WO2022168765A1 - Data collection system, data collection method, and mobile body - Google Patents

Data collection system, data collection method, and mobile body Download PDF

Info

Publication number
WO2022168765A1
WO2022168765A1 PCT/JP2022/003419 JP2022003419W WO2022168765A1 WO 2022168765 A1 WO2022168765 A1 WO 2022168765A1 JP 2022003419 W JP2022003419 W JP 2022003419W WO 2022168765 A1 WO2022168765 A1 WO 2022168765A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor node
node
sensing data
collection system
data
Prior art date
Application number
PCT/JP2022/003419
Other languages
French (fr)
Japanese (ja)
Inventor
聰 中川
雅文 川関
Original Assignee
トライポッド・デザイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トライポッド・デザイン株式会社 filed Critical トライポッド・デザイン株式会社
Publication of WO2022168765A1 publication Critical patent/WO2022168765A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies

Definitions

  • the present invention relates to a data collection system that can collect data by moving collection nodes.
  • a sensor node is installed in the place where you want to acquire data, and the data is acquired.
  • the data acquired by the sensor nodes is then transmitted to a fixed base station with collection nodes.
  • the locations where sensor nodes can be installed are limited to within a predetermined range from the base station, and depend on the distance that the sensor nodes can transmit data.
  • At least one object of the present invention is to provide a data collection system that can collect data by moving collection nodes.
  • a data collection system that includes a sensor node, a collection node that receives sensing data acquired by the sensor node, and a moving object that has the collection node, wherein the data collection system collects location information about the location of the sensor node.
  • the moving body comprises a collection node moving means for moving the collection node from the position of the sensor node to within a first predetermined range, and the sensor node transmits the acquired sensing data to the collection node.
  • a data collection system comprising first sensing data transmitting means for transmitting, wherein the collection node comprises sensing data receiving means for receiving sensing data from the sensor node; [2] The collection node includes signal transmission means for transmitting a signal to the sensor node, and the first sensing data transmission means transmits sensing data to the collection node when a signal is transmitted by the signal transmission means.
  • the data collection system according to [1]; [3] The data collection system comprises a wireless device, and the sensor node includes sensing data transmittable notification transmitting means for transmitting a notification that sensing data can be transmitted to the wireless device, and identification information for identifying the sensor node.
  • the data collection system according to [1] or [2], comprising a second identification information transmission means for [4]
  • the moving body comprises sensor node installation means for installing a sensor node, and the location information storage means stores the location information of the sensor node when installed by the sensor node installation means, [1] to [3] ]
  • the data collection system according to any one of; [5]
  • the sensor node has location information specifying means for specifying location information of the sensor node, and the data collection system stores the location information of the sensor node stored by the location information storage means and specified by the location information specifying means.
  • the data collection system according to any one of [1] to [4], comprising location information updating means for updating the location information of the sensor node that has been received; [6]
  • the data collection system comprises movement route identification means for identifying the movement route of the moving object based on the position information of the sensor node stored by the position information storage means, and the collection node movement means is the movement route identification means.
  • the data collection system according to any one of [1] to [5], wherein the collection node is moved according to the movement path specified by; [7]
  • the sensor node is connected to a current collection system, the current collection system includes a first conductive portion, a second conductive portion, and a functional portion, and the first conductive portion and the functional portion are connected , the second conductive part and the functional part are connected, the first conductive part and the second conductive part are not in contact with each other, and the first conductive part and the second conductive part are brought into contact with the medium to collect current , the data collection system according to any one of [1] to [
  • the data collection system according to any one of [1] to [7], wherein the collection node moves within a first predetermined range from the position of the sensor node other than the detected sensor node; [9]
  • the sensor node includes a plurality of sensors, and the data collection system includes transmission target sensing data identifying means for identifying sensing data to be transmitted among sensing data that can be acquired from the plurality of sensors included in the sensor node.
  • the data collection system according to any one of [1] to [8], wherein the first sensing data transmitting means transmits the sensing data specified by the transmission target sensing data specifying means; [10]
  • the first sensing data transmission means can transmit sensing data by a plurality of communication methods, and the data collection system includes communication method changing means for changing the communication method of the first sensing data transmission means.
  • the data collection system according to any one of [1] to [9], wherein the first sensing data transmission means transmits data by the communication method changed by the communication method change means; [11] The data collection system according to any one of [1] to [10], wherein the collection node comprises power supply means for supplying power to the sensor node; [12] The data collection system comprises a wireless device installed within a second predetermined range from the position of the sensor node, the wireless device comprises notification transmission means for transmitting a notification to the mobile body, and the mobile body: The data collection system according to any one of [1] to [11], comprising position specifying means for specifying the position of the sensor node based on the position of the wireless device corresponding to the notification transmitted by the notification transmission means; [13] The data collection system includes a determination node that determines the state of the sensor node, and the determination node includes first state determination means that determines the state of the sensor node based on sensing data transmitted from the sensor node.
  • the data collection system according to any one of [1] to [12]; [14] Any one of [1] to [13], wherein the data collection system includes another computer device, and the collection node includes second sensing data transmission means for transmitting sensing data to the other computer device.
  • the data collection system includes a wireless device, the sensor node and the wireless device are connected, and the wireless device determines whether the sensor node is capable of transmitting sensing data; any one of [1] to [14], further comprising a third identification information transmission means for transmitting identification information of a sensor node determined to be capable of transmitting sensing data by the sensing data transmission determination means, to the moving object; the data collection system described; [16]
  • the data collection system includes a determination node that determines the state of the sensor node, the sensor node and the determination node are connected, and the determination node includes second state determination means that determines the state of the sensor node.
  • a data collection method using a data collection system that includes a sensor node, a collection node that receives sensing data acquired by the sensor node, and a moving body that has the collection node, wherein the data collection system includes the sensor node
  • the moving body has a collection node moving step of moving the collection node from the position of the sensor node to within a first predetermined range, and the sensor node is A data collection method comprising a sensing data transmission step of transmitting acquired sensing data to a collection node, the collection node having a sensing data reception step of receiving the sensing data from the sensor node;
  • FIG. 1 is a block diagram showing the configuration of a data collection system according to an embodiment of the present invention
  • FIG. 1 is a block diagram showing the configuration of a current collection system according to an embodiment of the present invention
  • FIG. It is a block diagram showing a configuration of a power conversion unit according to an embodiment of the present invention.
  • FIG. 4 is a diagram representing a sensor node according to an embodiment of the present invention
  • FIG. 4 is a diagram showing the relationship between time and current I when switching ON and OFF of a transistor in a sensor node according to the embodiment of the present invention
  • FIG. 2 is a diagram showing an example of sensor nodes according to an embodiment of the present invention
  • FIG. 4 is a diagram showing a flowchart of position information storage processing in the data collection system according to the embodiment of the present invention
  • FIG. 4 is a diagram showing a flowchart of location information update processing in the data collection system according to the embodiment of the present invention
  • FIG. 4 is a diagram showing a flowchart of sensing data reception processing in the data collection system according to the embodiment of the present invention
  • FIG. 4 is a diagram showing a flowchart of sensor node position specifying processing in the data collection system according to the embodiment of the present invention
  • FIG. 4 is a diagram showing a flow chart of transmittable sensor node identification processing in the data collection system according to the embodiment of the present invention
  • FIG. 4 is a diagram showing a flowchart of power supply processing in the data collection system according to the embodiment of the present invention
  • FIG. 4 is a diagram showing a flowchart of determination processing in the data collection system according to the embodiment of the present invention
  • FIG. 1 is a block diagram showing the configuration of a data collection system according to an embodiment of the invention.
  • the data collection system includes sensor nodes 10 (sensor nodes 10a, 10b, . . . 10z), collection nodes 11 that receive sensing data acquired by the sensor nodes 10, 12 and radio equipment 13 (radio equipment 13a, 13b, . . . 13z).
  • a communication connection is possible between the sensor node 10 and the collection node 11, and between the sensor node 10 and the moving object 12.
  • the wireless device 13 and the collection node 11 and the wireless device 13 and the moving object 12 can be connected for communication.
  • the sensor nodes 10 may be capable of communication connection with the wireless device 13 corresponding to each sensor node 10 .
  • one sensor node 10 may correspond to one wireless device 13, or a plurality of sensor nodes 10 may correspond to one wireless device 13, or one sensor node 10 may correspond to a plurality of wireless devices.
  • the device 13 may correspond.
  • the collection node 11 and the moving object 12 may be capable of communication connection.
  • the sensor node 10, the collection node 11, the mobile object 12, and the wireless device 13 may further be capable of communication connection with other computer devices.
  • the computer device is not particularly limited as long as it has a communication unit, a storage unit, and a control unit, and examples thereof include a server device and a terminal device. If the computer device is a terminal device, it is preferable that a dedicated application compatible with the data collection system of the present invention is installed.
  • the data collection system may further include a determination node that determines the state of the sensor node.
  • the determination node may be capable of communication connection with each of the sensor node 10, the collection node 11, the mobile object 12, the wireless device 13, and other computer devices.
  • the above communication connection does not have to be performed all the time, as long as it is possible to connect as necessary.
  • the sensor node 10 is not particularly limited as long as it has a sensor and a communication unit.
  • the sensor provided in the sensor node 10 is not particularly limited as long as it senses or measures predetermined information.
  • information sensed or measured by the sensor provided in the sensor node 10 is referred to as sensing data.
  • the sensor node 10 acquires sensing data that the sensor provided in the sensor node 10 senses or measures information, or that the sensor node 10 stores information sensed or measured by the sensor provided in the sensor node 10. It is said to do.
  • the sensor node 10 stores information sensed or measured by a sensor included in the sensor node 10
  • the sensor node 10 may include a storage unit.
  • the sensor may acquire sensing data related to the external environment, such as acceleration, outside temperature, atmospheric pressure, illuminance, and UV irradiation.
  • the sensor node 10 when the sensor node 10 is worn by a human or other animal, the sensor acquires sensing data related to the internal environment of the wearer, such as heart rate, electrocardiogram potential, blood pressure, and body temperature. It is also possible to be
  • the sensor node 10 should be equipped with one or more sensors. Further, when the sensor node 10 includes a plurality of sensors, sensors that acquire different types of sensing data may be provided. Alternatively, when the sensor node 10 includes a plurality of sensors, sensors that acquire the same type of sensing data but have different sensing data acquisition ranges may be provided.
  • the data collection system may specify the sensing data to be transmitted from among the sensing data that can be acquired from the multiple sensors provided in the sensor node 10 .
  • the sensing data to be transmitted may be specified by any of the wireless device 13, the mobile object 12, the collection node 11, the sensor node 10, or another computer device.
  • the identified sensing data may then be transmitted from the sensor node 10 to the collection node 11 .
  • the identified sensing data may be transmitted from the sensor node 10 to the determination node.
  • the temperature and humidity sensing data may also be specified as transmission targets. good.
  • the sensor node includes a plurality of sensors
  • the data collection system includes transmission target sensing data identifying means for identifying the sensing data to be transmitted among the sensing data that can be acquired from the plurality of sensors included in the sensor node.
  • the sensing data to be collected can be specified by the first sensing data transmitting means transmitting the sensing data specified by the transmission target sensing data specifying means.
  • the communication unit is not particularly limited as long as it can communicate with the collection node 11, mobile unit 12, wireless device 13, other computer devices, and the like.
  • the communication unit may be capable of communication connection by one or more communication methods.
  • a communication method is not particularly limited as long as communication can be performed.
  • the communication method may be communication performed by propagating through space.
  • the communication method may be LPWA, Wi-Fi, Bluetooth, BLE, RFID, NFC, IrDA, and the like. From the viewpoint of reducing power consumption, LPWA, BLE, RFID, NFC, IrDA, etc. are preferable as the communication method.
  • the data collection system may be able to change the communication method used when the sensor node 10 transmits sensing data to the collection node 11. Also, the change of the communication method may be performed by any of the wireless device 13, the mobile unit 12, the collection node 11, the sensor node 10, or another computer device.
  • the sensor node 10 may transmit sensing data by NFC, which is short-range communication, during the daytime, and transmit sensing data by LPWA, which is long-distance communication at night.
  • the communication method may be changed according to the distance between the sensor node 10 and the collection node 11.
  • the data collection system of the present invention may be capable of changing the communication method not only when the sensor node 10 transmits sensing data to the collection node 11, but also when communicating in various situations.
  • the data collection system may be capable of changing the communication method used when the collection node 11 transmits sensing data to another computer device.
  • the first sensing data transmitting means can transmit sensing data by a plurality of communication methods
  • the data collection system has a communication method changing means for changing the communication method of the first sensing data transmitting means.
  • the first sensing data transmitting means transmits the data by the communication method changed by the communication method changing means, so that the sensing data can be transmitted and received by the communication method according to the situation.
  • the sensor node 10 may be connected to a current collection system, which will be described later. Acquisition of sensing data and transmission of sensing data may be performed using power obtained by the power collection system. Alternatively, sensing data acquisition and sensing data transmission may be performed using power obtained from something other than the current collection system, such as a battery, solar power generation, or microbial power generation. It may be performed by both electric power and power obtained from sources other than current collection systems, such as batteries, solar power generation, and microbial power generation.
  • the sensor node 10 includes a power storage unit that stores electricity, an output voltage conversion unit that converts output voltage such as a booster circuit or a step-down circuit, a control unit such as a microcomputer that controls circuits, and a controller that displays information.
  • GNSS for specifying a position such as a display unit, a light source such as an incandescent lamp or a light emitting diode, a heating element that emits heat, a sound generator that emits sound, a transmitter that emits a signal, a storage unit, and the like may be provided.
  • GNSS shall include technologies for determining position such as GPS, GLONASS, Galileo, QZSS, Gagan.
  • the sensor node 10 may be assigned an identification number. Then, the identification number of the sensor node 10 may be stored in the storage unit of the sensor node 10 .
  • the sensor node 10 is assigned an identification number, and the identification number of the sensor node 10 is stored in the storage unit of the sensor node 10 .
  • Information for identifying the sensor node 10 including the identification number of the sensor node 10 is referred to as identification information of the sensor node 10 .
  • the collection node 11 is not particularly limited as long as it has a communication unit and a storage unit.
  • the collection node 11 receives the sensing data transmitted from the transmission node 10 and stores it in the storage unit. Also, the collection node 11 may transmit the received sensing data to another computer device.
  • the collection node 11 may also include a power supply unit that supplies power to other devices, such as the sensor node 10 .
  • the communication unit of the collection node 11 can adopt the description of the communication unit of the sensor node 10 to the extent necessary.
  • the collection node 11 may be provided inside the mobile object 12 or may be provided outside the mobile object 12 . Also, the collection node 11 may have the shape of a device, or may be functionally provided without having the shape of a device.
  • the mobile object 12 is not particularly limited as long as it can move the collection node 11.
  • the moving body 12 can be a known one, and may be one in which a person can board or one in which a person cannot board. Further, the shape of the mobile body 12 may be a vehicle type that can travel on the ground, an aircraft type that can fly in the sky, a ship type that can move on water, or a vehicle that can dive underwater. submersible type. Alternatively, the moving body 12 may be a humanoid robot, a dog-shaped robot, or the like.
  • the mobile unit 12 may be equipped with a communication unit, a control unit, and a storage unit. Also, the moving body 12 may include a sensor, a camera, a conversion unit, and the like. Additionally, the mobile 12 may include a power supply that powers other devices, such as the sensor node 10 .
  • the communication unit of the mobile object 12 can adopt the description of the communication unit of the sensor node 10 to the extent necessary.
  • control unit may control the flight.
  • the control unit of the moving body 12 is composed of a CPU, a RAM, and a ROM, and controls the flight of the moving body 12 based on information obtained from sensors provided on the moving body 12 and/or route information. You can do it.
  • the sensors provided by the moving body 12 may include various sensors such as a gyro sensor, an acceleration sensor, an atmospheric pressure sensor, an ultrasonic sensor, a magnetic direction sensor, a GNSS, an infrared sensor, and a visible light sensor.
  • a gyro sensor detects the tilt, or attitude, of the moving object 12
  • an acceleration sensor detects the speed of the moving object 12
  • an atmospheric pressure sensor and an ultrasonic sensor detect the altitude of the moving object 12
  • a magnetic direction sensor detects the direction the moving object 12 faces.
  • the latitude and longitude of the mobile object 12 may be detected by GNSS
  • obstacles around the mobile object 12 may be mainly detected by an infrared sensor, a visible light sensor, or an ultrasonic sensor.
  • the camera provided on the moving body 12 may take pictures of the surroundings of the moving body 12.
  • Video data captured by the camera can be converted in data format by the conversion unit and transmitted to another computer device by the communication unit.
  • the shape of the flying object type moving object 12 may be either a rotary wing type or a fixed wing type. Further, the mobile object 12 may be autonomously controlled in flight based on route information or the like, or may be controlled in flight by being wirelessly operated by an operator.
  • the wireless device 13 is not particularly limited as long as communication connection is possible.
  • the wireless device 13 may include a communication section.
  • the wireless device 13 can use a beacon or the like.
  • the communication unit of the wireless device 13 can adopt the description of the communication unit of the sensor node 10 to the extent necessary.
  • the data collection system may include a plurality of collection nodes 11 and mobile bodies 12. Then, each collection node 11 and mobile unit 12 may be capable of communication connection with each other.
  • FIG. 2 is a block diagram showing the configuration of the current collection system according to the embodiment of the invention.
  • the current collection system is composed of a first conductive portion 1 , a second conductive portion 2 and a functional portion 3 .
  • the first conductive portion 1 and the functional portion 3, and the functional portion 3 and the second conductive portion 2 are electrically connected to each other.
  • Electrically connected means, for example, to be electrically connected by a lead wire or the like.
  • Non-contact means, for example, a state in which the first conductive portion 1 and the second conductive portion 2 are not in direct contact.
  • the current collection system collects current by bringing part or all of the first conductive part 1 and the second conductive part 2 into contact with the medium. That is, the current collection system generates electric power by bringing part or all of the first conductive portion 1 and the second conductive portion 2 into contact with the medium.
  • the distance between the first conductive part 1 and the second conductive part 2 is preferably 10 mm or less, more preferably 5 mm or less, even more preferably 3 mm or less, particularly 1 mm or less. It is preferably 0.5 mm or less, particularly preferably 0.1 mm or less, most preferably 0.05 mm or less.
  • the distance between the first conductive part 1 and the second conductive part 2 may be constant or partially different.
  • the distance of the closest part in the distance between the first conductive part 1 and the second conductive part 2 is It is preferably within the above range.
  • the average value of the distance between the first conductive portion 1 and the second conductive portion 2 is within the above range.
  • the first conductive portion 1 and the second conductive portion 2 can efficiently come into contact with the medium, thereby collecting current. easier.
  • Both the first conductive part 1 and the second conductive part 2 preferably have conductivity.
  • examples of materials for the first conductive portion 1 and the second conductive portion 2 include metal, conductive polymer, carbon, conductive fiber, conductive rubber, and the like.
  • the shapes of the first conductive part 1 and the second conductive part 2 are not particularly limited.
  • the shape of the first conductive part 1 and the second conductive part 2 may be rectangular parallelepiped, cylindrical (rod-shaped), pyramidal, conical, plate-like, sheet-like, film-like, string-like or powdery, Any shape is acceptable.
  • a material having no conductivity is coated with a material having conductivity, or a material having conductivity is used in the material having no conductivity. may be used.
  • a plastic film coated with metal, or a cream paste mixed with metal powder may be used.
  • the first conductive part 1 and the second conductive part 2 may have flexibility.
  • Examples of metals used for the first conductive portion 1 and the second conductive portion 2 include silver, copper, gold, aluminum, magnesium, zinc, nickel, platinum, tin, titanium, stainless steel, zinc oxide, magnesium oxide, or In addition, it can be used by appropriately selecting from oxides of the respective metals described above. Also, the predetermined metal may be coated with another metal different from the predetermined metal or another conductive material.
  • the materials of the first conductive part 1 and the second conductive part 2 may be of different types or may be of the same type.
  • sheet-like stainless steel can be used for the first conductive portion 1 and sheet-like zinc can be used for the second conductive portion 2 .
  • the first conductive portion 1 and the second conductive portion 2 are connected to the functional portion 3 or the booster circuit/step-down circuit via conductors.
  • the measured value is preferably 100 ⁇ or more.
  • the conductive portion that is the starting point of the current is defined as the first conductive portion 1
  • the conductive portion that is the ending point is defined as the second conductive portion 2.
  • Which conductive part functions as the first conductive part 1 is determined by the material of the conductive part or the environment surrounding the conductive part (for example, temperature, humidity, atmospheric pressure, pH, etc.). A chemical reaction occurs at the interface between the first conductive portion 1 or the second conductive portion 2 and the medium, and free electrons are generated in the conductive portion.
  • the metal forming the conductive portion is eluted into the medium as cations, generating free electrons.
  • the cations in the medium water react with the electrons. , is electrically neutralized.
  • the level of the standard electrode potential is determined by comparing the relative values (relative values) of the standard electrode potentials of substances, not the absolute values of the standard electrode potentials. For example, when substance A with a standard electrode potential of ⁇ 5 V and substance B with a standard electrode potential of +2 V are compared, the standard electrode potential of substance A is low and the standard electrode potential of substance B is high.
  • one of the conductive parts may be the first conductive part 1 and the other conductive part may The portion functions as the second conductive portion 2 and current is generated. Therefore, if the conditions such as the ambient temperature, humidity, air pressure, and pH of the two conductive parts change, the one that functions as the first conductive part functions as the second conductive part, and functions as the second conductive part. can function as the first conductive part.
  • the electromotive force generated from the first conductive portion 1 and the second conductive portion 2 is preferably 0.9 V or less, more preferably 0.35 V or less, and even more preferably 0.25 V or less. Moreover, the electromotive force generated from the first conductive portion 1 and the second conductive portion 2 is preferably 5 mV or more.
  • the current collection system may include a plurality of first conductive parts 1 and a plurality of second conductive parts 2 .
  • a plurality of first conductive portions 1a, 1b, . . . 1n (n is an integer equal to or greater than 2) may be electrically connected in parallel.
  • 2m (m is an integer equal to or greater than 2) may be electrically connected in parallel.
  • the plurality of first conductive portions 1a, 1b, . . . 1n may be electrically connected in series.
  • a plurality of second conductive portions 2a, 2b, . . . 2m may be electrically connected in series.
  • the functional unit 3 is, for example, one that executes a predetermined function by energizing it.
  • the functional unit 3 includes a power consumption unit that consumes power to perform a predetermined function, a power storage unit that stores electricity generated in the conductive unit, and an output voltage converter that converts the output voltage like a booster circuit or a step-down circuit.
  • a control unit such as a microcomputer for controlling circuits, a communication unit capable of wirelessly communicating with other devices, a display unit for displaying information, and the like.
  • a light source such as an incandescent light bulb or a light emitting diode, a heating element that emits heat, a sound generator that emits sound, a transmitter that emits a signal, or a sensor that senses predetermined information
  • the power storage unit may be included in the step-up circuit or step-down circuit.
  • a control unit such as a microcomputer can control a circuit to release electricity stored in the power storage unit under predetermined conditions. The discharged electricity is consumed by the power consumption section.
  • a control unit such as a microcomputer consumes a small amount of power, it is possible to control the discharge of stored electricity while securing the power necessary to activate the control unit.
  • the functional unit 3 may include any one of a power consumption unit, a power storage unit, an output voltage conversion unit, a communication unit, a display unit, and a control unit.
  • the functional unit 3 may be configured by combining any two or more of the unit, the display unit, and the control unit. Further, the functional unit 3 may be configured by integrating any two or more of the power consumption unit, the power storage unit, the output voltage conversion unit, the communication unit, the display unit, and the control unit.
  • the unit, the output voltage conversion unit, the communication unit, the display unit, and the control unit may be configured separately while being electrically connected.
  • the input impedance in the functional unit 3 is preferably 1 k ⁇ or more, more preferably 10 k ⁇ or more.
  • the input impedance of the functional unit 3 preferably has a nonlinear current-voltage characteristic (IV characteristic).
  • the non-linear current-voltage characteristic is, for example, in the voltage change when the current is passed through the functional unit 3, the voltage value increases as the current value increases, but the current value increases as the current value increases. This is the case in which the voltage value required for the current is not proportional to the current. In other words, the higher the voltage applied to the functional unit 3, the higher the current value. It refers to the case where it is not proportional to the value.
  • the nonlinear current-voltage characteristic of the input impedance in the functional part 3 makes it easier to maintain the electromotive force generated between the first conductive part 1 and the second conductive part 2 .
  • the functional unit 3 preferably has a function of converting the output impedance. This makes it possible to control the influence on the input signal of the functional unit 3 .
  • the functional unit 3 has an electricity storage unit, and accumulates charges supplied from the first conductive unit and/or the second conductive unit.
  • the control unit performs control so that the accumulated charges are released in a time shorter than the time required for accumulating the charges.
  • the lower limit of the operating voltage of the functional unit 3 is preferably 0.9V or less. It is more preferable to operate at 0.35V or less, and even more preferably at 20mV or less.
  • the medium may be in any form of gas, liquid, and solid.
  • the medium may be sol or gel.
  • the medium is not particularly limited as long as it can cause a chemical reaction at the interface with the first conductive portion 1 or the second conductive portion 2 .
  • As the medium it is preferable to use a medium having no conductivity.
  • the gas used as the medium is not particularly limited as long as it is a gas when the current collection system collects current, but examples include oxygen, carbon dioxide, nitrogen, hydrogen, and methane.
  • a gas is used as the medium, only a single type of gas may be used, but a mixture of multiple types of these gases may also be used.
  • the medium preferably contains moisture.
  • the liquid used as the medium is not particularly limited.
  • water, a highly polar organic solvent, a low polar organic solvent, or a non-polar organic solvent can be used.
  • the liquid used as the medium may be a mixture of water and a highly polar organic solvent, a mixture of two or more different organic solvents, an emulsion, or the like.
  • the water not only pure water but also one containing an electrolyte, that is, an electrolytic solution can be used.
  • the liquid used as a medium includes sweat and the like.
  • the main component of sweat is water.
  • Sweat may be liquid or may evaporate into a gas.
  • Sweat may also contain electrolytes, lactate, urea, sebum, trace elements, and the like.
  • foreign substances such as mud, soil, and sand may be mixed in sweat.
  • the concentration of cations may be 1 mol/L or less, 0.6 mol/L or less, 0.1 mol/L or less, or 0.1 mol/L or less. 01 mol/L or less, or even 0.001 mol/L or less.
  • Examples of highly polar organic solvents that can be used include lower alcohols such as methanol and ethanol, lower carboxylic acids such as formic acid and acetic acid, acetone, tetrahydrofuran, and dimethylsulfoxide.
  • lower alcohols such as methanol and ethanol
  • lower carboxylic acids such as formic acid and acetic acid, acetone, tetrahydrofuran, and dimethylsulfoxide.
  • higher alcohols such as hexanol and octanol
  • higher carboxylic acids such as hexanoic acid and octanoic acid, and the like
  • non-polar organic solvents include aliphatic hydrocarbons such as hexane, octane and nonane, and aromatic compounds such as benzene, toluene and xylene.
  • the solid used as the medium is not particularly limited.
  • powdery or granular solids such as sand and soil can be used.
  • highly water-absorbing solids can be used, such as, for example, plaster.
  • the solid used as the medium preferably contains water.
  • the water content of the solid used as the medium is preferably 1% by mass or more, more preferably 5% by mass or more, and even more preferably 10% by mass or more.
  • the water content of the solid used as the medium is preferably 200% by mass or less.
  • the moisture content refers to the weight of water divided by the sum of the weights of water and solids.
  • the resistance value between the first conductive portion 1 and the second conductive portion 2 of the medium is preferably 1 k ⁇ or more, more preferably 10 k ⁇ or more.
  • FIG. 3 is a block diagram showing the configuration of the power converter according to the embodiment of the present invention.
  • FIG. 3A is a circuit diagram of a booster circuit according to an embodiment of the invention.
  • the step-up circuit or step-down circuit is an example of the functional unit 3 and includes a power storage unit.
  • inductor L, diode D, transistor Tr, and capacitor C are electrically connected.
  • the input terminal A1 is connected to the first conductive portion 1
  • the input terminal A2 is connected to the second conductive portion 2.
  • the output terminal B1 and the output terminal B2 are connected to a power consumption section, a control section, and the like.
  • the control unit may be connected in parallel with the booster circuit between the first conductive unit 1 and the second conductive unit 2 and the booster circuit.
  • Electric energy is stored in the inductor L when the input voltage V IN is applied when the transistor Tr is ON.
  • the input voltage V IN is the potential difference between the connection point P1 and the connection point P2.
  • the output voltage VOUT which is the potential difference between the connection points P3 and P4 , is higher than the input voltage VIN .
  • the booster circuit is based on the premise that the input voltage VIN is a voltage lower than a predetermined voltage, and the boost control may not be executed at a voltage higher than the predetermined voltage.
  • the input voltage V IN of the booster circuit is preferably 5 mV or higher. Note that ON/OFF of the transistor Tr is controlled by the control unit.
  • FIG. 3(B) is a circuit diagram of the step-down circuit according to the embodiment of the present invention.
  • transistor Tr, inductor L, diode D, and capacitor C are electrically connected.
  • the input terminal A1 is connected to the first conductive portion 1
  • the input terminal A2 is connected to the second conductive portion 2.
  • the output terminal B1 and the output terminal B2 are connected to a power consumption section, a control section, and the like.
  • the controller may be connected in parallel with the step-down circuit between the step-down circuit and the first conductive portion 1 and the second conductive portion 2 .
  • the input voltage V IN is the potential difference between the connection points P11 and P12
  • the output voltage V OUT is the potential difference between the connection points P13 and P14 .
  • the input voltage V IN will be approximately equal to the output voltage V OUT .
  • the output voltage VOUT becomes a lower voltage.
  • the step-down circuit assumes that the input voltage VIN is a voltage higher than a predetermined voltage, and the step-down control may not be executed at a voltage lower than the predetermined voltage. Note that ON/OFF of the transistor Tr is controlled by the control unit.
  • FIG. 4 is a diagram representing a sensor node according to an embodiment of the present invention.
  • the first conductive portion 1 and the second conductive portion 2 are in contact with the medium 4 .
  • the potential difference between the first conductive portion 1 and the second conductive portion 2 can be defined as V 1 IN
  • the potential difference between the connection point P 1 and the connection point P 2 can be defined as V 2 IN
  • the potential difference between connection points P5 and P6 can be defined as V1 OUT
  • the potential difference between connection points P3 and P4 can be defined as V2 OUT .
  • the first conductive portion 1 is connected to the connection point P1
  • the second conductive portion 2 is connected to the booster circuit at the connection point P2.
  • An inductor L, a diode D, a transistor Tr, and a capacitor C are electrically connected to the booster circuit.
  • FIG. 5 is a diagram showing the relationship between time and current I when the transistor in the sensor node 10 is switched between ON and OFF, according to the embodiment of the present invention.
  • V 1 OUT 0
  • V 1 OUT ⁇ V 2 IN ⁇ L1 ⁇ dI/dt
  • dI/dt is a negative value. It can be seen that In this case, the current I decreases with time. ON and OFF of the transistor Tr are periodically repeated.
  • the first conductive part 1, the second conductive part 2 and the medium 4 are regarded as one type of battery, it can be considered that the current I flows due to the electromotive force V1IN .
  • the internal impedance caused by the medium 4 is defined as Z
  • TOFF period the capacitor C is charged with electric charge Q by the current I.
  • the voltage that rises at the connection point P3 during the TOFF period is ⁇ V and the capacitance of the capacitor C is C1
  • a current I while the transistor Tr is ON (hereinafter referred to as a T- on period) can be calculated from Equation (6).
  • the maximum value of the current I is V 1 IN /Z.
  • V 2 OUT can be expressed as ⁇ Idt/C1+V start .
  • the current I during the Toff period can be expressed as a function of time t, capacitor capacitance C1, internal impedance Z, inductance L1, V1IN , V'out , and K.
  • I(T2) 0.
  • Capacitance C1, inductance L1, and V'out are constants, and the values of V1IN and Z can be calculated by measuring I(0) and T2, respectively.
  • C1 is a constant, ⁇ V when the T off period is sufficiently long (when the current I reaches its minimum value), and when the T off period is sufficiently long (when the current I reaches its minimum value).
  • the calculation of the internal impedance Z is executed by the control unit.
  • the measured internal impedance Z of the sensor node 10 and the predetermined voltage in the sensor node 10 may be transmitted from the sensor node 10 to the collection node 11 .
  • the measured internal impedance Z of the sensor node 10 and the predetermined voltage in the sensor node 10 may be transmitted from the sensor node 10 to the mobile object 12, wireless device 13, other computer device, etc. good.
  • the measured internal impedance Z of the sensor node 10 and the predetermined voltage in the sensor node 10 may be transmitted together with the sensing data acquired by the sensor node 10. may be transmitted independently of the transmission of
  • FIG. 6 is a diagram showing an example of sensor nodes according to an embodiment of the present invention.
  • the sensor node 10 has a first conductive portion 1 and a second conductive portion 2 .
  • the sensor node 10 includes a functional section 3, the first conductive section 1 and the functional section 3 are connected, and the second conductive section 2 and the functional section 3 are connected.
  • the first conductive part 1 and the second conductive part 2 are out of contact with each other.
  • the current collection system provided in the sensor node 10 collects current by bringing the first conductive portion 1 and the second conductive portion 2 into contact with the medium 4 .
  • the sensor node 10 shown in FIG. 6(A) has a cylindrical main body.
  • the sensor node 10 shown in FIG. 6A has a sheet-like first conductive portion 1 and a second conductive portion 2 symmetrically on the side surface of the main body.
  • One end of the main body has a protruding shape.
  • the sensor node 10 shown in FIG. 6(B) has a vertically elongated main body, like a float, one end of which is thin.
  • the tapered end portion of the elongated main body portion will be referred to as the upper portion, and the portion opposite to the upper portion will be referred to as the lower portion.
  • the sensor node 10 shown in FIG. 6(B) has a sheet-like first conductive portion 1 and a second conductive portion 2 symmetrically on the side surface of the lower portion of the main body.
  • the method of providing the first conductive part 1 and the second conductive part 2 to the main body is not particularly limited as long as the first conductive part 1 and the second conductive part 2 are fixed to the main body.
  • the first conductive portion 1 and the second conductive portion 2 may be adhered to the main body portion with an adhesive or the like, and the first conductive portion 1 and the second conductive portion 2 may be attached to the main body portion using fixtures. It may be fixed by
  • the material of the main body is not particularly limited. Metals such as stainless steel and aluminum, and synthetic resins such as phenol resin, melamine resin, urea resin, alkyd resin, epoxy resin, polyurethane, polyethylene, polypropylene, acrylic resin, and polycarbonate can be used as the material of the main body. .
  • the material of the main body is conductive such as metal, the main body and the first conductive part 1 and the second An insulating material may be provided between the conductive parts 2 .
  • the material of the main body is weather resistant.
  • the functional unit 3 may be provided inside the sensor node 10. Although not shown, holes are provided in the body of the sensor node 10, and the first conductive part 1 and the second conductive part 2 and the functional part 3 are connected by conducting wires or the like through the holes. good too.
  • the sensor node 10 shown in FIG. 6(A) has a projecting shape at one end of the main body, so that it can be easily installed on the ground by inserting it into soil or the like.
  • the medium 4 is sand, soil, mud, or the like.
  • the sensor node 10 shown in FIG. 6(B) has a vertical shape with one end thin like a float, so it can be easily installed on or under water such as seas, rivers, ponds, and lakes.
  • the medium 4 is water, seawater, or the like.
  • the sensor node 10 is not limited to the example shown in FIG. 6, and any shape can be adopted.
  • the sensor node 10 may be disc-shaped and easily float on the water surface.
  • the sensor node 10 may have a shape having a fixing portion that can fix the sensor node 10 to the body of a human or other animal.
  • the shape of the fixing part may be ring-shaped like a bracelet or tape-shaped.
  • the medium 4 is the sweat of the human or other animal wearing the sensor node 10 .
  • the sensor node 10 preferably has a waterproof function and a dustproof function.
  • the sensor node is connected to the current collection system
  • the current collection system includes a first conductive portion, a second conductive portion, and a functional portion, and the first conductive portion and the functional portion are connected.
  • the second conductive part and the functional part are connected, the first conductive part and the second conductive part are not in contact with each other, and the current is collected by bringing the first conductive part and the second conductive part into contact with the medium.
  • location information storage processing location information update processing, sensing data reception processing, sensor node location identification processing, transmittable sensor node identification processing, power supply processing, and determination processing.
  • location information storage processing location information update processing
  • sensing data reception processing sensor node location identification processing
  • transmittable sensor node identification processing power supply processing, and determination processing.
  • determination processing determination processing.
  • the order of each process and the order of each step in each process can be changed as appropriate. Also, some processes and steps in the data collection system may not be performed, and may be selected as appropriate. Additionally, the steps in the data collection system may be performed in devices other than those described below. For example, the steps performed at mobile 12 may be performed at collection node 11, other computing devices, and the like.
  • FIG. 7 is a diagram showing a flowchart of position information storage processing in the data collection system according to the embodiment of the present invention.
  • the moving object 12 moves the sensor node 10 to the position where the sensor node 10 is installed (step S101). Then, the moving body 12 installs the sensor node 10 at the position where the sensor node 10 is installed (step S102).
  • position information information about the position of the sensor node 10 when the sensor node 10 was installed (hereinafter referred to as position information) is stored (step S103), and the position information storage process ends.
  • the position where the sensor node 10 is installed may or may not be determined in advance.
  • the mobile body 12 may move the sensor node 10 to a predetermined position, and the mobile body 12 may move the sensor node 10 to a position that satisfies a predetermined condition, although it is not predetermined.
  • the moving body 12 may move the sensor nodes 10 to a position that satisfies the condition that a predetermined number of sensor nodes 10 are installed at even intervals within a predetermined range. .
  • step S101 the method by which the moving body 12 moves the sensor node 10 is not particularly limited as long as the sensor node 10 can be moved.
  • a flying type mobile object 12 such as a drone may hold the sensor node 10 with an arm or the like and fly.
  • the method of installing the sensor node 10 in step S102 is not particularly limited as long as the sensor node 10 can be installed.
  • a flying type mobile object 12 such as a drone may drop the sensor node 10 from the sky and install it on or under water such as the sea, river, pond, or lake.
  • the sensor node 10 preferably has a shape as shown in FIG. 6(B).
  • a flying-type mobile body 12 such as a drone may fly near the ground surface while inserting the sensor node 10 into sand, soil, mud, or the like and installing it on the ground.
  • the sensor node 10 preferably has a shape as shown in FIG. 6(A).
  • the sensor node 10 When the sensor node 10 is connected to the current collection system, it is preferable to install the sensor node 10 so that the first conductive portion 1 and the second conductive portion 2 are in contact with the medium 4 .
  • the location information of the sensor node 10 in step S103 is not particularly limited, and any information that can specify the location of the sensor node 10 may be used.
  • the location information may be latitude, longitude, and altitude information.
  • the mobile object 12 preferably has GNSS.
  • the identification information of the sensor node 10 may be stored in the moving body 12 together with the position information of the sensor node 10.
  • the identification information of the sensor node 10 includes the identification number of the sensor node 10 .
  • the location information of the sensor node 10 and the identification information of the sensor node 10 may be associated and stored.
  • the moving object has the sensor node installation means for installing the sensor node, and the position information storage means stores the position information of the sensor node when installed by the sensor node installation means. Installation and storage of sensor node location information is facilitated.
  • Step S103 the position of the sensor node 10 is stored in step S103. It is conceivable that it will change from the specified position.
  • the position information of the sensor node 10 may be updated by the position information update process.
  • the sensor node 10 is preferably provided with GNSS or the like in order to specify the location information of the sensor node 10 .
  • FIG. 8 is a diagram showing a flowchart of location information update processing in the data collection system according to the embodiment of the present invention.
  • the location information of the sensor node 10 is identified (step S201). Then, the specified position information is transmitted to the mobile unit 12 (step S202). The transmitted location information is received by the mobile unit 12 (step S203). In the moving object 12, the location information of the sensor node 10 is updated (step S204), and the location information update process ends.
  • the identification method is not limited as long as the location information of the sensor node 10 is identified.
  • the location information of the sensor node 10 may be specified by GNSS provided in the sensor node 10 .
  • the location information of the sensor node 10 in step S201 is not particularly limited, and any information that can specify the location of the sensor node 10 may be used.
  • the location information may be latitude, longitude, and altitude information.
  • step S ⁇ b>202 the identification information of the sensor node 10 may be transmitted together with the location information of the sensor node 10 . Then, the location information stored in association with the transmitted identification information of the sensor node 10 may be updated in step S204.
  • the frequency of location information update processing can be designed as appropriate. It may be performed periodically with a predetermined frequency, or may be performed irregularly.
  • the position information update process may be performed before step S302 of the sensing data reception process, which will be described later. By performing the position information update process before step S302, it becomes possible to specify the movement route based on the accurate position of the sensor node 10.
  • FIG. Further, for example, the position information update process may be performed when the position of the sensor node 10 is specified in step S403 of the sensor node position specifying process, which will be described later.
  • the sensor node has position information specifying means for specifying position information of the sensor node, and the data collection system stores the position information of the sensor node stored by the position information storage means to the sensor node specified by the position information specifying means.
  • the position information updating means for updating the position information of the sensor node, the position information of the sensor node can be stored even when the position of the sensor node changes.
  • FIG. 9 is a diagram showing a flowchart of sensing data reception processing in the data collection system according to the embodiment of the present invention.
  • step S301 sensor nodes that have transmitted sensing data within a predetermined time are identified (step S301). Then, the moving route of the moving body 12 is specified (step S302). The moving body 12 moves the collection node 11 from the position of the sensor node 10 on the movement path to within a first predetermined range according to the identified movement path (step S303). In the moving body 12, it is determined whether or not the sensor nodes 10 within the first predetermined range are capable of transmitting sensing data (step S304).
  • step S304 When it is determined that the sensor nodes 10 within the first predetermined range are capable of transmitting sensing data (Yes in step S304), a signal is transmitted from the collection node 11 to the sensor nodes 10 (step S305). Then, the transmitted signal is received at the sensor node 10 (step S306). Next, sensing data is transmitted from the sensor node 10 to the collection node 11 (step S307). Then, the sensing data is received at the collection node 11 (step S308). If the mobile object 12 has not completely traced the movement route, the mobile object 12 moves the collection node 11 from the position of the next sensor node 10 on the movement route to within the first predetermined range (step S303). ).
  • steps S305 to S308 are not performed. Then, if the mobile object 12 has not completely traced the movement route, the mobile object 12 moves the collection node 11 from the position of the next sensor node 10 on the movement route to within a first predetermined range (step S303).
  • Steps S303 to S308 are repeated until the moving body 12 completely follows the movement route. Alternatively, steps S303 to S308 are repeated until there is no next sensor node 10 on the movement route. When the moving object 12 has completely traced the movement path, the sensing data reception process ends.
  • the predetermined time is not particularly limited and can be designed as appropriate. For example, it may be several days, one day, half a day, several hours, several minutes, or several seconds.
  • step S301 it is only necessary to identify the sensor node 10 that has transmitted sensing data within a predetermined period of time, and the identification method is not particularly limited.
  • the sensor node determined to be capable of transmitting sensing data in step S304 of the previous sensing data reception process performed within a predetermined period of time. 10 may identify that the sensing data has been transmitted.
  • the determination that the sensing data can be transmitted and the time at which it is determined that the sensing data can be transmitted are stored in association with the identification information of the sensor node 10. preferable.
  • the sensor node 10 that transmitted the sensing data in step S307 of the previous sensing data receiving process performed within a predetermined period of time performs the sensing It may be identified that the data has been transmitted. In that case, it is preferable that the sensor node 10 or the collection node 11 notifies the moving object 12 that the sensor node 10 has transmitted the sensing data. Further, it is preferable that the moving object 12 stores the fact that the sensing data was transmitted and the time at which the sensing data was transmitted in association with the identification information of the sensor node 10 .
  • the movement route may be specified such that the sensor nodes 10 other than the sensor nodes 10 identified as having transmitted sensing data within a predetermined time in step S301 are included on the movement route. good.
  • the movement route may be specified so that only the sensor nodes 10 other than the sensor nodes 10 identified as having transmitted the sensing data within the predetermined time are included on the movement route. and the sensor nodes 10 other than the sensor node 10 identified as having transmitted sensing data within a predetermined time are included in the movement route. may be specified.
  • the movement route may be specified so that all sensor nodes 10 other than the sensor nodes 10 identified as having transmitted sensing data within a predetermined time are included on the movement route.
  • the movement route may be specified so that some of the sensor nodes 10 other than the sensor node 10 identified as having transmitted the sensing data to the movement route are included on the movement route.
  • step S302 based on the position information of the sensor nodes 10 stored in the moving body 12 in steps S103 and S204, the movement route is specified so that the predetermined sensor node 10 is included in the movement route. You can do it.
  • the method of specifying the movement route is not particularly limited, and a known method is used.
  • the movement route may include information on the latitude, longitude, and altitude of the route along which the moving body 12 moves.
  • the movement route is preferably specified so that the movement distance of the moving body 12 is the shortest.
  • step S303 the moving body 12 moves the collection node 11 within a first predetermined range of the sensor node 10 based on the position information of the sensor node 10 stored in the moving body 12 in steps S103 and S204. It is also possible to let Alternatively, based on the position of the sensor node 10 specified by the sensor node position specifying process, which will be described later, the moving body 12 may move the collection node 11 within a first predetermined range of the sensor node 10 .
  • the mobile body 12 collects The node 11 may be moved within the first predetermined range of the sensor node 10 .
  • step S303 the method by which the mobile object 12 moves the collection nodes 11 is not particularly limited as long as the collection nodes 11 can be moved.
  • a flying-type moving object 12 such as a drone may hold the collection node 11 having the shape of a device with an arm or the like and fly.
  • “Within the first predetermined range from the position of the sensor node 10" is not particularly limited as long as it is within a range where communication between the sensor node 10 and the collection node 11 is possible.
  • the first predetermined range is within a radius of 10 cm from the position of the sensor node 10. However, it may be within a radius of 50 cm from the position of the sensor node 10 or within a radius of 100 cm from the position of the sensor node 10 .
  • the first predetermined range is within a radius of 10 m from the position of the sensor node 10. However, it may be within a radius of 50 m from the position of the sensor node 10 , within a radius of 100 m from the position of the sensor node 10 , or within a radius of 300 m from the position of the sensor node 10 .
  • the first predetermined range means that even within a radius of 1 km from the position of the sensor node 10, the position of the sensor node 10 It may be within a radius of 10 km from the position of the sensor node 10 or within a radius of 50 km from the position of the sensor node 10 .
  • step S302 when the moving route is identified so that the moving route includes sensor nodes 10 other than the sensor nodes 10 identified as having transmitted sensing data within a predetermined time, the moving object 12:
  • step S303 the collection node 11 is moved within a first predetermined range from the position of the sensor node 10 other than the sensor node 10 identified as having transmitted sensing data within a predetermined time.
  • step S304 the identification information of the sensor node 10 moved within the first predetermined range in step S303 is included in the transmittable sensor node identification information received in step S507 of the transmittable sensor node identification process, which will be described later.
  • the sensor node 10 may be determined to be capable of transmitting sensing data.
  • step S304 the identification information of the sensor node 10 that has moved within the first predetermined range in step S303 is replaced with the transmittable sensor node identification information received in step S507 of the transmittable sensor node identification process, which will be described later. If not included, the sensor node 10 may not be determined to be capable of transmitting sensing data.
  • step S304 If it is determined in step S304 that the sensor node 10 is capable of transmitting sensing data, the moving body 12 notifies the collection node 11 that the sensor node 10 is capable of transmitting sensing data. may be
  • the signal transmitted from the collection node 11 in step S305 is not particularly limited as long as it functions as a signal.
  • radio waves of a predetermined frequency, infrared rays, or the like may be used.
  • the sensor node 10 When a predetermined signal is received from the collection node 11 in step S306, the sensor node 10 preferably performs a predetermined function.
  • the sensor node 10 may transmit sensing data to the collection node 11 .
  • the sensor node 10 when an infrared ray is received from the collection node 11, the sensor node 10, which was in the power saving state, may be activated to enter the normal power consumption state. Then, the activated sensor node 10 may transmit sensing data to the collection node 11 .
  • the communication method used when the sensor node 10 receives a predetermined signal from the collection node 11 consumes less power than the communication method used when sensing data is transmitted from the sensor node 10 to the collection node 11. It is also possible to be In other words, the sensor node 10 may perform standby using a protocol that consumes less power.
  • the function to be exhibited in the sensor node 10 when receiving a signal from the collection node 11 is predetermined. Also, the function exhibited by the sensor node 10 may be determined to be different for each type of signal received from the collection node 11 .
  • the sensing data transmitted by the sensor node 10 in step S307 is not particularly limited as long as it is the sensing data acquired by the sensor node 10. Also, as described above, the internal impedance Z of the sensor node 10 and the predetermined voltage within the sensor node 10 may be transmitted together with the sensing data acquired by the sensor node 10 .
  • the sensor node 10 When the sensor node 10 includes a plurality of sensors, all of the sensing data that can be acquired from the plurality of sensors may be transmitted, or a portion of the sensing data may be transmitted. may be
  • the sensing data to be transmitted may be specified among the sensing data that can be acquired from the multiple sensors provided in the sensor node 10 .
  • the sensing data to be transmitted is specified in the collection node 11 based on the sensing data received in step S308 of the previous sensing data reception process.
  • the sensor node 10 may be notified of the sensing data to be transmitted identified in the collection node 11, and the sensor node 10 may transmit the identified sensing data to be transmitted.
  • the received sensing data may be stored in the collection node 11, transmitted to the mobile unit 12 or other computing device, and stored in the mobile unit 12 or other computing device. good.
  • the sensing data is stored, it is preferably stored in association with the identification information of the sensor node 10 that acquired the sensing data. Further, it is preferable to store information regarding the time when the sensing data was acquired, the time when the sensing data was transmitted, etc. in association with the identification information of the sensor node 10 which acquired the sensing data.
  • sensing data reception process it is possible to efficiently collect sensing data from sensor nodes 10 that have not transmitted sensing data within a predetermined time. Further, by performing the sensing data reception process multiple times, it is possible to collect sensing data of the sensor nodes 10 that have not transmitted sensing data within a predetermined time more efficiently.
  • the sensing data reception process ends when the moving object 12 has completely traced the movement route. , the sensing data reception process may end.
  • the sensor node 10 may wait within the first predetermined range until it is determined that the sensor node 10 is capable of transmitting sensing data. Alternatively, by supplying power to the sensor node 10 through power supply processing described later, the sensor node 10 may be placed in a state in which sensing data can be transmitted.
  • the moving body 12 moves the collection node 11 from the position of the sensor node 10 to within the first predetermined range.
  • An aspect may be adopted in which the collection node 11 is moved within the first predetermined range.
  • a human or an animal may move the collection node 11 from the position of the sensor node 10 to within a first predetermined range.
  • the data collection system includes position information storage means for storing position information relating to the position of the sensor node, and the moving body moves the collection node from the position of the sensor node to within the first predetermined range.
  • the sensor node comprises first sensing data transmission means for transmitting acquired sensing data to the collection node, and the collection node comprises sensing data reception means for receiving the sensing data from the sensor node. It is possible to provide a data collection system that can collect data by moving nodes. As a result, it is possible to realize a data collection system in which the place where the sensor node can be installed is not limited to within a predetermined range from the base station.
  • the collection node includes signal transmission means for transmitting a signal to the sensor node, and the first sensing data transmission means transmits sensing data to the collection node when a signal is transmitted by the signal transmission means.
  • the destination of sensing data can be easily specified, and the power consumption of the sensor node can be suppressed. That is, when a signal is transmitted from the collection node to the sensor node, the sensing data is transmitted to the collection node, so unnecessary transmission of sensing data is eliminated, and power consumption can be suppressed.
  • the data collection system includes movement route identification means for identifying the movement route of the moving object based on the position information of the sensor node stored by the position information storage means, and the collection node movement means identifies the movement route.
  • the collection node movement means By moving the collection node according to the movement path specified by the means, the collection node can be moved efficiently.
  • the data collection system comprises transmission identification means for identifying sensor nodes that have transmitted sensing data within a predetermined period of time, and the collection node movement means determines that data has been transmitted within the predetermined period of time by the transmission identification means.
  • the wireless device 13 is preferably installed within a second predetermined range from the position of the corresponding sensor node 10 .
  • the second predetermined range is not particularly limited and can be designed as appropriate.
  • the second predetermined range is preferably within a radius of 100 cm from the position of the sensor node 10, and within a radius of 50 cm from the position of the sensor node 10. It is more preferable to be within a radius of 10 cm from the position of the sensor node 10 .
  • FIG. 10 is a diagram showing a flowchart of sensor node position specifying processing in the data collection system according to the embodiment of the present invention.
  • a notification is transmitted from the wireless device 13 to the mobile object 12 (step S401).
  • the transmitted notification is received at the mobile unit 12 (step S402).
  • the position of the sensor node 10 is specified based on the position of the wireless device 13 corresponding to the transmitted notification (step S403), and the sensor node position specifying process ends.
  • the mobile unit 12 may be able to identify the location of the wireless device 13 more accurately than GNSS from the notification received in step S402.
  • wireless device 13 is preferably a beacon.
  • step S403 the identification method is not limited as long as the position of the sensor node 10 is identified.
  • the relationship between the position where the wireless device 13 is installed and the position of the corresponding sensor node 10 is stored. may be specified. Specifically, for example, in the mobile object 12, it is stored that the wireless device 13 is installed within a radius of 10 cm from the position of the corresponding sensor node 10, and the position of the sensor node 10 is the position of the wireless device 13. It may be specified as being within a radius of 10 cm from the location.
  • the position of the sensor node 10 identified in step S403 may or may not be stored in the storage unit of the moving body 12. Further, when the position of the sensor node 10 is identified in step S403, the position information update process described above may be performed.
  • the moving object 12 may move the collection node 11 to within the first predetermined range of the sensor node 10.
  • the mobile body 12 collects The node 11 may be moved within the first predetermined range of the sensor node 10 .
  • the data collection system comprises a wireless device installed within a second predetermined range from the position of the sensor node, the wireless device comprises notification transmitting means for transmitting a notification to the mobile, and the mobile a position specifying means for specifying the position of the sensor node based on the position of the wireless device corresponding to the notification transmitted by the notification transmitting means, thereby specifying the position of the sensor node using the wireless device; can.
  • sensing data acquisition and sensing data transmission are performed using power obtained from a current collection system, solar power generation, microbial power generation, etc., the power required to acquire sensing data and transmit sensing data is stable. may not be obtained.
  • a sensor node 10 that has not acquired sensing data due to power shortage or the like and/or a sensor node 10 that has acquired sensing data but is not capable of transmitting sensing data has the following sensor node identifier that can transmit: It may be identified by processing.
  • the transmittable sensor node identification process it is preferable that one sensor node 10 and one wireless device 13 correspond.
  • the location where the wireless device 13 is installed is not particularly limited as long as it is within a range where communication between the sensor node 10 and the wireless device 13 is possible.
  • the position where the wireless device 13 is installed is within a radius of 10 cm from the position of the sensor node 10. However, it may be within a radius of 50 cm from the position of the sensor node 10 or within a radius of 100 cm from the position of the sensor node 10 .
  • the position where the wireless device 13 is installed is within a radius of 10 m from the position of the sensor node 10. However, it may be within a radius of 50 m from the position of the sensor node 10 , within a radius of 100 m from the position of the sensor node 10 , or within a radius of 300 m from the sensor node 10 .
  • the location where the wireless device 13 is installed may be within a radius of 1 km from the location of the sensor node 10. It may be within a radius of 10 km from the position of the sensor node 10 or within a radius of 50 km from the position of the sensor node 10 .
  • the wireless device 13 may be connected to the sensor node 10 by a wire or the like, or may be configured integrally with the sensor node 10 .
  • FIG. 11 is a diagram showing a flowchart of transmittable sensor node identification processing in the data collection system according to the embodiment of the present invention.
  • step S501 it is determined whether or not the sensor node 10 can transmit sensing data.
  • a notification that sensing data can be transmitted (hereinafter referred to as a sensing data transmittable notification) is sent from the sensor node 10 to the wireless device. 13 (step S502). Further, identification information for identifying the sensor node 10 is transmitted from the sensor node 10 to the wireless device 13 (step S503). The sent sensing data transmittable notification is received by the wireless device 13 (step S504). Also, the transmitted identification information is received by the wireless device 13 (step S505). The identification information of the sensor node 10 that has transmitted the sensing data transmittable notification (hereinafter referred to as transmittable sensor node identification information) is transmitted from the wireless device 13 to the moving object 12 (step S506). The transmitted transmittable sensor node identification information is received by the moving body 12 (step S507), and the transmittable sensor node identification process ends.
  • steps S502 to S507 are not performed, and the transmittable sensor node identification process ends.
  • step S501 the method of determining whether or not the sensor node 10 is capable of transmitting sensing data is not particularly limited. It is sufficient if it can be determined.
  • the sensing data when the sensor node 10 is acquiring sensing data, it may be determined that the sensing data can be transmitted.
  • the sensor node 10 when the sensor node 10 is capable of acquiring a plurality of pieces of sensing data, it may be determined that it is possible to transmit the sensing data when it acquires one or more pieces of sensing data. Often, it may be determined that the sensing data can be transmitted when the sensing data specified as the transmission target is acquired.
  • the sensing data can be transmitted. It may be assumed that The case where the power required for transmitting the acquired sensing data may be, for example, the case where the internal voltage of the sensor node 10 is equal to or higher than a predetermined value.
  • the transmission of the sensing data transmittable notification in step S502 and the transmission of the identification information in step S503 may be performed independently as described above, or may be performed simultaneously.
  • the wireless device 13 may determine whether or not the sensor node 10 is capable of transmitting sensing data. In this case, it is preferable that the sensor node 10 and the wireless device 13 are electrically connected. Then, when it is determined that the sensor node 10 is capable of transmitting sensing data, the identification information of the sensor node 10 may be transmitted to the moving body 12 as in step S506.
  • step S501 can be adopted as a method for determining whether or not the sensor node 10 can transmit sensing data in the wireless device 13 to the extent necessary.
  • the destination of the transmittable sensor node identification information in step S506 may not be the mobile body 12.
  • the destination of the transmittable sensor node identification information in step S506 may be the collection node 11 .
  • the transmittable sensor node identification information received by the collection node 11 may be further transmitted to the mobile object 12 .
  • the transmittable sensor node identification information received in step S507 is preferably stored in the mobile unit 12. Then, the transmittable sensor node identification information stored in the moving body 12 may be used in step S304 of the sensing data reception process described above. That is, when the identification information of the sensor node 10 that has moved within the first predetermined range in step S303 of the sensing data reception process described above is included in the transmittable sensor node identification information stored in the moving body 12, The sensor node 10 may be determined to be capable of transmitting sensing data.
  • the data collection system comprises a wireless device, the sensing data transmittable notification transmitting means for transmitting a notification that the sensor node is capable of transmitting sensing data to the wireless device, and the identification information for identifying the sensor node. to the wireless device, and the wireless device transmits the identification information of the sensor node to which the notification that the sensing data can be transmitted by the sensing data transmission possible notification transmission means is transmitted to the mobile body
  • the second identification information transmitting means for transmitting it is possible to easily identify the sensor node capable of transmitting the sensing data.
  • the data collection system includes a wireless device, the sensor node and the wireless device are connected, and the wireless device includes sensing data transmittable determination means for determining whether the sensor node is capable of transmitting sensing data. and a third identification information transmission means for transmitting identification information of the sensor node determined to be capable of transmitting sensing data by the sensing data transmission possibility determination means to the moving object, thereby preventing power consumption of the sensor node.
  • FIG. 12 is a diagram showing a flowchart of power supply processing in the data collection system according to the embodiment of the present invention.
  • step S601 power is supplied from the collection node 11 to the sensor node 10 (step S601). Then, the supplied power is received at the sensor node 10 (step S602). Next, sensing data is transmitted from the sensor node 10 to the collection node 11 (step S603). Then, the collection node 11 receives the sensing data (step S604), and the power supply process ends.
  • the power supply source in step S601 does not have to be the collection node 11.
  • it may be the moving body 12 .
  • step S601 when power is supplied from the collection node 11 to the sensor node 10, short-range wireless communication such as NFC may be used.
  • the moving object 12 preferably moves the collection node 11 from the position of the sensor node 10 to within a range where short-range wireless communication can be performed.
  • the transmission of sensing data in step S603 may indicate the transmission of sensing data in step S307 of the sensing data reception process described above. Further, the reception of sensing data in step S604 may indicate the reception of sensing data in step S308 of the sensing data reception process described above.
  • steps S601 and S602 may be performed before step S307 of the sensing data reception process described above.
  • steps S601 and S602 are performed by determining that the sensor node 10 is capable of transmitting sensing data in step S304 of the sensing data reception process described above. It may be done when there is no
  • the collection node is provided with power supply means for supplying power to the sensor node, so that even when the power of the sensor node is insufficient, sensing data can be acquired and/or transmitted. becomes possible.
  • the sensor node does not need to have a battery, although conventionally the sensor node had to have a battery.
  • the data collection system of the present invention may determine the state of the sensor node by the following determination processing.
  • a device that determines the state of a sensor node is hereinafter referred to as a determination node.
  • the determination node may be any one of the sensor node 10, collection node 11, mobile unit 12, wireless device 13, and other computer devices. and other devices other than computer devices.
  • the determination node may be connected to the sensor node 10, the collection node 11, the mobile object 12, and/or the wireless device 13 by wires or the like. / Or it may be configured integrally with the wireless device 13 .
  • FIG. 13 is a diagram showing a flowchart of determination processing in the data collection system according to the embodiment of the present invention.
  • sensing data is transmitted from the sensor node 10 to the determination node (step S701).
  • the transmitted sensing data is received at the determination node (step S702).
  • the determination node determines the state of the sensor node 10 based on the received sensing data (step S703). The determination process ends.
  • step S701 the sensing data does not have to be sent directly from the sensor node 10 to the determination node.
  • the sensing data acquired by the sensor node 10 may be transmitted to the determination node via the collection node 11, mobile object 12, and the like.
  • the method of determining the state of the sensor node 10 based on the received sensing data is not particularly limited, and can be designed as appropriate. For example, it may be determined that the state of the sensor node 10 is abnormal when predetermined sensing data has a value outside a predetermined range for a predetermined period of time or more.
  • step S703 If it is determined in step S703 that the state of the sensor node 10 is in the predetermined state, the determination node instructs the collection node 11, the mobile unit 12, the wireless device 13, and/or other computer devices to It is also possible to notify that the 10 states are predetermined states.
  • the determination node when it is determined that the state of the sensor node 10 is abnormal, notifies the collection node 11, mobile unit 12, wireless device 13, and/or other computer device that the state of the sensor node 10 is abnormal. It is also possible to notify that there is an abnormality. Furthermore, the sensor node 10 may be subject to replacement or repair.
  • the state of the sensor node 10 may be determined at the determination node without relying on steps S701 and S702 as described above. In this case, it is preferable that the sensor node 10 and the determination node are electrically connected. Then, the determination node may determine the state of the sensor node 10 based on the data measured by the sensor node 10 .
  • the determination node monitors the state of the sensor node 10, and based on the data measured by the sensor node 10, the sensor node 10 stably supplies the power necessary for acquiring sensing data and transmitting the sensing data. It is also possible to determine whether or not it is in a state that can be obtained. Specifically, for example, the determination node may detect the voltage inside the sensor node 10 and determine whether the voltage inside the sensor node 10 is equal to or higher than a predetermined value.
  • the state of the sensor node 10 may be determined at the sensor node 10 without relying on steps S701 to S703 as described above.
  • the sensor node 10 may monitor the state of the sensor node 10 and determine the state of the sensor node 10 based on data measured at the sensor node 10 .
  • the sensor node 10 monitors the state of the sensor node 10, and based on the data measured by the sensor node 10, the sensor node 10 obtains the sensing data and reduces the power required to transmit the sensing data. It may be determined whether or not the state is stably obtained. Specifically, for example, the sensor node 10 may detect the voltage inside the sensor node 10 and determine whether the voltage inside the sensor node 10 is equal to or higher than a predetermined value.
  • the data collection system includes a determination node that determines the state of the sensor node, and the determination node includes first state determination means that determines the state of the sensor node based on the sensing data transmitted from the sensor node. By providing it, it becomes easy to determine the state of the sensor node.
  • the data collection system includes a determination node that determines the state of the sensor node, the sensor node and the determination node are connected, and the determination node includes second state determination means that determines the state of the sensor node. This makes it possible to determine the state of the sensor node without consuming the power of the sensor node.
  • the "conductive part” may be, for example, a member that can conduct electricity, regardless of the material.
  • a “functional part” means, for example, a part that performs a predetermined function by passing an electric current. The function may be to convert electricity into energy such as light or heat, or to control a circuit.
  • electrolytic solution means, for example, an electrically conductive solution in which an ionic substance is dissolved in a polar solvent.
  • a “booster circuit” is, for example, a circuit that boosts an input voltage and outputs it.
  • a “step-down circuit” is, for example, a circuit that steps down an input voltage and outputs it.
  • Conductive polymer means, for example, a polymer compound having electrical conductivity.
  • Carbon means, for example, conductive carbon fiber.
  • Integrated construction means, for example, joining different objects, more specifically, bonding with an adhesive, mechanical joining using other members, welding, crimping, etc., chemical and / Or joining by physical force is mentioned.
  • the following tests were performed at normal temperature and normal pressure.
  • a system was constructed using a medium and an apparatus having the configurations of the first conductive section 1, the second conductive section 2, and the functional section 3 shown in FIG.
  • a plate member (0.5 mm thick, 10 cm ⁇ 15 cm) made of stainless steel (austenite, SUS304 series) is used as the first conductive portion 1, and a plate member made of galvanized steel plate (iron) is used as the second conductive portion 2. (0.5 mm thickness, 10 cm x 15 cm), the first conductive part 1, the second conductive part 2 and the functional part 3 were connected with copper conducting wires, respectively.
  • the functional section 3 includes a power consumption section, an output voltage conversion section, and a control section.
  • the input impedance is 1 k ⁇ or more, and the one having a nonlinear current-voltage characteristic is used.
  • An LED bulb that lights up when a current of 2 mA or more flows is used as the power consumption part.
  • a system was constructed using the booster circuit shown in FIG. 2A for the output voltage converter.
  • the first conductive part 1 was connected to the input terminal A1 of the booster circuit of the output voltage conversion part, and the output terminal B1 of the booster circuit was connected to the LED light bulb. Furthermore, the second conductive part 2 was connected to the input terminal A2 of the booster circuit, and the output terminal B2 of the booster circuit was connected to the terminal opposite to the terminal connected to the output terminal B1 of the LED light bulb. .
  • Pure water (manufactured by Furukawa Pharmaceutical Co., Ltd., high-purity purified water, temperature 25 degrees: medium) is placed in an acrylic container (outer diameter 15 cm ⁇ 15 cm ⁇ 15 cm cube, inner diameter 14.5 cm) to a height of 7.5 cm. , the first conductive part 1 and the second conductive part 2 were immersed to construct a system.
  • the first conductive part 1 and the second conductive part 2 are non-contact, the distance between the first conductive part 1 and the second conductive part 2 is 12 cm, and the plate-like shape of the first conductive part 1 and the second conductive part 2 Installed so that the planes are parallel.
  • the voltage between the first conductive part 1 and the second conductive part 2 was measured (measurement 1).
  • a 34401A multimeter manufactured by Agilent Technologies was used for the measurement. Table 1 shows the results.
  • the LED bulb repeatedly blinked every 270 to 330 seconds. That is, it was confirmed that electricity was generated from the first conductive portion 1 and/or the second conductive portion 2 .
  • the first conductive part 1 and the second conductive part 2 are immersed in an acrylic container (outer diameter 15 cm ⁇ 15 cm ⁇ 15 cm cube, inner diameter 14.5 cm) up to a height of 7.5 cm, pure water (Furukawa Pharmaceutical Co., Ltd.) High-purity purified water manufactured by Co., Ltd., temperature 25 degrees: medium) was put in, and the first conductive part 1 and the second conductive part 2 were immersed.
  • the first conductive part 1 and the second conductive part 2 are non-contact, the distance between the first conductive part 1 and the second conductive part 2 is 12 cm, and the plate-like shape of the first conductive part 1 and the second conductive part 2
  • the planes were set so as to be parallel.
  • the first conductive portion 1 and the second conductive portion 2 were in a state in which they were not electrically connected. Then, using a 34401A multimeter, the voltage between the first conductive portion 1 and the second conductive portion 2 was measured (measurement 2). Furthermore, in this state, the resistance value of the medium between the first conductive portion 1 and the second conductive portion 2 was measured (measurement 3).
  • Reference example 4 In Reference Example 1, pure water was added up to a height of 10 cm when pure water was put into the acrylic container to a height of 7.5 cm. By adding pure water, we were able to confirm the change in the internal impedance of the system described above. Further, by adding pure water, it was possible to confirm a change in the input voltage V 2 IN when the T off period started. The internal impedance was calculated by the calculation method described above.
  • Reference Example 5 In Reference Example 1, when the acrylic container was filled with pure water up to a height of 7.5 cm, the pure water was added up to a height of 10 cm over 5 minutes. It was confirmed that the amount of change per unit time of the internal impedance of the system described above changed. Further, it was confirmed that the amount of change in the input voltage per unit time changed by adding pure water.
  • the internal impedance was calculated by the calculation method described above.
  • the input voltage is the input voltage V 2 IN when the T off period begins.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The objective of the present invention is to provide a data collection system capable of collecting data by moving a collection node. The data collection system is provided with a sensor node, a collection node that receives sensing data acquired by the sensor node, and a mobile body including the collection node. The data collection system is provided with a position information storage means that stores position information regarding the position of the sensor node. The mobile body is provided with a collection node moving means that moves the collection node from the position of the sensor node to within a first predetermined range. The sensor node is provided with a first sensing data transmission means that transmits the acquired sensing data to the collection node. The collection node is provided with a sensing data reception means that receives the sensing data from the sensor node.

Description

データ収集システム、データ収集方法、及び移動体Data collection system, data collection method, and moving object
 本発明は、収集ノードを移動させることでデータを収集することができる、データ収集システムに関する。 The present invention relates to a data collection system that can collect data by moving collection nodes.
 データを取得したい場所にセンサノードを設置し、データを取得することが行われている。そして、センサノードが取得したデータは、固定された、収集ノードを有する基地局に送信される。 A sensor node is installed in the place where you want to acquire data, and the data is acquired. The data acquired by the sensor nodes is then transmitted to a fixed base station with collection nodes.
 しかしながら、センサノードを設置できる場所は基地局から所定の範囲内に限られ、センサノードがデータを送信できる距離に依存するものであった。 However, the locations where sensor nodes can be installed are limited to within a predetermined range from the base station, and depend on the distance that the sensor nodes can transmit data.
 本発明の少なくとも1つの目的は、収集ノードを移動させることでデータを収集することができる、データ収集システムを提供することである。 At least one object of the present invention is to provide a data collection system that can collect data by moving collection nodes.
 本発明によれば、上記目的は、[1]~[19]により解決することができる。
[1]センサノードと、センサノードが取得したセンシングデータを受信する収集ノードと、収集ノードを有する移動体とを備えるデータ収集システムであって、データ収集システムが、センサノードの位置に関する位置情報を記憶する位置情報記憶手段を備え、移動体が、センサノードの位置から第一の所定の範囲内まで収集ノードを移動させる収集ノード移動手段を備え、センサノードが、取得したセンシングデータを収集ノードに送信する第一センシングデータ送信手段を備え、収集ノードが、センサノードからセンシングデータを受信するセンシングデータ受信手段を備える、データ収集システム;
[2]収集ノードが、センサノードに信号を送信する信号送信手段を備え、第一センシングデータ送信手段が、信号送信手段により信号を送信された場合に、該収集ノードにセンシングデータを送信する、[1]に記載のデータ収集システム;
[3]データ収集システムが、無線装置を備え、センサノードが、センシングデータを送信可能であるという通知を無線装置に送信するセンシングデータ送信可能通知送信手段と、該センサノードを識別する識別情報を無線装置に送信する第一識別情報送信手段とを備え、無線装置が、センシングデータ送信可能通知送信手段によりセンシングデータを送信可能であるという通知が送信されたセンサノードの識別情報を移動体に送信する第二識別情報送信手段を備える、[1]又は[2]に記載のデータ収集システム;
[4]移動体が、センサノードを設置するセンサノード設置手段を備え、位置情報記憶手段が、センサノード設置手段により設置された際のセンサノードの位置情報を記憶する、[1]~[3]のいずれかに記載のデータ収集システム;
[5]センサノードが、該センサノードの位置情報を特定する位置情報特定手段を備え、データ収集システムが、位置情報記憶手段により記憶されたセンサノードの位置情報を、位置情報特定手段により特定されたセンサノードの位置情報に更新する位置情報更新手段を備える、[1]~[4]のいずれかに記載のデータ収集システム;
[6]データ収集システムが、位置情報記憶手段により記憶されたセンサノードの位置情報に基づいて、移動体の移動経路を特定する移動経路特定手段を備え、収集ノード移動手段が、移動経路特定手段により特定された移動経路に従って、収集ノードを移動させる、[1]~[5]のいずれかに記載のデータ収集システム;
[7]センサノードが、集電システムと接続されており、集電システムが、第一導電部及び第二導電部と、機能部とを備え、第一導電部及び機能部は接続されており、第二導電部及び機能部は接続されており、第一導電部及び第二導電部は、互いに非接触であり、第一導電部及び第二導電部を媒体に接触させることで集電する、[1]~[6]のいずれかに記載のデータ収集システム;
[8]データ収集システムが、所定の時間内にセンシングデータを送信したセンサノードを識別する送信識別手段を備え、収集ノード移動手段が、送信識別手段により所定の時間内にデータを送信したと識別されたセンサノード以外のセンサノードの位置から第一の所定の範囲内まで収集ノードを移動させる、[1]~[7]のいずれかに記載のデータ収集システム;
[9]センサノードが、複数のセンサを備え、データ収集システムが、センサノードが備える複数のセンサから取得できるセンシングデータのうち、送信対象となるセンシングデータを特定する送信対象センシングデータ特定手段を備え、第一センシングデータ送信手段が、送信対象センシングデータ特定手段により特定されたセンシングデータを送信する、[1]~[8]のいずれかに記載のデータ収集システム;
[10]第一センシングデータ送信手段が、複数の通信方法によりセンシングデータを送信することが可能であり、データ収集システムが、第一センシングデータ送信手段の通信方法を変更する通信方法変更手段を備え、第一センシングデータ送信手段が、通信方法変更手段により変更された通信方法によりデータを送信する、[1]~[9]のいずれかに記載のデータ収集システム;
[11]収集ノードが、センサノードに電力を供給する電力供給手段を備える、[1]~[10]のいずれかに記載のデータ収集システム;
[12]データ収集システムが、センサノードの位置から第二の所定の範囲内に設置された無線装置を備え、無線装置が、移動体に通知を送信する通知送信手段を備え、移動体が、センサノードの位置を、通知送信手段により送信された通知に対応する無線装置の位置を基に特定する位置特定手段を備える、[1]~[11]のいずれかに記載のデータ収集システム;
[13]データ収集システムが、センサノードの状態を判定する判定ノードを備え、判定ノードが、センサノードから送信されたセンシングデータを基に、センサノードの状態を判定する第一状態判定手段を備える、[1]~[12]のいずれかに記載のデータ収集システム;
[14]データ収集システムが、他のコンピュータ装置を備え、収集ノードが、センシングデータを他のコンピュータ装置へ送信する第二センシングデータ送信手段
を備える、[1]~[13]のいずれかに記載のデータ収集システム;
[15]データ収集システムが、無線装置を備え、センサノード及び無線装置は接続されており、無線装置が、センサノードがセンシングデータを送信可能であることを判定するセンシングデータ送信可能判定手段と、センシングデータ送信可能判定手段によりセンシングデータを送信可能であると判定されたセンサノードの識別情報を移動体に送信する第三識別情報送信手段とを備える、[1]~[14]のいずれかに記載のデータ収集システム;
[16]データ収集システムが、センサノードの状態を判定する判定ノードを備え、センサノード及び判定ノードは接続されており、判定ノードが、センサノードの状態を判定する第二状態判定手段を備える、[1]~[15]のいずれかに記載のデータ収集システム;
[17]センサノードと、センサノードが取得したセンシングデータを受信する収集ノードと、収集ノードを有する移動体とを備えるデータ収集システムを用いたデータ収集方法であって、データ収集システムが、センサノードの位置に関する位置情報を記憶する位置情報記憶ステップを有し、移動体が、センサノードの位置から第一の所定の範囲内まで収集ノードを移動させる収集ノード移動ステップを有し、センサノードが、取得したセンシングデータを収集ノードに送信するセンシングデータ送信ステップを有し、収集ノードが、センサノードからセンシングデータを受信するセンシングデータ受信ステップを有する、データ収集方法;
[18]センサノードが取得したセンシングデータを受信する収集ノードを有する移動体であって、センサノードの位置に関する位置情報を記憶する位置情報記憶手段、センサノードの位置から第一の所定の範囲内まで収集ノードを移動させる収集ノード移動手段を備え、収集ノードが、センサノードからセンシングデータを受信するセンシングデータ受信手段を備える、移動体;
[19]センサノードと、センサノードが取得したセンシングデータを受信する収集ノードを備えるデータ収集システムを用いたデータ収集方法であって、データ収集システムが、センサノードの位置に関する位置情報を記憶する位置情報記憶ステップを有し、センサノードの位置から第一の所定の範囲内まで収集ノードを移動させる収集ノード移動ステップを有し、センサノードが、取得したセンシングデータを収集ノードに送信するセンシングデータ送信ステップを有し、収集ノードが、センサノードからセンシングデータを受信するセンシングデータ受信ステップを有する、データ収集方法。
According to the present invention, the above object can be solved by [1] to [19].
[1] A data collection system that includes a sensor node, a collection node that receives sensing data acquired by the sensor node, and a moving object that has the collection node, wherein the data collection system collects location information about the location of the sensor node. The moving body comprises a collection node moving means for moving the collection node from the position of the sensor node to within a first predetermined range, and the sensor node transmits the acquired sensing data to the collection node. A data collection system comprising first sensing data transmitting means for transmitting, wherein the collection node comprises sensing data receiving means for receiving sensing data from the sensor node;
[2] The collection node includes signal transmission means for transmitting a signal to the sensor node, and the first sensing data transmission means transmits sensing data to the collection node when a signal is transmitted by the signal transmission means. The data collection system according to [1];
[3] The data collection system comprises a wireless device, and the sensor node includes sensing data transmittable notification transmitting means for transmitting a notification that sensing data can be transmitted to the wireless device, and identification information for identifying the sensor node. a first identification information transmitting means for transmitting to the wireless device, wherein the wireless device transmits to the moving body the identification information of the sensor node to which the sensing data transmittable notification transmitting means has transmitted the notification that the sensing data can be transmitted. The data collection system according to [1] or [2], comprising a second identification information transmission means for
[4] The moving body comprises sensor node installation means for installing a sensor node, and the location information storage means stores the location information of the sensor node when installed by the sensor node installation means, [1] to [3] ] The data collection system according to any one of;
[5] The sensor node has location information specifying means for specifying location information of the sensor node, and the data collection system stores the location information of the sensor node stored by the location information storage means and specified by the location information specifying means. The data collection system according to any one of [1] to [4], comprising location information updating means for updating the location information of the sensor node that has been received;
[6] The data collection system comprises movement route identification means for identifying the movement route of the moving object based on the position information of the sensor node stored by the position information storage means, and the collection node movement means is the movement route identification means The data collection system according to any one of [1] to [5], wherein the collection node is moved according to the movement path specified by;
[7] The sensor node is connected to a current collection system, the current collection system includes a first conductive portion, a second conductive portion, and a functional portion, and the first conductive portion and the functional portion are connected , the second conductive part and the functional part are connected, the first conductive part and the second conductive part are not in contact with each other, and the first conductive part and the second conductive part are brought into contact with the medium to collect current , the data collection system according to any one of [1] to [6];
[8] The data collection system comprises transmission identification means for identifying sensor nodes that have transmitted sensing data within a predetermined period of time, and the collection node moving means identifies that the data has been transmitted within the predetermined period of time by the transmission identification means. The data collection system according to any one of [1] to [7], wherein the collection node moves within a first predetermined range from the position of the sensor node other than the detected sensor node;
[9] The sensor node includes a plurality of sensors, and the data collection system includes transmission target sensing data identifying means for identifying sensing data to be transmitted among sensing data that can be acquired from the plurality of sensors included in the sensor node. , the data collection system according to any one of [1] to [8], wherein the first sensing data transmitting means transmits the sensing data specified by the transmission target sensing data specifying means;
[10] The first sensing data transmission means can transmit sensing data by a plurality of communication methods, and the data collection system includes communication method changing means for changing the communication method of the first sensing data transmission means. , the data collection system according to any one of [1] to [9], wherein the first sensing data transmission means transmits data by the communication method changed by the communication method change means;
[11] The data collection system according to any one of [1] to [10], wherein the collection node comprises power supply means for supplying power to the sensor node;
[12] The data collection system comprises a wireless device installed within a second predetermined range from the position of the sensor node, the wireless device comprises notification transmission means for transmitting a notification to the mobile body, and the mobile body: The data collection system according to any one of [1] to [11], comprising position specifying means for specifying the position of the sensor node based on the position of the wireless device corresponding to the notification transmitted by the notification transmission means;
[13] The data collection system includes a determination node that determines the state of the sensor node, and the determination node includes first state determination means that determines the state of the sensor node based on sensing data transmitted from the sensor node. , the data collection system according to any one of [1] to [12];
[14] Any one of [1] to [13], wherein the data collection system includes another computer device, and the collection node includes second sensing data transmission means for transmitting sensing data to the other computer device. data collection system;
[15] The data collection system includes a wireless device, the sensor node and the wireless device are connected, and the wireless device determines whether the sensor node is capable of transmitting sensing data; any one of [1] to [14], further comprising a third identification information transmission means for transmitting identification information of a sensor node determined to be capable of transmitting sensing data by the sensing data transmission determination means, to the moving object; the data collection system described;
[16] The data collection system includes a determination node that determines the state of the sensor node, the sensor node and the determination node are connected, and the determination node includes second state determination means that determines the state of the sensor node. The data collection system according to any one of [1] to [15];
[17] A data collection method using a data collection system that includes a sensor node, a collection node that receives sensing data acquired by the sensor node, and a moving body that has the collection node, wherein the data collection system includes the sensor node The moving body has a collection node moving step of moving the collection node from the position of the sensor node to within a first predetermined range, and the sensor node is A data collection method comprising a sensing data transmission step of transmitting acquired sensing data to a collection node, the collection node having a sensing data reception step of receiving the sensing data from the sensor node;
[18] A moving body having a collection node that receives sensing data acquired by the sensor node, the position information storage means for storing position information about the position of the sensor node, within a first predetermined range from the position of the sensor node a mobile body comprising collection node moving means for moving the collection node to the collection node, the collection node comprising sensing data receiving means for receiving sensing data from the sensor node;
[19] A data collection method using a data collection system comprising a sensor node and a collection node that receives sensing data acquired by the sensor node, wherein the data collection system stores location information about the location of the sensor node Sensing data transmission, which has an information storage step and has a collection node moving step of moving the collection node from the position of the sensor node to within a first predetermined range, wherein the sensor node transmits the acquired sensing data to the collection node. A data collection method, comprising: a step of receiving sensing data, wherein the collection node receives sensing data from the sensor node.
 本発明によれば、収集ノードを移動させることでデータを収集することができる、データ収集システムを提供することができる。 According to the present invention, it is possible to provide a data collection system that can collect data by moving collection nodes.
本発明の実施の形態にかかる、データ収集システムの構成を示すブロック図である。1 is a block diagram showing the configuration of a data collection system according to an embodiment of the present invention; FIG. 本発明の実施の形態にかかる、集電システムの構成を示すブロック図である。1 is a block diagram showing the configuration of a current collection system according to an embodiment of the present invention; FIG. 本発明の実施の形態にかかる、電力変換部の構成を示すブロック図である。It is a block diagram showing a configuration of a power conversion unit according to an embodiment of the present invention. 本発明の実施の形態にかかる、センサノードを表す図である。FIG. 4 is a diagram representing a sensor node according to an embodiment of the present invention; FIG. 本発明の実施の形態にかかる、センサノード内のトランジスタのON-OFFを切り替えた場合における、時間と電流Iの関係を示す図である。FIG. 4 is a diagram showing the relationship between time and current I when switching ON and OFF of a transistor in a sensor node according to the embodiment of the present invention; 本発明の実施の形態にかかる、センサノードの例を示す図である。FIG. 2 is a diagram showing an example of sensor nodes according to an embodiment of the present invention; FIG. 本発明の実施の形態にかかる、データ収集システムにおける位置情報記憶処理のフローチャートを表す図である。FIG. 4 is a diagram showing a flowchart of position information storage processing in the data collection system according to the embodiment of the present invention; 本発明の実施の形態にかかる、データ収集システムにおける位置情報更新処理のフローチャートを表す図である。FIG. 4 is a diagram showing a flowchart of location information update processing in the data collection system according to the embodiment of the present invention; 本発明の実施の形態にかかる、データ収集システムにおけるセンシングデータ受信処理のフローチャートを表す図である。FIG. 4 is a diagram showing a flowchart of sensing data reception processing in the data collection system according to the embodiment of the present invention; 本発明の実施の形態にかかる、データ収集システムにおけるセンサノード位置特定処理のフローチャートを表す図である。FIG. 4 is a diagram showing a flowchart of sensor node position specifying processing in the data collection system according to the embodiment of the present invention; 本発明の実施の形態にかかる、データ収集システムにおける送信可能センサノード識別処理のフローチャートを表す図である。FIG. 4 is a diagram showing a flow chart of transmittable sensor node identification processing in the data collection system according to the embodiment of the present invention; 本発明の実施の形態にかかる、データ収集システムにおける電力供給処理のフローチャートを表す図である。FIG. 4 is a diagram showing a flowchart of power supply processing in the data collection system according to the embodiment of the present invention; 本発明の実施の形態にかかる、データ収集システムにおける判定処理のフローチャートを表す図である。FIG. 4 is a diagram showing a flowchart of determination processing in the data collection system according to the embodiment of the present invention;
 以下、添付図面を参照して、本発明の実施の形態について説明する。以下、効果に関する記載は、本発明の実施の形態の効果の一側面であり、ここに記載するものに限定されない。また、本発明の趣旨に反しない限り、本発明は以下の実施の形態に限定されない。 Embodiments of the present invention will be described below with reference to the accompanying drawings. The following description of effects is one aspect of the effects of the embodiments of the present invention, and is not limited to what is described here. Moreover, the present invention is not limited to the following embodiments as long as the gist of the present invention is not violated.
[データ収集システムの構成]
 図1は、本発明の実施の形態にかかるデータ収集システムの構成を示すブロック図である。図示するように、データ収集システムは、センサノード10(センサノード10a、10b、・・・10z)と、センサノード10が取得したセンシングデータを受信する収集ノード11と、収集ノード11を有する移動体12と、無線装置13(無線装置13a、13b、・・・13z)とから構成されている。
[Configuration of data collection system]
FIG. 1 is a block diagram showing the configuration of a data collection system according to an embodiment of the invention. As illustrated, the data collection system includes sensor nodes 10 ( sensor nodes 10a, 10b, . . . 10z), collection nodes 11 that receive sensing data acquired by the sensor nodes 10, 12 and radio equipment 13 ( radio equipment 13a, 13b, . . . 13z).
 センサノード10と収集ノード11、及びセンサノード10と移動体12は通信接続が可能である。また、無線装置13と収集ノード11、及び無線装置13と移動体12は通信接続が可能である。そして、センサノード10は、それぞれのセンサノード10に対応する無線装置13と通信接続が可能であることとしてもよい。その場合、一つのセンサノード10と一つの無線装置13が対応することとしてもよく、複数のセンサノード10と一つの無線装置13が対応することとしてもよく、一つのセンサノード10と複数の無線装置13が対応することとしてもよい。また、収集ノード11と移動体12は通信接続が可能であることとしてもよい。 A communication connection is possible between the sensor node 10 and the collection node 11, and between the sensor node 10 and the moving object 12. Also, the wireless device 13 and the collection node 11 and the wireless device 13 and the moving object 12 can be connected for communication. Further, the sensor nodes 10 may be capable of communication connection with the wireless device 13 corresponding to each sensor node 10 . In that case, one sensor node 10 may correspond to one wireless device 13, or a plurality of sensor nodes 10 may correspond to one wireless device 13, or one sensor node 10 may correspond to a plurality of wireless devices. The device 13 may correspond. Also, the collection node 11 and the moving object 12 may be capable of communication connection.
 図示しないが、センサノード10、収集ノード11、移動体12、及び無線装置13は、さらに、他のコンピュータ装置と通信接続が可能であることとしてもよい。コンピュータ装置は、通信部、記憶部、及び制御部を有するコンピュータ装置であれば特に限定されないが、例えば、サーバ装置、端末装置などが挙げられる。コンピュータ装置が端末装置の場合は、本発明のデータ収集システムに対応した、専用のアプリケーションがインストールされていることが好ましい。 Although not shown, the sensor node 10, the collection node 11, the mobile object 12, and the wireless device 13 may further be capable of communication connection with other computer devices. The computer device is not particularly limited as long as it has a communication unit, a storage unit, and a control unit, and examples thereof include a server device and a terminal device. If the computer device is a terminal device, it is preferable that a dedicated application compatible with the data collection system of the present invention is installed.
 また、図示しないが、データ収集システムは、さらに、センサノードの状態を判定する判定ノードを備えていることとしてもよい。そして、判定ノードは、センサノード10、収集ノード11、移動体12、無線装置13、及び他のコンピュータ装置のそれぞれと通信接続が可能であることとしてもよい。 Also, although not shown, the data collection system may further include a determination node that determines the state of the sensor node. The determination node may be capable of communication connection with each of the sensor node 10, the collection node 11, the mobile object 12, the wireless device 13, and other computer devices.
 上記通信接続は常時行われていなくてもよく、必要に応じて、接続が可能であればよい。 The above communication connection does not have to be performed all the time, as long as it is possible to connect as necessary.
 センサノード10は、センサ、及び通信部を備えていれば、特に限定されない。 The sensor node 10 is not particularly limited as long as it has a sensor and a communication unit.
 センサノード10が備えるセンサは、特に限定されず、所定の情報を感知、又は計測するものであればよい。以下、センサノード10が備えるセンサが感知、又は計測した情報を、センシングデータという。また、センサノード10が備えるセンサが情報を感知若しくは計測すること、又は、センサノード10が備えるセンサが感知若しくは計測した情報を、センサノード10が記憶することを、センサノード10がセンシングデータを取得する、という。センサノード10が備えるセンサが感知若しくは計測した情報を、センサノード10が記憶する場合には、センサノード10は記憶部を備えることとしてもよい。 The sensor provided in the sensor node 10 is not particularly limited as long as it senses or measures predetermined information. Hereinafter, information sensed or measured by the sensor provided in the sensor node 10 is referred to as sensing data. In addition, the sensor node 10 acquires sensing data that the sensor provided in the sensor node 10 senses or measures information, or that the sensor node 10 stores information sensed or measured by the sensor provided in the sensor node 10. It is said to do. When the sensor node 10 stores information sensed or measured by a sensor included in the sensor node 10, the sensor node 10 may include a storage unit.
 センサは、加速度、外気温、気圧、照度、紫外線照射量などの、外部環境に関するセンシングデータを取得するものであることとしてもよい。あるいは、センサノード10を、人間や、他の動物などに装着させる場合には、センサは、心拍数、心電位、血圧、体温などの、装着しているものの内部環境に関するセンシングデータを取得するものであることとしてもよい。 The sensor may acquire sensing data related to the external environment, such as acceleration, outside temperature, atmospheric pressure, illuminance, and UV irradiation. Alternatively, when the sensor node 10 is worn by a human or other animal, the sensor acquires sensing data related to the internal environment of the wearer, such as heart rate, electrocardiogram potential, blood pressure, and body temperature. It is also possible to be
 センサノード10は、1以上のセンサを備えていればよい。また、センサノード10が備えるセンサが複数である場合には、異なる種類のセンシングデータを取得するセンサを備えることとしてもよい。あるいは、センサノード10が備えるセンサが複数である場合には、同じ種類のセンシングデータを取得するものであって、センシングデータを取得できる範囲が異なるセンサを備えることとしてもよい。 The sensor node 10 should be equipped with one or more sensors. Further, when the sensor node 10 includes a plurality of sensors, sensors that acquire different types of sensing data may be provided. Alternatively, when the sensor node 10 includes a plurality of sensors, sensors that acquire the same type of sensing data but have different sensing data acquisition ranges may be provided.
 データ収集システムは、センサノード10が備える複数のセンサから取得できるセンシングデータのうち、送信対象となるセンシングデータを特定することとしてもよい。また、送信対象となるセンシングデータの特定は、無線装置13、移動体12、収集ノード11、センサノード10、他のコンピュータ装置のいずれにおいて行われることとしてもよい。そして、特定されたセンシングデータが、センサノード10から収集ノード11へ送信されることとしてもよい。あるいは、特定されたセンシングデータが、センサノード10から判定ノードへ送信されることとしてもよい。 The data collection system may specify the sensing data to be transmitted from among the sensing data that can be acquired from the multiple sensors provided in the sensor node 10 . Also, the sensing data to be transmitted may be specified by any of the wireless device 13, the mobile object 12, the collection node 11, the sensor node 10, or another computer device. The identified sensing data may then be transmitted from the sensor node 10 to the collection node 11 . Alternatively, the identified sensing data may be transmitted from the sensor node 10 to the determination node.
 例えば、センサノード10が取得した温度についてのセンシングデータが、所定の期間以上、所定の値以上であった場合には、温度と併せて湿度についてのセンシングデータも送信対象として特定されることとしてもよい。 For example, if the temperature sensing data acquired by the sensor node 10 is greater than or equal to a predetermined value for a predetermined period of time, the temperature and humidity sensing data may also be specified as transmission targets. good.
 このように、センサノードが、複数のセンサを備え、データ収集システムが、センサノードが備える複数のセンサから取得できるセンシングデータのうち、送信対象となるセンシングデータを特定する送信対象センシングデータ特定手段を備え、第一センシングデータ送信手段が、送信対象センシングデータ特定手段により特定されたセンシングデータを送信することで、収集するセンシングデータを特定することが可能となる。 In this way, the sensor node includes a plurality of sensors, and the data collection system includes transmission target sensing data identifying means for identifying the sensing data to be transmitted among the sensing data that can be acquired from the plurality of sensors included in the sensor node. In addition, the sensing data to be collected can be specified by the first sensing data transmitting means transmitting the sensing data specified by the transmission target sensing data specifying means.
 通信部は、収集ノード11、移動体12、無線装置13、他のコンピュータ装置などと通信接続が可能であればよく、特に限定されない。通信部は、1以上の通信方法により通信接続が可能であることとしてもよい。通信方法は、通信を行うことが可能であれば特に限定されない。通信方法は、空間を伝搬させることで行われる通信であることとしてもよい。例えば、通信方法は、LPWA、Wi-Fi、Bluetooth、BLE、RFID、NFC、IrDAなどであることとしてもよい。電力消費を少なくする観点からは、通信方法は、LPWA、BLE、RFID、NFC、IrDAなどが好ましい。 The communication unit is not particularly limited as long as it can communicate with the collection node 11, mobile unit 12, wireless device 13, other computer devices, and the like. The communication unit may be capable of communication connection by one or more communication methods. A communication method is not particularly limited as long as communication can be performed. The communication method may be communication performed by propagating through space. For example, the communication method may be LPWA, Wi-Fi, Bluetooth, BLE, RFID, NFC, IrDA, and the like. From the viewpoint of reducing power consumption, LPWA, BLE, RFID, NFC, IrDA, etc. are preferable as the communication method.
 データ収集システムは、センサノード10が収集ノード11にセンシングデータを送信する際に用いる通信方法を変更することが可能であることとしてもよい。また、通信方法の変更は、無線装置13、移動体12、収集ノード11、センサノード10、他のコンピュータ装置のいずれが行うこととしてもよい。 The data collection system may be able to change the communication method used when the sensor node 10 transmits sensing data to the collection node 11. Also, the change of the communication method may be performed by any of the wireless device 13, the mobile unit 12, the collection node 11, the sensor node 10, or another computer device.
 例えば、センサノード10は、昼間は近距離通信であるNFCによりセンシングデータを送信し、夜間は遠距離通信であるLPWAによりセンシングデータを送信することとしてもよい。あるいは、センサノード10と収集ノード11との距離に応じて、通信方法が変更されることとしてもよい。 For example, the sensor node 10 may transmit sensing data by NFC, which is short-range communication, during the daytime, and transmit sensing data by LPWA, which is long-distance communication at night. Alternatively, the communication method may be changed according to the distance between the sensor node 10 and the collection node 11. FIG.
 また、本発明のデータ収集システムは、センサノード10が収集ノード11にセンシングデータを送信する際に限らず、様々な場面の通信接続において、通信方法を変更することが可能であることとしてもよい。例えば、データ収集システムは、収集ノード11が他のコンピュータ装置にセンシングデータを送信する際に用いる通信方法を変更することが可能であることとしてもよい。 Further, the data collection system of the present invention may be capable of changing the communication method not only when the sensor node 10 transmits sensing data to the collection node 11, but also when communicating in various situations. . For example, the data collection system may be capable of changing the communication method used when the collection node 11 transmits sensing data to another computer device.
 このように、第一センシングデータ送信手段が、複数の通信方法によりセンシングデータを送信することが可能であり、データ収集システムが、第一センシングデータ送信手段の通信方法を変更する通信方法変更手段を備え、第一センシングデータ送信手段が、通信方法変更手段により変更された通信方法によりデータを送信することで、状況に応じた通信方法で、センシングデータの送受信を行うことができる。 In this way, the first sensing data transmitting means can transmit sensing data by a plurality of communication methods, and the data collection system has a communication method changing means for changing the communication method of the first sensing data transmitting means. In addition, the first sensing data transmitting means transmits the data by the communication method changed by the communication method changing means, so that the sensing data can be transmitted and received by the communication method according to the situation.
 また、センサノード10は、後述する、集電システムと接続されることとしてもよい。そして、センシングデータの取得、及びセンシングデータの送信は、集電システムにより得られた電力によって行われることとしてもよい。あるいは、センシングデータの取得、及びセンシングデータの送信は、電池、ソーラー発電、微生物発電などの、集電システム以外のものから得られた電力によって行われることとしてもよく、集電システムにより得られた電力と、電池、ソーラー発電、微生物発電などの、集電システム以外のものから得られた電力の双方によって行われることとしてもよい。 Also, the sensor node 10 may be connected to a current collection system, which will be described later. Acquisition of sensing data and transmission of sensing data may be performed using power obtained by the power collection system. Alternatively, sensing data acquisition and sensing data transmission may be performed using power obtained from something other than the current collection system, such as a battery, solar power generation, or microbial power generation. It may be performed by both electric power and power obtained from sources other than current collection systems, such as batteries, solar power generation, and microbial power generation.
 さらに、センサノード10は、電気を蓄電する蓄電部、昇圧回路や降圧回路のように出力する電圧を変換する出力電圧変換部等、回路を制御するマイコン等の制御部、情報を表示するための表示部等、位置を特定するためのGNSS、白熱電球や発光ダイオードなどの光源、熱を発する発熱体、音を発する発音体、信号を発する発信体、記憶部などを備えることとしてもよい。GNSSには、GPS、GLONASS、Galileo、QZSS、Gaganなどの、位置を特定するための技術が含まれることとする。 Further, the sensor node 10 includes a power storage unit that stores electricity, an output voltage conversion unit that converts output voltage such as a booster circuit or a step-down circuit, a control unit such as a microcomputer that controls circuits, and a controller that displays information. GNSS for specifying a position such as a display unit, a light source such as an incandescent lamp or a light emitting diode, a heating element that emits heat, a sound generator that emits sound, a transmitter that emits a signal, a storage unit, and the like may be provided. GNSS shall include technologies for determining position such as GPS, GLONASS, Galileo, QZSS, Gagan.
 また、センサノード10には、識別番号が付されていることとしてもよい。そして、センサノード10の記憶部に、該センサノード10の識別番号が記憶されていることとしてもよい。以下、センサノード10には、識別番号が付されており、センサノード10の記憶部には、該センサノード10の識別番号が記憶されていることとする。また、センサノード10の識別番号を含む、センサノード10を識別するための情報を、センサノード10の識別情報という。 Also, the sensor node 10 may be assigned an identification number. Then, the identification number of the sensor node 10 may be stored in the storage unit of the sensor node 10 . Hereinafter, it is assumed that the sensor node 10 is assigned an identification number, and the identification number of the sensor node 10 is stored in the storage unit of the sensor node 10 . Information for identifying the sensor node 10 including the identification number of the sensor node 10 is referred to as identification information of the sensor node 10 .
 収集ノード11は、通信部、及び記憶部を備えていれば、特に限定されない。収集ノード11は、送信ノード10から送信されたセンシングデータを受信し、記憶部に記憶する。また、収集ノード11は、受信したセンシングデータを、他のコンピュータ装置に送信することとしてもよい。また、収集ノード11は、センサノード10などの、他の装置に電力を供給する、電力供給部を備えていることとしてもよい。 The collection node 11 is not particularly limited as long as it has a communication unit and a storage unit. The collection node 11 receives the sensing data transmitted from the transmission node 10 and stores it in the storage unit. Also, the collection node 11 may transmit the received sensing data to another computer device. The collection node 11 may also include a power supply unit that supplies power to other devices, such as the sensor node 10 .
 収集ノード11の通信部は、センサノード10の通信部の記載を必要な範囲で採用できる。 The communication unit of the collection node 11 can adopt the description of the communication unit of the sensor node 10 to the extent necessary.
 収集ノード11は、移動体12の内部に備えられていてもよく、移動体12の外部に備えられていてもよい。また、収集ノード11は、装置としての形状を有していることとしてもよく、装置としての形状を有さず、機能的に備えられていることとしてもよい。 The collection node 11 may be provided inside the mobile object 12 or may be provided outside the mobile object 12 . Also, the collection node 11 may have the shape of a device, or may be functionally provided without having the shape of a device.
 移動体12は、特に限定されず、収集ノード11を移動させることが可能であればよい。移動体12は、公知のものを利用でき、人が搭乗することが可能なものでもよく、人が搭乗することが不可能なものでもよい。また、移動体12の形状は、地上を走行可能な車両タイプのものでもよく、上空を飛行可能な飛行体タイプのものでもよく、水上を移動可能な船舶タイプのものでもよく、水中を潜航可能な潜水艇タイプのものでもよい。あるいは、移動体12は、人型のロボット、犬型のロボットなどでもよい。 The mobile object 12 is not particularly limited as long as it can move the collection node 11. The moving body 12 can be a known one, and may be one in which a person can board or one in which a person cannot board. Further, the shape of the mobile body 12 may be a vehicle type that can travel on the ground, an aircraft type that can fly in the sky, a ship type that can move on water, or a vehicle that can dive underwater. submersible type. Alternatively, the moving body 12 may be a humanoid robot, a dog-shaped robot, or the like.
 移動体12は、通信部、制御部、及び記憶部を備えることとしてもよい。また、移動体12は、センサ、カメラ、変換部などを備えることとしてもよい。さらに、移動体12は、センサノード10などの、他の装置に電力を供給する、電力供給部を備えていることとしてもよい。 The mobile unit 12 may be equipped with a communication unit, a control unit, and a storage unit. Also, the moving body 12 may include a sensor, a camera, a conversion unit, and the like. Additionally, the mobile 12 may include a power supply that powers other devices, such as the sensor node 10 .
 移動体12の通信部は、センサノード10の通信部の記載を必要な範囲で採用できる。 The communication unit of the mobile object 12 can adopt the description of the communication unit of the sensor node 10 to the extent necessary.
 また、移動体12が飛行体タイプのものである場合には、制御部が飛行の制御を行うこととしてもよい。そして、移動体12の制御部は、CPUやRAMやROMから構成され、移動体12の備えるセンサから得られた情報、及び/又は経路情報などをもとに移動体12の飛行の制御を行うこととしてもよい。 Also, if the moving object 12 is of the flying object type, the control unit may control the flight. The control unit of the moving body 12 is composed of a CPU, a RAM, and a ROM, and controls the flight of the moving body 12 based on information obtained from sensors provided on the moving body 12 and/or route information. You can do it.
 移動体12の備えるセンサは、ジャイロセンサ、加速度センサ、気圧センサ、超音波センサ、磁気方位センサ、GNSS、赤外線センサ、可視光センサなどの各種センサを含み得る。ジャイロセンサによって移動体12の傾き、すなわち姿勢を、加速度センサによって移動体12の速度を、気圧センサ、及び超音波センサによって移動体12の高度を、磁気方位センサによって移動体12の向いている方向を、GNSSによって移動体12の緯度、及び経度を、赤外線センサ、可視光センサ、又は超音波センサによって移動体12の周囲の障害物を主に検知することとしてもよい。 The sensors provided by the moving body 12 may include various sensors such as a gyro sensor, an acceleration sensor, an atmospheric pressure sensor, an ultrasonic sensor, a magnetic direction sensor, a GNSS, an infrared sensor, and a visible light sensor. A gyro sensor detects the tilt, or attitude, of the moving object 12, an acceleration sensor detects the speed of the moving object 12, an atmospheric pressure sensor and an ultrasonic sensor detect the altitude of the moving object 12, and a magnetic direction sensor detects the direction the moving object 12 faces. , the latitude and longitude of the mobile object 12 may be detected by GNSS, and obstacles around the mobile object 12 may be mainly detected by an infrared sensor, a visible light sensor, or an ultrasonic sensor.
 移動体12の備えるカメラは、移動体12の周囲の撮影を行うこととしてもよい。カメラによって撮影された映像データは、変換部によってデータ形式が変換され、通信部により他のコンピュータ装置に送信され得る。 The camera provided on the moving body 12 may take pictures of the surroundings of the moving body 12. Video data captured by the camera can be converted in data format by the conversion unit and transmitted to another computer device by the communication unit.
 飛行体タイプの移動体12の形状は、回転翼機タイプのものでもよく、固定翼機タイプのものでもよい。さらに、移動体12は、経路情報などをもとに自律的に飛行が制御されるものでもよく、操縦者が無線等により操縦することで飛行が制御されるものでもよい。 The shape of the flying object type moving object 12 may be either a rotary wing type or a fixed wing type. Further, the mobile object 12 may be autonomously controlled in flight based on route information or the like, or may be controlled in flight by being wirelessly operated by an operator.
 無線装置13は、特に限定されず、通信接続が可能であればよい。無線装置13は、通信部を備えていることとしてもよい。例えば、無線装置13には、ビーコンなどを用いることができる。 The wireless device 13 is not particularly limited as long as communication connection is possible. The wireless device 13 may include a communication section. For example, the wireless device 13 can use a beacon or the like.
 無線装置13の通信部は、センサノード10の通信部の記載を必要な範囲で採用できる。 The communication unit of the wireless device 13 can adopt the description of the communication unit of the sensor node 10 to the extent necessary.
 また、データ収集システムは、収集ノード11及び移動体12を複数備えていることとしてもよい。そして、それぞれの収集ノード11及び移動体12は、相互に通信接続が可能であることとしてもよい。 Also, the data collection system may include a plurality of collection nodes 11 and mobile bodies 12. Then, each collection node 11 and mobile unit 12 may be capable of communication connection with each other.
[集電システム]
 本発明のセンサノード10は、集電システムと接続されることとしてもよい。図2は、本発明の実施の形態にかかる、集電システムの構成を示すブロック図である。図示するように、集電システムは、第一導電部1と、第二導電部2と、機能部3とから構成される。第一導電部1及び機能部3、並びに、機能部3及び第二導電部2は、それぞれ電気的に接続されている。「電気的に接続」とは、例えば、導線等により通電可能に接続されることをいう。
[Current collection system]
The sensor node 10 of the present invention may be connected with a current collection system. FIG. 2 is a block diagram showing the configuration of the current collection system according to the embodiment of the invention. As shown, the current collection system is composed of a first conductive portion 1 , a second conductive portion 2 and a functional portion 3 . The first conductive portion 1 and the functional portion 3, and the functional portion 3 and the second conductive portion 2 are electrically connected to each other. “Electrically connected” means, for example, to be electrically connected by a lead wire or the like.
 集電システムの第一導電部1及び第二導電部2は、互いに非接触である。「非接触」とは、例えば、第一導電部1と第二導電部2とが直接接触していない状態をいう。 The first conductive part 1 and the second conductive part 2 of the current collection system are not in contact with each other. "Non-contact" means, for example, a state in which the first conductive portion 1 and the second conductive portion 2 are not in direct contact.
 集電システムは、第一導電部1及び第二導電部2の一部又は全部を、媒体に接触させることで集電する。つまり、集電システムは、第一導電部1及び第二導電部2の一部又は全部を、媒体に接触させることで電力を生じる。 The current collection system collects current by bringing part or all of the first conductive part 1 and the second conductive part 2 into contact with the medium. That is, the current collection system generates electric power by bringing part or all of the first conductive portion 1 and the second conductive portion 2 into contact with the medium.
 第一導電部1と第二導電部2の間の距離は、10mm以下であることが好ましく、5mm以下であることがより好ましく、3mm以下であることがさらに好ましく、1mm以下であることがとりわけ好ましく、0.5mm以下であることが特に好ましく、0.1mm以下であることが特別に好ましく、0.05mm以下であることが最も好ましい。 The distance between the first conductive part 1 and the second conductive part 2 is preferably 10 mm or less, more preferably 5 mm or less, even more preferably 3 mm or less, particularly 1 mm or less. It is preferably 0.5 mm or less, particularly preferably 0.1 mm or less, most preferably 0.05 mm or less.
 第一導電部1と第二導電部2の間の距離は、一定であっても、部分的に異なっていてもよい。第一導電部1と第二導電部2の間の距離が部分的に異なる場合には、第一導電部1と第二導電部2の間の距離の中で、最も近い部分の距離が、上記範囲内であることが好ましい。また、第一導電部1と第二導電部2の間の距離が部分的に異なる場合には、第一導電部1と第二導電部2の間の距離の平均値が、上記範囲内であることが好ましい。第一導電部1と第二導電部2の間の距離が上記範囲内にあることで、第一導電部1と第二導電部2が効率的に媒体に接触することが可能となり、集電しやすくなる。 The distance between the first conductive part 1 and the second conductive part 2 may be constant or partially different. When the distance between the first conductive part 1 and the second conductive part 2 is partially different, the distance of the closest part in the distance between the first conductive part 1 and the second conductive part 2 is It is preferably within the above range. Further, when the distance between the first conductive portion 1 and the second conductive portion 2 is partially different, the average value of the distance between the first conductive portion 1 and the second conductive portion 2 is within the above range. Preferably. When the distance between the first conductive portion 1 and the second conductive portion 2 is within the above range, the first conductive portion 1 and the second conductive portion 2 can efficiently come into contact with the medium, thereby collecting current. easier.
 第一導電部1及び第二導電部2は、いずれも導電性を有することが好ましい。ここで、第一導電部1及び第二導電部2の素材として、例えば、金属、導電性ポリマー、カーボン、導電性繊維、導電性ゴム等が挙げられる。 Both the first conductive part 1 and the second conductive part 2 preferably have conductivity. Here, examples of materials for the first conductive portion 1 and the second conductive portion 2 include metal, conductive polymer, carbon, conductive fiber, conductive rubber, and the like.
 第一導電部1及び第二導電部2の形状は、特に限定されない。第一導電部1及び第二導電部2の形状は、直方体状、円柱状(棒状)、角錐状、円錐状、板状、シート状、フィルム状、紐状又は粉末状であってもよく、形状を問わない。 The shapes of the first conductive part 1 and the second conductive part 2 are not particularly limited. The shape of the first conductive part 1 and the second conductive part 2 may be rectangular parallelepiped, cylindrical (rod-shaped), pyramidal, conical, plate-like, sheet-like, film-like, string-like or powdery, Any shape is acceptable.
 また、第一導電部1及び第二導電部2には、導電性を有しない素材を、導電性を有する素材で被覆したものや、導電性を有しない素材の中に、導電性を有する素材を配合したものなどを用いてもよい。例えば、プラスティックフィルムを金属で被覆したものや、クリーム状のペーストに金属粉末を配合したものを用いてもよい。また、第一導電部1及び第二導電部2は、可撓性を有していてもよい。 In the first conductive part 1 and the second conductive part 2, a material having no conductivity is coated with a material having conductivity, or a material having conductivity is used in the material having no conductivity. may be used. For example, a plastic film coated with metal, or a cream paste mixed with metal powder may be used. Moreover, the first conductive part 1 and the second conductive part 2 may have flexibility.
 第一導電部1及び第二導電部2に用いられる金属としては、例えば、銀、銅、金、アルミニウム、マグネシウム、亜鉛、ニッケル、白金、スズ、チタン、ステンレス、酸化亜鉛、酸化マグネシウム、又は、その他上述の金属夫々の酸化物などから適宜選択して用いることができる。また、所定の金属に、所定の金属とは異なる他の金属や、他の導電性を有する材料が被膜されていてもよい。 Examples of metals used for the first conductive portion 1 and the second conductive portion 2 include silver, copper, gold, aluminum, magnesium, zinc, nickel, platinum, tin, titanium, stainless steel, zinc oxide, magnesium oxide, or In addition, it can be used by appropriately selecting from oxides of the respective metals described above. Also, the predetermined metal may be coated with another metal different from the predetermined metal or another conductive material.
 第一導電部1と第二導電部2の素材は、異なる種類のものを用いてもよく、同じ種類のものを用いてもよい。例えば、第一導電部1に、シート状のステンレスを用い、第二導電部2にシート状の亜鉛を用いることができる。この場合、第一導電部1及び第二導電部2は、機能部3または昇圧回路・降圧回路と導線により接続される。 The materials of the first conductive part 1 and the second conductive part 2 may be of different types or may be of the same type. For example, sheet-like stainless steel can be used for the first conductive portion 1 and sheet-like zinc can be used for the second conductive portion 2 . In this case, the first conductive portion 1 and the second conductive portion 2 are connected to the functional portion 3 or the booster circuit/step-down circuit via conductors.
 交流インピーダンス法を用いて、第一導電部1及び第二導電部2の少なくとも一方に対して分極抵抗を測定した場合に、測定値が100Ω以上であることが好ましい。 When the polarization resistance is measured for at least one of the first conductive portion 1 and the second conductive portion 2 using the AC impedance method, the measured value is preferably 100Ω or more.
 ここで、電流の起点となる導電部を第一導電部1として定義し、終点となる導電部を第二導電部2として定義する。いずれの導電部が第一導電部1として機能するかは、導電部の材質、又は、導電部を取り巻く環境(例えば、温度、湿度、気圧、pHなど)により決定される。第一導電部1又は第二導電部2と媒体の界面で、化学反応が行われ、導電部に自由電子が発生する。 Here, the conductive portion that is the starting point of the current is defined as the first conductive portion 1, and the conductive portion that is the ending point is defined as the second conductive portion 2. Which conductive part functions as the first conductive part 1 is determined by the material of the conductive part or the environment surrounding the conductive part (for example, temperature, humidity, atmospheric pressure, pH, etc.). A chemical reaction occurs at the interface between the first conductive portion 1 or the second conductive portion 2 and the medium, and free electrons are generated in the conductive portion.
 例えば、第一導電部1と第二導電部2において異なる金属を用いた場合には、標準電極電位が低い金属を用いた方が第一導電部1に、標準電極電位が高い金属を用いた方が第二導電部2になる。この場合、第二導電部2から機能部3へ向かって電子が移動し、機能部3から第一導電部1へ向かって電子が移動する。すなわち、第一導電部1側から機能部3を介して第二導電部2側へ電流が生じる。例えば、第二導電部2では、導電部を構成する金属が媒体中に陽イオンとして溶出して、自由電子が発生し、第一導電部1では、媒体の水中の陽イオンが電子と反応し、電気的に中和される。 For example, when different metals are used for the first conductive part 1 and the second conductive part 2, it is better to use a metal with a low standard electrode potential for the first conductive part 1. A metal with a high standard electrode potential is used. The side becomes the second conductive portion 2 . In this case, electrons move from the second conductive portion 2 toward the functional portion 3 and electrons move from the functional portion 3 toward the first conductive portion 1 . That is, a current is generated from the first conductive portion 1 side to the second conductive portion 2 side via the functional portion 3 . For example, in the second conductive portion 2, the metal forming the conductive portion is eluted into the medium as cations, generating free electrons. In the first conductive portion 1, the cations in the medium water react with the electrons. , is electrically neutralized.
 標準電極電位の高低は、物質同士の標準電極電位の相対的な値(相対値)を比較して定められるものであって、標準電極電位の絶対値を用いて比較するものではない。例えば、標準電極電位が-5Vの物質Aと+2Vの物質Bとを比較した場合に、物質Aの標準電極電位は低く、物質Bの標準電極電位は高い。  The level of the standard electrode potential is determined by comparing the relative values (relative values) of the standard electrode potentials of substances, not the absolute values of the standard electrode potentials. For example, when substance A with a standard electrode potential of −5 V and substance B with a standard electrode potential of +2 V are compared, the standard electrode potential of substance A is low and the standard electrode potential of substance B is high.
 一方、導電部に同一の金属を用いた場合でも、例えば、温度、湿度、気圧、pHなど、導電部の周辺環境の条件により、いずれかの導電部が第一導電部1として、他方の導電部が第二導電部2として機能し、電流が生じる。よって、2つの導電部の周囲温度、湿度、気圧、pHなどの条件が変われば、第一導電部として機能していたものが第二導電部として機能し、第二導電部として機能していたものが第一導電部として機能することもあり得る。 On the other hand, even when the same metal is used for the conductive parts, depending on the conditions of the surrounding environment of the conductive parts such as temperature, humidity, atmospheric pressure, pH, etc., one of the conductive parts may be the first conductive part 1 and the other conductive part may The portion functions as the second conductive portion 2 and current is generated. Therefore, if the conditions such as the ambient temperature, humidity, air pressure, and pH of the two conductive parts change, the one that functions as the first conductive part functions as the second conductive part, and functions as the second conductive part. can function as the first conductive part.
 第一導電部1及び第二導電部2から生じる起電力は、0.9V以下であることが好ましく、0.35V以下であることがより好ましく、0.25V以下であることがさらに好ましい。また、第一導電部1及び第二導電部2から生じる起電力は、5mV以上であることが好ましい。 The electromotive force generated from the first conductive portion 1 and the second conductive portion 2 is preferably 0.9 V or less, more preferably 0.35 V or less, and even more preferably 0.25 V or less. Moreover, the electromotive force generated from the first conductive portion 1 and the second conductive portion 2 is preferably 5 mV or more.
 また、図示しないが、集電システムは、複数の第一導電部1及び複数の第二導電部2を備えることとしてもよい。例えば、複数の第一導電部1a、1b・・・1n(nは、2以上の整数)を並列に、電気的に接続するようにしてもよい。また、複数の第二導電部2a、2b、・・・2m(mは、2以上の整数)を並列に、電気的に接続するようにしてもよい。なお、複数の第一導電部1a、1b・・・1nを直列に、電気的に接続するようにしてもよい。さらに、複数の第二導電部2a、2b、・・・2mを直列に、電気的に接続するようにしてもよい。 Also, although not shown, the current collection system may include a plurality of first conductive parts 1 and a plurality of second conductive parts 2 . For example, a plurality of first conductive portions 1a, 1b, . . . 1n (n is an integer equal to or greater than 2) may be electrically connected in parallel. 2m (m is an integer equal to or greater than 2) may be electrically connected in parallel. Note that the plurality of first conductive portions 1a, 1b, . . . 1n may be electrically connected in series. Furthermore, a plurality of second conductive portions 2a, 2b, . . . 2m may be electrically connected in series.
 機能部3は、例えば、通電することで所定の機能を実行するものをいう。機能部3は、電力を消費して所定の機能を発揮する電力消費部、導電部にて発生した電気を蓄電する蓄電部、昇圧回路や降圧回路のように出力する電圧を変換する出力電圧変換部等、回路を制御するマイコン等の制御部、他の装置と無線による通信が可能な通信部、情報を表示するための表示部等を含むことができる。 The functional unit 3 is, for example, one that executes a predetermined function by energizing it. The functional unit 3 includes a power consumption unit that consumes power to perform a predetermined function, a power storage unit that stores electricity generated in the conductive unit, and an output voltage converter that converts the output voltage like a booster circuit or a step-down circuit. , a control unit such as a microcomputer for controlling circuits, a communication unit capable of wirelessly communicating with other devices, a display unit for displaying information, and the like.
 電力消費部としては、例えば、白熱電球や発光ダイオードなどの光源、熱を発する発熱体、音を発する発音体、信号を発する発信体、又は、所定の情報を感知するセンサ等を採用することができる。蓄電部は、昇圧回路又は降圧回路に含まれていてもよい。マイコン等の制御部は、回路を制御して、蓄電部に蓄電した電気を所定の条件で放出させることができる。放出された電気は、電力消費部にて消費される。また、マイコン等の制御部においても、わずかではあるが電力が消費されるため、制御部を起動させるのに必要な電力を確保しつつ、蓄電した電気を放出するように制御することができる。 As the power consumption unit, for example, a light source such as an incandescent light bulb or a light emitting diode, a heating element that emits heat, a sound generator that emits sound, a transmitter that emits a signal, or a sensor that senses predetermined information can be used. can. The power storage unit may be included in the step-up circuit or step-down circuit. A control unit such as a microcomputer can control a circuit to release electricity stored in the power storage unit under predetermined conditions. The discharged electricity is consumed by the power consumption section. In addition, since a control unit such as a microcomputer consumes a small amount of power, it is possible to control the discharge of stored electricity while securing the power necessary to activate the control unit.
 機能部3は、電力消費部、蓄電部、出力電圧変換部、通信部、表示部及び制御部のいずれか1つを備えていればよく、電力消費部、蓄電部、出力電圧変換部、通信部、表示部及び制御部のいずれか2つ以上を組み合わせて構成したものを機能部3としてもよい。また、機能部3は、電力消費部、蓄電部、出力電圧変換部、通信部、表示部及び制御部のいずれか2つ以上を一体に構成したものであってもよく、電力消費部、蓄電部、出力電圧変換部、通信部、表示部及び制御部のいずれかを、電気的に接続しつつ、それぞれ別々に構成したものであってもよい。 The functional unit 3 may include any one of a power consumption unit, a power storage unit, an output voltage conversion unit, a communication unit, a display unit, and a control unit. The functional unit 3 may be configured by combining any two or more of the unit, the display unit, and the control unit. Further, the functional unit 3 may be configured by integrating any two or more of the power consumption unit, the power storage unit, the output voltage conversion unit, the communication unit, the display unit, and the control unit. The unit, the output voltage conversion unit, the communication unit, the display unit, and the control unit may be configured separately while being electrically connected.
 機能部3における入力インピーダンスは、1kΩ以上であることが好ましく、10kΩ以上であることがより好ましい。また、機能部3の入力インピーダンスは、非線形な電流-電圧特性(I-V特性)を有することが好ましい。非線形な電流-電圧特性とは、例えば、機能部3に電流を流した際の電圧変化において、電流値が大きくなるに従って電圧値が高くなるが、電流値が大きくなるに従って、電流値を大きくするために必要となる電圧値の上がり幅が大きくなり、電圧が電流に比例しないような場合をいう。言い換えると、機能部3に加えた電圧値が高くなるに従って電流値が大きくなるが、電圧値が高くなるに従って、電圧値を高くすることで電流値が大きくなる度合が小さくなり、電流値が電圧値に比例しないような場合をいう。機能部3における入力インピーダンスが非線形な電流-電圧特性を有することで、第一導電部1と第二導電部2との間で生じた起電力が維持しやすくなる。 The input impedance in the functional unit 3 is preferably 1 kΩ or more, more preferably 10 kΩ or more. Also, the input impedance of the functional unit 3 preferably has a nonlinear current-voltage characteristic (IV characteristic). The non-linear current-voltage characteristic is, for example, in the voltage change when the current is passed through the functional unit 3, the voltage value increases as the current value increases, but the current value increases as the current value increases. This is the case in which the voltage value required for the current is not proportional to the current. In other words, the higher the voltage applied to the functional unit 3, the higher the current value. It refers to the case where it is not proportional to the value. The nonlinear current-voltage characteristic of the input impedance in the functional part 3 makes it easier to maintain the electromotive force generated between the first conductive part 1 and the second conductive part 2 .
 機能部3は、出力インピーダンスを変換する機能を有することが好ましい。これにより、機能部3の入力信号に与える影響を制御することができる。 The functional unit 3 preferably has a function of converting the output impedance. This makes it possible to control the influence on the input signal of the functional unit 3 .
 また、機能部3は、蓄電部を有し、第一導電部及び/又は第二導電部から供給される電荷を蓄積する。制御部は、電荷を蓄積するのに要した時間よりも短い時間で、蓄積した電荷を放出するように制御する。 In addition, the functional unit 3 has an electricity storage unit, and accumulates charges supplied from the first conductive unit and/or the second conductive unit. The control unit performs control so that the accumulated charges are released in a time shorter than the time required for accumulating the charges.
 機能部3の動作電圧の下限値は、0.9V以下で動作することが好ましい。0.35V以下で動作することがより好ましく、20mV以下で動作することがさらに好ましい。 The lower limit of the operating voltage of the functional unit 3 is preferably 0.9V or less. It is more preferable to operate at 0.35V or less, and even more preferably at 20mV or less.
 媒体は、気体、液体、及び固体のうちいずれの形態であってもよい。媒体は、ゾル又はゲル状のものであってもよい。媒体は、第一導電部1又は第二導電部2との界面で、化学反応を起こし得るものであれば、特に限定されない。媒体としては、導電性を有しないものを用いることが好ましい。 The medium may be in any form of gas, liquid, and solid. The medium may be sol or gel. The medium is not particularly limited as long as it can cause a chemical reaction at the interface with the first conductive portion 1 or the second conductive portion 2 . As the medium, it is preferable to use a medium having no conductivity.
 媒体として用いられる気体としては、集電システムが集電する際に気体であれば特に限定されないが、例えば、酸素、二酸化炭素、窒素、水素、メタン等が挙げられる。媒体として気体を用いる場合は、単一の種類の気体のみを用いてもよいが、これらの気体の複数種類を混合したものを用いてもよい。媒体は、水分を含んでいることが好ましい。 The gas used as the medium is not particularly limited as long as it is a gas when the current collection system collects current, but examples include oxygen, carbon dioxide, nitrogen, hydrogen, and methane. When a gas is used as the medium, only a single type of gas may be used, but a mixture of multiple types of these gases may also be used. The medium preferably contains moisture.
 媒体として用いられる液体は、特に限定されない。例えば、水、極性の高い有機溶剤、極性の低い有機溶剤、或いは、非極性の有機溶剤を用いることができる。また、媒体として用いられる液体は、水と極性の高い有機溶剤との混合物や、異なる2種以上の有機溶剤の混合物や、エマルションなども用いることができる。水は純水だけでなく、電解質を含むもの、すなわち電解液を用いることもできる。 The liquid used as the medium is not particularly limited. For example, water, a highly polar organic solvent, a low polar organic solvent, or a non-polar organic solvent can be used. Moreover, the liquid used as the medium may be a mixture of water and a highly polar organic solvent, a mixture of two or more different organic solvents, an emulsion, or the like. As for the water, not only pure water but also one containing an electrolyte, that is, an electrolytic solution can be used.
 また、媒体として用いられる液体には、汗などが含まれる。汗の主な成分は水である。汗は、液体であっても、蒸発して気体となっていてもよい。また、汗には、電解質、乳酸塩、尿素、皮脂、微量元素などが含まれていてもよい。さらに、汗には、泥、土、砂などの異物が混ざっていてもよい。 In addition, the liquid used as a medium includes sweat and the like. The main component of sweat is water. Sweat may be liquid or may evaporate into a gas. Sweat may also contain electrolytes, lactate, urea, sebum, trace elements, and the like. Furthermore, foreign substances such as mud, soil, and sand may be mixed in sweat.
 媒体に含まれる電解質のうち、陽イオンの濃度は、1mol/L以下であってもよく、0.6mol/L以下であってもよく、0.1mol/L以下であってもよく、0.01mol/L以下であってもよく、さらには、0.001mol/L以下であってもよい。 Among the electrolytes contained in the medium, the concentration of cations may be 1 mol/L or less, 0.6 mol/L or less, 0.1 mol/L or less, or 0.1 mol/L or less. 01 mol/L or less, or even 0.001 mol/L or less.
 極性の高い有機溶剤としては、例えば、メタノールやエタノールなどの低級アルコール、蟻酸や酢酸などの低級カルボン酸、アセトン、テトラヒドロフラン、ジメチルスルホキシドなどを用いることができる。また、極性の低い有機溶剤としては、ヘキサノールやオクタノールなどの高級アルコール、ヘキサン酸やオクタン酸などの高級カルボン酸などを用いることができる。非極性の有機溶剤としては、例えば、ヘキサン、オクタン、ノナンなどの脂肪族炭化水素、ベンゼン、トルエン、キシレンなどの芳香族化合物があげられる。媒体として液体を用いる場合は、単一の種類の液体のみを用いてもよいが、これらの液体の複数種類を混合したものを用いてもよい。 Examples of highly polar organic solvents that can be used include lower alcohols such as methanol and ethanol, lower carboxylic acids such as formic acid and acetic acid, acetone, tetrahydrofuran, and dimethylsulfoxide. As the low-polarity organic solvent, higher alcohols such as hexanol and octanol, higher carboxylic acids such as hexanoic acid and octanoic acid, and the like can be used. Examples of non-polar organic solvents include aliphatic hydrocarbons such as hexane, octane and nonane, and aromatic compounds such as benzene, toluene and xylene. When a liquid is used as the medium, only a single type of liquid may be used, or a mixture of multiple types of these liquids may be used.
 媒体として用いられる固体は、特に限定されない。例えば、砂や土などの、粉体状又は粒状の固体を用いることができる。あるいは、例えば、漆喰などの、吸水性の高い固体を用いることができる。 The solid used as the medium is not particularly limited. For example, powdery or granular solids such as sand and soil can be used. Alternatively, highly water-absorbing solids can be used, such as, for example, plaster.
 媒体として用いられる固体は、水分を含むことが好ましい。媒体として用いられる固体の含水率は、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。また、媒体として用いられる固体の含水率は、200質量%以下であることが好ましい。ここで、含水率とは、水分の重量を水分及び固形分の重量の和で除したものをいう。 The solid used as the medium preferably contains water. The water content of the solid used as the medium is preferably 1% by mass or more, more preferably 5% by mass or more, and even more preferably 10% by mass or more. Moreover, the water content of the solid used as the medium is preferably 200% by mass or less. Here, the moisture content refers to the weight of water divided by the sum of the weights of water and solids.
 媒体の第一導電部1と第二導電部2間の抵抗値は、1kΩ以上であることが好ましく、10kΩ以上であることがより好ましい。 The resistance value between the first conductive portion 1 and the second conductive portion 2 of the medium is preferably 1 kΩ or more, more preferably 10 kΩ or more.
 図3は、本発明の実施の形態にかかる、電力変換部の構成を示すブロック図である。図3(A)は、本発明の実施の形態にかかる、昇圧回路の回路図である。昇圧回路又は降圧回路は、機能部3の一例であり、蓄電部を備えている。 FIG. 3 is a block diagram showing the configuration of the power converter according to the embodiment of the present invention. FIG. 3A is a circuit diagram of a booster circuit according to an embodiment of the invention. The step-up circuit or step-down circuit is an example of the functional unit 3 and includes a power storage unit.
 図示するように、インダクタL、ダイオードD、トランジスタTr、及びコンデンサCが電気的に接続されている。例えば、入力端子A1は、第一導電部1と接続され、入力端子A2は、第二導電部2と接続されている。出力端子B1及び出力端子B2は、電力消費部や制御部等と接続されている。なお、制御部は、昇圧回路と、第一導電部1及び第二導電部2との間で、昇圧回路と並列になるように接続されていてもよい。 As shown, inductor L, diode D, transistor Tr, and capacitor C are electrically connected. For example, the input terminal A1 is connected to the first conductive portion 1, and the input terminal A2 is connected to the second conductive portion 2. The output terminal B1 and the output terminal B2 are connected to a power consumption section, a control section, and the like. Note that the control unit may be connected in parallel with the booster circuit between the first conductive unit 1 and the second conductive unit 2 and the booster circuit.
 トランジスタTrがONである場合に、入力電圧VINが印加されると、インダクタLに電気エネルギーが蓄電される。入力電圧VINは、接続点Pと接続点Pの電位差である。トランジスタTrがOFFである場合に、入力電圧VINに由来する電気エネルギーに、インダクタLに蓄電されたエネルギーが加算され、ダイオードDを介して出力される。その結果、入力電圧VINよりも接続点Pと接続点Pの電位差である出力電圧VOUTの方が高い電圧となる。昇圧回路は、入力電圧VINが所定の電圧よりも低い電圧であることを前提にするもので、所定の電圧よりも高い電圧では昇圧制御が実行されないようなものであってもよい。昇圧回路の入力電圧VINは、5mV以上であることが好ましい。なお、トランジスタTrのON/OFFは、制御部により制御される。 Electric energy is stored in the inductor L when the input voltage V IN is applied when the transistor Tr is ON. The input voltage V IN is the potential difference between the connection point P1 and the connection point P2. When the transistor Tr is OFF, the energy stored in the inductor L is added to the electrical energy derived from the input voltage VIN and output through the diode D. As a result, the output voltage VOUT , which is the potential difference between the connection points P3 and P4 , is higher than the input voltage VIN . The booster circuit is based on the premise that the input voltage VIN is a voltage lower than a predetermined voltage, and the boost control may not be executed at a voltage higher than the predetermined voltage. The input voltage V IN of the booster circuit is preferably 5 mV or higher. Note that ON/OFF of the transistor Tr is controlled by the control unit.
 図3(B)は、本発明の実施の形態にかかる、降圧回路の回路図である。図示するように、トランジスタTr、インダクタL、ダイオードD、及びコンデンサCが電気的に接続される。例えば、入力端子A1は、第一導電部1と接続され、入力端子A2は、第二導電部2と接続されている。出力端子B1及び出力端子B2は、電力消費部や制御部等と接続されている。なお、制御部は、降圧回路と、第一導電部1及び第二導電部2との間で、降圧回路と並列になるように接続されていてもよい。 FIG. 3(B) is a circuit diagram of the step-down circuit according to the embodiment of the present invention. As shown, transistor Tr, inductor L, diode D, and capacitor C are electrically connected. For example, the input terminal A1 is connected to the first conductive portion 1, and the input terminal A2 is connected to the second conductive portion 2. The output terminal B1 and the output terminal B2 are connected to a power consumption section, a control section, and the like. The controller may be connected in parallel with the step-down circuit between the step-down circuit and the first conductive portion 1 and the second conductive portion 2 .
 トランジスタTrがONの場合には、インダクタLに電気エネルギーが蓄電される。入力電圧VINは、接続点P11と接続点P12の電位差であり、出力電圧VOUTは、接続点P13と接続点P14の電位差である。この場合、入力電圧VINは、出力電圧VOUTとほぼ等しくなる。トランジスタTrがOFFとなると、インダクタLの左端にある接続点P15の電位が接続点P14の電位よりも低くなるため、出力電圧VOUTの方が低い電圧となる。降圧回路は、入力電圧VINが所定の電圧よりも高い電圧であることを前提にするもので、所定の電圧よりも低い電圧では降圧制御が実行されないようなものであってもよい。なお、トランジスタTrのON/OFFは、制御部により制御される。 Electric energy is stored in the inductor L when the transistor Tr is ON. The input voltage V IN is the potential difference between the connection points P11 and P12 , and the output voltage V OUT is the potential difference between the connection points P13 and P14 . In this case, the input voltage V IN will be approximately equal to the output voltage V OUT . When the transistor Tr is turned off, the potential at the connection point P15 at the left end of the inductor L becomes lower than the potential at the connection point P14 , so the output voltage VOUT becomes a lower voltage. The step-down circuit assumes that the input voltage VIN is a voltage higher than a predetermined voltage, and the step-down control may not be executed at a voltage lower than the predetermined voltage. Note that ON/OFF of the transistor Tr is controlled by the control unit.
[センサノードの内部インピーダンスの測定方法]
 次に、本発明のセンサノードの内部インピーダンスの測定方法について説明をする。図4は、本発明の実施の形態にかかる、センサノードを表す図である。図4では、第一導電部1及び第二導電部2が、媒体4に接触している。第一導電部1及び第二導電部2の電位差をV INと定義し、接続点Pと接続点Pの電位差をV INと定義することができる。接続点Pと接続点Pの電位差をV OUTと定義し、接続点Pと接続点Pの電位差をV OUTと定義することができる。本発明のセンサノード10が通電すると、第一導電部1と第二導電部2との間で、起電力V INにより電流Iが接続点Pと接続点Pの方向に流れる。
[Method for measuring internal impedance of sensor node]
Next, a method for measuring the internal impedance of the sensor node according to the present invention will be described. FIG. 4 is a diagram representing a sensor node according to an embodiment of the present invention. In FIG. 4 , the first conductive portion 1 and the second conductive portion 2 are in contact with the medium 4 . The potential difference between the first conductive portion 1 and the second conductive portion 2 can be defined as V 1 IN , and the potential difference between the connection point P 1 and the connection point P 2 can be defined as V 2 IN . The potential difference between connection points P5 and P6 can be defined as V1 OUT , and the potential difference between connection points P3 and P4 can be defined as V2 OUT . When the sensor node 10 of the present invention is energized, a current I flows between the first conductive portion 1 and the second conductive portion 2 in the direction of the connection point P1 and the connection point P5 due to the electromotive force V1IN .
 図4に図示するように、第一導電部1は接続点Pにて、第二導電部2は接続点Pにて昇圧回路と接続されている。昇圧回路は、インダクタL、ダイオードD、トランジスタTr、及びコンデンサCが電気的に接続されている。 As shown in FIG. 4, the first conductive portion 1 is connected to the connection point P1, and the second conductive portion 2 is connected to the booster circuit at the connection point P2. An inductor L, a diode D, a transistor Tr, and a capacitor C are electrically connected to the booster circuit.
 図5は、本発明の実施の形態にかかる、センサノード10内のトランジスタのON-OFFを切り替えた場合における、時間と電流Iの関係を示す図である。ここで、V OUTとV INの関係は、インダクタLに流れる電流IとインダクタンスL1を用いて、式(1):V OUT-V IN=-L1×dI/dtで表すことができる。トランジスタTrがONの場合は、V OUT=0なので、式(2):V IN=L1×dI/dtを導き出すことができる。この場合、dI/dtは正の値であり、時間と共に電流Iは増加する。一方で、トランジスタTrがOFFの場合は、V OUT>V INとなるから、式(1):V OUT-V IN=-L1×dI/dtから、dI/dtは負の値となることが分かる。この場合、時間と共に電流Iは減少する。トランジスタTrのONとOFFは定期的に繰り返される。 FIG. 5 is a diagram showing the relationship between time and current I when the transistor in the sensor node 10 is switched between ON and OFF, according to the embodiment of the present invention. Here, the relationship between V 1 OUT and V 2 IN can be expressed by Equation (1): V 1 OUT −V 2 IN =−L1×dI/dt using current I flowing through inductor L and inductance L1. can. When the transistor Tr is ON, V 1 OUT =0, so equation (2): V 2 IN =L1×dI/dt can be derived. In this case dI/dt is a positive value and the current I increases with time. On the other hand, when the transistor Tr is OFF, V 1 OUT >V 2 IN , so from equation (1): V 1 OUT −V 2 IN =−L1×dI/dt, dI/dt is a negative value. It can be seen that In this case, the current I decreases with time. ON and OFF of the transistor Tr are periodically repeated.
 ここで、第一導電部1、第二導電部2及び媒体4を1種の電池として捉えると、起電力V INにより電流Iが流れると考えることができる。この場合に、媒体4により起因する内部インピーダンスをZと定義すると、入力電圧と内部インピーダンスとの関係は、式(3):V IN=Z×I+V INで表すことができる。 Here, if the first conductive part 1, the second conductive part 2 and the medium 4 are regarded as one type of battery, it can be considered that the current I flows due to the electromotive force V1IN . In this case, if the internal impedance caused by the medium 4 is defined as Z, the relationship between the input voltage and the internal impedance can be expressed by Equation (3): V 1 IN =Z×I+V 2 IN .
 また、トランジスタTrがOFFとなっている間(以下、TOFF期間という)、電流IによってコンデンサCに電荷Qがチャージされる。TOFF期間中に、接続点Pにおいて上昇した電圧をΔVとし、コンデンサCのコンデンサ容量をC1とすると、式(4):Q=∫Idt=C1×ΔVが成立する。 Further, while the transistor Tr is OFF (hereinafter referred to as TOFF period), the capacitor C is charged with electric charge Q by the current I. Assuming that the voltage that rises at the connection point P3 during the TOFF period is ΔV and the capacitance of the capacitor C is C1, equation (4): Q=∫Idt=C1×ΔV is established.
 式(2)と式(3)から、V IN=L1×dI/dt+Z×Iが導きだされる。この方程式を解くと、Aを積分定数として、式(5):I(t)=V IN/Z+A×e(-Z/L1×t)が導き出される。トランジスタTrがOFFからONに切り替わった時間をt=0とした場合、図4から明らかなように、t=0の時、電流Iはゼロである。そこで、t=0、I=0を式(5)に代入すると、A=-V IN/Zの関係が成立することが分かる。このA=-V IN/Zを式(5)に代入すると、式(6):I(t)=V IN/Z×(1-e(-Z/L1×t))を導きだすことができる。トランジスタTrがONとなっている間(以下、Ton期間という)の電流Iは、式(6)より算出できる。トランジスタTrがONになっている時間を十分にとると、電流Iの最大値はV IN/Zとなる。 From equations (2) and (3), V 1 IN =L1×dI/dt+Z×I is derived. Solving this equation yields equation (5): I(t)=V 1 IN /Z+A×e (−Z/L1×t) , where A is the constant of integration. Assuming that the time at which the transistor Tr is switched from OFF to ON is t=0, the current I is zero at t=0 as is clear from FIG. Substituting t=0 and I=0 into equation (5), it can be seen that the relationship A=-V 1 IN /Z holds. Substituting this A=−V 1 IN /Z into equation (5) yields equation (6): I(t)=V 1 IN /Z×(1−e (−Z/L1×t) ) be able to. A current I while the transistor Tr is ON (hereinafter referred to as a T- on period) can be calculated from Equation (6). When the transistor Tr is on for a sufficient time, the maximum value of the current I is V 1 IN /Z.
 Ton期間が終了し、Toff期間が開始した時(つまり、トランジスタTrがOFFからONに切り替わってから時間T1が経過した時)における電流Iは、式(6)にt=T1を代入することにより算出することができる。これは、図5からもわかるように、電流Iには、連続性があるためである。(1-e(-Z/L1×T1))=K(定数)と置き換えると、t=T1における電流Iは、I(T1)=V IN/Z×(1-e(-Z/L1×T1))=K×V IN/Zで表すことができる。なお、Kは0≦K<1の関係を満たし、Z/L1×T1の値が十分に大きくなると、Kは1に近似することができる。 The current I at the end of the T on period and the start of the T off period (that is, when the time T1 has elapsed since the transistor Tr was switched from OFF to ON) is obtained by substituting t=T1 in equation (6). It can be calculated by This is because the current I has continuity, as can be seen from FIG. (1−e (−Z/L1×T1) )=K (constant), the current I at t=T1 is I(T1)=V 1 IN /Z×(1−e (−Z/L1 ×T1) )=K×V 1 IN /Z. K satisfies the relationship 0≦K<1, and K can be approximated to 1 when the value of Z/L1×T1 is sufficiently large.
 次に、式(1)と式(3)により、式(7):L1×dI/dt+Z×I=V IN-V OUTを導きだすことができる。さらに、式(4)より、V OUTは、∫Idt/C1+Vstartで表すことができる。ここで、Vstartは、Toff期間の開始時(t=T1)のコンデンサCの電圧であり、定数である。ダイオードDの閾値電圧をVとすれば、式(8):V OUT=V OUT+V=∫Idt/C1+Vstart+V=∫Idt/C1+V´outを導きだすことができる。なお、ここでV´out=Vstart+Vは定数である。 Next, from equations (1) and (3), equation (7): L1×dI/dt+Z×I=V 1 IN −V 1 OUT can be derived. Furthermore, from Equation (4), V 2 OUT can be expressed as ∫Idt/C1+V start . where V start is the voltage on capacitor C at the beginning of the T off period (t=T1) and is a constant. Assuming that the threshold voltage of diode D is V f , equation (8): V 1 OUT =V 2 OUT +V f =∫Idt/C1+V start +V f =∫Idt/C1+V′ out can be derived. Note that V' out =V start +V f is a constant here.
 さらに、式(7)及び式(8)から、式(9):∫Idt/C1+Z×I+L1×dI/dt=V IN-V´outを導きだすことができる。式(9)の微分方程式を解くことで、Toff期間の電流Iを時間t、コンデンサ容量C1、内部インピーダンスZ、インダクタンスL1、V IN、V´out、Kの関数で表すことができる。Toff期間の開始時間をt=0とした場合に、その時の電流Iの初期値I(0)はI(0)=K×V IN/Zである。Toff期間が終了した時(つまり、トランジスタTrがONからOFFに切り替わってから時間T2が経過し、電流Iがゼロとなった時)、I(T2)=0である。コンデンサ容量C1、インダクタンスL1、V´outは定数であり、I(0)、T2を測定すれば、V INとZの値をそれぞれ算出することができる。 Furthermore, from equations (7) and (8), equation (9): ∫Idt/C1+Z×I+L1×dI/dt=V 1 IN −V′ out can be derived. By solving the differential equation of equation (9), the current I during the Toff period can be expressed as a function of time t, capacitor capacitance C1, internal impedance Z, inductance L1, V1IN , V'out , and K. When the start time of the Toff period is t=0, the initial value I(0) of the current I at that time is I(0)=K×V 1 IN /Z. When the Toff period ends (that is, when the time T2 has passed since the transistor Tr was switched from ON to OFF and the current I becomes zero), I(T2)=0. Capacitance C1, inductance L1, and V'out are constants, and the values of V1IN and Z can be calculated by measuring I(0) and T2, respectively.
 Zについては、上で述べた方法と異なり、簡易的に求めることも可能である。Toff期間中、V OUTは、V INに比べて10倍ほど大きい電圧であるため、dI/dtも大きな値となる。この場合、式(4)における∫Idtは、図5において三角形Sの面積に相当する。従って、式(4)より式(9):∫Idt=K×V IN/Z×T2/2=C1×ΔVが導きさせる。ここで、Ton時間を十分に長くとればK≒1と近似できるから、式(9)にK=1を代入すると、式(10):V IN/Z×T2/2=C1×ΔVが導き出される。C1は定数であり、Toff期間を十分に長くとった時点(電流Iが最小値となった時点)でのΔV、Toff期間を十分に長くとった時点(電流Iが最小値となった時点)でのV IN、T2(V OUTがV INと等しくなったときの時間)から、Zを算出することができる。なお、Toff期間を十分に長くとった時点(電流Iが消費された時点)では、V IN=V INであるため、V INを測定することで、V INを特定することができる。 Z can also be obtained simply, unlike the method described above. During the T off period, V 1 OUT is a voltage about ten times higher than V 2 IN , so dI/dt also has a large value. In this case, ∫Idt in equation (4) corresponds to the area of triangle S in FIG. Therefore, the equation (9): ∫Idt=K×V 1 IN /Z×T2/2=C1×ΔV is derived from the equation (4). Here, if the T on time is set long enough, it can be approximated as K≈1, so substituting K=1 into equation (9) yields equation (10): V 1 IN /Z×T2/2=C1×ΔV is derived. C1 is a constant, ΔV when the T off period is sufficiently long (when the current I reaches its minimum value), and when the T off period is sufficiently long (when the current I reaches its minimum value). Z can be calculated from V 1 IN and T2 (the time when V 1 OUT becomes equal to V 2 IN ) at the time point). Note that when the T off period is sufficiently long (when the current I is consumed), V 1 IN =V 2 IN , so V 1 IN can be specified by measuring V 2 IN . can be done.
 なお、内部インピーダンスZの算出は、制御部により実行される。  The calculation of the internal impedance Z is executed by the control unit.
 測定された、センサノード10の内部インピーダンスZ、及びセンサノード10内の所定の電圧は、センサノード10から収集ノード11へ送信されることとしてもよい。あるいは、測定された、センサノード10の内部インピーダンスZ、及びセンサノード10内の所定の電圧は、センサノード10から、移動体12、無線装置13、他のコンピュータ装置などへ送信されることとしてもよい。 The measured internal impedance Z of the sensor node 10 and the predetermined voltage in the sensor node 10 may be transmitted from the sensor node 10 to the collection node 11 . Alternatively, the measured internal impedance Z of the sensor node 10 and the predetermined voltage in the sensor node 10 may be transmitted from the sensor node 10 to the mobile object 12, wireless device 13, other computer device, etc. good.
 また、測定された、センサノード10の内部インピーダンスZ、及びセンサノード10内の所定の電圧は、センサノード10が取得したセンシングデータとともに送信されることとしてもよく、センサノード10が取得したセンシングデータの送信とは関連せずに送信されることとしてもよい。 Further, the measured internal impedance Z of the sensor node 10 and the predetermined voltage in the sensor node 10 may be transmitted together with the sensing data acquired by the sensor node 10. may be transmitted independently of the transmission of
[センサノード]
 図6は、本発明の実施の形態にかかる、センサノードの例を示す図である。図示するように、センサノード10は、第一導電部1及び第二導電部2を備えている。また、図示しないが、センサノード10は、機能部3を備えており、第一導電部1及び機能部3は接続されており、第二導電部2及び機能部3は接続されている。第一導電部1及び第二導電部2は、互いに非接触である。また、前述のように、センサノード10の備える集電システムは、第一導電部1及び第二導電部2を媒体4に接触させることで集電する。
[Sensor node]
FIG. 6 is a diagram showing an example of sensor nodes according to an embodiment of the present invention. As shown, the sensor node 10 has a first conductive portion 1 and a second conductive portion 2 . Although not shown, the sensor node 10 includes a functional section 3, the first conductive section 1 and the functional section 3 are connected, and the second conductive section 2 and the functional section 3 are connected. The first conductive part 1 and the second conductive part 2 are out of contact with each other. Further, as described above, the current collection system provided in the sensor node 10 collects current by bringing the first conductive portion 1 and the second conductive portion 2 into contact with the medium 4 .
 図6(A)に示すセンサノード10は、円筒形の本体部を有している。図6(A)に示すセンサノード10は、本体部の側面に、左右対象に、シート状の第一導電部1及び第二導電部2を備えている。そして、本体部の一端は、突起状の形状をしている。 The sensor node 10 shown in FIG. 6(A) has a cylindrical main body. The sensor node 10 shown in FIG. 6A has a sheet-like first conductive portion 1 and a second conductive portion 2 symmetrically on the side surface of the main body. One end of the main body has a protruding shape.
 図6(B)に示すセンサノード10は、ウキのような、一端が細い、縦長の形状の本体部を有している。以下、縦長の形状の本体部のうち、細くなっている端の部分を上部とし、上部と反対の部分を下部とする。図6(B)に示すセンサノード10は、本体部の下部の側面にあたる部分に、左右対象に、シート状の第一導電部1及び第二導電部2を備えている。 The sensor node 10 shown in FIG. 6(B) has a vertically elongated main body, like a float, one end of which is thin. In the description below, the tapered end portion of the elongated main body portion will be referred to as the upper portion, and the portion opposite to the upper portion will be referred to as the lower portion. The sensor node 10 shown in FIG. 6(B) has a sheet-like first conductive portion 1 and a second conductive portion 2 symmetrically on the side surface of the lower portion of the main body.
 第一導電部1及び第二導電部2を、本体部に備える方法は特に限定されず、第一導電部1及び第二導電部2が、本体部に固定されればよい。例えば、第一導電部1及び第二導電部2は、本体部に接着剤などで接着されることとしてもよく、第一導電部1及び第二導電部2は、本体部に固定具を用いて固定されることとしてもよい。 The method of providing the first conductive part 1 and the second conductive part 2 to the main body is not particularly limited as long as the first conductive part 1 and the second conductive part 2 are fixed to the main body. For example, the first conductive portion 1 and the second conductive portion 2 may be adhered to the main body portion with an adhesive or the like, and the first conductive portion 1 and the second conductive portion 2 may be attached to the main body portion using fixtures. It may be fixed by
 本体部の素材は、特に限定されない。本体部の素材には、ステンレス、アルミニウムなどの金属や、フェノール樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、エポキシ樹脂、ポリウレタン、ポリエチレン、ポリプロピレン、アクリル樹脂、ポリカーボネートなどの合成樹脂などを用いることができる。本体部の素材が、金属などの導電性を有するものである場合には、第一導電部1及び第二導電部2が互いに非接触となるよう、本体部と第一導電部1及び第二導電部2の間に絶縁体の素材を設けることとしてもよい。また、本体部の素材は、耐候性のあるものであることが好ましい。 The material of the main body is not particularly limited. Metals such as stainless steel and aluminum, and synthetic resins such as phenol resin, melamine resin, urea resin, alkyd resin, epoxy resin, polyurethane, polyethylene, polypropylene, acrylic resin, and polycarbonate can be used as the material of the main body. . When the material of the main body is conductive such as metal, the main body and the first conductive part 1 and the second An insulating material may be provided between the conductive parts 2 . Moreover, it is preferable that the material of the main body is weather resistant.
 機能部3はセンサノード10の内部に備えられていることとしてもよい。そして、図示しないが、センサノード10の本体部には孔が設けられており、該孔を通して、第一導電部1及び第二導電部2と機能部3が、導線などで接続されることとしてもよい。 The functional unit 3 may be provided inside the sensor node 10. Although not shown, holes are provided in the body of the sensor node 10, and the first conductive part 1 and the second conductive part 2 and the functional part 3 are connected by conducting wires or the like through the holes. good too.
 図6(A)に示すセンサノード10は、本体部の一端が突起状の形状をしているため、土などに挿して地面に設置することが容易である。センサノード10を地面に設置した場合、砂、土、泥などが媒体4となる。 The sensor node 10 shown in FIG. 6(A) has a projecting shape at one end of the main body, so that it can be easily installed on the ground by inserting it into soil or the like. When the sensor node 10 is installed on the ground, the medium 4 is sand, soil, mud, or the like.
 図6(B)に示すセンサノード10は、ウキのような、一端が細い、縦長の形状であるため、海、河川、池、湖などの水上又は水中に設置することが容易である。センサノード10を水上又は水中に設置した場合、水、海水などが媒体4となる。 The sensor node 10 shown in FIG. 6(B) has a vertical shape with one end thin like a float, so it can be easily installed on or under water such as seas, rivers, ponds, and lakes. When the sensor node 10 is installed on or under water, the medium 4 is water, seawater, or the like.
 また、センサノード10は、図6に示した例に限定されず、任意の形状を採用することができる。例えば、センサノード10は、円盤状の形状をしており、水面に浮かべることが容易であることとしてもよい。 Also, the sensor node 10 is not limited to the example shown in FIG. 6, and any shape can be adopted. For example, the sensor node 10 may be disc-shaped and easily float on the water surface.
 あるいは、例えば、センサノード10は、人間や、他の動物などの身体にセンサノード10を固定することができる、固定部を有する形状であることとしてもよい。固定部の形状は、ブレスレットのようにリング状のものでも、テープ状のものであってもよい。センサノード10を、人間や、他の動物などに装着させる場合には、センサノード10を装着した人間や、他の動物などの、汗などが媒体4となる。 Alternatively, for example, the sensor node 10 may have a shape having a fixing portion that can fix the sensor node 10 to the body of a human or other animal. The shape of the fixing part may be ring-shaped like a bracelet or tape-shaped. When the sensor node 10 is attached to a human or other animal, the medium 4 is the sweat of the human or other animal wearing the sensor node 10 .
 また、センサノード10は、防水機能や防塵機能を備えていることが好ましい。 Also, the sensor node 10 preferably has a waterproof function and a dustproof function.
 このように、センサノードが、集電システムと接続されており、集電システムが、第一導電部及び第二導電部と、機能部とを備え、第一導電部及び機能部は接続されており、第二導電部及び機能部は接続されており、第一導電部及び第二導電部は、互いに非接触であり、第一導電部及び第二導電部を媒体に接触させることで集電することで、自立した電源で稼働するセンサノードを備えるデータ収集システムを提供することができる。 Thus, the sensor node is connected to the current collection system, the current collection system includes a first conductive portion, a second conductive portion, and a functional portion, and the first conductive portion and the functional portion are connected. The second conductive part and the functional part are connected, the first conductive part and the second conductive part are not in contact with each other, and the current is collected by bringing the first conductive part and the second conductive part into contact with the medium. By doing so, it is possible to provide a data collection system having sensor nodes that operate on an independent power source.
 以下、本発明の実施の形態にかかるデータ収集システムを、位置情報記憶処理、位置情報更新処理、センシングデータ受信処理、センサノード位置特定処理、送信可能センサノード識別処理、電力供給処理、判定処理の順に説明していく。各処理の順番、及び、各処理内の各ステップの順番は、適宜変更が可能である。また、データ収集システムにおける処理やステップは、行われないものがあってもよく、適宜選択されることとしてもよい。さらに、データ収集システムにおける各ステップは、以下に記載されている装置以外の装置において行われることとしてもよい。例えば、移動体12において行われるステップが、収集ノード11、他のコンピュータ装置などにおいて行われることとしてもよい。 Hereinafter, the data collection system according to the embodiment of the present invention will be described as follows: location information storage processing, location information update processing, sensing data reception processing, sensor node location identification processing, transmittable sensor node identification processing, power supply processing, and determination processing. I will explain in order. The order of each process and the order of each step in each process can be changed as appropriate. Also, some processes and steps in the data collection system may not be performed, and may be selected as appropriate. Additionally, the steps in the data collection system may be performed in devices other than those described below. For example, the steps performed at mobile 12 may be performed at collection node 11, other computing devices, and the like.
[位置情報記憶処理]
 図7は、本発明の実施の形態にかかる、データ収集システムにおける位置情報記憶処理のフローチャートを表す図である。
[Location information storage processing]
FIG. 7 is a diagram showing a flowchart of position information storage processing in the data collection system according to the embodiment of the present invention.
 まず、移動体12は、センサノード10を設置する位置まで、センサノード10を移動させる(ステップS101)。そして、移動体12は、センサノード10を設置する位置に、センサノード10を設置する(ステップS102)。移動体12において、センサノード10が設置された際の、センサノード10の位置に関する情報(以下、位置情報という)が記憶され(ステップS103)、位置情報記憶処理は終了する。 First, the moving object 12 moves the sensor node 10 to the position where the sensor node 10 is installed (step S101). Then, the moving body 12 installs the sensor node 10 at the position where the sensor node 10 is installed (step S102). In the moving object 12, information about the position of the sensor node 10 when the sensor node 10 was installed (hereinafter referred to as position information) is stored (step S103), and the position information storage process ends.
 ステップS101において、センサノード10を設置する位置は、予め定められていてもよく、予め定められていなくともよい。例えば、移動体12は、予め定められた位置までセンサノード10を移動させることとしてもよく、移動体12は、予め定められていないが、所定の条件を満たす位置までセンサノード10を移動させることとしてもよい。具体的には、例えば、移動体12は、所定の個数のセンサノード10を、所定の範囲内に均等な間隔で設置するような条件を満たす位置まで、センサノード10を移動させることとしてもよい。 In step S101, the position where the sensor node 10 is installed may or may not be determined in advance. For example, the mobile body 12 may move the sensor node 10 to a predetermined position, and the mobile body 12 may move the sensor node 10 to a position that satisfies a predetermined condition, although it is not predetermined. may be Specifically, for example, the moving body 12 may move the sensor nodes 10 to a position that satisfies the condition that a predetermined number of sensor nodes 10 are installed at even intervals within a predetermined range. .
 ステップS101において、移動体12がセンサノード10を移動させる方法は、特に限定されず、センサノード10を移動させることが可能であればよい。例えば、ドローンなどの、飛行タイプの移動体12が、センサノード10を、アームなどで把持して飛行することとしてもよい。 In step S101, the method by which the moving body 12 moves the sensor node 10 is not particularly limited as long as the sensor node 10 can be moved. For example, a flying type mobile object 12 such as a drone may hold the sensor node 10 with an arm or the like and fly.
 ステップS102におけるセンサノード10の設置方法は、特に限定されず、センサノード10を設置することができればよい。例えば、ドローンなどの、飛行タイプの移動体12が、センサノード10を上空から投下し、海、河川、池、湖などの、水上又は水中に設置することとしてもよい。その場合、センサノード10は、図6(B)に示すような形状であることが好ましい。 The method of installing the sensor node 10 in step S102 is not particularly limited as long as the sensor node 10 can be installed. For example, a flying type mobile object 12 such as a drone may drop the sensor node 10 from the sky and install it on or under water such as the sea, river, pond, or lake. In that case, the sensor node 10 preferably has a shape as shown in FIG. 6(B).
 あるいは、例えば、ドローンなどの、飛行タイプの移動体12が、地表付近を飛行しながら、センサノード10を、砂、土、泥などに挿して地面に設置することとしてもよい。その場合、センサノード10は、図6(A)に示すような形状であることが好ましい。 Alternatively, for example, a flying-type mobile body 12 such as a drone may fly near the ground surface while inserting the sensor node 10 into sand, soil, mud, or the like and installing it on the ground. In that case, the sensor node 10 preferably has a shape as shown in FIG. 6(A).
 センサノード10が集電システムと接続されている場合には、第一導電部1及び第二導電部2が媒体4に接触するように、センサノード10を設置することが好ましい。 When the sensor node 10 is connected to the current collection system, it is preferable to install the sensor node 10 so that the first conductive portion 1 and the second conductive portion 2 are in contact with the medium 4 .
 ステップS103におけるセンサノード10の位置情報は、特に限定されず、センサノード10の位置を特定できる情報であればよい。例えば、位置情報は、緯度、経度、及び高度の情報であることとしてもよい。センサノード10を設置した際の位置情報を特定するため、移動体12は、GNSSを備えていることが好ましい。 The location information of the sensor node 10 in step S103 is not particularly limited, and any information that can specify the location of the sensor node 10 may be used. For example, the location information may be latitude, longitude, and altitude information. In order to specify the position information when the sensor node 10 is installed, the mobile object 12 preferably has GNSS.
 また、ステップS103において、センサノード10の位置情報とともに、センサノード10の識別情報が、移動体12に記憶されることとしてもよい。センサノード10の識別情報には、センサノード10の識別番号が含まれる。そして、センサノード10の位置情報と、該センサノード10の識別情報とが、関連付けて記憶されることとしてもよい。 Also, in step S103, the identification information of the sensor node 10 may be stored in the moving body 12 together with the position information of the sensor node 10. The identification information of the sensor node 10 includes the identification number of the sensor node 10 . Then, the location information of the sensor node 10 and the identification information of the sensor node 10 may be associated and stored.
 このように、移動体が、センサノードを設置するセンサノード設置手段を備え、位置情報記憶手段が、センサノード設置手段により設置された際のセンサノードの位置情報を記憶することで、センサノードの設置とセンサノードの位置情報の記憶が容易となる。 In this way, the moving object has the sensor node installation means for installing the sensor node, and the position information storage means stores the position information of the sensor node when installed by the sensor node installation means. Installation and storage of sensor node location information is facilitated.
[位置情報更新処理]
 センサノード10が、海や河川などの水上又は水中に設置された場合や、センサノード10を、人間や他の動物などに装着させた場合には、センサノード10の位置は、ステップS103において記憶された位置から、変化することが考えられる。センサノード10の位置が変化する場合には、位置情報更新処理によって、センサノード10の位置情報を更新することとしてもよい。その場合、センサノード10は、該センサノード10の位置情報を特定するため、GNSSなどを備えていることが好ましい。
[Location information update process]
When the sensor node 10 is installed on or under water such as the sea or a river, or when the sensor node 10 is attached to a person or other animal, the position of the sensor node 10 is stored in step S103. It is conceivable that it will change from the specified position. When the position of the sensor node 10 changes, the position information of the sensor node 10 may be updated by the position information update process. In that case, the sensor node 10 is preferably provided with GNSS or the like in order to specify the location information of the sensor node 10 .
 図8は、本発明の実施の形態にかかる、データ収集システムにおける位置情報更新処理のフローチャートを表す図である。 FIG. 8 is a diagram showing a flowchart of location information update processing in the data collection system according to the embodiment of the present invention.
 まず、センサノード10にいて、該センサノード10の位置情報が特定される(ステップS201)。そして、特定された位置情報が、移動体12へ送信される(ステップS202)。送信された位置情報は、移動体12において受信される(ステップS203)。移動体12において、該センサノード10の位置情報が更新され(ステップS204)、位置情報更新処理は終了する。 First, at the sensor node 10, the location information of the sensor node 10 is identified (step S201). Then, the specified position information is transmitted to the mobile unit 12 (step S202). The transmitted location information is received by the mobile unit 12 (step S203). In the moving object 12, the location information of the sensor node 10 is updated (step S204), and the location information update process ends.
 ステップS201においては、センサノード10の位置情報が特定されれば、特定方法は限定されない。例えば、センサノード10の位置情報は、センサノード10の備えるGNSSにより特定されることとしてもよい。 In step S201, the identification method is not limited as long as the location information of the sensor node 10 is identified. For example, the location information of the sensor node 10 may be specified by GNSS provided in the sensor node 10 .
 また、ステップS201におけるセンサノード10の位置情報は、特に限定されず、センサノード10の位置を特定できる情報であればよい。例えば、位置情報は、緯度、経度、及び高度の情報であることとしてもよい。 Also, the location information of the sensor node 10 in step S201 is not particularly limited, and any information that can specify the location of the sensor node 10 may be used. For example, the location information may be latitude, longitude, and altitude information.
 ステップS202において、センサノード10の位置情報とともに、センサノード10の識別情報が送信されることとしてもよい。そして、送信されたセンサノード10の識別情報と関連付けて記憶されている位置情報が、ステップS204において更新されることとしてもよい。 In step S<b>202 , the identification information of the sensor node 10 may be transmitted together with the location information of the sensor node 10 . Then, the location information stored in association with the transmitted identification information of the sensor node 10 may be updated in step S204.
 位置情報更新処理が行われる頻度は適宜設計が可能である。所定の頻度で定期的に行われることとしてもよく、不定期に行われることとしてもよい。例えば、後述する、センシングデータ受信処理のステップS302の前に位置情報更新処理が行われることとしてもよい。ステップS302の前に位置情報更新処理が行われることで、センサノード10の正確な位置を基に移動経路を特定することが可能となる。また、例えば、後述する、センサノード位置特定処理のステップS403においてセンサノード10の位置が特定された際に、位置情報更新処理が行われることとしてもよい。  The frequency of location information update processing can be designed as appropriate. It may be performed periodically with a predetermined frequency, or may be performed irregularly. For example, the position information update process may be performed before step S302 of the sensing data reception process, which will be described later. By performing the position information update process before step S302, it becomes possible to specify the movement route based on the accurate position of the sensor node 10. FIG. Further, for example, the position information update process may be performed when the position of the sensor node 10 is specified in step S403 of the sensor node position specifying process, which will be described later.
 センサノードが、該センサノードの位置情報を特定する位置情報特定手段を備え、データ収集システムが、位置情報記憶手段により記憶されたセンサノードの位置情報を、位置情報特定手段により特定されたセンサノードの位置情報に更新する位置情報更新手段を備えることで、センサノードの位置が変化する場合にも、センサノードの位置情報を記憶することが可能となる。 The sensor node has position information specifying means for specifying position information of the sensor node, and the data collection system stores the position information of the sensor node stored by the position information storage means to the sensor node specified by the position information specifying means. By providing the position information updating means for updating the position information of the sensor node, the position information of the sensor node can be stored even when the position of the sensor node changes.
[センシングデータ受信処理]
 図9は、本発明の実施の形態にかかる、データ収集システムにおけるセンシングデータ受信処理のフローチャートを表す図である。
[Sensing data reception processing]
FIG. 9 is a diagram showing a flowchart of sensing data reception processing in the data collection system according to the embodiment of the present invention.
 まず、移動体12において、所定の時間内にセンシングデータを送信したセンサノードが識別される(ステップS301)。そして、移動体12の移動経路が特定される(ステップS302)。移動体12は、特定された移動経路に従い、移動経路上にあるセンサノード10の位置から第一の所定の範囲内まで、収集ノード11を移動させる(ステップS303)。移動体12において、第一の所定の範囲内にあるセンサノード10が、センシングデータを送信可能であるか否かが判定される(ステップS304)。 First, in the moving body 12, sensor nodes that have transmitted sensing data within a predetermined time are identified (step S301). Then, the moving route of the moving body 12 is specified (step S302). The moving body 12 moves the collection node 11 from the position of the sensor node 10 on the movement path to within a first predetermined range according to the identified movement path (step S303). In the moving body 12, it is determined whether or not the sensor nodes 10 within the first predetermined range are capable of transmitting sensing data (step S304).
 第一の所定の範囲内にあるセンサノード10が、センシングデータを送信可能であると判定された場合(ステップS304にてYes)、収集ノード11からセンサノード10へ、信号が送信される(ステップS305)。そして、送信された信号が、センサノード10において受信される(ステップS306)。次に、センサノード10から収集ノード11へ、センシングデータが送信される(ステップS307)。そして、収集ノード11において、センシングデータが受信される(ステップS308)。移動体12が移動経路を辿り切っていない場合、移動体12は、移動経路上にある、次のセンサノード10の位置から第一の所定の範囲内まで、収集ノード11を移動させる(ステップS303)。 When it is determined that the sensor nodes 10 within the first predetermined range are capable of transmitting sensing data (Yes in step S304), a signal is transmitted from the collection node 11 to the sensor nodes 10 (step S305). Then, the transmitted signal is received at the sensor node 10 (step S306). Next, sensing data is transmitted from the sensor node 10 to the collection node 11 (step S307). Then, the sensing data is received at the collection node 11 (step S308). If the mobile object 12 has not completely traced the movement route, the mobile object 12 moves the collection node 11 from the position of the next sensor node 10 on the movement route to within the first predetermined range (step S303). ).
 一方、第一の所定の範囲内にあるセンサノード10が、センシングデータを送信可能であると判定されなかった場合には(ステップS304にてNo)、ステップS305~ステップS308は行われない。そして、移動体12が移動経路を辿り切っていない場合、移動体12は、移動経路上にある、次のセンサノード10の位置から第一の所定の範囲内まで、収集ノード11を移動させる(ステップS303)。 On the other hand, if it is not determined that the sensor nodes 10 within the first predetermined range are capable of transmitting sensing data (No in step S304), steps S305 to S308 are not performed. Then, if the mobile object 12 has not completely traced the movement route, the mobile object 12 moves the collection node 11 from the position of the next sensor node 10 on the movement route to within a first predetermined range ( step S303).
 ステップS303~ステップS308は、移動体12が移動経路を辿り切るまで繰り返される。あるいは、ステップS303~ステップS308は、移動経路上に、次のセンサノード10が存在しなくなるまで繰り返される。移動体12が移動経路を辿り切った場合、センシングデータ受信処理は終了する。 Steps S303 to S308 are repeated until the moving body 12 completely follows the movement route. Alternatively, steps S303 to S308 are repeated until there is no next sensor node 10 on the movement route. When the moving object 12 has completely traced the movement path, the sensing data reception process ends.
 ステップS301において、所定の時間は、特に限定されず、適宜設計可能である。例えば、数日でも、一日でも、半日でも、数時間でも、数分でも、数秒でもよい。 In step S301, the predetermined time is not particularly limited and can be designed as appropriate. For example, it may be several days, one day, half a day, several hours, several minutes, or several seconds.
 また、ステップS301においては、所定の時間内にセンシングデータを送信したセンサノード10が識別されればよく、識別の方法は特に限定されない。例えば、センシングデータ受信処理が複数回行われる場合であって、所定の時間内に行われた、前回以前のセンシングデータ受信処理のステップS304において、センシングデータを送信可能であると判定されたセンサノード10は、センシングデータを送信したと識別することとしてもよい。その場合、移動体12において、センサノード10の識別情報と関連付けて、センシングデータを送信可能であると判定されたこと、及びセンシングデータを送信可能であると判定された時刻が記憶されることが好ましい。 Also, in step S301, it is only necessary to identify the sensor node 10 that has transmitted sensing data within a predetermined period of time, and the identification method is not particularly limited. For example, when the sensing data reception process is performed multiple times, the sensor node determined to be capable of transmitting sensing data in step S304 of the previous sensing data reception process performed within a predetermined period of time. 10 may identify that the sensing data has been transmitted. In this case, in the moving object 12, the determination that the sensing data can be transmitted and the time at which it is determined that the sensing data can be transmitted are stored in association with the identification information of the sensor node 10. preferable.
 あるいは、例えば、センシングデータ受信処理が複数回行われる場合であって、所定の時間内に行われた、前回以前のセンシングデータ受信処理のステップS307において、センシングデータを送信したセンサノード10は、センシングデータを送信したと識別することとしてもよい。その場合、センサノード10又は収集ノード11から、移動体12へ、センサノード10がセンシングデータを送信したことが通知されることが好ましい。また、移動体12において、センサノード10の識別情報と関連付けて、センシングデータを送信したこと、及びセンシングデータを送信した時刻が記憶されることが好ましい。 Alternatively, for example, when the sensing data receiving process is performed multiple times, the sensor node 10 that transmitted the sensing data in step S307 of the previous sensing data receiving process performed within a predetermined period of time performs the sensing It may be identified that the data has been transmitted. In that case, it is preferable that the sensor node 10 or the collection node 11 notifies the moving object 12 that the sensor node 10 has transmitted the sensing data. Further, it is preferable that the moving object 12 stores the fact that the sensing data was transmitted and the time at which the sensing data was transmitted in association with the identification information of the sensor node 10 .
 ステップS302においては、ステップS301において、所定の時間内にセンシングデータを送信したと識別されたセンサノード10以外のセンサノード10が、移動経路上に含まれるように移動経路が特定されることとしてもよい。 In step S302, the movement route may be specified such that the sensor nodes 10 other than the sensor nodes 10 identified as having transmitted sensing data within a predetermined time in step S301 are included on the movement route. good.
 その場合、所定の時間内にセンシングデータを送信したと識別されたセンサノード10以外のセンサノード10のみが移動経路上に含まれるように移動経路が特定されることとしてもよく、所定の時間内にセンシングデータを送信したと識別されたセンサノード10と、所定の時間内にセンシングデータを送信したと識別されたセンサノード10以外のセンサノード10の双方が移動経路上に含まれるように移動経路が特定されることとしてもよい。 In that case, the movement route may be specified so that only the sensor nodes 10 other than the sensor nodes 10 identified as having transmitted the sensing data within the predetermined time are included on the movement route. and the sensor nodes 10 other than the sensor node 10 identified as having transmitted sensing data within a predetermined time are included in the movement route. may be specified.
 また、所定の時間内にセンシングデータを送信したと識別されたセンサノード10以外のセンサノード10の全てが移動経路上に含まれるように移動経路が特定されることとしてもよく、所定の時間内にセンシングデータを送信したと識別されたセンサノード10以外のセンサノード10の一部が移動経路上に含まれるように移動経路が特定されることとしてもよい。 Further, the movement route may be specified so that all sensor nodes 10 other than the sensor nodes 10 identified as having transmitted sensing data within a predetermined time are included on the movement route. The movement route may be specified so that some of the sensor nodes 10 other than the sensor node 10 identified as having transmitted the sensing data to the movement route are included on the movement route.
 ステップS302においては、前述のステップS103、及びステップS204において移動体12に記憶されたセンサノード10の位置情報を基に、所定のセンサノード10が移動経路上に含まれるように移動経路を特定することとしてもよい。 In step S302, based on the position information of the sensor nodes 10 stored in the moving body 12 in steps S103 and S204, the movement route is specified so that the predetermined sensor node 10 is included in the movement route. You can do it.
 ステップS302において、移動経路を特定する方法は、特に限定されず、公知の方法が用いられる。移動経路には、移動体12が移動する経路の緯度、経度及び高度の情報が含まれることとしてもよい。移動経路は、移動体12の移動距離が最短となるように特定されることが好ましい。 In step S302, the method of specifying the movement route is not particularly limited, and a known method is used. The movement route may include information on the latitude, longitude, and altitude of the route along which the moving body 12 moves. The movement route is preferably specified so that the movement distance of the moving body 12 is the shortest.
 ステップS303においては、ステップS103、及びステップS204において移動体12に記憶されたセンサノード10の位置情報を基に、移動体12が収集ノード11をセンサノード10の第一の所定の範囲内まで移動させることとしてもよい。あるいは、後述するセンサノード位置特定処理により特定されたセンサノード10の位置を基に、移動体12が収集ノード11をセンサノード10の第一の所定の範囲内まで移動させることとしてもよい。また、ステップS103、及びステップS204において移動体12に記憶されたセンサノード10の位置情報、並びに、後述するセンサノード位置特定処理により特定されたセンサノード10の位置を基に、移動体12が収集ノード11をセンサノード10の第一の所定の範囲内まで移動させることとしてもよい。 In step S303, the moving body 12 moves the collection node 11 within a first predetermined range of the sensor node 10 based on the position information of the sensor node 10 stored in the moving body 12 in steps S103 and S204. It is also possible to let Alternatively, based on the position of the sensor node 10 specified by the sensor node position specifying process, which will be described later, the moving body 12 may move the collection node 11 within a first predetermined range of the sensor node 10 . In addition, based on the position information of the sensor node 10 stored in the mobile body 12 in steps S103 and S204 and the position of the sensor node 10 specified by the sensor node position specifying process described later, the mobile body 12 collects The node 11 may be moved within the first predetermined range of the sensor node 10 .
 ステップS303において、移動体12が収集ノード11を移動させる方法は、特に限定されず、収集ノード11を移動させることが可能であればよい。例えば、ドローンなどの、飛行タイプの移動体12が、装置としての形状を有する収集ノード11を、アームなどで把持して飛行することとしてもよい。 In step S303, the method by which the mobile object 12 moves the collection nodes 11 is not particularly limited as long as the collection nodes 11 can be moved. For example, a flying-type moving object 12 such as a drone may hold the collection node 11 having the shape of a device with an arm or the like and fly.
 センサノード10の位置から第一の所定の範囲内とは、特に限定されず、センサノード10と収集ノード11の間の通信が可能な範囲内であればよい。 "Within the first predetermined range from the position of the sensor node 10" is not particularly limited as long as it is within a range where communication between the sensor node 10 and the collection node 11 is possible.
 例えば、センサノード10と収集ノード11の間の通信が、RFID、NFC、IrDAなどの近距離通信である場合には、第一の所定の範囲内とは、センサノード10の位置から半径10cm以内でも、センサノード10の位置から半径50cm以内でも、センサノード10の位置から半径100cm以内でもよい。 For example, when the communication between the sensor node 10 and the collection node 11 is short-range communication such as RFID, NFC, and IrDA, the first predetermined range is within a radius of 10 cm from the position of the sensor node 10. However, it may be within a radius of 50 cm from the position of the sensor node 10 or within a radius of 100 cm from the position of the sensor node 10 .
 センサノード10と収集ノード11の間の通信が、Wi-Fi、Bluetooth、BLEなどの中距離通信である場合には、第一の所定の範囲内とは、センサノード10の位置から半径10m以内でも、センサノード10の位置から半径50m以内でも、センサノード10の位置から半径100m以内でも、センサノード10の位置から半径300m以内でもよい。 When the communication between the sensor node 10 and the collection node 11 is medium-range communication such as Wi-Fi, Bluetooth, or BLE, the first predetermined range is within a radius of 10 m from the position of the sensor node 10. However, it may be within a radius of 50 m from the position of the sensor node 10 , within a radius of 100 m from the position of the sensor node 10 , or within a radius of 300 m from the position of the sensor node 10 .
 センサノード10と収集ノード11の間の通信がLPWAなどの長距離通信である場合には、第一の所定の範囲内とは、センサノード10の位置から半径1km以内でも、センサノード10の位置から半径10km以内でも、センサノード10の位置から半径50km以内でもよい。 When the communication between the sensor node 10 and the collection node 11 is long-distance communication such as LPWA, the first predetermined range means that even within a radius of 1 km from the position of the sensor node 10, the position of the sensor node 10 It may be within a radius of 10 km from the position of the sensor node 10 or within a radius of 50 km from the position of the sensor node 10 .
 ステップS302において、所定の時間内にセンシングデータを送信したと識別されたセンサノード10以外のセンサノード10が移動経路上に含まれるように移動経路が特定された場合には、移動体12は、ステップS303において、所定の時間内にセンシングデータを送信したと識別されたセンサノード10以外のセンサノード10の位置から第一の所定の範囲内まで、収集ノード11を移動させる。 In step S302, when the moving route is identified so that the moving route includes sensor nodes 10 other than the sensor nodes 10 identified as having transmitted sensing data within a predetermined time, the moving object 12: In step S303, the collection node 11 is moved within a first predetermined range from the position of the sensor node 10 other than the sensor node 10 identified as having transmitted sensing data within a predetermined time.
 ステップS304においては、ステップS303において第一の所定の範囲内まで移動したセンサノード10の識別情報が、後述する、送信可能センサノード識別処理のステップS507において受信された送信可能センサノード識別情報に含まれる場合に、該センサノード10はセンシングデータを送信可能であると判定されることとしてもよい。 In step S304, the identification information of the sensor node 10 moved within the first predetermined range in step S303 is included in the transmittable sensor node identification information received in step S507 of the transmittable sensor node identification process, which will be described later. , the sensor node 10 may be determined to be capable of transmitting sensing data.
 また、ステップS304において、ステップS303において第一の所定の範囲内まで移動したセンサノード10の識別情報が、後述する、送信可能センサノード識別処理のステップS507において受信された送信可能センサノード識別情報に含まれない場合には、該センサノード10はセンシングデータを送信可能であると判定されないこととしてもよい。 Further, in step S304, the identification information of the sensor node 10 that has moved within the first predetermined range in step S303 is replaced with the transmittable sensor node identification information received in step S507 of the transmittable sensor node identification process, which will be described later. If not included, the sensor node 10 may not be determined to be capable of transmitting sensing data.
 ステップS304において、センサノード10がセンシングデータを送信可能であると判定された場合には、移動体12から収集ノード11へ、該センサノード10がセンシングデータを送信可能であることが通知されることとしてもよい。 If it is determined in step S304 that the sensor node 10 is capable of transmitting sensing data, the moving body 12 notifies the collection node 11 that the sensor node 10 is capable of transmitting sensing data. may be
 ステップS305において収集ノード11から送信される信号は、特に限定されず、信号として機能するものであればよい。例えば、所定の周波数の電波、赤外線などであってもよい。 The signal transmitted from the collection node 11 in step S305 is not particularly limited as long as it functions as a signal. For example, radio waves of a predetermined frequency, infrared rays, or the like may be used.
 ステップS306において収集ノード11から所定の信号を受信した場合には、センサノード10において、所定の機能が発揮されることが好ましい。 When a predetermined signal is received from the collection node 11 in step S306, the sensor node 10 preferably performs a predetermined function.
 例えば、収集ノード11から所定の周波数の電波を受信した場合には、センサノード10から、該収集ノード11にセンシングデータを送信することとしてもよい。 For example, when radio waves of a predetermined frequency are received from the collection node 11 , the sensor node 10 may transmit sensing data to the collection node 11 .
 あるいは、例えば、収集ノード11から赤外線を受信した場合には、省電力状態であったセンサノード10が通常の消費電力状態となるよう起動することとしてもよい。そして、起動したセンサノード10は、該収集ノード11にセンシングデータを送信することとしてもよい。 Alternatively, for example, when an infrared ray is received from the collection node 11, the sensor node 10, which was in the power saving state, may be activated to enter the normal power consumption state. Then, the activated sensor node 10 may transmit sensing data to the collection node 11 .
 センサノード10が収集ノード11から所定の信号を受信する際に用いる通信方法は、該センサノード10から該収集ノード11にセンシングデータを送信する際に用いる通信方法よりも、消費する電力が小さいものであることとしてもよい。つまり、センサノード10は、消費する電力が小さいプロトコルでの待ち受けをすることとしてもよい。 The communication method used when the sensor node 10 receives a predetermined signal from the collection node 11 consumes less power than the communication method used when sensing data is transmitted from the sensor node 10 to the collection node 11. It is also possible to be In other words, the sensor node 10 may perform standby using a protocol that consumes less power.
 収集ノード11から信号を受信した場合に、センサノード10において発揮される機能は、予め定められていることが好ましい。また、センサノード10において発揮される機能は、収集ノード11から受信する信号の種類ごとに、異なるものであるように定められていることとしてもよい。 It is preferable that the function to be exhibited in the sensor node 10 when receiving a signal from the collection node 11 is predetermined. Also, the function exhibited by the sensor node 10 may be determined to be different for each type of signal received from the collection node 11 .
 ステップS307においてセンサノード10が送信するセンシングデータは、特に限定されず、センサノード10が取得したセンシングデータであればよい。また、前述のように、センサノード10の内部インピーダンスZ、及びセンサノード10内の所定の電圧が、センサノード10が取得したセンシングデータとともに送信されることとしてもよい。 The sensing data transmitted by the sensor node 10 in step S307 is not particularly limited as long as it is the sensing data acquired by the sensor node 10. Also, as described above, the internal impedance Z of the sensor node 10 and the predetermined voltage within the sensor node 10 may be transmitted together with the sensing data acquired by the sensor node 10 .
 センサノード10が、複数のセンサを備えている場合には、複数のセンサから取得できるセンシングデータのうち、全てのセンシングデータが送信されることとしてもよく、一部のセンシングデータが送信されることとしてもよい。 When the sensor node 10 includes a plurality of sensors, all of the sensing data that can be acquired from the plurality of sensors may be transmitted, or a portion of the sensing data may be transmitted. may be
 また、前述のように、センサノード10が備える複数のセンサから取得できるセンシングデータのうち、送信対象となるセンシングデータが特定されることとしてもよい。例えば、センシングデータ受信処理が複数回行われる場合には、前回以前のセンシングデータ受信処理のステップS308において受信したセンシングデータを基に、収集ノード11において、送信対象となるセンシングデータが特定されることとしてもよい。 Also, as described above, the sensing data to be transmitted may be specified among the sensing data that can be acquired from the multiple sensors provided in the sensor node 10 . For example, when the sensing data reception process is performed multiple times, the sensing data to be transmitted is specified in the collection node 11 based on the sensing data received in step S308 of the previous sensing data reception process. may be
 収集ノード11において特定された送信対象となるセンシングデータは、センサノード10に通知され、センサノード10から、特定された送信対象となるセンシングデータが送信されることとしてもよい。 The sensor node 10 may be notified of the sensing data to be transmitted identified in the collection node 11, and the sensor node 10 may transmit the identified sensing data to be transmitted.
 ステップS308において、受信されたセンシングデータは、収集ノード11において記憶されることとしてもよく、移動体12又は他のコンピュータ装置へ送信され、移動体12又は他のコンピュータ装置において記憶されることとしてもよい。センシングデータが記憶される際には、該センシングデータを取得したセンサノード10の識別情報と関連付けて記憶されることが好ましい。また、該センシングデータを取得した時刻、該センシングデータを送信した時刻に関する情報なども、該センシングデータを取得したセンサノード10の識別情報と関連付けて記憶されることが好ましい。 In step S308, the received sensing data may be stored in the collection node 11, transmitted to the mobile unit 12 or other computing device, and stored in the mobile unit 12 or other computing device. good. When the sensing data is stored, it is preferably stored in association with the identification information of the sensor node 10 that acquired the sensing data. Further, it is preferable to store information regarding the time when the sensing data was acquired, the time when the sensing data was transmitted, etc. in association with the identification information of the sensor node 10 which acquired the sensing data.
 上記のようなセンシングデータ受信処理によって、所定の時間内にセンシングデータを送信していないセンサノード10のセンシングデータを、効率よく収集することが可能となる。また、センシングデータ受信処理を複数回行うことで、所定の時間内にセンシングデータを送信していないセンサノード10のセンシングデータを、より効率よく収集することが可能となる。 Through the sensing data reception process described above, it is possible to efficiently collect sensing data from sensor nodes 10 that have not transmitted sensing data within a predetermined time. Further, by performing the sensing data reception process multiple times, it is possible to collect sensing data of the sensor nodes 10 that have not transmitted sensing data within a predetermined time more efficiently.
 以上、移動体12が移動経路を辿り切った場合に、センシングデータ受信処理は終了する態様について記載したが、収集ノード11が移動経路上にある全てのセンサノード10からセンシングデータを受信した場合に、センシングデータ受信処理が終了する態様としてもよい。 As described above, the sensing data reception process ends when the moving object 12 has completely traced the movement route. , the sensing data reception process may end.
 その場合、ステップS304において、センサノード10がセンシングデータを送信可能であると判定されるまで、センサノード10の第一の所定の範囲内にて待機することとしてもよい。あるいは、後述する電力供給処理により、センサノード10に電力を供給することで、センサノード10がセンシングデータを送信可能な状態とすることとしてもよい。 In that case, in step S304, the sensor node 10 may wait within the first predetermined range until it is determined that the sensor node 10 is capable of transmitting sensing data. Alternatively, by supplying power to the sensor node 10 through power supply processing described later, the sensor node 10 may be placed in a state in which sensing data can be transmitted.
 また、上記では、移動体12が、センサノード10の位置から第一の所定の範囲内まで収集ノード11を移動させる態様について記載したが、移動体12以外のものが、センサノード10の位置から第一の所定の範囲内まで収集ノード11を移動させる態様としてもよい。例えば、人間や動物がセンサノード10の位置から第一の所定の範囲内まで収集ノード11を移動させることとしてもよい。 In the above description, the moving body 12 moves the collection node 11 from the position of the sensor node 10 to within the first predetermined range. An aspect may be adopted in which the collection node 11 is moved within the first predetermined range. For example, a human or an animal may move the collection node 11 from the position of the sensor node 10 to within a first predetermined range.
 このように、データ収集システムが、センサノードの位置に関する位置情報を記憶する位置情報記憶手段を備え、移動体が、センサノードの位置から第一の所定の範囲内まで収集ノードを移動させる収集ノード移動手段を備え、センサノードが、取得したセンシングデータを収集ノードに送信する第一センシングデータ送信手段を備え、収集ノードが、センサノードからセンシングデータを受信するセンシングデータ受信手段を備えることで、収集ノードを移動させることでデータを収集することができるデータ収集システムを提供することができる。これにより、センサノードの設置できる場所が、基地局から所定の範囲内に限られないデータ収集システムを実現することができる。 In this way, the data collection system includes position information storage means for storing position information relating to the position of the sensor node, and the moving body moves the collection node from the position of the sensor node to within the first predetermined range. The sensor node comprises first sensing data transmission means for transmitting acquired sensing data to the collection node, and the collection node comprises sensing data reception means for receiving the sensing data from the sensor node. It is possible to provide a data collection system that can collect data by moving nodes. As a result, it is possible to realize a data collection system in which the place where the sensor node can be installed is not limited to within a predetermined range from the base station.
 このように、収集ノードが、センサノードに信号を送信する信号送信手段を備え、第一センシングデータ送信手段が、信号送信手段により信号を送信された場合に、該収集ノードにセンシングデータを送信することで、センシングデータの送信先が容易に特定でき、センサノードの電力消費を抑えることができる。つまり、収集ノードからセンサノードに信号が送信された場合に、センシングデータが収集ノードに送信されるため、不必要にセンシングデータが送信されることもなくなり、電力消費を抑えることができる。 In this manner, the collection node includes signal transmission means for transmitting a signal to the sensor node, and the first sensing data transmission means transmits sensing data to the collection node when a signal is transmitted by the signal transmission means. As a result, the destination of sensing data can be easily specified, and the power consumption of the sensor node can be suppressed. That is, when a signal is transmitted from the collection node to the sensor node, the sensing data is transmitted to the collection node, so unnecessary transmission of sensing data is eliminated, and power consumption can be suppressed.
 このように、データ収集システムが、位置情報記憶手段により記憶されたセンサノードの位置情報に基づいて、移動体の移動経路を特定する移動経路特定手段を備え、収集ノード移動手段が、移動経路特定手段により特定された移動経路に従って、収集ノードを移動させることで、効率よく収集ノードを移動させることができる。 As described above, the data collection system includes movement route identification means for identifying the movement route of the moving object based on the position information of the sensor node stored by the position information storage means, and the collection node movement means identifies the movement route. By moving the collection node according to the movement path specified by the means, the collection node can be moved efficiently.
 このように、データ収集システムが、所定の時間内にセンシングデータを送信したセンサノードを識別する送信識別手段を備え、収集ノード移動手段が、送信識別手段により所定の時間内にデータを送信したと識別されたセンサノード以外のセンサノードの位置から第一の所定の範囲内まで収集ノードを移動させることで、所定の時間内にセンシングデータを重複して取得することがなくなる。 In this way, the data collection system comprises transmission identification means for identifying sensor nodes that have transmitted sensing data within a predetermined period of time, and the collection node movement means determines that data has been transmitted within the predetermined period of time by the transmission identification means. By moving the collecting node from the position of the sensor node other than the identified sensor node to within the first predetermined range, redundant sensing data is not obtained within the predetermined time.
[センサノード位置特定処理]
 GNSSにより特定された位置情報には、誤差が含まれる可能性がある。ステップS103、及びステップS204において移動体12に記憶されたセンサノード10の位置情報が十分に正確でない場合には、ステップS303において、移動体12が収集ノード11をセンサノード10の第一の所定の範囲内まで移動させる際に、以下のようなセンサノード位置特定処理により、センサノード10の位置を特定することとしてもよい。
[Sensor node position identification process]
Location information determined by GNSS may contain errors. If the position information of the sensor node 10 stored in the mobile unit 12 in steps S103 and S204 is not sufficiently accurate, the mobile unit 12 moves the collection node 11 to the first predetermined position of the sensor node 10 in step S303. When moving within the range, the position of the sensor node 10 may be identified by the following sensor node position identification processing.
 センサノード位置特定処理が行われる場合には、一つのセンサノード10と一つの無線装置13が対応することが好ましい。そして、無線装置13は、対応するセンサノード10の位置から第二の所定の範囲内に設置されることが好ましい。 When the sensor node position specifying process is performed, it is preferable that one sensor node 10 and one wireless device 13 correspond. Then, the wireless device 13 is preferably installed within a second predetermined range from the position of the corresponding sensor node 10 .
 第二の所定の範囲内は、特に限定されず、適宜設計可能である。 The second predetermined range is not particularly limited and can be designed as appropriate.
 センサノード10の位置をより正確に特定するという観点からは、第二の所定の範囲内は、センサノード10の位置から半径100cm以内であることが好ましく、センサノード10の位置から半径50cm以内であることがより好ましく、センサノード10の位置から半径10cm以内であることがさらに好ましい。 From the viewpoint of specifying the position of the sensor node 10 more accurately, the second predetermined range is preferably within a radius of 100 cm from the position of the sensor node 10, and within a radius of 50 cm from the position of the sensor node 10. It is more preferable to be within a radius of 10 cm from the position of the sensor node 10 .
 図10は、本発明の実施の形態にかかる、データ収集システムにおけるセンサノード位置特定処理のフローチャートを表す図である。 FIG. 10 is a diagram showing a flowchart of sensor node position specifying processing in the data collection system according to the embodiment of the present invention.
 まず、無線装置13から、移動体12へ通知が送信される(ステップS401)。送信された通知は、移動体12において受信される(ステップS402)。そして、移動体12において、送信された通知に対応する無線装置13の位置を基に、センサノード10の位置が特定され(ステップS403)、センサノード位置特定処理は終了する。 First, a notification is transmitted from the wireless device 13 to the mobile object 12 (step S401). The transmitted notification is received at the mobile unit 12 (step S402). Then, in the moving object 12, the position of the sensor node 10 is specified based on the position of the wireless device 13 corresponding to the transmitted notification (step S403), and the sensor node position specifying process ends.
 移動体12は、ステップS402において受信した通知によって、無線装置13の位置を、GNSSよりも正確に特定することが可能であることとしてもよい。この場合、無線装置13は、ビーコンであることが好ましい。 The mobile unit 12 may be able to identify the location of the wireless device 13 more accurately than GNSS from the notification received in step S402. In this case, wireless device 13 is preferably a beacon.
 ステップS403においては、センサノード10の位置が特定されれば、特定方法は限定されない。 In step S403, the identification method is not limited as long as the position of the sensor node 10 is identified.
 例えば、移動体12において、無線装置13が設置された位置と、対応するセンサノード10の位置との関係が記憶されており、特定された無線装置13の位置を基に、センサノード10の位置が特定されることとしてもよい。具体的には、例えば、移動体12において、無線装置13が、対応するセンサノード10の位置から半径10cm以内に設置されたことが記憶されており、センサノード10の位置は、無線装置13の位置から半径10cm以内であると特定されることとしてもよい。 For example, in the mobile object 12, the relationship between the position where the wireless device 13 is installed and the position of the corresponding sensor node 10 is stored. may be specified. Specifically, for example, in the mobile object 12, it is stored that the wireless device 13 is installed within a radius of 10 cm from the position of the corresponding sensor node 10, and the position of the sensor node 10 is the position of the wireless device 13. It may be specified as being within a radius of 10 cm from the location.
 ステップS403において特定されたセンサノード10の位置は、移動体12の記憶部に記憶されることとしてもよく、記憶されないこととしてもよい。また、ステップS403においてセンサノード10の位置が特定された際に、前述の位置情報更新処理が行われることとしてもよい。 The position of the sensor node 10 identified in step S403 may or may not be stored in the storage unit of the moving body 12. Further, when the position of the sensor node 10 is identified in step S403, the position information update process described above may be performed.
 そして、ステップS403において特定されたセンサノード10の位置を基に、移動体12が収集ノード11をセンサノード10の第一の所定の範囲内まで移動させることとしてもよい。あるいは、ステップS103、及びステップS204において移動体12に記憶されたセンサノード10の位置情報、並びに、後述するセンサノード位置特定処理により特定されたセンサノード10の位置を基に、移動体12が収集ノード11をセンサノード10の第一の所定の範囲内まで移動させることとしてもよい。 Then, based on the position of the sensor node 10 identified in step S403, the moving object 12 may move the collection node 11 to within the first predetermined range of the sensor node 10. Alternatively, based on the position information of the sensor node 10 stored in the mobile body 12 in steps S103 and S204 and the position of the sensor node 10 specified by the sensor node position specifying process described later, the mobile body 12 collects The node 11 may be moved within the first predetermined range of the sensor node 10 .
 このように、データ収集システムが、センサノードの位置から第二の所定の範囲内に設置された無線装置を備え、無線装置が、移動体に通知を送信する通知送信手段を備え、移動体が、センサノードの位置を、通知送信手段により送信された通知に対応する無線装置の位置を基に特定する位置特定手段を備えることで、無線装置を利用してセンサノードの位置を特定することができる。 Thus, the data collection system comprises a wireless device installed within a second predetermined range from the position of the sensor node, the wireless device comprises notification transmitting means for transmitting a notification to the mobile, and the mobile a position specifying means for specifying the position of the sensor node based on the position of the wireless device corresponding to the notification transmitted by the notification transmitting means, thereby specifying the position of the sensor node using the wireless device; can.
[送信可能センサノード識別処理]
 センシングデータの取得、及びセンシングデータの送信が、集電システム、ソーラー発電、微生物発電などから得られた電力によって行われる場合、センシングデータの取得、及びセンシングデータの送信に必要な電力が安定して得られない可能性がある。電力の不足などにより、センシングデータを取得していないセンサノード10、及び/又は、センシングデータを取得しているがセンシングデータの送信が可能でないセンサノード10は、以下のような送信可能センサノード識別処理により識別されることとしてもよい。
[Sendable sensor node identification process]
If sensing data acquisition and sensing data transmission are performed using power obtained from a current collection system, solar power generation, microbial power generation, etc., the power required to acquire sensing data and transmit sensing data is stable. may not be obtained. A sensor node 10 that has not acquired sensing data due to power shortage or the like and/or a sensor node 10 that has acquired sensing data but is not capable of transmitting sensing data has the following sensor node identifier that can transmit: It may be identified by processing.
 送信可能センサノード識別処理が行われる場合には、一つのセンサノード10と一つの無線装置13が対応することが好ましい。 When the transmittable sensor node identification process is performed, it is preferable that one sensor node 10 and one wireless device 13 correspond.
 無線装置13が設置される位置は特に限定されず、センサノード10と無線装置13の間の通信が可能な範囲内であればよい。 The location where the wireless device 13 is installed is not particularly limited as long as it is within a range where communication between the sensor node 10 and the wireless device 13 is possible.
 例えば、センサノード10と無線装置13の間の通信が、RFID、NFC、IrDAなどの近距離通信である場合には、無線装置13が設置される位置は、センサノード10の位置から半径10cm以内でも、センサノード10の位置から半径50cm以内でも、センサノード10の位置から半径100cm以内でもよい。 For example, if the communication between the sensor node 10 and the wireless device 13 is short-range communication such as RFID, NFC, and IrDA, the position where the wireless device 13 is installed is within a radius of 10 cm from the position of the sensor node 10. However, it may be within a radius of 50 cm from the position of the sensor node 10 or within a radius of 100 cm from the position of the sensor node 10 .
 センサノード10と無線装置13の間の通信が、Wi-Fi、Bluetooth、BLEなどの中距離通信である場合には、無線装置13が設置される位置は、センサノード10の位置から半径10m以内でも、センサノード10の位置から半径50m以内でも、センサノード10の位置から半径100m以内でも、センサノード10から半径300m以内でもよい。 When the communication between the sensor node 10 and the wireless device 13 is medium-range communication such as Wi-Fi, Bluetooth, or BLE, the position where the wireless device 13 is installed is within a radius of 10 m from the position of the sensor node 10. However, it may be within a radius of 50 m from the position of the sensor node 10 , within a radius of 100 m from the position of the sensor node 10 , or within a radius of 300 m from the sensor node 10 .
 センサノード10と無線装置13の間の通信がLPWAなどの長距離通信である場合には、無線装置13が設置される位置は、センサノード10の位置から半径1km以内でも、センサノード10の位置から半径10km以内でも、センサノード10の位置から半径50km以内でもよい。 If the communication between the sensor node 10 and the wireless device 13 is long-distance communication such as LPWA, the location where the wireless device 13 is installed may be within a radius of 1 km from the location of the sensor node 10. It may be within a radius of 10 km from the position of the sensor node 10 or within a radius of 50 km from the position of the sensor node 10 .
 また、無線装置13は、センサノード10と導線などで接続されていることとしてもよく、センサノード10と一体的に構成されていることとしてもよい。 Also, the wireless device 13 may be connected to the sensor node 10 by a wire or the like, or may be configured integrally with the sensor node 10 .
 図11は、本発明の実施の形態にかかる、データ収集システムにおける送信可能センサノード識別処理のフローチャートを表す図である。 FIG. 11 is a diagram showing a flowchart of transmittable sensor node identification processing in the data collection system according to the embodiment of the present invention.
 まず、センサノード10において、該センサノード10がセンシングデータを送信することが可能であるか否かが判定される(ステップS501)。 First, in the sensor node 10, it is determined whether or not the sensor node 10 can transmit sensing data (step S501).
 センシングデータを送信することが可能であると判定された場合(ステップS501にてYes)、センシングデータを送信可能であるという通知(以下、センシングデータ送信可能通知という)が、センサノード10から無線装置13へ送信される(ステップS502)。また、該センサノード10を識別する識別情報が、センサノード10から無線装置13へ送信される(ステップS503)。送信されたセンシングデータ送信可能通知は、無線装置13において受信される(ステップS504)。また、送信された識別情報は、無線装置13において受信される(ステップS505)。センシングデータ送信可能通知を送信したセンサノード10の識別情報(以下、送信可能センサノード識別情報という)は、無線装置13から移動体12へ送信される(ステップS506)。送信された送信可能センサノード識別情報は、移動体12において受信され(ステップS507)、送信可能センサノード識別処理は終了する。 When it is determined that sensing data can be transmitted (Yes in step S501), a notification that sensing data can be transmitted (hereinafter referred to as a sensing data transmittable notification) is sent from the sensor node 10 to the wireless device. 13 (step S502). Further, identification information for identifying the sensor node 10 is transmitted from the sensor node 10 to the wireless device 13 (step S503). The sent sensing data transmittable notification is received by the wireless device 13 (step S504). Also, the transmitted identification information is received by the wireless device 13 (step S505). The identification information of the sensor node 10 that has transmitted the sensing data transmittable notification (hereinafter referred to as transmittable sensor node identification information) is transmitted from the wireless device 13 to the moving object 12 (step S506). The transmitted transmittable sensor node identification information is received by the moving body 12 (step S507), and the transmittable sensor node identification process ends.
 一方、センシングデータを送信することが可能であると判定されなかった場合(ステップS501にてNo)、ステップS502~ステップS507は行われず、送信可能センサノード識別処理は終了する。 On the other hand, if it is not determined that the sensing data can be transmitted (No in step S501), steps S502 to S507 are not performed, and the transmittable sensor node identification process ends.
 ステップS501において、センサノード10がセンシングデータを送信することが可能であるか否かを判定する方法は、特に限定されず、センサノード10がセンシングデータを送信することが可能であるか否かを判定することができればよい。 In step S501, the method of determining whether or not the sensor node 10 is capable of transmitting sensing data is not particularly limited. It is sufficient if it can be determined.
 例えば、センサノード10がセンシングデータを取得している場合に、センシングデータを送信することが可能であると判定されることとしてもよい。センサノード10が複数のセンシングデータを取得することが可能である場合には、1以上のセンシングデータを取得している場合に、センシングデータを送信することが可能であると判定されることとしてもよく、送信対象として特定されているセンシングデータを取得している場合に、センシングデータを送信することが可能であると判定されることとしてもよい。 For example, when the sensor node 10 is acquiring sensing data, it may be determined that the sensing data can be transmitted. When the sensor node 10 is capable of acquiring a plurality of pieces of sensing data, it may be determined that it is possible to transmit the sensing data when it acquires one or more pieces of sensing data. Often, it may be determined that the sensing data can be transmitted when the sensing data specified as the transmission target is acquired.
 あるいは、例えば、センサノード10がセンシングデータを取得しており、かつ、取得したセンシングデータを送信するために必要な電力を有している場合に、センシングデータを送信することが可能であると判定されることとしてもよい。取得したセンシングデータを送信するために必要な電力を有している場合とは、例えば、センサノード10の内部の電圧が所定の値以上である場合のことであってもよい。 Alternatively, for example, when the sensor node 10 has acquired sensing data and has the power required to transmit the acquired sensing data, it is determined that the sensing data can be transmitted. It may be assumed that The case where the power required for transmitting the acquired sensing data may be, for example, the case where the internal voltage of the sensor node 10 is equal to or higher than a predetermined value.
 ステップS502におけるセンシングデータ送信可能通知の送信、及びステップS503における識別情報の送信は、上記のようにそれぞれ独立して行われることとしてもよく、同時に行われることとしてもよい。 The transmission of the sensing data transmittable notification in step S502 and the transmission of the identification information in step S503 may be performed independently as described above, or may be performed simultaneously.
 また、上記のようにステップS501~ステップS505に依らず、無線装置13において、センサノード10がセンシングデータを送信することが可能であるか否かを判定することとしてもよい。この場合、センサノード10と無線装置13は、電気的に接続されていることが好ましい。そして、センサノード10がセンシングデータを送信することが可能であると判定された場合に、ステップS506と同様に、該センサノード10の識別情報が移動体12へ送信されることとしてもよい。 Also, as described above, without relying on steps S501 to S505, the wireless device 13 may determine whether or not the sensor node 10 is capable of transmitting sensing data. In this case, it is preferable that the sensor node 10 and the wireless device 13 are electrically connected. Then, when it is determined that the sensor node 10 is capable of transmitting sensing data, the identification information of the sensor node 10 may be transmitted to the moving body 12 as in step S506.
 無線装置13においてセンサノード10がセンシングデータを送信することが可能であるか否かを判定する方法は、ステップS501の記載を必要な範囲で採用できる。 The description of step S501 can be adopted as a method for determining whether or not the sensor node 10 can transmit sensing data in the wireless device 13 to the extent necessary.
 ステップS506における送信可能センサノード識別情報の送信先は、移動体12でないこととしてもよい。例えば、ステップS506における送信可能センサノード識別情報の送信先は、収集ノード11であることとしてもよい。また、収集ノード11に受信された送信可能センサノード識別情報は、さらに、移動体12へ送信されることとしてもよい。 The destination of the transmittable sensor node identification information in step S506 may not be the mobile body 12. For example, the destination of the transmittable sensor node identification information in step S506 may be the collection node 11 . Also, the transmittable sensor node identification information received by the collection node 11 may be further transmitted to the mobile object 12 .
 ステップS507において受信された送信可能センサノード識別情報は、移動体12において記憶されることが好ましい。そして、移動体12において記憶された送信可能センサノード識別情報は、前述のセンシングデータ受信処理のステップS304において、用いられることとしてもよい。つまり、前述のセンシングデータ受信処理のステップS303において第一の所定の範囲内まで移動したセンサノード10の識別情報が、移動体12において記憶された送信可能センサノード識別情報に含まれる場合に、該センサノード10はセンシングデータを送信可能であると判定されることとしてもよい。 The transmittable sensor node identification information received in step S507 is preferably stored in the mobile unit 12. Then, the transmittable sensor node identification information stored in the moving body 12 may be used in step S304 of the sensing data reception process described above. That is, when the identification information of the sensor node 10 that has moved within the first predetermined range in step S303 of the sensing data reception process described above is included in the transmittable sensor node identification information stored in the moving body 12, The sensor node 10 may be determined to be capable of transmitting sensing data.
 このように、データ収集システムが、無線装置を備え、センサノードが、センシングデータを送信可能であるという通知を無線装置に送信するセンシングデータ送信可能通知送信手段と、該センサノードを識別する識別情報を無線装置に送信する第一識別情報送信手段とを備え、無線装置が、センシングデータ送信可能通知送信手段によりセンシングデータを送信可能であるという通知が送信されたセンサノードの識別情報を移動体に送信する第二識別情報送信手段を備えることで、センシングデータを送信可能なセンサノードを容易に識別することができる。 In this way, the data collection system comprises a wireless device, the sensing data transmittable notification transmitting means for transmitting a notification that the sensor node is capable of transmitting sensing data to the wireless device, and the identification information for identifying the sensor node. to the wireless device, and the wireless device transmits the identification information of the sensor node to which the notification that the sensing data can be transmitted by the sensing data transmission possible notification transmission means is transmitted to the mobile body By providing the second identification information transmitting means for transmitting, it is possible to easily identify the sensor node capable of transmitting the sensing data.
 このように、データ収集システムが、無線装置を備え、センサノード及び無線装置は接続されており、無線装置が、センサノードがセンシングデータを送信可能であることを判定するセンシングデータ送信可能判定手段と、センシングデータ送信可能判定手段によりセンシングデータを送信可能であると判定されたセンサノードの識別情報を移動体に送信する第三識別情報送信手段とを備えることで、センサノードの電力を消費せずに、センシングデータを送信可能なセンサノードを識別することができる。 Thus, the data collection system includes a wireless device, the sensor node and the wireless device are connected, and the wireless device includes sensing data transmittable determination means for determining whether the sensor node is capable of transmitting sensing data. and a third identification information transmission means for transmitting identification information of the sensor node determined to be capable of transmitting sensing data by the sensing data transmission possibility determination means to the moving object, thereby preventing power consumption of the sensor node. First, it is possible to identify sensor nodes capable of transmitting sensing data.
[電力供給処理]
 前述のように、センシングデータの取得、及びセンシングデータの送信が、集電システム、ソーラー発電、微生物発電などから得られた電力によって行われる場合、センシングデータの取得、及びセンシングデータの送信に必要な電力が安定して得られない可能性がある。電力の不足により、センサノード10がセンシングデータの取得、及び/又はセンシングデータの送信を行うことができない場合には、以下のような電力供給処理により、センサノード10に電力が供給されることとしてもよい。
[Power supply processing]
As described above, when the sensing data is acquired and the sensing data is transmitted using power obtained from a power collection system, solar power generation, microbial power generation, etc., it is necessary to acquire the sensing data and transmit the sensing data Power may not be obtained stably. When the sensor node 10 cannot acquire and/or transmit sensing data due to insufficient power, power is supplied to the sensor node 10 by the following power supply process. good too.
 図12は、本発明の実施の形態にかかる、データ収集システムにおける電力供給処理のフローチャートを表す図である。 FIG. 12 is a diagram showing a flowchart of power supply processing in the data collection system according to the embodiment of the present invention.
 まず、収集ノード11から、センサノード10へ電力が供給される(ステップS601)。そして、供給された電力は、センサノード10において受給される(ステップS602)。次に、センサノード10から、収集ノード11へセンシングデータが送信される(ステップS603)。そして、収集ノード11において、センシングデータが受信され(ステップS604)、電力供給処理は終了する。 First, power is supplied from the collection node 11 to the sensor node 10 (step S601). Then, the supplied power is received at the sensor node 10 (step S602). Next, sensing data is transmitted from the sensor node 10 to the collection node 11 (step S603). Then, the collection node 11 receives the sensing data (step S604), and the power supply process ends.
 ステップS601における電力の供給元は、収集ノード11でなくともよい。例えば、移動体12であることとしてもよい。 The power supply source in step S601 does not have to be the collection node 11. For example, it may be the moving body 12 .
 ステップS601において、収集ノード11からセンサノード10へ電力が供給される際には、NFCなどの近距離無線通信が用いられることとしてもよい。この場合、移動体12は、センサノード10の位置から、近距離無線通信を行うことが可能な範囲内まで、収集ノード11を移動させることが好ましい。 In step S601, when power is supplied from the collection node 11 to the sensor node 10, short-range wireless communication such as NFC may be used. In this case, the moving object 12 preferably moves the collection node 11 from the position of the sensor node 10 to within a range where short-range wireless communication can be performed.
 ステップS603におけるセンシングデータの送信は、前述のセンシングデータ受信処理のステップS307におけるセンシングデータの送信のことを示すこととしてもよい。また、ステップS604におけるセンシングデータの受信は、前述のセンシングデータ受信処理のステップS308におけるセンシングデータの受信のことを示すこととしてもよい。 The transmission of sensing data in step S603 may indicate the transmission of sensing data in step S307 of the sensing data reception process described above. Further, the reception of sensing data in step S604 may indicate the reception of sensing data in step S308 of the sensing data reception process described above.
 供給された電力がセンシングデータの送信に用いられる場合には、ステップS601~ステップS602は、前述のセンシングデータ受信処理のステップS307の前に行われることとしてもよい。あるいは、供給された電力がセンシングデータの取得に用いられる場合には、ステップS601~ステップS602は、前述のセンシングデータ受信処理のステップS304において、センサノード10がセンシングデータを送信可能であると判定されなかった場合に行われることとしてもよい。 When the supplied power is used for transmitting sensing data, steps S601 and S602 may be performed before step S307 of the sensing data reception process described above. Alternatively, when the supplied power is used for acquiring sensing data, steps S601 and S602 are performed by determining that the sensor node 10 is capable of transmitting sensing data in step S304 of the sensing data reception process described above. It may be done when there is no
 また、後述する判定処理において、センサノード10が、センシングデータの取得、及びセンシングデータの送信に必要な電力を安定して得られる状態にないと判定された場合に、該センサノード10に対して、電力供給処理が行われることとしてもよい。 In addition, in the determination process described later, when it is determined that the sensor node 10 is not in a state where the power necessary for acquiring sensing data and transmitting sensing data can be stably obtained, the sensor node 10 , power supply processing may be performed.
 このように、収集ノードが、センサノードに電力を供給する電力供給手段を備えることで、センサノードの電力が不足している場合にも、センシングデータの取得、及び/又はセンシングデータの送信を行うことが可能となる。また、従来、センサノードは電池を有する必要があったが、センサノードが電池を有する必要がなくなる。 In this way, the collection node is provided with power supply means for supplying power to the sensor node, so that even when the power of the sensor node is insufficient, sensing data can be acquired and/or transmitted. becomes possible. In addition, the sensor node does not need to have a battery, although conventionally the sensor node had to have a battery.
[判定処理]
 本発明のデータ収集システムは、以下のような判定処理によって、センサノードの状態を判定することとしてもよい。以下、センサノードの状態を判定する装置を判定ノードという。判定ノードは、センサノード10、収集ノード11、移動体12、無線装置13、及び他のコンピュータ装置のいずれかであってもよく、センサノード10、収集ノード11、移動体12、無線装置13、及び他のコンピュータ装置以外の装置であってもよい。また、判定ノードは、センサノード10、収集ノード11、移動体12、及び/又は無線装置13と導線などで接続されていることとしてもよく、センサノード10、収集ノード11、移動体12、及び/又は無線装置13と一体的に構成されていることとしてもよい。
[Determination process]
The data collection system of the present invention may determine the state of the sensor node by the following determination processing. A device that determines the state of a sensor node is hereinafter referred to as a determination node. The determination node may be any one of the sensor node 10, collection node 11, mobile unit 12, wireless device 13, and other computer devices. and other devices other than computer devices. In addition, the determination node may be connected to the sensor node 10, the collection node 11, the mobile object 12, and/or the wireless device 13 by wires or the like. / Or it may be configured integrally with the wireless device 13 .
 図13は、本発明の実施の形態にかかる、データ収集システムにおける判定処理のフローチャートを表す図である。 FIG. 13 is a diagram showing a flowchart of determination processing in the data collection system according to the embodiment of the present invention.
 まず、センサノード10から判定ノードへ、センシングデータが送信される(ステップS701)。送信されたセンシングデータは、判定ノードにおいて受信される(ステップS702)。次に、判定ノードにおいて、受信したセンシングデータを基に、センサノード10の状態が判定され、(ステップS703)。判定処理は終了する。 First, sensing data is transmitted from the sensor node 10 to the determination node (step S701). The transmitted sensing data is received at the determination node (step S702). Next, the determination node determines the state of the sensor node 10 based on the received sensing data (step S703). The determination process ends.
 ステップS701においては、センシングデータは、センサノード10から直接、判定ノードへ送信されなくともよい。例えば、センサノード10が取得したセンシングデータは、収集ノード11、移動体12などを経由して、判定ノードへ送信されることとしてもよい。  In step S701, the sensing data does not have to be sent directly from the sensor node 10 to the determination node. For example, the sensing data acquired by the sensor node 10 may be transmitted to the determination node via the collection node 11, mobile object 12, and the like.
 ステップS703において、受信したセンシングデータを基に、センサノード10の状態を判定する方法は、特に限定されず、適宜設計することができる。例えば、所定のセンシングデータが、所定の期間以上、所定の範囲外の値である場合に、センサノード10の状態が異常であると判定することとしてもよい。 In step S703, the method of determining the state of the sensor node 10 based on the received sensing data is not particularly limited, and can be designed as appropriate. For example, it may be determined that the state of the sensor node 10 is abnormal when predetermined sensing data has a value outside a predetermined range for a predetermined period of time or more.
 ステップS703においてセンサノード10の状態が所定の状態であると判定された場合には、判定ノードが、収集ノード11、移動体12、無線装置13、及び/又は他のコンピュータ装置に、該センサノード10の状態が所定の状態であることを通知することとしてもよい。 If it is determined in step S703 that the state of the sensor node 10 is in the predetermined state, the determination node instructs the collection node 11, the mobile unit 12, the wireless device 13, and/or other computer devices to It is also possible to notify that the 10 states are predetermined states.
 例えば、センサノード10の状態が異常であると判定された場合に、判定ノードが、収集ノード11、移動体12、無線装置13、及び/又は他のコンピュータ装置に、該センサノード10の状態が異常であることを通知することとしてもよい。そして、さらに、該センサノード10を、交換、又は修理の対象とすることとしてもよい。 For example, when it is determined that the state of the sensor node 10 is abnormal, the determination node notifies the collection node 11, mobile unit 12, wireless device 13, and/or other computer device that the state of the sensor node 10 is abnormal. It is also possible to notify that there is an abnormality. Furthermore, the sensor node 10 may be subject to replacement or repair.
 あるいは、上記のようにステップS701~ステップS702に依らず、判定ノードにおいて、センサノード10の状態を判定することとしてもよい。この場合、センサノード10と判定ノードは電気的に接続されていることが好ましい。そして、判定ノードが、センサノード10において測定されたデータを基に、該センサノード10の状態を判定することとしてもよい。 Alternatively, the state of the sensor node 10 may be determined at the determination node without relying on steps S701 and S702 as described above. In this case, it is preferable that the sensor node 10 and the determination node are electrically connected. Then, the determination node may determine the state of the sensor node 10 based on the data measured by the sensor node 10 .
 判定ノードは、センサノード10の状態を監視し、該センサノード10において測定されたデータを基に、該センサノード10が、センシングデータの取得、及びセンシングデータの送信に必要な電力を安定して得られる状態にあるかを判定することとしてもよい。具体的には、例えば、判定ノードがセンサノード10の内部の電圧を検知し、該センサノード10の内部の電圧が所定の値以上であるかを判定することとしてもよい。 The determination node monitors the state of the sensor node 10, and based on the data measured by the sensor node 10, the sensor node 10 stably supplies the power necessary for acquiring sensing data and transmitting the sensing data. It is also possible to determine whether or not it is in a state that can be obtained. Specifically, for example, the determination node may detect the voltage inside the sensor node 10 and determine whether the voltage inside the sensor node 10 is equal to or higher than a predetermined value.
 あるいは、上記のようにステップS701~ステップS703に依らず、センサノード10において、該センサノード10の状態を判定することとしてもよい。例えば、センサノード10が該センサノード10の状態を監視し、該センサノード10において測定されたデータを基に、該センサノード10の状態を判定することとしてもよい。 Alternatively, the state of the sensor node 10 may be determined at the sensor node 10 without relying on steps S701 to S703 as described above. For example, the sensor node 10 may monitor the state of the sensor node 10 and determine the state of the sensor node 10 based on data measured at the sensor node 10 .
 そして、センサノード10が該センサノード10の状態を監視し、該センサノード10において測定されたデータを基に、該センサノード10が、センシングデータの取得、及びセンシングデータの送信に必要な電力を安定して得られる状態にあるかを判定することとしてもよい。具体的には、例えば、センサノード10が該センサノード10の内部の電圧を検知し、該センサノード10の内部の電圧が所定の値以上であるかを判定することとしてもよい。 Then, the sensor node 10 monitors the state of the sensor node 10, and based on the data measured by the sensor node 10, the sensor node 10 obtains the sensing data and reduces the power required to transmit the sensing data. It may be determined whether or not the state is stably obtained. Specifically, for example, the sensor node 10 may detect the voltage inside the sensor node 10 and determine whether the voltage inside the sensor node 10 is equal to or higher than a predetermined value.
 センサノード10が、センシングデータの取得、及びセンシングデータの送信に必要な電力を安定して得られる状態にないと判定された場合には、収集ノード11、移動体12、無線装置13、及び/又は他のコンピュータ装置に、該センサノード10の状態が電力不足であることを通知することとしてもよい。そして、該センサノード10に対して、前述の、電力供給処理が行われることとしてもよい。 When it is determined that the sensor node 10 is unable to stably obtain the power required for sensing data acquisition and sensing data transmission, the collection node 11, mobile object 12, wireless device 13, and/or Alternatively, another computer device may be notified that the state of the sensor node 10 is power shortage. Then, the power supply process described above may be performed on the sensor node 10 .
 このように、データ収集システムが、センサノードの状態を判定する判定ノードを備え、判定ノードが、センサノードから送信されたセンシングデータを基に、センサノードの状態を判定する第一状態判定手段を備えることで、センサノードの状態を判定することが容易となる。 As described above, the data collection system includes a determination node that determines the state of the sensor node, and the determination node includes first state determination means that determines the state of the sensor node based on the sensing data transmitted from the sensor node. By providing it, it becomes easy to determine the state of the sensor node.
 このように、データ収集システムが、センサノードの状態を判定する判定ノードを備え、センサノード及び判定ノードは接続されており、判定ノードが、センサノードの状態を判定する第二状態判定手段を備えることで、センサノードの電力を消費せずにセンサノードの状態を判定することが可能となる。 As described above, the data collection system includes a determination node that determines the state of the sensor node, the sensor node and the determination node are connected, and the determination node includes second state determination means that determines the state of the sensor node. This makes it possible to determine the state of the sensor node without consuming the power of the sensor node.
 本発明の実施の形態において、「導電部」とは、例えば、通電可能部材であればよく、材質を問わない。「機能部」とは、例えば、電流を流すことで所定の機能を実行するものをいう。機能は、電気を光や熱等のエネルギーに変換するもの、回路を制御するものであってもよい。 In the embodiment of the present invention, the "conductive part" may be, for example, a member that can conduct electricity, regardless of the material. A "functional part" means, for example, a part that performs a predetermined function by passing an electric current. The function may be to convert electricity into energy such as light or heat, or to control a circuit.
 本発明の実施の形態において、「電解液」とは、例えば、イオン性物質を極性溶媒に溶解させた、電気伝導性を有する溶液をいう。「昇圧回路」とは、例えば、入力電圧を昇圧して出力する回路をいう。「降圧回路」とは、例えば、入力電圧を降圧して出力する回路をいう。「導電性ポリマー」とは、例えば、電気伝導性を持つ高分子化合物をいう。「カーボン」とは、例えば、導電性を有する炭素繊維をいう。「一体的に構成」とは、例えば、異なる物体同士を接合させることをいい、より具体的には、接着剤による接着、他の部材を使用した機械的接合、溶接、圧着等、化学的及び/又は物理的な力により接合させることが挙げられる。 In the embodiment of the present invention, "electrolytic solution" means, for example, an electrically conductive solution in which an ionic substance is dissolved in a polar solvent. A “booster circuit” is, for example, a circuit that boosts an input voltage and outputs it. A “step-down circuit” is, for example, a circuit that steps down an input voltage and outputs it. "Conductive polymer" means, for example, a polymer compound having electrical conductivity. “Carbon” means, for example, conductive carbon fiber. "Integrated construction" means, for example, joining different objects, more specifically, bonding with an adhesive, mechanical joining using other members, welding, crimping, etc., chemical and / Or joining by physical force is mentioned.
[参考例]
 以下、参考例により本発明をより詳細に説明するが、本発明はこれらの参考例により何ら限定されるものではない。
[Reference example]
EXAMPLES The present invention will be described in more detail with reference examples below, but the present invention is not limited to these reference examples.
(参考例1)
 以下の試験は、常温、常圧で行った。図1に示す、第一導電部1、第二導電部2、及び機能部3の構成を備える装置と、媒体を用いてシステムを構築した。第一導電部1として、ステンレス製(オーステナイト、SUS304系)の板状部材(0.5mm厚、10cm×15cm)を用い、第二導電部2として、亜鉛メッキ鋼板(鉄)製の板状部材(0.5mm厚、10cm×15cm)を用い、第一導電部1、第二導電部2及び機能部3を、それぞれ銅製の導線で接続した。機能部3は、電力消費部、出力電圧変換部及び制御部を備えている。また、その入力インピーダンスは1kΩ以上であり、非線形な電流-電圧特性を有するものを用いた。電力消費部には、2mA以上の電流が流れると点灯するLED電球を用いた。出力電圧変換部には、図2(A)に示す昇圧回路を用い、システムを構成した。
(Reference example 1)
The following tests were performed at normal temperature and normal pressure. A system was constructed using a medium and an apparatus having the configurations of the first conductive section 1, the second conductive section 2, and the functional section 3 shown in FIG. A plate member (0.5 mm thick, 10 cm × 15 cm) made of stainless steel (austenite, SUS304 series) is used as the first conductive portion 1, and a plate member made of galvanized steel plate (iron) is used as the second conductive portion 2. (0.5 mm thickness, 10 cm x 15 cm), the first conductive part 1, the second conductive part 2 and the functional part 3 were connected with copper conducting wires, respectively. The functional section 3 includes a power consumption section, an output voltage conversion section, and a control section. Further, the input impedance is 1 kΩ or more, and the one having a nonlinear current-voltage characteristic is used. An LED bulb that lights up when a current of 2 mA or more flows is used as the power consumption part. A system was constructed using the booster circuit shown in FIG. 2A for the output voltage converter.
 第一導電部1を、出力電圧変換部の昇圧回路の入力端子A1に接続し、また、昇圧回路の出力端子B1をLED電球に接続した。さらに、第二導電部2を、昇圧回路の入力端子A2に接続し、また、昇圧回路の出力端子B2を、LED電球の出力端子B1と接続されている端子とは反対側の端子で接続した。 The first conductive part 1 was connected to the input terminal A1 of the booster circuit of the output voltage conversion part, and the output terminal B1 of the booster circuit was connected to the LED light bulb. Furthermore, the second conductive part 2 was connected to the input terminal A2 of the booster circuit, and the output terminal B2 of the booster circuit was connected to the terminal opposite to the terminal connected to the output terminal B1 of the LED light bulb. .
 アクリル製容器(外径15cm×15cm×15cmの立方体、内径14.5cm)に高さ7.5cmまで、純水(古河薬品工業株式会社製、高純度精製水、温度25度:媒体)を入れ、第一導電部1及び第二導電部2を浸してシステムを構築した。第一導電部1及び第二導電部2は非接触であり、第一導電部1及び第二導電部2の距離は12cmであり、第一導電部1と第二導電部2の板状の平面が平行になるように設置した。 Pure water (manufactured by Furukawa Pharmaceutical Co., Ltd., high-purity purified water, temperature 25 degrees: medium) is placed in an acrylic container (outer diameter 15 cm × 15 cm × 15 cm cube, inner diameter 14.5 cm) to a height of 7.5 cm. , the first conductive part 1 and the second conductive part 2 were immersed to construct a system. The first conductive part 1 and the second conductive part 2 are non-contact, the distance between the first conductive part 1 and the second conductive part 2 is 12 cm, and the plate-like shape of the first conductive part 1 and the second conductive part 2 Installed so that the planes are parallel.
 構築したシステムについて、第一導電部1及び第二導電部2との間の電圧を測定した(測定1)。測定には、Agilent Technologies社製の34401Aマルチメーターを使用した。結果を表1に示す。参考例1に示したシステムでは、LED電球は270~330秒おきに点滅を繰り返した。すなわち、第一導電部1及び/又は第二導電部2から、起電していることを確認できた。 For the constructed system, the voltage between the first conductive part 1 and the second conductive part 2 was measured (measurement 1). A 34401A multimeter manufactured by Agilent Technologies was used for the measurement. Table 1 shows the results. In the system shown in Reference Example 1, the LED bulb repeatedly blinked every 270 to 330 seconds. That is, it was confirmed that electricity was generated from the first conductive portion 1 and/or the second conductive portion 2 .
 次に、第一導電部1及び第二導電部2を浸し、アクリル製容器(外径15cm×15cm×15cmの立方体、内径14.5cm)に高さ7.5cmまで、純水(古河薬品工業株式会社製、高純度精製水、温度25度:媒体)を入れ、第一導電部1及び第二導電部2を浸した。第一導電部1及び第二導電部2は非接触であり、第一導電部1及び第二導電部2の距離は12cmであり、第一導電部1と第二導電部2の板状の平面は、平行になるように設置した。また、第一導電部1及び第二導電部2が、電気的に接続されていない状態とした。そして、34401Aマルチメーターを用いて、第一導電部1及び第二導電部2との間の電圧を測定した(測定2)。さらに、この状態において、第一導電部1と第二導電部2との間の媒体の抵抗値を測定した(測定3)。 Next, the first conductive part 1 and the second conductive part 2 are immersed in an acrylic container (outer diameter 15 cm × 15 cm × 15 cm cube, inner diameter 14.5 cm) up to a height of 7.5 cm, pure water (Furukawa Pharmaceutical Co., Ltd.) High-purity purified water manufactured by Co., Ltd., temperature 25 degrees: medium) was put in, and the first conductive part 1 and the second conductive part 2 were immersed. The first conductive part 1 and the second conductive part 2 are non-contact, the distance between the first conductive part 1 and the second conductive part 2 is 12 cm, and the plate-like shape of the first conductive part 1 and the second conductive part 2 The planes were set so as to be parallel. Also, the first conductive portion 1 and the second conductive portion 2 were in a state in which they were not electrically connected. Then, using a 34401A multimeter, the voltage between the first conductive portion 1 and the second conductive portion 2 was measured (measurement 2). Furthermore, in this state, the resistance value of the medium between the first conductive portion 1 and the second conductive portion 2 was measured (measurement 3).
(参考例2)
 媒体を、土(株式会社プロトリーフ製、観葉植物の土)に変更したこと以外は、参考例1と同様にして、測定1~3を実施した。結果を表1に示す。参考例2に示したシステムでは、LED電球は21~23秒おきに、略等間隔に点滅を繰り返した。すなわち、第一導電部1及び/又は第二導電部2から、起電していることを確認できた。
(Reference example 2)
Measurements 1 to 3 were carried out in the same manner as in Reference Example 1, except that the medium was changed to soil (plant soil manufactured by Protoleaf Co., Ltd.). Table 1 shows the results. In the system shown in Reference Example 2, the LED bulb repeatedly blinked at approximately equal intervals every 21 to 23 seconds. That is, it was confirmed that electricity was generated from the first conductive portion 1 and/or the second conductive portion 2 .
(参考例3)
 純水(参考例1のものと同じ)50gに塩(伯方塩業株式会社製、伯方の塩)5gを溶かした水溶液に浸したウエスを、媒体と接触する第一導電部1及び第二導電部2の面に貼り付け、媒体を砂(トーヨーマテラン株式会社製、粒度ピーク(重量比)が、約0.9mmの珪砂)に変更したこと以外は、参考例1と同様にして、測定1~3を実施した。結果を表1に示す。参考例3に示したシステムでは、LED電球は80~100秒おきに点滅を繰り返した。すなわち、第一導電部1及び/又は第二導電部2から、起電していることを確認できた。
(Reference example 3)
A waste cloth immersed in an aqueous solution of 50 g of pure water (the same as in Reference Example 1) and 5 g of salt (manufactured by Hakata Shiogyo Co., Ltd., Hakata No Shio) was placed on the first conductive portion 1 and the second conductive portion 1 in contact with the medium. Measurement was performed in the same manner as in Reference Example 1, except that it was attached to the surface of part 2 and the medium was changed to sand (manufactured by Toyo Materan Co., Ltd., silica sand with a particle size peak (weight ratio) of about 0.9 mm). 1 to 3 were performed. Table 1 shows the results. In the system shown in Reference Example 3, the LED bulb repeatedly blinked every 80 to 100 seconds. That is, it was confirmed that electricity was generated from the first conductive portion 1 and/or the second conductive portion 2 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(参考例4)
 参考例1において、アクリル製容器に、高さ7.5cmまで純水を入れていたところ、高さ10cmまで純水を追加した。純水を追加することで、前述したシステムの内部インピーダンスの変化を確認できた。また、純水を追加することで、Toff期間が開始した時の入力電圧V INの変化を確認できた。なお、内部インピーダンスは、上述した算定方法により算定した。
(Reference example 4)
In Reference Example 1, pure water was added up to a height of 10 cm when pure water was put into the acrylic container to a height of 7.5 cm. By adding pure water, we were able to confirm the change in the internal impedance of the system described above. Further, by adding pure water, it was possible to confirm a change in the input voltage V 2 IN when the T off period started. The internal impedance was calculated by the calculation method described above.
(参考例5)
 参考例1において、アクリル製容器に、高さ7.5cmまで純水を入れていたところ、5分間をかけて、高さ10cmまで純水を追加した。前述したシステムの内部インピーダンスの単位時間当たりの変化量が変化するのを確認できた。また、純水を追加することで、入力電圧の単位時間当たりの変化量が変化するのを確認できた。なお、内部インピーダンスは、上述した算定方法により算定した。入力電圧は、Toff期間が開始した時の入力電圧V INである。
(Reference example 5)
In Reference Example 1, when the acrylic container was filled with pure water up to a height of 7.5 cm, the pure water was added up to a height of 10 cm over 5 minutes. It was confirmed that the amount of change per unit time of the internal impedance of the system described above changed. Further, it was confirmed that the amount of change in the input voltage per unit time changed by adding pure water. The internal impedance was calculated by the calculation method described above. The input voltage is the input voltage V 2 IN when the T off period begins.
 1 第一導電部、2 第二導電部、3 機能部、4 媒体、10 センサノード、11 収集ノード、12 移動体、13 無線装置 1 first conductive section, 2 second conductive section, 3 function section, 4 medium, 10 sensor node, 11 collection node, 12 moving object, 13 wireless device

Claims (19)

  1. センサノードと、センサノードが取得したセンシングデータを受信する収集ノードと、収集ノードを有する移動体とを備えるデータ収集システムであって、
    データ収集システムが、
    センサノードの位置に関する位置情報を記憶する位置情報記憶手段
    を備え、
    移動体が、
    センサノードの位置から第一の所定の範囲内まで収集ノードを移動させる収集ノード移動手段
    を備え、
    センサノードが、
    取得したセンシングデータを収集ノードに送信する第一センシングデータ送信手段
    を備え、
    収集ノードが、
    センサノードからセンシングデータを受信するセンシングデータ受信手段
    を備える、
    データ収集システム。
    A data collection system comprising a sensor node, a collection node that receives sensing data acquired by the sensor node, and a moving body having the collection node,
    data collection system
    A position information storage means for storing position information regarding the position of the sensor node,
    the moving body
    collecting node moving means for moving the collecting node from the position of the sensor node to within a first predetermined range;
    the sensor node
    A first sensing data transmission means for transmitting the acquired sensing data to the collection node,
    collection node
    comprising sensing data receiving means for receiving sensing data from the sensor node;
    data collection system.
  2. 収集ノードが、
    センサノードに信号を送信する信号送信手段
    を備え、
    第一センシングデータ送信手段が、信号送信手段により信号を送信された場合に、該収集ノードにセンシングデータを送信する、
    請求項1に記載のデータ収集システム。
    collection node
    A signal transmission means for transmitting a signal to the sensor node,
    The first sensing data transmission means transmits sensing data to the collection node when a signal is transmitted by the signal transmission means;
    The data collection system of claim 1.
  3. データ収集システムが、
    無線装置
    を備え、
    センサノードが、
    センシングデータを送信可能であるという通知を無線装置に送信するセンシングデータ送信可能通知送信手段と、
    該センサノードを識別する識別情報を無線装置に送信する第一識別情報送信手段と
    を備え、
    無線装置が、
    センシングデータ送信可能通知送信手段によりセンシングデータを送信可能であるという通知が送信されたセンサノードの識別情報を移動体に送信する第二識別情報送信手段
    を備える、
    請求項1又は2に記載のデータ収集システム。
    data collection system
    Equipped with radio equipment,
    the sensor node
    sensing data transmittable notification transmitting means for transmitting a notification that sensing data can be transmitted to the wireless device;
    a first identification information transmission means for transmitting identification information identifying the sensor node to the wireless device;
    the wireless device
    a second identification information transmitting means for transmitting to the moving body identification information of the sensor node to which the sensing data transmittable notification transmitting means has transmitted a notification that the sensing data can be transmitted;
    A data collection system according to claim 1 or 2.
  4. 移動体が、
    センサノードを設置するセンサノード設置手段
    を備え、
    位置情報記憶手段が、センサノード設置手段により設置された際のセンサノードの位置情報を記憶する、
    請求項1~3のいずれかに記載のデータ収集システム。
    the moving body
    Equipped with a sensor node installation means for installing a sensor node,
    the location information storage means stores location information of the sensor node when installed by the sensor node installation means;
    The data collection system according to any one of claims 1-3.
  5. センサノードが、
    該センサノードの位置情報を特定する位置情報特定手段
    を備え、
    データ収集システムが、
    位置情報記憶手段により記憶されたセンサノードの位置情報を、位置情報特定手段により特定されたセンサノードの位置情報に更新する位置情報更新手段
    を備える、
    請求項1~4のいずれかに記載のデータ収集システム。
    the sensor node
    A position information specifying means for specifying position information of the sensor node,
    data collection system
    position information updating means for updating the position information of the sensor node stored by the position information storage means to the position information of the sensor node specified by the position information specifying means;
    The data collection system according to any one of claims 1-4.
  6. データ収集システムが、
    位置情報記憶手段により記憶されたセンサノードの位置情報に基づいて、移動体の移動経路を特定する移動経路特定手段
    を備え、
    収集ノード移動手段が、移動経路特定手段により特定された移動経路に従って、収集ノードを移動させる、
    請求項1~5のいずれかに記載のデータ収集システム。
    data collection system
    a moving route specifying means for specifying a moving route of the moving body based on the position information of the sensor node stored by the position information storing means;
    the collection node movement means moves the collection nodes according to the movement path identified by the movement path identification means;
    The data collection system according to any one of claims 1-5.
  7. センサノードが、集電システムと接続されており、
    集電システムが、
    第一導電部及び第二導電部と、
    機能部と
    を備え、
    第一導電部及び機能部は接続されており、
    第二導電部及び機能部は接続されており、
    第一導電部及び第二導電部は、互いに非接触であり、
    第一導電部及び第二導電部を媒体に接触させることで集電する、
    請求項1~6のいずれかに記載のデータ収集システム。
    A sensor node is connected to a current collection system,
    the current collection system
    a first conductive portion and a second conductive portion;
    and a functional part,
    the first conductive part and the functional part are connected,
    the second conductive part and the functional part are connected,
    The first conductive part and the second conductive part are non-contact with each other,
    current is collected by bringing the first conductive portion and the second conductive portion into contact with the medium;
    The data collection system according to any one of claims 1-6.
  8. データ収集システムが、
    所定の時間内にセンシングデータを送信したセンサノードを識別する送信識別手段
    を備え、
    収集ノード移動手段が、送信識別手段により所定の時間内にデータを送信したと識別されたセンサノード以外のセンサノードの位置から第一の所定の範囲内まで収集ノードを移動させる、
    請求項1~7のいずれかに記載のデータ収集システム。
    data collection system
    A transmission identification means for identifying a sensor node that has transmitted sensing data within a predetermined time;
    the collection node moving means moves the collection node within a first predetermined range from the position of the sensor node other than the sensor node identified as having transmitted data within the predetermined time by the transmission identifying means;
    The data collection system according to any one of claims 1-7.
  9. センサノードが、
    複数のセンサ
    を備え、
    データ収集システムが、
    センサノードが備える複数のセンサから取得できるセンシングデータのうち、送信対象となるセンシングデータを特定する送信対象センシングデータ特定手段
    を備え、
    第一センシングデータ送信手段が、送信対象センシングデータ特定手段により特定されたセンシングデータを送信する、
    請求項1~8のいずれかに記載のデータ収集システム。
    the sensor node
    Equipped with multiple sensors,
    data collection system
    a transmission target sensing data specifying means for specifying transmission target sensing data among sensing data that can be acquired from a plurality of sensors included in the sensor node;
    The first sensing data transmission means transmits the sensing data specified by the transmission target sensing data specifying means;
    The data collection system according to any one of claims 1-8.
  10. 第一センシングデータ送信手段が、複数の通信方法によりセンシングデータを送信することが可能であり、
    データ収集システムが、
    第一センシングデータ送信手段の通信方法を変更する通信方法変更手段
    を備え、
    第一センシングデータ送信手段が、通信方法変更手段により変更された通信方法によりデータを送信する、
    請求項1~9のいずれかに記載のデータ収集システム。
    The first sensing data transmission means can transmit sensing data by a plurality of communication methods,
    data collection system
    A communication method changing means for changing the communication method of the first sensing data transmission means,
    the first sensing data transmission means transmits data by the communication method changed by the communication method change means;
    The data collection system according to any one of claims 1-9.
  11. 収集ノードが、
    センサノードに電力を供給する電力供給手段
    を備える、
    請求項1~10のいずれかに記載のデータ収集システム。
    collection node
    comprising power supply means for supplying power to the sensor node;
    The data collection system according to any one of claims 1-10.
  12. データ収集システムが、
    センサノードの位置から第二の所定の範囲内に設置された無線装置
    を備え、
    無線装置が、
    移動体に通知を送信する通知送信手段
    を備え、
    移動体が、
    センサノードの位置を、通知送信手段により送信された通知に対応する無線装置の位置を基に特定する位置特定手段
    を備える、
    請求項1~11のいずれかに記載のデータ収集システム。
    data collection system
    A wireless device installed within a second predetermined range from the location of the sensor node,
    the wireless device
    A notification transmission means for transmitting a notification to a mobile object,
    the moving body
    locating means for locating the sensor node based on the location of the wireless device corresponding to the notification sent by the notification sending means;
    The data collection system according to any one of claims 1-11.
  13. データ収集システムが、
    センサノードの状態を判定する判定ノード
    を備え、
    判定ノードが、
    センサノードから送信されたセンシングデータを基に、センサノードの状態を判定する第一状態判定手段
    を備える、
    請求項1~12のいずれかに記載のデータ収集システム。
    data collection system
    comprising a determination node that determines the state of the sensor node;
    The decision node is
    A first state determination means for determining the state of the sensor node based on sensing data transmitted from the sensor node,
    The data collection system according to any one of claims 1-12.
  14. データ収集システムが、
    他のコンピュータ装置
    を備え、
    収集ノードが、
    センシングデータを他のコンピュータ装置へ送信する第二センシングデータ送信手段
    を備える、
    請求項1~13のいずれかに記載のデータ収集システム。
    data collection system
    with other computer equipment,
    collection node
    A second sensing data transmission means for transmitting sensing data to another computer device,
    The data collection system according to any one of claims 1-13.
  15. データ収集システムが、
    無線装置
    を備え、
    センサノード及び無線装置は接続されており、
    無線装置が、
    センサノードがセンシングデータを送信可能であることを判定するセンシングデータ送信可能判定手段と、
    センシングデータ送信可能判定手段によりセンシングデータを送信可能であると判定されたセンサノードの識別情報を移動体に送信する第三識別情報送信手段と
    を備える、
    請求項1~14のいずれかに記載のデータ収集システム。
    data collection system
    Equipped with radio equipment,
    the sensor node and the wireless device are connected,
    the wireless device
    sensing data transmittable determination means for determining whether the sensor node is capable of transmitting sensing data;
    a third identification information transmitting means for transmitting identification information of the sensor node determined to be capable of transmitting sensing data by the sensing data transmittability determining means to the moving object;
    The data collection system according to any one of claims 1-14.
  16. データ収集システムが、
    センサノードの状態を判定する判定ノード
    を備え、
    センサノード及び判定ノードは接続されており、
    判定ノードが、
    センサノードの状態を判定する第二状態判定手段
    を備える、
    請求項1~15のいずれかに記載のデータ収集システム。
    data collection system
    comprising a determination node that determines the state of the sensor node;
    The sensor node and decision node are connected,
    The decision node is
    comprising second state determination means for determining the state of the sensor node;
    The data collection system according to any one of claims 1-15.
  17. センサノードと、センサノードが取得したセンシングデータを受信する収集ノードと、収集ノードを有する移動体とを備えるデータ収集システムを用いたデータ収集方法であって、
    データ収集システムが、
    センサノードの位置に関する位置情報を記憶する位置情報記憶ステップ
    を有し、
    移動体が、
    センサノードの位置から第一の所定の範囲内まで収集ノードを移動させる収集ノード移動ステップ
    を有し、
    センサノードが、
    取得したセンシングデータを収集ノードに送信するセンシングデータ送信ステップ
    を有し、
    収集ノードが、
    センサノードからセンシングデータを受信するセンシングデータ受信ステップ
    を有する、
    データ収集方法。
    A data collection method using a data collection system that includes a sensor node, a collection node that receives sensing data acquired by the sensor node, and a moving object that has the collection node,
    data collection system
    having a location information storage step of storing location information about the location of the sensor node;
    the moving body
    a collecting node moving step of moving the collecting node from the position of the sensor node to within a first predetermined range;
    the sensor node
    having a sensing data transmission step of transmitting the acquired sensing data to the collection node;
    collection node
    Having a sensing data receiving step of receiving sensing data from the sensor node,
    Data Collection Method.
  18. センサノードが取得したセンシングデータを受信する収集ノードを有する移動体であって、
    センサノードの位置に関する位置情報を記憶する位置情報記憶手段、
    センサノードの位置から第一の所定の範囲内まで収集ノードを移動させる収集ノード移動手段
    を備え、
    収集ノードが、
    センサノードからセンシングデータを受信するセンシングデータ受信手段
    を備える、
    移動体。
    A moving object having a collection node that receives sensing data acquired by a sensor node,
    location information storage means for storing location information about the location of the sensor node;
    collecting node moving means for moving the collecting node from the position of the sensor node to within a first predetermined range;
    collection node
    comprising sensing data receiving means for receiving sensing data from the sensor node;
    Mobile.
  19. センサノードと、センサノードが取得したセンシングデータを受信する収集ノードを備えるデータ収集システムを用いたデータ収集方法であって、
    データ収集システムが、
    センサノードの位置に関する位置情報を記憶する位置情報記憶ステップ
    を有し、
    センサノードの位置から第一の所定の範囲内まで収集ノードを移動させる収集ノード移動ステップ
    を有し、
    センサノードが、
    取得したセンシングデータを収集ノードに送信するセンシングデータ送信ステップ
    を有し、
    収集ノードが、
    センサノードからセンシングデータを受信するセンシングデータ受信ステップ
    を有する、
    データ収集方法。
    A data collection method using a data collection system comprising a sensor node and a collection node that receives sensing data acquired by the sensor node,
    data collection system
    having a location information storage step of storing location information about the location of the sensor node;
    a collecting node moving step of moving the collecting node from the position of the sensor node to within a first predetermined range;
    the sensor node
    having a sensing data transmission step of transmitting the acquired sensing data to the collection node;
    collection node
    Having a sensing data receiving step of receiving sensing data from the sensor node,
    Data Collection Method.
PCT/JP2022/003419 2021-02-05 2022-01-28 Data collection system, data collection method, and mobile body WO2022168765A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021017836A JP2022120733A (en) 2021-02-05 2021-02-05 Data collection system, data collection method, and mobile body
JP2021-017836 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022168765A1 true WO2022168765A1 (en) 2022-08-11

Family

ID=82741530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003419 WO2022168765A1 (en) 2021-02-05 2022-01-28 Data collection system, data collection method, and mobile body

Country Status (2)

Country Link
JP (1) JP2022120733A (en)
WO (1) WO2022168765A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115826464A (en) * 2022-11-29 2023-03-21 航科院中宇(北京)新技术发展有限公司 Remote machine position node acquisition system and acquisition method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10224239A (en) * 1997-01-31 1998-08-21 Ngk Spark Plug Co Ltd Data transmitter, data transmission method, temperature detector and humidity detector
JP2012209716A (en) * 2011-03-29 2012-10-25 Oki Electric Ind Co Ltd Information communication device, and communication performance switching program
WO2020090081A1 (en) * 2018-11-01 2020-05-07 三菱電機株式会社 Air-conditioning system and air-conditioning management system
JP2020097336A (en) * 2018-12-18 2020-06-25 コネクシオ株式会社 Autonomous unmanned aircraft for data collection, and control method and control program of the same
JP2020196375A (en) * 2019-06-04 2020-12-10 コネクシオ株式会社 Autonomous unmanned aircraft for data collection, control method and control program therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10224239A (en) * 1997-01-31 1998-08-21 Ngk Spark Plug Co Ltd Data transmitter, data transmission method, temperature detector and humidity detector
JP2012209716A (en) * 2011-03-29 2012-10-25 Oki Electric Ind Co Ltd Information communication device, and communication performance switching program
WO2020090081A1 (en) * 2018-11-01 2020-05-07 三菱電機株式会社 Air-conditioning system and air-conditioning management system
JP2020097336A (en) * 2018-12-18 2020-06-25 コネクシオ株式会社 Autonomous unmanned aircraft for data collection, and control method and control program of the same
JP2020196375A (en) * 2019-06-04 2020-12-10 コネクシオ株式会社 Autonomous unmanned aircraft for data collection, control method and control program therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASATO MIYATAKE , HIROYUKI SHIKATA : "Route Control for Mobile Sink in On-Demand Wireless Sensor Networks exploiting Wake-up Receiver.", IEICE TECHNICAL REPORT, vol. 116, no. 407 (ASN2016-69), 12 January 2017 (2017-01-12), JP, pages 1 - 6, XP009538781 *
MASUMI TADOKORO, SHIGEKI SHIOKAWA: "Effective power charging method considering hotspot in wireless rechargeable networks", IEICE TECHNICAL REPORT, vol. 119, no. 53 (SeMI2019-7), 16 May 2019 (2019-05-16), JP, pages 105 - 108, XP009538782 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115826464A (en) * 2022-11-29 2023-03-21 航科院中宇(北京)新技术发展有限公司 Remote machine position node acquisition system and acquisition method thereof
CN115826464B (en) * 2022-11-29 2024-03-22 航科院中宇(北京)新技术发展有限公司 Acquisition method of remote site node acquisition system

Also Published As

Publication number Publication date
JP2022120733A (en) 2022-08-18

Similar Documents

Publication Publication Date Title
US20120206296A1 (en) Self-charging power controlled system for locating animals by gps
CN112968223B (en) Power pack and unmanned aerial vehicle
WO2022168765A1 (en) Data collection system, data collection method, and mobile body
US20220336824A1 (en) System and apparatus
Savel et al. IoT based water quality monitoring system using solar powered and LoRaWAN
KR20130073275A (en) Multi-function buoy and system for monitoring the sea using thereof
JP7208696B2 (en) sensor
US20230288463A1 (en) Sensor system, sensor device, and sensing method
EP2899833B1 (en) Radiosonde power source device and radiosonde
TWI773336B (en) Automatic power supply and link-in control system for a tethered drone
WO2023145523A1 (en) Power supply system
US11942815B1 (en) Method and device for power management in a solar-powered electronic device
WO2022054804A1 (en) Sensor system, sensor device, and sensing method
US20230384810A1 (en) Device and energizing method
Anderson et al. Integrating sensor buoys into a marine robotics algorithm validation testbed
CN207450235U (en) A kind of automatic inspection quadrotor
CN116184234A (en) Monitoring system and method for detecting and reporting electric quantity of lithium battery
CN109474053A (en) A kind of self-generating system and method for stomach implanted equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749637

Country of ref document: EP

Kind code of ref document: A1