WO2022171006A1 - 一种角度可调的等效煤层开采三维物理模拟装置及方法 - Google Patents

一种角度可调的等效煤层开采三维物理模拟装置及方法 Download PDF

Info

Publication number
WO2022171006A1
WO2022171006A1 PCT/CN2022/074587 CN2022074587W WO2022171006A1 WO 2022171006 A1 WO2022171006 A1 WO 2022171006A1 CN 2022074587 W CN2022074587 W CN 2022074587W WO 2022171006 A1 WO2022171006 A1 WO 2022171006A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
coal seam
physical simulation
dimensional physical
bolt
Prior art date
Application number
PCT/CN2022/074587
Other languages
English (en)
French (fr)
Inventor
杜君武
黄庆享
李永乐
Original Assignee
西安科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安科技大学 filed Critical 西安科技大学
Publication of WO2022171006A1 publication Critical patent/WO2022171006A1/zh
Priority to US18/098,159 priority Critical patent/US20230154357A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/222Solid fuels, e.g. coal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • G09B25/02Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes of industrial processes; of machinery

Definitions

  • the invention relates to the technical field of physical simulation systems, in particular to a three-dimensional physical simulation device and method for equivalent coal seam mining with adjustable angle.
  • the essence of the simulation experiment of physically similar materials is to use materials similar to the mechanical properties of the engineering prototype to scale them into a physical simulation experimental model according to a certain geometric similarity ratio.
  • the quality of each layer is determined according to the ratio number, and similar materials are paved layer by layer. Similar materials are generally selected from river sand, gypsum, and lime powder, and the layered material is mica powder.
  • Similar materials are generally selected from river sand, gypsum, and lime powder, and the layered material is mica powder.
  • the existing three-dimensional physical simulation experimental device simulates coal seam excavation by extracting pre-buried wooden strips, steel plates, aluminum strips, etc., and the top and bottom plates are greatly disturbed during the extraction process, and the top and bottom plates are seriously damaged, which affects the reliability of the experiment, and cannot be used.
  • the sealed experimental device cannot realize the physical simulation of water conservation and exploitation.
  • the three-dimensional physical simulation experimental device must solve the technical problems of coal seam mining, coal seam paving with different dip angles, and water conservation mining.
  • the purpose of the present invention is to provide a three-dimensional physical simulation device and method of equivalent coal seam mining with adjustable angle, so as to solve the problems existing in the above-mentioned prior art, effectively simulate a certain three-dimensional space area of the engineering prototype, and realize accurate, flexible and convenient , 3D physical simulation experiment with low labor intensity.
  • the present invention provides a three-dimensional physical simulation device for equivalent coal seam mining with adjustable angle, including a base, a frame on the top of the base, and a loading frame on the top of the frame, An angle adjustment device is arranged between the base and the frame, a limit plate is fixed at the bottom of the frame, and a lifting combination module is passed through the limit plate.
  • the component includes a bolt, the bolt penetrates the limiting plate and is threadedly connected with the limiting plate, and one end of the bolt located in the frame is rotatably connected with a spacer.
  • a thickened nut is threadedly connected to the bolt, and the thickened nut is fixedly connected to the lower end surface of the limiting plate.
  • the angle adjustment device includes a hydraulic cylinder, the bottom end of the hydraulic cylinder is rotatably connected to the base, the output end of the hydraulic cylinder is fixedly connected to the limit plate, and the frame is away from the end of the hydraulic cylinder. Axially connected to the base.
  • short rods are rotatably connected on both sides of the base, the short rods are fixedly connected with a threaded barrel, a screw rod is passed through the threaded barrel, and a fixed block is rotatably connected to the top of the screw rod, and the two fixed A cross bar is fixed between the blocks, a limit slot is defined at the bottom of the frame, and the cross bar is adapted to the limit slot.
  • the frame includes four uprights, the limiting plate is fixedly connected to the uprights, the two adjacent uprights are rotatably connected to the base, and the other two uprights are detachably connected to the base.
  • Strengthened plexiglass or height-adjusted channel steel is detachably connected between the two adjacent uprights.
  • a plurality of through holes are opened on the column, the strengthened plexiglass and the height-adjusting channel steel, and the column, the strengthened plexiglass and the height-adjusting channel steel are detachably connected by bolts, and the bolts pass through the through holes.
  • the loading frame is slidably connected with the frame.
  • a three-dimensional physical simulation method of equivalent coal seam mining with adjustable angle the specific steps are as follows:
  • Step 1 Assemble the base and frame first, then pass the bolts through the limit plate so that each spacer is on the top of the limit plate;
  • Step 2 Rotate each bolt clockwise in turn, the spacer block rises with the bolt to a certain height, so that several spacer blocks are combined into a plane, and the rising height is consistent with the equivalent thickness of the coal seam to be simulated;
  • Step 3 According to the ratio of similar materials, the overlying rock layers are laid on the top of the pad in sequence, and the overlying rock paving height is consistent with the buried depth of the simulated coal seam, and it is placed to air dry;
  • Step 4 After air-drying, adjust the angle adjustment device to keep the frame consistent with the equivalent coal seam angle to be simulated;
  • Step 5 According to the experimental design scheme, rotate each bolt counterclockwise in turn to make the cushion block separate from the overlying rock layer, which is equivalent to simulating coal seam mining.
  • the prior art adopts the extraction of pre-buried wooden strips, steel plates, aluminum strips, etc. to simulate coal seam excavation. During the extraction process, the top and bottom plates are greatly disturbed, and the top and bottom plates are seriously damaged, which affects the reliability of the experiment.
  • the present invention simulates the actual coal seam of the project.
  • each pad is independent of each other as a coal mining unit and can be lifted vertically without affecting each other.
  • the present invention can apply non-hydrophilic sealants such as vaseline between the pads and around the frame, so that each pad constitutes a sealed platform, and the platform and the frame constitute a sealed waterproof space. Simulate the technical problems of water conservation mining, and realize the three-dimensional physical simulation of equivalent coal seam mining under multiple working conditions.
  • the invention is provided with an angle adjustment device, and the frame is lifted and inclined by operating the angle adjustment device, so as to realize the physical simulation experiment of coal seams with different inclination angles.
  • the invention can not only solve the technical problems of coal seam excavation and inclined coal seam simulation of the existing three-dimensional physical simulation device, simulate different working face arrangements and mining methods, but also perform physical simulation of water conservation mining. Effectively simulate a certain three-dimensional space area of different engineering prototypes, and realize accurate, flexible, convenient, and low-labor-intensive three-dimensional physical simulation experiments.
  • Fig. 1 is the structural representation of the three-dimensional physical simulation device of equivalent coal seam mining with adjustable angle
  • Fig. 2 is the left side view of the three-dimensional physical simulation device of equivalent coal seam mining with adjustable angle;
  • FIG. 3 is a schematic structural diagram of a lifter
  • Fig. 4 is an arrangement diagram of lifting parts
  • base 1 base 1
  • frame 2 loading frame 3
  • lifting combination module 4 limit plate 5
  • height-adjusting channel steel 6 bolt 7
  • spacer 8 thickened nut 9
  • hydraulic cylinder 10 short rod 11 thread
  • the present invention provides a three-dimensional physical simulation device of equivalent coal seam mining with adjustable angle, comprising a base 1, a frame 2 is arranged on the top of the base 1, and an angle adjustment device is arranged between the base 1 and the frame 2, so that the A limit plate 5 is fixed at the bottom of the frame 2, and a lifting combination module 4 is passed through the limit plate 5.
  • the lifting combination module 4 includes a plurality of lifting parts, and the lifting parts include bolts 7, and the bolts 7 pass through the
  • the limiting plate 5 is threadedly connected to the limiting plate 5
  • a spacer 8 is rotatably connected to one end of the bolt 7 located in the frame 2
  • the spacer 8 is preferably an aluminum block.
  • Step 1 Assemble the base 1 and the frame 2 first, and then pass the bolt 7 through the limit plate 5, so that the spacer 8 is located on the top of the limit plate 5;
  • Step 2 Rotate each bolt 7 clockwise in turn, and the spacer 8 rises with the bolt 7 to a certain height, so that several spacers 8 are combined into a plane, and the rising height is consistent with the equivalent coal seam thickness to be simulated;
  • Step 3 According to the ratio of similar materials, the top of the cushion block 8 is sequentially paved with overlying rock layers, and the overlying rock paving height is consistent with the buried depth of the coal seam to be simulated, and is placed to air dry;
  • Step 4 After air-drying, adjust the angle adjustment device to keep the frame 2 consistent with the equivalent coal seam angle to be simulated;
  • Step 5 According to the experimental design scheme, rotate each bolt 7 counterclockwise in turn, so that the spacer block 8 is separated from the overlying rock layer, which is equivalent to simulating coal seam mining.
  • a thickened nut 9 is threaded on the bolt 7, the thickened nut 9 is fixedly connected to the lower end face of the limit plate 5, and the limit plate 5 and the thickened nut 9 are threaded with the bolt 7. Connection, increase the contact area between the bolt 7 and the limit plate 5 and the thickened nut 9, and enhance the stability between the bolt 7 and the limit plate 5.
  • the angle adjustment device includes a hydraulic cylinder 10 , the bottom end of the hydraulic cylinder 10 is rotatably connected to the base 1 , the output end of the hydraulic cylinder 10 is fixedly connected to the limit plate 5 , and the frame 2 The end away from the hydraulic cylinder 10 is axially connected to the base 1 , and the hydraulic cylinder 10 lifts up the frame 2 during the coal seam inclination experiment, and the simulated inclination range is 0-50°.
  • short rods 11 are rotatably connected on both sides of the base 1, the short rods 11 are fixedly connected with a threaded barrel 12, a screw rod 13 is penetrated in the threaded barrel 12, and the top of the screw rod 13 is rotatably connected with a screw rod 13.
  • a fixed block 14, a cross bar 15 is fixed between the two fixed blocks, a limit slot 16 is provided at the bottom of the frame 2, the cross bar 15 is adapted to the limit slot 16, and the frame 2 is raised to the predetermined position of the experiment.
  • the screw 13 is supported, and the cross bar 15 is embedded in the limit groove 16, so as to improve the safety of the experiment.
  • the frame 2 includes four uprights 17 , the limiting plate 5 is fixedly connected to the uprights 17 , the two adjacent uprights 17 are rotatably connected to the base 1 , and the other two uprights 17 are connected to the base 1 .
  • the base 1 is detachably connected, and a strengthened plexiglass 19 or a height-adjusting channel steel 6 is detachably connected between the two adjacent columns 17.
  • the frame 2 can be installed with strengthened plexiglass 19 on 1-3 surfaces, or
  • the installation side 1-3 is the height-adjusted channel steel 6, and the installation method can be flexibly adjusted according to the needs of experimental observation.
  • the column 17, the strengthened plexiglass 19 and the height-adjusting channel steel 6 are all provided with a number of through holes 18, and the column 17 is detachably connected with the strengthened plexiglass 19 and the height-adjusting channel steel 6 through bolts, so The bolts pass through the through holes 18 .
  • the plexiglass 19 can realize the visual observation function during the experiment, and the height of the channel steel 6 can facilitate the paving of the three-dimensional physical model.
  • the top of the frame 2 is provided with a loading frame 3, the loading frame 3 is slidably connected with the frame 2, and the loading frame 3 can be adjusted up, down, left, and right, so as to realize loading experiments at different positions.
  • the design mining height of the working face is 6.8m
  • the width of the working face is 160m
  • the average burial depth of the coal seam is 110m
  • the inclination angle is about 1°, which is close to Horizontal seam.
  • Base 1 and frame 2 are mainly composed of 25#b channel steel, 10# channel steel, 8# channel steel, 20#b I-beam, 16#b I-beam and high-strength bolts.
  • the overall structure of the device can be disassembled, which is convenient for later movement and maintenance.
  • the four uprights 17 are four vertical channel steels, and the design diameter of the uprights 17 is 100mm every 100mm.
  • the through hole 18 can be used to install the high-strength reinforced plexiglass 19 conveniently, and also can install the 10# height-adjusting channel steel 6.
  • the bottom of the base 1 is connected to the ground with expansion screws to increase the overall stability of the device.
  • the top is made of 16#b thickened I-beam to form the loading frame 3, and the loading frame 3 can be adjusted up, down, left and right, so as to realize the loading experiment at different positions.
  • a total of 600 bolts 7 and spacers 8 constitute the lifting combination module 4.
  • the lifting parts in the lifting combination module 4 are from the outside to the inside, and the length of the bolts 7 increases in turn.
  • the outermost circle of the parts on the limit plate 5 is the 1# lifting piece, the length of the bolt is 270mm, the innermost circle is the 10# lifting piece, the length of the bolt 7 is 360mm, of which there are 96 1# lifting pieces, and the length of the bolt 7 is 270mm; 2# lifting parts total 88, bolts 7 long 280mm; 3# lifting parts total 80, bolts 7 length 290mm; 4# lifting parts total 72, bolt 7 length 300mm; 5# lifting parts total 64, bolts 7 long 310mm; 6# lifting parts total 56, bolts 7 are 320mm long; 7# lifting parts total 48, bolts 7 length 330mm; 8# lifting parts total 40, bolts 7 length 340mm; 9# lifting parts total 32, bolts 7 is 350mm long; there are 24 10# lifting parts in total, and bolt 7 is 360mm long.
  • the application of this device can realize the three-dimensional simulation of the working face, which is similar to the on-site mining conditions of the working face.
  • the implementation steps are as follows:
  • the pavement height is 34mm, which is consistent with the thickness of the equivalent coal seam, and the front and rear 100mm boundary coal pillars and the mining stop line are simulated to the 200mm boundary coal pillar on the right side of the model;
  • the lifting piece Because it is easier to rotate each lifting piece, it effectively solves the technical problem of 3D physical simulation of coal seam excavation; at the same time, the lifting piece has little disturbance to the roof, which improves the accuracy and reliability of the experiment; finally, the liftable pieces are independent of each other.
  • the experimental plan can be flexibly adjusted according to actual needs, and the experimental requirements of different working face layout and mining methods can be simulated, which solves the technical problem of poor flexibility in traditional physical simulation.
  • the present invention can apply non-hydrophilic sealants such as vaseline between the pads 8 and around the frame 2, so that each pad 8 forms a sealed platform, and the platform and the frame 2 constitute a sealed waterproof space to overcome
  • non-hydrophilic sealants such as vaseline between the pads 8 and around the frame 2, so that each pad 8 forms a sealed platform, and the platform and the frame 2 constitute a sealed waterproof space to overcome
  • the existing technology cannot simulate the technical problem of water conservation mining, and realizes the three-dimensional physical simulation of equivalent coal seam mining under multiple working conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种角度可调的等效煤层开采三维物理模拟装置,包括底座(1),底座(1)顶部设有框架(2),框架(2)顶部设有加载架(3),底座(1)与框架(2)之间设有角度调整装置,框架(2)底部固定有限位板(5),限位板(5)上穿设有升降组合模块(4),升降组合模块(4)包括若干升降件,升降件包括螺栓(7),螺栓贯穿限位板(5)且与限位板(5)螺纹连接,螺栓(7)位于框架(2)内的一端转动连接有垫块(8)。该三维物理模拟装置能够解决现有三维物理模拟装置煤层开挖、倾斜煤层模拟和保水开采模拟等技术难题,有效模拟工程原型的某一个立体空间区域,实现准确、灵活、方便、低劳动强度的三维物理模拟实验。

Description

一种角度可调的等效煤层开采三维物理模拟装置及方法 技术领域
本发明涉及物理模拟系统技术领域,特别是涉及一种角度可调的等效煤层开采三维物理模拟装置及方法。
背景技术
物理相似材料模拟实验实质是采用与工程原型力学性质相似的材料按照一定的几何相似比缩制成物理模拟实验模型,根据研究区域地质资料、覆岩力学性质及相似原理确定相似材料配比号,根据配比号确定各分层质量后逐层铺装相似材料,相似材料一般选取河沙、石膏、石灰粉,分层材料为云母粉。目前,三维立体物理模拟实验装置存在3方面技术难题:一是三维模型倾向尺寸比平面模型大,煤层开挖困难;二是铺装倾斜煤层劳动强度大,铺装质量差;三是实验方案一旦确定,模型开挖后不能调整方案,灵活性差。现有的三维物理模拟实验装置通过抽取预先埋设的木条、钢板、铝条等模拟煤层开挖,抽取过程中对顶、底板的扰动大,顶、底板损伤严重,影响实验可靠性,且不能进行密封实验装置,不能实现保水开采物理模拟。同时,对于煤层倾角的模拟,主要依靠人工铺装不同倾角煤层,难度大,效果差。因此,三维物理模拟实验装置必须解决煤层开采、不同倾角煤层的铺装、保水开采等技术难题。
发明内容
本发明的目的是提供一种角度可调的等效煤层开采三维物理模拟装置及方法,以解决上述现有技术存在的问题,有效模拟工程原型 的某一个立体空间区域,实现准确、灵活、方便、低劳动强度的三维物理模拟实验。
为实现上述目的,本发明提供了如下方案:本发明提供一种角度可调的等效煤层开采三维物理模拟装置,包括底座,所述底座顶部设有框架,所述框架顶部设有加载架,所述底座与所述框架之间设有角度调整装置,所述框架底部固定有限位板,所述限位板上穿设有升降组合模块,所述升降组合模块包括若干升降件,所述升降件包括螺栓,所述螺栓贯穿所述限位板且与所述限位板螺纹连接,所述螺栓位于所述框架内的一端转动连接有垫块。
进一步的,所述螺栓上螺纹连接有加厚螺母,所述加厚螺母与所述限位板的下端面固接。
进一步的,所述角度调整装置包括液压缸,所述液压缸底端与所述底座转动连接,所述液压缸输出端与所述限位板固定连接,所述框架远离所述液压缸的一端与所述底座轴接。
进一步的,所述底座两侧分别转动连接有短杆,所述短杆固定连接有螺纹筒,所述螺纹筒内穿设有螺杆,所述螺杆顶端转动连接有固定块,两个所述固定块之间固定有横杆,所述框架底部开设有限位槽,所述横杆与所述限位槽相适配。
进一步的,所述框架包括四根立柱,所述限位板与所述立柱固定连接,相邻两根所述立柱与所述底座转动连接,另外两根立柱与所述底座可拆卸连接,相邻两根所述立柱之间可拆卸连接有强化有机玻璃或调高槽钢。
进一步的,所述立柱、强化有机玻璃和调高槽钢上均开设有若干通孔,所述立柱与强化有机玻璃和调高槽钢通过螺栓可拆卸连接,所述螺栓贯穿所述通孔。
进一步的,所述加载架与所述框架滑动连接。
一种角度可调的等效煤层开采三维物理模拟方法,具体步骤如下:
步骤一:先组装底座和框架,然后将螺栓贯穿限位板,使每个垫块位于限位板顶部;
步骤二:依次顺时针旋转每个螺栓,垫块随螺栓上升一定高度,使若干垫块组合成一个平面,上升高度与需要模拟的等效煤层厚度一致;
步骤三:根据相似材料配比,在垫块顶部依次铺装上覆岩层,覆岩铺装高度与需要模拟煤层埋深一致,放置风干;
步骤四:风干结束后,调整角度调整装置,使框架保持与要模拟的等效煤层角度一致;
步骤五:根据实验设计方案,依次逆时针旋转每个螺栓,使垫块脱离覆岩层,等效模拟煤层开采。
本发明公开了以下技术效果:
现有技术采用抽取预先埋设的木条、钢板、铝条等模拟煤层开挖,抽取过程中对顶、底板的扰动大,顶、底板损伤严重,影响实验可靠性,本发明在模拟工程实际煤层时,运用独立可升降垫块等效煤层开采模块,等效替代煤层,每个垫块作为一个采煤单元相互独立,可以 垂直升降,互不影响,垫块上方铺装上覆岩层,模拟工程实际地质条件,对顶、底板的无扰动,实验模拟可靠性高。由于每个垫块是相互独立的,可以单独垂直升降,能够根据实验方案灵活的调整采煤工作面的开采方式、巷道布置和煤柱留设,与现有技术的整条抽取相比,更加符合采煤工作面的实际开采情况。同时,根据实验需求,本发明可在垫块之间、框架四周涂抹凡士林等非亲水性密封剂,使各垫块构成一个密封的平台,平台与框架构成密封防水空间,克服现有技术无法模拟保水开采技术难题,实现了多工况情况下的等效煤层开采三维物理模拟。
本发明设置角度调整装置,通过操作角度调整装置使框架升起倾斜,实现不同倾角煤层的物理模拟实验。
本发明既能够解决现有三维物理模拟装置煤层开挖和倾斜煤层模拟技术难题,模拟不同工作面布置和开采方式,又可以进行保水开采物理模拟。有效模拟不同工程原型的某一个立体空间区域,实现准确、灵活、方便、低劳动强度的三维物理模拟实验。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为角度可调的等效煤层开采三维物理模拟装置的结构示意 图;
图2为角度可调的等效煤层开采三维物理模拟装置的左视图;
图3为升降件的结构示意图;
图4为升降件排列图;
图中:底座1、框架2、加载架3、升降组合模块4、限位板5、调高槽钢6、螺栓7、垫块8、加厚螺母9、液压缸10、短杆11、螺纹筒12、螺杆13、固定块14、横杆15、限位槽16、立柱17、通孔18、强化有机玻璃19。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本发明提供一种角度可调的等效煤层开采三维物理模拟装置,包括底座1,所述底座1顶部设有框架2,所述底座1与所述框架2之间设有角度调整装置,所述框架2底部固定有限位板5,所述限位板5上穿设有升降组合模块4,所述升降组合模块4包括若干升降件,所述升降件包括螺栓7,所述螺栓7贯穿所述限位板5且与所述限位板5螺纹连接,所述螺栓7位于所述框架2内的一端转动连接有垫块 8,所述垫块8优选为铝块。
使用时,具体步骤如下:
步骤一:先组装底座1和框架2,然后将螺栓7贯穿限位板5,使垫块8位于限位板5顶部;
步骤二:依次顺时针旋转每个螺栓7,垫块8随螺栓7上升一定高度,使若干垫块8组合成一个平面,上升高度与需要模拟的等效煤层厚度一致;
步骤三:根据相似材料配比,在垫块8顶部依次铺装上覆岩层,覆岩铺装高度与需要模拟的煤层埋深一致,放置风干;
步骤四:风干结束后,调整角度调整装置,使框架2保持与要模拟的等效煤层角度一致;
步骤五:根据实验设计方案,依次逆时针旋转每个螺栓7,使垫块8脱离覆岩层,等效模拟煤层开采。
进一步优化方案,所述螺栓7上螺纹连接有加厚螺母9,所述加厚螺母9与所述限位板5的下端面固接,限位板5和加厚螺母9都与螺栓7螺纹连接,增大螺栓7与限位板5和加厚螺母9接触面积,增强螺栓7与限位板5之间的稳定性。
进一步优化方案,所述角度调整装置包括液压缸10,所述液压缸10底端与所述底座1转动连接,所述液压缸10输出端与所述限位板5固定连接,所述框架2远离所述液压缸10的一端与所述底座1轴接,在进行煤层倾角实验时,液压缸10将框架2顶起,可模拟倾角范围为0~50°。
进一步优化方案,所述底座1两侧分别转动连接有短杆11,所述短杆11固定连接有螺纹筒12,所述螺纹筒12内穿设有螺杆13,所述螺杆13顶端转动连接有固定块14,两固定块之间固定有横杆15,所述框架2底部开设有限位槽16,所述横杆15与所述限位槽16相适配,待框架2升到实验预定位置时,将螺杆13支起,使横杆15嵌入限位槽16内,提高实验安全性。
进一步优化方案,所述框架2包括四根立柱17,所述限位板5与所述立柱17固定连接,相邻两根所述立柱17与所述底座1转动连接,另外两根立柱17与所述底座1可拆卸连接,相邻两根所述立柱17之间可拆卸连接有强化有机玻璃19或调高槽钢6,框架2上可安装1-3面为强化有机玻璃19,也可安装1-3面为调高槽钢6,可根据实验观测需要灵活调整安装方式。
进一步优化方案,所述立柱17、强化有机玻璃19和调高槽钢6上均开设有若干通孔18,所述立柱17与强化有机玻璃19和调高槽钢6通过螺栓可拆卸连接,所述螺栓贯穿所述通孔18。有机玻璃19在实验过程中可实现可视化观测功能,调高槽钢6能够方便三维物理模型铺装。
进一步优化方案,所述框架2顶部设有加载架3,所述加载架3与所述框架2滑动连接,加载架3可上、下、左、右调节,从而实现不同位置的加载实验。
实施例一
为了使本发明的目的及优点更加清楚明白,以某矿综采工作面开 采为例,该工作面设计采高6.8m,工作面宽度160m,煤层埋深平均110m,倾角1°左右,为近水平煤层。根据研究区域地质资料、覆岩力学性质及相似原理确定相似材料配比号,采用的几何相似比为1:200。因此,三维物理模拟尺寸为:长×宽×高=1500mm×1000mm×550mm。为消除边界效应,工作面前后各留设100mm宽的边界煤柱,工作面停采线至模型右侧留设200mm边界煤柱,等效煤层尺寸为:长×宽×高=1300mm×800mm×34mm,煤层厚度34mm。底座1和框架2主要由25#b槽钢、10#槽钢、8#槽钢、20#b工字钢、16#b工字钢配合高强度螺栓组合而成。装置整体结构可以拆卸,便于后期移动和维修。四根立柱17为四根竖向槽钢,立柱17上每隔100mm设计直径为
Figure PCTCN2022074587-appb-000001
的通孔18,既可方便安装高强度强化有机玻璃19,又可以安装10#调高槽钢6。限位板5底部留820mm高的空间,便于实验人员操作螺栓7。底座1底部用膨胀螺丝与地面连接,增加装置整体稳定性。顶部采用16#b加厚工字钢组成加载架3,1加载架3可上、下、左、右调节,从而实现不同位置的加载实验。
垫块8的升降范围为0~100mm,每个垫块8的尺寸为:长×宽×高=50mm×50mm×100mm,螺栓7尺寸为M10×270~360mm。共由600个螺栓7和垫块8构成升降组合模块4,为方便实验操作,升降组合模块4中升降件由外向内,螺栓7长度依次增加,每往内一圈,螺栓长度增加10mm,升降件在限位板5最外一圈为1#升降件,螺栓长度270mm,最里面一圈为10#升降件,螺栓7长度360mm,其中,1#升降件共96个,螺栓7长270mm;2#升降件共88个,螺栓7长280mm; 3#升降件共80个,螺栓7长290mm;4#升降件共72个,螺栓7长300mm;5#升降件共64个,螺栓7长310mm;6#升降件共56个,螺栓7长320mm;7#升降件共48个,螺栓7长330mm;8#升降件共40个,螺栓7长340mm;9#升降件共32个,螺栓7长350mm;10#升降件共24个,螺栓7长360mm。
限位板5尺寸为:长×宽×厚=1800×1000×30mm,在限位板5上钻取直径为10mm的螺栓孔,孔间排距为50mm×50mm,共600个螺栓孔,每个螺栓孔底部焊接8.8级M10的加厚螺母9,厚度30mm。将1#~10#升降件(共600个)通过螺栓孔和加厚螺母9固定在限位板5上,通过拧动螺栓7可实现每个升降件独立升降,而不影响其他升降件。螺栓7拧动一圈,高强度垫块上升或下降1.5mm。
应用本装置可实现该工作面三维立体模拟,与工作面现场开采条件较为相似,实施步骤如下:
(1)通过M10扳手,将600个升降件调平,使600个垫块8保持在同一平面;
(2)装置前、后两排1#升降件和2#升降件(宽度各100mm)、右侧1#升降件至4#升降件(宽度200mm),共184个升降件高度保持不变;
(3)依次将其它416个升降件旋进22.7圈,每个垫块8升高34mm,这416个升降件组合的长度为1300mm,宽度为800mm,升高的34mm为模拟工作面煤层的采高,与需要模拟的等效煤层厚度一致;
(4)根据相似材料配比号计算模拟煤层材料,铺装在装置前、 后两排1#升降件和2#升降件、右侧1#升降件至4#升降件的垫块8上,铺装高度34mm,与等效煤层厚度一致,模拟前、后100mm边界煤柱和停采线至模型右侧200mm边界煤柱;
(5)根据相似材料配比号,依次铺装上覆岩层至地表,覆岩铺装高度516mm,最终的三维物理模拟尺寸为:长×宽×高=1500mm×1000mm×550mm,模型铺装结束,自然风干;
(6)风干结束后启动液压缸10,将框架2倾角调整为1°,将2根螺杆13支起,使横杆15嵌入限位槽16内,提高实验安全性;
(7)角度调整完毕后,开始进行实验,根据实验设计方案,依次旋退每个升降件22.7圈,每个组合模块降低34mm,降低距离与等效煤层厚度一致,等效模拟煤层开采。
由于旋退每个升降件较容易,有效解决了三维物理模拟煤层开挖技术难题;同时,升降件对顶板扰动甚微,提高了实验的准确性和可靠性;最后,可升降件相互独立,实验过程中可根据实际需要灵活调整实验方案,模拟不同工作面布置方式和开采方式的实验需求,解决了传统的物理模拟灵活性差的技术难题。同时,根据实验需求,本发明可在垫块8之间、框架2四周涂抹凡士林等非亲水性密封剂,使各垫块8构成一个密封的平台,平台与框架2构成密封防水空间,克服现有技术无法模拟保水开采技术难题,实现了多工况情况下的等效煤层开采三维物理模拟。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、 “内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (8)

  1. 一种角度可调的等效煤层开采三维物理模拟装置,其特征在于:包括底座(1),所述底座(1)顶部设有框架(2),所述框架(2)顶部设有加载架(3),所述底座(1)与所述框架(2)之间设有角度调整装置,所述框架(2)底部固定有限位板(5),所述限位板(5)上穿设有升降组合模块(4),所述升降组合模块(4)包括若干升降件,所述升降件包括螺栓(7),所述螺栓(7)贯穿所述限位板(5)且与所述限位板(5)螺纹连接,所述螺栓(7)位于所述框架(2)内的一端转动连接有垫块(8)。
  2. 根据权利要求1所述的角度可调的等效煤层开采三维物理模拟装置,其特征在于:所述螺栓(7)上螺纹连接有加厚螺母(9),所述加厚螺母(9)与所述限位板(5)的下端面固接。
  3. 根据权利要求1所述的角度可调的等效煤层开采三维物理模拟装置,其特征在于:所述角度调整装置包括液压缸(10),所述液压缸(10)底端与所述底座(1)转动连接,所述液压缸(10)输出端与所述限位板(5)固定连接,所述框架(2)远离所述液压缸(10)的一端与所述底座(1)轴接。
  4. 根据权利要求3所述的角度可调的等效煤层开采三维物理模拟装置,其特征在于:所述底座(1)两侧分别转动连接有短杆(11),所述短杆(11)固定连接有螺纹筒(12),所述螺纹筒(12)内穿设有螺杆(13),所述螺杆(13)顶端转动连接有固定块(14),两个所述固定块之间固定有横杆(15),所述框架(2)底部开设有限位槽(16),所述横杆(15)与所述限位槽(16)相适配。
  5. 根据权利要求1所述的角度可调的等效煤层开采三维物理模拟装置,其特征在于:所述框架(2)包括四根立柱(17),所述限位板(5)与所述立柱(17)固定连接,相邻两根所述立柱(17)与所述底座(1)转动连接,另外两根立柱(17)与所述底座(1)可拆卸连接,相邻两根所述立柱(17)之间可拆卸连接有强化有机玻璃(19)或调高槽钢(6)。
  6. 根据权利要求5所述的角度可调的等效煤层开采三维物理模拟装置,其特征在于:所述立柱(17)、强化有机玻璃(19)和调高槽钢(6)上均开设有若干通孔(18),所述立柱(17)与强化有机玻璃(19)和调高槽钢(6)通过螺栓可拆卸连接,所述螺栓贯穿所述通孔(18)。
  7. 根据权利要求1所述的角度可调的等效煤层开采三维物理模拟装置,其特征在于:所述加载架(3)与所述框架(2)滑动连接。
  8. 一种角度可调的等效煤层开采三维物理模拟方法,应用于权利要求1-7任一所述的角度可调的等效煤层开采三维物理模拟装置,其特征在于:具体步骤如下:
    步骤一:先组装底座(1)和框架(2),然后将螺栓(7)贯穿限位板(5),使垫块(8)位于限位板(5)顶部;
    步骤二:依次顺时针旋转每个螺栓(7),垫块(8)随螺栓(7)上升一定高度,使若干垫块(8)组合成一个平面,上升高度与需要模拟的等效煤层厚度一致;
    步骤三:根据相似材料配比,在垫块(8)顶部依次铺装上覆岩 层,覆岩铺装高度与需要模拟煤层埋深一致,放置风干;
    步骤四:风干结束后,调整角度调整装置,使框架(2)保持与要模拟的等效煤层角度一致;
    步骤五:根据实验设计方案,依次逆时针旋转每个螺栓(7),使垫块(8)脱离覆岩层,等效模拟煤层开采。
PCT/CN2022/074587 2021-02-09 2022-01-28 一种角度可调的等效煤层开采三维物理模拟装置及方法 WO2022171006A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/098,159 US20230154357A1 (en) 2021-02-09 2023-01-18 Angle-adjustable three-dimensional physical simulation device for equivalent coal seam mining

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110181227.0 2021-02-09
CN202110181227.0A CN112964852A (zh) 2021-02-09 2021-02-09 一种角度可调的等效煤层开采三维物理模拟装置及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/098,159 Continuation US20230154357A1 (en) 2021-02-09 2023-01-18 Angle-adjustable three-dimensional physical simulation device for equivalent coal seam mining

Publications (1)

Publication Number Publication Date
WO2022171006A1 true WO2022171006A1 (zh) 2022-08-18

Family

ID=76284682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074587 WO2022171006A1 (zh) 2021-02-09 2022-01-28 一种角度可调的等效煤层开采三维物理模拟装置及方法

Country Status (3)

Country Link
US (1) US20230154357A1 (zh)
CN (1) CN112964852A (zh)
WO (1) WO2022171006A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115826034A (zh) * 2022-09-30 2023-03-21 山东科技大学 一种煤矿矿震产生及其震动波响应监测的方法与装置
CN115932221A (zh) * 2023-03-14 2023-04-07 中国矿业大学(北京) 一种适用于含断层构造沿空留巷三维物理开采试验系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964852A (zh) * 2021-02-09 2021-06-15 西安科技大学 一种角度可调的等效煤层开采三维物理模拟装置及方法
CN113790967A (zh) * 2021-08-30 2021-12-14 安徽理工大学 一种智能加载多维相似模型试验装置
CN114033494B (zh) * 2021-10-18 2024-05-07 中国矿业大学 一种基于放顶煤模拟试验系统和试验方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102691519A (zh) * 2012-05-11 2012-09-26 中国石油天然气股份有限公司勘探开发研究院廊坊分院 多夹层盐穴造腔可视化物理模拟与形态控制实验装置
WO2015112023A1 (en) * 2014-01-27 2015-07-30 Sestra As Self-adjusting bed
CN204694490U (zh) * 2015-06-30 2015-10-07 重庆大学 矿山采动顺层滑坡试验装置
CN205538954U (zh) * 2016-01-25 2016-08-31 陕西煤业化工技术研究院有限责任公司 一种煤层群开采三维相似模拟装置
KR101718632B1 (ko) * 2015-10-31 2017-03-22 한국생산기술연구원 복수의 1축 압축 로드셀을 갖는 암석 절삭 성능 시험기
CN107907180A (zh) * 2017-12-18 2018-04-13 信阳师范学院 封闭式煤矿地下水库相似模拟试验装置及方法
CN207993323U (zh) * 2017-12-13 2018-10-19 中国矿业大学(北京) 一种变倾角、加载式物理相似模拟实验台
CN109917108A (zh) * 2019-04-16 2019-06-21 辽宁工程技术大学 一种模拟煤层开采的三维相似材料模型实验装置及方法
CN209183102U (zh) * 2018-07-18 2019-07-30 河南理工大学 一种模拟煤矿采空区顶板岩层运动规律的教学三维模型
CN112964852A (zh) * 2021-02-09 2021-06-15 西安科技大学 一种角度可调的等效煤层开采三维物理模拟装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101377479B (zh) * 2008-09-25 2011-12-28 山东科技大学 采场矿压三维物理模拟试验台
CN204228702U (zh) * 2014-11-26 2015-03-25 西安科技大学 一种可变倾角的物理相似模拟实验台
CN105548519B (zh) * 2016-01-17 2017-06-30 西安科技大学 煤田火灾演化过程相似模拟试验装置及方法
CN107091917A (zh) * 2017-04-24 2017-08-25 太原理工大学 一种煤层开采相似材料模型实验装置
CN108281076A (zh) * 2018-01-31 2018-07-13 中国地质大学(武汉) 一种可调节滑坡角度的滑坡模型模拟装置
CN211043385U (zh) * 2019-11-20 2020-07-17 山东黄金矿业科技有限公司充填工程实验室分公司 可模拟缓倾斜矿体的相似材料模拟试验装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102691519A (zh) * 2012-05-11 2012-09-26 中国石油天然气股份有限公司勘探开发研究院廊坊分院 多夹层盐穴造腔可视化物理模拟与形态控制实验装置
WO2015112023A1 (en) * 2014-01-27 2015-07-30 Sestra As Self-adjusting bed
CN204694490U (zh) * 2015-06-30 2015-10-07 重庆大学 矿山采动顺层滑坡试验装置
KR101718632B1 (ko) * 2015-10-31 2017-03-22 한국생산기술연구원 복수의 1축 압축 로드셀을 갖는 암석 절삭 성능 시험기
CN205538954U (zh) * 2016-01-25 2016-08-31 陕西煤业化工技术研究院有限责任公司 一种煤层群开采三维相似模拟装置
CN207993323U (zh) * 2017-12-13 2018-10-19 中国矿业大学(北京) 一种变倾角、加载式物理相似模拟实验台
CN107907180A (zh) * 2017-12-18 2018-04-13 信阳师范学院 封闭式煤矿地下水库相似模拟试验装置及方法
CN209183102U (zh) * 2018-07-18 2019-07-30 河南理工大学 一种模拟煤矿采空区顶板岩层运动规律的教学三维模型
CN109917108A (zh) * 2019-04-16 2019-06-21 辽宁工程技术大学 一种模拟煤层开采的三维相似材料模型实验装置及方法
CN112964852A (zh) * 2021-02-09 2021-06-15 西安科技大学 一种角度可调的等效煤层开采三维物理模拟装置及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115826034A (zh) * 2022-09-30 2023-03-21 山东科技大学 一种煤矿矿震产生及其震动波响应监测的方法与装置
CN115826034B (zh) * 2022-09-30 2023-05-09 山东科技大学 一种煤矿矿震产生及其震动波响应监测的方法与装置
CN115932221A (zh) * 2023-03-14 2023-04-07 中国矿业大学(北京) 一种适用于含断层构造沿空留巷三维物理开采试验系统

Also Published As

Publication number Publication date
CN112964852A (zh) 2021-06-15
US20230154357A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
WO2022171006A1 (zh) 一种角度可调的等效煤层开采三维物理模拟装置及方法
US10991271B2 (en) Coal measures fault formation simulation experiment device and normal and reverse fault simulation experiment method
CN104807974B (zh) 一种相似材料煤层开采模拟试验台及试验方法
US11359999B2 (en) Experimental platform and experimental method for simulating coal rock disaster of coal mine stope
CN108226447B (zh) 煤炭地下开采地表移动三维模拟试验装置及试验方法
CN108061687B (zh) 一种研究有潜在破坏面的岩土工程模拟试验平台
CN205301313U (zh) 一种用于倾斜或急倾斜煤层的相似模拟实验装置
CN105181465B (zh) 一种岩层加卸载破坏研究实验装置
Cao et al. Support technology of deep roadway under high stress and its application
CN205176016U (zh) 可调倾角的相似模拟实验装置
CN204556619U (zh) 三维多功能相似材料煤层开采模拟试验台
CN105842418B (zh) 实时量测开挖放坡滑坡坡体位移应力的模型试验装置
CN106855568B (zh) 一种冻融对顺层岩质边坡变形影响的模型试验装置及方法
CN112903463A (zh) 双轴静力-扰动耦合倾斜采空区群柱承载测试装置与方法
CN111063246A (zh) 一种倾斜岩层用相似材料模拟实验装置及方法
CN211479483U (zh) 一种倾斜岩层用相似材料模拟实验装置
CN205176017U (zh) 用于倾斜岩层的相似模拟实验装置
CN111063247A (zh) 一种可旋转式相似材料模拟实验装置及方法
CN206311601U (zh) 粗颗粒盐渍土盐胀和溶陷多功能试验装置
CN207096049U (zh) 一种可同时模拟降雨和顶部加载的试验装置
CN113281079B (zh) 明挖公路隧道与邻接双线隧道协同施工的模型试验装置
CN210217718U (zh) 一种可变向式平行板裂缝模拟装置
CN114924055B (zh) 双向角度可调的三维物理相似模拟实验平台及其实验方法
CN211479484U (zh) 一种可旋转式相似材料模拟实验装置
CN203403681U (zh) 一种张弦梁临时支撑架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752167

Country of ref document: EP

Kind code of ref document: A1