WO2022169021A1 - Waistband-type wearable electrocardiogram measurement apparatus, and method and apparatus for measuring heartbeat using same - Google Patents

Waistband-type wearable electrocardiogram measurement apparatus, and method and apparatus for measuring heartbeat using same Download PDF

Info

Publication number
WO2022169021A1
WO2022169021A1 PCT/KR2021/002702 KR2021002702W WO2022169021A1 WO 2022169021 A1 WO2022169021 A1 WO 2022169021A1 KR 2021002702 W KR2021002702 W KR 2021002702W WO 2022169021 A1 WO2022169021 A1 WO 2022169021A1
Authority
WO
WIPO (PCT)
Prior art keywords
waistband
electrode
electrocardiogram
fiber electrode
present
Prior art date
Application number
PCT/KR2021/002702
Other languages
French (fr)
Korean (ko)
Inventor
신항식
권단비
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2022169021A1 publication Critical patent/WO2022169021A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/256Wearable electrodes, e.g. having straps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/27Conductive fabrics or textiles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/33Heart-related electrical modalities, e.g. electrocardiography [ECG] specially adapted for cooperation with other devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms

Definitions

  • the present invention relates to a waistband type wearable electrocardiogram measuring device, and more particularly, to a waistband type wearable electrocardiographic measuring device and a method and apparatus for measuring a heartbeat using the same.
  • a wearable technology capable of continuously measuring biosignals in daily life has been proposed as the most promising continuous electrocardiogram measurement technology.
  • a garment-type ECG measurement system one of the representative wearable ECG measurement technologies, is manufactured in a way that the system is embedded in clothing.
  • most of the measurement systems have been mainly manufactured in the form of high elasticity and close contact with the body in order to improve the quality of the measured signal because they are vulnerable to motion noise.
  • the present invention was created to solve the above problems, and an object of the present invention is to provide a waistband-type wearable electrocardiogram measuring device and a heartbeat measuring method and apparatus using the same.
  • Another object of the present invention is to provide an electrocardiogram measuring device using a fiber electrode coated with a metal mixture.
  • a waistband-type wearable electrocardiogram measuring device an elastic member; and a fiber electrode formed on the elastic member and measuring a user's ECG signal, wherein the fiber electrode may include a conductive yarn and a metal mixture coated on the conductive yarn.
  • the fiber electrode may include first to third electrodes, the first electrode may be located on a side surface of the second electrode, and the third electrode may be located below the second electrode. have.
  • the waistband-type wearable electrocardiogram measuring device may further include a first fabric positioned between the elastic member and the fiber electrode and having a restoring force.
  • the waistband-type wearable electrocardiogram measuring device may further include an interface unit connected to the fiber electrode and transmitting the electrocardiogram signal measured by the fiber electrode to the heart rate measuring device.
  • the waistband-type wearable electrocardiogram measuring device includes: a cover member positioned on the interface unit to cover the interface unit; may further include.
  • the waistband-type wearable electrocardiogram measuring device further includes; a second fabric that is positioned between the elastic member and the fiber electrode and has no stretch, and one end of the interface unit is formed with the fiber electrode and connected, and the other end of the interface unit may be connected to the heart rate measuring device through the elastic member and the second fabric.
  • the electrocardiogram signal is transmitted to a heartbeat measuring device, the electrocardiogram signal is interpolated by the heartbeat measuring device, the interpolated electrocardiogram signal is filtered, and a QRS waveform of the filtered electrocardiogram signal is obtained.
  • the heartbeat interval of the user may be calculated using the method, and the average number of beats per minute may be calculated by moving averaging the heartbeat interval.
  • FIG. 1 is a view showing a manufacturing process of a fiber electrode according to an embodiment of the present invention.
  • FIGS. 2A and 2B are diagrams illustrating an example of a fiber electrode according to an embodiment of the present invention.
  • 3A to 3C are diagrams illustrating an image of a fiber electrode according to an embodiment of the present invention.
  • FIGS. 4A to 4C are diagrams illustrating a wearable electrocardiogram measuring device of a waistband type according to an embodiment of the present invention.
  • 4D is a diagram illustrating an arrangement structure of a fiber electrode according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a heart rate measuring system according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a heart rate measuring method according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a waveform change graph before and after interpolation according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a frequency characteristic graph of a band pass filter according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an electrocardiogram signal graph before and after filtering according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a QRS graph according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating an RRI graph before and after correction of ectopic beats according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a frequency characteristic graph of a moving average filter according to an embodiment of the present invention.
  • FIG. 13 is a diagram illustrating an average heart rate graph before and after application of a moving average filter according to an embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a functional configuration of a heart rate measuring apparatus according to an embodiment of the present invention.
  • FIG. 1 is a view showing a manufacturing process of a fiber electrode according to an embodiment of the present invention.
  • 2A and 2B are diagrams illustrating an example of a fiber electrode according to an embodiment of the present invention.
  • PET polyethylene
  • Conductive yarn can be manufactured by covering two strands of m silver wire.
  • the fabricated conductive yarn can be mixed with 82% PET and 18% PU (polyurethane) to produce a conductive-based fiber electrode with a stripe structure.
  • a silver compound may be coated on the conductive fiber electrode to improve skin adhesion and measurement accuracy of the conductive fiber electrode.
  • a silver mixture can be partially coated over a conductive yarn-based fiber electrode via silk screen.
  • FIG. 2A it can be seen that the conduction-based fiber electrode is subjected to the coating process of the silver mixture.
  • the silver mixture can be fixed on the fiber electrode by curing at a temperature of In this case, the silver mixture may be coated only on the area where the conductor is knitted in consideration of elasticity, conductivity, adhesion, foreign body feeling, and sewing properties.
  • FIG. 2B enlarged views of the front and side surfaces of the fiber electrode coated with the silver mixture can be seen.
  • 3A to 3C are diagrams illustrating an image of a fiber electrode according to an embodiment of the present invention.
  • Conductive yarn-based fiber electrodes are approximately 30 It can be seen that it is composed of m-thick silver yarn and several strands of polyester.
  • the surface ( FIG. 3B ) and the side cross-section ( FIG. 3C ) of the fiber electrode after coating of the silver mixture can be confirmed. It can be seen that the silver mixture is applied on the fiber electrode to a thickness of about 190 to 240 silver threads.
  • the sheet resistance of the fiber electrode coated with the silver mixture can be measured.
  • the sheet resistance was measured for a sample that was not coated with the silver mixture and a sample that had been coated with the silver mixture. can measure the sheet resistance.
  • the measurement result may change for each measurement, three measurement positions for each sample are arbitrarily determined to calculate the average sheet resistance, and then the sheet resistance can be measured by repeating 10 times for each position.
  • the sheet resistance of the uncoated sample was 202.03 43.05 /sq.
  • the coated surface and the back surface resistance of the coated sample were 0.22 each 0.03 /sq., 0.17 0.02 /sq. It can be confirmed that the sheet resistance is reduced by the silver mixture coating as shown in ⁇ Table 1> below.
  • 4A to 4C are diagrams illustrating a waistband-type wearable electrocardiogram measuring apparatus 400 according to an embodiment of the present invention.
  • 4D is a diagram illustrating an arrangement structure of a fiber electrode 407 according to an embodiment of the present invention.
  • the waistband-type wearable electrocardiogram measuring device 400 includes an elastic member 401 , a first fabric 403 , a second fabric 405 , a fiber electrode 407 , and an interface unit 409 . , a cover member 411 and a fixing part 413 may be included.
  • the fiber electrode 407 is formed on the elastic member 401 and may measure the user's ECG signal.
  • the elastic member 401 may be implemented as an elastic band.
  • a waistband-type electrode in order to realize an electrocardiogram measuring waistband that can be applied to various sizes and shapes of the human body, can be configured using an elastic member having mobility in the measurement range and the previously manufactured fiber electrode. have.
  • the fiber electrode 407 may include a conductive yarn and a metal mixture coated on the conductive yarn.
  • the metal mixture may include a silver compound.
  • the first fabric 403 is positioned between the elastic member 401 and the fiber electrode 407 and may be made of a material having a restoring force.
  • the first fabric 403 may be comprised of a spacer mesh fabric.
  • the electrode is three-dimensionally configured by positioning the first fabric 403 having a restoring force between the elastic member 401 and the fiber electrode 407, thereby improving skin adhesion (contactability).
  • the second fabric 405 is positioned between the elastic member 401 and the fiber electrode 407 and may be made of a material without stretch.
  • the second fabric 405 may be comprised of a woven fabric.
  • the interface unit 409 may be connected to the fiber electrode 407 and transmit an electrocardiogram signal measured by the fiber electrode 407 to the heart rate measuring device.
  • the interface unit 409 may be configured as a nickel snap button to interface the fiber electrode 407 and the heart rate measuring device.
  • the periphery of the post of the snap button may be covered with a cover member 411 to prevent exposure thereof.
  • the cover member 411 may be formed of a seam tape.
  • non-stretchable second fabric 405 may be positioned between the fiber electrode 407 and the elastic member 401 to prevent deformation of the waistband portion connected to the heart rate measuring device through the snap button.
  • the electrocardiogram signal is interpolated by the heartbeat measuring device, the interpolated electrocardiogram signal is filtered, and the user's heartbeat interval is calculated using the QRS waveform of the filtered electrocardiogram signal, the heartbeat rate An average number of beats per minute may be calculated by moving averaging the interval.
  • one end of the interface unit 409 is connected to the fiber electrode 407 , and the other end of the interface unit 409 passes through the elastic member 401 and the second fabric 405 to be connected to the heart rate measuring device.
  • the cover member 411 may be positioned on the interface unit 409 to cover the interface unit 409 .
  • the fixing part 413 may be configured as a size adjustment hook (hook), it may be arranged on the elastic band 401 to enable two-step size adjustment.
  • the fiber electrode 407 may be symmetrically disposed at a predetermined distance from a center front line on a clothing construction for interfacing with the heart rate measuring device.
  • the interfacing unit 409 may be disposed based on a center front line.
  • the fiber electrode 407 may include first to third electrodes 421 , 422 , and 423 .
  • the first electrode 421 may be located on a side surface of the second electrode 422
  • the third electrode 423 may be located below the second electrode 422 .
  • the first to third electrodes 421 , 422 , and 423 may be disposed by a modified limb leads method.
  • lead I is the potential difference between the first electrode 421 and the second electrode 422
  • lead II is the potential difference between the first electrode 421 and the third electrode 423
  • lead III is the first It may be induced by a potential difference between the second electrode 422 and the third electrode 423 .
  • Lead II is most similar to the direction of electrical conduction of the heart and can measure the highest amplitude electrocardiogram. Lead II can be expressed as a vector sum of horizontal and vertical directions, and this can be defined as leads I and III.
  • the vector corresponding to lead II can also be expressed as the sum of vectors I' and III', and in this case, the potential difference between the lower extremities can be measured through lead I'.
  • This induction method may have an advantage in that it does not apply pressure to the upper body or attach an additional measurement sensor, so there are few restrictions on activity.
  • the electrocardiogram measuring apparatus 400 has more configurations than those described in FIGS. 4A to 4D because the configurations described in FIGS. 4A to 4D are not essential. Or, it may be implemented with fewer configurations.
  • FIG. 5 is a diagram illustrating a heart rate measuring system 500 according to an embodiment of the present invention.
  • the heart rate measuring system 500 may include an electrocardiogram measuring device 510 , a heart rate measuring device 520 , and a terminal device 530 .
  • the electrocardiogram measuring apparatus 510 may acquire an electrocardiogram signal from a waistband electrocardiogram fiber electrode.
  • the heartbeat measuring device 520 may receive an electrocardiogram signal from the electrocardiogram measuring device 510 and transmit it to the terminal device 530 .
  • the terminal device 530 may display the transmitted ECG signal in a real-time graph format and store it as a file.
  • the heartbeat measuring apparatus 520 may transmit heartbeat rate information calculated from the electrocardiogram signal to the terminal device 530 .
  • the terminal device 530 may display the transmitted heart rate information.
  • the heart rate measurement system 500 has more configurations than the configurations described in FIG. 5 , or fewer configurations because the configurations described in FIG. 5 are not essential. It can be implemented by having
  • each step of FIG. 6 may be performed by the heart rate measuring device 520 .
  • step S612 is a step of interpolating an electrocardiogram signal.
  • Step S614 is a step of primary filtering the interpolated ECG signal using a high pass filter.
  • Step S616 is a step of secondarily filtering the firstly filtered ECG signal using a band pass filter.
  • steps S612 to S616 may be configured as pre-processing steps.
  • Step S622 is a step of detecting the QRS waveform of the second-filtered ECG signal.
  • Step S624 is a step of correcting an ectopic beat of the QRS waveform.
  • Step S626 is a step of calculating a heartbeat interval (RRI) from the corrected QRS waveform.
  • steps S622 to S626 may consist of heart rate estimation.
  • Step S632 is a step of calculating the average number of beats per minute by moving averaging the heartbeat interval.
  • step S632 may be configured as a post-processing step.
  • FIG. 7 is a diagram illustrating a waveform change graph before and after interpolation according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a frequency characteristic graph of a band pass filter according to an embodiment of the present invention.
  • 9 is a diagram illustrating an electrocardiogram signal graph before and after filtering according to an embodiment of the present invention.
  • a band-pass filter may be used to remove low-frequency and high-frequency noise.
  • the band pass filter may include a Finite Impulse Response (FIR) filter having a pass band of 5-35 Hz.
  • FIR Finite Impulse Response
  • FIG. 10 is a diagram illustrating a QRS graph according to an embodiment of the present invention.
  • the QRS waveform of the ECG signal may be detected using the Pan-Tompkins algorithm, but is not limited thereto.
  • the detected QRS waveform may contain false positives or false negatives, such as false positives, false positives can be corrected by manual calibration. Correction of false detection can be performed using the pole detection GUI.
  • FIG. 11 is a diagram illustrating an RRI graph before and after correction of ectopic beats according to an embodiment of the present invention.
  • heart rate interval (RRI) calculation and ectopic compensation may be performed.
  • RRI can be calculated from the detected and calibrated QRS waveform.
  • the RRI can be calculated through the difference between the temporal positions of the QRS waveform.
  • the algorithm proposed by Morelli et al. may be used for RRI compensation, but is not limited thereto.
  • the number of lost beats can be estimated from the length of the ectopic beat section and the average beat interval, and beats can be generated based on this.
  • FIG. 12 is a diagram illustrating a frequency characteristic graph of a moving average filter according to an embodiment of the present invention.
  • 13 is a diagram illustrating an average heart rate graph before and after application of a moving average filter according to an embodiment of the present invention.
  • a moving averaging filter for estimating the heart rate may be used.
  • the heart rate HR may be calculated by taking the reciprocal of the RRI.
  • the HR has a very rapid change due to a subtle error in the QRS position during detection. For example, if the QRS position is measured out of 50 ms due to a detection error, an error of approximately 5 bpm may occur based on a heart rate of 72 beats per minute.
  • an average of n adjacent beats is provided to provide an average beat, for example, a 5-point moving average filter may be used to average five beats to calculate an average bpm.
  • the coefficients of the moving average filter used can be expressed as [0.2, 0.2, 0.2, 0.2, 0.2].
  • a performance evaluation of heart rate estimation may be performed.
  • the heart rate measurement performance according to the present invention may be compared with the heart rate per minute of the ECG measured by the existing reference ECG measurement system.
  • the ECG signal and the reference ECG signal measured using the heartbeat measurement system 500 according to the present invention were simultaneously measured, and may be acquired at 2 kHz for 6 minutes in a comfortable position in which the user lies on the bed.
  • the average, standard deviation, and root mean square error (RMSE) of heart rates calculated from the ECG signal obtained through the heartbeat measurement system 500 according to the present invention and the reference ECG signal may be calculated.
  • the heart rate estimation performance may be evaluated by comparing the heart rate measured by the heart rate measuring system 500 according to the present invention with the HR measured by the reference system. At this time, as the evaluation criteria, the mean and standard deviation, and the RMSE between the two measurement methods are compared, and it can be checked whether the trend can be well followed when estimating the real-time heart rate.
  • the heart rate measurement performance of the heart rate measurement system 500 according to the present invention and the heart rate per minute of the ECG signal measured by the reference ECG measurement system may be evaluated.
  • Table 3 below shows the final performance of the heart rate measuring system 500 according to the present invention, and from this result, it can be confirmed that the heart rate measuring system 500 according to the present invention has an RMSE of about 2.7 bpm compared to the reference system.
  • the difference between the simple average bpm is only 0.2 bpm, it may be possible to estimate the heart rate almost similar to the reference system.
  • Biopac Waist-band type wireless ECG monitoring system Mean ⁇ SD (bpm) 67.2 2.9 67.0 3.7 RMSE (bpm) 2.7
  • FIG. 14 is a diagram illustrating a functional configuration of a heart rate measuring apparatus 520 according to an embodiment of the present invention.
  • the heartbeat measuring apparatus 520 may include an acquisition unit 1410 , a control unit 1420 , and a storage unit 1430 .
  • the acquisition unit 1410 may acquire the user's ECG signal from the ECG measuring apparatus 510 .
  • the acquisition unit 1410 may include a commercial analog front-end (AFE) module for measuring an electrocardiogram.
  • AFE commercial analog front-end
  • the acquisition unit 1410 is a one-channel AFE that amplifies the electrocardiogram and performs analog-to-digital converter (ADC), and may have a 16-bit ADC resolution.
  • ADC analog-to-digital converter
  • the controller 1420 may calculate heart rate data based on the user's ECG signal.
  • the controller 1420 may include at least one processor or microprocessor, or may be a part of the processor. Also, the controller 1420 may be referred to as a communication processor (CP). The controller 1420 may control the operation of the heart rate measuring apparatus 520 according to various embodiments of the present disclosure.
  • CP communication processor
  • the communication unit 1430 may transmit the electrocardiogram data and heart rate data received from the control unit 1420 to the terminal device 530 .
  • the communication unit 1410 may include at least one of a wired communication module and a wireless communication module.
  • the communication unit 1410 may include a Bluetooth communication module. All or part of the communication unit 1410 may be referred to as a 'transmitter', 'receiver', or 'transceiver'.
  • the heartbeat measuring apparatus 520 does not necessarily include the components described in FIG. 14 , and thus has more components than those described in FIG. 14 , or fewer components. It can be implemented by having
  • At least one step may be omitted or added in each figure described herein, may be performed in the reverse order, or may be performed simultaneously.

Abstract

The present invention relates to a waistband-type wearable electrocardiogram measurement apparatus, and a method and apparatus for measuring a heartbeat using same. The waistband-type wearable electrocardiogram measurement apparatus according to one embodiment of the present invention comprises: an elastic member; and fiber electrodes that are formed on the elastic member and measure an electrocardiogram signal of a user, wherein the fiber electrodes may include a conductive yarn and a metal mixture coated on the conductive yarn.

Description

허리밴드형 웨어러블 심전도 측정 장치 및 이를 이용한 심박 측정 방법 및 장치Waistband type wearable electrocardiogram measuring device and heart rate measuring method and device using same
본 발명은 허리밴드형 웨어러블 심전도 측정 장치에 관한 것으로, 더욱 상세하게는 허리밴드형 웨어러블 심전도 측정 장치 및 이를 이용한 심박 측정 방법 및 장치에 관한 것이다.The present invention relates to a waistband type wearable electrocardiogram measuring device, and more particularly, to a waistband type wearable electrocardiographic measuring device and a method and apparatus for measuring a heartbeat using the same.
일상생활 중 지속적으로 생체신호 측정이 가능한 웨어러블 기술은 가장 유망한 심전도 상시 측정 기술로써 제안되고 있다. 대표적인 웨어러블 심전도 측정 기술 중 하나인 의복형 심전도 측정 시스템은 시스템을 의복에 내장한 형태로 제작되는데 의복형, 심전도 측정 시스템에 사용되는 섬유 전극의 높은 임피던스 및 건식 전극 특성으로 인해 신호 획득 효율이 낮을 뿐 아니라 동잡음에 취약하므로 대부분의 측정 시스템은 측정되는 신호의 품질향상을 위해 신축성이 높고 몸에 밀착되는 형태로 주로 제작되어 왔다. A wearable technology capable of continuously measuring biosignals in daily life has been proposed as the most promising continuous electrocardiogram measurement technology. A garment-type ECG measurement system, one of the representative wearable ECG measurement technologies, is manufactured in a way that the system is embedded in clothing. However, most of the measurement systems have been mainly manufactured in the form of high elasticity and close contact with the body in order to improve the quality of the measured signal because they are vulnerable to motion noise.
그러나, 이러한 형태는 사용자의 신체를 장시간 압박하여 결과적으로 큰 불편함을 초래할 수 있으므로 사용자 편의성이나 활용성에 대한 개선이 지속적으로 요구되었다.However, since this shape may cause great discomfort by pressing the user's body for a long time, improvement in user convenience or usability has been continuously required.
본 발명은 전술한 문제점을 해결하기 위하여 창출된 것으로, 허리밴드형 웨어러블 심전도 측정 장치 및 이를 이용한 심박 측정 방법 및 장치를 제공하는 것을 그 목적으로 한다.The present invention was created to solve the above problems, and an object of the present invention is to provide a waistband-type wearable electrocardiogram measuring device and a heartbeat measuring method and apparatus using the same.
또한, 본 발명은 금속 혼합물이 코팅된 섬유 전극을 이용한 심전도 측정 장치를 제공하는 것을 그 목적으로 한다.Another object of the present invention is to provide an electrocardiogram measuring device using a fiber electrode coated with a metal mixture.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 명확하게 이해될 수 있을 것이다.Objects of the present invention are not limited to the objects mentioned above, and other objects not mentioned will be clearly understood from the description below.
상기한 목적들을 달성하기 위하여, 본 발명의 일 실시예에 따른 허리밴드형 웨어러블 심전도 측정 장치는, 탄성 부재; 및 상기 탄성 부재 상에 형성되고, 사용자의 심전도 신호를 측정하는 섬유 전극;을 포함하고, 상기 섬유 전극은, 전도사(conductive yarn) 및 상기 전도사 상에 코팅된 금속 혼합물을 포함할 수 있다. In order to achieve the above objects, a waistband-type wearable electrocardiogram measuring device according to an embodiment of the present invention, an elastic member; and a fiber electrode formed on the elastic member and measuring a user's ECG signal, wherein the fiber electrode may include a conductive yarn and a metal mixture coated on the conductive yarn.
실시예에서, 상기 섬유 전극은, 제1 내지 제3 전극을 포함하고, 상기 제1 전극은, 상기 제2 전극의 측면에 위치하고, 상기 제3 전극은, 상기 제2 전극의 하측에 위치할 수 있다. In an embodiment, the fiber electrode may include first to third electrodes, the first electrode may be located on a side surface of the second electrode, and the third electrode may be located below the second electrode. have.
실시예에서, 상기 허리밴드형 웨어러블 심전도 측정 장치는, 상기 탄성 부재와 상기 섬유 전극 사이에 위치하고, 복원력을 가지는 제1 패브릭;을 더 포함할 수 있다. In an embodiment, the waistband-type wearable electrocardiogram measuring device may further include a first fabric positioned between the elastic member and the fiber electrode and having a restoring force.
실시예에서, 상기 허리밴드형 웨어러블 심전도 측정 장치는, 상기 섬유 전극과 연결되고, 상기 섬유 전극에 의해 측정된 심전도 신호를 심박 측정 장치에게 전달하는 인터페이스부;를 더 포함할 수 있다. In an embodiment, the waistband-type wearable electrocardiogram measuring device may further include an interface unit connected to the fiber electrode and transmitting the electrocardiogram signal measured by the fiber electrode to the heart rate measuring device.
실시예에서, 상기 허리밴드형 웨어러블 심전도 측정 장치는, 상기 인터페이스부 상에 위치하여, 상기 인터페이스부를 커버링(covering)하는 커버 부재; 를 더 포함할 수 있다. In an embodiment, the waistband-type wearable electrocardiogram measuring device includes: a cover member positioned on the interface unit to cover the interface unit; may further include.
실시예에서, 상기 허리밴드형 웨어러블 심전도 측정 장치는, 상기 탄성 부재와 상기 섬유 전극 사이에 위치하고, 신축성(stretch)이 없는 제2 패브릭;을 더 포함하고, 상기 인터페이스부의 일단은, 상기 섬유 전극과 연결되고, 상기 인터페이스부의 타단은, 상기 탄성 부재 및 상기 제2 패브릭을 관통하여 상기 심박 측정 장치와 연결될 수 있다. In an embodiment, the waistband-type wearable electrocardiogram measuring device further includes; a second fabric that is positioned between the elastic member and the fiber electrode and has no stretch, and one end of the interface unit is formed with the fiber electrode and connected, and the other end of the interface unit may be connected to the heart rate measuring device through the elastic member and the second fabric.
실시예에서, 상기 심전도 신호는 심박 측정 장치에게 전달되고, 상기 심박 측정 장치에 의해, 상기 심전도 신호는 보간(interpolation)되고, 상기 보간된 심전도 신호는 필터링되고, 상기 필터링된 심전도 신호의 QRS 파형을 이용하여 상기 사용자의 심박 박동 간격이 산출되며, 상기 심박 박동 간격을 이동평균(moving averaging)하여 분당 평균 박동수가 산출될 수 있다. In an embodiment, the electrocardiogram signal is transmitted to a heartbeat measuring device, the electrocardiogram signal is interpolated by the heartbeat measuring device, the interpolated electrocardiogram signal is filtered, and a QRS waveform of the filtered electrocardiogram signal is obtained. The heartbeat interval of the user may be calculated using the method, and the average number of beats per minute may be calculated by moving averaging the heartbeat interval.
상기한 목적들을 달성하기 위한 구체적인 사항들은 첨부된 도면과 함께 상세하게 후술될 실시예들을 참조하면 명확해질 것이다.Specific details for achieving the above objects will become clear with reference to the embodiments to be described in detail below in conjunction with the accompanying drawings.
그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라, 서로 다른 다양한 형태로 구성될 수 있으며, 본 발명의 개시가 완전하도록 하고 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자(이하, "통상의 기술자")에게 발명의 범주를 완전하게 알려주기 위해서 제공되는 것이다.However, the present invention is not limited to the embodiments disclosed below, but may be configured in various different forms, and those of ordinary skill in the art to which the present invention pertains ( Hereinafter, "a person skilled in the art") is provided to fully inform the scope of the invention.
본 발명의 일 실시예에 의하면, 허리밴드형 웨어러블 심전도 측정 장치를 통해 상체에 압박을 가하거나 추가적인 측정 센서 등을 부착하지 않아 활동에 제약이 적으면서도 높은 정확도의 심전도 신호 검출 및 심박 추정을 수행할 수 있다. According to an embodiment of the present invention, there is no restriction on activity by applying pressure to the upper body or attaching an additional measuring sensor through a waistband type wearable electrocardiogram measuring device. can
본 발명의 효과들은 상술된 효과들로 제한되지 않으며, 본 발명의 기술적 특징들에 의하여 기대되는 잠정적인 효과들은 아래의 기재로부터 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-described effects, and potential effects expected by the technical features of the present invention will be clearly understood from the following description.
도 1은 본 발명의 일 실시예에 따른 섬유 전극의 제조 과정을 도시한 도면이다.1 is a view showing a manufacturing process of a fiber electrode according to an embodiment of the present invention.
도 2a 및 2b는 본 발명의 일 실시예에 따른 섬유 전극의 예를 도시한 도면이다.2A and 2B are diagrams illustrating an example of a fiber electrode according to an embodiment of the present invention.
도 3a 내지 3c는 본 발명의 일 실시예에 따른 섬유 전극 이미지를 도시한 도면이다.3A to 3C are diagrams illustrating an image of a fiber electrode according to an embodiment of the present invention.
도 4a 내지 4c는 본 발명의 일 실시예에 따른 허리밴드형 웨어러블 심전도 측정 장치를 도시한 도면이다.4A to 4C are diagrams illustrating a wearable electrocardiogram measuring device of a waistband type according to an embodiment of the present invention.
도 4d는 본 발명의 일 실시예에 따른 섬유 전극의 배치 구조를 도시한 도면이다. 4D is a diagram illustrating an arrangement structure of a fiber electrode according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 심박 측정 시스템을 도시한 도면이다.5 is a diagram illustrating a heart rate measuring system according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 심박 측정 방법을 도시한 도면이다.6 is a diagram illustrating a heart rate measuring method according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 보간 전후에 대한 파형 변화 그래프를 도시한 도면이다.7 is a diagram illustrating a waveform change graph before and after interpolation according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 대역 통과 필터의 주파수 특성 그래프를 도시한 도면이다.8 is a diagram illustrating a frequency characteristic graph of a band pass filter according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 필터링 전후에 대한 심전도 신호 그래프를 도시한 도면이다.9 is a diagram illustrating an electrocardiogram signal graph before and after filtering according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 QRS 그래프를 도시한 도면이다.10 is a diagram illustrating a QRS graph according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 이소성 박동의 교정 전후에 대한 RRI 그래프를 도시한 도면이다.11 is a diagram illustrating an RRI graph before and after correction of ectopic beats according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 이동 평균 필터의 주파수 특성 그래프를 도시한 도면이다.12 is a diagram illustrating a frequency characteristic graph of a moving average filter according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따른 이동 평균 필터의 적용 전후에 대한 평균 심박수 그래프를 도시한 도면이다.13 is a diagram illustrating an average heart rate graph before and after application of a moving average filter according to an embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따른 심박 측정 장치의 기능적 구성을 도시한 도면이다.14 is a diagram illustrating a functional configuration of a heart rate measuring apparatus according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고, 여러 가지 실시예들을 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 이를 상세히 설명하고자 한다. Since the present invention can have various changes and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail.
청구범위에 개시된 발명의 다양한 특징들은 도면 및 상세한 설명을 고려하여 더 잘 이해될 수 있을 것이다. 명세서에 개시된 장치, 방법, 제법 및 다양한 실시예들은 예시를 위해서 제공되는 것이다. 개시된 구조 및 기능상의 특징들은 통상의 기술자로 하여금 다양한 실시예들을 구체적으로 실시할 수 있도록 하기 위한 것이고, 발명의 범위를 제한하기 위한 것이 아니다. 개시된 용어 및 문장들은 개시된 발명의 다양한 특징들을 이해하기 쉽게 설명하기 위한 것이고, 발명의 범위를 제한하기 위한 것이 아니다.Various features of the invention disclosed in the claims may be better understood upon consideration of the drawings and detailed description. The apparatus, methods, methods, and various embodiments disclosed herein are provided for purposes of illustration. The disclosed structural and functional features are intended to enable those skilled in the art to specifically practice the various embodiments, and are not intended to limit the scope of the invention. The terms and sentences disclosed are for the purpose of easy-to-understand descriptions of various features of the disclosed invention, and are not intended to limit the scope of the invention.
본 발명을 설명함에 있어서, 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명을 생략한다.In describing the present invention, if it is determined that a detailed description of a related known technology may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
이하, 본 발명의 일 실시예에 따른 허리밴드형 웨어러블 심전도 측정 장치 및 이를 이용한 심박 측정 방법 및 장치를 설명한다.Hereinafter, a waistband-type wearable electrocardiogram measuring apparatus and a heartbeat measuring method and apparatus using the same according to an embodiment of the present invention will be described.
도 1은 본 발명의 일 실시예에 따른 섬유 전극의 제조 과정을 도시한 도면이다. 도 2a 및 2b는 본 발명의 일 실시예에 따른 섬유 전극의 예를 도시한 도면이다.1 is a view showing a manufacturing process of a fiber electrode according to an embodiment of the present invention. 2A and 2B are diagrams illustrating an example of a fiber electrode according to an embodiment of the present invention.
도 1을 참고하면, 니팅(knitting) 단계(110)에서, 섬유 전극의 제작을 위해, PET(polyester) 70 섬유와 직경 30
Figure PCTKR2021002702-appb-img-000001
m의 은사 두가닥을 커버링(covering)하여 전도사를 제작할 수 있다.
Referring to FIG. 1 , in the knitting step 110 , for the manufacture of a fiber electrode, PET (polyester) 70 fibers and a diameter of 30
Figure PCTKR2021002702-appb-img-000001
Conductive yarn can be manufactured by covering two strands of m silver wire.
섬유 전극의 신장회복률 및 인체 밀착성을 위해, 제작된 전도사를 PET 82%, PU(polyurethane) 18%와 혼용하여 스트라이프 구조의 전도성 기반 섬유 전극을 제작할 수 있다. For the elongation recovery rate and body adhesion of the fiber electrode, the fabricated conductive yarn can be mixed with 82% PET and 18% PU (polyurethane) to produce a conductive-based fiber electrode with a stripe structure.
스크린 프린팅(screen printing) 단계(120)에서, 전도성 기반 섬유 전극의 피부 밀착성과 측정 정확도 향상을 위하여 은 혼합물(silver compound)을 전도사 기반 섬유 전극 위에 코팅할 수 있다. In the screen printing step 120 , a silver compound may be coated on the conductive fiber electrode to improve skin adhesion and measurement accuracy of the conductive fiber electrode.
예를 들어, 실크 스크린을 통해 은 혼합물을 전도사 기반 섬유 전극 위에 부분 코팅할 수 있다. 도 2a를 참고하면, 은 혼합물의 코팅 과정을 거치기 전 전도가 기반 섬유 전극의 모습을 확인할 수 있다. For example, a silver mixture can be partially coated over a conductive yarn-based fiber electrode via silk screen. Referring to FIG. 2A , it can be seen that the conduction-based fiber electrode is subjected to the coating process of the silver mixture.
경화(curing) 단계(130)에서, 100
Figure PCTKR2021002702-appb-img-000002
의 온도에서 30 분간 경화시켜 은 혼합물을 섬유 전극 상에 고정시킬 수 있다. 이 경우, 은 혼합물은 신축성, 전도성, 밀착성, 이물감 및 봉제성 등을 고려하여, 전도사가 니팅(knitting)된 부위에만 코팅될 수 있다.
In the curing step 130, 100
Figure PCTKR2021002702-appb-img-000002
The silver mixture can be fixed on the fiber electrode by curing at a temperature of In this case, the silver mixture may be coated only on the area where the conductor is knitted in consideration of elasticity, conductivity, adhesion, foreign body feeling, and sewing properties.
도 2b를 참고하면, 은 혼합물로 코팅된 섬유 전극의 전면 및 측면의 확대 모습을 확인할 수 있다. Referring to FIG. 2B , enlarged views of the front and side surfaces of the fiber electrode coated with the silver mixture can be seen.
도 3a 내지 3c는 본 발명의 일 실시예에 따른 섬유 전극 이미지를 도시한 도면이다.3A to 3C are diagrams illustrating an image of a fiber electrode according to an embodiment of the present invention.
도 3a를 참고하면, 은 혼합물의 코팅 전 섬유 전극의 표면을 확인할 수 있다. 전도사 기반 섬유 전극이 약 30
Figure PCTKR2021002702-appb-img-000003
m두께의 은사(silver yarn)와 여러 가닥의 폴리에스터(polyester)로 구성된 것을 확인할 수 있다.
Referring to FIG. 3A , the surface of the fiber electrode before coating of the silver mixture can be confirmed. Conductive yarn-based fiber electrodes are approximately 30
Figure PCTKR2021002702-appb-img-000003
It can be seen that it is composed of m-thick silver yarn and several strands of polyester.
도 3b 및 3c를 참고하면, 은 혼합물의 코팅 후 섬유 전극의 표면(도 3b) 및 측단면(도 3c)을 확인할 수 있다. 은 혼합물이 약 190 내지 240 은사 정도의 두께로 섬유 전극 위에 도포된 것을 확인할 수 있다. Referring to FIGS. 3B and 3C , the surface ( FIG. 3B ) and the side cross-section ( FIG. 3C ) of the fiber electrode after coating of the silver mixture can be confirmed. It can be seen that the silver mixture is applied on the fiber electrode to a thickness of about 190 to 240 silver threads.
은 혼합물이 코팅된 섬유 전극의 면저항을 측정할 수 있으며, 이 경우, 면저항은 은 혼합물의 코팅 처리를 하지 않은 시료와 코팅 처리가 된 시료에 대하여 각각 측정하였으며 코팅 처리된 시료의 경우 전면과 후면 각각에 대하여 면 저항을 측정할 수 있다. The sheet resistance of the fiber electrode coated with the silver mixture can be measured. In this case, the sheet resistance was measured for a sample that was not coated with the silver mixture and a sample that had been coated with the silver mixture. can measure the sheet resistance.
측정 결과가 매 측정 시마다 변동될 수 있으므로, 평균 면저항을 계산하기 위해 각 시료 마다 3 군데의 측정 위치를 임의로 정한 뒤, 각 위치마다 10 회 반복하여 면저항을 측정할 수 있다. Since the measurement result may change for each measurement, three measurement positions for each sample are arbitrarily determined to calculate the average sheet resistance, and then the sheet resistance can be measured by repeating 10 times for each position.
그 결과, 코팅 처리하지 않은 시료의 면저항은 202.03
Figure PCTKR2021002702-appb-img-000004
43.05
Figure PCTKR2021002702-appb-img-000005
/sq.인 반면, 코팅 처리가 된 시료의 코팅면, 후면 면저항은 각각 0.22
Figure PCTKR2021002702-appb-img-000006
0.03
Figure PCTKR2021002702-appb-img-000007
/sq., 0.17
Figure PCTKR2021002702-appb-img-000008
0.02
Figure PCTKR2021002702-appb-img-000009
/sq. 이었으며, 하기 <표 1>과 같이 은 혼합물 코팅에 의해 면저항이 감소함을 확인할 수 있다.
As a result, the sheet resistance of the uncoated sample was 202.03
Figure PCTKR2021002702-appb-img-000004
43.05
Figure PCTKR2021002702-appb-img-000005
/sq., whereas the coated surface and the back surface resistance of the coated sample were 0.22 each
Figure PCTKR2021002702-appb-img-000006
0.03
Figure PCTKR2021002702-appb-img-000007
/sq., 0.17
Figure PCTKR2021002702-appb-img-000008
0.02
Figure PCTKR2021002702-appb-img-000009
/sq. It can be confirmed that the sheet resistance is reduced by the silver mixture coating as shown in <Table 1> below.
Without silver
compound coating
without silver
compound coating
With silver
compound coating
(coated side)
With silver
compound coating
(coated side)
With silver
compound coating
(back side)
With silver
compound coating
(back side)
Surface
resistance (
Figure PCTKR2021002702-appb-img-000010
/sq.)
Surface
resistance(
Figure PCTKR2021002702-appb-img-000010
/sq.)
202.0
Figure PCTKR2021002702-appb-img-000011
43.1
202.0
Figure PCTKR2021002702-appb-img-000011
43.1
0.22
Figure PCTKR2021002702-appb-img-000012
0.03
0.22
Figure PCTKR2021002702-appb-img-000012
0.03
0.17
Figure PCTKR2021002702-appb-img-000013
0.02
0.17
Figure PCTKR2021002702-appb-img-000013
0.02
도 4a 내지 4c는 본 발명의 일 실시예에 따른 허리밴드형 웨어러블 심전도 측정 장치(400)를 도시한 도면이다. 도 4d는 본 발명의 일 실시예에 따른 섬유 전극(407)의 배치 구조를 도시한 도면이다. 4A to 4C are diagrams illustrating a waistband-type wearable electrocardiogram measuring apparatus 400 according to an embodiment of the present invention. 4D is a diagram illustrating an arrangement structure of a fiber electrode 407 according to an embodiment of the present invention.
도 4a 내지 4c를 참고하면, 허리밴드형 웨어러블 심전도 측정 장치(400)는 탄성 부재(401), 제1 패브릭(403), 제2 패브릭(405), 섬유 전극(407), 인터페이스부(409), 커버 부재(411) 및 고정부(413)를 포함할 수 있다. 4A to 4C , the waistband-type wearable electrocardiogram measuring device 400 includes an elastic member 401 , a first fabric 403 , a second fabric 405 , a fiber electrode 407 , and an interface unit 409 . , a cover member 411 and a fixing part 413 may be included.
일 실시예에서, 섬유 전극(407)은 탄성 부재(401) 상에 형성되고, 사용자의 심전도 신호를 측정할 수 있다. 예를 들어, 탄성 부재(401)는 탄성 밴드(Elastic band)로 구현될 수 있다. In an embodiment, the fiber electrode 407 is formed on the elastic member 401 and may measure the user's ECG signal. For example, the elastic member 401 may be implemented as an elastic band.
즉, 본 발명에 따르면, 인체의 다양한 사이즈 및 형태에 적용이 가능한 심전도 측정 허리밴드 구현을 위해, 측정 범위의 가동성을 갖는 탄성 부재와 앞서 제작된 섬유 전극을 사용하여 허리밴드형 전극을 구성할 수 있다. That is, according to the present invention, in order to realize an electrocardiogram measuring waistband that can be applied to various sizes and shapes of the human body, a waistband-type electrode can be configured using an elastic member having mobility in the measurement range and the previously manufactured fiber electrode. have.
일 실시예에서, 섬유 전극(407)은 전도사(conductive yarn) 및 전도사 상에 코팅된 금속 혼합물을 포함할 수 있다. 예를 들어, 금속 혼합물은, 은 혼합물(silver compound)을 포함할 수 있다. In one embodiment, the fiber electrode 407 may include a conductive yarn and a metal mixture coated on the conductive yarn. For example, the metal mixture may include a silver compound.
일 실시예에서, 제1 패브릭(403)은 탄성 부재(401)와 섬유 전극(407) 사이에 위치하고, 복원력을 가지는 소재로 구성될 수 있다. 예를 들어, 제1 패브릭(403)은 스페이서 메쉬 패브릭(spacer mesh fabric)으로 구성될 수 있다. In one embodiment, the first fabric 403 is positioned between the elastic member 401 and the fiber electrode 407 and may be made of a material having a restoring force. For example, the first fabric 403 may be comprised of a spacer mesh fabric.
탄성 부재(401)와 섬유 전극(407) 사이에 복원력을 가지는 제1 패브릭(403)을 위치시켜 전극을 입체적으로 구성하였고 이를 통해 피부 밀착성(접촉성)을 향상시킬 수 있다. The electrode is three-dimensionally configured by positioning the first fabric 403 having a restoring force between the elastic member 401 and the fiber electrode 407, thereby improving skin adhesion (contactability).
일 실시예에서, 제2 패브릭(405)은 탄성 부재(401)와 섬유 전극(407) 사이에 위치하고, 신축성(stretch)이 없는 소재로 구성될 수 있다. 예를 들어, 제2 패브릭(405)은 직조 패브릭(woven fabric)로 구성될 수 있다. In one embodiment, the second fabric 405 is positioned between the elastic member 401 and the fiber electrode 407 and may be made of a material without stretch. For example, the second fabric 405 may be comprised of a woven fabric.
일 실시예에서, 인터페이스부(409)는 섬유 전극(407)과 연결되고, 섬유 전극(407)에 의해 측정된 심전도 신호를 심박 측정 장치에게 전달할 수 있다. In an embodiment, the interface unit 409 may be connected to the fiber electrode 407 and transmit an electrocardiogram signal measured by the fiber electrode 407 to the heart rate measuring device.
예를 들어, 인터페이스부(409)는 섬유 전극(407)과 심박 측정 장치를 인터페이싱하기 위하여 니켈 스냅 버튼(snap button)으로 구성될 수 있다. 이때 스냅 버튼의 금속 부분이 피부에 직접 접촉하는 것을 방지하기 위하여 스냅 버튼의 포스트(post) 주변을 커버 부재(411)로 덮어 노출되지 않도록 할 수 있다. 예를 들어, 커버 부재(411)는 심테이프(seam tape)로 구성될 수 있다. For example, the interface unit 409 may be configured as a nickel snap button to interface the fiber electrode 407 and the heart rate measuring device. In this case, in order to prevent the metal part of the snap button from directly contacting the skin, the periphery of the post of the snap button may be covered with a cover member 411 to prevent exposure thereof. For example, the cover member 411 may be formed of a seam tape.
또한, 스냅 버튼을 통해 심박 측정 장치와 연결되는 허리밴드 부분의 변형을 방지하기 위하여 스트레치성이 없는 제2 패브릭(405)을 섬유 전극(407)과 탄성 부재(401) 사이에 위치시킬 수 있다. In addition, the non-stretchable second fabric 405 may be positioned between the fiber electrode 407 and the elastic member 401 to prevent deformation of the waistband portion connected to the heart rate measuring device through the snap button.
일 실시예에서, 심박 측정 장치에 의해 심전도 신호는 보간(interpolation)되고, 상기 보간된 심전도 신호는 필터링되고, 상기 필터링된 심전도 신호의 QRS 파형을 이용하여 사용자의 심박 박동 간격이 산출되며, 심박 박동 간격을 이동평균(moving averaging)하여 분당 평균 박동수가 산출될 수 있다. In an embodiment, the electrocardiogram signal is interpolated by the heartbeat measuring device, the interpolated electrocardiogram signal is filtered, and the user's heartbeat interval is calculated using the QRS waveform of the filtered electrocardiogram signal, the heartbeat rate An average number of beats per minute may be calculated by moving averaging the interval.
일 실시예에서, 인터페이스부(409)의 일단은 섬유 전극(407)과 연결되고, 인터페이스부(409)의 타단은 탄성 부재(401) 및 제2 패브릭(405)을 관통하여 심박 측정 장치와 연결될 수 있다. In one embodiment, one end of the interface unit 409 is connected to the fiber electrode 407 , and the other end of the interface unit 409 passes through the elastic member 401 and the second fabric 405 to be connected to the heart rate measuring device. can
일 실시예에서, 커버 부재(411)는 인터페이스부(409) 상에 위치하여, 인터페이스부(409)를 커버링(covering)할 수 있다.In an embodiment, the cover member 411 may be positioned on the interface unit 409 to cover the interface unit 409 .
일 실시예에서, 고정부(413)는 사이즈 조절 후크(hook)로 구성될 수 있으며, 2 단계의 사이즈 조절이 가능하도록 탄성 밴드(401) 상에 배치될 수 있다. In one embodiment, the fixing part 413 may be configured as a size adjustment hook (hook), it may be arranged on the elastic band 401 to enable two-step size adjustment.
예를 들어, 섬유 전극(407)은 심박 측정 장치와의 인터페이싱을 위해 의복 구성학(clothing construction) 상의 앞중심선(center front line)을 기준으로 하여 일정 거리 떨어진 지점에 대칭되게 배치될 수 있다. 인터페이싱부(409)는 중심선(center front line)을 기준으로 배치될 수 있다. For example, the fiber electrode 407 may be symmetrically disposed at a predetermined distance from a center front line on a clothing construction for interfacing with the heart rate measuring device. The interfacing unit 409 may be disposed based on a center front line.
도 4d를 참고하면, 섬유 전극(407)은 제1 내지 제3 전극(421, 422, 423)을 포함할 수 있다. 이 경우, 제1 전극(421)은 제2 전극(422)의 측면에 위치하고, 제3 전극(423)은 제2 전극(422)의 하측에 위치할 수 있다. Referring to FIG. 4D , the fiber electrode 407 may include first to third electrodes 421 , 422 , and 423 . In this case, the first electrode 421 may be located on a side surface of the second electrode 422 , and the third electrode 423 may be located below the second electrode 422 .
일 실시예에서, 제1 내지 제3 전극(421, 422, 423)은 수정 사지 유도(Modified limb leads) 방식에 의해 배치될 수 있다. In an embodiment, the first to third electrodes 421 , 422 , and 423 may be disposed by a modified limb leads method.
이 경우, 리드(lead) I은 제1 전극(421)과 제2 전극(422) 사이의 전위차이, 리드 II는 제1 전극(421)과 제3 전극(423) 사이의 전위차이, 리드 III는 제2 전극(422)과 제3 전극(423) 사이의 전위차이로 유도될 수 있다. In this case, lead I is the potential difference between the first electrode 421 and the second electrode 422 , lead II is the potential difference between the first electrode 421 and the third electrode 423 , and lead III is the first It may be induced by a potential difference between the second electrode 422 and the third electrode 423 .
리드 II는 심장의 전기전도 방향과 가장 유사하며 가장 진폭이 큰 심전도를 측정할 수 있다. 리드 II는 수평방향과 수직방향의 벡터 합으로 표현될 수 있으며 이를 리드 I과 리드 III로 정의할 수 있다.Lead II is most similar to the direction of electrical conduction of the heart and can measure the highest amplitude electrocardiogram. Lead II can be expressed as a vector sum of horizontal and vertical directions, and this can be defined as leads I and III.
리드 II에 해당하는 벡터는 벡터 I’과 III’의 합으로도 표현될 수 있으며 이 경우 리드 I’을 통해 양쪽 하지 사이의 전위 차이를 측정할 수 있다. 이러한 유도법은 상체에 압박을 가하거나 추가적인 측정 센서 등을 부착하지 않아 활동에 제약이 적다는 장점을 가질 수 있다. The vector corresponding to lead II can also be expressed as the sum of vectors I' and III', and in this case, the potential difference between the lower extremities can be measured through lead I'. This induction method may have an advantage in that it does not apply pressure to the upper body or attach an additional measurement sensor, so there are few restrictions on activity.
도 4a 내지 4d를 참고하면, 본 발명의 다양한 실시 예들에서 심전도 측정 장치(400)는 도 4a 내지 4d에 설명된 구성들이 필수적인 것은 아니어서, 도 4a 내지 4d에 설명된 구성들보다 많은 구성들을 가지거나, 또는 그보다 적은 구성들을 가지는 것으로 구현될 수 있다.Referring to FIGS. 4A to 4D , in various embodiments of the present invention, the electrocardiogram measuring apparatus 400 has more configurations than those described in FIGS. 4A to 4D because the configurations described in FIGS. 4A to 4D are not essential. Or, it may be implemented with fewer configurations.
도 5는 본 발명의 일 실시예에 따른 심박 측정 시스템(500)을 도시한 도면이다.5 is a diagram illustrating a heart rate measuring system 500 according to an embodiment of the present invention.
도 5를 참고하면, 심박 측정 시스템(500)은 심전도 측정 장치(510), 심박 측정 장치(520) 및 단말 장치(530)를 포함할 수 있다. Referring to FIG. 5 , the heart rate measuring system 500 may include an electrocardiogram measuring device 510 , a heart rate measuring device 520 , and a terminal device 530 .
심전도 측정 장치(510)는 허리밴드형 심전도 섬유 전극으로부터 심전도 신호를 획득할 수 있다.The electrocardiogram measuring apparatus 510 may acquire an electrocardiogram signal from a waistband electrocardiogram fiber electrode.
심박 측정 장치(520)는 심전도 측정 장치(510)로부터 심전도 신호를 전달 받고, 이를 단말 장치(530)에게 송신할 수 있다. 단말 장치(530)는 전달된 심전도 신호를 실시간 그래프 형식으로 디스플레이하고 파일로 저장할 수 있다.The heartbeat measuring device 520 may receive an electrocardiogram signal from the electrocardiogram measuring device 510 and transmit it to the terminal device 530 . The terminal device 530 may display the transmitted ECG signal in a real-time graph format and store it as a file.
또한, 심박 측정 장치(520)는 심전도 신호로부터 산출된 심박 박동수 정보를 단말 장치(530)에게 송신할 수 있다. 단말 장치(530)는 전달된 심박 박동수 정보를 디스플레이할 수 있다. Also, the heartbeat measuring apparatus 520 may transmit heartbeat rate information calculated from the electrocardiogram signal to the terminal device 530 . The terminal device 530 may display the transmitted heart rate information.
도 5를 참고하면, 본 발명의 다양한 실시 예들에서 심박 측정 시스템(500)은 도 5에 설명된 구성들이 필수적인 것은 아니어서, 도 5에 설명된 구성들보다 많은 구성들을 가지거나, 또는 그보다 적은 구성들을 가지는 것으로 구현될 수 있다.Referring to FIG. 5 , in various embodiments of the present invention, the heart rate measurement system 500 has more configurations than the configurations described in FIG. 5 , or fewer configurations because the configurations described in FIG. 5 are not essential. It can be implemented by having
도 6은 본 발명의 일 실시예에 따른 심박 측정 방법을 도시한 도면이다. 일 실시예에서, 도 6의 각 단계는 심박 측정 장치(520)에 의해 수행될 수 있다. 6 is a diagram illustrating a heart rate measuring method according to an embodiment of the present invention. In an embodiment, each step of FIG. 6 may be performed by the heart rate measuring device 520 .
도 6을 참고하면, S612 단계는, 심전도 신호를 보간(interpolation)하는 단계이다. Referring to FIG. 6 , step S612 is a step of interpolating an electrocardiogram signal.
S614 단계는, 고역 통과 필터(high pass filter)를 이용하여 상기 보간된 심전도 신호를 1차 필터링하는 단계이다. Step S614 is a step of primary filtering the interpolated ECG signal using a high pass filter.
S616 단계는, 대역 통과 필터(band pass filter)를 이용하여 상기 1차 필터링된 심전도 신호를 2차 필터링하는 단계이다. Step S616 is a step of secondarily filtering the firstly filtered ECG signal using a band pass filter.
일 실시예에서, S612 내지 S616 단계는 전처리(pre-processing) 단계로 구성될 수 있다. In an embodiment, steps S612 to S616 may be configured as pre-processing steps.
S622 단계는, 상기 2차 필터링된 심전도 신호의 QRS 파형을 검출하는 단계이다. Step S622 is a step of detecting the QRS waveform of the second-filtered ECG signal.
S624 단계는, QRS 파형의 이소성 박동(ectopic beat)을 보정(correction)하는 단계이다. Step S624 is a step of correcting an ectopic beat of the QRS waveform.
S626 단계는, 상기 보정된 QRS 파형으로부터 심박 박동 간격(RRI)을 산출하는 단계이다. Step S626 is a step of calculating a heartbeat interval (RRI) from the corrected QRS waveform.
일 실시예에서, S622 내지 S626 단계는 심박 추정(heart rate estimation) 단계로 구성될 수 있다. In an embodiment, steps S622 to S626 may consist of heart rate estimation.
S632 단계는, 심박 박동 간격을 이동평균(moving averaging)하여 분당 평균 박동수를 산출하는 단계이다. Step S632 is a step of calculating the average number of beats per minute by moving averaging the heartbeat interval.
일 실시예에서, S632 단계는 후처리(post-processing) 단계로 구성될 수 있다. In one embodiment, step S632 may be configured as a post-processing step.
도 7은 본 발명의 일 실시예에 따른 보간 전후에 대한 파형 변화 그래프를 도시한 도면이다.7 is a diagram illustrating a waveform change graph before and after interpolation according to an embodiment of the present invention.
도 7을 참고하면, 심전도 신호의 전송 시 발생되는 패킷손실(packet loss)을 보간하기 위해 데이터가 획득되는 시점의 시간 데이터를 저장하고 보간하여 불균일한 데이터 전송 속도로 인한 파형 왜곡을 개선함을 확인할 수 있다. Referring to FIG. 7 , in order to interpolate packet loss occurring during the transmission of an electrocardiogram signal, it is confirmed that the waveform distortion caused by the non-uniform data transmission rate is improved by storing and interpolating the time data at the time the data is acquired. can
도 8은 본 발명의 일 실시예에 따른 대역 통과 필터의 주파수 특성 그래프를 도시한 도면이다. 도 9는 본 발명의 일 실시예에 따른 필터링 전후에 대한 심전도 신호 그래프를 도시한 도면이다.8 is a diagram illustrating a frequency characteristic graph of a band pass filter according to an embodiment of the present invention. 9 is a diagram illustrating an electrocardiogram signal graph before and after filtering according to an embodiment of the present invention.
도 8 및 9를 참고하면, 심전도 신호는 호흡이나 동잡음의 영향을 크게 받을 수 있으므로 전처리 단계에서 필터링이 요구될 수 있다. Referring to FIGS. 8 and 9 , since the ECG signal may be greatly affected by respiration or motion noise, filtering may be required in the pre-processing step.
이 경우, 저주파 및 고주파 잡음 제거를 위해 대역 통과 필터가 사용될 수 있다. 대역 통과 필터는 5-35Hz 통과 대역을 가지는 FIR(Finite Impulse Response) 필터를 포함할 수 있다. In this case, a band-pass filter may be used to remove low-frequency and high-frequency noise. The band pass filter may include a Finite Impulse Response (FIR) filter having a pass band of 5-35 Hz.
도 10은 본 발명의 일 실시예에 따른 QRS 그래프를 도시한 도면이다.10 is a diagram illustrating a QRS graph according to an embodiment of the present invention.
도 10을 참고하면, 심전도 신호의 QRS 파형은 Pan-Tompkins 알고리즘을 사용하여 검출될 수 있으나, 이에 제한되지 않는다. Referring to FIG. 10 , the QRS waveform of the ECG signal may be detected using the Pan-Tompkins algorithm, but is not limited thereto.
검출된 QRS 파형은 거짓 양성(false positive) 또는 거짓 음성(false negative)과 같은 오검출을 포함할 수 있으므로 수동 교정에 의해 오검출을 교정할 수 있다. 오검출의 교정은 극점 검출 GUI를 사용하여 수행될 수 있다. Since the detected QRS waveform may contain false positives or false negatives, such as false positives, false positives can be corrected by manual calibration. Correction of false detection can be performed using the pole detection GUI.
도 11은 본 발명의 일 실시예에 따른 이소성 박동의 교정 전후에 대한 RRI 그래프를 도시한 도면이다.11 is a diagram illustrating an RRI graph before and after correction of ectopic beats according to an embodiment of the present invention.
도 11을 참고하면, 심박 박동 간격(RRI) 계산 및 특이박동(ectopic) 보상이 수행될 수 있다. Referring to FIG. 11 , heart rate interval (RRI) calculation and ectopic compensation may be performed.
검출 및 교정된 QRS 파형으로부터 RRI를 계산할 수 있다. 예를 들어, RRI는 QRS 파형의 시간 위치간 차분을 통하여 계산할 수 있다. RRI can be calculated from the detected and calibrated QRS waveform. For example, the RRI can be calculated through the difference between the temporal positions of the QRS waveform.
이 때, QRS 파형의 소실 시 이소성박동(ectopic beat)이 발생되는 경우와 같이 RRI가 너무 커지거나(false negative), 너무 작아지는(false positive) 현상이 발생할 수 있으며 이는 심박수의 계산에 오류를 가져올 수 있으므로 소실된 RRI에 대한 보상이 수행될 수 있다. At this time, when the QRS waveform is lost, a phenomenon in which the RRI becomes too large (false negative) or too small (false positive) may occur, such as when an ectopic beat occurs, which may cause an error in the calculation of the heart rate. Therefore, compensation for the lost RRI may be performed.
예를 들어, RRI 보상을 위해서는 Morelli 등이 제안한 알고리즘을 사용될 수 있으나, 이에 제한되지 않는다. 이 알고리즘 에서는 이소성 박동 구간의 길이와 평균 박동간격에서부터 소실된 박동수를 추정하고 이를 기반으로 박동을 생성할 수 있다. For example, the algorithm proposed by Morelli et al. may be used for RRI compensation, but is not limited thereto. In this algorithm, the number of lost beats can be estimated from the length of the ectopic beat section and the average beat interval, and beats can be generated based on this.
도 12는 본 발명의 일 실시예에 따른 이동 평균 필터의 주파수 특성 그래프를 도시한 도면이다. 도 13은 본 발명의 일 실시예에 따른 이동 평균 필터의 적용 전후에 대한 평균 심박수 그래프를 도시한 도면이다.12 is a diagram illustrating a frequency characteristic graph of a moving average filter according to an embodiment of the present invention. 13 is a diagram illustrating an average heart rate graph before and after application of a moving average filter according to an embodiment of the present invention.
도 12 및 13을 참고하면, 심박수 추정을 위한 이동 평균 필터(moving averaging filter)가 사용될 수 있다.12 and 13 , a moving averaging filter for estimating the heart rate may be used.
예를 들어, 심박수 HR는 RRI의 역수를 취해서 계산될 수 있다. 다만 매 RRI 마다 위 수식을 사용하여 심박수를 계산하는 경우 검출시 QRS 위치의 미묘한 오차로 인해 HR 이 매우 급격한 변화를 가지는 것으로 보여질 수 있다. 예를 들어 QRS 위치가 검출 오류로 인해 50 ms 벗어나서 측정된다면 분당 72 회 심박수 기준으로 대략 5 bpm 정도의 오차가 발생할 수 있다. For example, the heart rate HR may be calculated by taking the reciprocal of the RRI. However, when the heart rate is calculated using the above formula for every RRI, it can be seen that the HR has a very rapid change due to a subtle error in the QRS position during detection. For example, if the QRS position is measured out of 50 ms due to a detection error, an error of approximately 5 bpm may occur based on a heart rate of 72 beats per minute.
따라서, 인접한 박동 n 개의 평균을 구해 평균 박동수를 제공하며, 예를 들어, 5 개의 박동 수 평균을 구해 평균 bpm을 산출하기 위해 5-point 이동 평균 필터가 사용될 수 있다. 사용된 이동 평균 필터의 계수는 [0.2, 0.2, 0.2, 0.2, 0.2]와 같이 나타낼 수 있다. Thus, an average of n adjacent beats is provided to provide an average beat, for example, a 5-point moving average filter may be used to average five beats to calculate an average bpm. The coefficients of the moving average filter used can be expressed as [0.2, 0.2, 0.2, 0.2, 0.2].
일 실시예에서, 심박수 추정의 성능 평가가 수행될 수 있다. 기존의 기준(reference) 심전도 측정 시스템에서 측정된 심전도의 분당 심박동 수와 본 발명에 따른 심박수 측정 성능을 비교할 수 있다. In one embodiment, a performance evaluation of heart rate estimation may be performed. The heart rate measurement performance according to the present invention may be compared with the heart rate per minute of the ECG measured by the existing reference ECG measurement system.
본 발명에 따른 심박 측정 시스템(500)을 사용하여 측정한 심전도 신호와 기준(reference) 심전도 신호는 동시에 측정되었으며, 사용자가 침대에 바르게 누운 편안한 자세에서 6 분간 2 kHz 로 획득될 수 있다. The ECG signal and the reference ECG signal measured using the heartbeat measurement system 500 according to the present invention were simultaneously measured, and may be acquired at 2 kHz for 6 minutes in a comfortable position in which the user lies on the bed.
본 발명에 따른 심박 측정 시스템(500)을 통해 획득한 심전도 신호와 기준 심전도 신호로부터 계산된 심박수의 평균, 표준편차 및 RMSE(root mean square error)가 계산될 수 있다. The average, standard deviation, and root mean square error (RMSE) of heart rates calculated from the ECG signal obtained through the heartbeat measurement system 500 according to the present invention and the reference ECG signal may be calculated.
또한, 본 발명에 따른 심박 측정 시스템(500)으로부터 측정된 심박수와 기준 시스템에서 측정된 HR을 비교하여 심박수 추정 성능을 평가할 수 있다. 이 때, 평가 기준으로는 평균 및 표준편차, 두 측정 방법 간 RMSE를 비교하며, 실시간 심박 추정 시 경향성을 잘 따라갈 수 있는지 확인할 수 있다. Also, the heart rate estimation performance may be evaluated by comparing the heart rate measured by the heart rate measuring system 500 according to the present invention with the HR measured by the reference system. At this time, as the evaluation criteria, the mean and standard deviation, and the RMSE between the two measurement methods are compared, and it can be checked whether the trend can be well followed when estimating the real-time heart rate.
기준 심전도 측정 시스템에서 측정된 심전도 신호의 분당 심박동 수와 본 발명에 따른 심박 측정 시스템(500)의 심박수 측정 성능 평가가 수행될 수 있다. The heart rate measurement performance of the heart rate measurement system 500 according to the present invention and the heart rate per minute of the ECG signal measured by the reference ECG measurement system may be evaluated.
하기 <표 2>를 참고하면, 본 발명에 따른 심박 측정 시스템(500)의 QRS 획득 결과 총 406개의 박동중 350개가 정상적으로 수신되는 것을 확인하였고 13.6%의 손실률을 가지는 것을 확인할 수 있다. Referring to <Table 2> below, as a result of obtaining QRS of the heart rate measuring system 500 according to the present invention, it can be seen that 350 out of a total of 406 beats are normally received and have a loss rate of 13.6%.
ParameterParameter ValueValue
Total beatsTotal beats 406406
True positivetrue positive 350350
False positivefalse positive 00
False negativefalse negative 5656
Loss(%)Loss(%) 13.613.6
하기 <표 3>은 본 발명에 따른 심박 측정 시스템(500)의 최종 성능을 나타내며, 이 결과로부터 본 발명에 따른 심박 측정 시스템(500)은 기준 시스템과 비교하여 약 2.7 bpm의 RMSE를 가지는 것을 확인할 수 있으며, 단순 평균 bpm의 차이는 0.2 bpm에 불과하여 기준 시스템과 거의 유사한 심박수 추정이 가능할 수 있다. Table 3 below shows the final performance of the heart rate measuring system 500 according to the present invention, and from this result, it can be confirmed that the heart rate measuring system 500 according to the present invention has an RMSE of about 2.7 bpm compared to the reference system. In addition, since the difference between the simple average bpm is only 0.2 bpm, it may be possible to estimate the heart rate almost similar to the reference system.
BiopacBiopac Waist-band type wireless
ECG monitoring system
Waist-band type wireless
ECG monitoring system
Mean ± SD
(bpm)
Mean ± SD
(bpm)
67.2
Figure PCTKR2021002702-appb-img-000014
2.9
67.2
Figure PCTKR2021002702-appb-img-000014
2.9
67.0
Figure PCTKR2021002702-appb-img-000015
3.7
67.0
Figure PCTKR2021002702-appb-img-000015
3.7
RMSE (bpm)RMSE (bpm) 2.72.7
도 14는 본 발명의 일 실시예에 따른 심박 측정 장치(520)의 기능적 구성을 도시한 도면이다.14 is a diagram illustrating a functional configuration of a heart rate measuring apparatus 520 according to an embodiment of the present invention.
도 14를 참고하면, 심박 측정 장치(520)는 획득부(1410), 제어부(1420) 및 저장부(1430)를 포함할 수 있다.Referring to FIG. 14 , the heartbeat measuring apparatus 520 may include an acquisition unit 1410 , a control unit 1420 , and a storage unit 1430 .
획득부(1410)는 심전도 측정 장치(510)로부터 사용자의 심전도 신호를 획득할 수 있다. The acquisition unit 1410 may acquire the user's ECG signal from the ECG measuring apparatus 510 .
획득부(1410)는 심전도 측정용 상용 아날로그 프론트-엔드(Analog Front-End, AFE) 모듈을 포함할 수 있다. 일 실시예에서, 획득부(1410)는 심전도를 증폭하고 ADC(analog-to-digital converter)하는 1 채널 AFE이며, 16-bit 의 ADC 해상도를 가질 수 있다. The acquisition unit 1410 may include a commercial analog front-end (AFE) module for measuring an electrocardiogram. In an embodiment, the acquisition unit 1410 is a one-channel AFE that amplifies the electrocardiogram and performs analog-to-digital converter (ADC), and may have a 16-bit ADC resolution.
제어부(1420)는 사용자의 심전도 신호에 기반하여 심박수 데이터를 산출할 수 있다. The controller 1420 may calculate heart rate data based on the user's ECG signal.
일 실시예에서, 제어부(1420)는 적어도 하나의 프로세서 또는 마이크로(micro) 프로세서를 포함하거나, 또는, 프로세서의 일부일 수 있다. 또한, 제어부(1420)는 CP(communication processor)라 지칭될 수 있다. 제어부(1420)는 본 발명의 다양한 실시예에 따른 심박 측정 장치(520)의 동작을 제어할 수 있다. In an embodiment, the controller 1420 may include at least one processor or microprocessor, or may be a part of the processor. Also, the controller 1420 may be referred to as a communication processor (CP). The controller 1420 may control the operation of the heart rate measuring apparatus 520 according to various embodiments of the present disclosure.
통신부(1430)는 제어부(1420)로부터 전달받은 심전도 데이터 및 심박수 데이터를 단말 장치(530)로 전송할 수 있다. The communication unit 1430 may transmit the electrocardiogram data and heart rate data received from the control unit 1420 to the terminal device 530 .
일 실시예에서, 통신부(1410)는 유선 통신 모듈 및 무선 통신 모듈 중 적어도 하나를 포함할 수 있다. 예를 들어, 통신부(1410)는 블루투스(bluetooth) 통신 모듈을 포함할 수 있다. 통신부(1410)의 전부 또는 일부는 '송신부', '수신부' 또는 '송수신부(transceiver)'로 지칭될 수 있다. In an embodiment, the communication unit 1410 may include at least one of a wired communication module and a wireless communication module. For example, the communication unit 1410 may include a Bluetooth communication module. All or part of the communication unit 1410 may be referred to as a 'transmitter', 'receiver', or 'transceiver'.
도 14를 참고하면, 본 발명의 다양한 실시 예들에서 심박 측정 장치(520)는 도 14에 설명된 구성들이 필수적인 것은 아니어서, 도 14에 설명된 구성들보다 많은 구성들을 가지거나, 또는 그보다 적은 구성들을 가지는 것으로 구현될 수 있다.Referring to FIG. 14 , in various embodiments of the present disclosure, the heartbeat measuring apparatus 520 does not necessarily include the components described in FIG. 14 , and thus has more components than those described in FIG. 14 , or fewer components. It can be implemented by having
이상의 설명은 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과한 것으로, 통상의 기술자라면 본 발명의 본질적인 특성이 벗어나지 않는 범위에서 다양한 변경 및 수정이 가능할 것이다.The above description is merely illustrative of the technical idea of the present invention, and various changes and modifications may be made by those skilled in the art without departing from the essential characteristics of the present invention.
본 명세서에 개시된 다양한 실시예들은 순서에 관계없이 수행될 수 있으며, 동시에 또는 별도로 수행될 수 있다. The various embodiments disclosed herein may be performed out of order, and may be performed simultaneously or separately.
일 실시예에서, 본 명세서에서 설명되는 각 도면에서 적어도 하나의 단계가 생략되거나 추가될 수 있고, 역순으로 수행될 수도 있으며, 동시에 수행될 수도 있다. In an embodiment, at least one step may be omitted or added in each figure described herein, may be performed in the reverse order, or may be performed simultaneously.
본 명세서에 개시된 실시예들은 본 발명의 기술적 사상을 한정하기 위한 것이 아니라, 설명하기 위한 것이고, 이러한 실시예들에 의하여 본 발명의 범위가 한정되는 것은 아니다.The embodiments disclosed in the present specification are not intended to limit the technical spirit of the present invention, but to illustrate, and the scope of the present invention is not limited by these embodiments.
본 발명의 보호범위는 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 이해되어야 한다.The protection scope of the present invention should be construed by the claims, and all technical ideas within the scope equivalent thereto should be understood to be included in the scope of the present invention.

Claims (7)

  1. 탄성 부재; 및 elastic member; and
    상기 탄성 부재 상에 형성되고, 사용자의 심전도 신호를 측정하는 섬유 전극; a fiber electrode formed on the elastic member and measuring the user's ECG signal;
    을 포함하고,including,
    상기 섬유 전극은, 전도사(conductive yarn) 및 상기 전도사 상에 코팅된 금속 혼합물을 포함하는, The fiber electrode comprises a conductive yarn and a metal mixture coated on the conductive yarn,
    허리밴드형 웨어러블 심전도 측정 장치.A waistband-type wearable electrocardiogram device.
  2. 제1항에 있어서,According to claim 1,
    상기 섬유 전극은, 제1 내지 제3 전극을 포함하고, The fiber electrode includes first to third electrodes,
    상기 제1 전극은, 상기 제2 전극의 측면에 위치하고, The first electrode is located on the side of the second electrode,
    상기 제3 전극은, 상기 제2 전극의 하측에 위치하는, The third electrode is located below the second electrode,
    허리밴드형 웨어러블 심전도 측정 장치.A waistband-type wearable electrocardiogram device.
  3. 제1항에 있어서, According to claim 1,
    상기 탄성 부재와 상기 섬유 전극 사이에 위치하고, 복원력을 가지는 제1 패브릭;a first fabric positioned between the elastic member and the fiber electrode and having a restoring force;
    을 더 포함하는,further comprising,
    허리밴드형 웨어러블 심전도 측정 장치. A waistband-type wearable electrocardiogram device.
  4. 제1항에 있어서, According to claim 1,
    상기 섬유 전극과 연결되고, 상기 섬유 전극에 의해 측정된 심전도 신호를 심박 측정 장치에게 전달하는 인터페이스부;an interface unit connected to the fiber electrode and transmitting an electrocardiogram signal measured by the fiber electrode to the heart rate measuring device;
    를 더 포함하는,further comprising,
    허리밴드형 웨어러블 심전도 측정 장치. A waistband-type wearable electrocardiogram device.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 인터페이스부 상에 위치하여, 상기 인터페이스부를 커버링(covering)하는 커버 부재; a cover member positioned on the interface unit and covering the interface unit;
    를 더 포함하는,further comprising,
    허리밴드형 웨어러블 심전도 측정 장치. A waistband-type wearable electrocardiogram device.
  6. 제4항에 있어서,5. The method of claim 4,
    상기 탄성 부재와 상기 섬유 전극 사이에 위치하고, 신축성(stretch)이 없는 제2 패브릭; a second fabric positioned between the elastic member and the fiber electrode and having no stretch;
    을 더 포함하고, further comprising,
    상기 인터페이스부의 일단은, 상기 섬유 전극과 연결되고, One end of the interface unit is connected to the fiber electrode,
    상기 인터페이스부의 타단은, 상기 탄성 부재 및 상기 제2 패브릭을 관통하여 상기 심박 측정 장치와 연결되는,The other end of the interface unit is connected to the heart rate measuring device through the elastic member and the second fabric,
    허리밴드형 웨어러블 심전도 측정 장치. A waistband-type wearable electrocardiogram device.
  7. 제1항에 있어서, According to claim 1,
    상기 심전도 신호는 심박 측정 장치에게 전달되고, The electrocardiogram signal is transmitted to a heart rate measuring device,
    상기 심박 측정 장치에 의해, 상기 심전도 신호는 보간(interpolation)되고, 상기 보간된 심전도 신호는 필터링되고, 상기 필터링된 심전도 신호의 QRS 파형을 이용하여 상기 사용자의 심박 박동 간격이 산출되며, 상기 심박 박동 간격을 이동평균(moving averaging)하여 분당 평균 박동수가 산출되는,By the heartbeat measuring device, the electrocardiogram signal is interpolated, the interpolated electrocardiogram signal is filtered, and the heartbeat interval of the user is calculated using the QRS waveform of the filtered electrocardiogram signal, and the heartbeat rate The average beats per minute is calculated by moving averaging the interval,
    허리밴드형 웨어러블 심전도 측정 장치. A waistband-type wearable electrocardiogram device.
PCT/KR2021/002702 2021-02-05 2021-03-04 Waistband-type wearable electrocardiogram measurement apparatus, and method and apparatus for measuring heartbeat using same WO2022169021A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0016604 2021-02-05
KR1020210016604A KR20220112992A (en) 2021-02-05 2021-02-05 A waistband wearable electrocardiogram measuring apparatus and method and apparatus for heart rate measurement using the same

Publications (1)

Publication Number Publication Date
WO2022169021A1 true WO2022169021A1 (en) 2022-08-11

Family

ID=82742210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002702 WO2022169021A1 (en) 2021-02-05 2021-03-04 Waistband-type wearable electrocardiogram measurement apparatus, and method and apparatus for measuring heartbeat using same

Country Status (2)

Country Link
KR (1) KR20220112992A (en)
WO (1) WO2022169021A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140084408A (en) * 2012-12-26 2014-07-07 (주)맨 텍 Electrocardiogram signal measuring apparatus, electrocardiogram signal measuring method and apparel used for electrocardiogram signal measuring apparatus
KR20140114181A (en) * 2013-03-18 2014-09-26 세종대학교산학협력단 Method and Apparatus for Stress Analysis and Estimation based on Electrocardiogram Signal
KR101517135B1 (en) * 2010-11-17 2015-05-04 스마트 솔루션스 테크놀로지스, 에스.엘. Sensor for acquiring physiological signals
US20170150926A1 (en) * 2013-06-01 2017-06-01 Healthwatch Ltd. Wearable fetal monitoring system having textile electrodes
JP2017121442A (en) * 2016-01-08 2017-07-13 パナソニックIpマネジメント株式会社 Biological signal detection device and biological signal detection method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102074913B1 (en) 2017-11-30 2020-03-17 주식회사 온워즈 Personal care service system using ecg (electrocardiogram) and life log information detected from wearable device and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101517135B1 (en) * 2010-11-17 2015-05-04 스마트 솔루션스 테크놀로지스, 에스.엘. Sensor for acquiring physiological signals
KR20140084408A (en) * 2012-12-26 2014-07-07 (주)맨 텍 Electrocardiogram signal measuring apparatus, electrocardiogram signal measuring method and apparel used for electrocardiogram signal measuring apparatus
KR20140114181A (en) * 2013-03-18 2014-09-26 세종대학교산학협력단 Method and Apparatus for Stress Analysis and Estimation based on Electrocardiogram Signal
US20170150926A1 (en) * 2013-06-01 2017-06-01 Healthwatch Ltd. Wearable fetal monitoring system having textile electrodes
JP2017121442A (en) * 2016-01-08 2017-07-13 パナソニックIpマネジメント株式会社 Biological signal detection device and biological signal detection method

Also Published As

Publication number Publication date
KR20220112992A (en) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2018093131A1 (en) Device for measuring sleep apnea and method therefor
WO2018093133A1 (en) Device for pulmonary function testing and method therefor
WO2014157896A1 (en) Film-type device for measuring biomedical signal, and blood pressure measurement device, cardiopulmonary endurance estimation device, and individual certification device using same
CA1048611A (en) Infant thoracic monitoring electrode assembly
JP6073776B2 (en) Bioelectric signal monitor clothing
US9364150B2 (en) System and method for wireless generation of standard ECG leads and an ECG sensing unit therefor
WO2017069566A1 (en) Dry electrode for detecting biosignal and method for manufacturing same
US20150201856A1 (en) Electrode and measuring device for acquiring biomedical vital parameters
US20160256066A1 (en) Method and system to measure physiological signals or to electrically stimulate a body part
WO2018101786A1 (en) Electrode belt device for measuring bio-signal
WO2015002424A1 (en) Structure and method for connecting fabric sensor and digital yarn
WO2022169021A1 (en) Waistband-type wearable electrocardiogram measurement apparatus, and method and apparatus for measuring heartbeat using same
WO2019205321A1 (en) Sleep stage monitoring method, air conditioner, and computer-readable storage medium
WO2018221865A1 (en) Body-attachable pulse wave measuring device
JP2016179250A (en) Bioelectric signal monitoring clothing
JP2947151B2 (en) In particular, a sensor device for transmitting a signal representing the patient&#39;s breathing
WO2020005027A1 (en) Electrocardiogram measurement method and system using wearable device
WO2022114621A1 (en) Arrhythmia treatment device and method for treating arrhythmia of user by using same
WO2020037805A1 (en) Physiological parameter monitoring device, system and working mode setting method
JP2006247075A (en) Bioelectric signal measuring device, and electrode apparatus
WO2018093163A1 (en) Neonatal apnea measuring device, operation method thereof, and neonatal apnea measuring system
TWM463109U (en) Physiology detecting textile
Zhong et al. Integrated design of physiological multi-parameter sensors on a smart garment by ultra-elastic e-textile
JPH061685Y2 (en) ECG signal detection belt
TWM579010U (en) Flexible ECG detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924922

Country of ref document: EP

Kind code of ref document: A1