WO2022170559A1 - 偏振图像传感器和摄像装置 - Google Patents

偏振图像传感器和摄像装置 Download PDF

Info

Publication number
WO2022170559A1
WO2022170559A1 PCT/CN2021/076508 CN2021076508W WO2022170559A1 WO 2022170559 A1 WO2022170559 A1 WO 2022170559A1 CN 2021076508 W CN2021076508 W CN 2021076508W WO 2022170559 A1 WO2022170559 A1 WO 2022170559A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
alignment
guest
liquid crystal
crystal molecules
Prior art date
Application number
PCT/CN2021/076508
Other languages
English (en)
French (fr)
Inventor
孙上
张友明
胡亨捷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180010008.4A priority Critical patent/CN115210872A/zh
Priority to PCT/CN2021/076508 priority patent/WO2022170559A1/zh
Publication of WO2022170559A1 publication Critical patent/WO2022170559A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the embodiments of the present application relate to the field of image sensors, and in particular, to a polarization image sensor and a camera device.
  • Polarization is a characteristic of light, which refers to the asymmetry between the vibration direction and the propagation direction of light.
  • light with polarization characteristics is called polarized light
  • the polarized light emitted or reflected by an object can carry information about the object. Therefore, the aforementioned polarized light can be recorded by a polarization image sensor to obtain an electrical signal for generating polarization information, and then a polarization image carrying the polarization information can be generated according to the aforementioned electrical signal.
  • the polarized image is mostly used to detect material stress and deformation, enhance image contrast, and remove reflections.
  • a polarized image sensor includes a fixed polarizer and a photo-sensing layer. Since the polarized image sensor cannot change the polarizer, the photoelectric sensing layer in the polarized image sensor can only sense the polarized light in a specific polarization direction in the incident light, but cannot sense other polarization directions other than the specific polarization direction. Polarized optical signal or unpolarized optical signal. Therefore, the current polarization image sensor can only be applied to the scene of capturing polarized images, but cannot be directly applied to the scene of capturing ordinary images.
  • the embodiments of the present application provide a polarization image sensor and a camera device, which are used to control the bias voltage on the guest-host effect box, so that when the guest-host effect box realizes the function of a polarizer, the polarization image sensor can sense the polarization of a specific polarization direction light to obtain electrical signals for generating polarized information; so that when the guest-host effect box realizes the function of a white glass, the polarized image sensor can sense natural light to obtain electrical signals for generating non-polarized information. Therefore, the polarization image sensor proposed in the present application can be used in the scene of shooting polarization images and the scene of ordinary images.
  • the imaging device configured with the polarization image sensor of the present application can generate both polarization images and non-polarization images (for example, ordinary high-definition images).
  • the present application provides a polarization image sensor, which mainly includes a control circuit, a guest-host effect box, and a photoelectric sensing layer.
  • the guest-host effect box is located on the photosensitive side of the photoelectric sensing layer, and the alignment layer of the guest-host effect box is arranged in parallel with the photoelectric sensing layer, and the control circuit is connected with two electrodes of the guest-host effect box;
  • the guest-host effect cell includes liquid crystal molecules and dichroic dye molecules, and the long axis orientation of the dichroic dye molecules is determined by the long axis orientation of the liquid crystal molecules.
  • control circuit is used to control the long-axis orientation of the liquid crystal molecules by controlling the voltage between the two electrodes of the guest-host effect cell, thereby controlling the long-axis orientation of the dichroic dye molecules. That is to say, under the control of the control circuit, the liquid crystal molecules in the guest-host effect cell can be deflected, thereby driving the dichroic dye molecules to deflect. Therefore, the arrangement of the dichroic dye molecules at a certain moment can make the guest-host effect box realize the function of a polarizer, and at another moment the arrangement of the dichroic dye molecules can make the guest-host effect box function. Realize the function of white slide.
  • the guest-host effect box is used for receiving an incident light signal and outputting an outgoing light signal, wherein the outgoing light signal is determined based on the polarization state in the incident light signal and the long axis orientation of the dichroic dye molecule light signal.
  • the aforementioned outgoing light signal is the polarized light signal; or, when the aforementioned guest-host effect box realizes the function of the white glass plate under the action of the control circuit, the aforementioned The outgoing optical signal is an unpolarized optical signal.
  • the photoelectric sensing layer is used for sensing the polarized optical signal to generate a first electrical signal, and the first electrical signal is used to generate polarization information, and the polarization information is used to generate a polarization image; or, the optical transmission
  • the sensing layer is used for sensing the unpolarized light signal to generate a second electrical signal, where the second electrical signal is used to generate unpolarized information, and the unpolarized information is used to generate an unpolarized image.
  • the liquid crystal molecules in the guest-host effect cell are controlled to drive the dichroic dye molecules to deflect, so that the guest-host effect cell can realize the function of a polarizer or a white glass.
  • the function of enables the polarization image sensor composed of the aforementioned guest-host effect box to obtain electrical signals for generating polarization information in polarization mode, and obtain electrical signals for generating non-polarization information in non-polarization mode.
  • the imaging device using the polarization image sensor proposed in the present application can not only output a polarization image, but also output a high-definition non-polarization image.
  • the polarization image sensor in the conventional technology adopts a fixed polarizer, which cannot be changed, and can only realize the function of the polarizer. Therefore, the polarized image sensor in the conventional technology cannot directly sense natural light to generate ordinary images.
  • the dichroic dye molecules in the aforementioned guest-host effect box are positive dichroic dye molecules, and the orientation of the long axis of the positive dichroic dye molecules and the distance between the photoelectric sensing layer The spatial relationship is used to determine whether the guest-host effect box outputs a polarized optical signal or an unpolarized optical signal. It can also be understood that the spatial relationship between the long axis orientation of the positive dichroic dye molecule and the photoelectric sensing layer is used to determine whether the guest-host effect box realizes the polarization function.
  • the guest-host effect box when the guest-host effect box realizes the polarizing function, the guest-host effect box outputs the polarized optical signal; when the guest-host effect box realizes the non-polarizing function (this application refers to not polarizing or filtering the incident light signal), The guest-host effect box outputs an unpolarized optical signal.
  • the positive dichroic dye molecules are used to pass the polarized light components whose polarization direction is perpendicular to the long axis orientation of the positive dichroic dye molecules, the positive dichroic dye molecules are used to absorb the polarization direction and the positive dichroic dye molecules.
  • the long axis of the molecule is oriented parallel to the polarized light component.
  • the polarization direction is perpendicular to The polarized light component of the long-axis orientation of the positive dichroic dye molecule can just pass through the guest-host effect box.
  • the guest-host effect box realizes the polarizing function (that is, the function of the polarizer); when the positive dichroic dye molecule
  • the polarizing function that is, the function of the polarizer
  • the guest-host effect box does not realize the polarization function (ie, the function of the white glass).
  • the guest-host effect box when the long axis of the positive dichroic dye molecule is oriented parallel to the photoelectric sensing layer, the guest-host effect box realizes the function of a polarizer; at this time, the guest-host effect box, It is specifically used to control the polarized light component of the first polarization direction in the incident light signal to pass through the guest-host effect box to obtain the polarized light signal, and the first polarization direction is perpendicular to the long axis orientation of the positive dichroic dye molecule. ;
  • the photoelectric sensing layer is specifically used for sensing the polarized light signal to generate the first electrical signal.
  • the long axis orientation of the liquid crystal molecules at this time is also parallel to the photoelectric sensing layer, or the long axis of the liquid crystal molecules is also parallel to the photoelectric sensing layer.
  • the axis orientation tends to be parallel to the photosensor layer.
  • the guest-host effect box realizes the function of a white glass slide;
  • the unpolarized light signal is obtained by controlling all the incident light signals to pass through the guest-host effect box;
  • the photoelectric sensing layer is specifically used for sensing the unpolarized light signal to generate the second electrical signal.
  • liquid crystal molecules may be either positive liquid crystal molecules or negative liquid crystal molecules.
  • liquid crystal molecules with different electrical properties to make the guest-host effect cell that is, only positive liquid crystal molecules and positive dichroic dye molecules are used to fill the guest-host effect cell, or only negative liquid crystal molecules and positive dichroic dye molecules are used to fill the guest-host effect cell.
  • the effect box is used, the alignment directions of the alignment layers are different.
  • the positive liquid crystal molecules will be deflected along the direction of the electric field under the action of the electric field, that is, the positive liquid crystal molecules will be deflected to be perpendicular to the photoelectric transmission. direction of the sense layer. Therefore, during the alignment process, it is necessary to align the positive liquid crystal molecules to be nearly parallel to the direction of the photoelectric sensing layer.
  • the positive liquid crystal molecules when no bias voltage is applied, the positive liquid crystal molecules can be made relatively parallel to the photoelectric sensing layer under the action of the alignment layer, so that the positive dichroic dye molecules are also parallel to the photoelectric sensing layer; on the other hand , when a bias voltage is applied, the positive liquid crystal molecules can be smoothly deflected along the direction of the electric field, so that the positive dichroic dye molecules are also deflected along the direction of the electric field to the direction perpendicular to the photoelectric sensing layer.
  • the negative liquid crystal molecules will be deflected along the direction perpendicular to the direction of the electric field under the action of the electric field, that is, the negative liquid crystal molecules will be deflected to the direction parallel to the photoelectric sensing layer. Therefore, during the alignment process, it is necessary to align the negative liquid crystal molecules to be close to the direction perpendicular to the photoelectric sensing layer.
  • the negative liquid crystal molecules when no bias voltage is applied, the negative liquid crystal molecules can be made relatively perpendicular to the photoelectric sensing layer under the action of the alignment layer, so that the positive dichroic dye molecules are also perpendicular to the photoelectric sensing layer; on the other hand, when the bias voltage is applied, the negative liquid crystal molecules can be smoothly deflected along the direction perpendicular to the electric field, so that the positive dichroic dye molecules are also deflected along the direction perpendicular to the electric field, reaching the direction parallel to the photoelectric sensing layer. direction.
  • the effect of the electric field here refers to the effect of the electric field formed between the two electrodes of the guest-host effect box when the control circuit applies a polarization voltage between the two electrodes.
  • the two electrodes of the guest-host effect box are both parallel to the photoelectric sensing layer and located on the photosensitive side of the photoelectric sensing layer. Specifically, please refer to the related introduction in the corresponding embodiment of FIG. 2A , which will not be repeated here.
  • the liquid crystal molecules are positive liquid crystal molecules, and the positive liquid crystal molecules have a first pretilt angle, and the first pretilt angle is that no bias is applied between two electrodes of the guest-host effect cell When the voltage is applied, the included angle between the long axis orientation of the positive liquid crystal molecules and the alignment layer in the guest-host effect cell, the value of the first pretilt angle ranges from 0° to 10°.
  • the liquid crystal molecules are negative liquid crystal molecules, and the negative liquid crystal molecules have a second pre-tilt angle, and the second pre-tilt angle is that no polarization is applied between the two electrodes of the guest-host effect cell.
  • the second pretilt angle ranges from 80° to 90°.
  • the long axis of the positive dichroic dye molecule is oriented parallel to the photoelectric sensing layer: the liquid crystal molecule is a positive liquid crystal molecule, and the guest-host effect cell is No bias voltage is applied between the two electrodes; or, the liquid crystal molecules are negative liquid crystal molecules, and a first preset bias voltage is applied between the two electrodes of the guest-host effect cell, so that the length of the negative liquid crystal molecules is The axis orientation is deflected to a direction parallel to the photosensor layer.
  • the long axis of the positive dichroic dye molecules is oriented perpendicular to the photoelectric sensing layer: the liquid crystal molecules are positive liquid crystal molecules, the guest-host effect cell A second preset bias voltage is applied between the two electrodes, so that the long-axis orientation of the positive liquid crystal molecules is deflected to a direction perpendicular to the photoelectric sensing layer;
  • the liquid crystal molecules are negative liquid crystal molecules, and no bias voltage is applied between the two electrodes of the guest-host effect cell.
  • the alignment layer includes a plurality of alignment regions, and the alignment directions of the plurality of alignment regions are not exactly the same, and the alignment direction is used for applying no bias between the two electrodes of the guest-host effect box When the voltage is applied, the long axis orientation of the liquid crystal molecules is determined. That is to say, among the plurality of alignment regions in the aforementioned alignment layer, there may be alignment regions with the same alignment direction, or there may be two alignment regions with different alignment directions, which are not specifically limited in this application.
  • the plurality of alignment regions include a plurality of polarization regions, the projection directions of the alignment directions of the plurality of polarization regions in the alignment layer are not identical, and the liquid crystals in the polarization regions
  • the molecules can be deflected under the control of this bias voltage. That is, among the aforementioned plurality of polarized regions, there may be several polarized regions with the same projection direction (ie, the projection direction of the alignment direction in the alignment layer), or there may be two polarized regions with different projection directions.
  • the plurality of polarization regions include a first alignment region and a second alignment region, and a projection direction of the alignment direction of the first alignment region in the alignment layer is the same as the projection direction of the alignment direction of the second alignment region.
  • the projection directions of the alignment directions in the alignment layer are perpendicular to each other.
  • the plurality of polarization regions further include a third alignment region and a fourth alignment region, and a projection direction of an alignment direction of the third alignment region in the alignment layer is the same as the fourth alignment region
  • the projection directions of the alignment directions in the alignment layer are perpendicular to each other, and the projection direction of the alignment direction of the third alignment region in the alignment layer is different from the projection direction of the alignment direction of the first alignment region in the alignment layer. 45°, the projection direction of the alignment direction of the fourth alignment region in the alignment layer is different from the projection direction of the alignment direction of the second alignment region in the alignment layer by 45°.
  • the plurality of polarization regions include a fifth alignment region and a sixth alignment region, and a projection direction of an alignment direction of the fifth alignment region in the alignment layer is the same as that of the sixth alignment region.
  • the projection directions of the alignment directions in the alignment layer differ by 60°.
  • the photoelectric sensing layer includes a plurality of sensing units, each of which is used for sensing an optical signal to generate an electrical signal; each of the alignment regions and at least one of the photoelectric sensing layers One corresponding to the induction unit.
  • the electrical signal generated by at least one of the sensing units is used to generate a pixel in the image.
  • the electrical signal generated by each sensing unit may be used to generate one pixel of the image, or it may be the electrical signal generated by multiple sensing units (for example, the electrical signals generated by four sensing units). ) is used to generate a pixel of the image. Specifically, it depends on the actual application requirements, and is not limited here.
  • electrical signals generated by a plurality of sensing units are used to generate a pixel in a polarized image.
  • the foregoing plurality of sensing units are sensing units corresponding to at least two alignment regions. For example, if one alignment area corresponds to one sensing unit, and the alignment area includes an alignment area with a deflection direction of 90° and an alignment area with a deflection direction of 0°.
  • the electrical signal 1 generated by one sensing unit corresponding to the alignment area with the polarization direction of 90° and the electrical signal 2 generated by the sensing unit corresponding to the alignment area with the polarization direction of 0° are used to generate the polarization image.
  • one pixel is if one alignment area corresponds to one sensing unit, and the alignment area includes an alignment area with a deflection direction of 90° and an alignment area with a deflection direction of 0°.
  • one alignment area corresponds to four sensing units
  • the alignment area includes an alignment area with a deflection direction of 45° and an alignment area with a deflection direction of 135°.
  • the electrical signals 3 generated by the four sensing units corresponding to the alignment area with the polarization direction of 45° and the electrical signals 4 generated by the four sensing units corresponding to the alignment area with the polarization direction of 135° are used together to generate the polarization image one pixel in .
  • the present application provides a camera device, which can be a polarization imager, or a common device with a camera or photographing function, such as a mobile phone, a video camera, and the like.
  • the camera device includes an image processing device and the polarization image sensor as mentioned in any one of the embodiments of the first aspect.
  • the image processing device is configured to receive a first electrical signal or a second electrical signal generated by the polarization image sensor, wherein the first electrical signal is an electrical signal generated by the polarization image sensor inducting the polarized optical signal , the second electrical signal is an electrical signal generated by the polarization image sensor sensing an unpolarized light signal.
  • the image processing device is further configured to generate polarization information according to the corresponding relationship and the first electrical signal, where the polarization information is used to generate a polarization image, wherein the corresponding relationship is the polarization direction of the outgoing light signal and the induction of the outgoing light signal Correspondence between units; or, generating unpolarized information according to the second electrical signal, where the unpolarized information is used to generate an unpolarized image.
  • the image processing apparatus is further configured to receive indication information, where the indication information is used to instruct to generate the polarization information or to generate the non-polarization information.
  • the image processing apparatus is configured to generate the polarization information according to the corresponding relationship and the first electrical signal, and the polarization information is used to generate the polarization information.
  • the first electrical signal includes electrical signals generated by different sensing units in the polarization image sensor sensing polarized light signals with different polarization directions, and the electrical signals output by at least two of the sensing units are used to generate the polarization image. of one pixel.
  • the image processing apparatus is configured to generate the non-polarized information according to the second electrical signal, and the non-polarized information is used to generate the non-polarized information.
  • a polarized image the second electrical signal includes an electrical signal output by each sensing unit in the polarized image sensor, and the electrical signal output by at least one sensing unit is used to generate a pixel in the non-polarized image.
  • the camera device provided in the present application is configured with the polarization image sensor proposed in the present application. Therefore, the camera device can capture both polarized images and non-polarized images (for example, ordinary high-definition images).
  • the present application provides an image acquisition method, where the image acquisition method is implemented by the aforementioned second aspect and the camera device mentioned in any embodiment of the second aspect.
  • the image acquisition method can be implemented by the image processing device in the camera running the program code.
  • the image processing device will receive the instruction information, and the instruction information is used to instruct the generation of polarization information or the generation of non-polarization information; when the instruction information indicates the generation of polarization information, the image processing device obtains the first electrical signal, and according to the corresponding relationship and the first electrical signal to generate polarization information.
  • the first electrical signal is an electrical signal generated by the polarization image sensor sensing the polarized optical signal, and the corresponding relationship is the corresponding relationship between the polarization direction of the outgoing optical signal and the sensing unit that senses the outgoing optical signal.
  • the image processing apparatus generates a polarization image according to the polarization information.
  • the present application provides another image acquisition method, where the image acquisition method is implemented by the aforementioned second aspect and the camera device mentioned in any embodiment of the second aspect.
  • the image acquisition method can be implemented by the image processing device in the camera running the program code.
  • the image processing device will receive instruction information, the instruction information is used to instruct to generate polarized information or to generate non-polarized information; when the instruction information instructs to generate non-polarized information, acquire a second electrical signal, and according to the second electrical signal Unpolarized information is generated, wherein the second electrical signal is an electrical signal generated by a polarization image sensor sensing an unpolarized light signal, and the unpolarized information is used to generate an unpolarized image.
  • the image processing apparatus generates an unpolarized image (for example, an ordinary high-definition image) according to the unpolarized information.
  • an unpolarized image for example, an ordinary high-definition image
  • the present application provides another polarization image sensor, which mainly includes: a control circuit, a guest-host effect box, and a photoelectric sensing layer.
  • the guest-host effect box is located on the photosensitive side of the photoelectric sensing layer, and the alignment layer of the guest-host effect box is arranged in parallel with the photoelectric sensing layer, and the control circuit is connected with two electrodes of the guest-host effect box;
  • the guest-host effect cell includes positive liquid crystal molecules and positive dichroic dye molecules, and the long axis orientation of the positive dichroic dye molecules is determined by the long axis orientation of the liquid crystal molecules;
  • the alignment layer of the guest host effect cell includes a plurality of alignment regions , the alignment area includes a polarizing area and a non-polarizing area, and the non-polarizing area has no polarizing effect on the incident light signal.
  • this non-polarizing region has no polarizing effect on the incident light signal, whether or not the control circuit applies a bias voltage between the two electrodes of the guest-host effect box.
  • the aforementioned biasing region is switched between implementing and not implementing the biasing function depending on whether the control circuit applies a bias voltage.
  • control circuit is used to control the long-axis orientation of the positive liquid crystal molecules in the polarization region by controlling the voltage between the two electrodes of the guest-host effect cell, thereby controlling the positive didirectional orientation in the polarization region Long axis orientation of chromatic dye molecules.
  • the guest-host effect box is used for receiving the incident light signal and outputting the third light signal or the fourth light signal.
  • the output of the guest-host effect box is a third optical signal
  • the third optical signal includes the polarized optical signal obtained by passing through the polarizing area and the non-polarizing optical signal obtained by passing through the non-polarizing area.
  • the unpolarized optical signal obtained by the polarization region, the polarization direction of the polarized optical signal is perpendicular to the long axis orientation of the positive dichroic dye molecule.
  • the guest-host effect box outputs a fourth optical signal
  • the fourth optical signal is an unpolarized optical signal obtained by passing through the polarizing area and the non-polarizing area .
  • the photoelectric sensing layer is used to sense the polarized optical signal in the third optical signal to generate a third electrical signal, and sense the unpolarized optical signal in the third optical signal to generate a fourth electrical signal .
  • the third electrical signal is used to generate polarization information
  • the polarization information is used to generate a polarized image
  • the fourth electrical signal is used to generate first unpolarized information
  • the first unpolarized information is used to generate a first unpolarized image .
  • the photoelectric sensing layer is used for sensing the fourth optical signal to generate a fifth electrical signal, where the fifth electrical signal is used to generate second unpolarized information, and the second unpolarized information is used to generate second unpolarized information image.
  • the voltage between the two electrodes of the guest-host effect cell can be controlled to control the liquid crystal molecules in the guest-host effect cell to drive the dichroic dye molecules to deflect, so that the guest-host effect cell can realize the function of a polarizer or
  • the function of the white glass plate enables the polarization image sensor composed of the aforementioned guest-host effect cell to obtain electrical signals for generating polarization information in polarization mode, and obtain electrical signals for generating non-polarization information in non-polarization mode.
  • the region that can partially realize the function of the white glass ie, the region that is colorless and transparent
  • the polarization image sensor can generate a third optical signal for generating polarization information according to the third optical signal obtained in the polarization mode. an electrical signal and a fourth electrical signal for generating unpolarized information. Therefore, the camera device can obtain the third electrical signal for generating polarization information and the fourth electrical signal for generating non-polarization information through one shooting action, and the polarization image generated according to the third electrical signal and the fourth electrical signal generated according to the fourth electrical signal can be obtained.
  • the non-polarized image generated by the signal can be understood as the image taken at the same moment.
  • the unpolarized image generated according to the fourth electrical signal in the present application is brighter than the aforementioned synthesized unpolarized image, Details are sharper.
  • the third electrical signal and the fourth electrical signal are used for third unpolarized information, and the third unpolarized information is used to generate a third unpolarized image.
  • a third electrical signal can be added to the fourth electrical signal to generate third unpolarized information.
  • the third unpolarized image generated by using the third unpolarized information is compared with the aforementioned Two unpolarized images can have higher brightness.
  • the spatial relationship between the long-axis orientation of the positive dichroic dye molecule and the photoelectric sensing layer is used to determine the light signal polarized by the polarizing region in the guest-host effect cell or an unpolarized optical signal. It can also be understood that the spatial relationship between the long axis orientation of the positive dichroic dye molecule and the photoelectric sensing layer is used to determine whether the polarizing region in the guest-host effect box realizes the polarizing function.
  • the long axes of the positive dichroic dye molecules in the polarized region are oriented parallel to the The photoelectric sensing layer, the polarizing region of the guest-host effect box realizes the function of a polarizer; the long axis of the positive dichroic dye molecules in the non-polarizing region is oriented perpendicular to the photoelectric sensing layer, and the polarizing region of the guest-host effect box is oriented vertically.
  • the non-polarizing region realizes the function of the white glass;
  • the guest-host effect box is specifically used to control the polarized light component of the second polarization direction in the incident light signal to pass through the polarizing region of the guest-host effect box, and to control the incident light signal All pass through the non-polarizing region of the guest-host effect box to obtain the third optical signal, and the second polarization direction is perpendicular to the long axis orientation of the positive dichroic dye molecule;
  • the photoelectric sensing layer is specifically used for sensing the first optical signal. Three optical signals to generate the third electrical signal and the fourth electrical signal.
  • the positive liquid crystal molecules can be arranged in the direction perpendicular to the alignment layer in the non-polarization region, that is, in the case of no bias voltage applied, the long axis of the positive liquid crystal molecules is oriented perpendicular to the photoelectric transmission. sense layer. Since the positive liquid crystal molecules are deflected along the direction of the electric field under the action of the electric field, the above-mentioned alignment method can make the positive liquid crystal molecules remain perpendicular to the photoelectric sensing layer whether or not under the action of the electric field. That is to say, the non-alignment regions can all realize the function of the white glass, that is, the incident light signal is not polarized or filtered.
  • control circuit is specifically configured to apply a preset bias voltage between two electrodes of the guest-host effect cell to control the long axis orientation of the positive liquid crystal molecules in the polarization region It is deflected to be perpendicular to the photoelectric sensing layer, so that the long axis orientation of the dichroic dye molecules in the polarizing region is deflected to be perpendicular to the photoelectric sensing layer, and the positive liquid crystal molecules in the non-polarizing region are aligned.
  • the long-axis orientation and the long-axis orientation of the positive dichroic dye molecules are not deflected, and both the polarizing area and the non-polarizing area of the guest-host effect box realize the function of a white glass slide; the guest-host effect box is specifically used to control the incident All the optical signals pass through the guest-host effect box to obtain the fourth optical signal; the photoelectric sensing layer is specifically used to sense the fourth optical signal to generate the fifth electrical signal.
  • each of the non-polarizing regions is not filled with the positive liquid crystal molecules and the positive dichroic dye molecules, and the non-polarizing regions of the guest-host effect cell realize the function of a white glass slide.
  • the non-polarizing area is completely colorless and transparent, the non-polarizing area will not polarize or filter the incident light signal, and the non-polarizing area realizes the function of a white glass slide.
  • the long axes of the positive dichroic dye molecules in the polarized region are oriented parallel to the Photoelectric sensing layer, the polarizing region of the guest-host effect box realizes the function of a polarizer; the guest-host effect box is specifically used to control the polarized light component of the second polarization direction in the incident light signal to pass through the polarizing region of the guest-host effect box , and control the incident light signal to pass through the non-polarization region of the guest-host effect box to obtain the third light signal, and the second polarization direction is perpendicular to the long axis orientation of the positive dichroic dye molecule; the photoelectric sensor The layer is specifically used for sensing the third optical signal to generate the third electrical signal and the fourth electrical signal.
  • the projection directions of the alignment directions of each of the polarizing regions in the alignment layer are not exactly the same.
  • the plurality of polarization regions include a first alignment region and a second alignment region, and a projection direction of the alignment direction of the first alignment region in the alignment layer is the same as the projection direction of the alignment direction of the second alignment region.
  • the projection directions of the alignment directions in the alignment layer are perpendicular to each other.
  • the plurality of polarization regions further include a third alignment region and a fourth alignment region, and a projection direction of an alignment direction of the third alignment region in the alignment layer is the same as the fourth alignment region
  • the projection directions of the alignment directions in the alignment layer are perpendicular to each other, and the projection direction of the alignment direction of the third alignment region in the alignment layer is different from the projection direction of the alignment direction of the first alignment region in the alignment layer. 45°, the projection direction of the alignment direction of the fourth alignment region in the alignment layer is different from the projection direction of the alignment direction of the second alignment region in the alignment layer by 45°.
  • the plurality of polarization regions include a fifth alignment region and a sixth alignment region, and a projection direction of an alignment direction of the fifth alignment region in the alignment layer is the same as that of the sixth alignment region.
  • the projection directions of the alignment directions in the alignment layer differ by 60°.
  • the photoelectric sensing layer includes a plurality of sensing units, each of the sensing units is used for sensing a light signal to generate an electrical signal, and at least one of the electrical signals generated by the sensing unit is used to generate an image one pixel; each alignment region corresponds to at least one of the sensing units on the photoelectric sensing layer.
  • the present application provides a camera device, which can be a polarization imager, or a common device with a camera or photographing function, such as a mobile phone, a video camera, and the like.
  • the camera device includes an image processing device and the polarization image sensor as mentioned in any one of the embodiments of the fifth aspect.
  • the image processing device is configured to acquire a third electrical signal and a fourth electrical signal generated by the polarization image sensor according to the corresponding relationship, wherein the third electrical signal is generated by the polarization image sensor sensing an optical signal from a polarization region Electrical signal
  • the fourth electrical signal is an electrical signal generated by the polarization image sensor sensing an optical signal from a non-polarized region, and the corresponding relationship is between the polarization state of the third optical signal and the sensing unit that senses the third optical signal
  • the image processing device is configured to generate polarization information according to the correspondence relationship and the third electrical signal, and generate unpolarized information according to the fourth electrical signal, and the unpolarized information is used to generate an unpolarized image.
  • the embodiments of the present application have the following advantages:
  • the liquid crystal molecules in the guest-host effect cell are controlled to drive the dichroic dye molecules to deflect, so that the guest-host effect cell can realize the function of a polarizer or a white glass.
  • the function of the sheet enables the polarization image sensor composed of the aforementioned guest-host effect cell to obtain an electrical signal for generating polarization information in a polarization mode, and obtain an electrical signal for generating non-polarization information in a non-polarization mode.
  • the imaging device using the polarization image sensor proposed in the present application can not only output a polarization image, but also output a high-definition non-polarization image.
  • FIG. 1 is a schematic diagram of the main structure of a polarization image sensor in an embodiment of the present application
  • FIG. 2A is a schematic cross-sectional structure diagram of a polarization image sensor according to an embodiment of the present application
  • 2B is a schematic cross-sectional structure diagram of a polarized image sensor when positive liquid crystal molecules are used in an embodiment of the present application;
  • 2C is a schematic cross-sectional structure diagram of a polarized image sensor when negative liquid crystal molecules are used in an embodiment of the present application;
  • 3A is an exemplary diagram of a guest-host effect cell when positive liquid crystal molecules are used in an embodiment of the present application
  • 3B is an exemplary diagram of a guest-host effect cell when negative liquid crystal molecules are used in an embodiment of the present application
  • FIG. 4 is an exemplary diagram of an alignment direction of an alignment region in an embodiment of the present application.
  • FIG. 5 is an exemplary diagram of alignment directions of a plurality of alignment regions in an embodiment of the present application.
  • FIG. 6 is another exemplary diagram of alignment directions of a plurality of alignment regions in an embodiment of the present application.
  • FIG. 7 is another exemplary diagram of alignment directions of a plurality of alignment regions in an embodiment of the present application.
  • FIG. 8 is another exemplary diagram of alignment directions of a plurality of alignment regions in an embodiment of the present application.
  • FIG. 9A is a schematic diagram of another cross-sectional structure of a polarization image sensor in an embodiment of the present application.
  • 9B is a schematic diagram of another cross-sectional structure of the polarization image sensor in the embodiment of the present application.
  • FIG. 10 is an exemplary diagram of a color filter layer in a polarized image sensor according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an embodiment of a camera device in an embodiment of the present application.
  • Polarization refers to the process of processing unpolarized optical signals or optical signals of any polarization state into polarized optical signals through optical filters. It can also be understood as the process of passing other signals of specific polarization and blocking or absorbing optical signals.
  • the optical filter used in this polarization process is called a polarizer.
  • This polarizer can pass light signals with a specific polarization direction, and is often used to obtain polarized light from natural light. Commonly used polarizers are: polaroid, Nicol prism, etc.
  • the polarizing plate in the traditional technology has a definite polarization direction after the production is completed, and the polarization direction cannot be changed, nor can the polarization function not be realized.
  • Dichroism It is an optical property of crystals, which means that the absorption coefficient of crystals for light depends on the polarization state of incident light. Generally, the polarization direction of the incident light is different, and the absorption of the incident light by the crystal is different.
  • a dye molecule with this dichroism is called a dichroic dye molecule, and the dichroic dye molecule can absorb polarized light in a specific polarization direction. When the dichroic dye molecule is deflected, the dichroic dye molecule The absorption effect of the dichroic dye molecules on the polarized light in the aforementioned specific polarization direction will be weakened.
  • dichroic molecules are classified into positive dichroic molecules and negative dichroic molecules.
  • a positive dichroic dye molecule when the long axis of the positive dichroic dye molecule is oriented perpendicular to the polarization direction of the polarized light, the positive dichroic dye molecule can transmit almost all polarized light; When the long axis of the molecule is oriented parallel to the polarization direction of the polarized light, the positive dichroic dye molecule can absorb almost all of the polarized light.
  • negative dichroic dye molecules When the long axis of the negative dichroic dye molecule is oriented perpendicular to the polarization direction of the polarized light, the negative dichroic dye molecule can almost polarize the polarized light.
  • the negative dichroic dye molecule When the long axis direction of the negative dichroic dye molecule is parallel to the polarization direction of the polarized light, the negative dichroic dye molecule can transmit almost all the polarized light. It should be understood that the "all permeation” or “all absorption” mentioned later in this application can be understood as an idealized state, and there may be some errors in practical application. For example, when the long axis of the positive dichroic dye molecule is oriented perpendicular to the polarization direction of the polarized light, the positive dichroic dye molecule has very little and almost negligible absorption of the polarized light.
  • Guest-heat effect When a dichroic dye is dissolved as a guest in a liquid crystal host, the dichroic dye molecules will appear in the same direction as the liquid crystal molecules under the action of dielectric force. arrangement phenomenon. When the long-axis orientation of the main liquid crystal molecules is deflected under the action of an electric field, the long-axis orientation of the aforementioned dichroic dye molecules will also be deflected along with the long-axis orientation of the liquid crystal molecules. Since the dichroic dye molecules mainly absorb polarized light in a specific direction with the long axis orientation of the dye molecules, when the long axis orientation of the liquid crystal molecules is deflected, the dichroic dye molecules absorb polarized light The situation will also change.
  • the guest-heat effect box uses the principle of the guest-host effect to place the display medium containing the liquid crystal molecules and the dichroic dye molecules in two oppositely arranged transparent conductive plates, which can be
  • the electric field force is applied to the liquid crystal molecules by setting a bias voltage between the two transparent conductive plates to control the long axis orientation of the liquid crystal molecules and further the long axis orientation of the dichroic dye molecules.
  • Alignment In the absence of an external electric field, an external action is applied to the liquid crystal molecules to produce a specific orientation of the liquid crystal molecules, that is, the long axis orientation of the liquid crystal molecules will be arranged in the direction of the aforementioned external action. Generally, the direction of the aforementioned external action is referred to as an alignment direction. After the alignment treatment, the long axis alignment of the liquid crystal molecules is the alignment direction. Generally, an alignment film is used to realize the alignment treatment of liquid crystal molecules. The alignment film technology is often combined with the guest-host effect cell technology, that is, two layers of alignment films are arranged oppositely between the two transparent conductive plates in the guest-host effect cell, so that the liquid crystal molecules are not applied to the guest-host effect cell when the bias voltage is not applied. It can also have a specific arrangement direction, so that the dichroic dye molecules also have a specific arrangement direction.
  • White glass refers to an optical component that is transparent and colorless and does not have any filtering or polarizing effect on incident light.
  • the optical component is made of glass, so it is called a white glass.
  • other materials can also be used to make components having the same optical function as the aforementioned white glass slide, such as resin, quartz crystal, etc., which is not specifically limited in this application.
  • Polarization imaging refers to an image derived based on polarization information.
  • the image derived based on the polarization information may be one image or multiple images, and it may be a flat image or a stereoscopic image.
  • the aforementioned multiple images may include stereoscopic images.
  • the polarization image sensor proposed in this application is mainly used in polarization imaging scenarios, for example, a scenario in which a polarization imager captures an object to generate a polarization image.
  • the polarization imager in the traditional technology adopts an image sensor configured with a fixed polarizer, wherein the aforementioned polarizer is made of a solid material by directional stretching, and the shape cannot be changed at will. Therefore, after receiving the incident light signal, the aforementioned image sensor configured with a fixed polarizer can only output an electrical signal generated according to the polarized light signal in a specific polarization direction, thereby enabling the polarization imager to generate a polarization image carrying polarization information.
  • the aforementioned conventional image sensors cannot output electrical signals generated based on unpolarized light signals. Therefore, conventional polarization imagers cannot directly generate unpolarized images (ie, images without polarization information) based on unpolarized light signals.
  • the present application proposes a polarization image sensor that combines the guest-host effect cell technology and the alignment technology, and uses a guest-host effect cell with a built-in alignment film to realize the function of the polarizer. Control the arrangement of the dye molecules, so that the guest-host effect box with the built-in alignment film can switch between the function of the polarizer and the function of the white glass, so that the polarization image sensor can output according to the same incident light signal An electrical signal for generating polarized information or an electrical signal for generating non-polarized information.
  • the polarization image sensor mainly includes a guest-host effect box 10 , a photoelectric sensing layer 20 and a control circuit 30 .
  • the guest-host effect cell 10 is located on the photosensitive side of the photoelectric sensing layer 20, and the guest-host effect cell 10 includes liquid crystal molecules and dichroic dye molecules, and the long axis orientation of the dichroic dye molecules is determined by the liquid crystal molecules. The orientation of the long axis of the molecule is determined.
  • the control circuit 30 is connected to the two electrodes of the guest-host effect box 10 for controlling the voltage between the two electrodes of the guest-host effect box 10 . Because the electric field formed between the two electrodes in the guest-host effect cell 10 can control the long-axis orientation of the liquid crystal molecules in the guest-host effect cell 10, and the dichroic dye molecules will follow the liquid crystal molecules to deflect under the action of dielectric force. That is to say, under the control of the control circuit 30, the liquid crystal molecules in the guest-host effect cell 10 can be deflected, thereby driving the dichroic dye molecules to deflect. Therefore, the long axis orientation of the dichroic dye molecules can be controlled indirectly by adjusting the bias voltage between the two electrodes.
  • the guest-host effect box 10 is used for receiving the incident light signal and outputting the outgoing light signal.
  • the aforementioned incident light signal may comprise polarized light and/or unpolarized light, wherein the polarized light may be polarized light in one or more polarization directions.
  • the aforementioned polarized light may be linearly polarized light.
  • the incident light signal in the present application may be natural light, and the natural light includes both polarized light and non-polarized light.
  • the aforementioned outgoing light signal differs depending on the orientation of the long axis of the dichroic dye molecules.
  • the function of the guest-host effect cell 10 in the polarization image sensor is also different.
  • the arrangement of the dichroic dye molecules can make the guest-host effect box 10 realize the function of a polarizer, and at another time, the arrangement of the dichroic dye molecules can make the guest-host effect box 10 function as a polarizer. Realize the function of white slide.
  • the guest-host effect cell 10 is used to control part of the polarized light component in the incident light signal to pass through the guest-host effect cell 10,
  • the polarized optical signal is obtained.
  • the polarized light signal is a polarized light signal with a specific polarization direction filtered from the aforementioned incident light signal.
  • the polarized light signal is a polarized light signal whose polarization direction is perpendicular to the long axis orientation of the positive dichroic dye molecule .
  • the photoelectric sensing layer 20 is used for sensing the aforementioned polarized optical signal to generate an electrical signal for generating polarization information.
  • the aforementioned guest-host effect box 10 realizes the function of a polarizer.
  • the mode in which the guest-host effect cell 10 in the polarization image sensor realizes the function of the polarizer is referred to as the polarization mode.
  • the guest-host effect box 10 is used to control all the incident light signals to pass through the guest-host effect box 10 to obtain an unpolarized light signal. That is to say, the dichroic dye molecules in the guest-host effect box 10 do not absorb the aforementioned incident light signal, or the dichroic dye molecule has a weak absorption effect on the incident light signal and can be ignored. It should be noted that, at this time, the aforementioned dichroic dye molecules are positive dichroic dye molecules, and the polarized lights of different polarization directions are all perpendicular to the dichroic dye molecules.
  • the photoelectric sensing layer 20 is used for sensing the unpolarized light signal to generate an electrical signal for generating unpolarized information.
  • the aforementioned guest-host effect box 10 realizes the function of a white glass plate, that is, the guest-host effect box 10 does not function as a polarizer.
  • the mode in which the guest-host effect cell 10 in the polarization image sensor realizes the function of the white glass plate is called the non-polarization mode.
  • the liquid crystal molecules can be either positive liquid crystal molecules or negative liquid crystal molecules.
  • the specific solution implemented by using positive liquid crystal molecules will be introduced in the embodiment corresponding to FIG. 2B later; the specific solution implemented by using negative liquid crystal molecules will be introduced in the embodiment corresponding to FIG. 2C later. It will not be repeated here.
  • the polarization image sensor composed of the guest-host effect cell 10 can be An electrical signal for generating polarized information is obtained in a polarized mode, and an electrical signal for generating unpolarized information is obtained in a non-polarized mode.
  • the polarization imager using the polarization image sensor proposed in the present application can not only output polarization images (that is, images carrying polarization information), but also output high-definition non-polarized images (that is, images that carry non-polarized information such as brightness, color, etc.) .
  • the aforementioned polarization image sensor can not only enrich the application scenarios of polarization imagers (eg, polarization cameras, etc.), but also enable camera devices (eg, mobile phones, video cameras, etc.) used to capture ordinary images to provide polarization imaging functions.
  • polarization imagers eg, polarization cameras, etc.
  • camera devices eg, mobile phones, video cameras, etc.
  • FIG. 2A it is a schematic cross-sectional structure diagram of a polarization image sensor, which mainly includes a guest-host effect box 10 , a photoelectric sensing layer 20 and a control circuit 30 .
  • the guest-host effect box 10 is located on the photosensitive side of the photoelectric sensing layer 20 .
  • the guest-host effect box 10 includes a first transparent conductive plate 101 and a second transparent conductive plate 102 disposed opposite to each other, and a display medium 103 disposed between the first transparent conductive plate 101 and the second transparent conductive plate 102 .
  • a first alignment layer 104 is provided on the surface of the first transparent conductive plate 101 facing the display medium 103
  • a second alignment layer 105 is provided on the surface of the second transparent conductive plate 102 facing the display medium 103 .
  • the display medium 103 includes liquid crystal molecules 1031 and dichroic dye molecules 1032 .
  • the first alignment layer 104 and the second alignment layer 105 are used to determine the long axis orientation of the liquid crystal molecules 1031 when no bias voltage is applied between the first transparent conductive plate 101 and the second transparent conductive plate 102;
  • the first transparent conductive plate 101 and the second transparent conductive plate 102 are used to form an electric field between the first transparent conductive plate 101 and the second transparent conductive plate 102 when a bias voltage is applied to control the deflection of the liquid crystal molecules 1031 , Further, the deflection of the dichroic dye molecules 1032 is controlled.
  • the alignment directions of the aforementioned first alignment layer 104 and the second alignment layer 105 are the same, that is, the long axis alignment of the liquid crystal molecules only under the action of the first alignment layer 104 and the alignment direction of the liquid crystal molecules only under the action of the second alignment layer 104
  • the long axis orientations of the liquid crystal molecules under the action of the layer 105 are the same.
  • the alignment direction mentioned later is the alignment direction of the first alignment layer 104 and also the alignment direction of the second alignment layer 105 .
  • the second alignment layer 105 which is not specifically limited here.
  • the alignment directions of the alignment layers in different guest-host effect cells 10 are different, and the bias voltage applied to the transparent electrode plates in different guest-host effect cells 10 is also different. Are not the same.
  • the aforementioned liquid crystal molecules 1031 are positive liquid crystal molecules.
  • the alignment direction of the aforementioned alignment layer (that is, the alignment direction of the first alignment layer 104 is also the second alignment direction)
  • the alignment direction of the alignment layer 105) is a direction that tends to be parallel to the alignment layer, or, is parallel to the direction of the alignment layer.
  • the long axis direction of the positive liquid crystal molecules in the guest-host effect cell 10 tends to be parallel to the direction of the alignment layer
  • the long axis direction of the positive dichroic dye molecules in the guest host effect cell 10 also tends to be parallel to the direction of the alignment layer; or, the long axis direction of the positive liquid crystal molecules in the guest host effect cell 10 is parallel to the direction of the alignment layer , and the long axis direction of the positive dichroic dye molecules in the guest-host effect box 10 is also parallel to the direction of the alignment layer.
  • the positive liquid crystal molecules has a first pre-tilt angle, and the first pre-tilt angle is the included angle between the long-axis orientation of the positive liquid crystal molecules and the alignment layer.
  • the first pretilt angle is a relatively small acute angle, so that the long axis of the positive liquid crystal molecules is aligned approximately parallel to the alignment layer. At this time, the long-axis orientation of the positive dichroic dye molecules will also follow the long-axis orientation of the positive liquid crystal molecules.
  • the positive dichroic dye molecules are also approximately parallel to the aforementioned alignment layer.
  • the positive liquid crystal molecules When a bias voltage is applied between the first transparent conductive plate 101 and the second transparent conductive plate 102, the positive liquid crystal molecules will be deflected along the direction of the electric field, that is, the positive liquid crystal molecules will be perpendicular to the first transparent conductive plate.
  • the direction of the 101 (or the second transparent conductive plate 102 ) (which can also be understood as the direction perpendicular to the alignment layer, or the direction perpendicular to the photoelectric sensing layer 20 ) is deflected.
  • the positive dichroic dye molecules will also follow the deflection of the positive liquid crystal molecules. Therefore, the positive dichroic dye molecules are also approximately perpendicular to the aforementioned alignment layer.
  • the value range of the first pretilt angle is 0° to 10°.
  • the control circuit 30 controls the aforementioned two electrodes of the guest-host effect box 10 without applying a bias voltage between the two electrodes
  • the long-axis orientation of the positive dichroic dye molecules is parallel to the photoelectric sensing layer 20, and only the polarized light signal perpendicular to the long-axis orientation of the positive dichroic dye molecules can pass through the aforementioned guest-host effect box 10. Therefore, the The guest-host effect box 10 functions as a polarizer.
  • the photoelectric sensing layer 20 in the polarization image sensor senses the aforementioned polarized light signal to obtain an electrical signal for generating polarization information.
  • the positive dichroic The long axis of the sex dye molecules is oriented perpendicular to the photoelectric sensing layer 20 .
  • the polarized light signals in all polarization directions are perpendicular to the long axis orientation of the positive dichroic dye molecules, and the polarized light signals and non-polarized light signals in all polarization directions can pass through the aforementioned guest-host effect box 10. Therefore, the guest-host effect
  • the cassette 10 functions as a white slide.
  • the photoelectric sensing layer 20 in the polarization image sensor senses the aforementioned incident light signal to obtain an electrical signal for generating unpolarized information.
  • the aforementioned liquid crystal molecules 1031 are negative liquid crystal molecules.
  • the alignment direction of the aforementioned alignment layer (that is, the alignment direction of the first alignment layer 104 is also the second alignment direction)
  • the alignment direction of the alignment layer 105) is a direction that tends to be perpendicular to the alignment layer.
  • the long axis direction of the negative liquid crystal molecules in the guest-host effect cell 10 tends to be perpendicular to the direction of the alignment layer, and, The direction of the long axis of the positive dichroic dye molecules in the guest-host effect box 10 also tends to be perpendicular to the direction of the alignment layer.
  • the alignment direction of the alignment layer is set to be a sandwich close to 90° with the alignment layer. angle, so that the negative liquid crystal molecules after the alignment treatment have a second pretilt angle.
  • the value range of the second pretilt angle is 80° to 90°.
  • the negative liquid crystal molecules can be approximately perpendicular to the alignment layer under the action of the alignment layer, but the negative liquid crystal molecules can be deflected along the aforementioned second pretilt angle during deflection until the negative liquid crystal molecules and the alignment layer are deflected. parallel.
  • the positive dichroic dye molecules will also be deflected to be parallel to the aforementioned alignment layer, that is, to be parallel to the photoelectric sensing layer 20 under the action of the dielectric force.
  • the long-axis orientation of the negative liquid crystal molecules is approximately perpendicular to the alignment layer.
  • the long-axis orientation of the positive dichroic dye molecules will also follow the long-axis orientation of the negative liquid crystal molecules. Therefore, the positive dichroic dye molecules are also approximately perpendicular to the aforementioned alignment layer.
  • the negative liquid crystal molecules When a bias voltage is applied between the first transparent conductive plate 101 and the second transparent conductive plate 102, the negative liquid crystal molecules will be deflected in the direction perpendicular to the electric field, that is, the negative liquid crystal molecules will be deflected along the direction parallel to the first transparent conductive plate 101 and the second transparent conductive plate 102.
  • the direction of the transparent conductive plate 101 (or the second transparent conductive plate 102 ) (which can also be understood as a direction parallel to the alignment layer) is deflected.
  • the positive dichroic dye molecules will also follow the deflection of the negative liquid crystal molecules. Therefore, the positive dichroic dye molecules are also approximately parallel to the aforementioned alignment layer.
  • the long axis of the positive dichroic dye molecules is oriented perpendicular to the photoelectric sensing layer 20 .
  • the polarized light signals in all polarization directions are perpendicular to the long axis orientation of the positive dichroic dye molecules, and the polarized light signals and non-polarized light signals in all polarization directions can pass through the aforementioned guest-host effect cell 10 . Therefore, the guest-host effect box 10 functions as a white glass slide.
  • the photoelectric sensing layer 20 in the polarization image sensor senses the aforementioned incident light signal to obtain an electrical signal for generating unpolarized information.
  • the positive dichroic The long axes of the sex dye molecules are oriented parallel to the photoelectric sensing layer 20 .
  • the polarized light signal perpendicular to the long axis orientation of the positive dichroic dye molecule can pass through the aforementioned guest-host effect cell 10 , so the guest-host effect cell 10 functions as a polarizer.
  • the photoelectric sensing layer 20 in the polarization image sensor senses the aforementioned polarized light signal to obtain an electrical signal for generating polarization information.
  • the control circuit 30 can indirectly control the deflection of the dye molecules by controlling the voltage between the two electrodes of the guest-host effect cell 10, so as to realize the guest-host effect
  • the effect box 10 switches between the polarizer function and the white glass function, thereby realizing the switching of the polarized image sensor between the polarized mode and the non-polarized mode.
  • the guest-host effect box 10 can absorb polarized light signals with different polarization directions in different regions when it functions as a polarizer.
  • each area divided in the alignment layer is called an alignment area.
  • the aforementioned alignment layer may include a plurality of alignment regions.
  • the region that can realize the function of the polarizer under the action of the control circuit 30 is called the polarizing region, and the region that can only realize the function of the white glass plate is called the non-polarizing region.
  • the aforementioned plurality of alignment regions may all be polarizing regions, or may be a combination of polarizing regions and non-polarizing regions. The following two situations will be introduced separately:
  • the projection directions of the alignment directions of the polarized regions in the alignment layer are not exactly the same, and the liquid crystal molecules in the polarized regions can be deflected under the control of the bias voltage .
  • the long axis orientation of the liquid crystal molecules (positive liquid crystal molecules or negative liquid crystal molecules) is determined by the aforementioned alignment direction, so , the long axis orientations of the liquid crystal molecules in different polarization regions are not completely the same, and further, the long axis orientations of the dichroic dye molecules in different polarization regions are not completely the same. Further, the projection directions of the long axis orientations of the dichroic dye molecules located in different polarization regions in the alignment layer are not completely the same.
  • the projection direction of the alignment direction of the positive liquid crystal molecules in the alignment layer is different from the alignment direction of the negative liquid crystal molecules.
  • the projection directions in the alignment layer can be the same. 3A and 3B are used as examples for introduction.
  • FIG. 3A is a top view, a front view and a side view of a polarization region of the guest-host effect cell 10 using positive liquid crystal molecules, wherein the orientation direction of the polarization region in the alignment layer is projected at 0°, That is to say, when the guest-host effect box 10 realizes the function of a polarizer, the guest-host effect box 10 only allows polarized light signals whose polarization direction is 90° to pass through.
  • the alignment region that can obtain polarized light of 90° as shown in FIG. 3A is referred to as a polarization region with a polarization direction of 90°.
  • 3B is a top view, a front view and a side view of a polarization region of the guest-host effect cell 10 using negative liquid crystal molecules, wherein the projection direction of the orientation direction of the polarization region in the alignment layer is also 0° , that is, when the guest-host effect box 10 realizes the polarizer function, that is, when the control circuit 30 applies a bias voltage to cause the negative liquid crystal molecules to be deflected with the positive dichroic dye molecules to be parallel to the photoelectric sensing layer, the guest-host effect
  • the effect box 10 also only allows polarized light signals whose polarization direction is 90° to pass. In this case, the alignment region that can obtain polarized light of 90° as shown in FIG.
  • the 3B can also be referred to as a polarization region whose polarization direction is 90°. It can be seen from the above two examples that although the alignment direction of the positive liquid crystal molecules and the alignment direction of the negative liquid crystal molecules are different, that is, the angle between the positive liquid crystal molecules and the alignment layer shown in the front view in FIG. 3A is the first pretilt angle, and the angle between the negative liquid crystal molecules and the alignment layer shown in the front view in FIG. 3B is the second pretilt angle. However, the projection direction of the alignment direction of the positive liquid crystal molecules in the alignment layer and the projection direction of the alignment direction of the negative liquid crystal molecules in the alignment layer are both 0°.
  • the polarization regions shown can all obtain polarized light signals with a polarization direction of 0°.
  • the projection direction of the alignment direction of any one of the plurality of polarizing regions in the aforementioned alignment layer in the alignment layer may be 0° (as shown in example a in FIG. 4 ) , 90° (as shown in example b in Fig. 4), 45° (as shown in example c in Fig. 4), 135° (as shown in example d in Fig. 4), 30° (as shown in example d in Fig. 4) Any of 60° (as shown in example g in FIG. 4 ) and 120° (as shown in example f in FIG. 4 ).
  • the projection direction in the aforementioned polarizing region may also be other angles, which are not specifically limited here.
  • the plurality of polarizing regions in the alignment layer may include two types of polarizing regions.
  • two polarization regions whose projection directions are perpendicular to each other may be set, that is, the projection directions of the two polarization regions differ by 90°.
  • the aforementioned two regions whose projection directions are perpendicular to each other are referred to as the first alignment region and the second alignment region.
  • the projection direction of the first alignment region and the projection direction of the second alignment region are perpendicular to each other.
  • the projection direction of the first alignment region is 0° (as shown in example a in FIG.
  • the projection direction of the first alignment area is 45° (as shown in example c in FIG. 4 ), and the projection direction of the second alignment area is 135° (as shown in example d in FIG. 4 ), at this time , the aforementioned polarizing region can be set according to example b in FIG. 5 .
  • the projection direction of the first alignment area is 30° (as shown in example e in FIG. 4 ), and the projection direction of the second alignment area is 120° (as shown in example f in FIG. 4 ), at this time , the aforementioned polarizing region can be set according to example c in FIG. 5 .
  • the projection direction of the first alignment region and the projection direction of the second alignment region may also be other values, which are not specifically limited here.
  • the plurality of polarization regions in the aforementioned alignment layer may include four kinds of alignment regions.
  • the aforementioned plurality of polarization regions include, in addition to the first alignment region and the second alignment region, a third alignment region and a fourth alignment region, and the alignment direction of the third alignment region is in the alignment layer.
  • the projection direction and the projection direction of the alignment direction of the fourth alignment region in the alignment layer are perpendicular to each other, and the projection direction of the alignment direction of the third alignment region in the alignment layer is in the alignment direction of the first alignment region.
  • the projection direction in the alignment layer differs by 45°
  • the projection direction of the alignment direction of the fourth alignment region in the alignment layer differs by 45° from the projection direction of the alignment direction of the second alignment region in the alignment layer.
  • the projection direction of the first alignment region is 0° (as shown in example a in FIG. 4 )
  • the projection direction of the second alignment region is 90° (as shown in example b in FIG. 4 )
  • the third The projection direction of the alignment area is 45° (as shown in example c in FIG. 4 )
  • the projection direction of the fourth alignment area is 135° (as shown in example d in FIG. 4 ).
  • the aforementioned polarizing regions can be set according to any one of the examples in FIG. 6 .
  • the arrangement of the aforementioned polarizing regions can also be adjusted according to practical applications, which is not specifically limited here.
  • the aforementioned multiple alignment regions include polarized regions and non-polarized regions.
  • the projection directions of the alignment directions of the aforementioned multiple polarizing regions in the alignment layer are not exactly the same, and the liquid crystal molecules in the polarizing regions can be deflected under the control of the bias voltage; There is no polarizing effect, that is, whether the control circuit 30 applies a bias voltage between the two electrodes of the guest-host effect box 10 or not, the non-polarizing region has no polarizing effect on the incident light signal.
  • An implementation manner is that liquid crystal molecules and dye molecules are not filled in the non-polarizing area, then, regardless of whether the control circuit 30 applies a bias voltage to the two electrodes of the guest-host effect cell 10, the non-polarizing area can only achieve white color. function of the slide.
  • the non-polarizing region can be filled with a transparent and colorless substance that does not filter the incident light signal, such as silica glass or resin. It should be noted that, if this implementation manner is adopted, positive liquid crystal molecules or negative liquid crystal molecules may be used in the guest-host effect cell 10 .
  • Another implementation is to fill the non-polarization area with positive liquid crystal molecules and positive dichroic dye molecules, and set the alignment direction of the alignment layer in the non-polarization area to be perpendicular to the alignment layer (ie perpendicular to the photoelectric sensor layer). Then, no matter whether the control circuit 30 applies a bias voltage to the two electrodes of the guest-host effect box 10, that is, whether or not a bias voltage is applied between the aforementioned first transparent electrode plate 101 and the second transparent electrode plate 102, the non-polarization region The positive liquid crystal molecules and the positive dichroic dye molecules in both remain perpendicular to the photoelectric sensing layer.
  • the polarized light signal of any polarization direction can pass through the aforementioned non-polarization region, and the non-polarization region can only realize the function of the white glass. It should be noted that, if this implementation manner is adopted, only positive liquid crystal molecules can be used in the guest-host effect cell 10, and in the aforementioned implementation manner, the guest-host effect cell 10 can use positive liquid crystal molecules, or Negative liquid crystal molecules.
  • one non-polarizing region and a plurality of polarizing regions may be combined.
  • the projection direction can be 0° (as shown in example a in FIG. 4 ), the projection direction is 90° (as shown in example b in FIG. 4 ), and the projection direction is 135° (as shown in the example in FIG. 4 ) d) and the non-polarizing region are combined to obtain example a as shown in FIG. 7 (taking the non-polarizing region filled with positive liquid crystal molecules and positive dichroic dye molecules as an example).
  • the projection direction may be 0° (as shown in example a in FIG.
  • the projection direction may be 90° (as shown in example b in FIG. 4 ), and the projection direction may be 45° (as shown in FIG. 4 )
  • Example c) and the non-polarizing region are combined to obtain the example b shown in FIG. 7 (taking the non-polarizing region filled with positive liquid crystal molecules and positive dichroic dye molecules as an example).
  • it can also be a combination of multiple polarizing regions and multiple non-polarizing regions, for example, the example shown in FIG. 8 .
  • the ratio of the number of polarized regions to the number of non-polarized regions can be adjusted according to actual application requirements, and this application will not list them one by one.
  • the alignment layer includes a polarizing region and a non-polarizing region
  • the case where the guest-host effect box 10 filters the incident light signal and the case where the photoelectric sensing layer 20 senses the outgoing light signal are different from those in the foregoing embodiments. different. Still combined with the aforementioned Figure 1 to introduce:
  • control circuit 30 is used to control the long-axis orientation of the positive liquid crystal molecules in the polarization region by controlling the voltage between the two electrodes of the guest-host effect cell 10, thereby controlling the polarization region in the polarization region. Long axis orientation of positive dichroic dye molecules.
  • the guest-host effect box 10 is used for receiving the incident light signal and outputting the third light signal or the fourth light signal.
  • the output of the guest-host effect box is a third optical signal
  • the third optical signal includes the polarized optical signal obtained by passing through the polarizing area and the non-polarizing optical signal obtained by passing through the non-polarizing area.
  • the unpolarized optical signal obtained by the polarization region, the polarization direction of the polarized optical signal is perpendicular to the long axis orientation of the positive dichroic dye molecule.
  • the output of the guest-host effect box 10 is a fourth optical signal
  • the fourth optical signal is the unpolarized light obtained by passing through the polarizing area and the non-polarizing area Signal.
  • the photoelectric sensing layer 20 is used for sensing the polarized optical signal in the third optical signal to generate a third electrical signal, and for sensing the unpolarized optical signal in the third optical signal to generate a fourth electrical signal Signal.
  • the third electrical signal is used to generate polarization information
  • the polarization information is used to generate a polarized image
  • the fourth electrical signal is used to generate first unpolarized information
  • the first unpolarized information is used to generate a first unpolarized image .
  • the photoelectric sensing layer 20 is used to sense the fourth optical signal to generate a fifth electrical signal
  • the fifth electrical signal is used to generate second unpolarized information
  • the second unpolarized information is used to generate a second unpolarized signal Polarized image.
  • the polarization image sensor can obtain an electrical signal for generating polarization information in a polarization mode, and obtain an electrical signal for generating non-polarization information in a non-polarization mode.
  • the region that can partially realize the function of the white glass ie, the region that is colorless and transparent
  • the polarization image sensor can generate a third optical signal for generating polarization information according to the third optical signal obtained in the polarization mode. an electrical signal and a fourth electrical signal for generating unpolarized information.
  • the camera device can obtain the third electrical signal for generating polarization information and the fourth electrical signal for generating non-polarization information through one shooting action, and the polarization image generated according to the third electrical signal and the fourth electrical signal generated according to the fourth electrical signal can be obtained.
  • the non-polarized image generated by the signal can be understood as the image taken at the same moment.
  • the unpolarized image generated according to the fourth electrical signal in the present application is brighter than the aforementioned synthesized unpolarized image, Details are sharper.
  • the long axis of the positive dichroic dye molecules in the polarization region is oriented parallel to the photoelectric sensing layer 20,
  • the polarizing region of the guest-host effect cell 10 realizes the function of a polarizer; the long axis of the positive dichroic dye molecules in the non-polarizing region is oriented perpendicular to the photoelectric sensing layer 20, and the non-polarizing region of the guest-host effect cell 10 is oriented vertically.
  • the polarizing region realizes the function of the white glass;
  • the guest-host effect box 10 is specifically used to control the polarized light component of the second polarization direction in the incident light signal to pass through the polarizing region of the guest-host effect box 10, and to control the incident light signal All pass through the non-polarization region of the guest-host effect box 10 to obtain the third optical signal, and the second polarization direction is perpendicular to the long axis orientation of the positive dichroic dye molecule;
  • the photoelectric sensing layer 20 is specifically used for sensing The third electrical signal and the fourth electrical signal are generated in response to the third optical signal.
  • control circuit 30 applies a preset bias voltage between the two electrodes of the guest-host effect cell 10 to control the long-axis orientation of the positive liquid crystal molecules in the polarization region to deflect to be perpendicular to the photoelectric sensing layer 20 , and then deflect the long-axis orientation of the dichroic dye molecules in the polarizing region to be perpendicular to the photoelectric sensing layer 20, and the long-axis orientation and positive dichroism of the positive liquid crystal molecules in the non-polarizing region
  • the orientation of the long axis of the dye molecule is not deflected, and both the polarizing area and the non-polarizing area of the guest-host effect box 10 realize the function of a white glass slide; the guest-host effect box 10 is specifically used to control the incident light signal to pass through the guest-host effect box.
  • the effect box 10 obtains the fourth optical signal; the photoelectric sensing layer 20 is specifically used to sense the fourth optical signal to generate the fifth electrical signal.
  • the aforementioned photoelectric sensing layer 20 includes a plurality of sensing units, and an electrical signal generated by at least one of the sensing units sensing a light signal is used to generate a pixel in an image.
  • the electrical signal generated by each sensing unit may be used to generate one pixel of the image, or it may be the electrical signal generated by multiple sensing units (for example, the electrical signals generated by four sensing units). ) is used to generate a pixel of the image. Specifically, it depends on the actual application requirements, and is not limited here.
  • electrical signals generated by a plurality of sensing units are used to generate a pixel in a polarized image.
  • the foregoing plurality of sensing units are sensing units corresponding to at least two alignment regions. For example, if one alignment area corresponds to one sensing unit, and the alignment area includes an alignment area with a deflection direction of 90° and an alignment area with a deflection direction of 0°.
  • the electrical signal 1 generated by one sensing unit corresponding to the alignment area with the polarization direction of 90° and the electrical signal 2 generated by the sensing unit corresponding to the alignment area with the polarization direction of 0° are used to generate the polarization image.
  • one pixel is if one alignment area corresponds to one sensing unit, and the alignment area includes an alignment area with a deflection direction of 90° and an alignment area with a deflection direction of 0°.
  • one alignment area corresponds to four sensing units
  • the alignment area includes an alignment area with a deflection direction of 45° and an alignment area with a deflection direction of 135°.
  • the electrical signals 3 generated by the four sensing units corresponding to the alignment area with the polarization direction of 45° and the electrical signals 4 generated by the four sensing units corresponding to the alignment area with the polarization direction of 135° are used together to generate the polarization image one pixel in .
  • each sensing unit includes a lens unit (also called a microlens), a guest-host effect box 10 , a color filter layer and a photodiode in the photoelectric sensing layer 20 .
  • the color filter layer is located between the lens unit and the photodiode to filter part of the wavelength band of the light rays collected by the lens unit.
  • the guest-host effect box 20 may be located under the lens unit and above the color filter layer; as shown in FIG. 9B , the guest-host effect box 20 may also be located above the lens unit, which is not limited here.
  • the color filter layer is made of a transparent material, so that specific light can pass through the color filter layer to reach the photodiode.
  • Each of the alignment regions corresponds to at least one of the sensing units on the photoelectric sensing layer 20 .
  • the aforementioned color filter layer is a colorless transparent film
  • the sensing unit shown in FIG. 9A or FIG. 9B is called a colorless sensing unit.
  • the aforementioned color filter layer will not filter the light passing through the color filter layer. Therefore, light in any wavelength band can reach the photodiode through the aforementioned color filter layer, for example, visible light with a wavelength band of 400nm to 750nm, or, Infrared light in the wavelength range of 750nm to 1mm. Therefore, the colorless sensing unit can sense light of any wavelength band mentioned above.
  • the colorless sensing unit can sense visible light such as white light, red light, and yellow light; the colorless sensing unit can also sense invisible light such as infrared light, which is not specifically limited here.
  • the aforementioned color filter layer is a colored transparent film, and the sensing unit shown in FIG. 9A or FIG. 9B is called a colored sensing unit.
  • the aforementioned color filter layer will only allow light in a specific wavelength band to pass through. Because the color filter layer has different absorption or reflection effects on light of different wavelength bands, the wavelength bands of the light passing through the color filter layer are different, and the light of different wavelength bands appears to the human eye with different colors.
  • the color filter layer allows light of the same color as the color filter layer to pass through, and reflects or absorbs light of other colors. For example, when the color filter layer is a yellow color filter layer, only yellow light passes through the color filter layer to reach the photodiode.
  • the aforementioned polarization image sensor may be composed entirely of colorless sensing units, may also be composed of all colored sensing units, or may include both colorless sensing units and colored sensing units.
  • the aforementioned color filter layer may be an RGB color filter layer (as shown in example a in FIG. 10 ), a CMY color filter layer (as shown in example b in FIG. 10 ), and the like.
  • the aforementioned color filter layer may be an RGBW color filter layer (as shown in example c in FIG. 10 ), a CMYW color filter layer (as shown in example d in FIG. 10 ) Wait.
  • the aforementioned polarization image sensor may be a CCD image sensor composed of a charged coupled device (CCD), or a CMOS image sensor composed of a complementary metal oxide semiconductor (CMOS), There is no specific limitation here.
  • the polarization image sensor is a CMOS image sensor, the sensitivity of the polarization image sensor to infrared light is higher than that of the CCD image sensor, so that the polarization image sensor can record more details of the photographed object.
  • the structure of the aforementioned polarization image sensor may be a front-illuminated structure (also called a surface-illuminated structure) or a back-illuminated structure, which is not specifically limited here.
  • the present application further provides a camera device 110 , and the camera device 110 is provided with the aforementioned polarization image sensor 1101 and the image processing device 1102 shown in FIG. 1 .
  • the camera device 110 may be a polarization imager, or may be a common device with a camera or photographing function, such as a mobile phone, a video camera, and the like. There is no specific limitation here.
  • the polarization image sensor 1101 when the polarization image sensor 1101 only includes a polarization region:
  • the image processing device 1102 is configured to receive a first electrical signal or a second electrical signal generated by the polarization image sensor 1101 , wherein the first electrical signal is an electrical signal generated by the polarization image sensor 1101 by sensing the polarized optical signal signal, the second electrical signal is an electrical signal generated by the polarization image sensor 1101 inducting an unpolarized light signal.
  • the image processing device 1102 is further configured to generate polarization information according to the corresponding relationship and the first electrical signal, where the polarization information is used to generate a polarization image, wherein the corresponding relationship is the polarization direction of the outgoing light signal and the sensed outgoing light The corresponding relationship between the sensing units of the signal; or, generating unpolarized information according to the second electrical signal, where the unpolarized information is used to generate an unpolarized image.
  • the image processing apparatus 1102 is further configured to receive indication information, where the indication information is used to instruct to generate the polarization information or to generate the non-polarization information.
  • the indication information is used to instruct the generation of the polarization information: the image processing device 1102 is used to generate the polarization information according to the corresponding relationship and the first electrical signal, the polarization information is used to generate a polarization image, the first The electrical signals include electrical signals generated by different sensing units in the polarization image sensor 1101 sensing polarized light signals with different polarization directions, and the electrical signals output by at least two of the sensing units are used to generate one pixel in the polarization image.
  • the image processing device 1102 is configured to generate unpolarized information according to the second electrical signal, where the unpolarized information is used to generate an unpolarized image, and the second electrical signal includes The electrical signal output by each sensing unit in the polarized image sensor 1101, and the electrical signal output by at least one sensing unit is used to generate a pixel in the non-polarized image.
  • the camera 110 provided by the present application is configured with the polarized image sensor 1101 provided by the present application. Therefore, the camera 110 can shoot both polarized images and non-polarized images (eg, ordinary high-definition images).
  • the polarization image sensor 1101 when the polarization image sensor 1101 only includes a polarizing area and a non-polarizing area:
  • the image processing device 1102 is configured to acquire a third electrical signal and a fourth electrical signal generated by the polarization image sensor 1101 according to the corresponding relationship, wherein the third electrical signal is an optical signal from the polarization region sensed by the polarization image sensor 1101
  • the generated electrical signal, the fourth electrical signal is an electrical signal generated by the polarization image sensor 1101 sensing an optical signal from a non-polarized region, and the corresponding relationship is the polarization state of the third optical signal and the sensed state of the third optical signal.
  • the corresponding relationship between the sensing units; the image processing device 1102 is used to generate polarization information according to the corresponding relationship and the third electrical signal, and generate unpolarized information according to the fourth electrical signal, and the unpolarized information is used to generate Unpolarized image.

Landscapes

  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)

Abstract

本申请实施例提供了一种偏振图像传感器和摄像装置,用于通过控制宾主效应盒上的偏置电压,以使得宾主效应盒在实现偏振片的功能时,偏振图像传感器能够感应特定偏振方向的偏振光以获得用于生成偏振信息的电信号; 以使得宾主效应盒在实现白玻片的功能时,偏振图像传感器能够感应自然光以获得用于生成非偏振信息的电信号。因此,可以使得本申请提出的偏振图像传感器可以在拍摄偏振图像的场景和普通图像的场景使用。当然,配置了本申请的偏振图像传感器的摄像装置便既可以生成偏振图像又可以生成非偏振图像(例如,普通高清图像)。

Description

偏振图像传感器和摄像装置 技术领域
本申请实施例涉及图像传感器领域,尤其涉及一种偏振图像传感器和摄像装置。
背景技术
偏振(polarization)是光的一种特性,指光的振动方向与传播方向不对称的特性。一般地,将具有偏振特性的光称为偏振光(polarized light),物体发出或反射的偏振光能够携带物体的信息。因此,可以通过偏振图像传感器记录前述偏振光以获得用于生成偏振信息的电信号,进而根据前述电信号生成携带偏振信息的偏振图像。该偏振图像多用于检测材料应力、形变,增强图像对比度,以及去除反光等场景。
一般地,偏振图像传感器包含固定的偏振片和光电传感层。由于,前述偏振图像传感器不能变更偏振片,因此,前述偏振图像传感器中的光电传感层仅可以感应到入射光中特定偏振方向的偏振光,而无法感应到除前述特定偏振方向之外的其他偏振态的光信号或非偏振光信号。因此,目前的偏振图像传感器仅可以应用于拍摄偏振图像的场景,而无法直接应用于拍摄普通图像的场景。
发明内容
本申请实施例提供了一种偏振图像传感器和摄像装置,用于通过控制宾主效应盒上的偏置电压,以使得宾主效应盒在实现偏振片功能时,偏振图像传感器能够感应特定偏振方向的偏振光以获得用于生成偏振信息的电信号;以使得宾主效应盒在实现白玻片功能时,偏振图像传感器能够感应自然光以获得用于生成非偏振信息的电信号。因此,可以使得本申请提出的偏振图像传感器可以在拍摄偏振图像的场景和普通图像的场景使用。当然,配置了本申请的偏振图像传感器的摄像装置便既可以生成偏振图像又可以生成非偏振图像(例如,普通高清图像)。
第一方面,本申请提供了一种偏振图像传感器,主要包括:控制电路、宾主效应盒以及光电传感层。其中,该宾主效应盒位于该光电传感层的感光侧,并且,该宾主效应盒的配向层与该光电传感层平行设置,该控制电路与该宾主效应盒的两个电极连接;此外,该宾主效应盒包括液晶分子和二向色性染料分子,该二向色性染料分子的长轴取向由该液晶分子的长轴取向确定。
具体地,该控制电路,用于通过控制该宾主效应盒的两个电极之间的电压以控制液晶分子的长轴取向,进而控制二向色性染料分子的长轴取向。也就是说,在该控制电路的控制下,宾主效应盒中的液晶分子可以发生偏转,进而带动二向色性染料分子偏转。于是,在某一时刻该二向色性染料分子的排布方式可以使该宾主效应盒实现偏振片的功能,在另一时刻该二向色性染料分子的排布方式可以使该宾主效应盒实现白玻片的功能。
此外,该宾主效应盒,用于接收入射光信号,输出出射光信号,其中,该出射光信号 为基于该入射光信号中的偏振态和该二向色性染料分子的长轴取向而确定的光信号。当前述宾主效应盒在控制电路作用下实现偏振片的功能时,前述出射光信号为起偏后的光信号;或者,当前述宾主效应盒在控制电路作用下实现白玻片的功能时,前述出射光信号为未起偏的光信号。
此外,该光电传感层,用于感应该起偏后的光信号而生成第一电信号,该第一电信号用于生成偏振信息,该偏振信息用于生成偏振图像;或者,该光电传感层,用于感应该未起偏的光信号而生成第二电信号,该第二电信号用于生成非偏振信息,该非偏振信息用于生成非偏振图像。
本实施方式中,通过控制宾主效应盒两个电极之间的电压以控制宾主效应盒内的液晶分子带动二向色性染料分子偏转,以使得该宾主效应盒实现偏振片的功能或白玻片的功能,能够使得由前述宾主效应盒组成的偏振图像传感器在偏振模式下获得用于生成偏振信息的电信号,在非偏振模式下获得用于生成非偏振信息的电信号。进而可以使得采用本申请提出的偏振图像传感器的摄像装置不仅能够输出偏振图像,还可以输出高清的非偏振图像。而传统技术中的偏振图像传感器采用的是固定偏振片,该固定偏振片不能发生变更,仅可以实现偏振片的功能。因此,传统技术中的偏振图像传感器无法直接感应自然光而生成普通图像。
在一种可选的实施方式中,前述宾主效应盒中的二向色性染料分子为正二向色性染料分子,该正二向色性染料分子的长轴取向与该光电传感层之间的空间关系用于确定该宾主效应盒输出起偏后的光信号或未起偏的光信号。也可以理解为,该正二向色性染料分子的长轴取向与该光电传感层之间的空间关系用于确定该宾主效应盒是否实现起偏功能。其中,当该宾主效应盒实现起偏功能时,该宾主效应盒输出起偏后的光信号;当该宾主效应盒实现非起偏功能(本申请指不对入射光信号起偏或过滤)时,该宾主效应盒输出未起偏的光信号。
由于,正二向色性染料分子用于供偏振方向与该正二向色性染料分子的长轴取向垂直的偏振光分量通过,正二向色性染料分子用于吸收偏振方向与该正二向色性染料分子的长轴取向平行的偏振光分量。因此,当该正二向色性染料分子的长轴取向平行于该光电传感层,或,该正二向色性染料分子的长轴取向趋向于平行于该光电传感层时,偏振方向垂直于该正二向色性染料分子的长轴取向的偏振光分量恰好可以通过该宾主效应盒,此时,该宾主效应盒实现起偏功能(即偏振片的功能);当该正二向色性染料分子的长轴取向垂直于该光电传感层,或,该正二向色性染料分子的长轴取向趋向于垂直于该光电传感层时,该入射光信号中所有偏振光的偏振方向均垂直于该正二向色性染料分子的长轴取向,也就是说,该入射光信号全部可以通过该宾主效应盒,此时,该宾主效应盒不实现起偏功能(即白玻片的功能)。
在一种可选的实施方式中,当该正二向色性染料分子的长轴取向为平行于该光电传感层时,该宾主效应盒实现偏振片的功能;此时,该宾主效应盒,具体用于控制该入射光信号中第一偏振方向的偏振光分量通过该宾主效应盒,得到该起偏后的光信号,该第一偏振方向与该正二向色性染料分子的长轴取向垂直;光电传感层,具体用于感应该起偏后的光 信号而生成该第一电信号。应当注意的是,由于正二向色性染料分子是随着液晶分子的偏转而偏转的,因此,此时的液晶分子的长轴取向也是平行于该光电传感层,或者,该液晶分子的长轴取向趋向于平行于该光电传感层。
在一种可选的实施方式中,当该正二向色性染料分子的长轴取向为垂直于该光电传感层时,该宾主效应盒实现白玻片的功能;该宾主效应盒,具体用于控制该入射光信号全部通过该宾主效应盒,得到该未起偏的光信号;该光电传感层,具体用于感应该未起偏的光信号而生成该第二电信号。应当注意的是,由于正二向色性染料分子是随着液晶分子的偏转而偏转的,因此,此时的液晶分子的长轴取向也是垂直于该光电传感层,或者,该液晶分子的长轴取向趋向于垂直于该光电传感层。
还应当注意的是,前述液晶分子可以是正性液晶分子,也可以是负性液晶分子。当采用不同电性的液晶分子制作宾主效应盒时,即仅采用正性液晶分子和正二向色性染料分子填充宾主效应盒,或者,仅采用负性液晶分子和正二向色性染料分子填充宾主效应盒时,配向层的配向方向不同。
具体地,若宾主效应盒中填充的是正性液晶分子和正二向色性染料分子,由于,正性液晶分子在电场作用下会沿电场方向偏转,即正性液晶分子会偏转至垂直于光电传感层的方向。因此,在配向处理时,需要将正性液晶分子配向成趋近于平行于光电传感层的方向。一方面,可以在未施加偏置电压时,使得正性液晶分子在配向层的作用下相对平行于光电传感层,进而使正二向色性染料分子也平行于光电传感层;另一方面,可以在施加偏置电压时,正性液晶分子能够顺利沿着电场方向偏转,进而使正二向色性染料分子也沿着电场方向偏转,到达垂直于光电传感层的方向。
另外,若宾主效应盒中填充的是负性液晶分子和正二向色性染料分子,由于,负性液晶分子在电场作用下会沿着垂直于电场方向的方向偏转,即负性液晶分子会偏转至平行于光电传感层的方向。因此,在配向处理时,需要将负性液晶分子配向成趋近于垂直于光电传感层的方向。一方面,可以在未施加偏置电压时,使得负性液晶分子在配向层的作用下相对垂直于光电传感层,进而使正二向色性染料分子也垂直于光电传感层;另一方面,可以在施加偏置电压时,负性液晶分子能够顺利沿着垂直于电场的方向偏转,进而使正二向色性染料分子也沿着垂直于电场的方向偏转,到达平行于光电传感层的方向。
应当理解的是,此处的电场作用指控制电路在宾主效应盒的两个电极之间施加偏振电压时,在前述两个电极之间形成的电场的作用。另外,宾主效应盒的两个电极均平行于光电传感层,位于光电传感层的感光侧。具体地,请参阅后文图2A对应实施例中的相关介绍,此处不予赘述。
在一种可选的实施方式中,该液晶分子为正性液晶分子,该正性液晶分子具有第一预倾角,该第一预倾角为该宾主效应盒的两个电极之间未施加偏置电压时,该正性液晶分子的长轴取向与该宾主效应盒中的配向层之间的夹角,该第一预倾角的取值范围为0°至10°。
在另一种可选的实施方式中,该液晶分子为负性液晶分子,该负性液晶分子具有第二预倾角,该第二预倾角为该宾主效应盒的两个电极之间未施加偏置电压时,该负性液晶分 子的长轴取向与该宾主效应盒中的配向层之间的夹角,该第二预倾角的取值范围为80°至90°。
在一种可选的实施方式中,当满足如下条件时,该正二向色性染料分子的长轴取向为平行于该光电传感层:该液晶分子为正性液晶分子,该宾主效应盒的两个电极之间未施加偏置电压;或者,该液晶分子为负性液晶分子,该宾主效应盒的两个电极之间施加第一预设偏置电压,以使得该负性液晶分子的长轴取向偏转至平行于该光电传感层的方向。
在另一种可选的实施方式中,当满足如下条件时,该正二向色性染料分子的长轴取向为垂直于该光电传感层:该液晶分子为正性液晶分子,该宾主效应盒的两个电极之间施加第二预设偏置电压,以使得该正性液晶分子的长轴取向偏转至垂直于该光电传感层的方向;
或者,该液晶分子为负性液晶分子,该宾主效应盒的两个电极之间未施加偏置电压。
在一种可选的实施方式中,该配向层包括多个配向区域,前述多个配向区域的配向方向不完全相同,该配向方向用于在该宾主效应盒的两个电极之间未施加偏置电压时确定该液晶分子长轴取向。也就是说,在前述配向层中的多个配向区域中,可能存在相同配向方向的配向区域,也可能存在两个配向方向不同的配向区域,具体本申请不做限定。
在一种可选的实施方式中,该多个配向区域包括多个起偏区域,前述多个起偏区域的配向方向在该配向层中的投影方向不完全相同,该起偏区域中的液晶分子能够在该偏置电压的控制下发生偏转。也就是说,在前述多个起偏区域中,可能存在投影方向(即配向方向在该配向层中的投影方向)相同的若干起偏区域,也可能存在两个起偏区域的投影方向不同。
在一种可选的实施方式中,该多个起偏区域包括第一配向区域和第二配向区域,该第一配向区域的配向方向在该配向层中的投影方向与该第二配向区域的配向方向在该配向层中的投影方向相互垂直。
在一种可选的实施方式中,该多个起偏区域还包括第三配向区域和第四配向区域,该第三配向区域的配向方向在该配向层中的投影方向与该第四配向区域的配向方向在该配向层中的投影方向相互垂直,并且,该第三配向区域的配向方向在该配向层中的投影方向与该第一配向区域的配向方向在该配向层中的投影方向相差45°,该第四配向区域的配向方向在该配向层中的投影方向与该第二配向区域的配向方向在该配向层中的投影方向相差45°。
在一种可选的实施方式中,该多个起偏区域包括第五配向区域和第六配向区域,该第五配向区域的配向方向在该配向层中的投影方向与该第六配向区域的配向方向在该配向层中的投影方向相差60°。
在一种可选的实施方式中,该光电传感层包括多个感应单元,每个该感应单元用于感应光信号而生成电信号;每个该配向区域与该光电传感层上的至少一个该感应单元对应。
在一种可选的实施方式中,至少一个该感应单元生成的电信号用于生成图像中的一个像素。
示例性的,在非偏振模式下,可以是每个感应单元生成的电信号用于生成图像的一个像素,也可以是多个感应单元生成的电信号(例如,四个感应单元生成的电信号)用于生 成图像的一个像素。具体由实际应用需求而定,此处不做限定。
示例性的,在偏振模式下,是多个感应单元生成的电信号用于生成偏振图像中的一个像素。可选的,前述多个感应单元为至少两个配向区域对应的感应单元。例如,若一个配向区域对应一个感应单元,并且,配向区域包括起偏方向为90°的配向区域和起偏方向为0°的配向区域。此时,起偏方向为90°的配向区域对应的一个感应单元生成的电信号1和起偏方向为0°的配向区域对应的一个感应单元生成的电信号2一起用于生成偏振图像中的一个像素。又例如,若一个配向区域对应四个感应单元,并且,配向区域包括起偏方向为45°的配向区域和起偏方向为135°的配向区域。此时,起偏方向为45°的配向区域对应的四个感应单元生成的电信号3和起偏方向为135°的配向区域对应的四个感应单元生成的电信号4一起用于生成偏振图像中的一个像素。具体由实际应用需求而定,此处不做限定。
第二方面,本申请提供了一种摄像装置,该摄像装置可以是偏振成像仪,也可以是普通的具有摄像或拍照功能的装置,例如,手机、摄像机等。该摄像装置包括图像处理装置以及如第一方面任意一种实施方式所提及的偏振图像传感器。其中,该图像处理装置,用于接收该偏振图像传感器生成的第一电信号或第二电信号,其中,该第一电信号为该偏振图像传感器感应起偏后的光信号而生成的电信号,该第二电信号为该偏振图像传感器感应未起偏的光信号而生成的电信号。该图像处理装置,还用于根据对应关系和该第一电信号生成偏振信息,该偏振信息用于生成偏振图像,其中,该对应关系为出射光信号的偏振方向与感应该出射光信号的感应单元之间的对应关系;或者,根据该第二电信号生成非偏振信息,该非偏振信息用于生成非偏振图像。
在一种可选的实施方式中,该图像处理装置,还用于接收指示信息,该指示信息用于指示生成该偏振信息或生成该非偏振信息。
在一种可选的实施方式中,当该指示信息用于指示生成该偏振信息时:该图像处理装置,用于根据该对应关系和该第一电信号生成该偏振信息,该偏振信息用于生成偏振图像,该第一电信号包括该偏振图像传感器中的不同感应单元感应不同偏振方向的偏振光信号而生成的电信号,至少两个该感应单元输出的电信号用于生成该偏振图像中的一个像素。
在一种可选的实施方式中,当该指示信息用于指示生成该非偏振信息时:该图像处理装置,用于根据该第二电信号生成非偏振信息,该非偏振信息用于生成非偏振图像,该第二电信号包括该偏振图像传感器中的每个感应单元输出的电信号,至少一个该感应单元输出的电信号用于生成该非偏振图像中的一个像素。
本申请提供的摄像装置配置了本申请提出的偏振图像传感器,因此,摄像装置可以拍摄出偏振图像又可以拍摄出非偏振图像(例如,普通高清图像)。
第三方面,本申请提供了一种图像获取方法,该图像获取方法由前述第二方面以及第二方面任意一种实施方式所提及的摄像装置实现。具体地,该图像获取方法可以由该摄像装置中的图像处理装置运行程序代码而实现。其中,该图像处理装置将接收指示信息,该指示信息用于指示生成偏振信息或生成非偏振信息;当该指示信息指示生成偏振信息时,该图像处理装置获取第一电信号,并根据对应关系和该第一电信号生成偏振信息。其中, 该第一电信号为偏振图像传感器感应起偏后的光信号而生成的电信号,该对应关系为出射光信号的偏振方向与感应该出射光信号的感应单元之间的对应关系。
可选的,该图像处理装置根据该偏振信息生成偏振图像。
第四方面,本申请提供了另一种图像获取方法,该图像获取方法由前述第二方面以及第二方面任意一种实施方式所提及的摄像装置实现。具体地,该图像获取方法可以由该摄像装置中的图像处理装置运行程序代码而实现。其中,该图像处理装置将接收指示信息,该指示信息用于指示生成偏振信息或生成非偏振信息;当该指示信息指示生成非偏振信息时,获取第二电信号,并根据该第二电信号生成非偏振信息,其中,该第二电信号为偏振图像传感器感应未起偏的光信号而生成的电信号,该非偏振信息用于生成非偏振图像。
可选的,该图像处理装置根据该非偏振信息生成非偏振图像(例如,普通高清图像)。
第五方面,本申请提供了另一种偏振图像传感器,主要包括:控制电路、宾主效应盒以及光电传感层。其中,该宾主效应盒位于该光电传感层的感光侧,并且,该宾主效应盒的配向层与该光电传感层平行设置,该控制电路与该宾主效应盒的两个电极连接;此外,该宾主效应盒包括正性液晶分子和正二向色性染料分子,该正二向色性染料分子的长轴取向由该液晶分子的长轴取向确定;该宾主效应盒的配向层包括多个配向区域,该配向区域包括起偏区域和非起偏区域,该非起偏区域对入射光信号没有起偏作用。应当注意的是,无论控制电路是否在宾主效应盒的两个电极之间施加偏置电压,该非起偏区域对入射光信号均没有起偏作用。但是,前述起偏区域会因控制电路是否施加偏置电压而在实现起偏作用和不实现起偏作用之间进行切换。
具体地,该控制电路,用于通过控制该宾主效应盒的两个电极之间的电压以控制该起偏区域中的正性液晶分子的长轴取向,进而控制该起偏区域中的正二向色性染料分子的长轴取向。
此外,该宾主效应盒,用于接收入射光信号,输出第三光信号或第四光信号。其中,当前述起偏区域实现起偏功能时,该宾主效应盒输出的是第三光信号,该第三光信号包括经过该起偏区域而获得的起偏后的光信号和经过该非起偏区域而获得的未起偏的光信号,该起偏后的光信号的偏振方向与该正二向色性染料分子的长轴取向垂直。当前述起偏区域不实现起偏功能时,该宾主效应盒输出的是第四光信号,该第四光信号为经过该起偏区域和该非起偏区域而获得的未起偏的光信号。
此外,该光电传感层,用于感应该第三光信号中的起偏后的光信号而生成第三电信号并且,感应第三光信号中的未起偏的光信号生成第四电信号。其中,该第三电信号用于生成偏振信息,该偏振信息用于生成偏振图像,该第四电信号用于生成第一非偏振信息,该第一非偏振信息用于生成第一非偏振图像。或者,该光电传感层,用于感应该第四光信号而生成第五电信号,该第五电信号用于生成第二非偏振信息,该第二非偏振信息用于生成第二非偏振图像。
本实施方式中,一方面能够通过控制宾主效应盒两个电极之间的电压以控制宾主效应盒内的液晶分子带动二向色性染料分子偏转,以使得该宾主效应盒实现偏振片的功能或白玻片的功能,能够使得由前述宾主效应盒组成的偏振图像传感器在偏振模式下获得用于生 成偏振信息的电信号,在非偏振模式下获得用于生成非偏振信息的电信号。另一方面,提出可以保留部分实现白玻片功能的区域(即无色透明的区域),这样可以使得偏振图像传感器根据在偏振模式下获得的第三光信号生成用于生成偏振信息的第三电信号和用于生成非偏振信息的第四电信号。于是,摄像装置便可以通过一次拍摄动作获得用于生成偏振信息的第三电信号和用于生成非偏振信息的第四电信号,并且,根据第三电信号生成的偏振图像和根据第四电信号生成的非偏振图像可以理解为是拍摄的同一时刻的图像。此外,相比于传统技术中根据用于生成偏振信息的电信号而合成的非偏振图像来说,本申请中根据第四电信号生成的非偏振图像比前述的合成的非偏振图像更加明亮,细节更加清晰。
可选的,该第三电信号和该第四电信号用于第三非偏振信息,该第三非偏振信息用于生成第三非偏振图像。
本实施方式中,提出可以在第四电信号的基础上增加第三电信号以生成第三非偏振信息,此时,采用该第三非偏振信息生成的第三非偏振图像相比于前述第二非偏振图像可以具有更高的亮度。
在一种可选的实施方式中,该正二向色性染料分子的长轴取向与该光电传感层之间的空间关系用于确定该宾主效应盒中的起偏区域起偏后的光信号或未起偏的光信号。也可以理解为,该正二向色性染料分子的长轴取向与该光电传感层之间的空间关系用于确定该宾主效应盒中的起偏区域是否实现起偏功能。
在一种可选的实施方式中,当该宾主效应盒的两个电极之间未施加预设偏置电压时,该起偏区域中的正二向色性染料分子的长轴取向为平行于该光电传感层,该宾主效应盒的起偏区域实现偏振片的功能;该非起偏区域中的正二向色性染料分子的长轴取向为垂直于该光电传感层,该宾主效应盒的非起偏区域实现白玻片的功能;该宾主效应盒,具体用于控制该入射光信号中第二偏振方向的偏振光分量通过该宾主效应盒的起偏区域,并且,控制该入射光信号全部通过该宾主效应盒的非起偏区域,得到该第三光信号,该第二偏振方向与该正二向色性染料分子的长轴取向垂直;该光电传感层,具体用于感应该第三光信号而生成该第三电信号和该第四电信号。
本实施例中,提出非起偏区域中可以将正性液晶分子配置成垂直于配向层的方向,即在未施加偏置电压的情况下,该正性液晶分子的长轴取向垂直与光电传感层。由于,正性液晶分子在电场作用下是沿着电场方向偏转的,因此,采用前述配向方式可以使得该正性液晶分子无论是否在电场作用下均保持垂直于光电传感层。也就是说,该非配向区域均可以实现白玻片的功能,即不对入射光信号起偏或过滤。
在一种可选的实施方式中,该控制电路,具体用于在该宾主效应盒的两个电极之间施加预设偏置电压以控制该起偏区域中的正性液晶分子的长轴取向偏转至垂直于该光电传感层,进而使该起偏区域中的二向色性染料分子的长轴取向偏转至垂直于该光电传感层,该非起偏区域中的正性液晶分子的长轴取向和正二向色性染料分子的长轴取向不发生偏转,该宾主效应盒的起偏区域和非起偏区域均实现白玻片的功能;该宾主效应盒,具体用于控制该入射光信号全部通过该宾主效应盒,得到该第四光信号;该光电传感层,具体用于感应该第四光信号而生成该第五电信号。
在一种可选的实施方式中,每个该非起偏区域未填充该正性液晶分子和该正二向色性染料分子,该宾主效应盒的非起偏区域实现白玻片的功能。
本实施方式中,提出了另一种配置非起偏区域的方式,可以不在非起偏区域填充液晶分子和染料分子。此时,该非起偏区域是完全无色透明的,该非起偏区域不会对入射光信号起偏或过滤,该非起偏区域实现的是白玻片的功能。
在一种可选的实施方式中,当该宾主效应盒的两个电极之间未施加预设偏置电压时,该起偏区域中的正二向色性染料分子的长轴取向为平行于该光电传感层,该宾主效应盒的起偏区域实现偏振片的功能;该宾主效应盒,具体用于控制该入射光信号中第二偏振方向的偏振光分量通过该宾主效应盒的起偏区域,并且,控制该入射光信号全部通过该宾主效应盒的非起偏区域,得到该第三光信号,该第二偏振方向与该正二向色性染料分子的长轴取向垂直;该光电传感层,具体用于感应该第三光信号而生成该第三电信号和该第四电信号。
在一种可选的实施方式中,每个该起偏区域的配向方向在该配向层中的投影方向不完全相同。
在一种可选的实施方式中,该多个起偏区域包括第一配向区域和第二配向区域,该第一配向区域的配向方向在该配向层中的投影方向与该第二配向区域的配向方向在该配向层中的投影方向相互垂直。
在一种可选的实施方式中,该多个起偏区域还包括第三配向区域和第四配向区域,该第三配向区域的配向方向在该配向层中的投影方向与该第四配向区域的配向方向在该配向层中的投影方向相互垂直,并且,该第三配向区域的配向方向在该配向层中的投影方向与该第一配向区域的配向方向在该配向层中的投影方向相差45°,该第四配向区域的配向方向在该配向层中的投影方向与该第二配向区域的配向方向在该配向层中的投影方向相差45°。
在一种可选的实施方式中,该多个起偏区域包括第五配向区域和第六配向区域,该第五配向区域的配向方向在该配向层中的投影方向与该第六配向区域的配向方向在该配向层中的投影方向相差60°。
在一种可选的实施方式中,该光电传感层包括多个感应单元,每个该感应单元用于感应光信号而生成电信号,至少一个该感应单元生成的电信号用于生成图像中的一个像素;每个配向区域与该光电传感层上的至少一个该感应单元对应。
第六方面,本申请提供了一种摄像装置,该摄像装置可以是偏振成像仪,也可以是普通的具有摄像或拍照功能的装置,例如,手机、摄像机等。该摄像装置包括图像处理装置以及如第五方面任意一种实施方式所提及的偏振图像传感器。该图像处理装置,用于根据对应关系获取该偏振图像传感器生成的第三电信号和第四电信号,其中,该第三电信号为该偏振图像传感器感应来自起偏区域的光信号而生成的电信号该第四电信号为该偏振图像传感器感应来自非起偏区域的光信号而生成的电信号,该对应关系为第三光信号的偏振态与感应该第三光信号的感应单元之间的对应关系;该图像处理装置,用于根据该对应关系和该第三电信号生成偏振信息,并且,根据该第四电信号生成非偏振信息,该非偏振信息 用于生成非偏振图像。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,通过控制宾主效应盒两个电极之间的电压以控制宾主效应盒内的液晶分子带动二向色性染料分子偏转,以使得该宾主效应盒实现偏振片的功能或白玻片的功能,能够使得由前述宾主效应盒组成的偏振图像传感器在偏振模式下获得用于生成偏振信息的电信号,在非偏振模式下获得用于生成非偏振信息的电信号。进而可以使得采用本申请提出的偏振图像传感器的摄像装置不仅能够输出偏振图像,还可以输出高清的非偏振图像。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例。
图1为本申请实施例中偏振图像传感器的主要结构示意图;
图2A为本申请实施例中偏振图像传感器的剖面结构示意图;
图2B为本申请实施例中采用正性液晶分子时偏振图像传感器的剖面结构示意图;
图2C为本申请实施例中采用负性液晶分子时偏振图像传感器的剖面结构示意图;
图3A为本申请实施例中采用正性液晶分子时宾主效应盒的一个示例图;
图3B为本申请实施例中采用负性液晶分子时宾主效应盒的一个示例图;
图4为本申请实施例中一个配向区域的配向方向的示例图;
图5为本申请实施例中多个配向区域的配向方向的一种示例图;
图6为本申请实施例中多个配向区域的配向方向的另一种示例图;
图7为本申请实施例中多个配向区域的配向方向的另一种示例图;
图8为本申请实施例中多个配向区域的配向方向的另一种示例图;
图9A为本申请实施例中偏振图像传感器的另一种剖面结构示意图;
图9B为本申请实施例中偏振图像传感器的另一种剖面结构示意图;
图10为本申请实施例中偏振图像传感器中的彩膜层的示例图;
图11为本申请实施例中摄像装置的一个实施例示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过 程、方法、产品或设备固有的其它步骤或单元。
为便于理解,下面先对本申请涉及的专术语进行介绍:
起偏:指将非偏振光信号或任意偏振态的光信号通过光学滤波器处理为偏振光信号的过程,也可以理解为,使特定偏振光其他信号通过并阻挡或吸收光信号的过程。该起偏过程使用的光学滤波器被称为起偏器(polarizer)。该起偏器能够让具有特定偏振方向的光信号通过,常用于从自然光中获得偏振光。常用的起偏器有:偏振片(polaroid)、尼科耳棱镜(Nicol prism)等。传统技术中的偏振片在制作完成之后便具有了确定的起偏方向,不能够变更起偏方向,也不能够不实现起偏功能。
二向色性(dichroism):是晶体的一种光学特性,指晶体对光的吸收系数依赖于入射光的偏振状态的特性。一般地,入射光的偏振方向不同,该晶体对该入射光的吸收作用便不同。例如,具有该二向色性的染料分子被称为二向色性染料分子,该二向色性染料分子可以吸收特定偏振方向的偏振光,当该二向色性染料分子发生偏转时,该二向色性染料分子对前述特定偏振方向的偏振光的吸收作用将减弱。一般地,二向色性分子分为正二向色性分子和负二向色性分子。对于正二向色性染料分子,当正二向色性染料分子的长轴取向与偏振光的偏振方向垂直时,该正二向色性染料分子能够使偏振光几乎全部透过;当正二向色性染料分子的长轴取向与偏振光的偏振方向平行时,该正二向色性染料分子能够将偏振光几乎全部吸收。而对于负性二向色性染料分子则刚好相反,当负性二向色性染料分子的长轴取向与偏振光的偏振方向垂直时,该负性二向色性染料分子能够将偏振光几乎全部吸收,当负性二向色性染料分子的长轴方向与偏振光的偏振方向平行时,该负性二向色性染料分子能够使偏振光几乎全部透过。应当理解的是,本申请后文所提及的“全部透过”或“全部吸收”可以理解为是理想化的状态,在实际应用中可能存在些许误差。例如,当正二向色性染料分子的长轴取向与偏振光的偏振方向垂直时,该正二向色性染料分子对该偏振光有极小的几乎可以忽略不计的吸收作用。
宾主效应(guest-heat effect):指当具有二向色性的染料作为客体溶于定向排列的液晶主体中时,二向色性染料分子会在介电力的作用下呈现出与液晶分子同向排布的现象。当作为主体的液晶分子的长轴取向在电场作用下发生偏转时,前述二向色性染料分子的长轴取向也将随液晶分子的长轴取向而偏转。由于,二向色性染料分子主要吸收与该染料分子的长轴取向呈特定方向的偏振光,因此,当前述液晶分子的长轴取向发生偏转时,二向色性染料分子对偏振光的吸收情况也将发生变化。后文将介绍的宾主效应盒(guest-heat effect box)便是利用宾主效应的原理,将包含液晶分子和二向色性染料分子的显示介质置于相对设置的两个透明导电板中,能够通过在前述两个透明导电板之间设置偏置电压的方式对前述液晶分子施加电场作用力,以控制液晶分子的长轴取向,进而控制二向色性染料分子的长轴取向。
配向:指在没有外加电场的作用下,对液晶分子施加一个外部作用,以使得液晶分子产生特定的取向,即液晶分子的长轴取向将按照前述外部作用的方向排布。一般地,将前述外部作用的方向称为配向方向。经配向处理之后,该液晶分子的长轴取向即为该配向方向。一般地,采用配向膜实现对液晶分子的配向处理。该配向膜技术常与宾主效应盒技术 结合,即在宾主效应盒中的两个透明导电板之间相对设置两层配向膜,以使得在前述宾主效应盒未施加偏置电压时,前述液晶分子也能够有特定的排布方向,进而使得二向色性染料分子也具有特定的排布方向。
白玻片:指透明无色且对入射光没有任何过滤作用或起偏作用的光学部件。一般地,该光学部件采用玻璃制成,故而被称为白玻片。在实际应用中,还可以采用其他材质制成与前述白玻片具有相同光学功能的部件,例如,树脂、石英晶体等,具体本申请不做限定。
偏振图像(polarization imaging):指基于偏振信息而衍生出来的图像。当在不同的应用场景下,基于偏振信息衍生出的图像可能是一幅图像、也可能是多幅图像,可能是平面图像、也可能是立体图像。例如,在消费电子产品(例如,手机摄像头、相机摄像头等)中的人脸识别场景和三维建模场景,可能需要基于偏振信息输出多幅偏振图像,前述多幅图像可能包括立体图像。具体本申请不做限定。
下面对本申请提出的偏振图像传感器的应用场景进行介绍:
本申请提出的偏振图像传感器主要应用于偏振成像场景中,例如,偏振成像仪拍摄物体而生成偏振图像的场景。目前,传统技术中的偏振成像仪采用的是配置了固定偏振片的图像传感器,其中,前述偏振片由固态材料经定向拉伸而制成,无法随意变更形态。因此,前述配置了固定偏振片的图像传感器在接收入射光信号之后,仅可以输出根据特定偏振方向的偏振光信号而生成的电信号,进而使得偏振成像仪生成携带偏振信息的偏振图像。但是,前述传统的图像传感器无法输出基于非偏振光信号生成的电信号,因此,传统的偏振成像仪无法直接基于非偏振光信号生成非偏振图像(即不携带偏振信息的图像)。
对此,本申请提出结合了宾主效应盒技术和配向技术的偏振图像传感器,采用内置配向膜的宾主效应盒来实现偏振片的功能,并且,通过对宾主效应盒中的液晶分子和二向色性染料分子的排列方式的控制,以使得前述内置配向膜的宾主效应盒能够在实现偏振片的功能和实现白玻片的功能之间切换,进而促使前述偏振图像传感器能够根据同一入射光信号输出用于生成偏振信息的电信号或用于生成非偏振信息的电信号。
下面将对本申请提出的偏振图像传感器的主要结构进行介绍:
如图1所示,为偏振图像传感器的主要结构示意图。其中,该偏振图像传感器主要包括宾主效应盒10、光电传感层20以及控制电路30。其中,该宾主效应盒10位于该光电传感层20的感光侧,并且,该宾主效应盒10包括液晶分子和二向色性染料分子,该二向色性染料分子的长轴取向由该液晶分子的长轴取向确定。
其中,控制电路30与该宾主效应盒10的两个电极连接,用于控制该宾主效应盒10的两个电极之间的电压。由于,宾主效应盒10中两个电极之间形成的电场可以控制该宾主效应盒10中的液晶分子的长轴取向,并且,二向色性染料分子会在介电力作用下跟随液晶分子偏转。也就是说,在该控制电路30的控制下,宾主效应盒10中的液晶分子可以发生偏转,进而带动二向色性染料分子偏转。因此,通过调整前述两个电极之间的偏置电压可以间接实现控制该二向色性染料分子的长轴取向。
该宾主效应盒10,用于接收入射光信号,输出出射光信号。前述入射光信号可以包含 偏振光和/或非偏振光,其中,偏振光可以是一种或多种偏振方向的偏振光。可选的,前述偏振光可以为线偏振光。例如,本申请中的入射光信号可以为自然光,该自然光中既包含偏振光又包含非偏振光。前述出射光信号因二向色性染料分子的长轴取向的不同而不同。该宾主效应盒10中的二向色性染料分子的长轴取向不同时,该宾主效应盒10在偏振图像传感器中所起的作用也不同。在某一时刻该二向色性染料分子的排布方式可以使该宾主效应盒10实现偏振片的功能,在另一时刻该二向色性染料分子的排布方式可以使该宾主效应盒10实现白玻片的功能。
具体地,当该二向色性染料分子的长轴取向为平行于光电传感层20时,该宾主效应盒10用于控制该入射光信号中的部分偏振光分量通过该宾主效应盒10,得到起偏后的光信号。其中,该起偏后的光信号为从前述入射光信号中过滤出的具有特定偏振方向的偏振光信号。若前述宾主效应盒10中的二向色性染料分子为正二向色性染料分子,则前述起偏后的光信号为偏振方向与前述正二向色性染料分子的长轴取向垂直的偏振光信号。此时,该光电传感层20用于感应前述起偏后的光信号生成用于生成偏振信息的电信号。此时,前述宾主效应盒10实现的是偏振片的功能。为便于后文介绍,将偏振图像传感器中的宾主效应盒10实现偏振片的功能的模式称为偏振模式。
此外,当该二向色性染料分子的长轴取向为垂直于该光电传感层20时,该宾主效应盒10用于控制该入射光信号全部通过该宾主效应盒10,得到未起偏的光信号。也就是说,该宾主效应盒10中的二向色性染料分子不对前述入射光信号起吸收的作用,或者,该二向色性染料分子对入射光信号的吸收作用较弱而可以忽略不计。应当注意的是,此时前述二向色性染料分子为正二向色性染料分子,不同偏振方向的偏振光均与该二向色性染料分子垂直。此时,该光电传感层20用于感应该未起偏的光信号而生成用于生成非偏振信息的电信号。此时,前述宾主效应盒10实现的是白玻片的功能,即该宾主效应盒10未起到偏振片的作用。为便于后文介绍,将偏振图像传感器中的宾主效应盒10实现白玻片的功能的模式称为非偏振模式。
应当理解的是,由于本申请提出的偏振图像传感器需要在偏振模式和非偏振模式切换,因此,本申请的宾主效应盒中采用的是正二向色性染料分子。而液晶分子可以采用正性液晶分子,也可以采用负性液晶分子。具体地,在后文图2B对应的实施例中将介绍采用正性液晶分子实现的具体方案;在后文图2C对应的实施例中将介绍采用负性液晶分子实现的具体方案。此处不予赘述。
本实施方式中,通过控制宾主效应盒10两个电极之间的电压以控制该宾主效应盒实现偏振片的功能或白玻片的功能,能够使得由前述宾主效应盒10组成的偏振图像传感器在偏振模式下获得用于生成偏振信息的电信号,在非偏振模式下获得用于生成非偏振信息的电信号。进而可以使得采用本申请提出的偏振图像传感器的偏振成像仪不仅能够输出偏振图像(即携带偏振信息的图像),还可以输出高清的非偏振图像(即携带亮度、色彩等非偏振信息的图像)。因此,前述偏振图像传感器不仅可以丰富偏振成像仪(例如,偏振相机等)的应用场景,还可以使本用于拍摄普通图像的摄像装置(例如,手机、摄像机等)提供偏振成像的功能。
为便于理解本申请提出的偏振图像传感器,下面结合宾主效应盒的内部结构对前述偏振图像传感器的实现原理进行进一步介绍:
如图2A所示,为偏振图像传感器的剖面结构示意图,主要包括宾主效应盒10、光电传感层20和控制电路30。该宾主效应盒10位于该光电传感层20的感光侧。
其中,宾主效应盒10包括相对设置的第一透明导电板101和第二透明导电板102,以及设置在该第一透明导电板101与该第二透明导电板102之间的显示介质103。该第一透明导电板101朝向该显示介质103的表面上设置有第一配向层104,该第二透明导电板102朝向该显示介质103的表面上设置有第二配向层105。
其中,该显示介质103包括液晶分子1031和二向色性染料分子1032。该第一配向层104和该第二配向层105用于在该第一透明导电板101和该第二透明导电板102之间未施加偏置电压时,确定该液晶分子1031的长轴取向;该第一透明导电板101与该第二透明导电板102用于在施加偏置电压时,在第一透明导电板101与第二透明导电板102之间形成电场,以控制液晶分子1031偏转,进而控制二向色性染料分子1032偏转。
应当理解的是,前述第一配向层104和第二配向层105的配向方向是相同的,也就是说,仅在第一配向层104作用下的液晶分子的长轴取向和仅在第二配向层105作用下的液晶分子的长轴取向是相同的。后文所提及的配向方向是第一配向层104的配向方向,也是第二配向层105的配向方向。特别地,若采用一个配向层也足以保证液晶分子1031和染料分子1032进行偏转,则该宾主效应盒10也可以仅采用一个配向层,这一个配向层可以是前述第一配向层104,也可以是第二配向层105,具体此处不做限定。
具体地,当采用不同电性的液晶分子制作宾主效应盒10时,不同的宾主效应盒10中配向层的配向方向不同,并且,不同宾主效应盒10中透明电极板施加偏置电压的情况也不相同。
在一种可选的实施方式中,前述液晶分子1031为正性液晶分子。
由于,正性液晶分子在电场作用下会沿着电场方向偏转,即正性液晶分子的长轴取向会偏转至与电场方向平行。因此,为了使偏振图像传感器能够在偏振模式和非偏振模式切换,当采用正性液晶分子制作宾主效应盒10时,前述配向层的配向方向(即第一配向层104的配向方向,也是第二配向层105的配向方向)为趋向于平行配向层的方向,或,平行于配向层的方向。也就是说,当第一透明导电板101和第二透明导电板102之间未施加偏置电压时,宾主效应盒10中的正性液晶分子的长轴方向趋向于平行于配向层的方向,并且,宾主效应盒10中的正二向色性染料分子的长轴方向也趋向于平行于配向层的方向;或者,宾主效应盒10中的正性液晶分子的长轴方向平行于配向层的方向,并且,宾主效应盒10中的正二向色性染料分子的长轴方向也平行于配向层的方向。
如图2B所示,当仅有前述配向层对正性液晶分子施加作用时,即前述第一透明导电板101和第二透明导电板102之间未施加偏置电压时,该正性液晶分子具有第一预倾角,该第一预倾角为正性液晶分子的长轴取向与配向层之间的夹角。前述第一预倾角是一个较小的锐角,以使得前述正性液晶分子的长轴取向近似于与配向层平行。此时,该正二向色性 染料分子的长轴取向也将跟随正性液晶分子的长轴取向排布,因此,该正二向色性染料分子也近似于与前述配向层平行。当前述第一透明导电板101和第二透明导电板102之间施加偏置电压时,前述正性液晶分子将沿电场方向偏转,即该正性液晶分子将沿着垂直于第一透明导电板101(或第二透明导电板102)的方向(也可以理解为,垂直于配向层的方向,或,垂直于光电传感层20的方向)偏转。此时,该正二向色性染料分子也将跟随正性液晶分子偏转,因此,该正二向色性染料分子也近似于与前述配向层垂直。可选的,该第一预倾角的取值范围为0°至10°。
由此可见,当第一透明导电板101和第二透明导电板102之间未施加偏置电压时,即控制电路30控制前述该宾主效应盒10的两个电极之间未施加偏置电压时,正二向色性染料分子的长轴取向平行于该光电传感层20,仅有与该正二向色性染料分子的长轴取向垂直的偏振光信号能够通过前述宾主效应盒10,因此,该宾主效应盒10起到偏振片的作用。该偏振图像传感器中的光电传感层20感应前述偏振光信号获得用于生成偏振信息的电信号。
当第一透明导电板101和第二透明导电板102之间施加预设偏置电压时,即控制电路30控制前述该宾主效应盒10的两个电极之间施加预设置电压时,正二向色性染料分子的长轴取向垂直于该光电传感层20。此时,所有偏振方向的偏振光信号均与正二向色性染料分子的长轴取向垂直,所有偏振方向的偏振光信号和非偏振光信号均可以通过前述宾主效应盒10,因此,该宾主效应盒10起到白玻片的作用。该偏振图像传感器中的光电传感层20感应前述入射光信号获得用于生成非偏振信息的电信号。
在另一种可选的实施方式中,前述液晶分子1031为负性液晶分子。
由于,负性液晶分子在电场作用下会沿着垂直于电场的方向偏转,即负性液晶分子的长轴取向会偏转至与电场方向垂直。因此,为了使偏振图像传感器能够在偏振模式和非偏振模式切换,当采用负性液晶分子制作宾主效应盒10时,前述配向层的配向方向(即第一配向层104的配向方向,也是第二配向层105的配向方向)为趋向于垂直配向层的方向。因此,当第一透明导电板101和第二透明导电板102之间未施加偏置电压时,宾主效应盒10中的负性液晶分子的长轴方向趋向于垂直于配向层的方向,并且,宾主效应盒10中的正二向色性染料分子的长轴方向也趋向于垂直于配向层的方向。但是,应当注意的是,为了使负性液晶分子在电场作用下能够向着某个确定的方向偏转,在配向处理时,该配向层设置的配向方向为与该配向层呈一个接近90°的夹角,以使得在配向处理后的负性液晶分子具有第二预倾角。可选的,该第二预倾角的取值范围为80°至90°。此时,负性液晶分子在配向层的作用下能够与配向层近似于垂直,但是,该负性液晶分子在偏转时又能够沿着前述第二预倾角偏转,直至负性液晶分子与配向层平行。进一步地,正二向色性染料分子在介电力的作用下也将偏转至与前述配向层平行,即与光电传感层20平行。
如图2C所示,当仅有前述配向层对负性液晶分子施加作用时,即前述第一透明导电板101和第二透明导电板102之间未施加偏置电压时,该负性液晶分子沿前述第二预倾角排布,该负性液晶分子的长轴取向近似于与配向层垂直。此时,该正二向色性染料分子的长轴取向也将跟随负性液晶分子的长轴取向排布,因此,该正二向色性染料分子也近似于与 前述配向层垂直。当前述第一透明导电板101和第二透明导电板102之间施加偏置电压时,前述负性液晶分子将沿垂直于电场的方向偏转,即该负性液晶分子将沿着平行于第一透明导电板101(或第二透明导电板102)的方向(也可以理解为,平行于配向层的方向)偏转。此时,该正二向色性染料分子也将跟随负性液晶分子偏转,因此,该正二向色性染料分子也近似于与前述配向层平行。
由此可见,当第一透明导电板101和第二透明导电板102之间未施加偏置电压时,即控制电路30控制前述该宾主效应盒10的两个电极之间未施加偏置电压时,正二向色性染料分子的长轴取向垂直于该光电传感层20。此时,所有偏振方向的偏振光信号均与正二向色性染料分子的长轴取向垂直,所有偏振方向的偏振光信号和非偏振光信号均可以通过前述宾主效应盒10。因此,该宾主效应盒10起到白玻片的作用。该偏振图像传感器中的光电传感层20感应前述入射光信号获得用于生成非偏振信息的电信号。
当第一透明导电板101和第二透明导电板102之间施加预设偏置电压时,即控制电路30控制前述该宾主效应盒10的两个电极之间施加预设置电压时,正二向色性染料分子的长轴取向平行于该光电传感层20。此时,仅有与该正二向色性染料分子的长轴取向垂直的偏振光信号能够通过前述宾主效应盒10,因此,该宾主效应盒10起到偏振片的作用。该偏振图像传感器中的光电传感层20感应前述偏振光信号获得用于生成偏振信息的电信号。
本实施例中,无论前述宾主效应盒10采用正性液晶分子还是负性液晶分子,控制电路30均可以通过控制宾主效应盒10的两个电极之间的电压间接控制染料分子偏转,以实现宾主效应盒10在偏振片功能和白玻片功能之间切换,进而实现偏振图像传感器在偏振模式和非偏振模式之间切换。
进一步地,若在配向层的不同区域设置不同的配向方向,那么,该宾主效应盒10可以在起偏振片的作用时分区域吸收不同偏振方向的偏振光信号。为便于介绍,将配向层中划分的各个区域称为配向区域。前述配向层可以包括多个配向区域。为便于介绍,将能够在控制电路30的作用下实现偏振片功能的区域被称为起偏区域,将仅可以实现白玻片功能的区域被称为非起偏区域。前述多个配向区域可以全部是起偏区域,也可以是起偏区域和非起偏区域的组合。下面将分别对前述两种情况进行介绍:
若前述多个配向区域全部是起偏区域,前述多个起偏区域的配向方向在配向层中的投影方向不完全相同,该起偏区域中的液晶分子能够在偏置电压的控制下发生偏转。
由于,当前述第一透明导电板101和第二透明导电板102之间未设置偏置电压时,液晶分子(正性液晶分子或负性液晶分子)的长轴取向由前述配向方向确定,因此,不同起偏区域的液晶分子的长轴取向不完全同,进而,不同起偏区域的二向色性染料分子的长轴取向不完全同。进一步地,位于不同起偏区域的二向色性染料分子的长轴取向在配向层中的投影方向也不完全相同。
应当理解的是,虽然正性液晶分子的配向方向和负性液晶分子的配向方向是不同的,但是,正性液晶分子的配向方向在配向层中的投影方向与负性液晶分子的配向方向在配向层中的投影方向可以是相同的。以图3A和图3B为例进行介绍。如图3A所示为采用正性 液晶分子的宾主效应盒10的某一起偏区域的俯视图、正视图和侧视图,其中,该起偏区域的配向方向在配向层中的投影方向为0°,也就是说,当该宾主效应盒10实现偏振片功能时,该宾主效应盒10仅允许偏振方向为90°的偏振光信号通过。为便于介绍,称如图3A所示的能够获得90°的偏振光的配向区域为起偏方向为90°的起偏区域。如图3B所示为采用负性液晶分子的宾主效应盒10的某一起偏区域的俯视图、正视图和侧视图,其中,该起偏区域的配向方向在配向层中的投影方向也为0°,也就是说,当该宾主效应盒10实现偏振片功能时,即控制电路30施加偏置电压导致负性液晶分子带着正二向色性染料分子偏转至平行于光电传感层时,该宾主效应盒10也仅允许偏振方向为90°的偏振光信号通过。此时,也可以称如图3B所示的能够获得90°的偏振光的配向区域为起偏方向为90°的起偏区域。由前述两个示例可知,虽然正性液晶分子的配向方向和负性液晶分子的配向方向是不同的,即图3A中的正视图示出的正性液晶分子与配向层的夹角为第一预倾角,而图3B中的正视图示出的负性液晶分子与配向层的夹角为第二预倾角。但是,正性液晶分子的配向方向在配向层中的投影方向与负性液晶分子的配向方向在配向层中的投影方向均为0°,当如图3A所示的起偏区域和图3B所示的起偏区域均可以获得偏振方向为0°的偏振光信号。因此,后文在介绍宾主效应盒10实现偏振片功能的偏振方向时,仅以正性液晶分子为例进行介绍。本领域技术人员应理解,采用负性液晶分子的宾主效应盒10也可以实现相同偏振方向的偏振片功能。
具体地,前述配向层的多个起偏区域中任意一个起偏区域的配向方向在配向层中的投影方向(后文简称投影方向)可以是0°(如图4中的示例a所示)、90°(如图4中的示例b所示)、45°(如图4中的示例c所示)、135°(如图4中的示例d所示)、30°(如图4中的示例e所示)、60°(如图4中的示例g所示)以及120°(如图4中的示例f所示)中的任意一种。当然,根据实际应用的需求,前述起偏区域中的投影方向还可以是其他角度,具体此处不做限定。
在一种可能的实施方式中,配向层中的多个起偏区域可以包括两种起偏区域。可选的,为了得到更完整的偏振信息,可以设置投影方向相互垂直的两种起偏区域,即两种起偏区域的投影方向相差90°。为便于介绍,称前述投影方向相互垂直的两种区域为第一配向区域和第二配向区域。该第一配向区域的投影方向和第二配向区域的投影方向相互垂直。示例性的,第一配向区域的投影方向为0°(如图4中的示例a所示),第二配向区域的投影方向为90°(如图4中的示例b所示),此时,可以按照图5中的示例a设置前述起偏区域。示例性的,第一配向区域的投影方向为45°(如图4中的示例c所示),第二配向区域的投影方向为135°(如图4中的示例d所示),此时,可以按照图5中的示例b设置前述起偏区域。示例性的,第一配向区域的投影方向为30°(如图4中的示例e所示),第二配向区域的投影方向为120°(如图4中的示例f所示),此时,可以按照图5中的示例c设置前述起偏区域。当然,第一配向区域的投影方向和第二配向区域的投影方向还可以是其他数值,具体此处不做限定。
在另一种可能的实施方式中,前述配向层中的多个起偏区域可以包括四种配向区域。示例性的,前述多个起偏区域除了包括第一配向区域和第二配向区域之外,还包括第三配 向区域和第四配向区域,该第三配向区域的配向方向在该配向层中的投影方向与该第四配向区域的配向方向在该配向层中的投影方向相互垂直,并且,该第三配向区域的配向方向在该配向层中的投影方向与该第一配向区域的配向方向在该配向层中的投影方向相差45°,该第四配向区域的配向方向在该配向层中的投影方向与该第二配向区域的配向方向在该配向层中的投影方向相差45°。示例性的,第一配向区域的投影方向为0°(如图4中的示例a所示),第二配向区域的投影方向为90°(如图4中的示例b所示),第三配向区域的投影方向为45°(如图4中的示例c所示),第四配向区域的投影方向为135°(如图4中的示例d所示)。此时,可以按照图6中任意一种示例设置前述起偏区域。具体地,还可以根据实际应用调整前述起偏区域的排布方式,具体此处不做限定。
若前述多个配向区域包括起偏区域和非起偏区域。其中,前述多个起偏区域的配向方向在配向层中的投影方向不完全相同,该起偏区域中的液晶分子能够在偏置电压的控制下发生偏转;该非起偏区域对入射光信号没有起偏作用,也就是说,无论控制电路30是否在宾主效应盒10的两个电极之间施加偏置电压,该非起偏区域对入射光信号均没有起偏作用。
其中,起偏区域的实现方式可以参考前文中图4所列举的示例,具体此处不再赘述。而非起偏区域可以有两种可选的实现方式:
一种实现方式为,在非起偏区域中不填充液晶分子和染料分子,那么,无论控制电路30是否在宾主效应盒10的两个电极施加偏置电压,该非起偏区域仅可以实现白玻片的功能。可选的,该非起偏区域可以填充透明无色且不对入射光信号起过滤作用的物质,例如,二氧化硅玻璃或树脂等。应当注意的是,若采用这种实现方式,该宾主效应盒10中可以采用正性液晶分子,也可以采用负性液晶分子。
另一种实现方式为,在非起偏区域中填充正性液晶分子和正二向色性染料分子,并且,设置配向层在非起偏区域中的配向方向为垂直于配向层(即垂直于光电传感层)。那么,无论控制电路30是否在宾主效应盒10的两个电极施加偏置电压,即无论前述第一透明电极板101和第二透明电极板102之间是否施加偏置电压,该非起偏区域中的正性液晶分子和正二向色性染料分子均保持垂直于光电传感层。因此,任何偏振方向的偏振光信号均可以通过前述非起偏区域,该非起偏区域仅可以实现白玻片的功能。应当注意的是,若采用这种实现方式,该宾主效应盒10中仅可以采用正性液晶分子,而在前述一种实现方式中,该宾主效应盒10可以采用正性液晶分子,也可以采用负性液晶分子。
在实际应用中,可以采用前述两种实现方式中的任意一种实现方式,具体此处不做限定。
具体地,在设置配向层时,可以将一个非起偏区域和多个起偏区域(例如,图4中任意一种示例)进行组合。例如,可以将投影方向为0°(如图4中的示例a所示)、投影方向为90°(如图4中的示例b所示)、投影方向为135°(如图4中的示例d所示)以及非起偏区域组合,得到如图7所示的示例a(以非起偏区域填充正性液晶分子和正二向色性染料分子为例)。又例如,例如,可以将投影方向为0°(如图4中的示例a所示)、投影方向为90°(如图4中的示例b所示)、投影方向为45°(如图4中的示例c所示)以及非起 偏区域组合,得到如图7所示的示例b(以非起偏区域填充正性液晶分子和正二向色性染料分子为例)。当然,也可以是多个起偏区域和多个非起偏区域的组合,例如,图8所示的示例。在实际应用中,起偏区域的数量与非起偏区域的数量的比例可以根据实际应用需求进行调整,本申请不再一一列举。
还应注意的是,当配向层包含起偏区域和非起偏区域时,宾主效应盒10过滤入射光信号的情况,以及光电传感层20感应出射光信号的情况,与前述实施方式有所不同。依然结合前述图1进行介绍:
具体地,该控制电路30,用于通过控制该宾主效应盒10的两个电极之间的电压以控制该起偏区域中的正性液晶分子的长轴取向,进而控制该起偏区域中的正二向色性染料分子的长轴取向。
此外,该宾主效应盒10,用于接收入射光信号,输出第三光信号或第四光信号。其中,当前述起偏区域实现起偏功能时,该宾主效应盒输出的是第三光信号,该第三光信号包括经过该起偏区域而获得的起偏后的光信号和经过该非起偏区域而获得的未起偏的光信号,该起偏后的光信号的偏振方向与该正二向色性染料分子的长轴取向垂直。当前述起偏区域不实现起偏功能时,该宾主效应盒10输出的是第四光信号,该第四光信号为经过该起偏区域和该非起偏区域而获得的未起偏的光信号。
此外,该光电传感层20,用于感应该第三光信号中的起偏后的光信号而生成第三电信号并且,感应第三光信号中的未起偏的光信号生成第四电信号。其中,该第三电信号用于生成偏振信息,该偏振信息用于生成偏振图像,该第四电信号用于生成第一非偏振信息,该第一非偏振信息用于生成第一非偏振图像。或者,该光电传感层20,用于感应该第四光信号而生成第五电信号,该第五电信号用于生成第二非偏振信息,该第二非偏振信息用于生成第二非偏振图像。
本实施方式中,一方面能够实现偏振图像传感器在偏振模式下获得用于生成偏振信息的电信号,在非偏振模式下获得用于生成非偏振信息的电信号。另一方面,提出可以保留部分实现白玻片功能的区域(即无色透明的区域),这样可以使得偏振图像传感器根据在偏振模式下获得的第三光信号生成用于生成偏振信息的第三电信号和用于生成非偏振信息的第四电信号。于是,摄像装置便可以通过一次拍摄动作获得用于生成偏振信息的第三电信号和用于生成非偏振信息的第四电信号,并且,根据第三电信号生成的偏振图像和根据第四电信号生成的非偏振图像可以理解为是拍摄的同一时刻的图像。此外,相比于传统技术中根据用于生成偏振信息的电信号而合成的非偏振图像来说,本申请中根据第四电信号生成的非偏振图像比前述的合成的非偏振图像更加明亮,细节更加清晰。
具体地,当该宾主效应盒10的两个电极之间未施加预设偏置电压时,该起偏区域中的正二向色性染料分子的长轴取向为平行于该光电传感层20,该宾主效应盒10的起偏区域实现偏振片的功能;该非起偏区域中的正二向色性染料分子的长轴取向为垂直于该光电传感层20,该宾主效应盒10的非起偏区域实现白玻片的功能;该宾主效应盒10,具体用于控制该入射光信号中第二偏振方向的偏振光分量通过该宾主效应盒10的起偏区域,并且, 控制该入射光信号全部通过该宾主效应盒10的非起偏区域,得到该第三光信号,该第二偏振方向与该正二向色性染料分子的长轴取向垂直;该光电传感层20,具体用于感应该第三光信号而生成该第三电信号和该第四电信号。
另外,当控制电路30在该宾主效应盒10的两个电极之间施加预设偏置电压以控制该起偏区域中的正性液晶分子的长轴取向偏转至垂直于该光电传感层20,进而使该起偏区域中的二向色性染料分子的长轴取向偏转至垂直于该光电传感层20,该非起偏区域中的正性液晶分子的长轴取向和正二向色性染料分子的长轴取向不发生偏转,该宾主效应盒10的起偏区域和非起偏区域均实现白玻片的功能;该宾主效应盒10,具体用于控制该入射光信号全部通过该宾主效应盒10,得到该第四光信号;该光电传感层20,具体用于感应该第四光信号而生成该第五电信号。
此外,应当理解的是,前述光电传感层20包括多个感应单元,至少一个该感应单元感应光信号而生成的电信号用于生成图像中的一个像素。
示例性的,在非偏振模式下,可以是每个感应单元生成的电信号用于生成图像的一个像素,也可以是多个感应单元生成的电信号(例如,四个感应单元生成的电信号)用于生成图像的一个像素。具体由实际应用需求而定,此处不做限定。
示例性的,在偏振模式下,是多个感应单元生成的电信号用于生成偏振图像中的一个像素。可选的,前述多个感应单元为至少两个配向区域对应的感应单元。例如,若一个配向区域对应一个感应单元,并且,配向区域包括起偏方向为90°的配向区域和起偏方向为0°的配向区域。此时,起偏方向为90°的配向区域对应的一个感应单元生成的电信号1和起偏方向为0°的配向区域对应的一个感应单元生成的电信号2一起用于生成偏振图像中的一个像素。又例如,若一个配向区域对应四个感应单元,并且,配向区域包括起偏方向为45°的配向区域和起偏方向为135°的配向区域。此时,起偏方向为45°的配向区域对应的四个感应单元生成的电信号3和起偏方向为135°的配向区域对应的四个感应单元生成的电信号4一起用于生成偏振图像中的一个像素。具体由实际应用需求而定,此处不做限定。
其中,每个感应单元包括透镜单元(也被称为微透镜)、宾主效应盒10、彩膜层和光电传感层20中的光电二极管。其中,彩膜层位于透镜单元和光电二极管之间以过滤该透镜单元汇聚的光线中的部分波段的光。此外,如图9A所示,该宾主效应盒20可以位于透镜单元之下,彩膜层之上;如图9B所示,该宾主效应盒20也可以位于透镜单元至上,具体此处不做限定。其中,该彩膜层由透明的材质制成,以使得特定的光透过该彩膜层到达该光电二极管上。每个该配向区域与该光电传感层20上的至少一个该感应单元对应。
在一种可选的实施方式中,前述彩膜层为无色透明薄膜,称图9A或图9B所示的感应单元为无色感应单元。此时,前述彩膜层将不对通过该彩膜层的光线起过滤作用,因此,任何波段的光均可以通过前述彩膜层到达该光电二极管,例如,波段为400nm至750nm的可见光,或者,波段为750nm至1mm的红外光。因此,该无色感应单元可以感应前述任何波段的光。例如,该无色感应单元可以感应白光、红光以及黄光等可见光;该无色感应单元也可以感应红外光等不可见光,具体此处不做限定。
在另一种可选的实施方式中,前述彩膜层为有色透明薄膜,称图9A或图9B所示的感应单元为有色感应单元。此时,前述彩膜层将仅允许特定波段的光通过。由于,该彩膜层对不同波段的光的吸收或反射作用不同,通过该彩膜层的光的波段不同,不同波段的光呈现于人眼的颜色不同。一般地,该彩膜层允许与该彩膜层颜色相同的光通过,而反射或吸收其他颜色的光。例如,当前述彩膜层为黄色彩膜层时,仅有黄色光通过前述彩膜层到达该光电二极管。
本实施例中,前述偏振图像传感器可以全部由无色感应单元组成,也可以全部由有色感应单元组成,还可以既包括无色感应单元又包括有色感应单元。
其中,当偏振图像传感器全部由有色感应单元组成时,前述彩膜层可以为RGB彩膜层(如图10中的示例a)、CMY彩膜层(如图10中的示例b)等。当偏振图像传感器既包括无色感应单元又包括有色感应单元时,前述彩膜层可以为RGBW彩膜层(如图10中的示例c)、CMYW彩膜层(如图10中的示例d)等。具体本申请不做限定。
可选的,前述偏振图像传感器可以为由电荷耦合器件(charged coupled device,CCD)构成的CCD图像传感器,也可以为由互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)构成的CMOS图像传感器,具体此处不做限定。当该偏振图像传感器为CMOS图像传感器时,该偏振图像传感器对红外光的敏感度较CCD图像传感器更高,可以使该偏振图像传感器记录较多的被拍摄物体的细节。
此外,前述偏振图像传感器的结构可以为正照式结构(也称表面照射式结构),也可以为背照式结构,具体此处不做限定。
如图11所示,本申请还提供了一种摄像装置110,该摄像装置110设置有前述如图1所示的偏振图像传感器1101以及图像处理装置1102。其中,该摄像装置110可以是偏振成像仪,也可以是普通的具有摄像或拍照功能的装置,例如,手机、摄像机等。具体此处不做限定。
其中,当该偏振图像传感器1101中仅包含起偏区域时:
该图像处理装置1102,用于接收该偏振图像传感器1101生成的第一电信号或第二电信号,其中,该第一电信号为该偏振图像传感器1101感应起偏后的光信号而生成的电信号,该第二电信号为该偏振图像传感器1101感应未起偏的光信号而生成的电信号。然后,该图像处理装置1102,还用于根据对应关系和该第一电信号生成偏振信息,该偏振信息用于生成偏振图像,其中,该对应关系为出射光信号的偏振方向与感应该出射光信号的感应单元之间的对应关系;或者,根据该第二电信号生成非偏振信息,该非偏振信息用于生成非偏振图像。
此外,该图像处理装置1102,还用于接收指示信息,该指示信息用于指示生成该偏振信息或生成该非偏振信息。其中,当该指示信息用于指示生成该偏振信息时:该图像处理装置1102,用于根据该对应关系和该第一电信号生成该偏振信息,该偏振信息用于生成偏振图像,该第一电信号包括该偏振图像传感器1101中的不同感应单元感应不同偏振方向的偏振光信号而生成的电信号,至少两个该感应单元输出的电信号用于生成该偏振图像中的 一个像素。当该指示信息用于指示生成该非偏振信息时:该图像处理装置1102,用于根据该第二电信号生成非偏振信息,该非偏振信息用于生成非偏振图像,该第二电信号包括该偏振图像传感器1101中的每个感应单元输出的电信号,至少一个该感应单元输出的电信号用于生成该非偏振图像中的一个像素。
本申请提供的摄像装置110配置了本申请提出的偏振图像传感器1101,因此,摄像装置110可以拍摄出偏振图像又可以拍摄出非偏振图像(例如,普通高清图像)。
其中,当该偏振图像传感器1101中仅包含起偏区域和非起偏区域时:
该图像处理装置1102,用于根据对应关系获取该偏振图像传感器1101生成的第三电信号和第四电信号,其中,该第三电信号为该偏振图像传感器1101感应来自起偏区域的光信号而生成的电信号该第四电信号为该偏振图像传感器1101感应来自非起偏区域的光信号而生成的电信号,该对应关系为第三光信号的偏振态与感应该第三光信号的感应单元之间的对应关系;该图像处理装置1102,用于根据该对应关系和该第三电信号生成偏振信息,并且,根据该第四电信号生成非偏振信息,该非偏振信息用于生成非偏振图像。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种偏振图像传感器,其特征在于,包括:
    控制电路、宾主效应盒以及光电传感层,所述宾主效应盒位于所述光电传感层的感光侧,所述控制电路与所述宾主效应盒的两个电极连接;
    其中,所述宾主效应盒包括液晶分子和二向色性染料分子,所述二向色性染料分子的长轴取向由所述液晶分子的长轴取向确定;
    所述控制电路,用于通过控制所述宾主效应盒的两个电极之间的电压以控制所述液晶分子的长轴取向;
    所述宾主效应盒,用于接收入射光信号,输出出射光信号,其中,所述出射光信号为基于所述入射光信号中的偏振态和所述二向色性染料分子的长轴取向而确定的光信号,所述出射光信号为起偏后的光信号,或,未起偏的光信号;
    所述光电传感层,用于感应所述起偏后的光信号而生成第一电信号,所述第一电信号用于生成偏振信息,所述偏振信息用于生成偏振图像;或者,所述光电传感层,用于感应所述未起偏的光信号而生成第二电信号,所述第二电信号用于生成非偏振信息,所述非偏振信息用于生成非偏振图像。
  2. 根据权利要求1所述的偏振图像传感器,其特征在于,所述二向色性染料分子为正二向色性染料分子,所述正二向色性染料分子的长轴取向与所述光电传感层之间的空间关系用于确定所述宾主效应盒输出起偏后的光信号或未起偏的光信号。
  3. 根据权利要求2所述的偏振图像传感器,其特征在于,所述正二向色性染料分子的长轴取向为平行于所述光电传感层;
    所述宾主效应盒,具体用于控制所述入射光信号中第一偏振方向的偏振光分量通过所述宾主效应盒,得到所述起偏后的光信号,所述第一偏振方向与所述正二向色性染料分子的长轴取向垂直;
    所述光电传感层,具体用于感应所述起偏后的光信号而生成所述第一电信号。
  4. 根据权利要求2所述的偏振图像传感器,其特征在于,所述正二向色性染料分子的长轴取向为垂直于所述光电传感层;
    所述宾主效应盒,具体用于控制所述入射光信号全部通过所述宾主效应盒,得到所述未起偏的光信号;
    所述光电传感层,具体用于感应所述未起偏的光信号而生成所述第二电信号。
  5. 根据权利要求2至4中任意一项所述的偏振图像传感器,其特征在于,
    所述液晶分子为正性液晶分子,所述正性液晶分子具有第一预倾角,所述第一预倾角为所述宾主效应盒的两个电极之间未施加偏置电压时,所述正性液晶分子的长轴取向与所述宾主效应盒中的配向层之间的夹角,所述第一预倾角的取值范围为0°至10°;
    或者,
    所述液晶分子为负性液晶分子,所述负性液晶分子具有第二预倾角,所述第二预倾角为所述宾主效应盒的两个电极之间未施加偏置电压时,所述负性液晶分子的长轴取向与所述宾主效应盒中的配向层之间的夹角,所述第二预倾角的取值范围为80°至90°。
  6. 根据权利要求5所述的偏振图像传感器,其特征在于,当满足如下条件时,所述正二向色性染料分子的长轴取向为平行于所述光电传感层:
    所述液晶分子为正性液晶分子,所述宾主效应盒的两个电极之间未施加偏置电压;
    或者,
    所述液晶分子为负性液晶分子,所述宾主效应盒的两个电极之间施加第一预设偏置电压,以使得所述负性液晶分子的长轴取向偏转至平行于所述光电传感层的方向。
  7. 根据权利要求5所述的偏振图像传感器,其特征在于,当满足如下条件时,所述正二向色性染料分子的长轴取向为垂直于所述光电传感层:
    所述液晶分子为正性液晶分子,所述宾主效应盒的两个电极之间施加第二预设偏置电压,以使得所述正性液晶分子的长轴取向偏转至垂直于所述光电传感层的方向;
    或者,
    所述液晶分子为负性液晶分子,所述宾主效应盒的两个电极之间未施加偏置电压。
  8. 根据权利要求5至7中任意一项所述的偏振图像传感器,其特征在于,所述配向层包括多个配向区域,所述多个配向区域的配向方向不完全相同,所述配向方向用于在所述宾主效应盒的两个电极之间未施加偏置电压时确定所述液晶分子长轴取向。
  9. 根据权利要求8所述的偏振图像传感器,其特征在于,所述多个配向区域包括多个起偏区域,所述多个起偏区域的配向方向在所述配向层中的投影方向不完全相同,所述起偏区域中的液晶分子能够在所述偏置电压的控制下发生偏转。
  10. 根据权利要求9所述的偏振图像传感器,其特征在于,所述多个起偏区域包括第一配向区域和第二配向区域,所述第一配向区域的配向方向在所述配向层中的投影方向与所述第二配向区域的配向方向在所述配向层中的投影方向相互垂直。
  11. 根据权利要求10所述的偏振图像传感器,其特征在于,所述多个起偏区域还包括第三配向区域和第四配向区域,所述第三配向区域的配向方向在所述配向层中的投影方向与所述第四配向区域的配向方向在所述配向层中的投影方向相互垂直,并且,所述第三配向区域的配向方向在所述配向层中的投影方向与所述第一配向区域的配向方向在所述配向层中的投影方向相差45°,所述第四配向区域的配向方向在所述配向层中的投影方向与所述第二配向区域的配向方向在所述配向层中的投影方向相差45°。
  12. 根据权利要求9所述的偏振图像传感器,其特征在于,所述多个起偏区域包括第五配向区域和第六配向区域,所述第五配向区域的配向方向在所述配向层中的投影方向与所述第六配向区域的配向方向在所述配向层中的投影方向相差60°。
  13. 根据权利要求8至12中任意一项所述的偏振图像传感器,其特征在于,所述光电传感层包括多个感应单元,每个所述感应单元用于感应光信号而生成电信号,至少一个所述感应单元生成的电信号用于生成图像中的一个像素;每个所述配向区域与所述光电传感层上的至少一个所述感应单元对应。
  14. 一种摄像装置,其特征在于,包括:
    图像处理装置以及如权利要求1至13任意一项所述的偏振图像传感器;
    所述图像处理装置,用于接收所述偏振图像传感器生成的第一电信号或第二电信号, 其中,所述第一电信号为所述偏振图像传感器感应起偏后的光信号而生成的电信号,所述第二电信号为所述偏振图像传感器感应未起偏的光信号而生成的电信号;
    所述图像处理装置,还用于根据对应关系和所述第一电信号生成偏振信息,所述偏振信息用于生成偏振图像,其中,所述对应关系为出射光信号的偏振方向与感应所述出射光信号的感应单元之间的对应关系;或者,根据所述第二电信号生成非偏振信息,所述非偏振信息用于生成非偏振图像。
  15. 根据权利要求14所述的摄像装置,其特征在于,所述图像处理装置,还用于接收指示信息,所述指示信息用于指示生成所述偏振信息或生成所述非偏振信息。
  16. 根据权利要求15所述的摄像装置,其特征在于,当所述指示信息用于指示生成所述偏振信息时:
    所述图像处理装置,用于根据所述对应关系和所述第一电信号生成所述偏振信息,所述偏振信息用于生成偏振图像,所述第一电信号包括所述偏振图像传感器中的不同感应单元感应不同偏振方向的偏振光信号而生成的电信号,至少两个所述感应单元输出的电信号用于生成所述偏振图像中的一个像素。
  17. 根据权利要求15所述的摄像装置,其特征在于,当所述指示信息用于指示生成所述非偏振信息时:
    所述图像处理装置,用于根据所述第二电信号生成非偏振信息,所述非偏振信息用于生成非偏振图像,所述第二电信号包括所述偏振图像传感器中的每个感应单元输出的电信号,至少一个所述感应单元输出的电信号用于生成所述非偏振图像中的一个像素。
PCT/CN2021/076508 2021-02-10 2021-02-10 偏振图像传感器和摄像装置 WO2022170559A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180010008.4A CN115210872A (zh) 2021-02-10 2021-02-10 偏振图像传感器和摄像装置
PCT/CN2021/076508 WO2022170559A1 (zh) 2021-02-10 2021-02-10 偏振图像传感器和摄像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076508 WO2022170559A1 (zh) 2021-02-10 2021-02-10 偏振图像传感器和摄像装置

Publications (1)

Publication Number Publication Date
WO2022170559A1 true WO2022170559A1 (zh) 2022-08-18

Family

ID=82837443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076508 WO2022170559A1 (zh) 2021-02-10 2021-02-10 偏振图像传感器和摄像装置

Country Status (2)

Country Link
CN (1) CN115210872A (zh)
WO (1) WO2022170559A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070146578A1 (en) * 2005-12-23 2007-06-28 Sharp Kabushiki Kaisha Display device, viewing angle control device, electronic display device, and multiple image display device
CN102637714A (zh) * 2012-04-27 2012-08-15 上海中科高等研究院 Cmos图像传感器
CN110133882A (zh) * 2019-06-29 2019-08-16 上海天马微电子有限公司 一种显示面板、显示装置及其显示方法
CN110456538A (zh) * 2019-08-15 2019-11-15 上海中航光电子有限公司 可实现视角切换的显示装置及其显示方法、制作方法
CN110764291A (zh) * 2019-10-31 2020-02-07 上海天马微电子有限公司 可实现视角切换的显示装置及其显示方法、制作方法
CN111965863A (zh) * 2020-08-26 2020-11-20 上海天马微电子有限公司 显示装置及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070146578A1 (en) * 2005-12-23 2007-06-28 Sharp Kabushiki Kaisha Display device, viewing angle control device, electronic display device, and multiple image display device
CN102637714A (zh) * 2012-04-27 2012-08-15 上海中科高等研究院 Cmos图像传感器
CN110133882A (zh) * 2019-06-29 2019-08-16 上海天马微电子有限公司 一种显示面板、显示装置及其显示方法
CN110456538A (zh) * 2019-08-15 2019-11-15 上海中航光电子有限公司 可实现视角切换的显示装置及其显示方法、制作方法
CN110764291A (zh) * 2019-10-31 2020-02-07 上海天马微电子有限公司 可实现视角切换的显示装置及其显示方法、制作方法
CN111965863A (zh) * 2020-08-26 2020-11-20 上海天马微电子有限公司 显示装置及其控制方法

Also Published As

Publication number Publication date
CN115210872A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
EP1653257B1 (en) Image capturing apparatus
KR101701527B1 (ko) 3차원 촬상 장치
JP4857962B2 (ja) 撮像装置
WO2013042323A1 (ja) ライトフィールド撮像装置、および画像処理装置
WO2019223617A1 (zh) 双摄像头模组、电子设备及图像获取方法
US20080051135A1 (en) Combination camera/projector system
WO2011151948A1 (ja) 3次元撮像装置
JPH07168125A (ja) 三次元イメージング装置、カメラ、及び顕微鏡
US20120019736A1 (en) Imaging device
US9229238B2 (en) Three-chip camera apparatus
US7701633B2 (en) Prism optical system and image pickup apparatus
US8902338B2 (en) Color separation filter array, solid-state imaging element, imaging device, and display device
WO2011095026A1 (zh) 摄像方法及系统
WO2010119922A1 (ja) 撮像装置
US20180278859A1 (en) Image sensor and image-capturing device
CN207691912U (zh) 小体积的光场成像模组
WO2022170559A1 (zh) 偏振图像传感器和摄像装置
JP2013057769A (ja) 固体撮像装置、撮像装置、合焦制御方法、及び、プログラム
US8582015B2 (en) Image pickup apparatus
WO2012157210A1 (ja) 3次元撮像装置、画像処理装置、画像処理方法、およびプログラム
CN215734594U (zh) 双物镜单拾像立体影像摄影装置
WO2022111459A1 (zh) 芯片结构、摄像组件和电子设备
JP2012123098A (ja) 立体映像撮影アダプタ及び撮像装置
WO2003096108A1 (en) Light controller and imaging apparatus
EP2750390A2 (en) Imaging device and stereo camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925222

Country of ref document: EP

Kind code of ref document: A1