speed range (step S501: YES), based on the detection information from the accelerator sensor 71, the amount of depression of the accelerator pedal 81 is equal to or greater than a preset threshold operation amount. It is determined whether or not there is (step S502). When the assist ECU determines that the depression amount of the accelerator pedal 81 is equal to or greater than the threshold operation amount (step S502: YES), the assist ECU determines whether the acceleration of the vehicle 1 is less than the threshold acceleration (step S503). The acceleration of the vehicle 1 is obtained by differentiating the vehicle speed detected by the vehicle speed sensor 74 . As a modification, an acceleration sensor for detecting acceleration of the vehicle 1 may be provided separately from the vehicle speed sensor 74 .
 アシストECU64は、車両1の加速度が閾値加速度未満である場合(ステップS503:YES)、車両1が高負荷状態であることを判定する(ステップS504)。つまり、アシストECU64は、アクセルペダル81の踏み込み量が閾値操作量以上であるにも関わらず、車両1の加速度が閾値加速度に達していない場合に、車両1が高負荷状態であると判定する。高負荷状態とは、例えば車両1に荷物等が積載された(積載重量が所定重量よりも大きい)積車状態や、走行路面が上り坂である状態などをいう。このとき、アシストECU64により車両が高負荷状態であると判定されると、モータ20の力行駆動(モータアシスト)が許容される。 When the acceleration of the vehicle 1 is less than the threshold acceleration (step S503: YES), the assist ECU 64 determines that the vehicle 1 is in a high load state (step S504). That is, the assist ECU 64 determines that the vehicle 1 is in a high load state when the acceleration of the vehicle 1 does not reach the threshold acceleration even though the depression amount of the accelerator pedal 81 is equal to or greater than the threshold operation amount. The high-load state refers to, for example, a state in which the vehicle 1 is loaded with cargo (the loaded weight is greater than a predetermined weight), a state in which the road surface is uphill, and the like. At this time, if the assist ECU 64 determines that the vehicle is in a high load state, the power running drive (motor assist) of the motor 20 is permitted.
 一方、アシストECU64は、アクセルペダル81の踏み込み量が閾値操作量未満であることを判定した場合(ステップ502:NO)、車両1の加速度が閾値加速度以上であるか否かを判定する(ステップS505)。アシストECU64は、車両1の加速度が閾値加速度以上であることを判定した場合(ステップS505:YES)、車両1が軽負荷状態であると判定する(ステップS506)。つまり、アシストECU64は、アクセルペダル81の踏み込み量が閾値操作量未満であるにも関わらず、車両1の加速度が閾値加速度に達している場合に、車両1が軽負荷状態であると判定する。軽負荷状態とは、例えば車両1に荷物等が積載されていない(積載重量が所定重量よりも小さい)空車状態や、走行路面が下り坂である状態などをいう。このとき、アシストECU64により車両1が軽負荷状態であると判定されると、モータ20の力行駆動(モータアシスト)が制限される。なお、ステップS501、ステップS503もしくはステップS505でNO判定の場合には、そのまま本処理を終了する。 On the other hand, when the assist ECU 64 determines that the depression amount of the accelerator pedal 81 is less than the threshold operation amount (step 502: NO), it determines whether the acceleration of the vehicle 1 is equal to or greater than the threshold acceleration (step S505). ). When the assist ECU 64 determines that the acceleration of the vehicle 1 is greater than or equal to the threshold acceleration (step S505: YES), it determines that the vehicle 1 is in the light load state (step S506). That is, the assist ECU 64 determines that the vehicle 1 is in the light load state when the acceleration of the vehicle 1 reaches the threshold acceleration even though the depression amount of the accelerator pedal 81 is less than the threshold operation amount. The light load state refers to, for example, an empty state in which the vehicle 1 is not loaded with cargo or the like (load weight is smaller than a predetermined weight), a state in which the road surface is downhill, and the like. At this time, if the assist ECU 64 determines that the vehicle 1 is in the light load state, the power running drive (motor assist) of the motor 20 is limited. It should be noted that in the case of a NO determination in step S501, step S503, or step S505, this process is terminated as it is.
 次に、アシストECU64による負荷判定制御の作用について説明する。図11及び図12は、負荷判定制御の具体例を示すタイムチャートである。 Next, the operation of load determination control by the assist ECU 64 will be described. 11 and 12 are time charts showing specific examples of load determination control.
 まず、図11に示すように、時点t51において、走行中の車両1の車速が所定速度範囲ΔV内にあることを条件に、アクセルペダル81の踏み込み量と車両10の加速度とに基づき、車両1の負荷判定が行われる。この時点t51では、アクセルペダル81の踏み込み量が閾値操作量APth未満であり、且つ、車両1の加速度が閾値加速度Gth以上であるため、アシストECU64は車両1が軽負荷状態であると判定する。 First, as shown in FIG. 11, at time t51, on the condition that the vehicle speed of the running vehicle 1 is within a predetermined speed range ΔV, the vehicle 1 load determination is performed. At time t51, the amount of depression of the accelerator pedal 81 is less than the threshold operation amount APth and the acceleration of the vehicle 1 is equal to or greater than the threshold acceleration Gth, so the assist ECU 64 determines that the vehicle 1 is in the light load state.
 一方、図12に示すように、時点t52において、走行中の車両1の車速が所定速度範囲ΔV内にあることを条件に、アクセルペダル81の踏み込み量と車両1の加速度とに基づき、車両1の負荷判定が行われる。この時点t52では、アクセルペダル81の踏み込み量が閾値操作量APth以上であり、且つ、車両1の加速度が閾値加速度Gth未満であるため、アシストECU64は車両1が高負荷状態であると判定する。 On the other hand, as shown in FIG. 12, at time t52, on the condition that the vehicle speed of the running vehicle 1 is within a predetermined speed range ΔV, the vehicle 1 load determination is performed. At time t52, the amount of depression of the accelerator pedal 81 is equal to or greater than the threshold operation amount APth and the acceleration of the vehicle 1 is less than the threshold acceleration Gth, so the assist ECU 64 determines that the vehicle 1 is in a high load state.
 このように本実施形態では、他のECU61~63との連携を要することなく、アシストECU64の独自の判断により、検出部70から入力される情報に基づき、車両1の負荷状態(軽負荷状態/高負荷状態)を推定することができるため、不要なエネルギーの消費を抑えて、燃費を向上させることが可能となる。また、本実施形態では、車両1の積載重量(乗員や積載物などの重量)を検出するための重量センサを追加することなく、既存の車両情報に基づき車両1の負荷状態を判定することができるため、車両全体のコストダウンを図ることが可能となる。 As described above, in this embodiment, the load state of the vehicle 1 (light load state/ high load state), it is possible to suppress unnecessary energy consumption and improve fuel efficiency. Further, in the present embodiment, the load state of the vehicle 1 can be determined based on existing vehicle information without adding a weight sensor for detecting the load weight of the vehicle 1 (the weight of the occupant, load, etc.). Therefore, it is possible to reduce the cost of the entire vehicle.
 <6.定速走行制御>
 次に、本実施形態の定速走行制御について説明する。従来技術の問題点として、車両1が定速走行している状態では、モータ20の出力を絞った低出力によるモータアシストを行うことで、燃費向上を図ることができるのであるが、車両1が定速走行に移行したか否かを判定することが困難であるという問題があった。
<6. Constant speed running control>
Next, the constant speed running control of this embodiment will be described. A problem with the conventional technology is that when the vehicle 1 is traveling at a constant speed, the motor assist is performed by reducing the output of the motor 20 to a low output, thereby improving fuel efficiency. There is a problem that it is difficult to determine whether or not the vehicle has shifted to constant speed running.
 本実施形態では、かかる問題を是正するため、アシストECU64が、独自の判断で、検出部70から入力される情報に基づき、運転者によるアクセルペダル操作の変化量(アクセル開度の変化量)から車両1が定速走行に移行したことを判定して、低出力によるモータアシストによって車速を維持する定速走行制御を実行する。 In the present embodiment, in order to correct such a problem, the assist ECU 64, at its own judgment, based on the information input from the detection unit 70, calculates It is determined that the vehicle 1 has transitioned to constant speed running, and constant speed running control is executed to maintain the vehicle speed by motor assist with low output.
 本実施形態の定速走行制御の手順について、図13を参照して説明する。図13は、定速走行制御のフローチャートである。 The procedure for constant-speed travel control in this embodiment will be described with reference to FIG. FIG. 13 is a flowchart of constant-speed travel control.
 アシストECU64は、アクセルセンサ71からの検出情報に基づき、アクセルペダル81が所定量(第1所定量)以上踏み込まれている否かを判定する(ステップS601)。アシストECU64は、アクセルペダル81が所定量以上踏み込まれていると判定した場合(S601:YES)、アクセルペダル81の踏み戻しが開始されたか否か(踏み込み量が減少しているか否か)を判定する(ステップS602)。アシストECU64は、アクセルペダル81の踏み戻しが開始されたことを判定した場合(ステップS602:YES)、当該アクセルペダル81の踏み戻し速度(アクセルペダル81の踏み込み量を減少させている間の操作速度)が所定速度以下であるか否かを判定する(ステップS603)。 The assist ECU 64 determines whether or not the accelerator pedal 81 is depressed by a predetermined amount (first predetermined amount) or more based on the detection information from the accelerator sensor 71 (step S601). When the assist ECU 64 determines that the accelerator pedal 81 has been depressed by a predetermined amount or more (S601: YES), it determines whether the accelerator pedal 81 has started to be released (whether the depression amount has decreased). (step S602). When the assist ECU 64 determines that the accelerator pedal 81 has started to be released (step S602: YES), the accelerator pedal 81 is released at a depressing speed (operation speed while the depressing amount of the accelerator pedal 81 is being reduced). ) is equal to or less than a predetermined speed (step S603).
 アシストECU64は、アクセルペダル81の踏み戻し速度が所定速度以下であることを判定した場合(ステップS603:YES)、アクセルペダル81の踏み込み量が所定の判定操作量まで減少したか否かを判定する(ステップS604)。アクセルペダル81の踏み込み量が所定の判定操作量まで減少したことを判定した場合(ステップS604:YES)、車両1が定速走行に移行したと判断する(ステップS605)。アシストECU64は、車両1が定速走行に移行したと判断すると、アクセルペダル81の踏み込み量が一定量以上増加したか否かを判定する(ステップS606)。つまり、車速を一定に維持するため、アクセルペダル81が踏み増しされたか否かを判定する。 When the assist ECU 64 determines that the depressing speed of the accelerator pedal 81 is equal to or lower than the predetermined speed (step S603: YES), the assist ECU 64 determines whether the depression amount of the accelerator pedal 81 has decreased to a predetermined determination operation amount. (Step S604). When it is determined that the depression amount of the accelerator pedal 81 has decreased to the predetermined determination operation amount (step S604: YES), it is determined that the vehicle 1 has shifted to constant speed travel (step S605). When the assist ECU 64 determines that the vehicle 1 has shifted to constant speed running, it determines whether or not the depression amount of the accelerator pedal 81 has increased by a predetermined amount or more (step S606). That is, it is determined whether or not the accelerator pedal 81 has been further depressed in order to keep the vehicle speed constant.
 アシストECU64は、アクセルペダル81の踏み込み量が一定量以上増加したことを判定した場合(ステップS606:YES)、モータ20を力行駆動する(ステップS607)。このとき、アシストECU64は、モータ20の駆動トルクを低トルクに制御する。続いて、アシストECU64は、モータ20の力行駆動中にアクセルペダル81が踏み戻されたか否かを判定する(ステップS608)。アシストECU64は、アクセルペダル81が踏み戻されたことを判定した場合(ステップS608:YES)、モータ20の力行駆動を停止する(ステップS609)。なお、ステップS601、ステップS602、ステップS603、ステップS604もしくはステップS606でNO判定の場合には、そのまま本処理を終了する。 When the assist ECU 64 determines that the depression amount of the accelerator pedal 81 has increased by a certain amount or more (step S606: YES), the motor 20 is powered (step S607). At this time, the assist ECU 64 controls the drive torque of the motor 20 to a low torque. Subsequently, the assist ECU 64 determines whether or not the accelerator pedal 81 is released while the motor 20 is being powered (step S608). When the assist ECU 64 determines that the accelerator pedal 81 has been stepped back (step S608: YES), the power running drive of the motor 20 is stopped (step S609). It should be noted that if NO determination is made in step S601, step S602, step S603, step S604, or step S606, this process is terminated as it is.
 次に、アシストECU64による定速走行制御の作用について説明する。図14は、定速走行制御の具体例を示すタイムチャートである。 Next, the operation of the constant speed running control by the assist ECU 64 will be explained. FIG. 14 is a time chart showing a specific example of constant speed travel control.
 図14に示すように、時点t61において、加速中の車両1の加速を終了させるために、運転者がアクセルペダル81を踏み戻し始める。時点t62において、アクセルペダル81がゆっくりと踏み戻されて(アクセルペダル81の踏み戻し速度が所定速度以下であり)、当該アクセルペダル81の踏み込み量が所定の判定操作量AP2まで減少すると、車両1が定速走行に移行したことが判定される。時点t63において、車両1の定速走行中に、アクセルペダル81が踏み増しされると(アクセルペダル81の踏み込み量が一定量以上増加すると)、モータ20の力行駆動が開始される。時点t64において、車両1の定速走行中に、アクセルペダル81が踏み戻されると(アクセルペダル81の踏み込み量が一定量以上減少すると)、モータ20の力行駆動が停止される。 As shown in FIG. 14, at time t61, the driver starts depressing the accelerator pedal 81 in order to end the acceleration of the vehicle 1 during acceleration. At time t62, the accelerator pedal 81 is slowly depressed (the accelerator pedal 81 depression speed is equal to or less than a predetermined speed), and when the depression amount of the accelerator pedal 81 decreases to a predetermined determination operation amount AP2, the vehicle 1 has shifted to constant speed running. At time t63, when the accelerator pedal 81 is further depressed (when the depression amount of the accelerator pedal 81 increases by a certain amount or more) while the vehicle 1 is running at a constant speed, power running of the motor 20 is started. At time t64, when the accelerator pedal 81 is released (when the depression amount of the accelerator pedal 81 decreases by a certain amount or more) while the vehicle 1 is running at a constant speed, the motor 20 is stopped from being powered.
 このように本実施形態では、他のECU61~63との連携を要することなく、アシストECU64の独自の判断により、検出部70から入力される情報に基づき、運転者によるアクセルペダル操作の変化量から車両1が定速走行に移行したことを判定し、車速維持のためのアクセル操作が行われているときに低出力でのモータアシストを行うことで、定速走行時の燃費の向上を図ることが可能となる。 As described above, in the present embodiment, the amount of change in accelerator pedal operation by the driver is calculated based on the information input from the detection unit 70 based on the independent judgment of the assist ECU 64 without requiring cooperation with the other ECUs 61 to 63. To improve fuel efficiency during constant-speed running by determining that the vehicle 1 has shifted to constant-speed running and performing motor assist at low output when an accelerator operation is being performed to maintain the vehicle speed. becomes possible.
 <7.減速移行制御>
 次に、本実施形態の減速移行制御について説明する。従来技術の問題点として、運転者がアクセルペダル81から足を離した際に、車両1を惰行走行(惰性走行)させる場合は、モータ20の力行駆動、回生駆動のいずれも必要とされない一方で、車両1を減速走行させる場合は、モータ20を回生駆動させて余剰の運動エネルギー(制動エネルギー)を電気エネルギーに変換することで燃費向上を図ることができるが、実際には運転者の要求が惰行走行なのか減速走行なのかを判別することが困難であるという問題があった。
<7. Deceleration Transition Control>
Next, the deceleration transition control of this embodiment will be described. As a problem of the conventional technology, when the vehicle 1 is caused to coast (inertia) when the driver releases the accelerator pedal 81, neither the power running drive nor the regenerative drive of the motor 20 is required. When the vehicle 1 is decelerated, the motor 20 is regeneratively driven to convert surplus kinetic energy (braking energy) into electrical energy, thereby improving fuel efficiency. There is a problem that it is difficult to determine whether the vehicle is coasting or decelerating.
 本実施形態では、かかる問題を是正するため、アシストECU64が、独自の判断で、検出部70から入力される情報に基づき、運転者によるアクセル操作の変化量から運転者の意図する走行状態(惰行走行/減速走行)を判別して、該運転者の意図する走行状態に応じたモータ20の駆動を行う減速移行制御を実行する。 In the present embodiment, in order to correct such a problem, the assist ECU 64, at its own judgment, based on the information input from the detection unit 70, determines the driving state intended by the driver (coasting) based on the amount of change in accelerator operation by the driver. (running/decelerating running) is discriminated, and deceleration transition control is executed to drive the motor 20 in accordance with the running state intended by the driver.
 本実施形態の減速移行制御の手順について、図15を参照して説明する。図15、減速移行制御のフローチャートである。 A procedure for deceleration transition control in this embodiment will be described with reference to FIG. FIG. 15 is a flowchart of deceleration transition control.
 アシストECU64は、モータ20が力行駆動中であるか否かを判定する(ステップS701)。アシストECU64は、モータ20が力行駆動中であると判定した場合(ステップS701:YES)、アクセルセンサ71からの検出情報に基づき、アクセルペダル81の踏み込み量が所定量(第2所定量)以上であるか否かを判定する(ステップS702)。アシストECU64は、アクセルペダル81の踏み込み量が所定量以上であることを判定した場合(ステップS702:YES)、アクセルペダル81の踏み戻しが開始されたか否かを判定する(ステップS703)。アシストECU64は、アクセルペダル81の踏み戻しが開始されたことを判定した場合(ステップS703:YES)、モータ20の力行駆動を停止する(ステップS704)。 The assist ECU 64 determines whether or not the motor 20 is being powered (step S701). When the assist ECU 64 determines that the motor 20 is in power running drive (step S701: YES), based on the detection information from the accelerator sensor 71, the amount of depression of the accelerator pedal 81 is equal to or greater than a predetermined amount (second predetermined amount). It is determined whether or not there is (step S702). When the assist ECU 64 determines that the depression amount of the accelerator pedal 81 is equal to or greater than the predetermined amount (step S702: YES), it determines whether or not the accelerator pedal 81 has started to be released (step S703). When the assist ECU 64 determines that the accelerator pedal 81 has started to be released (step S703: YES), the assist ECU 64 stops the power running drive of the motor 20 (step S704).
 続いて、アシストECU64は、アクセルペダル81の踏み戻し速度が所定値未満であるか否かを判定する(ステップS705)。アシストECU64は、アクセルペダル81の踏み戻し速度が所定値未満であると判定した場合(ステップS705:YES)、アクセルペダル81が完全に踏み戻されたか否か(踏み込み量が0に戻されたか否か)を判定する(ステップS706)。アシストECU64は、アクセルペダル81が完全に踏み戻されたことを判定した場合(ステップS706:YES)、運転者に惰行走行意思があることを判定する(ステップS707)。 Subsequently, the assist ECU 64 determines whether or not the depressing speed of the accelerator pedal 81 is less than a predetermined value (step S705). When the assist ECU 64 determines that the depressing speed of the accelerator pedal 81 is less than the predetermined value (step S705: YES), the assist ECU 64 determines whether the accelerator pedal 81 is completely depressed (whether the depression amount is returned to 0). ) is determined (step S706). When the assist ECU 64 determines that the accelerator pedal 81 has been completely released (step S706: YES), it determines that the driver has an intention of coasting (step S707).
 一方、アシストECU64は、アクセルペダル81の踏み戻し速度が所定値以上であることを判定した場合(ステップS707:YES)、アクセルペダル81が完全に踏み戻されたか否か(踏み込み量が0に戻されたか否か)を判定する(ステップS708)。アシストECU64は、アクセルペダル81が完全に踏み戻されたことを判定した場合(ステップS708:YES)、運転者に減速意思があることを判定する(ステップS709)。 On the other hand, when the assist ECU 64 determines that the depressing speed of the accelerator pedal 81 is equal to or higher than the predetermined value (step S707: YES), the assist ECU 64 determines whether the accelerator pedal 81 has been fully depressed (depression amount returns to 0). or not) is determined (step S708). When the assist ECU 64 determines that the accelerator pedal 81 has been completely released (step S708: YES), it determines that the driver intends to decelerate (step S709).
 続いて、アシストECU64は、モータ20の回生駆動を開始して、その回生制動力により車両1を減速させる(ステップS710)。アシストECU64は、モータ20の回生駆動中に、アクセルペダル81が踏み込まれたか否かを判定する(ステップS711)。アシストECU64は、アクセルペダル81が踏み込まれたことを判定した場合(ステップS711:YES)、モータ20の回生駆動を停止する(ステップS712)。なお、ステップS701、ステップS702、ステップS703、ステップS706もしくはステップS708でNO判定の場合には、そのまま本処理を終了する。 Subsequently, the assist ECU 64 starts regenerative driving of the motor 20 and decelerates the vehicle 1 by the regenerative braking force (step S710). The assist ECU 64 determines whether or not the accelerator pedal 81 is depressed while the motor 20 is regeneratively driven (step S711). When the assist ECU 64 determines that the accelerator pedal 81 has been depressed (step S711: YES), it stops regenerative driving of the motor 20 (step S712). It should be noted that in the case of a NO determination in step S701, step S702, step S703, step S706, or step S708, this process is terminated as it is.
 次に、アシストECU64による減速移行制御の作用について説明する。図16および図17は、減速移行制御の具体例を示すタイムチャートである。 Next, the action of the deceleration transition control by the assist ECU 64 will be described. 16 and 17 are time charts showing specific examples of deceleration transition control.
 まず、図16に示すように、時点t71において、モータ20は力行駆動しており、車両1は一定速度で走行している。時点t72において、運転者がアクセルペダル81を踏み込んだ状態から踏み戻し始めると、モータ20の力行駆動が停止される。このとき、アクセルペダル81がゆっくり踏み戻された場合(アクセルペダル81の踏み戻し速度が所定値未満である場合)には、アクセルペダル81が完全に踏み戻されたときに、アシストECU64が運転者に惰性走行意思があると判定する(時点t73)。 First, as shown in FIG. 16, at time t71, the motor 20 is powered and the vehicle 1 is traveling at a constant speed. At time t72, when the driver starts depressing the accelerator pedal 81 from the depressing state, the power running drive of the motor 20 is stopped. At this time, if the accelerator pedal 81 is slowly released (if the release speed of the accelerator pedal 81 is less than a predetermined value), when the accelerator pedal 81 is completely released, the assist ECU 64 will cause the driver to (time t73).
 一方、図17に示すように、時点t74において、モータ20は力行駆動しており、車両1は一定速度で走行している。時点t75において、運転者がアクセルペダル81を踏み込んだ状態から踏み戻し始めると、モータ20の力行駆動が停止される。このとき、アクセルペダル81が急に踏み戻された場合(アクセルペダル81の踏み戻し速度が所定値以上である場合)には、アクセルペダル81が完全に踏み戻されたときに、アシストECU64が運転者に減速意思があると判定する(時点t76)。また、この時点t76において、モータ20の回生駆動が開始される。そして、時点t77において、運転者がアクセルペダル81を踏み込むと、モータ20の回生駆動が停止される。 On the other hand, as shown in FIG. 17, at time t74, the motor 20 is powered and the vehicle 1 is traveling at a constant speed. At time t75, when the driver starts depressing the accelerator pedal 81 from the depressing state, the power running drive of the motor 20 is stopped. At this time, if the accelerator pedal 81 is suddenly released (if the release speed of the accelerator pedal 81 is equal to or greater than a predetermined value), the assist ECU 64 will operate when the accelerator pedal 81 is completely released. It is determined that the driver has the intention of decelerating (time t76). Also, at time t76, the regenerative driving of the motor 20 is started. At time t77, when the driver depresses the accelerator pedal 81, the regenerative driving of the motor 20 is stopped.
 このように本実施形態では、他のECU61~63との連携を要することなく、アシストECU64の独自の判断により、検出部70から入力される情報に基づき、運転者の感覚に合った走行制御を行うことで無駄な操作回数を削減して疲労軽減を図ることができるとともに、運転者の減速意思を的確に判断してモータ20による減速回生を行うことでエネルギーの回収効率を向上させることが可能となる。 As described above, in the present embodiment, the assist ECU 64 makes its own determination, without requiring cooperation with the other ECUs 61 to 63, based on the information input from the detection unit 70, to perform driving control that matches the feeling of the driver. By doing so, it is possible to reduce the number of useless operations and reduce fatigue, and it is possible to improve the energy recovery efficiency by accurately determining the driver's intention to decelerate and performing deceleration regeneration with the motor 20. becomes.
 <8.速度維持制御>
 次に、本実施形態の速度維持制御について説明する。従来技術の問題点として、車両1を一定速度で走行中に下り坂に差し掛かると、運転者の意思とは関係なく車両1が加速することで、車両1の速度を維持するための減速操作が必要となり、運転者の操作負担となるという問題があった。
<8. Speed maintenance control>
Next, the speed maintenance control of this embodiment will be described. As a problem of the conventional technology, when the vehicle 1 is traveling at a constant speed and approaches a downhill, the vehicle 1 accelerates regardless of the driver's intention, resulting in a deceleration operation to maintain the speed of the vehicle 1. is required, and there is a problem that it becomes an operation burden for the driver.
 本実施形態では、かかる問題を是正するため、アシストECU64が、独自の判断で、検出部70から入力される情報に基づき、運転者がアクセルペダル81を離したときの車速を記憶しておき、アクセルペダル81が完全に踏み戻されているにも関わらず、現在の車速が当該記憶した車速から所定の閾値を超えて上昇した場合に、モータ20を回生駆動させて車速の上昇を抑制する速度維持制御を実行する。 In this embodiment, in order to correct such a problem, the assist ECU 64 stores the vehicle speed when the driver releases the accelerator pedal 81 based on the information input from the detection unit 70 at its own judgment. A speed at which the motor 20 is regeneratively driven to suppress an increase in vehicle speed when the current vehicle speed increases from the stored vehicle speed by exceeding a predetermined threshold even though the accelerator pedal 81 is fully depressed. Carry out maintenance control.
 本実施形態の速度維持制御の手順について、図18を参照して説明する。図18は、速度維持制御のフローチャートである。 A procedure for speed maintenance control in this embodiment will be described with reference to FIG. FIG. 18 is a flowchart of speed maintenance control.
 アシストECU64は、アクセルセンサ71からの検出情報に基づき、アクセルペダル81の踏み込み量が所定量(第3所定量)以上であるか否かを判定する(ステップS801)。アシストECU64は、アクセルペダル81の踏み込み量が所定量以上であることを判定した場合(ステップS801:YES)、アクセルペダル81の踏み戻しが開始された否かを判定する(ステップS802)。アシストECU64は、アクセルペダル81の踏み戻しが開始されたことを判定した場合(ステップS802:YES)、アクセルペダル81の踏み戻しが開始されたときの車速を基準速度として一時記憶する(ステップS803)。アシストECU64は、アクセルペダル81が完全に踏み戻されたか否か(踏み込み量が0に戻されたか否か)を判定する(ステップS804)。アシストECU64は、アクセルペダル81が完全に踏み戻されたことを判定した場合(ステップS804:YES)、現在の車速が基準速度よりも所定値以上大きくなったか否かを判定する(S805)。本実施形態では、所定値として3kmが設定されている。アシストECU64は、現在の車速が基準速度よりも所定値以上大きくなったことを判定した場合(ステップS805:YES)、モータ20の回生駆動を開始する(ステップS806)。アシストECU64は、モータ20の回生制動力により、現在の車速が基準速度まで減少したか否かを判定する(ステップS807)。アシストECU64は、現在の車速が基準速度まで減少したことを判定した場合(ステップS807:YES)、モータ20の回生駆動を停止する(ステップS808)。なお、ステップS801、ステップS802、ステップS804もしくはステップS805でNO判定の場合には、そのまま本処理を終了する。 The assist ECU 64 determines whether or not the depression amount of the accelerator pedal 81 is equal to or greater than a predetermined amount (third predetermined amount) based on the detection information from the accelerator sensor 71 (step S801). When the assist ECU 64 determines that the depression amount of the accelerator pedal 81 is equal to or greater than the predetermined amount (step S801: YES), it determines whether or not the accelerator pedal 81 has started to be released (step S802). When the assist ECU 64 determines that the accelerator pedal 81 has started to be released (step S802: YES), the assist ECU 64 temporarily stores the vehicle speed at which the accelerator pedal 81 started to be released as a reference speed (step S803). . The assist ECU 64 determines whether or not the accelerator pedal 81 has been completely depressed (whether or not the depression amount has been returned to 0) (step S804). When it is determined that the accelerator pedal 81 has been completely released (step S804: YES), the assist ECU 64 determines whether or not the current vehicle speed is greater than the reference speed by a predetermined value or more (S805). In this embodiment, 3 km is set as the predetermined value. When the assist ECU 64 determines that the current vehicle speed is greater than the reference speed by a predetermined value or more (step S805: YES), the assist ECU 64 starts regenerative driving of the motor 20 (step S806). The assist ECU 64 determines whether or not the current vehicle speed has decreased to the reference speed due to the regenerative braking force of the motor 20 (step S807). When the assist ECU 64 determines that the current vehicle speed has decreased to the reference speed (step S807: YES), it stops regenerative driving of the motor 20 (step S808). It should be noted that in the case of a NO determination in step S801, step S802, step S804, or step S805, this processing is terminated as it is.
 次に、アシストECU64による速度維持制御の作用について説明する。図19は、速度維持制御の具体例を示すタイムチャートである。 Next, the action of speed maintenance control by the assist ECU 64 will be described. FIG. 19 is a time chart showing a specific example of speed maintenance control.
 図19に示すように、時点t81において、走行中の車両1が下り坂に差し掛かることで、運転者がアクセルペダル81を踏み戻し始める。このとき、アシストECU64は、アクセルペダル81を踏み戻し始めたときの車速を基準車速Vaとして一時記憶する。時点t82において、アクセルペダル81の踏み込み量が0まで戻される。時点t83において、車両1が下り坂により加速することで、アクセルペダル81が踏み込まれていない状態であるにも関わらず、現在の車速が基準速度Vaよりも所定値ΔVth以上大きくなると、モータ20の回生駆動を開始する。それにより、車両1にはモータ20の回生制動力が働き、車速が減速する。時点t84において、車両1が基準速度Vaまで減速すると、モータ20の回生駆動を停止する。 As shown in FIG. 19, at time t81, the vehicle 1 in motion approaches a downhill, and the driver begins to depress the accelerator pedal 81. At this time, the assist ECU 64 temporarily stores the vehicle speed when the accelerator pedal 81 starts to be released as the reference vehicle speed Va. At time t82, the depression amount of the accelerator pedal 81 is returned to zero. At time t83, the vehicle 1 accelerates downhill and the current vehicle speed becomes greater than the reference speed Va by a predetermined value ΔVth or more even though the accelerator pedal 81 is not depressed. Start regenerative drive. As a result, the regenerative braking force of the motor 20 acts on the vehicle 1, and the vehicle speed is reduced. At time t84, when the vehicle 1 decelerates to the reference speed Va, the regenerative driving of the motor 20 is stopped.
 このように本実施形態では、他のECU61~63との連携を要することなく、アシストECU64の独自の判断により、検出部70から入力される情報に基づき、車両1の降坂走行時(下り坂の走行時)などの運転者の意思とは関係なく車両1が加速する状況においては、モータ20を回生駆動させてその回生制動力により車速の上昇を抑制することで、運転者のブレーキ操作の負担を軽減することができるとともに、ブレーキ装置50による車両の減速頻度を低減させることで、ブレーキパッドの摩耗を抑制することが可能となる。 As described above, in the present embodiment, when the vehicle 1 travels downhill (downhill travel), based on the information input from the detection unit 70, based on the information input from the detection unit 70, based on the independent judgment of the assist ECU 64 without requiring cooperation with the other ECUs 61 to 63. In a situation where the vehicle 1 accelerates regardless of the driver's intention, such as when the vehicle is running, the motor 20 is regeneratively driven and the regenerative braking force suppresses an increase in vehicle speed, thereby reducing the driver's brake operation. The load can be reduced, and by reducing the frequency of deceleration of the vehicle by the brake device 50, it is possible to suppress wear of the brake pads.
 <9.減速回生制御>
 次に、本実施形態の減速回生制御について説明する。従来技術の問題点として、車両1の減速時にはモータ20を回生駆動することで、出来る限り多くのエネルギーを回収したいが、アクセル操作が解除された直後にモータ20の回生駆動を全出力で行うと、車両1に減速ショックが発生して運転者に違和感を与えてしまうという問題があった。
<9. Deceleration regenerative control>
Next, the deceleration regeneration control of this embodiment will be described. As a problem of the conventional technology, it is desirable to recover as much energy as possible by regeneratively driving the motor 20 when the vehicle 1 decelerates. , there is a problem that a deceleration shock is generated in the vehicle 1, giving a sense of discomfort to the driver.
 本実施形態では、かかる問題を是正するため、アシストECU64が、独自の判断で、検出部70から入力される情報に基づき、運転者によるアクセルペダル81およびブレーキペダル82の操作状態を監視して、車両1を減速させる際に、アクセル操作が解除されたときは出力を絞って回生を行い、ブレーキ操作がされた時点で最大出力の回生を行う減速回生制御を実行する。 In this embodiment, in order to correct such a problem, the assist ECU 64 monitors the operation state of the accelerator pedal 81 and the brake pedal 82 by the driver based on the information input from the detection unit 70 at its own judgment. When decelerating the vehicle 1, when the accelerator operation is released, the output is reduced and regeneration is performed, and when the brake operation is performed, the deceleration regeneration control for performing the maximum output regeneration is executed.
 本実施形態の減速回生制御の手順について、図20を参照して説明する。図20は、減速回生制御のフローチャートである。 A procedure for deceleration regeneration control in this embodiment will be described with reference to FIG. FIG. 20 is a flowchart of deceleration regeneration control.
 アシストECU64は、アクセルセンサ71からの検出情報に基づき、アクセルペダル81が所定量(第4所定量)以上踏み込まれているか否かを判定する(ステップS901)。アシストECU64は、アクセルペダル81が所定量以上踏み込まれていることを判定した場合(ステップS901:YES)、アクセルペダル81の踏み戻しが開始されたか否かを判定する(ステップS902)。アシストECU64は、アクセルペダル81の踏み戻しが開始されたことを判定した場合(ステップS902:YES)、当該アクセルペダル81の踏み戻し速度が規定値以上であるか否かを判定する(ステップS903)。アシストECU64は、アクセルペダル81の踏み戻し速度が規定値以上であることを判定した場合(ステップS903:YES)、モータ20の回生出力を低出力(低回生トルク)に設定してモータ20を回生駆動する(ステップS904)。 The assist ECU 64 determines whether or not the accelerator pedal 81 is depressed by a predetermined amount (fourth predetermined amount) or more based on the detection information from the accelerator sensor 71 (step S901). When the assist ECU 64 determines that the accelerator pedal 81 has been depressed by a predetermined amount or more (step S901: YES), it determines whether the accelerator pedal 81 has started to be released (step S902). When the assist ECU 64 determines that the accelerator pedal 81 has started to be released (step S902: YES), the assist ECU 64 determines whether the accelerator pedal 81 is released at a prescribed value or more (step S903). . When the assist ECU 64 determines that the depressing speed of the accelerator pedal 81 is equal to or higher than the specified value (step S903: YES), the assist ECU 64 sets the regenerative output of the motor 20 to a low output (low regenerative torque) to regenerate the motor 20. Drive (step S904).
 続いて、アシストECU64は、ブレーキセンサ72からの検出情報に基づき、ブレーキペダル82が踏み込まれたか否かを判定する(ステップS905)。アシストECU64は、ブレーキペダル82が踏み込まれたことを判定した場合(ステップS905:YES)、モータ20の回生出力を最大出力となる高出力(高回生トルク)に設定してモータ20を回生駆動する(ステップS906)。つまり、アシストECU64は、ブレーキペダル82が踏み込まれると、モータ20の回生出力を低出力(低回生トルク)から高出力(高回生トルク)に切り替える。なお、ステップS901、ステップS902もしくはステップS903でNO判定の場合には、ステップS905に移行する。また、ステップS905でNO判定の場合には、そのまま本処理を終了する。 Subsequently, the assist ECU 64 determines whether or not the brake pedal 82 has been depressed based on the detection information from the brake sensor 72 (step S905). When the assist ECU 64 determines that the brake pedal 82 has been depressed (step S905: YES), the regenerative output of the motor 20 is set to a high output (high regenerative torque) that is the maximum output, and the motor 20 is regeneratively driven. (Step S906). That is, the assist ECU 64 switches the regenerative output of the motor 20 from low output (low regenerative torque) to high output (high regenerative torque) when the brake pedal 82 is depressed. It should be noted that if the determination in step S901, step S902 or step S903 is NO, the process proceeds to step S905. If the determination in step S905 is NO, the process ends.
 次に、アシストECU64による減速回生制御の作用について説明する。図21は、減速回生制御の具体例を示すタイムチャートである。 Next, the action of deceleration regeneration control by the assist ECU 64 will be described. FIG. 21 is a time chart showing a specific example of deceleration regeneration control.
 図21に示すように、時点t91において、走行中の車両1を減速させるために、運転者がアクセルペダル81を踏み込んだ状態から踏み戻し始める。このとき、アクセルペダル81が急に踏み戻されることで(アクセルペダル81の踏み戻し速度が規定値以上となることで)、モータ20を低出力(低回生トルク)で回生駆動する。時点t92において、運転者がブレーキペダル82を踏み込むことで、モータ20の回生出力を最大出力となる高出力(高回生トルク)に切り替えてモータ20を回生駆動する。そして、時点t93において、車速が所定の速度Vsを下回ることで、モータ20の回生駆動を停止する。 As shown in FIG. 21, at time t91, the driver starts depressing the accelerator pedal 81 from the depressing state in order to decelerate the running vehicle 1 . At this time, the accelerator pedal 81 is suddenly released (the release speed of the accelerator pedal 81 becomes equal to or higher than a specified value), so that the motor 20 is regeneratively driven with a low output (low regenerative torque). At time t92, the driver depresses the brake pedal 82 to switch the regenerative output of the motor 20 to a high output (high regenerative torque) that is the maximum output, thereby regeneratively driving the motor 20 . Then, at time t93, the vehicle speed drops below the predetermined speed Vs, and the regenerative drive of the motor 20 is stopped.
 このように本実施形態では、他のECU61~63との連携を要することなく、アシストECU64の独自の判断により、検出部70から入力される情報に基づき、運転者によるアクセルペダル81とブレーキペダル82の操作状態を監視して、運転者のアクセル操作及びブレーキ操作に応じて、モータ20の回生出力を段階的に増大させることで、モータ20の回生制動力(回生トルク)に起因する減速ショックを軽減させることができるとともに、回生エネルギーの回収を効率よく行うことが可能となる。 As described above, in this embodiment, the accelerator pedal 81 and the brake pedal 82 are operated by the driver based on the information input from the detection unit 70 based on the independent judgment of the assist ECU 64 without requiring cooperation with the other ECUs 61 to 63. is monitored, and the regenerative output of the motor 20 is increased step by step according to the driver's accelerator operation and brake operation, thereby reducing the deceleration shock caused by the regenerative braking force (regenerative torque) of the motor 20. In addition, it is possible to efficiently recover the regenerative energy.
 <10.変速アシスト制御>
 次に、本実施形態の変速アシスト制御について説明する。従来技術の問題点として、不慣れな運転者がトランスミッション40の変速段を低速段側に切り替えるシフトダウン操作を行う場合、エンジン出力軸の回転とトランスミッション入力軸の回転との間に大きな乖離が生じて、クラッチ装置30の接続時(再接続時)にシフトショックが発生するという問題があった。
<10. Shift assist control>
Next, the shift assist control of this embodiment will be described. A problem with the conventional technology is that when an inexperienced driver performs a downshift operation to switch the gear stage of the transmission 40 to the low speed side, a large deviation occurs between the rotation of the engine output shaft and the rotation of the transmission input shaft. , there is a problem that a shift shock occurs when the clutch device 30 is connected (reconnected).
 本実施形態では、かかる問題を是正するため、アシストECU64が、独自の判断で、検出部70から入力される情報に基づき、運転者によるブレーキ操作とクラッチ操作とからシフトダウンの要求を判定し、クラッチ装置30が切断状態であるときにモータアシストによりエンジン回転を一時的に上昇させて、エンジン出力軸とトランスミッション入力軸との回転差を低減させる変速アシスト制御を実行する。 In the present embodiment, in order to correct such a problem, the assist ECU 64 determines a downshift request based on the driver's brake operation and clutch operation based on the information input from the detection unit 70, based on its own judgment. When the clutch device 30 is in the disengaged state, the engine speed is temporarily increased by the motor assist to execute shift assist control to reduce the difference in speed between the engine output shaft and the transmission input shaft.
 本実施形態の変速アシスト制御の手順について、図22を参照して説明する。図22は、変速アシスト制御のフローチャートである。 A procedure for shift assist control in this embodiment will be described with reference to FIG. FIG. 22 is a flowchart of shift assist control.
 アシストECU64は、車速センサ74からの検出情報に基づき、車両1が走行中であるか否かを判定する(ステップS1001)。アシストECU64は、車両1が走行中であることを判定した場合(ステップS1001:YES)、アクセルセンサ71からの検出情報に基づき、アクセルペダル81の踏み込み量が0であるか否かを判定する(ステップS1002)。アシストECU64は、アクセルペダル81の踏み込み量が0であることを判定した場合(ステップS1002:YES)、ブレーキセンサ72からの検出情報に基づき、ブレーキペダル82が踏み込まれたか否かを判定する(ステップS1003)。アシストECU64は、ブレーキペダル82が踏み込まれていることを判定した場合(ステップS1003:YES)、クラッチセンサ73からの検出情報に基づき、当該ブレーキペダル82が踏み込まれた状態でクラッチペダル83が規定量以上踏み込まれたか否かを判定する(ステップS1004)。すなわち、アシストECU64は、運転者によりシフトダウン操作(変速操作)が行われているか否かを判定する。なお、規定量は、クラッチ装置30が切断状態となる範囲(例えば、クラッチペダル83が半クラッチ領域の境界位置から完全に踏み込まれる位置までの範囲)内に設定されている。つまり、アシストECU64は、運転者がクラッチペダル83を操作して、クラッチ装置30を切断したか否かを判定する。アシストECU64は、クラッチペダル83が規定量以上踏み込まれたことを判定した場合(ステップS1004:YES)、モータ20の力行駆動を開始する(ステップS1005)。つまり、本実施形態では、クラッチペダル83の踏み込み量が規定量を超過している間、モータ20を力行駆動する。これにより、クラッチ装置30の切断中にエンジン10の回転数が上昇して、エンジン10の出力軸とトランスミッション40の入力軸との回転差が抑制されることで、クラッチ装置30を接続(再接続)するときのショックを低減させることができる。アシストECU64は、クラッチペダル83の踏み込み量が規定量未満まで戻されたか否かを判定する(ステップS1006)。アシストECU64は、クラッチペダル83の踏み込み量が規定量未満となったことを判定した場合(ステップS1006:YES)、モータ20の力行駆動を停止する(ステップS1007)。なお、ステップS1001、ステップS1002、ステップS1003もしくはステップS1004でNO判定の場合には、そのまま本処理を終了する。 The assist ECU 64 determines whether or not the vehicle 1 is running based on the detection information from the vehicle speed sensor 74 (step S1001). When the assist ECU 64 determines that the vehicle 1 is running (step S1001: YES), it determines whether the depression amount of the accelerator pedal 81 is 0 based on the detection information from the accelerator sensor 71 ( step S1002). When the assist ECU 64 determines that the depression amount of the accelerator pedal 81 is 0 (step S1002: YES), it determines whether the brake pedal 82 is depressed based on the detection information from the brake sensor 72 (step S1003). When the assist ECU 64 determines that the brake pedal 82 is depressed (step S1003: YES), based on the detection information from the clutch sensor 73, the clutch pedal 83 is depressed by a specified amount while the brake pedal 82 is depressed. A determination is made as to whether or not the foot has been stepped on further (step S1004). That is, the assist ECU 64 determines whether or not the driver is performing a downshift operation (shift operation). The specified amount is set within a range in which the clutch device 30 is in a disengaged state (for example, a range from the boundary position of the half-clutch region to the position where the clutch pedal 83 is fully depressed). That is, the assist ECU 64 determines whether or not the driver has operated the clutch pedal 83 to disengage the clutch device 30 . When the assist ECU 64 determines that the clutch pedal 83 has been depressed more than the specified amount (step S1004: YES), the assist ECU 64 starts power running of the motor 20 (step S1005). That is, in the present embodiment, the motor 20 is power-running while the depression amount of the clutch pedal 83 exceeds the specified amount. As a result, the rotational speed of the engine 10 increases while the clutch device 30 is disengaged, and the rotational difference between the output shaft of the engine 10 and the input shaft of the transmission 40 is suppressed, thereby connecting (reconnecting) the clutch device 30. ) can reduce the shock when The assist ECU 64 determines whether or not the depression amount of the clutch pedal 83 has been returned to less than a specified amount (step S1006). When the assist ECU 64 determines that the amount of depression of the clutch pedal 83 is less than the specified amount (step S1006: YES), the assist ECU 64 stops the power running drive of the motor 20 (step S1007). It should be noted that in the case of a NO determination in step S1001, step S1002, step S1003, or step S1004, this processing is terminated as it is.
 次に、アシストECU64による変速アシスト制御の作用について説明する。図23は、変速アシスト制御の具体例を示すタイムチャートである。 Next, the action of shift assist control by the assist ECU 64 will be described. FIG. 23 is a time chart showing a specific example of shift assist control.
 図23に示すように、時点t101において、車両1の走行中に、運転者がアクセルペダル81を踏み込んだ状態からアクセルペダル81を踏み戻し始める。時点t102において、アクセルペダル81が完全に踏み戻される(アクセルペダル81の踏み込み量が0まで戻される)。時点t103において、運転者がブレーキペダル82を踏み込む。時点t104において、運転者がブレーキペダル82を踏み込んだ状態で、クラッチペダル83を踏み込み始める。時点t105において、クラッチペダル83の踏み込み量が規定量CL1以上となることで、モータ20の力行駆動を開始する。時点t106において、クラッチペダル83が完全に踏み込まれた状態(クラッチペダル83の踏み込み量が最大となった状態)で、運転者がシフトレバーを操作してトランスミッション40の変速段を「第4速」から「第3速」へシフトダウンする。時点t107において、クラッチペダル83の踏み込み量が規定量CL1まで踏み戻されると、モータ20の力行駆動を停止する。 As shown in FIG. 23, at time t101, while the vehicle 1 is running, the driver starts depressing the accelerator pedal 81 after depressing it. At time t102, the accelerator pedal 81 is completely released (the depression amount of the accelerator pedal 81 is returned to 0). The driver depresses the brake pedal 82 at time t103. At time t104, the driver starts depressing the clutch pedal 83 while depressing the brake pedal 82 . At time t105, the amount of depression of the clutch pedal 83 becomes equal to or greater than the specified amount CL1, so that the power running drive of the motor 20 is started. At time t106, with the clutch pedal 83 fully depressed (the amount of depression of the clutch pedal 83 is maximized), the driver operates the shift lever to shift the gear stage of the transmission 40 to "fourth gear". downshift to "3rd gear". At time t107, when the amount of depression of the clutch pedal 83 is returned to the specified amount CL1, the power running drive of the motor 20 is stopped.
 このように本実施形態では、他のECU61~63との連携を要することなく、アシストECU64の独自の判断により、検出部70から入力される情報に基づき、運転者によるブレーキ操作とクラッチ操作とからシフトダウンの要求を判定し、クラッチ装置30が切断状態であるときにモータアシストによりエンジン回転数を一時的に上昇させて、エンジン出力軸とトランスミッション入力軸との回転差を低減させる(変速の前後でエンジン10の回転数の変化を低減させる)ことで、シフトショックの発生を抑制することができ、不慣れな運転者であっても違和感や不快感を覚えることなくシフトチェンジ(シフトダウン)をスムーズに行うことが可能となる。 As described above, in the present embodiment, the brake operation and clutch operation by the driver are detected based on the information input from the detection unit 70 based on the independent judgment of the assist ECU 64 without requiring cooperation with the other ECUs 61 to 63. A request for downshifting is determined, and when the clutch device 30 is in the disengaged state, the engine speed is temporarily increased by motor assist to reduce the difference in rotation between the engine output shaft and the transmission input shaft (before and after shifting). By reducing the change in the rotation speed of the engine 10 by reducing the change in the rotation speed of the engine 10, it is possible to suppress the occurrence of shift shock, and even an inexperienced driver can smoothly perform a shift change (shift down) without feeling discomfort or discomfort. It becomes possible to go to
 <11.ニュートラル判定制御>
 次に、本実施形態のニュートラル判定制御について説明する。従来技術の問題点として、車両1の走行中においてトランスミッション40の変速段がニュートラル状態であるときにモータ10を力行または回生駆動させると、不要なエネルギーを消費することとなり、燃費が悪化するという問題があった。
<11. Neutral Determination Control>
Next, the neutral determination control of this embodiment will be described. A problem with the conventional technology is that if the motor 10 is powered or regeneratively driven while the transmission 40 is in the neutral state while the vehicle 1 is running, unnecessary energy is consumed, resulting in poor fuel consumption. was there.
 本実施形態では、かかる問題を是正するため、アシストECU64が、独自の判断で、検出部70から入力される情報に基づき、クラッチ装置30が接続状態(係合状態)であるときの車速とエンジン回転数との相対的な関係に応じて、トランスミッション40の変速段がニュートラル状態であることを判定し、当該ニュートラル状態におけるモータ20の力行駆動を制限するニュートラル判定制御を実行する。 In the present embodiment, in order to correct such a problem, the assist ECU 64, at its own judgment, determines the vehicle speed and the engine speed when the clutch device 30 is in the connected state (engaged state) based on the information input from the detection unit 70. Based on the relative relationship with the number of revolutions, it is determined that the gear stage of the transmission 40 is in the neutral state, and neutral determination control is executed to limit the power running drive of the motor 20 in the neutral state.
 本実施形態のニュートラル判定制御の手順について、図24を参照して説明する。図24は、ニュートラル判定制御のフローチャートである。 A procedure for neutral determination control in this embodiment will be described with reference to FIG. FIG. 24 is a flowchart of neutral determination control.
 アシストECU64は、クラッチセンサ73の検出情報に基づき、クラッチ装置30が接続状態であるか否かを判定する(ステップS1101)。アシストECU64は、クラッチ装置30が接続状態であることを判定した場合(ステップS1101:YES)、車速センサ74からの検出情報に基づき、車速が減少傾向にあるか否かを判定する(ステップS1102)。アシストECU64は、例えば、車速の変化量が負の場合に減少傾向であり、車速の変化量が正の場合に増加傾向であると判定する。 The assist ECU 64 determines whether or not the clutch device 30 is in the engaged state based on the information detected by the clutch sensor 73 (step S1101). When the assist ECU 64 determines that the clutch device 30 is in the engaged state (step S1101: YES), it determines whether the vehicle speed tends to decrease based on the detection information from the vehicle speed sensor 74 (step S1102). . For example, the assist ECU 64 determines that there is a decreasing tendency when the amount of change in vehicle speed is negative, and that there is an increasing tendency when the amount of change in vehicle speed is positive.
 アシストECU64は、車速が減少傾向にあることを判定した場合(ステップS1102:YES)、回転センサ75からの検出情報に基づき、当該車速の減少中にエンジン10の回転数が上昇したか否かを判定する(ステップS1103)。アシストECU64は、エンジン10の回転数が上昇したことを判定した場合(ステップS1103:YES)、当該エンジン10の回転数の上昇量が所定値以上であるか否かを判定する(ステップS1104)。アシストECU64は、エンジン10の回転数の上昇量が所定値以上であることを判定した場合(ステップS1104:YES)、トランスミッション40の変速段がニュートラル状態であることを判定する(ステップS1107)。 When the assist ECU 64 determines that the vehicle speed tends to decrease (step S1102: YES), based on the detection information from the rotation sensor 75, the assist ECU 64 determines whether the rotation speed of the engine 10 has increased while the vehicle speed is decreasing. Determine (step S1103). When the assist ECU 64 determines that the rotation speed of the engine 10 has increased (step S1103: YES), it determines whether or not the amount of increase in the rotation speed of the engine 10 is equal to or greater than a predetermined value (step S1104). When the assist ECU 64 determines that the amount of increase in the rotational speed of the engine 10 is equal to or greater than the predetermined value (step S1104: YES), the assist ECU 64 determines that the shift stage of the transmission 40 is in the neutral state (step S1107).
 一方、アシストECU64は、車速が減少傾向ではないことを判定した場合(ステップS1102:NO)、車速が所定速度以上であるか否かを判定する(ステップS1105)。所定速度としては、例えば15km/mが設定される。アシストECU64は、車速が所定速度以上であることを判定した場合(ステップS1105:YES)、エンジン10の回転数がアイドル回転数以下であるか否かを判定する(ステップS1106)。アシストECU64は、エンジン10の回転数がアイドル回転数以下であることを判定した場合(ステップS1106:YES)、トランスミッション40の変速段がニュートラル状態であることを判定する(ステップS1107)。 On the other hand, when the assist ECU 64 determines that the vehicle speed does not tend to decrease (step S1102: NO), it determines whether the vehicle speed is equal to or higher than a predetermined speed (step S1105). For example, 15 km/m is set as the predetermined speed. When the assist ECU 64 determines that the vehicle speed is equal to or higher than the predetermined speed (step S1105: YES), the assist ECU 64 determines whether or not the rotation speed of the engine 10 is equal to or lower than the idle rotation speed (step S1106). When the assist ECU 64 determines that the rotation speed of the engine 10 is equal to or lower than the idle rotation speed (step S1106: YES), the assist ECU 64 determines that the shift stage of the transmission 40 is in the neutral state (step S1107).
 アシストECU64は、トランスミッション40の変速段がニュートラル状態であることを判定すると、モータ20の力行駆動(モータアシスト)を禁止する。続いて、アシストECU64は、クラッチペダル83が踏み込まれたか否かを判定する(ステップS1108)。アシストECU64は、クラッチペダル83が踏み込まれたことを判定した場合(ステップS1108:YES)、ニュートラル状態が解除されたことを判断する(ステップS1109)。アシストECU64は、ニュートラル状態が解除されたことを判断した場合、モータ20の力行駆動(モータアシスト)を許容する。なお、ステップS1101、ステップS1103、ステップS1104、ステップS1105もしくはステップS1106でNO判定の場合には、そのまま本処理を終了する。 When the assist ECU 64 determines that the gear position of the transmission 40 is in the neutral state, it prohibits the motor 20 from power running (motor assist). Subsequently, the assist ECU 64 determines whether or not the clutch pedal 83 has been depressed (step S1108). When the assist ECU 64 determines that the clutch pedal 83 has been depressed (step S1108: YES), it determines that the neutral state has been released (step S1109). When the assist ECU 64 determines that the neutral state has been canceled, the power running drive (motor assist) of the motor 20 is permitted. It should be noted that, in the case of a NO determination in step S1101, step S1103, step S1104, step S1105, or step S1106, this process is terminated as it is.
 次に、アシストECU64によるニュートラル判定制御の作用について説明する。図25および図26は、ニュートラル判定制御の具体例を示すタイムチャートである。 Next, the action of neutral determination control by the assist ECU 64 will be described. 25 and 26 are time charts showing specific examples of neutral determination control.
 まず、図25に示すように、時点t111において、車両1の走行中に、運転者はクラッチペダル83を踏み込んでいない状態(クラッチ装置40の接続状態)である。このとき、車速が減少傾向であるにも関わらず、エンジン10の回転数が急上昇すると(エンジン10の回転数の上昇量が所定値ΔN以上となると)、アシストECU64はトランスミッション40の変速段がニュートラル状態であると判定する。このようにアシストECU64がニュートラル状態であることを判定している期間(時点t111~t112)、モータ20の力行駆動が禁止される。なお、車速が減少傾向であるときにエンジン10の回転数が急上昇する状況とは、ニュートラル状態でエアコンが駆動された場合や、ニュートラル状態でアクセルペダル81が踏み込まれた場合などが例示される。そして、時点t112において、運転者がシフト操作を行うため、クラッチペダル83が踏み込まれると、ニュートラル状態の判定が解除される。それにより、モータ20の力行駆動が許容される。 First, as shown in FIG. 25, at time t111, while the vehicle 1 is running, the driver is not depressing the clutch pedal 83 (connected state of the clutch device 40). At this time, when the speed of the engine 10 rises sharply (when the amount of increase in the speed of the engine 10 reaches a predetermined value ΔN or more) despite the fact that the vehicle speed is decreasing, the assist ECU 64 shifts the gear position of the transmission 40 to neutral. state. During the period (time points t111 to t112) during which the assist ECU 64 determines that the neutral state is established, the power running of the motor 20 is prohibited. A situation in which the number of revolutions of the engine 10 sharply increases when the vehicle speed tends to decrease is exemplified by the case where the air conditioner is driven in the neutral state, or the case where the accelerator pedal 81 is depressed in the neutral state. At time t112, the driver performs a shift operation, and when the clutch pedal 83 is depressed, the determination of the neutral state is cancelled. Thereby, the power running drive of the motor 20 is permitted.
 また、図26に示すように、時点t113において、車両1の走行中に、運転者がクラッチペダル83を踏み込む。その後、運転者はシフトレバーを操作する。時点t114において、クラッチペダル83が完全に踏み戻された状態(クラッチ装置30の接続状態)となる。このとき、車速が所定速度Vb以上であるにも関わらず、エンジン10がアイドル状態に移行すると(エンジン10の回転数がアイドル回転数以下まで低下すると)、アシストECU64はトランスミッション40の変速段がニュートラル状態であると判定する。アシストECU64がニュートラル状態を判定している期間(t114~t115)、モータ20の力行または回生駆動が禁止される。そして、時点t115において、運転者がシフト操作を行うため、クラッチペダル83が踏み込まれると、ニュートラル状態の判定が解除される。それにより、モータ20の力行駆動が許容される。 Also, as shown in FIG. 26, at time t113, the driver depresses the clutch pedal 83 while the vehicle 1 is running. After that, the driver operates the shift lever. At time t114, the clutch pedal 83 is completely released (engaged state of the clutch device 30). At this time, if the engine 10 shifts to the idle state (when the rotation speed of the engine 10 drops below the idle rotation speed) even though the vehicle speed is equal to or higher than the predetermined speed Vb, the assist ECU 64 changes the gear position of the transmission 40 to neutral. state. Power running or regenerative driving of the motor 20 is prohibited during the period (t114 to t115) during which the assist ECU 64 determines the neutral state. At time t115, the driver performs a shift operation, and when the clutch pedal 83 is depressed, the determination of the neutral state is canceled. Thereby, the power running drive of the motor 20 is permitted.
 このように本実施形態では、他のECU61~63との連携を要することなく、アシストECU64の独自の判断により、検出部70から入力される情報に基づき、クラッチ装置30が接続状態であるときの車速とエンジン回転数との相対的な関係に応じて、トランスミッション40の変速段がニュートラル状態に移行したことを判定することで、モータ20の不要な駆動による電力消費を抑制して、車両1の燃費を向上させることが可能となる。 As described above, in the present embodiment, the assist ECU 64 makes its own determination, without requiring cooperation with the other ECUs 61 to 63, based on the information input from the detection section 70, when the clutch device 30 is in the engaged state. By determining that the shift stage of the transmission 40 has shifted to the neutral state according to the relative relationship between the vehicle speed and the engine speed, power consumption due to unnecessary driving of the motor 20 is suppressed, and the vehicle 1 is operated. It is possible to improve fuel efficiency.
 <12.エンジン再始動制御>
 次に、本実施形態のエンジン再始動制御について説明する。図27及び図28は、エンジンの再始動時の動作例を示す図である。
<12. Engine restart control>
Next, the engine restart control of this embodiment will be described. 27 and 28 are diagrams showing an operation example when the engine is restarted.
 本実施形態のエンジン10は、図27に示すように、ピストン11と、コネクティングロッド12と、クランクシャフト13とを備えている。ピストン11は、不図示のシリンダ内に往復移動自在に配設されている。コネクティングロッド12は、ピストン11とクランクシャフト13とを接続しており、ピストン11の往復運動をクランクシャフト13に伝達する。クランクシャフト13は、不図示のクランクケースに回転自在に支持されている。このクランクシャフト13の一端には、モータ20の回転軸が直結されている。 The engine 10 of this embodiment includes a piston 11, a connecting rod 12, and a crankshaft 13, as shown in FIG. The piston 11 is arranged in a cylinder (not shown) so as to be reciprocally movable. The connecting rod 12 connects the piston 11 and the crankshaft 13 and transmits the reciprocating motion of the piston 11 to the crankshaft 13 . The crankshaft 13 is rotatably supported by a crankcase (not shown). A rotating shaft of a motor 20 is directly connected to one end of the crankshaft 13 .
 ここで、従来技術の問題点として、本実施形態のマイルドハイブリッドシステムでは、エンジン10のクランクシャフト13とモータ20とが直結されているが、エンジン10をアイドリングストップ状態(停止状態)から再始動する際、エンジン10の始動をモータ20により行うことで、スタータモータを使用する場合よりもエンジン10を静かに再始動することができるが、モータ10の起動トルクに余裕がない状況では、エンジン10の始動性が低下するという問題があった。特に、図27に示すように、ピストン11が圧縮行程途中で停止しているシリンダがある場合には、その位置から再始動を行うと、マイルドハイブリッドシステムで採用されるような低出力のモータ20の起動トルクではクランクシャフト13を回転させることができない場合がある。 Here, as a problem of the conventional technology, in the mild hybrid system of the present embodiment, the crankshaft 13 of the engine 10 and the motor 20 are directly connected, but the engine 10 is restarted from the idling stop state (stopped state). When the motor 20 is used to start the engine 10, the engine 10 can be restarted more quietly than when a starter motor is used. There was a problem that startability deteriorated. In particular, as shown in FIG. 27, if there is a cylinder in which the piston 11 is stopped in the middle of the compression stroke, restarting from that position will cause a low-power motor 20 such as that used in a mild hybrid system to operate. starting torque may not be able to rotate the crankshaft 13 .
 本実施形態では、かかる問題を是正するため、アシストECU63が、図28に示すように、エンジン10の再始動時に、モータ20を逆転駆動させてクランクシャフト13を所定角度(遊び分)だけ逆転方向に一旦回転させた後に、モータ20を逆転駆動から正転駆動に切り替えてクランクシャフト13を正転方向に回転させるエンジン再始動制御を実行する。 In this embodiment, in order to correct such a problem, the assist ECU 63 drives the motor 20 in the reverse direction to rotate the crankshaft 13 in the reverse direction by a predetermined angle (play) when the engine 10 is restarted, as shown in FIG. After the crankshaft 13 is once rotated, the engine restart control is executed to switch the motor 20 from the reverse rotation drive to the forward rotation drive to rotate the crankshaft 13 in the forward rotation direction.
 このように本実施形態では、他のECU61~63との連携を要することなく、アシストECU64の独自の判断により、検出部70から入力される情報に基づき、エンジン10の再始動時に、モータ20の回転駆動方向を切り替えて、クランクシャフト13を所定角度だけ逆転方向に一旦回転させた後に正転方向に回転させることで、クランクシャフト13の助走距離を延ばして勢いを付けやすくすることができ、エンジン10の始動性を向上させることが可能となる。 As described above, in the present embodiment, when the engine 10 is restarted, the motor 20 is operated based on the information input from the detection unit 70 based on the independent judgment of the assist ECU 64 without requiring cooperation with the other ECUs 61 to 63. By switching the rotational drive direction and once rotating the crankshaft 13 by a predetermined angle in the reverse direction and then rotating it in the forward direction, the run-up distance of the crankshaft 13 can be extended to make it easier to gain momentum, thereby increasing the engine speed. 10 startability can be improved.
 以上、本実施形態によれば、他のECU61~63との連携を要することなく(制御系統の改修を必要とせず)、アシストECU64独自の判断により、検出部70から入力される車両情報に基づき、車両の動作を判定してモータ20の制御を実行することができるため、既存の車両に対して大規模な設計変更や改修等を必要とすることなく、マイルドハイブリッドシステムを後付けで搭載することができ、その結果、既存の車両をハイブリッド車両に容易に転用することが可能となる。 As described above, according to the present embodiment, the assist ECU 64 makes its own judgment based on the vehicle information input from the detection unit 70 without requiring cooperation with other ECUs 61 to 63 (without requiring modification of the control system). Since the operation of the vehicle can be determined and the control of the motor 20 can be executed, the mild hybrid system can be retrofitted to the existing vehicle without requiring a large-scale design change or repair. As a result, existing vehicles can be easily converted to hybrid vehicles.
 なお、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば適宜改良可能である。 It should be noted that the present invention is not limited to the above embodiments, and can be improved as appropriate without departing from the gist of the present invention.
1  車両
10 エンジン
20 モータ(モータジェネレータ)
21 インバータ
22 バッテリ
30 クラッチ装置
40 トランスミッション
50 ブレーキ装置
60 車両制御装置
61 エンジンECU
62 トランスミッションECU
63 ブレーキECU
64 アシストECU
70 検出部
71 アクセルセンサ
72 ブレーキセンサ
73 クラッチセンサ
74 車速センサ
75 回転センサ
76 バッテリセンサ
81 アクセルペダル
82 ブレーキペダル
83 クラッチペダル
1 vehicle 10 engine 20 motor (motor generator)
21 inverter 22 battery 30 clutch device 40 transmission 50 brake device 60 vehicle control device 61 engine ECU
62 Transmission ECU
63 Brake ECU
64 assist ECU
70 detector 71 accelerator sensor 72 brake sensor 73 clutch sensor 74 vehicle speed sensor 75 rotation sensor 76 battery sensor 81 accelerator pedal 82 brake pedal 83 clutch pedal

Claims (14)

  1.  走行用の動力源としてエンジンを備えた車両において、
     前記エンジンに連結されて、力行駆動及び回生発電が可能なモータジェネレータと、
     前記モータジェネレータを制御するアシスト制御装置とを備え、
     前記アシスト制御装置は、前記車両に設けられた他の制御装置との間で信号の送受信を行わず、前記車両に設けられた所定のセンサ類から受信する検出信号に基づき前記モータジェネレータを制御することを特徴とするハイブリッドシステム。
    In a vehicle equipped with an engine as a power source for running,
    a motor generator connected to the engine and capable of power running and regenerative power generation;
    an assist control device that controls the motor generator,
    The assist control device does not transmit or receive signals to or from other control devices provided in the vehicle, and controls the motor generator based on detection signals received from predetermined sensors provided in the vehicle. A hybrid system characterized by
  2.  シフトレバーの操作により変速段が切り替えられる手動変速機と、
     前記エンジンと前記手動変速機との間の動力伝達経路中に介装されて、クラッチペダルの踏み込み操作に応じて前記エンジンと前記手動変速機との間の動力伝達の接続及び切断を行うクラッチと、
     前記クラッチペダルの踏み込み量を検出するクラッチセンサと、
     前記モータジェネレータとの間で電力を授受するバッテリと、
     前記バッテリの残容量を検出するバッテリセンサと、
     前記車両の車速を検出する車速センサとを備え、
     前記アシスト制御装置は、前記クラッチセンサにより前記クラッチペダルが踏み込まれていないことが検出され、且つ、前記車速センサにより車速が0であることが検出されたときに前記エンジンがアイドリング状態であると判定し、
     前記アシスト制御装置は、前記エンジンのアイドリング状態において前記バッテリセンサにより前記バッテリの残容量が所定量未満であることが検出された場合に前記モータジェネレータの回生発電を行うことを特徴とする請求項1に記載のハイブリッドシステム。
    A manual transmission in which the gear stage is switched by operating a shift lever;
    a clutch interposed in a power transmission path between the engine and the manual transmission for connecting and disconnecting power transmission between the engine and the manual transmission in response to depression of a clutch pedal; ,
    a clutch sensor that detects the amount of depression of the clutch pedal;
    a battery that transmits and receives electric power to and from the motor generator;
    a battery sensor that detects the remaining capacity of the battery;
    A vehicle speed sensor that detects the vehicle speed of the vehicle,
    The assist control device determines that the engine is in an idling state when the clutch sensor detects that the clutch pedal is not depressed and the vehicle speed sensor detects that the vehicle speed is zero. death,
    2. The assist control device performs regenerative power generation of the motor generator when the battery sensor detects that the remaining capacity of the battery is less than a predetermined amount while the engine is idling. The hybrid system described in .
  3.  シフトレバーの操作により変速段が切り替えられる手動変速機と、
     前記エンジンと前記手動変速機との間の動力伝達経路中に介装されて、クラッチペダルの踏み込み操作に応じて前記エンジンと前記手動変速機との間の動力伝達の接続及び切断を行うクラッチと、
     前記クラッチペダルの踏み込み量を検出するクラッチセンサとを備え、
     前記アシスト制御装置は、前記車両の発進時において、前記クラッチペダルが踏み込まれた状態から踏み戻されるときの当該踏み戻し速度の変化に基づき前記モータジェネレータの駆動タイミングを判定し、当該踏み戻し速度が減少から増加に転じるタイミングで前記モータジェネレータの力行駆動を開始することを特徴とする請求項1又は2に記載のハイブリッドシステム。
    A manual transmission in which the gear stage is switched by operating a shift lever;
    a clutch interposed in a power transmission path between the engine and the manual transmission for connecting and disconnecting power transmission between the engine and the manual transmission in response to depression of a clutch pedal; ,
    A clutch sensor that detects the amount of depression of the clutch pedal,
    The assist control device determines the drive timing of the motor generator based on a change in the pedal release speed when the clutch pedal is released from a depressed state when the vehicle is started, and determines the drive timing of the motor generator based on the pedal release speed. 3. A hybrid system according to claim 1 or 2, wherein the power running drive of said motor generator is started at the timing when the decrease turns to increase.
  4.  アクセルペダルの踏み込み量を検出するアクセルセンサと、
     前記エンジンの回転数を検出する回転センサとを備え、
     前記アシスト制御装置は、前記アクセルペダルの踏み込み操作に応じて前記モータジェネレータを力行駆動しているときに、前記エンジンの回転加速度が予め設定された限界回転加速度を超過した場合に、前記モータジェネレータの力行駆動を停止し、
     前記アシスト制御装置は、前記モータジェネレータの力行駆動を停止してから所定時間を経過しても前記アクセルペダルが踏み戻されない場合に、前記モータジェネレータの回生発電を行うことを特徴とする請求項1~3のいずれかに記載のハイブリッドシステム。
    an accelerator sensor that detects the amount of depression of an accelerator pedal;
    A rotation sensor that detects the rotation speed of the engine,
    The assist control device controls the motor-generator when the rotational acceleration of the engine exceeds a preset limit rotational acceleration while the motor-generator is power-running in response to the depression of the accelerator pedal. Stop the power running drive,
    2. The assist control device performs regenerative power generation of the motor generator when the accelerator pedal is not depressed even after a lapse of a predetermined time after the power running drive of the motor generator is stopped. 4. The hybrid system according to any one of 1 to 3.
  5.  アクセルペダルの踏み込み量を検出するアクセルセンサを備え、
     前記アシスト制御装置は、前記アクセルペダルが踏み込まれたときの当該踏み込み量が規定量を超過したときに前記モータジェネレータの力行駆動を開始し、前記アクセルペダルが踏み戻されたときに前記モータジェネレータの力行駆動を停止することを特徴とする請求項1~4のいずれかに記載のハイブリッドシステム。
    Equipped with an accelerator sensor that detects the amount of depression of the accelerator pedal,
    The assist control device starts power running drive of the motor generator when the amount of depression of the accelerator pedal exceeds a specified amount, and starts the motor generator when the accelerator pedal is depressed back. The hybrid system according to any one of claims 1 to 4, wherein the power running drive is stopped.
  6.  アクセルペダルの踏み込み量を検出するアクセルセンサと、
     前記車両の車速を検出する車速センサとを備え、
     前記アシスト制御装置は、前記車両の車速が所定速度範囲内であるときに、前記アクセルペダルの踏み込み量と予め設定された第1判定値とを比較するとともに、前記車両の車速から演算される前記車両の加速度と予め設定された第2判定値とを比較して、前記アクセルペダルの踏み込み量が第1判定値未満であり且つ前記車両の加速度が第2判定値以上である場合に前記車両が軽負荷状態であると判定し、前記アクセルペダルの踏み込み量が第1判定値以上であり且つ前記車両の加速度が第2判定値未満である場合に前記車両が高負荷状態であると判定することを特徴とする請求項1~5のいずれかに記載のハイブリッドシステム。
    an accelerator sensor that detects the amount of depression of an accelerator pedal;
    A vehicle speed sensor that detects the vehicle speed of the vehicle,
    When the vehicle speed of the vehicle is within a predetermined speed range, the assist control device compares the amount of depression of the accelerator pedal with a preset first determination value, and compares the above-mentioned The acceleration of the vehicle is compared with a preset second judgment value, and if the depression amount of the accelerator pedal is less than the first judgment value and the acceleration of the vehicle is equal to or greater than the second judgment value, the vehicle is Determining that the vehicle is in a light load state, and determining that the vehicle is in a high load state when the depression amount of the accelerator pedal is equal to or greater than a first determination value and the acceleration of the vehicle is less than a second determination value. The hybrid system according to any one of claims 1 to 5, characterized by:
  7.  アクセルペダルの踏み込み量を検出するアクセルセンサを備え、
     前記アシスト制御装置は、前記アクセルペダルが踏み込まれた状態から踏み戻されるときの当該踏み戻し速度が予め設定された基準戻し速度よりも小さく、且つ、前記アクセルペダルが予め設定された所定位置まで踏み戻されたときに、前記車両が定速走行に移行したことを判定し、
     アシスト制御装置は、前記車両が定速走行に移行したことを判定した場合には、前記アクセルペダルが踏み込まれると前記モータジェネレータを力行駆動し、前記アクセルペダルが踏み戻されると前記モータジェネレータの力行駆動を停止することを特徴とする請求項1~6のいずれかに記載のハイブリッドシステム。
    Equipped with an accelerator sensor that detects the amount of depression of the accelerator pedal,
    The assist control device is configured such that a depressing speed when the accelerator pedal is released from a depressed state is lower than a preset reference depressing speed, and the accelerator pedal is depressed to a preset predetermined position. determining that the vehicle has transitioned to constant speed travel when returned;
    When it is determined that the vehicle has transitioned to constant speed running, the assist control device powers the motor generator when the accelerator pedal is depressed, and powers the motor generator when the accelerator pedal is released. The hybrid system according to any one of claims 1 to 6, characterized in that driving is stopped.
  8.  アクセルペダルの踏み込み量を検出するアクセルセンサを備え、
     前記アシスト制御装置は、前記モータジェネレータの力行駆動中に、前記アクセルペダルが踏み込まれた状態から踏み戻されるときの当該踏み戻し速度と予め設定された所定速度とを比較して、当該踏み戻し速度が所定速度未満である場合には前記モータジェネレータの力行駆動を停止し、当該踏み戻し速度が所定速度以上である場合には前記モータジェネレータの力行駆動を停止するとともに前記アクセルペダルの踏み込み量が0になったときに前記モータジェネレータの回生発電を開始することを特徴とする請求項1~7のいずれかに記載のハイブリッドシステム。
    Equipped with an accelerator sensor that detects the amount of depression of the accelerator pedal,
    The assist control device compares the pedal release speed when the accelerator pedal is released from the depressed state with a predetermined speed during power running of the motor generator, and determines the pedal release speed. is less than a predetermined speed, the power running drive of the motor generator is stopped, and when the pedal release speed is equal to or higher than the predetermined speed, the power running drive of the motor generator is stopped and the depression amount of the accelerator pedal is zero. 8. The hybrid system according to any one of claims 1 to 7, wherein the motor-generator starts regenerative power generation when it becomes
  9.  アクセルペダルの踏み込み量を検出するアクセルセンサと、
     前記車両の車速を検出する車速センサとを備え、
     前記アシスト制御装置は、前記アクセルペダルが踏み込まれた状態から踏み戻され始めるときの前記車両の車速を基準車速として記憶し、前記アクセルペダルが踏み戻されることで当該踏み込み量が0となった状態において、前記車両の車速が前記基準車速よりも所定値以上大きくなった場合に前記モータジェネレータの回生発電を開始することを特徴とする請求項1~8のいずれかに記載のハイブリッドシステム。
    an accelerator sensor that detects the amount of depression of an accelerator pedal;
    A vehicle speed sensor that detects the vehicle speed of the vehicle,
    The assist control device stores a vehicle speed of the vehicle when the accelerator pedal starts to be released from a depressed state as a reference vehicle speed, and a state in which the depression amount becomes 0 when the accelerator pedal is released. 9. The hybrid system according to any one of claims 1 to 8, wherein the motor generator starts regenerative power generation when the vehicle speed of the vehicle becomes greater than the reference vehicle speed by a predetermined value or more.
  10.  アクセルペダルの踏み込み量を検出するアクセルセンサと、
     ブレーキペダルの踏み込みを検出するブレーキセンサとを備え、
     前記アシスト制御装置は、前記アクセルペダルが踏み込まれた状態から踏み戻されるときの当該踏み戻し速度が予め設定された所定戻し速度よりも大きい場合に前記モータジェネレータの回生出力を低出力に設定して回生発電を開始し、前記ブレーキペダルが踏み込まれたときに前記モータジェネレータの回生出力を低出力から高出力に切り替えることを特徴とする請求項1~9のいずれかに記載のハイブリッドシステム。
    an accelerator sensor that detects the amount of depression of an accelerator pedal;
    and a brake sensor that detects depression of the brake pedal,
    The assist control device sets the regenerative output of the motor generator to a low output when the pedal release speed when the accelerator pedal is released from the depressed state is greater than a predetermined return speed. The hybrid system according to any one of claims 1 to 9, wherein regenerative power generation is started, and regenerative output of said motor generator is switched from low output to high output when said brake pedal is depressed.
  11.  シフトレバーの操作により変速段が切り替えられる手動変速機と、
     前記エンジンと前記手動変速機との間の動力伝達経路中に介装されて、クラッチペダルの踏み込み操作に応じて前記エンジンと前記手動変速機との間の動力伝達の接続及び切断を行うクラッチと、
     前記クラッチペダルの踏み込み量を検出するクラッチセンサと、
     ブレーキペダルの踏み込みを検出するブレーキセンサとを備え、
     前記アシスト制御装置は、前記ブレーキペダルが踏み込まれ、且つ、前記クラッチペダルが所定量以上踏み込まれている間、前記モータジェネレータの力行駆動を行うことを特徴とする請求項1~10のいずれかに記載のハイブリッドシステム。
    A manual transmission in which the gear stage is switched by operating a shift lever;
    a clutch interposed in a power transmission path between the engine and the manual transmission for connecting and disconnecting power transmission between the engine and the manual transmission in response to depression of a clutch pedal; ,
    a clutch sensor that detects the amount of depression of the clutch pedal;
    and a brake sensor that detects depression of the brake pedal,
    11. The assist control device according to any one of claims 1 to 10, wherein the power running drive of the motor generator is performed while the brake pedal is depressed and the clutch pedal is depressed by a predetermined amount or more. Described hybrid system.
  12.  シフトレバーの操作により変速段が切り替えられる手動変速機と、
     前記エンジンと前記手動変速機との間の動力伝達経路中に介装されて、クラッチペダルの踏み込み操作に応じて前記エンジンと前記手動変速機との間の動力伝達の接続及び切断を行うクラッチと、
     前記クラッチペダルの踏み込み量を検出するクラッチセンサと、
     前記車両の車速を検出する車速センサと、
     前記エンジンの回転数を検出する回転センサとを備え、
     前記アシスト制御装置は、前記クラッチペダルが踏み込まれていない状態において、前記車両の車速が減少傾向であるときに前記エンジンの回転数が所定回転数以上増加した場合に、前記手動変速機がニュートラル状態であると判定し、前記モータジェネレータの力行駆動を制限することを特徴とする請求項1~11のいずれかに記載のハイブリッドシステム。
    A manual transmission in which the gear stage is switched by operating a shift lever;
    a clutch interposed in a power transmission path between the engine and the manual transmission for connecting and disconnecting power transmission between the engine and the manual transmission in response to depression of a clutch pedal; ,
    a clutch sensor that detects the amount of depression of the clutch pedal;
    a vehicle speed sensor that detects the vehicle speed of the vehicle;
    A rotation sensor that detects the rotation speed of the engine,
    The assist control device shifts the manual transmission to a neutral state when the number of rotations of the engine increases by a predetermined number or more while the speed of the vehicle tends to decrease while the clutch pedal is not depressed. 12. The hybrid system according to any one of claims 1 to 11, wherein the power running drive of the motor generator is limited.
  13.  前記アシスト制御装置は、前記クラッチペダルが踏み込まれていない状態において、前記車両の車速が減少傾向ではない場合には、前記車両の車速が所定速度以上であるときに前記エンジンの回転数が予め設定された所定のアイドル回転数まで低下している場合に、前記手動変速機がニュートラル状態であると判定し、前記モータジェネレータの力行駆動または回生発電を制限することを特徴とする請求項12に記載のハイブリッドシステム。 When the vehicle speed of the vehicle does not tend to decrease when the clutch pedal is not depressed, the assist control device presets the rotational speed of the engine when the vehicle speed is equal to or higher than a predetermined speed. 13. When the idling speed has decreased to a predetermined idling speed, it is determined that the manual transmission is in a neutral state, and power running drive or regenerative power generation of the motor generator is limited. hybrid system.
  14.  前記アシスト制御装置は、前記エンジンの再始動時に、前記モータジェネレータを逆転駆動させて当該エンジンのクランクシャフトを一旦逆転方向に回転させた後に、前記モータジェネレータを正転駆動させて前記クランクシャフトを正転方向に回転させることを特徴とする請求項1~13のいずれかに記載のハイブリッドシステム。 When the engine is restarted, the assist control device reversely drives the motor generator to once rotate the crankshaft of the engine in the reverse direction, and then drives the motor generator forward to rotate the crankshaft forward. A hybrid system according to any one of claims 1 to 13, characterized in that it rotates in a turning direction.
PCT/JP2021/005157 2021-02-12 2021-02-12 Hybrid system WO2022172388A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/005157 WO2022172388A1 (en) 2021-02-12 2021-02-12 Hybrid system
KR1020237030039A KR20230145102A (en) 2021-02-12 2021-02-12 hybrid system
JP2022581104A JPWO2022172388A1 (en) 2021-02-12 2021-02-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005157 WO2022172388A1 (en) 2021-02-12 2021-02-12 Hybrid system

Publications (1)

Publication Number Publication Date
WO2022172388A1 true WO2022172388A1 (en) 2022-08-18

Family

ID=82838537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005157 WO2022172388A1 (en) 2021-02-12 2021-02-12 Hybrid system

Country Status (3)

Country Link
JP (1) JPWO2022172388A1 (en)
KR (1) KR20230145102A (en)
WO (1) WO2022172388A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771350A (en) * 1993-09-02 1995-03-14 Nippondenso Co Ltd Starting device of internal combustion engine for vehicle
JP2000283010A (en) * 1999-03-30 2000-10-10 Honda Motor Co Ltd Engine starter
JP2004285908A (en) * 2003-03-20 2004-10-14 Hino Motors Ltd Bed temperature control method for particulate filter in hybrid system
JP2005048630A (en) * 2003-07-31 2005-02-24 Mazda Motor Corp Control device for hybrid vehicle
JP2013504492A (en) * 2009-09-15 2013-02-07 ケーピーアイティ カミンズ インフォシステムズ リミテッド Hybrid vehicle motor assistance based on user input

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5784553B2 (en) 2012-07-10 2015-09-24 株式会社日本自動車部品総合研究所 Power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771350A (en) * 1993-09-02 1995-03-14 Nippondenso Co Ltd Starting device of internal combustion engine for vehicle
JP2000283010A (en) * 1999-03-30 2000-10-10 Honda Motor Co Ltd Engine starter
JP2004285908A (en) * 2003-03-20 2004-10-14 Hino Motors Ltd Bed temperature control method for particulate filter in hybrid system
JP2005048630A (en) * 2003-07-31 2005-02-24 Mazda Motor Corp Control device for hybrid vehicle
JP2013504492A (en) * 2009-09-15 2013-02-07 ケーピーアイティ カミンズ インフォシステムズ リミテッド Hybrid vehicle motor assistance based on user input

Also Published As

Publication number Publication date
JPWO2022172388A1 (en) 2022-08-18
KR20230145102A (en) 2023-10-17

Similar Documents

Publication Publication Date Title
EP2727787B1 (en) Control device for hybrid vehicle
EP1826088B1 (en) Engine Control
JP5382223B2 (en) Control device for hybrid vehicle
EP1669236B1 (en) Gearshift control system for hybrid-drive electric vehicle
JP5478572B2 (en) Control device for hybrid vehicle
JP2006226440A (en) Control device of electric oil pump of hybrid vehicle
JPWO2011092855A1 (en) Vehicle control device
JP2010155590A (en) Start control device for hybrid car
KR20160063820A (en) The regenerative braking control method of the hybrid vehicle
JP2015059639A (en) Control device for vehicle
JP2009035188A (en) Controller for hybrid vehicle
JP5918464B2 (en) Control device for hybrid vehicle
JP2010188776A (en) Controller for hybrid vehicle
JP5092363B2 (en) Vehicle start control device
JP5182072B2 (en) Oil pump drive device for hybrid vehicle
US8612080B2 (en) Method for operating a hybrid drive
JP2013180695A (en) Control device for hybrid electric vehicle
JP6554030B2 (en) Control device for hybrid vehicle
WO2022172388A1 (en) Hybrid system
JP5960657B2 (en) Flywheel regeneration system and control method thereof
JP2011244551A (en) Electric vehicle
JP5141535B2 (en) Control device for hybrid vehicle
JP5012190B2 (en) Hybrid car
JP2013180698A (en) Control device for hybrid electric vehicle
JP5691383B2 (en) Vehicle travel control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581104

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237030039

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237030039

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925641

Country of ref document: EP

Kind code of ref document: A1