WO2022168506A1 - Tolerance analysis system - Google Patents

Tolerance analysis system Download PDF

Info

Publication number
WO2022168506A1
WO2022168506A1 PCT/JP2021/048705 JP2021048705W WO2022168506A1 WO 2022168506 A1 WO2022168506 A1 WO 2022168506A1 JP 2021048705 W JP2021048705 W JP 2021048705W WO 2022168506 A1 WO2022168506 A1 WO 2022168506A1
Authority
WO
WIPO (PCT)
Prior art keywords
tolerance
information
analysis system
qcd
tolerance analysis
Prior art date
Application number
PCT/JP2021/048705
Other languages
French (fr)
Japanese (ja)
Inventor
知丈 東平
一平 河野
悠 山田
達雄 針山
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022168506A1 publication Critical patent/WO2022168506A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the present invention relates to a tolerance analysis system capable of evaluating including the influence of processing variations during manufacturing.
  • Patent Literature 1 discloses a tolerance analysis system that calculates the optimum minimum gap value when assembling parts and supports a designer.
  • Patent Document 1 is a dimensional condition setting unit that defines design data and dimensional tolerances of each component, a primary analysis execution unit that performs primary analysis using the defined dimensional tolerances and obtains dispersion or deviation, and a primary The minimum gap calculation part calculates the optimum minimum gap value by back-calculating the gap value that satisfies the required quality for the design specification value using the variance or deviation obtained by the analysis execution part. I have.
  • the dimension values to be controlled can be determined by attribute information. It is stated that dimensional tolerance values can be determined in conjunction with attribute value information and limit tolerance tables.
  • the marginal tolerance is always changing due to, for example, 4M (Man, Material, Machine, Method, and so on) variations, so there is no rational manufacturing It is not intended to quantitatively evaluate time variability.
  • dimensional tolerances are closely related to, for example, material procurement costs. material characteristics tends to increase. Therefore, according to the required manufacturing quality, the designer considers manufacturability by linking the information of QCD (Quality, Cost, Delivery, that is, quality, cost, delivery date, the same below) with dimensional tolerance.
  • QCD Quality, Cost, Delivery
  • a front-loading design can be realized.
  • the aforementioned QCD information is not taken into consideration, so the consideration of manufacturability is not sufficient.
  • the purpose of the present invention is to provide a tolerance analysis system that allows selection of tolerances that take 4M and QCD into consideration.
  • a recording unit for recording the variation factor of the processing target and QCD information a dimensional error calculation unit that calculates a dimensional error after machining of the object to be machined from the variation factor; a data interpolation unit that interpolates data from the calculation results of the dimensional error calculation unit; and a tolerance information generation section that generates tolerance information from the output of the data interpolation section and provides the QCD information related to the tolerance information from the QCD information.
  • FIG. 1 is an explanatory diagram showing the entire tolerance analysis system of Example 1;
  • FIG. FIG. 10 is a diagram illustrating an example of a tolerance information generator according to the first embodiment;
  • FIG. It is a figure which shows the example of the result obtained by the data interpolation part.
  • FIG. 10 is a diagram showing another example of results obtained by the data interpolating section;
  • FIG. 10 is a view showing a tolerance determination confirmation screen in Example 1;
  • 4 is a diagram showing a QCD information confirmation screen of Example 1.
  • FIG. 4 is a diagram showing a flow chart of the tolerance analysis system of Example 1.
  • FIG. 10 is a diagram illustrating an example of a tolerance information generator according to the first embodiment;
  • FIG. It is a figure which shows the example of the result obtained by the data interpolation part.
  • FIG. 10 is a diagram showing another example of results obtained by the data interpolating section;
  • FIG. 10 is a view showing a tolerance determination confirmation screen in Example 1;
  • 4 is a diagram
  • FIG. 1 is an explanatory diagram showing the entire tolerance analysis system of the first embodiment.
  • a tolerance analysis result display section 11 a QCD information display section 12 , a machining error range calculation section 2 , a variation factor recording section 3 and a database recording section 4 are provided.
  • the machining error range calculation unit 2 includes a dimensional error calculation unit 21 that executes CAE (Computer Aided Engineering) calculation, a data interpolation unit 22, and a tolerance information generation unit 23.
  • processing is the work necessary to create a new product, and includes metal plastic processing including cutting, pressing, extrusion molding, rolling molding, punching molding, drawing molding, and resin molding processing.
  • the CAE calculation here is a process CAE calculation that includes the effects of material property variations that occur during manufacturing, the workpiece to be processed during manufacturing, the method of setting jigs necessary for processing, and the processing conditions of the workpiece. means that
  • the variation factor recording section 3 includes a material property recording section 31 and a processing condition recording section 32 . Furthermore, the database recording unit 4 includes procurement cost data 41 , processing cost data 42 , work standard time data 43 and machine time data 44 .
  • a program corresponding to the dimensional error calculation unit 21, the data interpolation unit 22, and the tolerance information generation unit 23 is recorded in a memory or the like, and a processor or computer reads out and executes the program, thereby forming the machining error range calculation unit. 2 are executed.
  • a processor a CPU or a GPU can be considered, but other semiconductor devices may be used as long as they are the subject that executes predetermined processing.
  • the variation factor recording unit 3 and the database recording unit 4 are general computer auxiliary storage devices.
  • the auxiliary storage device is, for example, a large-capacity, non-volatile storage device such as a magnetic storage device (HDD: Hard Disk Drive) or a flash memory (SSD: Solid State Drive).
  • the tolerance analysis result display unit 11 and the QCD information display unit 12 have the function of displaying the tolerance analysis result calculated by the machining error range calculation unit 2 and the QCD information acquired from the database recording unit 4.
  • the tolerance analysis result display unit 11 and the QCD information display unit 12 have a processor or computer, a memory, an auxiliary storage device, a monitor, etc., receive instructions from the machining error range calculation unit 2, and display acquired data.
  • the cutting resistance changes depending on the physical properties of the material (eg, Young's modulus, yield stress, work hardening coefficient, etc.).
  • the cutting resistance changes it is possible to estimate the dimensions of the work material after machining, for example, by using finite element analysis software.
  • the dimensional error calculation unit 21 calculates the dimensional error of the work material after machining by CAE analysis. It is possible to The material property values are recorded in the material property recording section 31 .
  • the CAE analysis of cutting it is also possible to calculate the influence of the whirling amount of the tool and the amount of protrusion of the tool.
  • the whirling amount of the tool and the protrusion amount of the tool occur when the operator attaches the cutting tool to the cutting machine during machining. Therefore, it is a parameter that depends on the operator. Similar to the physical property values of the material, the whirling amount and the protrusion amount of the tool that may occur during the work obtained in advance are recorded in the machining condition recording unit 32 . By doing so, it is possible for the dimensional error calculation unit 21 to calculate the post-processing dimensional error related to 4M and dependent on the operator by CAE analysis.
  • the data interpolation unit 22 performs data interpolation on the analysis results obtained by the dimensional error calculation unit 21. For example, preparation is made to obtain the 3 ⁇ value of the processing error amount (three times the standard deviation, which is the statistic) by random number calculation using the Monte Carlo method or the like. Since the 3 ⁇ value is a value that includes a 99.7% probability of the dimensional range after processing that occurs during manufacturing, it is desirable as a value for estimating the dimensional range that can be manufactured after processing.
  • FIG. 2 is a diagram explaining an example of the tolerance information generation unit of the first embodiment.
  • the horizontal axis of FIG. 2 indicates the dimensional error (mm), and the vertical axis indicates the frequency (number of times) corresponding to the horizontal axis.
  • the processed dimension average value (M Value in FIG. 2) of the work material is generated from the interpolated data output from the data interpolation unit 22, and the processed dimension average value is It is possible to calculate the -3 ⁇ value and +3 ⁇ value that indicate the range of material dimensions.
  • the processing dimension average value and the ⁇ 3 ⁇ value and +3 ⁇ value calculated by the tolerance information generation unit are manufacturable tolerances after considering the influence of variations that may occur during manufacturing, that is, the tolerances generated by the tolerance information generation unit 23.
  • FIG. 3 is a diagram showing an example of the results obtained by the data interpolation unit 22, and shows the relationship between the 3 ⁇ value of the amount of whirling of the tool and the 3 ⁇ value of the amount of machining error of the work material.
  • the horizontal axis in FIG. 3 indicates the 3 ⁇ value (mm) of the whirling amount of the tool, and the vertical axis indicates the 3 ⁇ value (mm) of the machining error amount of the work piece corresponding to the horizontal axis.
  • FIG. 4 is a diagram showing another example of the results obtained by the data interpolation unit 22, showing the relationship between the 3 ⁇ value of the tool protrusion amount and the 3 ⁇ value of the machining error amount of the work material.
  • the horizontal axis in FIG. 4 indicates the 3 ⁇ value (mm) of the protrusion amount of the tool, and the vertical axis indicates the 3 ⁇ value (mm) of the machining error amount of the work piece corresponding to the horizontal axis.
  • the database recording unit 4 designs the effects of material cost, processing cost, work time, and machine time when the designer specifies the tolerance within the manufacturable tolerance calculated according to the processing error range calculation unit 2. This is the part to present to the person.
  • the database recording unit 4 records QCD (Quality, Cost, Delivery) information used by the designer to comprehend.
  • Fig. 5 shows the tolerance judgment confirmation screen.
  • the allowable dimensional error calculated by the machining error range calculator 2 is presented on the screen, and the screen is used for the designer to input the tolerance within the range.
  • a display button is prepared to obtain QCD information for the selected tolerance.
  • a QCD information confirmation screen is displayed as shown in FIG.
  • procurement cost, processing cost, work standard time, machine time corresponding to the tolerance, or all of the expected values in combination are stored in the database department.
  • the QCD information display unit 12 displays the acquired data as a QCD information confirmation screen.
  • the range of each item is also displayed, making it possible to grasp the range of the expected QCD value for the specified tolerance.
  • numerical values are displayed as confirmation screens here, it is also possible to present information visually intelligible to the designer, such as graph display. From the information obtained on the tolerance judgment confirmation screen and QCD information confirmation screen, the designer can appropriately judge the dimensional tolerance that can be manufactured, procurement cost, processing cost, standard work time, and machine time for the required specifications. become.
  • FIG. 7 is a diagram showing a flowchart of the tolerance analysis system.
  • the dimensional error calculator 21 takes in three-dimensional CAD shape data (step S1).
  • the dimensional error calculator 21 performs CAE analysis on the captured three-dimensional CAD shape, taking into consideration the manufacturing process (step S2).
  • the data interpolation unit 22 executes data interpolation from the result of the execution by the dimensional error calculation unit 21 (step S3).
  • the tolerance information generation unit 23 calculates the manufacturable machining error (allowable dimensional error) from the data from the data interpolating unit 22, and causes the tolerance analysis result display unit 11 to display the manufacturable machining error (allowable dimensional error) (step S4). ).
  • step S5 Accepts input of dimensional tolerances from the designer with reference to manufacturable processing errors.
  • the tolerance information generation unit 23 gives QCD information such as the above-described processing cost from the database recording unit 4 that records QCD information in accordance with the input of the dimensional tolerance, and causes the QCD information display unit 12 to display the QCD information (step S6 ).
  • step S8 If it is determined that the selected dimensional tolerance is acceptable (OK in S7), the tolerance analysis ends (step S8).
  • Step S7 if it is determined that the selected dimensional tolerance is not good (NG in S7), such as when the customer's requested value and the cost balance do not match, return to step S5.
  • the QCD information to which the above-described QCD information such as the processing cost is added is displayed from the database recording unit 4 that records the QCD information according to the input of the dimensional tolerance. (Step S6)
  • the tolerance determination is re-evaluated by the designer (Step S7).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A tolerance analysis system including: a recording unit that records QCD information and variation factors for a workpiece; a dimensional error calculation unit that calculates, from the variation factors, the dimensional error of the workpiece after machining; a data interpolation unit that interpolates data from the calculation result obtained by the dimensional error calculation unit; and a tolerance information generation unit that generates tolerance information from the output from the data interpolation unit and assigns QCD information related to the tolerance information from among the QCD information.

Description

公差解析システムTolerance analysis system
 本発明は、製造時の加工ばらつきの影響を含めて評価が可能な公差解析システムに関するものである。 The present invention relates to a tolerance analysis system capable of evaluating including the influence of processing variations during manufacturing.
 近年、3次元データを活用した設計段階での作り込みにより,コスト低減と開発効率の向上を狙ったフロントローディングの動きが活発化している。製造物の寸法は設計基準値から実際の製造における加工ばらつきの影響等を予測して寸法の公差を指定する必要がある。寸法公差を設計者が適切に評価することによって、製品の不良率低減や手戻りの防止を実現するフロントローディングが可能になる。特許文献1では、部品組立時の最適最小隙間値を算出し、設計者を支援する公差解析システムを示している。 In recent years, there has been an increasing trend toward front loading, which aims to reduce costs and improve development efficiency by incorporating 3D data at the design stage. For product dimensions, it is necessary to specify dimensional tolerances by estimating the effects of processing variations in actual manufacturing from design standard values. Appropriate evaluation of dimensional tolerances by designers enables front-loading, which reduces product defect rates and prevents rework. Patent Literature 1 discloses a tolerance analysis system that calculates the optimum minimum gap value when assembling parts and supports a designer.
 特許文献1は、設計データ及び各構成部品の寸法公差を定義する寸法条件設定部と、定義された寸法公差を用いて一次解析を実行して、分散または偏差を求める一次解析実行部と、一次解析実行部で求めた分散または偏差を用いて設計仕様値に対しての要求品質を満足する隙間値を逆算し、最適な最小の隙間値である最適最小隙間値を算出する最小隙間演算部を備えている。 Patent Document 1 is a dimensional condition setting unit that defines design data and dimensional tolerances of each component, a primary analysis execution unit that performs primary analysis using the defined dimensional tolerances and obtains dispersion or deviation, and a primary The minimum gap calculation part calculates the optimum minimum gap value by back-calculating the gap value that satisfies the required quality for the design specification value using the variance or deviation obtained by the analysis execution part. I have.
特開2009-146162号公報JP 2009-146162 A
 特許文献1では、公差解析を行う上で、コントロールすべき寸法値を属性情報により、決定することができる。寸法公差値は属性値情報と限界公差テーブルと合わせて決定できると記載されている。 In Patent Document 1, when performing tolerance analysis, the dimension values to be controlled can be determined by attribute information. It is stated that dimensional tolerance values can be determined in conjunction with attribute value information and limit tolerance tables.
 しかしながら、限界公差テーブルを備えているものの、限界公差は例えば4M(Man、Material、Machine、Method、つまり、人、材料、機械、方法、以下も同じ)の変動によって常に変化するため、根拠ある製造時のばらつきを定量的に評価するものではない。 However, although it does have a marginal tolerance table, the marginal tolerance is always changing due to, for example, 4M (Man, Material, Machine, Method, and so on) variations, so there is no rational manufacturing It is not intended to quantitatively evaluate time variability.
 さらに、寸法公差はたとえば、材料調達時のコストと密接に関連しており、材料入手時の調達コストが高い場合は相対的に材料の特性ばらつきが小さく、一方で調達コストが低い場合は相対的に材料の特性ばらつきが大きくなる傾向にある。そのため、要求される製造品質に応じて、QCD(Quality、Cost、Delivery、つまり、品質、コスト、納期、以下も同じ)の情報を寸法公差と紐づけることによって、設計者が製造性を考慮したフロントローディング設計が実現できる。特許文献1では、上述したQCDの情報は考慮されていないため、製造性の考慮が十分ではない。 Furthermore, dimensional tolerances are closely related to, for example, material procurement costs. material characteristics tends to increase. Therefore, according to the required manufacturing quality, the designer considers manufacturability by linking the information of QCD (Quality, Cost, Delivery, that is, quality, cost, delivery date, the same below) with dimensional tolerance. A front-loading design can be realized. In Patent Literature 1, the aforementioned QCD information is not taken into consideration, so the consideration of manufacturability is not sufficient.
 本発明の目的は、4MおよびQCDを考慮した公差を選定できるようにする公差解析システムを提供することにある。 The purpose of the present invention is to provide a tolerance analysis system that allows selection of tolerances that take 4M and QCD into consideration.
 本発明の好ましい一例としては、加工対象のばらつき要因とQCD情報を記録する記録部と、
前記ばらつき要因から加工対象の加工後の寸法誤差を計算する寸法誤差計算部と、
前記寸法誤差計算部の計算結果からデータ補間をするデータ補間部と、
前記データ補間部の出力から公差情報を生成し、前記QCD情報から前記公差情報に関する前記QCD情報を付与する公差情報生成部とを有する公差解析システムである。
As a preferred example of the present invention, a recording unit for recording the variation factor of the processing target and QCD information,
a dimensional error calculation unit that calculates a dimensional error after machining of the object to be machined from the variation factor;
a data interpolation unit that interpolates data from the calculation results of the dimensional error calculation unit;
and a tolerance information generation section that generates tolerance information from the output of the data interpolation section and provides the QCD information related to the tolerance information from the QCD information.
 本発明によれば、4MおよびQCDを考慮した公差を選定できるようにする公差解析システムを実現することができる。 According to the present invention, it is possible to realize a tolerance analysis system that allows selection of tolerances that take 4M and QCD into consideration.
実施例1の公差解析システムの全体を示す説明図である。1 is an explanatory diagram showing the entire tolerance analysis system of Example 1; FIG. 実施例1の公差情報生成部の一例を説明する図である。FIG. 10 is a diagram illustrating an example of a tolerance information generator according to the first embodiment; FIG. データ補間部によって得られた結果の例を示す図である。It is a figure which shows the example of the result obtained by the data interpolation part. データ補間部によって得られた結果の他の例を示す図である。FIG. 10 is a diagram showing another example of results obtained by the data interpolating section; 実施例1の公差判定確認画面を示す図である。FIG. 10 is a view showing a tolerance determination confirmation screen in Example 1; 実施例1のQCD情報確認画面を示す図である。4 is a diagram showing a QCD information confirmation screen of Example 1. FIG. 実施例1の公差解析システムのフローチャートを示す図である。4 is a diagram showing a flow chart of the tolerance analysis system of Example 1. FIG.
 本発明の実施例について、図面を参照して説明する。 An embodiment of the present invention will be described with reference to the drawings.
 図1は、実施例1の公差解析システムの全体を示す説明図である。公差解析結果表示部11、QCD情報表示部12、加工誤差範囲計算部2、ばらつき要因記録部3、データベース記録部4を備える。 FIG. 1 is an explanatory diagram showing the entire tolerance analysis system of the first embodiment. A tolerance analysis result display section 11 , a QCD information display section 12 , a machining error range calculation section 2 , a variation factor recording section 3 and a database recording section 4 are provided.
 加工誤差範囲計算部2は、CAE(Computer Aided Engineering)計算を実行する寸法誤差計算部21、データ補間部22、公差情報生成部23を含んでいる。ここで、「加工」とは新しい製品を作るために必要な作業であり、切削加工や、プレス、押出成形、圧延成形、抜き成形、絞り成形を含む金属の塑性加工、樹脂の成形加工を含む。ここでのCAE計算は、製造時に生じる材料特性ばらつき、製造時の被加工対象物や加工に必要な治具の設置方法、被加工対象物の加工条件の影響を含んだプロセスCAE計算を実行することを意味する。 The machining error range calculation unit 2 includes a dimensional error calculation unit 21 that executes CAE (Computer Aided Engineering) calculation, a data interpolation unit 22, and a tolerance information generation unit 23. Here, "processing" is the work necessary to create a new product, and includes metal plastic processing including cutting, pressing, extrusion molding, rolling molding, punching molding, drawing molding, and resin molding processing. . The CAE calculation here is a process CAE calculation that includes the effects of material property variations that occur during manufacturing, the workpiece to be processed during manufacturing, the method of setting jigs necessary for processing, and the processing conditions of the workpiece. means that
 ばらつき要因記録部3は、材料特性記録部31、加工条件記録部32を含んでいる。さらにデータベース記録部4は、調達コストデータ41、加工コストデータ42、作業標準時間データ43、マシンタイムデータ44を含んでいる。 The variation factor recording section 3 includes a material property recording section 31 and a processing condition recording section 32 . Furthermore, the database recording unit 4 includes procurement cost data 41 , processing cost data 42 , work standard time data 43 and machine time data 44 .
 寸法誤差計算部21、データ補間部22、公差情報生成部23に対応するプログラムをメモリなどに記録しておき、プロセッサもしくはコンピュータが、そのプログラムを読み出して、実行することで、加工誤差範囲計算部2における各処理部が実行される。プロセッサの一例としてはCPUやGPUが考えられるが、所定の処理を実行する主体であれば他の半導体デバイスでもよい。 A program corresponding to the dimensional error calculation unit 21, the data interpolation unit 22, and the tolerance information generation unit 23 is recorded in a memory or the like, and a processor or computer reads out and executes the program, thereby forming the machining error range calculation unit. 2 are executed. As an example of a processor, a CPU or a GPU can be considered, but other semiconductor devices may be used as long as they are the subject that executes predetermined processing.
 ばらつき要因記録部3、データベース記録部4は、一般的なコンピュータの補助記憶装置である。補助記憶装置は、例えば、磁気記憶装置(HDD:Hard Disk Drive)、フラッシュメモリ(SSD:Solid State Drive)などの大容量かつ不揮発性の記憶装置である。 The variation factor recording unit 3 and the database recording unit 4 are general computer auxiliary storage devices. The auxiliary storage device is, for example, a large-capacity, non-volatile storage device such as a magnetic storage device (HDD: Hard Disk Drive) or a flash memory (SSD: Solid State Drive).
 公差解析結果表示部11、QCD情報表示部12は、加工誤差範囲計算部2で計算した公差解析結果や、データベース記録部4から取得したQCD情報を表示する機能を有する。公差解析結果表示部11、QCD情報表示部12は、プロセッサもしくはコンピュータ、メモリや補助記憶装置、モニタなどを有し、加工誤差範囲計算部2からの指示を受け、取得したデータを表示させる。 The tolerance analysis result display unit 11 and the QCD information display unit 12 have the function of displaying the tolerance analysis result calculated by the machining error range calculation unit 2 and the QCD information acquired from the database recording unit 4. The tolerance analysis result display unit 11 and the QCD information display unit 12 have a processor or computer, a memory, an auxiliary storage device, a monitor, etc., receive instructions from the machining error range calculation unit 2, and display acquired data.
 ここでは例として切削加工における具体的な公差解析の方法を述べる。切削加工では材料の物性値(例えば、ヤング率、降伏応力、加工硬化係数等)によって、切削抵抗が変化する。切削抵抗が変化する場合、例えば、有限要素解析ソフトを用いることで被削材の加工後の寸法を見積もることが可能である。つまり、事前に入手した被削材のヤング率、降伏応力、加工硬化係数等のばらつき量を把握することで、寸法誤差計算部21は、CAE解析により被削材の加工後の寸法誤差を計算することが可能である。材料特性の値は材料特性記録部31に記録されている。 Here, as an example, we will describe a specific tolerance analysis method for cutting. In cutting, the cutting resistance changes depending on the physical properties of the material (eg, Young's modulus, yield stress, work hardening coefficient, etc.). When the cutting resistance changes, it is possible to estimate the dimensions of the work material after machining, for example, by using finite element analysis software. In other words, by grasping the amount of variation in the Young's modulus, yield stress, work hardening coefficient, etc. of the work material obtained in advance, the dimensional error calculation unit 21 calculates the dimensional error of the work material after machining by CAE analysis. It is possible to The material property values are recorded in the material property recording section 31 .
 切削加工のCAE解析では他にも工具の振れ回り量や工具の突き出し量の影響を計算することができる。工具の振れ回り量や工具の突き出し量は加工する際に作業者が切削工具を切削機に取り付ける際に生じる。そのため、作業者に依存して生じるパラメータである。材料の物性値と同様に、事前に入手した作業中に生じうる振れ回り量や工具の突き出し量を加工条件記録部32に記録する。そのようにすることで、4Mに関係する作業者に依存した加工後の寸法誤差を、寸法誤差計算部21が、CAE解析にて算出することが可能である。 In the CAE analysis of cutting, it is also possible to calculate the influence of the whirling amount of the tool and the amount of protrusion of the tool. The whirling amount of the tool and the protrusion amount of the tool occur when the operator attaches the cutting tool to the cutting machine during machining. Therefore, it is a parameter that depends on the operator. Similar to the physical property values of the material, the whirling amount and the protrusion amount of the tool that may occur during the work obtained in advance are recorded in the machining condition recording unit 32 . By doing so, it is possible for the dimensional error calculation unit 21 to calculate the post-processing dimensional error related to 4M and dependent on the operator by CAE analysis.
 データ補間部22は、寸法誤差計算部21にて得られた解析結果を、データ補間する。例えばモンテカルロ法等による乱数計算によって、加工誤差量の3σ値(統計量である標準偏差の3倍値)を得るために準備する。3σ値は製造時に生じる加工後寸法範囲が99.7%の確率で含まれる値であるため、製造可能な加工後寸法範囲を見積もる値として望ましい。 The data interpolation unit 22 performs data interpolation on the analysis results obtained by the dimensional error calculation unit 21. For example, preparation is made to obtain the 3σ value of the processing error amount (three times the standard deviation, which is the statistic) by random number calculation using the Monte Carlo method or the like. Since the 3σ value is a value that includes a 99.7% probability of the dimensional range after processing that occurs during manufacturing, it is desirable as a value for estimating the dimensional range that can be manufactured after processing.
 図2は、実施例1の公差情報生成部の一例を説明する図である。図2の横軸は、寸法誤差(mm)を示し、縦軸は横軸に対応した頻度(回数)を示す。 FIG. 2 is a diagram explaining an example of the tolerance information generation unit of the first embodiment. The horizontal axis of FIG. 2 indicates the dimensional error (mm), and the vertical axis indicates the frequency (number of times) corresponding to the horizontal axis.
 図2に示すようにデータ補間部22から出力される、補間されたデータから被削材の加工寸法平均値(図2中のM Value)が生成され、加工寸法平均値に対して、被削材寸法の範囲を示す-3σ値、+3σ値を算出することが可能となる。公差情報生成部で算出された加工寸法平均値および-3σ値、+3σ値が製造時に生じうるばらつきの影響を考慮した上での製造可能公差、つまり公差情報生成部23の生成する公差となる。 As shown in FIG. 2, the processed dimension average value (M Value in FIG. 2) of the work material is generated from the interpolated data output from the data interpolation unit 22, and the processed dimension average value is It is possible to calculate the -3σ value and +3σ value that indicate the range of material dimensions. The processing dimension average value and the −3σ value and +3σ value calculated by the tolerance information generation unit are manufacturable tolerances after considering the influence of variations that may occur during manufacturing, that is, the tolerances generated by the tolerance information generation unit 23.
 図3は、データ補間部22によって得られた結果の一例を示す図であり、工具振れ回り量の3σ値と被削材の加工誤差量の3σ値の関係を示すものである。図3の横軸は、工具振れ回り量の3σ値(mm)を示し、縦軸は横軸に対応した被削材の加工誤差量の3σ値(mm)を示す。 FIG. 3 is a diagram showing an example of the results obtained by the data interpolation unit 22, and shows the relationship between the 3σ value of the amount of whirling of the tool and the 3σ value of the amount of machining error of the work material. The horizontal axis in FIG. 3 indicates the 3σ value (mm) of the whirling amount of the tool, and the vertical axis indicates the 3σ value (mm) of the machining error amount of the work piece corresponding to the horizontal axis.
 また、図4は、データ補間部22によって得られた結果の他の例を示す図であり、工具の突き出し量の3σ値と被削材の加工誤差量の3σ値の関係を示すものである。図4の横軸は、工具の突き出し量の3σ値(mm)を示し、縦軸は横軸に対応した被削材の加工誤差量の3σ値(mm)を示す。 FIG. 4 is a diagram showing another example of the results obtained by the data interpolation unit 22, showing the relationship between the 3σ value of the tool protrusion amount and the 3σ value of the machining error amount of the work material. . The horizontal axis in FIG. 4 indicates the 3σ value (mm) of the protrusion amount of the tool, and the vertical axis indicates the 3σ value (mm) of the machining error amount of the work piece corresponding to the horizontal axis.
 図2で示した他にも図3や図4のように個別のパラメータが影響を及ぼす加工誤差量も算出することが可能であり、データ補間部22では適宜必要に応じた誤差量を確認することができる。 In addition to those shown in FIG. 2, it is also possible to calculate the amount of machining error affected by individual parameters as shown in FIGS. be able to.
 データベース記録部4は、加工誤差範囲計算部2に合わせて計算された製造可能公差の範囲内で、設計者が公差を指定した際に材料コスト、加工コスト、作業時間、マシンタイムの影響を設計者に提示するための部分である。データベース記録部4は設計者が把握するために用いられるQCD(Quality、Cost、Delivery、つまり、品質、コスト、納期)情報を記録する。 The database recording unit 4 designs the effects of material cost, processing cost, work time, and machine time when the designer specifies the tolerance within the manufacturable tolerance calculated according to the processing error range calculation unit 2. This is the part to present to the person. The database recording unit 4 records QCD (Quality, Cost, Delivery) information used by the designer to comprehend.
 図5は、公差判定確認画面を示している。加工誤差範囲計算部2によって算出した許容寸法誤差が画面上に提示され、その範囲内で設計者が公差を入力する画面となっている。 Fig. 5 shows the tolerance judgment confirmation screen. The allowable dimensional error calculated by the machining error range calculator 2 is presented on the screen, and the screen is used for the designer to input the tolerance within the range.
 選定した公差に対してQCD情報を得るための表示ボタンが準備される。表示ボタンを押すと、図6に示すように、QCD情報確認画面が表示される。設計者が指定した公差ならびに対応する部品に基づいて、当該公差に対応した調達コスト、加工コスト、作業標準時間、マシンタイムのいずれか、もしくは、それらを組み合わせた全ての予想値を、データベース部のデータから選択して公差情報生成部23が取得する。そして、その取得したデータをQCD情報表示部12がQCD情報確認画面として表示する。 A display button is prepared to obtain QCD information for the selected tolerance. When the display button is pressed, a QCD information confirmation screen is displayed as shown in FIG. Based on the tolerances specified by the designer and the corresponding parts, either procurement cost, processing cost, work standard time, machine time corresponding to the tolerance, or all of the expected values in combination are stored in the database department. Selected from the data and acquired by the tolerance information generator 23 . Then, the QCD information display unit 12 displays the acquired data as a QCD information confirmation screen.
 各項目は範囲も表示され、指定した公差に対するQCD予想値がどの範囲なのか把握することが可能となる。ここでは確認画面として、数値を表示させる説明をしたが、グラフ表示等、視覚的に設計者がわかりやすい情報を提示してもよい。公差判定確認画面とQCD情報確認画面で得られた情報から設計者は要求仕様に対して、製造可能な寸法公差と調達コスト、加工コスト、作業標準時間、マシンタイムを適切に判断することが可能になる。 The range of each item is also displayed, making it possible to grasp the range of the expected QCD value for the specified tolerance. Although numerical values are displayed as confirmation screens here, it is also possible to present information visually intelligible to the designer, such as graph display. From the information obtained on the tolerance judgment confirmation screen and QCD information confirmation screen, the designer can appropriately judge the dimensional tolerance that can be manufactured, procurement cost, processing cost, standard work time, and machine time for the required specifications. become.
 図7は、公差解析システムのフローチャートを示す図である。まず、寸法誤差計算部21が、3次元CAD形状データを取り込む(ステップS1)。 FIG. 7 is a diagram showing a flowchart of the tolerance analysis system. First, the dimensional error calculator 21 takes in three-dimensional CAD shape data (step S1).
 次に、寸法誤差計算部21が、取り込んだ3次元CAD形状に対して製造プロセスを考慮したCAE解析を実行する(ステップS2)。 Next, the dimensional error calculator 21 performs CAE analysis on the captured three-dimensional CAD shape, taking into consideration the manufacturing process (step S2).
 データ補間部22が、寸法誤差計算部21が実行した結果からデータ補間を実行する(ステップS3)。 The data interpolation unit 22 executes data interpolation from the result of the execution by the dimensional error calculation unit 21 (step S3).
 データ補間部22からのデータから公差情報生成部23が、製造可能加工誤差(許容寸法誤差)を計算し、公差解析結果表示部11に製造可能加工誤差(許容寸法誤差)を表示させる(ステップS4)。 The tolerance information generation unit 23 calculates the manufacturable machining error (allowable dimensional error) from the data from the data interpolating unit 22, and causes the tolerance analysis result display unit 11 to display the manufacturable machining error (allowable dimensional error) (step S4). ).
 製造可能加工誤差を参考に設計者から寸法公差の入力を受付ける(ステップS5)。 Accepts input of dimensional tolerances from the designer with reference to manufacturable processing errors (step S5).
 公差情報生成部23が、寸法公差の入力に合わせてQCD情報を記録するデータベース記録部4から上述した加工コスト等のQCD情報を付与し、QCD情報表示部12にQCD情報を表示させる(ステップS6)。 The tolerance information generation unit 23 gives QCD information such as the above-described processing cost from the database recording unit 4 that records QCD information in accordance with the input of the dimensional tolerance, and causes the QCD information display unit 12 to display the QCD information (step S6 ).
 その後、設計者からS5で選定した寸法公差でよいかどうかの公差判定の入力を受付ける(ステップS7)。 After that, an input of tolerance judgment as to whether or not the dimensional tolerance selected in S5 is acceptable is accepted from the designer (step S7).
 選定した寸法公差でよいという判定の場合(S7でOK)には、公差解析は終了する(ステップS8)。 If it is determined that the selected dimensional tolerance is acceptable (OK in S7), the tolerance analysis ends (step S8).
 QCDの情報を考慮し、顧客要求値とコストバランスが釣り合わない場合など、選定した寸法公差でよくないと判定する場合(S7でNG)には、ステップS5に戻る。そして、設計者からの寸法公差の入力を受け、寸法公差の入力に合わせてQCD情報を記録するデータベース記録部4から上述した加工コスト等のQCD情報を付与したQCD情報を表示させる。(ステップS6)そして、設計者による公差判定の再評価を受ける(ステップS7)。 Considering the QCD information, if it is determined that the selected dimensional tolerance is not good (NG in S7), such as when the customer's requested value and the cost balance do not match, return to step S5. In response to the input of dimensional tolerance from the designer, the QCD information to which the above-described QCD information such as the processing cost is added is displayed from the database recording unit 4 that records the QCD information according to the input of the dimensional tolerance. (Step S6) Then, the tolerance determination is re-evaluated by the designer (Step S7).
 本実施例によれば、製造時の加工誤差とQCDの影響を定量的に設計者が知ることが可能であり、4MおよびQCDを考慮した公差を選定できるように、設計者の判断を支援する公差解析システムを実現できる。 According to this embodiment, it is possible for the designer to quantitatively know the influence of the processing error and QCD during manufacturing, and supports the designer's judgment so that the tolerance can be selected considering 4M and QCD. A tolerance analysis system can be realized.
11・・・・公差解析結果表示部
12・・・・QCD情報表示部
2・・・加工誤差範囲計算部
21・・・寸法誤差計算部
22・・・データ補間部
23・・・公差情報生成部
3・・・ばらつき要因記録部
31・・・材料特性記録部
32・・・加工条件記録部
4・・・データベース記録部
41・・・・調達コストデータ
42・・・加工コストデータ
43・・・・作業時間データ
44・・・・マシンタイムデータ
11...Tolerance analysis result display unit 12...QCD information display unit 2...Processing error range calculation unit 21...Dimension error calculation unit 22...Data interpolation unit 23...Tolerance information generation Section 3: Variation factor recording section 31: Material property recording section 32: Processing condition recording section 4: Database recording section 41: Procurement cost data 42: Processing cost data 43: Working time data 44 Machine time data

Claims (10)

  1. 加工対象のばらつき要因とQCD情報を記録する記録部と、
    前記ばらつき要因から加工対象の加工後の寸法誤差を計算する寸法誤差計算部と、
    前記寸法誤差計算部の計算結果からデータ補間をするデータ補間部と、
    前記データ補間部の出力から公差情報を生成し、前記QCD情報から前記公差情報に関する前記QCD情報を付与する公差情報生成部とを有する公差解析システム。
    a recording unit that records the variation factor of the processing target and QCD information;
    a dimensional error calculation unit that calculates a dimensional error after machining of the object to be machined from the variation factor;
    a data interpolation unit that interpolates data from the calculation results of the dimensional error calculation unit;
    A tolerance analysis system, comprising: a tolerance information generating section that generates tolerance information from the output of the data interpolating section and adds the QCD information related to the tolerance information from the QCD information.
  2. 請求項1に記載の公差解析システムにおいて、
    表示部を有し、
    前記表示部は、
    前記公差情報を表示し、選定された選定公差を入力する公差解析システム。
    In the tolerance analysis system according to claim 1,
    having a display,
    The display unit
    A tolerance analysis system that displays the tolerance information and inputs the selected tolerance.
  3. 請求項2に記載の公差解析システムにおいて、
    前記表示部は、
    前記選定公差に対応した前記QCD情報を表示する公差解析システム。
    In the tolerance analysis system according to claim 2,
    The display unit
    A tolerance analysis system displaying the QCD information corresponding to the selected tolerance.
  4. 請求項1に記載の公差解析システムにおいて、
    前記寸法誤差計算部は、
    前記加工対象の材料の物性値のばらつき量から加工後の寸法誤差を計算する公差解析システム。
    In the tolerance analysis system according to claim 1,
    The dimensional error calculator,
    A tolerance analysis system for calculating post-processing dimensional errors from variations in physical property values of the material to be processed.
  5. 請求項1に記載の公差解析システムにおいて、
    前記データ補間部は、
    乱数計算を実行する公差解析システム。
    In the tolerance analysis system according to claim 1,
    The data interpolating unit
    A tolerance analysis system that performs random number calculations.
  6. 請求項1に記載の公差解析システムにおいて、
    前記公差情報生成部は、
    統計量から製造可能誤差を算出する公差解析システム。
    In the tolerance analysis system according to claim 1,
    The tolerance information generation unit
    A tolerance analysis system that calculates manufacturable errors from statistics.
  7. 請求項1に記載の公差解析システムにおいて、
    前記ばらつき要因は、
    前記加工対象のヤング率、降伏応力、もしくは加工硬化係数のいずれか、もしくは組み合わせのばらつき量である公差解析システム。
    In the tolerance analysis system according to claim 1,
    The variation factor is
    A tolerance analysis system that is the amount of variation in any one or combination of Young's modulus, yield stress, or work hardening coefficient of the object to be processed.
  8. 請求項1に記載の公差解析システムにおいて、
    前記QCD情報は、
    調達コスト、加工コスト、作業時間、もしくはマシンタイムのいずれか、もしくは組み合わせの情報である公差解析システム。
    In the tolerance analysis system according to claim 1,
    The QCD information is
    A tolerance analysis system that is information on procurement cost, processing cost, work time, or machine time, or a combination thereof.
  9. ばらつき要因から加工対象の加工後の寸法誤差を計算し、
    前記寸法誤差の結果からデータ補間をし、
    前記データ補間されたデータから公差情報を生成し、前記公差情報に関するQCD情報を付与する公差解析方法。
    Calculate the dimensional error after machining of the machined object from the variation factor,
    Data interpolation is performed from the result of the dimensional error,
    A tolerance analysis method for generating tolerance information from the interpolated data and adding QCD information related to the tolerance information.
  10. 請求項9に記載の公差解析方法を、コンピュータに実行させるためのプログラム。 A program for causing a computer to execute the tolerance analysis method according to claim 9.
PCT/JP2021/048705 2021-02-03 2021-12-27 Tolerance analysis system WO2022168506A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021016167A JP7440438B2 (en) 2021-02-03 2021-02-03 Tolerance analysis system
JP2021-016167 2021-02-03

Publications (1)

Publication Number Publication Date
WO2022168506A1 true WO2022168506A1 (en) 2022-08-11

Family

ID=82742264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048705 WO2022168506A1 (en) 2021-02-03 2021-12-27 Tolerance analysis system

Country Status (2)

Country Link
JP (1) JP7440438B2 (en)
WO (1) WO2022168506A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020679A1 (en) * 2005-08-12 2007-02-22 Fujitsu Limited Dimensional tolerance calculator, dimensional tolerance calculating method, and computer readable recording medium recording dimensional tolerance calculating program
US20150127480A1 (en) * 2013-10-17 2015-05-07 Plethora Corporation Method for quoting part production
JP2019091196A (en) * 2017-11-14 2019-06-13 株式会社日立製作所 Product design and process design device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967017B2 (en) 2013-05-31 2016-08-10 Jfeスチール株式会社 Method and program for extracting influence factors
WO2020195024A1 (en) 2019-03-28 2020-10-01 パナソニックIpマネジメント株式会社 Information processing device
CN110163511A (en) 2019-05-24 2019-08-23 重庆大学 A kind of Manufacture quality control method based on association rule mining and fuzzy decision

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020679A1 (en) * 2005-08-12 2007-02-22 Fujitsu Limited Dimensional tolerance calculator, dimensional tolerance calculating method, and computer readable recording medium recording dimensional tolerance calculating program
US20150127480A1 (en) * 2013-10-17 2015-05-07 Plethora Corporation Method for quoting part production
JP2019091196A (en) * 2017-11-14 2019-06-13 株式会社日立製作所 Product design and process design device

Also Published As

Publication number Publication date
JP7440438B2 (en) 2024-02-28
JP2022119141A (en) 2022-08-16

Similar Documents

Publication Publication Date Title
US20110054655A1 (en) Computer Assisted Determination Of Tapped Threads From CAD File
TW501038B (en) Rule-driven method and system for editing physical integrated circuit layout
JP4674237B2 (en) Dimensional tolerance calculation apparatus, dimensional tolerance calculation method, and computer-readable recording medium having recorded dimensional tolerance calculation program
JP5872324B2 (en) Mesh generator
JP5512321B2 (en) Method of designing and manufacturing cam apparatus and computer program for supporting 3D design
US7505884B2 (en) Method for automatic generation of finite element mesh from IC layout data
JP5800655B2 (en) Method for improving deformation of resin molded body and method for reducing weight of resin molded body
WO2022168506A1 (en) Tolerance analysis system
JP6520459B2 (en) Forging die design support apparatus and forging die design support method
JP5831310B2 (en) Method and program for predicting appearance defects of products manufactured with molds
JP4245134B2 (en) Mounting process simulation apparatus and mounting process simulation method
TWI711001B (en) Information processing system and information processing method
KR101807585B1 (en) Apparatus and Method for designing automation using FEM
CN113182565B (en) Weak-rigidity molded surface regional milling method
JP7266471B2 (en) Design support device and design support method
Karania et al. Low volume plastics manufacturing strategies
JP4374227B2 (en) Shape optimization processor
JP2001101284A (en) Method and device for estimating product manufacture and storage medium
WO2022145164A1 (en) Method of processing material, process designing computer, and program therefor
JP7471334B2 (en) Productivity improvement system, productivity improvement method
JP2013176929A (en) Apparatus, method and program for forecasting warping deformation of molding
Haefner et al. Finite element simulation for quality dependent lifetime analysis of micro gears
JP6367616B2 (en) Sheet metal model creation device in sheet metal processing
JP2003233648A (en) Part processing estimation system
JP2015011444A (en) Golf club head and design method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924891

Country of ref document: EP

Kind code of ref document: A1