WO2022168455A1 - Wear assessment device - Google Patents

Wear assessment device Download PDF

Info

Publication number
WO2022168455A1
WO2022168455A1 PCT/JP2021/046024 JP2021046024W WO2022168455A1 WO 2022168455 A1 WO2022168455 A1 WO 2022168455A1 JP 2021046024 W JP2021046024 W JP 2021046024W WO 2022168455 A1 WO2022168455 A1 WO 2022168455A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
wear
learning
threshold
inference
Prior art date
Application number
PCT/JP2021/046024
Other languages
French (fr)
Japanese (ja)
Inventor
淳 池田
知康 古田
健走 原島
Original Assignee
株式会社不二越
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社不二越 filed Critical 株式会社不二越
Priority to CN202180007968.5A priority Critical patent/CN115210040A/en
Priority to JP2022517383A priority patent/JPWO2022168455A1/ja
Publication of WO2022168455A1 publication Critical patent/WO2022168455A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a wear determination device that applies machine learning.
  • a life prediction device disclosed in Patent Document 1 observes life-related data, creates a probabilistic model of the replacement life of consumable parts, and uses the created probabilistic model to observe the life-related data. predict the replacement life of According to Patent Document 1, it is possible to predict the service life of a consumable part of a manufacturing machine with a predetermined accuracy even when the collected data is small.
  • an object of the present invention is to provide a wear determination device that can automatically perform machine learning relearning without requiring an expert.
  • a representative configuration of the present invention is a tool wear determination device in a processing machine, which includes a sensor that measures the state of the workpiece or the tool, a feature amount extraction unit that acquires the feature amount from the output of the sensor, and the feature amount a dynamic learning unit that constructs a learning model based on the dynamic learning unit, an inference unit that infers the degree of wear based on the learning model constructed by the dynamic learning unit, a threshold storage unit that stores a wear threshold, and a degree of wear and the threshold
  • the inference unit judges whether the inference based on the current learning model is appropriate or not, and instructs the dynamic learning unit to re-learn if it is determined not to be appropriate. , and when the dynamic learning unit receives the control data from the inference unit, it re-learns based on additional feature values and thresholds that are different from the feature values used to construct the current learning model, and the learning model is updated.
  • a tool wear determination device in a processing machine, which includes a sensor for measuring the state of the workpiece or the tool, a feature amount extraction unit for acquiring a feature amount from the output of the sensor, A dynamic learning unit that builds a learning model based on a feature amount, an inference unit that infers the degree of wear based on the learning model built by the dynamic learning unit, a threshold storage unit that stores a wear threshold, and a work A dynamic threshold setting unit that stores a threshold input by a user in a threshold storage unit, and a wear determination unit that determines wear based on the degree of wear and the threshold, and the inference unit determines whether the threshold has been changed.
  • a re-learning instruction is sent to the dynamic learning unit, and when the dynamic learning unit receives control data from the inference unit, re-learning is performed based on the feature amount and the changed threshold value. and update the learning model.
  • the threshold can be dynamically updated, so that the operator can reset the threshold without stopping the inference program, thereby improving convenience.
  • the senor is a vibration sensor that acquires vibration acceleration as the state of the tool or workpiece, and the feature quantity extraction unit acquires the feature quantity using the vibration acceleration.
  • Vibration acceleration is highly dependent on the degree of wear and is robust against changes in other conditions, so it is preferable as a state quantity for obtaining feature quantities.
  • FIG. 1 is a block diagram of a wear determination device according to an embodiment
  • FIG. 4 is a flowchart for explaining the operation of an inference program of the wear determination device; It is a figure explaining the example of a feature-value. It is a figure explaining the example of a feature-value.
  • FIG. 1 is a block diagram of the wear determination device according to this embodiment
  • FIG. 2 is a flow chart explaining the operation of the inference program of the wear determination device.
  • the wear determination device 100 is a device that determines wear of the tool 12 of the processing machine 10 that processes the workpiece 20 .
  • the processing machine 10 is a processing machine that mainly performs cutting. It is assumed that machining is performed, for example, 100 to 150 times (100 to 150 workpieces are machined) per tool, and the tool is replaced when the wear limit is reached.
  • the flowchart in FIG. 2 is executed for each machining (one workpiece). First, the inference program determines whether machining is in progress (step 300). If it is being processed, the data acquisition unit 120 acquires data (step 302).
  • the data acquisition unit 120 obtains outputs from the sensor 110 attached to the tool spindle and the sensor 112 attached to the work spindle.
  • the data acquisition unit 120 specifically includes an amplifier and a logger.
  • the sensors 110 and 112 in this embodiment are vibration sensors. Other than the vibration sensor, a temperature sensor, a displacement sensor, etc. can be considered. However, the values of temperature sensors and displacement sensors are greatly affected by factors other than wear. On the other hand, the vibration acceleration is highly dependent on the degree of wear and is robust against changes in other conditions, so it is preferable as the state quantity for acquiring the feature quantity. In addition to the acceleration data obtained from the vibration sensor, equivalent can have a function.
  • the feature quantity extraction unit 130 extracts and accumulates feature quantities from the state quantities acquired by the sensors 110 and 112 (step 304).
  • the feature amount is acquired using the vibration acceleration.
  • the feature values that can be obtained from the vibration acceleration are the absolute value average, RMS (root mean square), STFT (short-time Fouriertranform), and the fundamental frequency of fluctuating cutting force (cutting force). blade passing frequency) and its harmonics can be used.
  • the inference program determines (step 306) whether to perform inference or to perform initial learning (step 308). When no inference is performed, that is when the learning model does not yet exist. Inference is performed when a learning model has already been constructed.
  • the worker 30 judges the wear limit and completes one machining.
  • the inference program then performs learning using the accumulated feature amounts (step 308) to construct the initial learning model.
  • the dynamic learning unit 140 performs static learning in which a learning model is constructed only from the feature quantity output from the feature quantity extraction unit 130, and dynamic learning in which re-learning is performed according to a re-learning instruction (flag) of the inference unit. You can do both.
  • This dynamic learning is a feature of the present invention.
  • a known algorithm such as a search algorithm or a genetic algorithm can be used as the machine learning algorithm.
  • the dynamic learning unit 140 stores the constructed learning model in the learning storage unit 150 .
  • the inference section 160 When performing inference in step 310, the inference section 160 infers the degree of wear based on the learning model constructed by the dynamic learning section 140 (step 310). That is, inference is performed using the learning model read out from the learning storage unit 150 and the feature amount sequentially acquired from the feature amount extraction unit 130 .
  • the degree of wear is a probabilistic model, and is intermediate data with the meaning of the degree of wear with this probability.
  • the inference value processing unit 162 performs weighting to prevent erroneous determination when the sensors 110 and 112 output outliers. Specifically, when the amount of machining after tool replacement is small, the output of the inference section 160 is multiplied by a factor that greatly underestimates it. Conversely, if the amount of machining after the tool is replaced is large, the underestimation coefficient is reduced. This improves the validity of the inference value and prevents erroneous determination.
  • the wear determining unit 190 determines tool wear using the degree of wear (inference value) obtained via the inference value processing unit 162 and the threshold value obtained from the threshold storage unit 180 (step 318).
  • the display device 200 displays the degree of wear output by the inference unit 160 and the determination result (whether or not the wear limit has been reached) output by the wear determination unit 190 (step 318) (step 320).
  • the value of the threshold storage unit 180 a set value is inputted in advance before the first learning (step 308) is performed. However, even while the inference program is looping, it can be updated at any time by input from the dynamic threshold setting unit 170 by the operator 30 .
  • reasoning unit 160 determines whether the reasoning was appropriate (step 312). Whether the inference is appropriate or not can be determined to be inappropriate, for example, when the inference value calculated by the current learning model loses the correlation with the number of processes. If the inference is not appropriate, the inference unit 160 sends a re-learning instruction 161 (control data) to the dynamic learning unit 140 (step 313).
  • the inference program of the wear determination device 100 also determines whether the threshold has been changed (step 314). If a new threshold is set in the threshold storage unit 180 by the operator 30 inputting from the dynamic threshold setting unit 170, the inference unit 160 transmits a relearning instruction 161 (control data) to the dynamic learning unit 140 (step 315).
  • the inference program determines whether the current tool has reached the wear limit (step 322). When the wear limit is reached, a signal to stop the processing machine is transmitted to the processing machine 10 (step 323), and the process returns to step 300. If the wear limit has not yet been reached, it is determined whether or not a re-learning instruction 161 has been issued (step 324). If the relearning instruction 161 has not been issued, the process returns to step 300 .
  • the dynamic learning unit 140 performs re-learning using the accumulated feature amount (step 326).
  • the feature amount used for re-learning is a feature amount (hereinafter referred to as "additional feature amount") different from the feature amount used when constructing the current learning model (latest learning model).
  • the additional feature amount may be sent from the inference unit 160 together with the relearning instruction 161 to the dynamic learning unit 140 , or may be sent directly from the feature amount extraction unit 130 to the dynamic learning unit 140 .
  • the feature amount (additional feature amount) of tool B and tool C can also be used to update the learning model.
  • the operator 30 makes a judgment while looking at the trend of the judgment result in the dynamic threshold value setting unit 170, and further adds the number of processing (for example, the feature amount of 121 times to 150 times is the additional feature amount). can be re-learned.
  • the degree of wear inferred from feature values changes significantly.
  • the determination by the wear determining unit 190 will also be significantly faster or slower than the actual wear limit.
  • machine learning can be performed without the need for retraining by experts. Re-learning can be performed automatically (improved generalizability).
  • the threshold can be dynamically updated, so that the operator can reset the threshold without stopping the inference program, thereby improving convenience.
  • step 326 When re-learning (step 326) is completed, immediately return to step 310 and redo the inference. In this case, if the inference continues in step 312, an infinite loop will occur. When the number of re-learning times reaches the upper limit, a message to that effect is displayed to the worker 30 and the process returns to step 300 .
  • Figures 3 and 4 are diagrams illustrating examples of feature amounts.
  • the feature quantity is acquired using the vibration acceleration, which is a state quantity that is robust against conditions other than wear.
  • Fig. 3(a) shows the average absolute value of vibration acceleration with respect to the number of processes as a feature quantity. Alternatively, the sum of the areas created by the amplitudes may be calculated.
  • FIG. 3B shows RMS (Root Mean Square) of the amplitude value of vibration acceleration with respect to the number of processes.
  • the absolute value average or RMS increases almost proportionally as the number of processes increases.
  • the number of processes there is a correlation between the number of processes and the average absolute value of the vibration acceleration, or the RMS of the number of processes and the amplitude value of the vibration acceleration. Based on this correlation, it is possible to infer the degree of wear from the average absolute value or RMS for each machining by performing machine learning using the relationship between the average absolute value or RMS and the degree of wear as a feature.
  • Fig. 4 shows the STFT (short-time Fouriertranform) of the vibration acceleration due to 5-pass machining of a workpiece (gear).
  • No. in FIG. 1 is the data of a new tool
  • No. 1 in FIG. 18 is the data of the tool at the wear limit.
  • the horizontal axis is time, and it can be seen that the spectrum appears for each machining pass.
  • the fifth pass is a finishing process, which takes a long time.
  • the frequency intensity of 18 is higher, it can be seen that vibration increases as wear progresses.
  • FIG. 4B where wear has progressed, more spectra appear near 800 Hz in the fifth pass.
  • the distribution may be digitized, or the distribution image may be used as a pattern for image processing.
  • any index should have a correlation with the number of processes, it is preferable to always evaluate the correlation between the number of processes and the feature amount, and not to display the determination result when there is no correlation. As a result, it is possible to prevent an erroneous determination from being displayed.
  • the present invention can be used as a wear determination device that applies machine learning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

[Problem] To provide a wear assessment device capable of performing automatic re-learning of machine learning without needing a specialist. [Solution] A wear assessment device 100 for a tool in a processing machine is characterized by comprising: a feature amount extraction unit 130 for acquiring a feature amount from an output of a sensor; a dynamic learning unit 140 for constructing a learning model on the basis of the feature amount; an inference unit 160 for inferring a degree of wear on the basis of the learning model constructed by the dynamic learning unit; a threshold value storage unit 180 for storing a threshold value of wear; and a wear assessment unit 190 for assessing wear on the basis of the degree of wear and the threshold value. The wear assessment device is also characterized in that: the inference unit determines whether inference based on the current learning model is appropriate, and if determining that the foregoing is not appropriate, then transmits a re-learning instruction to the dynamic learning unit; and the dynamic learning unit, upon receiving control data from the inference unit, performs re-learning on the basis of the threshold value and an additional feature amount different from the feature amount that was used when constructing the current learning model, and updates the learning model.

Description

摩耗判定装置Wear determination device
 本発明は、機械学習を応用した摩耗判定装置に関する。 The present invention relates to a wear determination device that applies machine learning.
 従来から、工具の摩耗判定あるいは寿命予測において機械学習を応用する技術が数多く提案されている。例えば特許文献1に開示されている寿命予測装置は、寿命関連データを観測して消耗部品の交換寿命の確率モデルを作成し、作成した確率モデルを用いて観測した寿命関連データに基づいて消耗部品の交換寿命を予測する。特許文献1によれば、収集されたデータが少ない段階でも所定の精度で製造機械の消耗部品の寿命を予測することが可能であると述べている。  Conventionally, there have been many proposals for applying machine learning to tool wear determination and tool life prediction. For example, a life prediction device disclosed in Patent Document 1 observes life-related data, creates a probabilistic model of the replacement life of consumable parts, and uses the created probabilistic model to observe the life-related data. predict the replacement life of According to Patent Document 1, it is possible to predict the service life of a consumable part of a manufacturing machine with a predetermined accuracy even when the collected data is small.
特開2019-207576号公報JP 2019-207576 A
 しかしながら、特許文献1に限らず従来の機械学習では、いったん特定の条件下で摩耗状態を学習して学習モデルを構築し、その学習モデルに基いて同等の条件下において摩耗度の推論を行う。すると、条件が変わらない場合は高い精度で推論することができても、加工方法や工具、ワークなどの条件が変わると、精度が著しく低下し、適切な推論が行えないという課題がある(汎化性の問題)。そのために一度学習を行っても、条件が変わるごとに再学習を行う必要があるが、機械学習の専門家でないと再学習を実施することが著しく難しく、現場の作業者では対応できないという問題があった。 However, in conventional machine learning, not limited to Patent Document 1, the wear state is once learned under specific conditions, a learning model is constructed, and the degree of wear is inferred under the same conditions based on the learning model. Then, even if the inference can be made with high accuracy when the conditions do not change, when the conditions such as the machining method, tools, and work change, the accuracy drops significantly, and there is a problem that appropriate inference cannot be performed (general compatibility issues). For this reason, even if the machine has been trained once, it must be re-learned each time the conditions change. However, it is extremely difficult to re-learn unless you are a machine learning expert, and there is a problem that it cannot be handled by on-site workers. there were.
 そこで本発明は、専門家を必要とせずに機械学習の再学習を自動的に行うことが可能な摩耗判定装置を提供することを目的としている。 Therefore, an object of the present invention is to provide a wear determination device that can automatically perform machine learning relearning without requiring an expert.
 本発明の代表的な構成は、加工機における工具の摩耗判定装置であって、ワークまたは工具の状態を測定するセンサと、センサの出力から特徴量を取得する特徴量抽出部と、特徴量に基づいて学習モデルを構築する動的学習部と、動的学習部が構築した学習モデルに基づいて摩耗度の推論を行う推論部と、摩耗の閾値を記憶する閾値記憶部と、摩耗度および閾値に基づいて摩耗を判定する摩耗判定部とを備え、推論部は現在の学習モデルに基づく推論が適切か否かの判断を行い、適切でないと判断した場合には動的学習部に再学習指示を送信し、動的学習部は、推論部から制御データを受けたら、現在の学習モデルを構築する際に使用した特徴量とは異なる追加特徴量と閾値に基づいて再学習を行い、学習モデルを更新することを特徴とする。 A representative configuration of the present invention is a tool wear determination device in a processing machine, which includes a sensor that measures the state of the workpiece or the tool, a feature amount extraction unit that acquires the feature amount from the output of the sensor, and the feature amount a dynamic learning unit that constructs a learning model based on the dynamic learning unit, an inference unit that infers the degree of wear based on the learning model constructed by the dynamic learning unit, a threshold storage unit that stores a wear threshold, and a degree of wear and the threshold The inference unit judges whether the inference based on the current learning model is appropriate or not, and instructs the dynamic learning unit to re-learn if it is determined not to be appropriate. , and when the dynamic learning unit receives the control data from the inference unit, it re-learns based on additional feature values and thresholds that are different from the feature values used to construct the current learning model, and the learning model is updated.
 加工方法や工具、ワークなどの条件が変わると、特徴量から推論される摩耗度が大幅に変化する。すると摩耗判定部による判定も、実際の摩耗限界に対して大幅に早くなったり遅くなったりしてしまう。しかし推論と同時に特徴量を用いて動的に学習モデルを更新することにより、専門家による再学習を必要せずに、機械学習の再学習を自動的に行うことが可能となる(汎化性の向上)。 When conditions such as machining methods, tools, and workpieces change, the degree of wear inferred from feature values changes significantly. As a result, the determination by the wear determining unit will also be significantly faster or slower than the actual wear limit. However, by dynamically updating the learning model using feature values at the same time as inference, machine learning can be automatically relearned without the need for relearning by experts (generalizability). improvement).
 また本発明の他の代表的な構成は、加工機における工具の摩耗判定装置であって、ワークまたは工具の状態を測定するセンサと、センサの出力から特徴量を取得する特徴量抽出部と、特徴量に基づいて学習モデルを構築する動的学習部と、動的学習部が構築した学習モデルに基づいて摩耗度の推論を行う推論部と、摩耗の閾値を記憶する閾値記憶部と、作業者が入力した閾値を閾値記憶部に記憶させる動的閾値設定部と、摩耗度および閾値に基づいて摩耗を判定する摩耗判定部とを備え、推論部は閾値が変更されたか否かの判断を行い、変更されたと判断した場合には動的学習部に再学習指示を送信し、動的学習部は、推論部から制御データを受けたら、特徴量と変更された閾値に基づいて再学習を行い、学習モデルを更新することを特徴とする。 Another representative configuration of the present invention is a tool wear determination device in a processing machine, which includes a sensor for measuring the state of the workpiece or the tool, a feature amount extraction unit for acquiring a feature amount from the output of the sensor, A dynamic learning unit that builds a learning model based on a feature amount, an inference unit that infers the degree of wear based on the learning model built by the dynamic learning unit, a threshold storage unit that stores a wear threshold, and a work A dynamic threshold setting unit that stores a threshold input by a user in a threshold storage unit, and a wear determination unit that determines wear based on the degree of wear and the threshold, and the inference unit determines whether the threshold has been changed. If it is determined that there has been a change, a re-learning instruction is sent to the dynamic learning unit, and when the dynamic learning unit receives control data from the inference unit, re-learning is performed based on the feature amount and the changed threshold value. and update the learning model.
 従来の機械学習では閾値の設定を推論プログラムがスタートする前に設定する必要があり、閾値の変更のためには推論プログラムを一旦停止して再スタートする必要があった。しかし上記構成によれば閾値を動的に更新できるため、推論プログラムを停止することなく作業者側で再設定することが可能となり、利便性を向上させることができる。 With conventional machine learning, it was necessary to set the threshold before starting the inference program, and to change the threshold, it was necessary to stop and restart the inference program. However, according to the above configuration, the threshold can be dynamically updated, so that the operator can reset the threshold without stopping the inference program, thereby improving convenience.
 センサは工具またはワークの状態として振動加速度を取得する振動センサであり、特徴量抽出部は振動加速度を用いて特徴量を取得することが好ましい。振動加速度は摩耗の程度に対する依存が大きく、他の条件の変化に対してロバストであるため、特徴量を取得するための状態量として好ましい。 It is preferable that the sensor is a vibration sensor that acquires vibration acceleration as the state of the tool or workpiece, and the feature quantity extraction unit acquires the feature quantity using the vibration acceleration. Vibration acceleration is highly dependent on the degree of wear and is robust against changes in other conditions, so it is preferable as a state quantity for obtaining feature quantities.
 本発明によれば、専門家を必要とせずに機械学習の再学習を自動的に行うことが可能な摩耗判定装置を提供することができる。 According to the present invention, it is possible to provide a wear determination device capable of automatically performing machine learning relearning without requiring an expert.
本実施形態にかかる摩耗判定装置のブロック図である。1 is a block diagram of a wear determination device according to an embodiment; FIG. 摩耗判定装置の推論プログラムの動作を説明するフローチャートである。4 is a flowchart for explaining the operation of an inference program of the wear determination device; 特徴量の例を説明する図である。It is a figure explaining the example of a feature-value. 特徴量の例を説明する図である。It is a figure explaining the example of a feature-value.
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in these embodiments are merely examples for facilitating understanding of the invention, and do not limit the invention unless otherwise specified. In the present specification and drawings, elements having substantially the same functions and configurations are denoted by the same reference numerals to omit redundant description, and elements that are not directly related to the present invention are omitted from the drawings. do.
 図1は本実施形態にかかる摩耗判定装置のブロック図、図2は摩耗判定装置の推論プログラムの動作を説明するフローチャートである。 FIG. 1 is a block diagram of the wear determination device according to this embodiment, and FIG. 2 is a flow chart explaining the operation of the inference program of the wear determination device.
 摩耗判定装置100は、ワーク20を加工する加工機10の工具12の摩耗を判定する装置である。加工機10は主として切削を行う加工機である。1つの工具につき、例えば100回~150回の加工を行い(100個~150個のワークを加工し)、摩耗限界に達したら工具を交換することを想定する。図2のフローチャートは1加工(1ワーク)ごとに実行される。まず推論プログラムは、加工中であるか否かを判定する(ステップ300)。加工中であれば、データ取得部120によってデータ取得を行う(ステップ302)。 The wear determination device 100 is a device that determines wear of the tool 12 of the processing machine 10 that processes the workpiece 20 . The processing machine 10 is a processing machine that mainly performs cutting. It is assumed that machining is performed, for example, 100 to 150 times (100 to 150 workpieces are machined) per tool, and the tool is replaced when the wear limit is reached. The flowchart in FIG. 2 is executed for each machining (one workpiece). First, the inference program determines whether machining is in progress (step 300). If it is being processed, the data acquisition unit 120 acquires data (step 302).
 データ取得部120は、工具主軸に取り付けられたセンサ110と、ワーク主軸に取り付けられたセンサ112から出力を得る。データ取得部120とは、具体的にはアンプやロガーを含んでいる。 The data acquisition unit 120 obtains outputs from the sensor 110 attached to the tool spindle and the sensor 112 attached to the work spindle. The data acquisition unit 120 specifically includes an amplifier and a logger.
 本実施形態においてセンサ110、112は振動センサである。振動センサ以外には、温度センサや変位センサなどが考えられる。しかしながら温度センサや変位センサは摩耗以外の要素によっても値が大きく影響を受ける。これに対し振動加速度は摩耗の程度に対する依存が大きく、他の条件の変化に対してロバストであるため、特徴量を取得するための状態量として好ましい。なお、振動センサから得られる加速度データ以外に、NC(Numerical Control)から得られる工具主軸およびワーク主軸の「位置偏差」「積算電力値」などのデータをデータ取得部に入力することにより、同等の機能を有することができる。 The sensors 110 and 112 in this embodiment are vibration sensors. Other than the vibration sensor, a temperature sensor, a displacement sensor, etc. can be considered. However, the values of temperature sensors and displacement sensors are greatly affected by factors other than wear. On the other hand, the vibration acceleration is highly dependent on the degree of wear and is robust against changes in other conditions, so it is preferable as the state quantity for acquiring the feature quantity. In addition to the acceleration data obtained from the vibration sensor, equivalent can have a function.
 特徴量抽出部130は、センサ110、112が取得した状態量から特徴量を抽出および蓄積する(ステップ304)。本実施形態においては、振動加速度を用いて特徴量を取得する。なお、振動加速度から取得できる特徴量としては、絶対値平均、RMS(2乗平均平方根:Root Mean Square)、STFT(短時間フーリエ変換:short-time Fouriertranform)、変動する切削力の基本周波数(切れ刃通過周波数)とその高調波などを用いることができる。 The feature quantity extraction unit 130 extracts and accumulates feature quantities from the state quantities acquired by the sensors 110 and 112 (step 304). In this embodiment, the feature amount is acquired using the vibration acceleration. The feature values that can be obtained from the vibration acceleration are the absolute value average, RMS (root mean square), STFT (short-time Fouriertranform), and the fundamental frequency of fluctuating cutting force (cutting force). blade passing frequency) and its harmonics can be used.
 次に推論プログラムは、推論を実施するのか、最初の学習(ステップ308)を行うのかのモードを判断する(ステップ306)。推論を実施しない場合というのは、すなわち学習モデルがまだ存在しない場合である。推論を実施する場合というのは、すでに学習モデルが構築されている場合である。 The inference program then determines (step 306) whether to perform inference or to perform initial learning (step 308). When no inference is performed, that is when the learning model does not yet exist. Inference is performed when a learning model has already been constructed.
 推論を実施しない場合(学習モデルがまだ存在しない場合)は、作業者30が摩耗限界を判断して1加工を終了する。そして推論プログラムは、蓄積した特徴量を用いて学習を行い(ステップ308)、最初の学習モデルを構築する。 When inference is not performed (when the learning model does not yet exist), the worker 30 judges the wear limit and completes one machining. The inference program then performs learning using the accumulated feature amounts (step 308) to construct the initial learning model.
 動的学習部140は、特徴量抽出部130の出力である特徴量のみから学習モデルを構築する静的な学習と、推論部の再学習指示(フラグ)により再学習を行う動的な学習の両方を行うことができる。この動的な学習が本発明の特徴である。機械学習のアルゴリズムとしては、探索アルゴリズムや遺伝的アルゴリズムなど、公知のアルゴリズムを利用することができる。動的学習部140は、構築した学習モデルを学習記憶部150に記憶させる。 The dynamic learning unit 140 performs static learning in which a learning model is constructed only from the feature quantity output from the feature quantity extraction unit 130, and dynamic learning in which re-learning is performed according to a re-learning instruction (flag) of the inference unit. You can do both. This dynamic learning is a feature of the present invention. A known algorithm such as a search algorithm or a genetic algorithm can be used as the machine learning algorithm. The dynamic learning unit 140 stores the constructed learning model in the learning storage unit 150 .
 ステップ310において推論を行う場合は、動的学習部140が構築した学習モデルに基づいて、推論部160が摩耗度の推論を行う(ステップ310)。すなわち、学習記憶部150から読み出した学習モデルと、特徴量抽出部130から逐次に取得する特徴量とを用いて推論を行う。摩耗度は確率モデルであり、これくらいの確率でこれくらい摩耗しているという意味合いの中間データである。 When performing inference in step 310, the inference section 160 infers the degree of wear based on the learning model constructed by the dynamic learning section 140 (step 310). That is, inference is performed using the learning model read out from the learning storage unit 150 and the feature amount sequentially acquired from the feature amount extraction unit 130 . The degree of wear is a probabilistic model, and is intermediate data with the meaning of the degree of wear with this probability.
 推論値加工部162は、センサ110、112が外れ値を出力した場合に誤判定を防止するため、重み付けを行う。具体的には、工具を交換してからの加工量が小さい場合は、推論部160の出力を大きく過小評価する係数をかける。逆に、工具を交換してからの加工量が大きい場合には、過小評価する係数を小さくする。これにより推論値の妥当性を向上させて誤判定を防止している。 The inference value processing unit 162 performs weighting to prevent erroneous determination when the sensors 110 and 112 output outliers. Specifically, when the amount of machining after tool replacement is small, the output of the inference section 160 is multiplied by a factor that greatly underestimates it. Conversely, if the amount of machining after the tool is replaced is large, the underestimation coefficient is reduced. This improves the validity of the inference value and prevents erroneous determination.
 摩耗判定部190は、推論値加工部162を経由して得られた摩耗度(推論値)と、閾値記憶部180から取得した閾値とを用いて工具の摩耗を判定する(ステップ318)。表示装置200には、推論部160が出力した摩耗度と、摩耗判定部190が出力(ステップ318)した判定結果(摩耗限界に至ったか否か)を表示する(ステップ320)。ここで閾値記憶部180の値は、最初の学習(ステップ308)を行う前には事前に設定値を入力する。しかしながら、推論プログラムがループしている間であっても、作業者30が動的閾値設定部170から入力することによって随時更新可能である。 The wear determining unit 190 determines tool wear using the degree of wear (inference value) obtained via the inference value processing unit 162 and the threshold value obtained from the threshold storage unit 180 (step 318). The display device 200 displays the degree of wear output by the inference unit 160 and the determination result (whether or not the wear limit has been reached) output by the wear determination unit 190 (step 318) (step 320). Here, as the value of the threshold storage unit 180, a set value is inputted in advance before the first learning (step 308) is performed. However, even while the inference program is looping, it can be updated at any time by input from the dynamic threshold setting unit 170 by the operator 30 .
 次に再学習について説明する。推論部160はステップ310で推論を行ったあとに、推論が適切であったかどうかを判断する(ステップ312)。推論が適切か否かの判断は、例えば、現在の学習モデルにより算出される推論値が加工数との相関を失った場合に、適切でないと判断することができる。推論が適切でなかった場合、推論部160は動的学習部140に再学習指示161(制御データ)を送信する(ステップ313)。 Next, I will explain re-learning. After reasoning in step 310, reasoning unit 160 determines whether the reasoning was appropriate (step 312). Whether the inference is appropriate or not can be determined to be inappropriate, for example, when the inference value calculated by the current learning model loses the correlation with the number of processes. If the inference is not appropriate, the inference unit 160 sends a re-learning instruction 161 (control data) to the dynamic learning unit 140 (step 313).
 また摩耗判定装置100の推論プログラムは、閾値が変更されているかどうかを判断する(ステップ314)。作業者30が動的閾値設定部170から入力することによって閾値記憶部180に新しい閾値が設定されていたら、推論部160は動的学習部140に再学習指示161(制御データ)を送信する(ステップ315)。 The inference program of the wear determination device 100 also determines whether the threshold has been changed (step 314). If a new threshold is set in the threshold storage unit 180 by the operator 30 inputting from the dynamic threshold setting unit 170, the inference unit 160 transmits a relearning instruction 161 (control data) to the dynamic learning unit 140 ( step 315).
 そして推論を行う場合(ステップ310からの流れ)においても、推論プログラムは、現在の工具が摩耗限界に至ったか否かを判断する(ステップ322)。摩耗限界になった場合には、加工機停止の信号を加工機10に送信し(ステップ323)、ステップ300に戻る。まだ摩耗限界になっていない場合は、再学習指示161が出ているか否かを判定する(ステップ324)。再学習指示161が出ていない場合はステップ300に戻る。 Also when making an inference (flow from step 310), the inference program determines whether the current tool has reached the wear limit (step 322). When the wear limit is reached, a signal to stop the processing machine is transmitted to the processing machine 10 (step 323), and the process returns to step 300. If the wear limit has not yet been reached, it is determined whether or not a re-learning instruction 161 has been issued (step 324). If the relearning instruction 161 has not been issued, the process returns to step 300 .
 再学習指示161が送信されていた場合、動的学習部140は蓄積した特徴量を用いて再学習を行う(ステップ326)。このとき再学習に用いる特徴量は、現在の学習モデル(最新の学習モデル)を構築する際に使用した特徴量とは異なる特徴量(以下、「追加特徴量」という。)を用いる。追加特徴量は、推論部160から再学習指示161と共に動的学習部140に送ってもよいし、特徴量抽出部130から動的学習部140に直接送ってもよい。 If the re-learning instruction 161 has been sent, the dynamic learning unit 140 performs re-learning using the accumulated feature amount (step 326). At this time, the feature amount used for re-learning is a feature amount (hereinafter referred to as "additional feature amount") different from the feature amount used when constructing the current learning model (latest learning model). The additional feature amount may be sent from the inference unit 160 together with the relearning instruction 161 to the dynamic learning unit 140 , or may be sent directly from the feature amount extraction unit 130 to the dynamic learning unit 140 .
 例えば、工具Aで最初の学習モデルを構築したとする。従来の技術では、この学習モデルを用いて工具B、工具Cについて推論を行い(ステップ310以降)、それ以上の学習モデルの更新は行われない。しかしながら本発明では、再学習指示161が出ている場合には、工具B、工具Cの特徴量(追加特徴量)も用いて学習モデルを更新することができる。 For example, suppose you built the first learning model with tool A. In the conventional technique, this learning model is used to make inferences about tools B and C (from step 310), and the learning model is not updated any more. However, in the present invention, when the re-learning instruction 161 is issued, the feature amount (additional feature amount) of tool B and tool C can also be used to update the learning model.
 また、最初に工具Aで学習モデルを構築するときの加工数(例えば120回)では十分に摩耗限界の近くに達していなかった場合も、学習は不十分となり、正しい推論が行えないことになる。このような場合には、作業者30が動的閾値設定部170で判定結果のトレンドを見ながら判断し、さらに追加の加工数(例えば121回-150回の特徴量が追加特徴量である)について再学習を行わせることができる。 Also, if the number of processes (for example, 120 times) when building the learning model with tool A does not sufficiently reach the wear limit, the learning will be insufficient and correct inference will not be possible. . In such a case, the operator 30 makes a judgment while looking at the trend of the judgment result in the dynamic threshold value setting unit 170, and further adds the number of processing (for example, the feature amount of 121 times to 150 times is the additional feature amount). can be re-learned.
 加工方法や工具、ワークなどの条件が変わると、特徴量から推論される摩耗度が大幅に変化する。すると摩耗判定部190による判定も、実際の摩耗限界に対して大幅に早くなったり遅くなったりしてしまう。しかし上記説明したように、推論と同時に特徴量を用いて動的に推論が適切かどうかを判断し、適宜学習モデルを更新することにより、専門家による再学習を必要せずに、機械学習の再学習を自動的に行うことが可能となる(汎化性の向上)。 When conditions such as machining methods, tools, and workpieces change, the degree of wear inferred from feature values changes significantly. As a result, the determination by the wear determining unit 190 will also be significantly faster or slower than the actual wear limit. However, as explained above, by dynamically judging whether or not the inference is appropriate using the feature value at the same time as the inference and updating the learning model as appropriate, machine learning can be performed without the need for retraining by experts. Re-learning can be performed automatically (improved generalizability).
 また、従来の機械学習では閾値の設定を推論プログラムがスタートする前に設定する必要があり、閾値の変更のためには推論プログラムを一旦停止して再スタートする必要があった。しかし上記構成によれば閾値を動的に更新できるため、推論プログラムを停止することなく作業者側で再設定することが可能となり、利便性を向上させることができる。 Also, in conventional machine learning, it was necessary to set the threshold before starting the inference program, and to change the threshold, it was necessary to stop and restart the inference program. However, according to the above configuration, the threshold can be dynamically updated, so that the operator can reset the threshold without stopping the inference program, thereby improving convenience.
 再学習(ステップ326)が終了すると、すぐにステップ310に戻り、推論をやりなおす。この場合、ステップ312で推論不適切が続くと無限ループになってしまうため、推論不適切の場合の再学習回数には上限を設けている。再学習回数が上限に達した場合は、作業者30にその旨のメッセージを表示してステップ300に戻る。 When re-learning (step 326) is completed, immediately return to step 310 and redo the inference. In this case, if the inference continues in step 312, an infinite loop will occur. When the number of re-learning times reaches the upper limit, a message to that effect is displayed to the worker 30 and the process returns to step 300 .
 図3および図4は特徴量の例を説明する図である。上記したように、本実施形態においては、摩耗以外の条件に対してロバストな状態量である振動加速度を用いて特徴量を取得する。  Figures 3 and 4 are diagrams illustrating examples of feature amounts. As described above, in the present embodiment, the feature quantity is acquired using the vibration acceleration, which is a state quantity that is robust against conditions other than wear.
 図3(a)は、特徴量として加工数に対する振動加速度の絶対値平均を表している。または振幅が作り出す面積の総和を計算してもよい。図3(b)は、加工数に対する振動加速度の振幅値のRMS(2乗平均平方根:Root Mean Square)を表している。 Fig. 3(a) shows the average absolute value of vibration acceleration with respect to the number of processes as a feature quantity. Alternatively, the sum of the areas created by the amplitudes may be calculated. FIG. 3B shows RMS (Root Mean Square) of the amplitude value of vibration acceleration with respect to the number of processes.
 図3(a)(b)を参照すると、いずれも加工数が増えるに従って絶対値平均またはRMSがほぼ比例して増加していることがわかる。このように、加工数と振動加速度の絶対値平均、または加工数と振動加速度の振幅値のRMSは相関関係にある。この相関関係を基に絶対値平均またはRMSと摩耗度との関係を特徴として機械学習させることにより、加工毎の絶対値平均またはRMSから摩耗度を推論することが可能である。 Referring to FIGS. 3(a) and 3(b), it can be seen that the absolute value average or RMS increases almost proportionally as the number of processes increases. Thus, there is a correlation between the number of processes and the average absolute value of the vibration acceleration, or the RMS of the number of processes and the amplitude value of the vibration acceleration. Based on this correlation, it is possible to infer the degree of wear from the average absolute value or RMS for each machining by performing machine learning using the relationship between the average absolute value or RMS and the degree of wear as a feature.
 図4は、あるワーク(歯車)の5パス加工による振動加速度のSTFT(短時間フーリエ変換:short-time Fouriertranform)を表している。図4(a)にあるNo.1は新品の工具のデータであり、図4(b)にあるNo.18は摩耗限界となっている工具のデータである。 Fig. 4 shows the STFT (short-time Fouriertranform) of the vibration acceleration due to 5-pass machining of a workpiece (gear). No. in FIG. 1 is the data of a new tool, No. 1 in FIG. 18 is the data of the tool at the wear limit.
 図4を参照すると、横軸は時間であり、加工パスごとにスペクトルが現れていることがわかる。なお5番目のパスは仕上げ処理であり、時間が長いパスである。全体的に、図4(b)のNo.18の方が周波数強度が高いことから、摩耗が進むと振動が多くなることを検出できていることがわかる。また摩耗が進んだ図4(b)の方が、5番目のパスの800Hz付近に多くのスペクトルが表れている。このようなSTFTの周波数分布の違いを特徴として機械学習させることにより、新品と摩耗限界の判定が可能となる。なお周波数分布の違いとしては、分布を数値化してもよいし、分布画像を絵柄として画像処理してもよい。 Referring to FIG. 4, the horizontal axis is time, and it can be seen that the spectrum appears for each machining pass. Note that the fifth pass is a finishing process, which takes a long time. Overall, No. in FIG. 4(b). Since the frequency intensity of 18 is higher, it can be seen that vibration increases as wear progresses. Further, in FIG. 4B where wear has progressed, more spectra appear near 800 Hz in the fifth pass. By performing machine learning using the difference in frequency distribution of such STFTs as a feature, it is possible to determine whether the product is new or the wear limit. As for the difference in frequency distribution, the distribution may be digitized, or the distribution image may be used as a pattern for image processing.
 さらには、特徴量として単一の指標だけではなく、複数の指標を組み合わせてもよい。これにより、さらに推論の信頼性を向上させることができる。また、いずれの指標も加工数と相関関係があるはずであるから、加工数と特徴量との相関関係を常に評価し、相関関係がない場合には判定結果を表示しないことが好ましい。これにより、誤判定を表示してしまうことを防止することができる。 Furthermore, not only a single index but also multiple indices may be combined as a feature quantity. This can further improve the reliability of the inference. Moreover, since any index should have a correlation with the number of processes, it is preferable to always evaluate the correlation between the number of processes and the feature amount, and not to display the determination result when there is no correlation. As a result, it is possible to prevent an erroneous determination from being displayed.
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は斯かる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood.
 本発明は、機械学習を応用した摩耗判定装置として利用することができる。 The present invention can be used as a wear determination device that applies machine learning.
10…加工機、12…工具、20…ワーク、30…作業者、100…摩耗判定装置、110…センサ、112…センサ、120…データ取得部、130…特徴量抽出部、140…動的学習部、150…学習記憶部、160…推論部、161…再学習指示、162…推論値加工部、170…動的閾値設定部、180…閾値記憶部、190…摩耗判定部、200…表示装置 DESCRIPTION OF SYMBOLS 10... Processing machine, 12... Tool, 20... Work, 30... Worker, 100... Wear determination apparatus, 110... Sensor, 112... Sensor, 120... Data acquisition part, 130... Feature-value extraction part, 140... Dynamic learning Unit 150 Learning storage unit 160 Inference unit 161 Re-learning instruction 162 Inference value processing unit 170 Dynamic threshold setting unit 180 Threshold storage unit 190 Wear determination unit 200 Display device

Claims (3)

  1.  加工機における工具の摩耗判定装置であって、
     ワークまたは工具の状態を測定するセンサと、
     前記センサの出力から特徴量を取得する特徴量抽出部と、
     前記特徴量に基づいて学習モデルを構築する動的学習部と、
     前記動的学習部が構築した学習モデルに基づいて摩耗度の推論を行う推論部と、
     摩耗の閾値を記憶する閾値記憶部と、
     前記摩耗度および前記閾値に基づいて摩耗を判定する摩耗判定部とを備え、
     前記推論部は現在の学習モデルに基づく推論が適切か否かの判断を行い、適切でないと判断した場合には前記動的学習部に再学習指示を送信し、
     前記動的学習部は、前記推論部から制御データを受けたら、現在の学習モデルを構築する際に使用した特徴量とは異なる追加特徴量と前記閾値に基づいて再学習を行い、前記学習モデルを更新することを特徴とする摩耗判定装置。
    A wear determination device for a tool in a processing machine,
    a sensor that measures the state of the workpiece or tool;
    A feature quantity extraction unit that acquires a feature quantity from the output of the sensor;
    a dynamic learning unit that builds a learning model based on the feature amount;
    an inference unit that infers the degree of wear based on the learning model constructed by the dynamic learning unit;
    a threshold storage unit that stores a wear threshold;
    A wear determination unit that determines wear based on the degree of wear and the threshold,
    The inference unit determines whether or not the inference based on the current learning model is appropriate, and if it is determined to be inappropriate, transmits a re-learning instruction to the dynamic learning unit,
    When the dynamic learning unit receives the control data from the inference unit, the dynamic learning unit re-learns based on the additional feature amount different from the feature amount used when constructing the current learning model and the threshold, and the learning model A wear determination device characterized by updating the.
  2.  加工機における工具の摩耗判定装置であって、
     ワークまたは工具の状態を測定するセンサと、
     前記センサの出力から特徴量を取得する特徴量抽出部と、
     前記特徴量に基づいて学習モデルを構築する動的学習部と、
     前記動的学習部が構築した学習モデルに基づいて摩耗度の推論を行う推論部と、
     摩耗の閾値を記憶する閾値記憶部と、
     作業者が入力した閾値を前記閾値記憶部に記憶させる動的閾値設定部と、
     前記摩耗度および前記閾値に基づいて摩耗を判定する摩耗判定部とを備え、
     前記推論部は閾値が変更されたか否かの判断を行い、変更されたと判断した場合には前記動的学習部に再学習指示を送信し、
     前記動的学習部は、前記推論部から制御データを受けたら、前記特徴量と変更された閾値に基づいて再学習を行い、前記学習モデルを更新することを特徴とする摩耗判定装置。
    A wear determination device for a tool in a processing machine,
    a sensor that measures the state of the workpiece or tool;
    A feature quantity extraction unit that acquires a feature quantity from the output of the sensor;
    a dynamic learning unit that builds a learning model based on the feature amount;
    an inference unit that infers the degree of wear based on the learning model constructed by the dynamic learning unit;
    a threshold storage unit that stores a wear threshold;
    a dynamic threshold setting unit that stores the threshold input by the operator in the threshold storage unit;
    A wear determination unit that determines wear based on the degree of wear and the threshold,
    The inference unit determines whether or not the threshold has been changed, and if it is determined that the threshold has been changed, transmits a re-learning instruction to the dynamic learning unit,
    The wear determination device, wherein the dynamic learning unit performs re-learning based on the feature amount and the changed threshold to update the learning model when receiving the control data from the inference unit.
  3.  前記センサは工具またはワークの状態として振動加速度を取得する振動センサであり、前記特徴量抽出部は振動加速度を用いて特徴量を取得することを特徴とする請求項1または2に記載の摩耗判定装置。 3. The wear determination according to claim 1, wherein the sensor is a vibration sensor that acquires vibration acceleration as the state of the tool or workpiece, and the feature quantity extraction unit acquires the feature quantity using the vibration acceleration. Device.
PCT/JP2021/046024 2021-02-08 2021-12-14 Wear assessment device WO2022168455A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180007968.5A CN115210040A (en) 2021-02-08 2021-12-14 Wear determination device
JP2022517383A JPWO2022168455A1 (en) 2021-02-08 2021-12-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021018407 2021-02-08
JP2021-018407 2021-02-08

Publications (1)

Publication Number Publication Date
WO2022168455A1 true WO2022168455A1 (en) 2022-08-11

Family

ID=82742161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046024 WO2022168455A1 (en) 2021-02-08 2021-12-14 Wear assessment device

Country Status (3)

Country Link
JP (1) JPWO2022168455A1 (en)
CN (1) CN115210040A (en)
WO (1) WO2022168455A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432885A (en) * 1977-08-18 1979-03-10 Niigata Eng Co Ltd Method of observing wear of tool in automatic machine tools
WO2014102918A1 (en) * 2012-12-26 2014-07-03 株式会社 日立製作所 Machine fault diagnostic device
JP2020203356A (en) * 2019-06-18 2020-12-24 株式会社ジェイテクト Abnormality detection device of machining tool
US20210019958A1 (en) * 2019-07-18 2021-01-21 Okuma Corporation Relearning necessity determination method and relearning necessity determination device of diagnostic model in machine tool, and computer readable medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432885A (en) * 1977-08-18 1979-03-10 Niigata Eng Co Ltd Method of observing wear of tool in automatic machine tools
WO2014102918A1 (en) * 2012-12-26 2014-07-03 株式会社 日立製作所 Machine fault diagnostic device
JP2020203356A (en) * 2019-06-18 2020-12-24 株式会社ジェイテクト Abnormality detection device of machining tool
US20210019958A1 (en) * 2019-07-18 2021-01-21 Okuma Corporation Relearning necessity determination method and relearning necessity determination device of diagnostic model in machine tool, and computer readable medium

Also Published As

Publication number Publication date
JPWO2022168455A1 (en) 2022-08-11
CN115210040A (en) 2022-10-18

Similar Documents

Publication Publication Date Title
CN108620949B (en) Cutter wear monitoring and predicting method
CN106392772B (en) Rote learning device, main shaft change decision maker, control device, lathe
JP6649684B2 (en) An improved database for chatter prediction
US9588512B2 (en) Setting method of revolutions per minute on real time of spinning cutting tool, and control device
TW201843620A (en) Finish-machining amount prediction apparatus and machine learning device
JP2018156415A (en) Diagnosis device, diagnosis system, diagnosis method and program
CN106056263A (en) Machine tool management system
JP7101131B2 (en) Numerical control system
CN110355462A (en) Processing conditions adjusts device and machine learning device
JP2017205821A (en) Information processor, information processing method, information processing program, and information processing system
KR102073290B1 (en) Signal Processing Method For Adaptive Vibration Control Of Machine Tools
JP2018063653A (en) Information processor
WO2019106860A1 (en) Machine tool control method, machine tool control device, machine tool setting assistance device, and machine tool control system and program
CN109725601B (en) Integrated processing system, integrated processing method, and computer-readable medium
JP2017130094A (en) Cell control device, and production system for managing operation situation of multiple manufacturing machines in manufacturing cell
CN108931959A (en) Control device and rote learning device
JP6856162B2 (en) Control system
JP2008546084A (en) Method of operating an evaluation device for a production machine
WO2009129042A1 (en) Automated system for checking proposed human adjustments to operational or planning parameters at a plant
CN110058983A (en) Abnormal examination parameter adjusts display device
WO2022168455A1 (en) Wear assessment device
US20050021265A1 (en) Method for reducing the measurement requirements for the dynamic response of tools in a CNC machine
WO2020189585A1 (en) Monitoring device, display device, monitoring method and monitoring program
KR20200026108A (en) Machining environment estimation device
Jemielniak Tool wear monitoring based on a non-monotonic signal feature

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022517383

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924840

Country of ref document: EP

Kind code of ref document: A1