WO2022168451A1 - Metal planar paticle dispersion liquid and method for producing intermediate film for laminated glass - Google Patents

Metal planar paticle dispersion liquid and method for producing intermediate film for laminated glass Download PDF

Info

Publication number
WO2022168451A1
WO2022168451A1 PCT/JP2021/045908 JP2021045908W WO2022168451A1 WO 2022168451 A1 WO2022168451 A1 WO 2022168451A1 JP 2021045908 W JP2021045908 W JP 2021045908W WO 2022168451 A1 WO2022168451 A1 WO 2022168451A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated glass
metal
metal tabular
particle dispersion
particles
Prior art date
Application number
PCT/JP2021/045908
Other languages
French (fr)
Japanese (ja)
Inventor
尚治 清都
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2022168451A1 publication Critical patent/WO2022168451A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels

Definitions

  • the present disclosure relates to a method for producing a metal tabular particle dispersion and an interlayer film for laminated glass.
  • a metal particle dispersion containing metal particles as a dispersoid is used for various purposes depending on the properties of the metal particles.
  • the following metal particle dispersion is known.
  • Patent Document 1 discloses an infrared shielding material fine particle dispersion.
  • the dispersion disclosed in Patent Document 1 below uses metal oxide particles such as tungsten oxide fine particles and composite tungsten oxide fine particles.
  • Patent Document 2 discloses a heat shielding particle dispersion.
  • the dispersion disclosed in Patent Document 2 below uses metal oxide particles such as tin-doped indium oxide particles and antimony-doped tin oxide particles.
  • Patent Document 3 discloses a silver tabular particle-containing dispersion used for forming a heat ray reflective layer.
  • dispersion disclosed in Patent Document 3 below tabular silver particles are used.
  • Patent Document 1 and Patent Document 2 are used as raw materials for interlayer films for laminated glass.
  • the metal oxide particles used in the dispersion liquid as described above absorb heat rays and cannot sufficiently reflect the heat rays. Therefore, the interlayer film for laminated glass obtained using the dispersion liquid as described above cannot exhibit high heat ray shielding properties.
  • the flat silver particles used in the dispersion disclosed in Patent Document 3 can exhibit high heat ray reflectivity.
  • the dispersion as described above is an aqueous dispersion, it is difficult to mix with a polymer such as polyvinyl butyral (PVB), which is generally used as a raw material for interlayer films for laminated glass. As a result, the haze of the laminated glass may increase.
  • PVB polyvinyl butyral
  • the flat silver particles tend to agglomerate, and further improvement in dispersibility is desired. When the dispersibility is lowered, not only does the storage period become shorter, but also the properties of the tabular silver particles may not be exhibited sufficiently.
  • An object of the present disclosure is to provide a metal tabular particle dispersion having excellent dispersibility and a method for producing an interlayer film for laminated glass using the metal tabular particle dispersion.
  • the present disclosure includes the following aspects.
  • ⁇ 1> A metal tabular particle dispersion containing 50% by mass or more of silver and a liquid plasticizer.
  • the liquid plasticizer is dihexyl adipate, triethylene glycol di(2-ethylhexanoate), tetraethylene glycol di(2-ethylhexanoate), triethylene glycol di(2-ethylbutyrate), Any one of ⁇ 1> to ⁇ 4>, which is at least one selected from the group consisting of tetraethylene glycol di(2-ethylbutyrate), tetraethylene glycol diheptanoate and triethylene glycol diheptanoate One is a metal tabular particle dispersion.
  • ⁇ 7> The metal tabular particle dispersion according to any one of ⁇ 1> to ⁇ 6>, further comprising an organic solvent having a boiling point of 100° C. or higher at 1013.25 hPa.
  • ⁇ 8> The metal tabular particle dispersion according to any one of ⁇ 1> to ⁇ 7>, further comprising a dispersant that dissolves in the liquid plasticizer.
  • a method for producing an interlayer film for laminated glass comprising obtaining an interlayer film for laminated glass using the metal tabular particle dispersion liquid according to any one of ⁇ 1> to ⁇ 8>.
  • a metal tabular particle dispersion having excellent dispersibility and a method for producing an interlayer film for laminated glass using the metal tabular particle dispersion are provided.
  • FIG. 1 is a schematic diagram showing an example of a method for producing an intermediate film for laminated glass and a laminated glass.
  • a numerical range indicated using "-" indicates a range that includes the numerical values described before and after "-" as lower and upper limits, respectively.
  • upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step.
  • upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
  • the amount of each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
  • step includes not only independent steps, but also if the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps. .
  • ordinal numbers are terms used to distinguish constituent elements, and do not limit the number of constituent elements or their superiority or inferiority.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) are TSKgel GMHxL (trade name manufactured by Tosoh Corporation), TSKgel G4000HxL (trade name manufactured by Tosoh Corporation) and TSKgel It is a molecular weight converted using polystyrene as a standard substance using a gel permeation chromatography (GPC) analyzer using a column of G2000HxL (manufactured by Tosoh Corporation) and a differential refractometer. Tetrahydrofuran (THF) is used as solvent.
  • GPC gel permeation chromatography
  • a metal tabular particle dispersion according to an embodiment of the present disclosure includes metal tabular particles containing 50% by mass or more of silver, and a liquid plasticizer. According to the embodiment described above, a metal tabular particle dispersion having excellent dispersibility is provided. Although the detailed mechanism is not clear, it is presumed that the liquid plasticizer functioned as a dispersion medium for the metal tabular particles, improving the dispersibility of the metal tabular particles.
  • a metal tabular grain dispersion liquid according to an embodiment of the present disclosure includes metal tabular grains containing 50% by mass or more of silver (hereinafter sometimes simply referred to as “metal tabular grains” or “silver tabular grains”).
  • metal tabular grains means a grain containing two principal planes facing in opposite directions.
  • Metal tabular grains containing 50% by mass or more of silver can exhibit high heat ray reflectivity. Therefore, for example, when an intermediate film for laminated glass and laminated glass are produced using the metal tabular particle dispersion according to an embodiment of the present disclosure, the heat ray shielding properties of the intermediate film for laminated glass and laminated glass are improved.
  • the tabular metal particles contain 50% by mass or more of silver.
  • the proportion of silver in the tabular metal grains is 50% by mass or more.
  • the metal tabular grains may contain metals other than silver, if necessary. From the viewpoint of improving heat ray shielding properties, the proportion of silver in the tabular metal grains is preferably 50% by mass to 100% by mass, more preferably 80% by mass to 100% by mass, and more preferably 95% by mass to 100% by mass is particularly preferred.
  • the proportion of silver in the metal tabular grains is calculated by the ICP (Inductively Coupled Plasma) measurement method. Specific procedures are shown below. Proportion of silver in the tabular metal particles based on the amount of metal contained in the tabular metal particles (for example, the amount of silver, the amount of gold, and the amount of platinum) measured using an ICP measurement device (Optima 7300DV, manufactured by PerkinElmer) is calculated.
  • ICP Inductively Coupled Plasma
  • the metal tabular particles include triangular metal tabular particles, hexagonal metal tabular particles, and circular metal tabular particles.
  • the metal tabular grains are preferably at least one selected from the group consisting of hexagonal or more polygonal metal tabular grains and circular metal tabular grains. and circular metal tabular grains. Further, the metal tabular grains are preferably hexagonal or polygonal tabular grains or circular tabular metal grains, more preferably hexagonal tabular metal grains or circular tabular metal grains.
  • circular in the circular metal tabular grain means a shape in which the number of sides having a length of 50% or more of the average circle equivalent diameter of the metal tabular grain is 0 per one metal tabular grain. do. For example, when the main planes of circular metal tabular grains are observed using a transmission electron microscope, a round shape with no corners is observed.
  • hexagonal in the hexagonal metal tabular grain means a shape in which one metal tabular grain has 6 sides having a length of 20% or more of the average circle equivalent diameter of the metal tabular grain. do.
  • the applicability of a polygonal shape other than a hexagon is determined according to the number of sides having a length of 20% or more of the average equivalent circular diameter of the metal tabular grain. For example, when the main planes of hexagonal tabular metal grains are observed using a transmission electron microscope, a hexagonal shape is observed.
  • the hexagonal corners may be sharp or rounded. From the viewpoint of reducing absorption in the visible light region, the hexagonal corners are preferably rounded. The degree of roundness of the hexagonal corners may be determined depending on the purpose.
  • the content of the hexagonal tabular metal particles and the circular tabular metal particles is preferably 60% or more, more preferably 65% or more, of the total number of metal particles. It is more preferably 70% or more, particularly preferably 70% or more.
  • Metal particles in this paragraph means particles containing metal.
  • the average equivalent circle diameter of the metal tabular grains is preferably 10 nm to 500 nm, more preferably 10 nm to 300 nm, and particularly preferably 50 nm to 300 nm. Furthermore, the average equivalent circle diameter of the metal tabular grains is preferably 70 nm to 300 nm, more preferably 80 nm to 250 nm. When the average equivalent circle diameter of the metal tabular grains is increased, the heat ray shielding property is improved. When the average equivalent circle diameter of the metal tabular grains is reduced, the visible light transmittance is improved.
  • the average circle-equivalent diameter of the metal tabular grains is calculated by the following method.
  • the metal tabular grains are observed using a transmission electron microscope (TEM), and the obtained image is imported into image processing software "ImageJ" and subjected to image processing.
  • Image analysis is performed on 1,000 metal tabular grains arbitrarily extracted from TEM images of a plurality of fields of view, and the average circle equivalent diameter of the 1,000 metal tabular grains is calculated. The obtained value is employed as the average circle equivalent diameter of the tabular metal grains.
  • the coefficient of variation of the equivalent circle diameter of the metal tabular grains is preferably 35% or less, more preferably 30% or less, and particularly preferably 20% or less. When the coefficient of variation becomes small, the reflection wavelength range of heat rays in the interlayer film for laminated glass becomes sharp.
  • the variation coefficient of the equivalent circle diameter of the metal tabular grains is calculated by dividing the standard deviation of the equivalent circle diameters of 1,000 metal tabular grains by the average equivalent circle diameter of the metal tabular grains.
  • the circle-equivalent diameter of the metal tabular grains is calculated using the image processing software "ImageJ" described above.
  • the average thickness of the metal tabular grains is preferably 14 nm or less, more preferably 5 nm to 14 nm, and particularly preferably 5 nm to 12 nm.
  • the average thickness of the metal tabular grains is calculated by arithmetically averaging the thicknesses of 100 metal tabular grains by the FIB-TEM method.
  • the thickness of a metal tabular grain corresponds to the distance between two main planes of the metal tabular grain.
  • the average aspect ratio of the metal tabular grains is preferably 6 or more, more preferably 10 or more.
  • the average aspect ratio of the tabular metal grains is preferably 6-40, more preferably 10-35.
  • the average aspect ratio of the metal tabular grains is calculated by dividing the average circle equivalent diameter of the metal tabular grains by the average thickness of the metal tabular grains.
  • a preferred relationship between the average equivalent circle diameter of the metal tabular grains and the average aspect ratio of the metal tabular grains is as follows. In one embodiment, it is preferable that the average equivalent circle diameter of the metal tabular grains is 10 nm to 300 nm and the average aspect ratio of the metal tabular grains is 6 or more. In one embodiment, it is more preferable that the average equivalent circle diameter of the metal tabular grains is 10 nm to 300 nm and the average aspect ratio of the metal tabular grains is 10 or more. In one embodiment, it is particularly preferred that the average equivalent circle diameter of the metal tabular grains is 70 nm to 300 nm and the average aspect ratio of the metal tabular grains is 10 to 35. In the relationship between the average equivalent circle diameter and the average aspect ratio described above, the upper and lower limits of the average equivalent circle diameter may be replaced by the preferred numerical values described above, and the upper and lower limits of the average aspect ratio are already may be replaced with the preferred numerical values described above.
  • Metal tabular grains are manufactured, for example, by a publicly known synthetic method.
  • methods for synthesizing tabular metal grains include a liquid phase method.
  • Liquid phase methods include, for example, chemical reduction methods, photochemical reduction methods, and electrochemical reduction methods. From the viewpoint of the controllability of the shape and size of the metal tabular grains, the chemical reduction method and the photochemical reduction method are preferred.
  • As a method for synthesizing tabular metal grains for example, there is a method in which seed crystals are fixed on the surface of a transparent base material, and then the grains are crystal-grown in a tabular shape.
  • a method for synthesizing tabular metal grains is described, for example, in JP-A-2014-194446. The contents of the above documents are incorporated herein by reference.
  • a metal tabular particle dispersion according to an embodiment of the present disclosure may contain one or more types of metal tabular particles.
  • the proportion of the metal tabular grains in the metal tabular grain dispersion is preferably 0.3% by mass to 30% by mass, more preferably 0.5% by mass to 25% by mass, and 1% by mass to 20% by mass. % by weight is particularly preferred.
  • the proportion of the metal tabular particles in the metal tabular particle dispersion increases, the heat ray shielding property is improved.
  • the proportion of the metal tabular particles in the metal tabular particle dispersion becomes small the dispersibility is improved.
  • a metal tabular particle dispersion according to an embodiment of the present disclosure contains a liquid plasticizer.
  • liquid as used with respect to “liquid plasticizer” means that the substance is in a liquid state under normal atmospheric pressure (ie 1013.25 hPa) and 25°C.
  • the liquid plasticizer contributes to improving the dispersibility of the metal tabular particles.
  • the liquid plasticizer contributes to softening the interlayer film for laminated glass.
  • liquid plasticizer is not limited.
  • Liquid plasticizers include known liquid plasticizers.
  • Liquid plasticizers include, for example, fatty acid esters and phosphoric acid compounds.
  • fatty acid esters include dihexyl adipate, tetraethylene glycol di(2-ethylhexanoate), triethylene glycol di(2-ethylbutyrate), triethylene glycol di(2-ethylhexanoate), triethylene Glycol dicaprylate, triethylene glycol di(n-octanoate), triethylene glycol diheptanoate, tetraethylene glycol diheptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di(2- ethyl butyrate), 1,3-propylene glycol di(2-ethylbutyrate), 1,4-propylene glycol di(2-ethylbutyrate), 1,4-butylene glycol di(2-ethylbutyrate), 1,2-butylene glycol di(2-ethylene butyrate), diethylene glycol di(2-ethylbutyrate), di
  • Examples of phosphoric acid compounds include tributoxyethyl phosphate, isodecylphenyl phosphate and triisopropyl phosphite.
  • the liquid plasticizer is preferably a fatty acid ester, such as dihexyl adipate, triethylene glycol di(2-ethylhexanoate), tetraethylene glycol di(2-ethylhexanoate), At least one selected from the group consisting of triethylene glycol di(2-ethylbutyrate), tetraethylene glycol di(2-ethylbutyrate), tetraethylene glycol diheptanoate and triethylene glycol diheptanoate is more preferred, and triethylene glycol di(2-ethylhexanoate) is particularly preferred.
  • a fatty acid ester such as dihexyl adipate, triethylene glycol di(2-ethylhexanoate), tetraethylene glycol di(2-ethylhexanoate), At least one selected from the group consisting of triethylene glycol di(2-ethylbutyrate), tetraethylene glycol di(2-ethyl
  • the combined metal tabular particle dispersion according to one embodiment of the present disclosure may contain one or more liquid plasticizers.
  • the proportion of the liquid plasticizer in the metal tabular particle dispersion is preferably 50% by mass to 99.7% by mass, more preferably 60% by mass to 99.5% by mass. is more preferable, and 70% by mass to 99% by mass is particularly preferable.
  • the ratio of the content of the liquid plasticizer to the content of the tabular metal particles is preferably 1 to 1,000, more preferably 2 to 500, in terms of mass. 3 to 200 is particularly preferred.
  • the metal tabular particle dispersion according to an embodiment of the present disclosure may further contain a solvent.
  • solvents include water and organic solvents.
  • Preferred organic solvents include, for example, organic solvents having a boiling point of 100° C. or higher at 1013.25 hPa.
  • the metal tabular particle dispersion liquid according to an embodiment of the present disclosure further contains an organic solvent having a boiling point of 100°C or higher at 1013.25 hPa (hereinafter sometimes referred to as "specific organic solvent").
  • the specific organic solvent contributes to improving the dispersibility of the tabular metal particles.
  • organic solvents examples include toluene, xylene, 1,2-dibromoethane, tetrachloroethylene, chlorobenzene, bromobenzene, o-dichlorobenzene, 1-butanol, isobutyl alcohol, isopentyl alcohol, cyclohexanol, ethylene glycol, propylene glycol.
  • a metal tabular particle dispersion according to an embodiment of the present disclosure may contain one or more solvents.
  • the ratio of the solvent (preferably the specific organic solvent) in the metal tabular particle dispersion is preferably 0.1% by mass or more and less than 100% by mass, and is 1% by mass to 50% by mass. is more preferable, and 2% by mass to 20% by mass is particularly preferable.
  • the metal tabular particle dispersion according to an embodiment of the present disclosure may further contain a dispersant.
  • the type of dispersant is not limited. Dispersants include known dispersants. Preferred dispersants include, for example, dispersants that are soluble in liquid plasticizers.
  • the metal tabular particle dispersion liquid according to an embodiment of the present disclosure further includes a dispersant that dissolves in the liquid plasticizer (hereinafter sometimes referred to as "specific dispersant”).
  • soluble in the liquid plasticizer used in relation to the "dispersant soluble in the liquid plasticizer” means the property of dissolving 0.1 g or more per 100 g of the liquid plasticizer at 25°C.
  • the specific dispersant contributes to improving the dispersibility of the tabular metal grains.
  • Specific dispersants include, for example, acrylic resins, phosphate esters, polyurethanes, epoxy resins, and polyglycerin fatty acid esters. From the viewpoint of improving dispersibility, the specific dispersant is preferably a polyglycerin fatty acid ester.
  • Polyglycerin fatty acid esters include, for example, polyglycerin condensed ricinoleic acid esters and polyglycerin-bound ricinoleic acid esters.
  • Polyglycerin fatty acid esters include, for example, polyglycerin fatty acid esters described in JP-A-2013-112791. Examples of commercially available polyglycerin fatty acid esters include "SY Glister” (Sakamoto Yakuhin Kogyo Co., Ltd.).
  • Commercially available products of polyglycerin-bound ricinoleate include, for example, "SY Glister CRED" (Sakamoto Yakuhin Kogyo Co., Ltd.).
  • a metal tabular particle dispersion according to an embodiment of the present disclosure may contain one or more dispersants.
  • the proportion of the dispersant (preferably the specific dispersant) in the metal tabular particle dispersion is preferably 0.1% by mass to 50% by mass, more preferably 0.2% by mass to 20% by mass. is more preferable, and 0.5% by mass to 10% by mass is particularly preferable.
  • the ratio of the content of the dispersant (preferably the specific dispersant) to the content of the metal tabular grains is preferably 0.01 to 100, more preferably 0.05 to 50 in terms of mass. It is more preferably 0.1 to 10, particularly preferably 0.1 to 10.
  • the metal tabular particle dispersion according to an embodiment of the present disclosure may further contain a water-soluble resin, if necessary. However, as will be described later, it is preferable that the content of the water-soluble resin is small in the metal tabular particle dispersion according to an embodiment of the present disclosure.
  • the term "water-soluble” used in relation to the "water-soluble resin” means a property of dissolving 5 g or more in 100 g of water at 25°C.
  • water-soluble resins examples include polyvinyl acetal, polyvinyl alcohol, acrylic resin, polycarbonate, polyvinyl chloride, polyester, polyurethane, gelatin and cellulose. However, as will be described later, from the viewpoint of improving dispersibility, it is preferable to limit the amount of the water-soluble resin used.
  • a metal tabular particle dispersion according to an embodiment of the present disclosure may contain one or more water-soluble resins.
  • the content of the water-soluble resin is small.
  • the ratio of the content of the water-soluble resin to the content of the tabular metal particles is preferably 1% or less, more preferably 0.5% or less, and 0.2% or less in terms of mass. is particularly preferred.
  • the ratio of the content of the water-soluble resin to the content of the tabular metal particles may be 0% in terms of mass.
  • the content of water-soluble resin is measured by the BCA method (viciconinic acid method). Specific procedures (1) to (3) are shown below.
  • a mixture of water-soluble resin (10 g) and ion-exchanged water (115 g) (hereinafter referred to as "mother liquor 1" in this paragraph), a mixture of water-soluble resin (5 g) and ion-exchanged water (120 g) (hereinafter referred to as “mother liquor 2" in this paragraph), a mixture of water-soluble resin (5 g) and ion-exchanged water (245 g) (hereinafter referred to as “mother liquor 3” in this paragraph), and water-soluble resin ( 5 g) and deionized water (495 g) (hereinafter referred to as "mother liquor 4" in this paragraph) is prepared.
  • the water-soluble resin in the mother liquor is dissolved in deionized water while stirring at 40° C. for 30 minutes to obtain a calibration curve solution.
  • the calibration curve solution (2.5 mL) obtained using the mother liquor 1 into the first test tube and the calibration curve solution (2.5 mL) obtained using the mother liquor 2 into the second test tube.
  • a calibration solution (2.5 mL) obtained using mother liquor 3 was added to a third test tube, and a calibration solution (2.5 mL) obtained using mother liquor 4 was added to a fourth test tube. into a test tube.
  • a method for producing a metal tabular particle dispersion liquid according to an embodiment of the present disclosure is not limited.
  • the metal tabular particle dispersion is produced, for example, by mixing the metal tabular particles and a liquid plasticizer. Mixing of the metal tabular particles and the liquid plasticizer may be carried out under heating conditions. The heating temperature is preferably 20°C to 150°C.
  • a composition containing metal tabular particles, a dispersant, and a solvent may be used as the supply source of the metal tabular particles.
  • the composition as described above is obtained, for example, in the process of manufacturing tabular metal grains by a liquid phase method.
  • Liquid-phase methods often use a water-soluble resin (eg, gelatin) as a dispersant and water as a solvent.
  • the water-soluble resin is preferably replaced with a dispersant that has a high affinity for the liquid plasticizer.
  • the dispersant having a high affinity for the liquid plasticizer include the specific dispersant described above.
  • the replacement of the water-soluble resin with a dispersant that has a high affinity for the liquid plasticizer is preferably carried out, for example, in the presence of a substance that decomposes the water-soluble resin.
  • a substance that decomposes the water-soluble resin When the water-soluble resin is degraded, dispersant replacement readily occurs.
  • Substances that decompose gelatin, which is a type of water-soluble resin include, for example, proteolytic enzymes. Examples of commercially available proteolytic enzymes include Bioplase AL-15FG (Nagase ChemteX Corporation).
  • the metal tabular particles are usually dispersed in the oil phase containing the liquid plasticizer.
  • a metal tabular particle dispersion is obtained by taking out the oil phase containing the metal tabular particles.
  • a metal tabular particle dispersion liquid according to an embodiment of the present disclosure is used, for example, as a raw material for an intermediate film for laminated glass and laminated glass.
  • the interlayer film for laminated glass is used as a raw material for laminated glass.
  • Applications of laminated glass include, for example, vehicle (eg, automobile, railcar and airplane) glazing and building glazing.
  • the use of the metal tabular particle dispersion liquid is not limited to the specific examples described above.
  • a method for producing an interlayer film for laminated glass according to an embodiment of the present disclosure is to obtain an interlayer film for laminated glass using a metal tabular particle dispersion liquid according to an embodiment of the present disclosure (hereinafter, “formation of interlayer film (sometimes referred to as "process").
  • the metal tabular particle dispersion is used as the raw material for the interlayer film for laminated glass, the heat ray shielding property of the interlayer film for laminated glass is improved.
  • the metal tabular particle dispersion is easily mixed with a polymer such as polyvinyl butyral (PVB), which is commonly used as a raw material for interlayer films for laminated glass. As a result, the haze of the interlayer film for laminated glass is reduced.
  • PVB polyvinyl butyral
  • metal tabular particle dispersion liquid used as the raw material is described in the above section "Metal tabular particle dispersion liquid”.
  • Preferred aspects of the metal tabular particle dispersion liquid used as the raw material are the same as the preferred aspects of the metal tabular particle dispersion liquid described in the above section "Metal tabular particle dispersion liquid”.
  • a method for producing an interlayer film for laminated glass according to an embodiment of the present disclosure includes mixing a metal tabular particle dispersion and a polymer (hereinafter, “mixing step” ), and extruding the composition obtained by mixing the metal tabular particle dispersion and the polymer using an extruder (hereinafter sometimes referred to as the “first extrusion step”). and preferably include The mixing step and the first extrusion step contribute to improving the heat ray shielding property of the interlayer film for laminated glass and reducing the haze of the interlayer film for laminated glass.
  • polymers examples include polyvinyl acetal, polyvinyl alcohol, acrylic resin, polycarbonate, polyvinyl chloride, polyester, polyurethane, gelatin and cellulose.
  • the polymer comprises polyvinyl acetal.
  • the polyvinyl acetal preferably contains a cyclic structure containing —O—CHR 1 —O— bonds.
  • R 1 represents a hydrogen atom or a monovalent organic group.
  • the cyclic structure is preferably a 6-membered ring structure.
  • R 1 is preferably a monovalent organic group. Examples of monovalent organic groups include alkyl groups. Alkyl groups may be linear, branched or cyclic alkyl groups. The number of carbon atoms in the alkyl group is preferably 1-10, more preferably 2-8, and particularly preferably 2-4.
  • Polyvinyl acetals include, for example, polyvinyl formal and polyvinyl butyral (PVB). The polyvinyl acetal is preferably polyvinyl butyral (PVB).
  • the degree of acetalization of the polyvinyl acetal is preferably 55 mol% or more, more preferably 67 mol% or more. From the viewpoint of shortening the production time of polyvinyl acetal, the degree of acetalization of polyvinyl acetal is preferably 75 mol % or less, more preferably 71 mol % or less. The degree of acetalization is calculated, for example, by a method based on "ASTM D1396-92".
  • the polyvinyl acetal may be a synthetic product or a commercial product.
  • Polyvinyl acetal is produced, for example, by a known method.
  • Polyvinyl acetal is produced, for example, by acetalizing polyvinyl alcohol with an aldehyde.
  • the polyvinyl alcohol may be a synthetic product or a commercial product.
  • Polyvinyl alcohol is produced, for example, by saponifying polyvinyl acetate.
  • the degree of saponification of polyvinyl alcohol is preferably 70 mol % to 99.9 mol %.
  • the average degree of polymerization of polyvinyl alcohol is preferably 200 or more, more preferably 500 or more, and particularly preferably 1,500 or more.
  • the average degree of polymerization of polyvinyl alcohol is preferably 1,600 or more, more preferably 2,600 or more, and particularly preferably 2,700 or more.
  • the average degree of polymerization of polyvinyl alcohol is preferably 5,000 or less, more preferably 4,000 or less, and 3,500 or less. is particularly preferred.
  • the average degree of polymerization of polyvinyl alcohol is determined, for example, by a method conforming to "JIS K 6726:1994" (polyvinyl alcohol test method).
  • aldehydes include, for example, aldehydes having 1 to 10 carbon atoms.
  • aldehydes having 1 to 10 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, n -nonylaldehyde, n-decylaldehyde and benzaldehyde.
  • Propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde or n-hexylaldehyde are preferred, propionaldehyde, n-butyraldehyde or isobutyraldehyde are more preferred, and n-butyraldehyde is particularly preferred.
  • the mixing step is performed, for example, by a known method.
  • the mixing step may be performed in an extruder and a kneading device associated with the extruder. Other ingredients may be added during the mixing step. Other ingredients may be added to the composition obtained by the mixing step.
  • Other components include, for example, additives described in paragraphs 0066 to 0067 of JP-A-2014-194446.
  • Other ingredients also include, for example, antioxidants.
  • antioxidants examples include phenol antioxidants, sulfur antioxidants and phosphorus antioxidants.
  • a phenolic antioxidant is an antioxidant containing a phenol skeleton.
  • a sulfur antioxidant is an antioxidant containing a sulfur atom.
  • a phosphorus antioxidant is an antioxidant containing a phosphorus atom. The antioxidant is preferably a phenolic antioxidant or a phosphorus antioxidant.
  • Phenolic antioxidants include, for example, 2,6-di-t-butyl-p-cresol (BHT), butylated hydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, Stearyl- ⁇ -(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,2′-methylenebis(4-methyl-6-butylphenol), 2,2′-methylenebis(4-ethyl-6 -t-butylphenol), 4,4′-butylidene-bis(3-methyl-6-t-butylphenol), 1,1,3-tris-(2-methyl-hydroxy-5-t-butylphenyl)butane, tetrakis[methylene-3-(3′,5′-butyl-4-hydroxyphenyl)propionate]methane, 1,3,3-tris-(2-methyl-4-hydroxy-5-t-butylphenol)butane, 1 , 3,5-trimethyl-2
  • Phosphorus-based antioxidants include, for example, tridecyl phosphite, tris(tridecyl) phosphite, triphenyl phosphite, trinonylphenyl phosphite, bis(tridecyl) pentaerythritol diphosphite, bis(decyl) pentaerythritol diphosphite, Phosphite, tris(2,4-di-t-butylphenyl)phosphite, bis(2,4-di-t-butyl-6-methylphenyl)ethyl ester phosphorous acid, tris(2,4-di- t-butylphenyl)phosphite and 2,2'-methylenebis(4,6-di-t-butyl-1-phenyloxy)(2-ethylhexyloxy)phosphorus.
  • the composition obtained by the mixing step is extruded using an extruder.
  • the shape of the composition extruded from the extruder usually corresponds to the shape of the exit (ie, discharge port) of the extruder.
  • a first extrusion step results in a film-like composition.
  • the composition extruded from the extruder can form regions containing metal tabular particles in the interlayer film for laminated glass.
  • the extruder may be any known extruder.
  • the extruder conditions are determined, for example, according to the thickness of the interlayer film for laminated glass. In order to reduce the thickness of the interlayer film for laminated glass, it is effective to increase the pressure and temperature.
  • a method for manufacturing an interlayer film for laminated glass according to an embodiment of the present disclosure comprises a metal flat particle dispersion and a polymer under conditions of a pressure of 10 kgf/cm 2 to 150 kgf/cm 2 and a temperature of 140°C to 250°C. It preferably comprises extruding the composition obtained by mixing with an extruder.
  • first intermediate film The composition extruded from the extruder in the first extrusion step (hereinafter referred to as "first intermediate film”) is used as an intermediate film for laminated glass or a raw material for an intermediate film for laminated glass.
  • first intermediate film a first interlayer film is used as a raw material for an interlayer film for laminated glass
  • the interlayer film for laminated glass may be manufactured through a process of stacking the first interlayer film and another interlayer film.
  • a method for manufacturing an interlayer film for laminated glass includes forming a first interlayer film into two interlayer films containing a polymer (hereinafter referred to as “second intermediate film” and “third intermediate film”) and extruding using an extruder (hereinafter sometimes referred to as "second extrusion step").
  • the second intermediate film, the first intermediate film, and the third intermediate film are stacked in this order and extruded to reduce the existence range of the metal tabular particles in the thickness direction of the interlayer film for laminated glass,
  • the heat ray shielding property of the interlayer film for glass can be improved.
  • the first intermediate film is produced by extruding, using an extruder, a composition obtained by mixing a dispersion of metal tabular particles and a polymer.
  • Each of the second intermediate film and the third intermediate film is produced, for example, by extruding a composition containing a polymer or a polymer using an extruder.
  • Polymers used as raw materials include, for example, the polymers described above.
  • Each of the second intermediate film and the third intermediate film preferably contains a plasticizer (preferably a liquid plasticizer).
  • Each of the second intermediate film and the third intermediate film may contain other components as described above, if necessary.
  • the extruder used in the second extrusion step may be the same as or different from the extruder used in the first extrusion step.
  • Preferred conditions for the second extrusion step are the same as preferred conditions for the first extrusion step.
  • composition extruded from the extruder in the second extrusion step is used as a raw material for an intermediate film for laminated glass or an intermediate film for laminated glass, similar to the first intermediate film.
  • the composition extruded from the extruder in the second extrusion step may be used over other interlayers, as described below.
  • a method for producing an interlayer film for laminated glass according to an embodiment of the present disclosure includes a composition extruded from an extruder in a second extrusion step, containing a polymer It may further include sandwiching between two intermediate films (hereinafter, the two intermediate films are referred to as "fourth intermediate film” and "fifth intermediate film", respectively) and extruding using an extruder.
  • the fourth intermediate film, the second intermediate film, the first intermediate film, the third intermediate film and the fifth intermediate film may be stacked in this order, or the fifth intermediate film and the second intermediate film may be stacked in this order.
  • the first intermediate film, the third intermediate film and the fourth intermediate film may be stacked in this order.
  • Each of the fourth intermediate film and the fifth intermediate film is manufactured by, for example, the same method as the manufacturing method of the second intermediate film or the third intermediate film described above.
  • Each of the fourth intermediate film and the fifth intermediate film preferably contains a plasticizer (preferably a liquid plasticizer).
  • a plasticizer preferably a liquid plasticizer.
  • Each of the fourth intermediate film and the fifth intermediate film may contain other components as described above, if necessary.
  • FIG. 1 is a schematic diagram showing an example of a method for producing an intermediate film for laminated glass and a laminated glass.
  • FIG. 1 the boundaries between the intermediate films used as raw materials are shown for the explanation of the intermediate film for laminated glass and the method of manufacturing the laminated glass.
  • some or all of the boundary between interlayer films as shown in FIG. 1 may not be clearly observed.
  • an intermediate film 10 As shown in FIG. 1(a), an intermediate film 10, an intermediate film 11 containing metal tabular particles P, and an intermediate film 12 are stacked in this order and extruded using an extruder to obtain an intermediate film laminate 100. can get.
  • interlayer films 13, 10, 11, 12 and 14 are laminated in this order as shown in FIG.
  • the intermediate film for laminated glass 200 is obtained by extrusion using a machine.
  • the intermediate film 10 corresponds to the second intermediate film
  • the intermediate film 11 corresponds to the first intermediate film
  • the intermediate film 12 corresponds to the third intermediate film.
  • Reference numeral 13 corresponds to the already-described fourth intermediate film
  • intermediate film 14 corresponds to the already-described fifth intermediate film.
  • the interlayer film for laminated glass obtained by the method for producing an interlayer film for laminated glass according to an embodiment of the present disclosure contains at least metal tabular particles.
  • the interlayer film for laminated glass formed using the metal tabular particle dispersion may contain a part or all of the components of the metal tabular particle dispersion.
  • highly volatile components e.g., solvent
  • highly volatile components among the components of the metal tabular particle dispersion liquid may be intentionally or accidentally removed during the manufacturing process of the interlayer film for laminated glass. may not be included in
  • the interlayer film for laminated glass may apparently have a single-layer structure or a multi-layer structure.
  • the interlayer for laminated glass may contain other layers.
  • Other layers include, for example, a heat ray absorbing layer, an ultraviolet absorbing layer, an adhesive layer, a hard coat layer and an overcoat layer.
  • other layers include, for example, a support described in paragraphs 0068 to 0072 of JP-A-2014-194446, an undercoat layer described in paragraph 0085 of JP-A-2014-194446, and a JP-A-2014-194446.
  • Also included are the back coat layers described in paragraph 0086 of JP-A-2014-194446.
  • the interlayer film for laminated glass may include a heat-absorbing layer containing metal oxide particles.
  • Metal oxides in the metal oxide particles include tin-doped indium oxide (ITO), cesium-doped tungsten oxide (CWO), antimony-doped tin oxide (ATO), zinc oxide, zinc antimonate, titanium oxide, indium oxide, and tin oxide. , antimony oxide, glass ceramics and lanthanum hexaboride (LaB 6 ).
  • a composition of cesium-doped tungsten oxide includes, for example, Cs 0.33 WO 3 .
  • the metal oxide in the metal oxide particles is preferably at least one selected from the group consisting of tin-doped indium oxide (ITO) and cesium-doped tungsten oxide (CWO).
  • the volume average particle size of the primary particles of the metal oxide particles is preferably 100 nm or less, more preferably 80 nm or less, and 60 nm or less. It is particularly preferred to have
  • the shape of the metal oxide particles includes, for example, a spherical shape, a needle shape, and a plate shape.
  • the heat-absorbing layer may contain one or more metal oxide particles.
  • the content of metal oxide particles in the heat ray absorbing layer is preferably 0.5 g/m 2 to 5.0 g/m 2 , more preferably 0.5 g/m 2 to 4 g/m 2 with respect to the total mass of the heat ray absorbing layer. 0 g/m 2 is more preferred, and 1.0 g/m 2 to 3.0 g/m 2 is particularly preferred.
  • the content of the metal oxide particles is 0.5 g/m 2 or more, the heat ray shielding properties are improved.
  • the content of the metal oxide particles is 5 g/m 2 or less, the visible light transmittance is improved.
  • the content of cesium-doped tungsten oxide (CWO) in the heat-absorbing layer is preferably 0.3 g/m 2 to 1.3 g/m 2 , more preferably 0.6 g/m 2 with respect to the total mass of the heat-absorbing layer. More preferably 2 to 1.3 g/m 2 .
  • the mass ratio of ITO and CWO is preferably 5-95:95-5, more preferably 10-90:90-10. , 20-80:80-20.
  • the thickness of the heat ray absorbing layer is preferably within the range of 0.5 ⁇ m to 10 ⁇ m, more preferably within the range of 1.0 ⁇ m to 3.0 ⁇ m.
  • the interlayer film for laminated glass according to one embodiment of the present disclosure may include an ultraviolet absorbing layer.
  • the ultraviolet absorption layer may be a layer having other functions in addition to the function of absorbing ultraviolet rays.
  • the number of ultraviolet absorbing layers may be one or two or more. From the viewpoint of reducing the thickness of the interlayer film for laminated glass, the interlayer film for laminated glass according to one embodiment of the present disclosure preferably includes one ultraviolet absorbing layer.
  • the transmittance of the ultraviolet absorption layer at a wavelength of 390 nm is preferably 50% or less, more preferably 40% or less, and particularly preferably 30% or less.
  • the transmittance of the ultraviolet absorbing layer at a wavelength of 390 nm is adjusted, for example, by the content and type of the ultraviolet absorbing agent in the ultraviolet absorbing layer.
  • the ultraviolet absorbing layer preferably contains an ultraviolet absorber.
  • UV absorbers include triazine-based compounds, benzotriazole-based compounds, cyclic iminoester-based compounds, benzophenone-based compounds, merocyanine-based compounds, cyanine-based compounds, dibenzoylmethane-based compounds, cinnamic acid-based compounds, and cyanoacrylate-based compounds. and benzoic acid ester compounds.
  • UV absorbers also include compounds described in paragraphs 0040 to 0088 of JP-A-2012-136019. The contents of the above documents are incorporated herein by reference.
  • the ultraviolet absorbing layer may contain one or more ultraviolet absorbers.
  • the content of UV absorbers is not limited.
  • the content of the ultraviolet absorbent is determined, for example, according to the function of the ultraviolet absorbing layer, that is, the required ultraviolet transmittance.
  • the ultraviolet absorbing layer may contain a polymer as a binder.
  • Polymers include, for example, acrylic resins, polyvinyl butyral, polyvinyl alcohol, and polyesters. From the viewpoint of improving heat reflection by the metal tabular particles, the polymer is preferably selected from polymers that do not absorb light in the wavelength range of 450 nm to 1,500 nm.
  • the ultraviolet absorbing layer may contain at least one selected from the group consisting of fine particles having a low refractive index and fine particles having a high refractive index. Fine particles with a low refractive index can reduce the refractive index of the UV absorbing layer. Fine particles with a high refractive index can increase the refractive index of the UV absorbing layer. Fine particles having a low refractive index include, for example, magnesium fluoride fine particles and silica fine particles. Silica fine particles are preferred from the viewpoint of refractive index, dispersion stability and cost. From the viewpoint of reducing the refractive index, hollow silica fine particles are preferred.
  • the refractive index of the hollow silica fine particles is preferably 1.17 to 1.40, more preferably 1.17 to 1.35, particularly preferably 1.17 to 1.30.
  • the refractive index of the hollow silica fine particles represents the refractive index of the entire particle, and does not represent the refractive index of only the outer shell silica forming the hollow silica fine particles.
  • the average particle size of the fine particles having a low refractive index is preferably 30 nm to 100 nm, more preferably 35 nm to 80 nm, and particularly preferably 40 nm to 60 nm.
  • Fine particles having a high refractive index include, for example, metal oxide fine particles containing at least one selected from the group consisting of titanium, zirconium, aluminum, indium, zinc, tin and antimony.
  • the average particle size of the fine particles having a high refractive index is preferably 0.2 ⁇ m or less, more preferably 0.1 ⁇ m or less, and particularly preferably 0.06 ⁇ m or less.
  • the thickness of the ultraviolet absorbing layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more. From the viewpoint of visible light transmission, the thickness of the ultraviolet absorbing layer is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the interlayer film for laminated glass according to one embodiment of the present disclosure may include an adhesive layer.
  • Components of the adhesive layer include, for example, polyvinyl butyral, acrylic resin, styrene/acrylic resin, polyurethane, polyester and silicone. Components of the adhesive layer also include, for example, antistatic agents, lubricants and antiblocking agents.
  • the thickness of the adhesive layer is preferably within the range of 0.1 ⁇ m to 30 ⁇ m, more preferably within the range of 5 ⁇ m to 20 ⁇ m.
  • the interlayer film for laminated glass may include a hard coat layer.
  • the hard coat layer can impart scratch resistance to the interlayer film for laminated glass.
  • Components of the hard coat layer include, for example, acrylic resins, silicone resins, melamine resins, urethane resins, alkyd resins, and fluorine resins.
  • the hard coat layer may contain metal oxide particles.
  • the thickness of the hard coat layer is preferably within the range of 1 ⁇ m to 50 ⁇ m.
  • the interlayer film for laminated glass according to one embodiment of the present disclosure may include an overcoat layer.
  • Components of the overcoat layer include, for example, binders, matting agents and surfactants.
  • binders include acrylic resins, silicone resins, melamine resins, urethane resins, alkyd resins, and fluorine resins.
  • the thickness of the overcoat layer is preferably within the range of 0.01 ⁇ m to 5 ⁇ m, more preferably within the range of 0.05 ⁇ m to 1 ⁇ m.
  • the thickness of the interlayer film for laminated glass according to an embodiment of the present disclosure is preferably in the range of 10 ⁇ m to 2,000 ⁇ m, preferably 20 ⁇ m to 1,000 ⁇ m. It is more preferably within the range of 500 ⁇ m, and particularly preferably within the range of 30 ⁇ m to 1,000 ⁇ m.
  • the interlayer film for laminated glass obtained by the method for producing an interlayer film for laminated glass according to an embodiment of the present disclosure is used as an interlayer film for various laminated glasses.
  • Applications of laminated glass include, for example, vehicle (eg, automobile, railcar and airplane) glazing and building glazing.
  • an interlayer film for laminated glass is divided into two glass plates (hereinafter, the two glass plates may be referred to as "first glass plate” and “second glass plate”, respectively). .).
  • a method for manufacturing laminated glass according to an embodiment of the present disclosure preferably includes sandwiching an interlayer film for laminated glass between two glass plates and pressing them while heating.
  • the interlayer film for laminated glass is manufactured, for example, by the method described in the section "Method for producing interlayer film for laminated glass” above.
  • the interlayer film for laminated glass is preferably an interlayer film for laminated glass produced by the method described in the section "Method for producing interlayer film for laminated glass” above.
  • the type of glass plate is not limited.
  • the glass plate may be a known glass plate.
  • Glass plates include soda plate glass and green glass.
  • the glass plate may be a glass substitute resin molding.
  • Glass substitute resins include, for example, polycarbonate and acrylic resins.
  • the glass substitute resin molded article may be produced by forming a hard coat layer on the glass substitute resin.
  • the hard coat layer include a layer in which inorganic fine particles are dispersed in an acrylic hard coat material, a silicone hard coat material, or a melamine hard coat material.
  • examples of inorganic fine particles include silica, titania, alumina and zirconia.
  • the type of the first glass plate may be the same as or different from the type of the second glass plate.
  • the interlayer film for laminated glass and the two glass plates may be pre-press-bonded and then pressure-bonded while being heated in a device such as an autoclave.
  • Preliminary pressure bonding is performed, for example, under a reduced pressure environment at a temperature of 80° C. to 120° C. for a treatment time of 30 minutes to 60 minutes.
  • Thermocompression bonding by an autoclave is performed, for example, at a pressure of 1.0 MPa to 1.5 MPa and a temperature of 120°C to 150°C.
  • the time for thermocompression bonding is preferably 20 to 90 minutes.
  • the range in which the interlayer film for laminated glass and the glass plate are heat-pressed may be a range over the entire area of the glass plate, or may be only the peripheral edge of the glass plate.
  • the thermocompression bonding of the peripheral portion of the glass plate can further suppress the occurrence of wrinkles.
  • the laminated glass body may be produced by allowing it to cool while appropriately releasing the pressure after the thermocompression bonding. From the viewpoint of improving wrinkles and cracks in the laminated glass body, it is preferable to lower the temperature while the pressure is maintained after the thermocompression bonding.
  • the expression "lowering the temperature while maintaining the pressure” means that the pressure inside the device at 40°C is lowered to 75% to 100% of the pressure during thermocompression bonding.
  • a method of lowering the temperature while maintaining the pressure there is a method of lowering the temperature without leaking the pressure from the inside of the device so that the pressure inside the device naturally decreases as the temperature decreases, or a method in which the pressure inside the device decreases as the temperature decreases.
  • a method of lowering the temperature while further pressurizing it from the outside is preferable so as not to reduce the temperature.
  • the pressure it is preferable to release the pressure after the temperature is lowered while the pressure is maintained. After the temperature is lowered while the pressure is maintained, it is preferable to release the pressure and lower the temperature after the temperature inside the apparatus reaches 40° C. or less.
  • a method for manufacturing laminated glass according to an embodiment of the present disclosure includes (1) sandwiching an interlayer film for laminated glass between two glass plates; (3) lowering the temperature while maintaining the pressure; and (4) releasing the pressure. preferable.
  • the method for producing laminated glass is not limited to the following method.
  • the laminated glass 300 is obtained by sandwiching the interlayer film 200 for laminated glass between the first glass plate 20 and the second glass plate 21 and pressing them while heating.
  • a laminated glass obtained by a method for manufacturing laminated glass according to an embodiment of the present disclosure includes an intermediate film for laminated glass and two glass plates sandwiching the intermediate film for laminated glass. That is, the laminated glass includes a first glass plate, an intermediate film for laminated glass, and a second glass plate in this order.
  • the interlayer for laminated glass may contact at least one of the two glass sheets. Another layer may be arranged between the glass plate and the interlayer film for laminated glass.
  • a laminated glass according to an embodiment of the present disclosure may include other layers.
  • Other layers include the other layers described in the above section "Interlayer film for laminated glass".
  • a laminated glass according to an embodiment of the present disclosure includes, for example, window glass for vehicles (for example, automobiles, railroad vehicles, and airplanes) and window glass for buildings.
  • a laminated glass according to an embodiment of the present disclosure is preferably used as a window glass for automobiles.
  • Dispersion B1 was prepared by the following procedure.
  • Dispersion B1 is a metal tabular particle dispersion in the present disclosure.
  • the aqueous gelatin solution was prepared by dissolving inert gelatin (33.5 g) with a weight average molecular weight of 200,000 and oxidized gelatin (22.3 g) with a weight average molecular weight of 20,000 in pure water (409 mL).
  • a silver sulfite white precipitate mixture prepared by mixing 13.5% by mass sodium sulfite aqueous solution (67 mL), 10% by mass aqueous silver nitrate solution (228 mL) and pure water (369 mL) was added to the reactor. added.
  • Dispersion B1 Dispersion A1 (200 mL), proteolytic enzyme (Bioplase AL-15FG, 1 g, manufactured by Nagase Chemtex Co., Ltd.), and polyglycerin fatty acid ester (manufactured by Sakamoto Pharmaceutical Co., Ltd., polyglycerin-bound ricinoleic acid ester "SY Glyster CRED , 0.5 g) and a plasticizer (triethylene glycol di(2-ethylhexanoate), 10 g) were mixed and stirred well at 40°C.
  • proteolytic enzyme Bioplase AL-15FG, 1 g, manufactured by Nagase Chemtex Co., Ltd.
  • polyglycerin fatty acid ester manufactured by Sakamoto Pharmaceutical Co., Ltd., polyglycerin-bound ricinoleic acid ester "SY Glyster CRED , 0.5 g) and a plasticizer (triethylene glycol di(2-ethylhexanoate
  • gelatin which is a dispersant for silver tabular particles
  • a proteolytic enzyme the dispersant is replaced with polyglycerin fatty acid ester, and silver tabular particles are dispersed in an oil phase containing a liquid plasticizer.
  • the aqueous phase liquid was discarded to obtain dispersion liquid B1.
  • the proportion of silver tabular grains in Dispersion B1 was 10% by mass.
  • the median diameter of the silver tabular grains in Dispersion B1 was measured using a Microtrac particle size distribution meter manufactured by Nikkiso Co., Ltd.
  • the median diameter of the silver tabular grains on a volume basis was 80 nm.
  • Dispersion B1 was dropped onto the mesh to evaporate the solvent, and then the silver tabular grains were observed using a transmission electron microscope (TEM) at an observation magnification ranging from 5,000 times to 20,000 times. .
  • TEM transmission electron microscope
  • the obtained image was loaded into image processing software "ImageJ" and subjected to image processing. Image analysis was performed on 1,000 silver tabular grains arbitrarily extracted from TEM images of a plurality of fields of view, and the average circle equivalent diameter of the 1,000 silver tabular grains was calculated. The average equivalent circle diameter of the silver tabular grains was 120 nm.
  • (Thickness of silver tabular grain) Dispersion B1 was dropped onto a silicon substrate and dried, and the thickness of silver tabular grains was measured by the FIB-TEM method. Specifically, 100 silver tabular grains were observed at a magnification in the range of 5,000 to 20,000 times, and the thickness of 100 metal tabular grains was arithmetically averaged to obtain an average of the silver tabular grains. Thickness was calculated. The average thickness of the silver tabular grains was 8 nm. Since the average equivalent circle diameter of the silver tabular grains is 120 nm and the average thickness of the silver tabular grains is 8 nm, the volume of the silver tabular grains can be determined, and the diameter of the sphere at this volume is determined to be 56 nm.
  • the median diameter of tabular silver grains measured using the aforementioned Microtrac grain size distribution analyzer is larger than the primary grain diameter, reflecting the aggregation state of the grains. Therefore, the closer the median diameter of the silver tabular grains to the primary particle diameter of the silver tabular grains, the better the dispersion state.
  • a centrifuge manufactured by Kokusan Co., Ltd., H200-N
  • the proportion of silver tabular grains in Dispersion B2 was 5% by mass.
  • the grain size and average thickness of the silver tabular grains were measured according to the method described above.
  • the median diameter (specifically, the median diameter based on volume) of the silver tabular grains in dispersion B2 was 150 nm.
  • the average equivalent circle diameter of the silver tabular grains was 120 nm.
  • the average thickness of the silver tabular grains was 8 nm. Therefore, the primary particle diameter of the silver tabular grains was 56 nm.
  • Dispersion B3 was prepared by the following procedure.
  • Dispersion B3 is a metal tabular particle dispersion in the present disclosure.
  • a 2.5 mmol/L sodium citrate aqueous solution (132.7 mL) and ion-exchanged water (87.1 mL) were added to the reactor and heated to 35°C.
  • 10 mmol/L ascorbic acid aqueous solution (2 mL) was added, seed solution (42.4 mL) was added, and 0.5 mmol/L silver nitrate aqueous solution (79.6 mL) was added at 10 mL/min. Add with stirring.
  • a 0.35 mol/L potassium hydroquinone sulfonate aqueous solution (71.1 mL) was added to the reaction kettle, and a 7 mass % gelatin aqueous solution (200 g) was added to the reaction kettle.
  • a silver sulfite white precipitate mixture prepared by mixing 0.25 mol/L sodium sulfite aqueous solution (107 mL) and 0.47 mol/L silver nitrate aqueous solution (107 mL) was added to the solution in the reaction kettle. .
  • 0.17 mol/L NaOH aqueous solution 72 mL was added to the reactor.
  • Dispersion B3 Dispersion A3 (200 mL), proteolytic enzyme (Bioplase AL-15FG, 1 g, manufactured by Nagase Chemtex Co., Ltd.), and polyglycerin fatty acid ester (manufactured by Sakamoto Pharmaceutical Co., Ltd., polyglycerin-bound ricinoleic acid ester "SY Glyster CRED , 0.5 g) and a plasticizer (triethylene glycol di(2-ethylhexanoate), 10 g) were mixed and stirred well at 40°C.
  • proteolytic enzyme Bioplase AL-15FG, 1 g, manufactured by Nagase Chemtex Co., Ltd.
  • polyglycerin fatty acid ester manufactured by Sakamoto Pharmaceutical Co., Ltd., polyglycerin-bound ricinoleic acid ester "SY Glyster CRED , 0.5 g) and a plasticizer (triethylene glycol di(2-ethylhexanoate
  • gelatin which is a dispersant for silver tabular particles
  • gelatin which is a dispersant for silver tabular particles
  • the dispersant is replaced with polyglycerin fatty acid ester
  • silver tabular particles are dispersed in an oil phase containing a liquid plasticizer.
  • the aqueous phase liquid was discarded to obtain a dispersion liquid B3.
  • the proportion of silver tabular grains in Dispersion B3 was 10% by mass.
  • the grain size and average thickness of the silver tabular grains were measured according to the method described above.
  • the median diameter (specifically, the median diameter based on the volume) of the silver tabular grains in Dispersion B3 was 120 nm.
  • the average circle equivalent diameter of the silver tabular grains was 200 nm.
  • the average thickness of the silver tabular grains was 10 nm. Therefore, the primary particle diameter of the silver tabular grains was 84 nm.
  • ⁇ Dispersion C1> Cs 0.33 WO 3 particles (CWO particles, 50% diameter in particle size distribution: 1.2 ⁇ m, 95% diameter in particle size distribution: 4.8 ⁇ m, 100 parts by mass) as heat shielding particles, and polyglycerol fatty acid ester as a dispersant “SY Glister CRED” (5 parts by mass) and triethylene glycol di(2-ethylhexanoate) (3,500 parts by mass) as a plasticizer were mixed to prepare 3 kg of slurry.
  • the medium stirring mill is a horizontal cylindrical annular type (manufactured by Ashizawa Finetech Co., Ltd.), and the inner wall of the vessel and the rotor (rotary stirring part) are made of ZrO2.
  • YSZ Yttria-Stabilized Zirconia beads with a diameter of 0.1 mm were used as the beads.
  • the rotational speed of the rotor was set to 13 m/sec, and the powder was pulverized for 12 hours at a slurry flow rate of 1 kg/min to prepare dispersion C1.
  • the proportion of Cs 0.33 WO 3 in dispersion C1 was 24.7% by mass.
  • the particle size of Cs 0.33 WO 3 in dispersion liquid C1 was measured according to the method described above.
  • the median diameter of Cs 0.33 WO 3 (specifically, median diameter based on volume) was 18 nm.
  • Cs 0.33 WO 3 was observed using a transmission electron microscope (TEM) at an observation magnification ranging from 5,000 times to 20,000 times. Particles were observed.
  • TEM transmission electron microscope
  • Image analysis was performed on 1,000 silver tabular grains arbitrarily extracted from TEM images of multiple fields of view, and the average circle equivalent diameter of 1,000 Cs 0.33 WO 3 grains was calculated. Since the Cs 0.33 WO 3 particles are almost spherical, this average circular equivalent diameter was taken as the primary particle diameter of the Cs 0.33 WO 3 particles and was 14 nm.
  • nitric acid 144 g was added, heated to 65° C., and aged at 67.5° C. for 2 hours. Next, after the solution was cooled and neutralized, the polyvinyl butyral was washed with water and dried to obtain polyvinyl acetal Q.
  • An intermediate film A (thickness: 1,000 ⁇ m) was produced by extruding the resulting composition using an extruder.
  • An intermediate film X (thickness: 20 ⁇ m) was produced by stacking the intermediate film A, the intermediate film B, and the intermediate film A in this order and extruding them using an extruder.
  • An intermediate film C (thickness: 760 ⁇ m) was produced by stacking the intermediate film A, the intermediate film X and the intermediate film A in this order and extruding them using an extruder.
  • An intermediate film Y (thickness: 20 ⁇ m) was produced by stacking the intermediate film A, the intermediate film D, and the intermediate film A in this order and extruding them using an extruder.
  • An intermediate film E (thickness: 760 ⁇ m) was produced by stacking the intermediate film A, the intermediate film Y, and the intermediate film A in this order and extruding them using an extruder.
  • ⁇ Glass plate> Two glass plates, washed and dried, were prepared. Specifically, the two glass plates include soda plate glass (length 25 cm ⁇ width 10 cm ⁇ thickness 2 mm) and green glass (length 25 cm ⁇ width 10 cm ⁇ thickness 2 mm).
  • Example 1 A laminate was produced by stacking the three members in the following order.
  • First glass plate Soda plate glass
  • Interlayer film for laminated glass Interlayer film
  • Second glass plate soda plate glass
  • the obtained laminate was placed in a rubber bag and deaerated for 20 minutes at a degree of vacuum of 2,660 Pa (20 torr).
  • the laminate was vacuum pressed while being held at 90° C. for 30 minutes in an autoclave while being degassed.
  • the preliminarily pressure-bonded laminate was pressure-bonded in an autoclave at 135° C. and 1.2 MPa (12 kg/cm 2 ) for 20 minutes to obtain a laminated glass.
  • Example 2 Using dihexyl adipate (DHA) instead of triethylene glycol di(2-ethylhexanoate) used as a plasticizer in the preparation of dispersion B1 and triethylene used as a plasticizer in the preparation of the interlayer A laminated glass was obtained in the same manner as in Example 1, except that dihexyl adipate (DHA) was used instead of glycol di(2-ethylhexanoate).
  • DHA dihexyl adipate
  • Example 3 Laminated glass was prepared in the same manner as in Example 1, except that the amount of triethylene glycol di(2-ethylhexanoate) used as a plasticizer in the preparation of dispersion B1 was changed from 10 g to 330 g. Obtained.
  • Example 4 Laminated glass was prepared in the same manner as in Example 1, except that the amount of triethylene glycol di(2-ethylhexanoate) used as a plasticizer in the preparation of dispersion B1 was changed from 10 g to 100 g. Obtained.
  • Example 5 Laminated glass was prepared in the same manner as in Example 1, except that the amount of triethylene glycol di(2-ethylhexanoate) used as a plasticizer in the preparation of dispersion B1 was changed from 10 g to 20 g. Obtained.
  • Example 6 Laminated glass was prepared in the same manner as in Example 1, except that the amount of triethylene glycol di(2-ethylhexanoate) used as a plasticizer in the preparation of dispersion B1 was changed from 10 g to 5 g. Obtained.
  • Example 7 Laminated glass was prepared in the same manner as in Example 1, except that the amount of triethylene glycol di(2-ethylhexanoate) used as a plasticizer in the preparation of dispersion B1 was changed from 10 g to 3 g. Obtained.
  • Example 8 Laminated glass was prepared in the same manner as in Example 1, except that in the preparation of dispersion B1, the amount of proteolytic enzyme (Bioplase AL-15FG manufactured by Nagase ChemteX Co., Ltd.) was changed from 1 g to 0.2 g. got
  • Example 9 In the preparation of dispersion B1, the method of Example 8 was repeated except that the temperature in the mixing after adding the proteolytic enzyme (Bioplase AL-15FG manufactured by Nagase ChemteX Corporation) was changed from 40°C to 30°C. A laminated glass was obtained by the same method.
  • the proteolytic enzyme Bioplase AL-15FG manufactured by Nagase ChemteX Corporation
  • Example 10 In the preparation of dispersion B1, the method of Example 9 except that 0.5 mol / L sulfuric acid (1 g) was further added after adding the protease (Bioplase AL-15FG manufactured by Nagase ChemteX Co., Ltd.) Laminated glass was obtained by the same method as above.
  • Example 11 In the preparation of dispersion B1, the method of Example 9 except that 0.5 mol / L sulfuric acid (2 g) was further added after adding the protease (Bioplase AL-15FG manufactured by Nagase ChemteX Co., Ltd.) Laminated glass was obtained by the same method as above.
  • Example 12 A laminated glass was obtained in the same manner as in Example 1, except that Dispersion B1 was changed to Dispersion B3.
  • the water-soluble resin in the mother liquor was dissolved in deionized water while stirring at 40° C. for 30 minutes to obtain a gelatin solution for calibration curve.
  • the standard curve gelatin solution (2.5 mL) obtained using mother liquor 1 was placed in the first test tube, and the standard curve gelatin solution (2.5 mL) obtained using mother liquor 2 was added to the second test tube.
  • a standard gelatin solution (2.5 mL) obtained using mother liquor 3 was added to a third test tube, and a standard gelatin solution (2.5 mL) obtained using mother liquor 4 was added to a third test tube. ) was placed in a fourth test tube.
  • a subject dispersion (1 mL) and deionized water (1.5 mL) were placed in a test tube to prepare a sample for gelatin determination.
  • a quantitative reagent was prepared by mixing reagent A, reagent B, and reagent C of Micro BCA Protein Assay Kit solution manufactured by Thermo Fisher Scientific at a volume ratio of 25:24:1, respectively. Put the quantitative reagent (2.5 mL) into each test tube containing the gelatin solution for the standard curve, and after putting the quantitative reagent (2.5 mL) into the test tube containing the sample for gelatin determination, cap each test tube. and stirred well.
  • the sample in each test tube is colored at 60 ° C., 1 hour and 160 reciprocating / min shaking speed, cooled to room temperature 10 minutes later, U- A 3300 was used to immediately measure absorbance at 562 nm. Based on the absorbance of the gelatin solution for the calibration curve, the amount of gelatin contained in the sample for gelatin quantification was calculated.
  • Table 1 shows that the dispersibility of the metal tabular particle dispersions in Examples 1 to 12 is superior to that of the metal tabular particle dispersion in Comparative Example 1.
  • Table 1 shows that the use of the metal tabular particle dispersions in Examples 1 to 12 improves the heat ray shielding properties of the laminated glass and reduces the haze of the laminated glass.
  • the laminated glass obtained using the dispersion in Comparative Example 2 did not contain silver tabular particles, the heat ray shielding properties of Comparative Example 2 were inferior to those of Examples 1 to 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The present disclosure provides: a metal planar particle dispersion liquid which contains a liquid plasticizer and metal planar particles that contain 50% by mass or more of silver; and applications of this metal planar particle dispersion liquid.

Description

金属平板粒子分散液及び合わせガラス用中間膜の製造方法METHOD FOR MANUFACTURING METAL FLAT PARTICLE DISPERSION AND INTERMEDIATE FILM FOR LAMINATED GLASS
 本開示は、金属平板粒子分散液及び合わせガラス用中間膜の製造方法に関する。 The present disclosure relates to a method for producing a metal tabular particle dispersion and an interlayer film for laminated glass.
 分散質として金属粒子を含む金属粒子分散液は、金属粒子の性質に応じて種々の用途に利用されている。例えば、次のような金属粒子分散液が知られている。 A metal particle dispersion containing metal particles as a dispersoid is used for various purposes depending on the properties of the metal particles. For example, the following metal particle dispersion is known.
 下記特許文献1は、赤外線遮蔽材料微粒子分散液を開示している。下記特許文献1に開示された分散液では、タングステン酸化物微粒子及び複合タングステン酸化物微粒子といった金属酸化物粒子が使用されている。 Patent Document 1 below discloses an infrared shielding material fine particle dispersion. The dispersion disclosed in Patent Document 1 below uses metal oxide particles such as tungsten oxide fine particles and composite tungsten oxide fine particles.
 下記特許文献2は、遮熱粒子分散液を開示している。下記特許文献2に開示された分散液では、錫ドープ酸化インジウム粒子及びアンチモンドープ酸化錫粒子といった金属酸化物粒子が使用されている。 Patent Document 2 below discloses a heat shielding particle dispersion. The dispersion disclosed in Patent Document 2 below uses metal oxide particles such as tin-doped indium oxide particles and antimony-doped tin oxide particles.
 下記特許文献3は、熱線反射層の形成に使用される銀平板粒子含有分散液を開示している。下記特許文献3に開示された分散液では、平板状の銀粒子が使用されている。 Patent Document 3 below discloses a silver tabular particle-containing dispersion used for forming a heat ray reflective layer. In the dispersion disclosed in Patent Document 3 below, tabular silver particles are used.
特開2013-112791号公報JP 2013-112791 A 特開2005-343723号公報JP-A-2005-343723 特開2014-194446号公報JP 2014-194446 A
 上記特許文献1及び上記特許文献2に開示された分散液は、合わせガラス用中間膜の原材料として使用される。しかしながら、上記のような分散液で使用されている金属酸化物粒子は、熱線を吸収し、熱線を十分に反射できない。したがって、上記のような分散液を用いて得られる合わせガラス用中間膜は、高い熱線遮蔽性を発現できない。 The dispersions disclosed in Patent Document 1 and Patent Document 2 are used as raw materials for interlayer films for laminated glass. However, the metal oxide particles used in the dispersion liquid as described above absorb heat rays and cannot sufficiently reflect the heat rays. Therefore, the interlayer film for laminated glass obtained using the dispersion liquid as described above cannot exhibit high heat ray shielding properties.
 一方、上記特許文献3に開示された分散液で使用されている平板状の銀粒子は、高い熱線反射性を示すことができる。しかしながら、上記のような分散液は、水系の分散液であるため、合わせガラス用中間膜の原材料として一般的に使用されているポリビニルブチラール(PVB)といった重合体に混ざりにくい。この結果、合わせガラスのヘイズが大きくなることがある。しかも、分散質として平板状の銀粒子を含む金属粒子分散液では、平板状の銀粒子が凝集しやすく、分散性の更なる改善が求められている。分散性が低下すると、保管期間が短くなるだけでなく、平板状の銀粒子の性質が十分に発揮されないことがある。 On the other hand, the flat silver particles used in the dispersion disclosed in Patent Document 3 can exhibit high heat ray reflectivity. However, since the dispersion as described above is an aqueous dispersion, it is difficult to mix with a polymer such as polyvinyl butyral (PVB), which is generally used as a raw material for interlayer films for laminated glass. As a result, the haze of the laminated glass may increase. Moreover, in a metal particle dispersion containing flat silver particles as a dispersoid, the flat silver particles tend to agglomerate, and further improvement in dispersibility is desired. When the dispersibility is lowered, not only does the storage period become shorter, but also the properties of the tabular silver particles may not be exhibited sufficiently.
 本開示は、優れた分散性を有する金属平板粒子分散液及び上記金属平板粒子分散液を用いる合わせガラス用中間膜の製造方法を提供することを目的とする。 An object of the present disclosure is to provide a metal tabular particle dispersion having excellent dispersibility and a method for producing an interlayer film for laminated glass using the metal tabular particle dispersion.
 本開示は、以下の態様を包含する。
<1> 50質量%以上の銀を含む金属平板粒子と、液状可塑剤と、を含む、金属平板粒子分散液。
<2> 金属平板粒子分散液に占める上記金属平板粒子の割合が、0.5質量%~25質量%である、<1>に記載の金属平板粒子分散液。
<3> 上記金属平板粒子の平均円相当径が、10nm~300nmであり、かつ、上記金属平板粒子の平均アスペクト比が、10以上である、<1>~<2>のいずれか1つに記載の金属平板粒子分散液。
<4> 上記金属平板粒子の含有量に対する水溶性樹脂の含有量の比が、質量換算で1%以下である、<1>~<3>のいずれか1つに記載の金属平板粒子分散液。
<5> 上記液状可塑剤が、脂肪酸エステルである、<1>~<4>のいずれか1つに記載の金属平板粒子分散液。
<6> 上記液状可塑剤が、ジヘキシルアジペート、トリエチレングリコールジ(2-エチルヘキサノエート)、テトラエチレングリコールジ(2-エチルヘキサノエート)、トリエチレングリコールジ(2-エチルブチレート)、テトラエチレングリコールジ(2-エチルブチレート)、テトラエチレングリコールジヘプタノエート及びトリエチレングリコールジヘプタノエートからなる群より選択される少なくとも1種である、<1>~<4>のいずれか1つに金属平板粒子分散液。
<7> 1013.25hPaにおける沸点が100℃以上である有機溶剤を更に含む、<1>~<6>のいずれか1つに記載の金属平板粒子分散液。
<8> 上記液状可塑剤に溶ける分散剤を更に含む、<1>~<7>のいずれか1つに記載の金属平板粒子分散液。
<9> <1>~<8>のいずれか1つに記載の金属平板粒子分散液を用いて合わせガラス用中間膜を得ることを含む、合わせガラス用中間膜の製造方法。
The present disclosure includes the following aspects.
<1> A metal tabular particle dispersion containing 50% by mass or more of silver and a liquid plasticizer.
<2> The metal tabular particle dispersion liquid according to <1>, wherein the proportion of the metal tabular particles in the metal tabular particle dispersion liquid is 0.5% by mass to 25% by mass.
<3> any one of <1> to <2>, wherein the metal tabular grains have an average equivalent circle diameter of 10 nm to 300 nm and an average aspect ratio of 10 or more; The metal tabular particle dispersion described above.
<4> The metal tabular particle dispersion liquid according to any one of <1> to <3>, wherein the ratio of the content of the water-soluble resin to the content of the metal tabular particles is 1% or less in terms of mass. .
<5> The metal tabular particle dispersion according to any one of <1> to <4>, wherein the liquid plasticizer is a fatty acid ester.
<6> The liquid plasticizer is dihexyl adipate, triethylene glycol di(2-ethylhexanoate), tetraethylene glycol di(2-ethylhexanoate), triethylene glycol di(2-ethylbutyrate), Any one of <1> to <4>, which is at least one selected from the group consisting of tetraethylene glycol di(2-ethylbutyrate), tetraethylene glycol diheptanoate and triethylene glycol diheptanoate One is a metal tabular particle dispersion.
<7> The metal tabular particle dispersion according to any one of <1> to <6>, further comprising an organic solvent having a boiling point of 100° C. or higher at 1013.25 hPa.
<8> The metal tabular particle dispersion according to any one of <1> to <7>, further comprising a dispersant that dissolves in the liquid plasticizer.
<9> A method for producing an interlayer film for laminated glass, comprising obtaining an interlayer film for laminated glass using the metal tabular particle dispersion liquid according to any one of <1> to <8>.
 本開示によれば、優れた分散性を有する金属平板粒子分散液及び上記金属平板粒子分散液を用いる合わせガラス用中間膜の製造方法が提供される。 According to the present disclosure, a metal tabular particle dispersion having excellent dispersibility and a method for producing an interlayer film for laminated glass using the metal tabular particle dispersion are provided.
図1は、合わせガラス用中間膜及び合わせガラスの製造方法の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of a method for producing an intermediate film for laminated glass and a laminated glass.
 以下、本開示の実施形態について詳細に説明する。本開示は、以下の実施形態に何ら制限されない。以下の実施形態は、本開示の目的の範囲内において適宜変更されてもよい。 Hereinafter, embodiments of the present disclosure will be described in detail. The present disclosure is by no means limited to the following embodiments. The following embodiments may be modified as appropriate within the scope of the purpose of the present disclosure.
 本開示の実施形態について図面を参照して説明する場合、図面において重複する構成要素及び符号の説明を省略することがある。図面において同一の符号を用いて示す構成要素は、同一の構成要素であることを意味する。図面における寸法の比率は、必ずしも実際の寸法の比率を表すものではない。 When describing the embodiments of the present disclosure with reference to the drawings, descriptions of overlapping components and reference numerals in the drawings may be omitted. Components shown using the same reference numerals in the drawings mean the same components. The dimensional ratios in the drawings do not necessarily represent the actual dimensional ratios.
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を示す。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In the present disclosure, a numerical range indicated using "-" indicates a range that includes the numerical values described before and after "-" as lower and upper limits, respectively. In the numerical ranges described step by step in the present disclosure, upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step. In addition, in the numerical ranges described in the present disclosure, upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。 In the present disclosure, the amount of each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
 本開示において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。 In the present disclosure, the term "step" includes not only independent steps, but also if the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps. .
 本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。 In the present disclosure, "% by mass" and "% by weight" are synonymous, and "parts by mass" and "parts by weight" are synonymous.
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。 In the present disclosure, a combination of two or more preferred aspects is a more preferred aspect.
 本開示において、序数詞(例えば、「第1」及び「第2」)は、構成要素を区別するために使用する用語であり、構成要素の数、及び構成要素の優劣を制限するものではない。 In the present disclosure, ordinal numbers (e.g., "first" and "second") are terms used to distinguish constituent elements, and do not limit the number of constituent elements or their superiority or inferiority.
 本開示において、重量平均分子量(Mw)及び数平均分子量(Mn)は、特に断りのない限り、TSKgel GMHxL(東ソー株式会社製の商品名)、TSKgel G4000HxL(東ソー株式会社製の商品名)及びTSKgel G2000HxL(東ソー株式会社製の商品名)のカラムを使用したゲルパーミエーションクロマトグラフィ(GPC)分析装置及び示差屈折計を用いて、標準物質としてポリスチレンを用いて換算した分子量である。溶媒として、テトラヒドロフラン(THF)が使用される。 In the present disclosure, unless otherwise specified, the weight average molecular weight (Mw) and number average molecular weight (Mn) are TSKgel GMHxL (trade name manufactured by Tosoh Corporation), TSKgel G4000HxL (trade name manufactured by Tosoh Corporation) and TSKgel It is a molecular weight converted using polystyrene as a standard substance using a gel permeation chromatography (GPC) analyzer using a column of G2000HxL (manufactured by Tosoh Corporation) and a differential refractometer. Tetrahydrofuran (THF) is used as solvent.
<金属平板粒子分散液>
 本開示の一実施形態に係る金属平板粒子分散液は、50質量%以上の銀を含む金属平板粒子と、液状可塑剤と、を含む。上記した実施形態によれば、優れた分散性を有する金属平板粒子分散液が提供される。詳細な機構は明らかではないが、液状可塑剤が金属平板粒子の分散媒として機能し、金属平板粒子の分散性が向上したと推定される。
<Metal tabular particle dispersion>
A metal tabular particle dispersion according to an embodiment of the present disclosure includes metal tabular particles containing 50% by mass or more of silver, and a liquid plasticizer. According to the embodiment described above, a metal tabular particle dispersion having excellent dispersibility is provided. Although the detailed mechanism is not clear, it is presumed that the liquid plasticizer functioned as a dispersion medium for the metal tabular particles, improving the dispersibility of the metal tabular particles.
[金属平板粒子]
 本開示の一実施形態に係る金属平板粒子分散液は、50質量%以上の銀を含む金属平板粒子(以下、単に「金属平板粒子」又は「銀平板粒子」という場合がある。)を含む。本開示において、「平板粒子」とは、互いに反対向きの2つの主平面を含む粒子を意味する。50質量%以上の銀を含む金属平板粒子は、高い熱線反射性を示すことができる。このため、例えば、本開示の一実施形態に係る金属平板粒子分散液を用いて合わせガラス用中間膜及び合わせガラスを作製した場合、合わせガラス用中間膜及び合わせガラスの熱線遮蔽性が向上する。
[Metal tabular particles]
A metal tabular grain dispersion liquid according to an embodiment of the present disclosure includes metal tabular grains containing 50% by mass or more of silver (hereinafter sometimes simply referred to as “metal tabular grains” or “silver tabular grains”). In the present disclosure, "tabular grain" means a grain containing two principal planes facing in opposite directions. Metal tabular grains containing 50% by mass or more of silver can exhibit high heat ray reflectivity. Therefore, for example, when an intermediate film for laminated glass and laminated glass are produced using the metal tabular particle dispersion according to an embodiment of the present disclosure, the heat ray shielding properties of the intermediate film for laminated glass and laminated glass are improved.
 金属平板粒子は、50質量%以上の銀を含む。言い換えると、金属平板粒子に占める銀の割合は、50質量%以上である。金属平板粒子は、必要に応じて、銀以外の金属を含んでもよい。熱線遮蔽性の向上の観点から、金属平板粒子に占める銀の割合は、50質量%~100質量%であることが好ましく、80質量%~100質量%であることがより好ましく、95質量%~100質量%であることが特に好ましい。 The tabular metal particles contain 50% by mass or more of silver. In other words, the proportion of silver in the tabular metal grains is 50% by mass or more. The metal tabular grains may contain metals other than silver, if necessary. From the viewpoint of improving heat ray shielding properties, the proportion of silver in the tabular metal grains is preferably 50% by mass to 100% by mass, more preferably 80% by mass to 100% by mass, and more preferably 95% by mass to 100% by mass is particularly preferred.
 金属平板粒子に占める銀の割合は、ICP(Inductively Coupled Plasma)測定法によって算出される。具体的な手順を以下に示す。ICP測定用装置(Optima7300DV、パーキンエルマー社製)を用いて測定された金属平板粒子に含まれる金属量(例えば、銀量、金量及び白金量)に基づいて、金属平板粒子に占める銀の割合が算出される。 The proportion of silver in the metal tabular grains is calculated by the ICP (Inductively Coupled Plasma) measurement method. Specific procedures are shown below. Proportion of silver in the tabular metal particles based on the amount of metal contained in the tabular metal particles (for example, the amount of silver, the amount of gold, and the amount of platinum) measured using an ICP measurement device (Optima 7300DV, manufactured by PerkinElmer) is calculated.
 金属平板粒子としては、例えば、三角形状の金属平板粒子、六角形状の金属平板粒子及び円形状の金属平板粒子が挙げられる。可視光透過率の向上の観点から、金属平板粒子は、六角形以上の多角形状の金属平板粒子及び円形状の金属平板粒子からなる群より選択される少なくとも1種であることが好ましく、六角形状の金属平板粒子及び円形状の金属平板粒子からなる群より選択される少なくとも1種であることがより好ましい。さらに、金属平板粒子は、六角形以上の多角形状の金属平板粒子又は円形状の金属平板粒子であることが好ましく、六角形状の金属平板粒子又は円形状の金属平板粒子であることがより好ましい。 Examples of the metal tabular particles include triangular metal tabular particles, hexagonal metal tabular particles, and circular metal tabular particles. From the viewpoint of improving visible light transmittance, the metal tabular grains are preferably at least one selected from the group consisting of hexagonal or more polygonal metal tabular grains and circular metal tabular grains. and circular metal tabular grains. Further, the metal tabular grains are preferably hexagonal or polygonal tabular grains or circular tabular metal grains, more preferably hexagonal tabular metal grains or circular tabular metal grains.
 円形状の金属平板粒子における用語「円形状」とは、金属平板粒子の平均円相当径の50%以上の長さを有する辺の個数が1個の金属平板粒子あたり0個である形状を意味する。例えば、透過型電子顕微鏡を用いて円形状の金属平板粒子の主平面を観察すると、角が無く、丸い形状が観察される。 The term “circular” in the circular metal tabular grain means a shape in which the number of sides having a length of 50% or more of the average circle equivalent diameter of the metal tabular grain is 0 per one metal tabular grain. do. For example, when the main planes of circular metal tabular grains are observed using a transmission electron microscope, a round shape with no corners is observed.
 六角形状の金属平板粒子における用語「六角形状」とは、金属平板粒子の平均円相当径の20%以上の長さを有する辺の個数が1個の金属平板粒子あたり6個である形状を意味する。なお、六角形以外の多角形状の該当性は、金属平板粒子の平均円相当径の20%以上の長さを有する辺の個数に応じて判断される。例えば、透過型電子顕微鏡を用いて六角形状の金属平板粒子の主平面を観察すると、六角形状が観察される。六角形状の角は、尖っていても丸くなっていてもよい。可視光域の吸収軽減の観点から、六角形状の角は、丸くなっていることが好ましい。六角形状の角の丸さの程度は、目的に応じて決定されてもよい。 The term “hexagonal” in the hexagonal metal tabular grain means a shape in which one metal tabular grain has 6 sides having a length of 20% or more of the average circle equivalent diameter of the metal tabular grain. do. The applicability of a polygonal shape other than a hexagon is determined according to the number of sides having a length of 20% or more of the average equivalent circular diameter of the metal tabular grain. For example, when the main planes of hexagonal tabular metal grains are observed using a transmission electron microscope, a hexagonal shape is observed. The hexagonal corners may be sharp or rounded. From the viewpoint of reducing absorption in the visible light region, the hexagonal corners are preferably rounded. The degree of roundness of the hexagonal corners may be determined depending on the purpose.
 可視光透過率の向上の観点から、六角形状の金属平板粒子及び円形状の金属平板粒子の含有率は、金属粒子の全個数に対して、60%以上であることが好ましく、65%以上であることがより好ましく、70%以上であることが特に好ましい。本段落における「金属粒子」とは、金属を含む粒子を意味する。 From the viewpoint of improving the visible light transmittance, the content of the hexagonal tabular metal particles and the circular tabular metal particles is preferably 60% or more, more preferably 65% or more, of the total number of metal particles. It is more preferably 70% or more, particularly preferably 70% or more. "Metal particles" in this paragraph means particles containing metal.
 金属平板粒子の平均円相当径は、10nm~500nmであることが好ましく、10nm~300nmであることがより好ましく、50nm~300nmであることが特に好ましい。さらに、金属平板粒子の平均円相当径は、70nm~300nmであることが好ましく、80nm~250nmであることがより好ましい。金属平板粒子の平均円相当径が大きくなると、熱線遮蔽性が向上する。金属平板粒子の平均円相当径が小さくなると、可視光透過率が向上する。 The average equivalent circle diameter of the metal tabular grains is preferably 10 nm to 500 nm, more preferably 10 nm to 300 nm, and particularly preferably 50 nm to 300 nm. Furthermore, the average equivalent circle diameter of the metal tabular grains is preferably 70 nm to 300 nm, more preferably 80 nm to 250 nm. When the average equivalent circle diameter of the metal tabular grains is increased, the heat ray shielding property is improved. When the average equivalent circle diameter of the metal tabular grains is reduced, the visible light transmittance is improved.
 金属平板粒子の平均円相当径は、以下の方法によって算出される。透過型電子顕微鏡(TEM)を用いて金属平板粒子を観察し、得られた像を画像処理ソフト「ImageJ」に取り込み、画像処理を施す。複数の視野のTEM像から任意に抽出した1,000個の金属平板粒子の画像解析を行い、1,000個の金属平板粒子の平均円相当径を算出する。得られた値は、金属平板粒子の平均円相当径として採用される。 The average circle-equivalent diameter of the metal tabular grains is calculated by the following method. The metal tabular grains are observed using a transmission electron microscope (TEM), and the obtained image is imported into image processing software "ImageJ" and subjected to image processing. Image analysis is performed on 1,000 metal tabular grains arbitrarily extracted from TEM images of a plurality of fields of view, and the average circle equivalent diameter of the 1,000 metal tabular grains is calculated. The obtained value is employed as the average circle equivalent diameter of the tabular metal grains.
 金属平板粒子の円相当径の変動係数は、35%以下であることが好ましく、30%以下であることがより好ましく、20%以下であることが特に好ましい。変動係数が小さくなると、合わせガラス用中間膜における熱線の反射波長域がシャープになる。金属平板粒子の円相当径の変動係数は、1,000個の金属平板粒子の円相当径の標準偏差を金属平板粒子の平均円相当径で割ることで算出される。金属平板粒子の円相当径は、既述した画像処理ソフト「ImageJ」を用いて算出される。 The coefficient of variation of the equivalent circle diameter of the metal tabular grains is preferably 35% or less, more preferably 30% or less, and particularly preferably 20% or less. When the coefficient of variation becomes small, the reflection wavelength range of heat rays in the interlayer film for laminated glass becomes sharp. The variation coefficient of the equivalent circle diameter of the metal tabular grains is calculated by dividing the standard deviation of the equivalent circle diameters of 1,000 metal tabular grains by the average equivalent circle diameter of the metal tabular grains. The circle-equivalent diameter of the metal tabular grains is calculated using the image processing software "ImageJ" described above.
 熱線遮蔽性の向上の観点から、金属平板粒子の平均厚さは、14nm以下であることが好ましく、5nm~14nmであることがより好ましく、5nm~12nmであることが特に好ましい。金属平板粒子の平均厚さは、FIB-TEM法によって100個の金属平板粒子の厚さを算術平均することによって算出される。金属平板粒子の厚さは、金属平板粒子の2つの主平面間の距離に相当する。 From the viewpoint of improving heat ray shielding properties, the average thickness of the metal tabular grains is preferably 14 nm or less, more preferably 5 nm to 14 nm, and particularly preferably 5 nm to 12 nm. The average thickness of the metal tabular grains is calculated by arithmetically averaging the thicknesses of 100 metal tabular grains by the FIB-TEM method. The thickness of a metal tabular grain corresponds to the distance between two main planes of the metal tabular grain.
 800nm~1,800nmの赤外光領域での反射率の向上の観点から、金属平板粒子の平均アスペクト比は、6以上であることが好ましく、10以上であることがより好ましい。金属平板粒子の平均アスペクト比は、6~40であることが好ましく、10~35であることがより好ましい。金属平板粒子の平均アスペクト比は、金属平板粒子の平均円相当径を金属平板粒子の平均厚さで割ることで算出される。 From the viewpoint of improving the reflectance in the infrared region of 800 nm to 1,800 nm, the average aspect ratio of the metal tabular grains is preferably 6 or more, more preferably 10 or more. The average aspect ratio of the tabular metal grains is preferably 6-40, more preferably 10-35. The average aspect ratio of the metal tabular grains is calculated by dividing the average circle equivalent diameter of the metal tabular grains by the average thickness of the metal tabular grains.
 金属平板粒子の平均円相当径と金属平板粒子の平均アスペクト比との好ましい関係は、次のとおりである。ある実施形態において、金属平板粒子の平均円相当径が、10nm~300nmであり、かつ、金属平板粒子の平均アスペクト比が、6以上であることが好ましい。ある実施形態において、金属平板粒子の平均円相当径が、10nm~300nmであり、かつ、金属平板粒子の平均アスペクト比が、10以上であることがより好ましい。ある実施形態において、金属平板粒子の平均円相当径が、70nm~300nmであり、かつ、金属平板粒子の平均アスペクト比が、10~35であることが特に好ましい。上記した平均円相当径と平均アスペクト比との関係性において、平均円相当径の上限及び下限は、既述した好ましい数値に置き換えられてもよく、そして、平均アスペクト比の上限及び下限は、既述した好ましい数値に置き換えられてもよい。 A preferred relationship between the average equivalent circle diameter of the metal tabular grains and the average aspect ratio of the metal tabular grains is as follows. In one embodiment, it is preferable that the average equivalent circle diameter of the metal tabular grains is 10 nm to 300 nm and the average aspect ratio of the metal tabular grains is 6 or more. In one embodiment, it is more preferable that the average equivalent circle diameter of the metal tabular grains is 10 nm to 300 nm and the average aspect ratio of the metal tabular grains is 10 or more. In one embodiment, it is particularly preferred that the average equivalent circle diameter of the metal tabular grains is 70 nm to 300 nm and the average aspect ratio of the metal tabular grains is 10 to 35. In the relationship between the average equivalent circle diameter and the average aspect ratio described above, the upper and lower limits of the average equivalent circle diameter may be replaced by the preferred numerical values described above, and the upper and lower limits of the average aspect ratio are already may be replaced with the preferred numerical values described above.
 金属平板粒子の好ましい態様として、特開2014-194446号公報に記載された銀平板粒子の好ましい態様が適用されてもよい。上記文献の内容は、参照により本明細書に取り込まれる。 As preferred embodiments of the metal tabular grains, preferred embodiments of the silver tabular grains described in JP-A-2014-194446 may be applied. The contents of the above documents are incorporated herein by reference.
 金属平板粒子は、例えば、公知に合成方法によって製造される。金属平板粒子の合成方法としては、例えば、液相法が挙げられる。液相法としては、例えば、化学還元法、光化学還元法及び電気化学還元法が挙げられる。金属平板粒子の形状及び大きさの制御性の観点から、化学還元法及び光化学還元法が好ましい。金属平板粒子の合成方法としては、例えば、透明基材の表面に種晶を固定した後、平板状に粒子を結晶成長させる方法も挙げられる。金属平板粒子の合成方法は、例えば、特開2014-194446号公報に記載されている。上記文献の内容は、参照により本明細書に取り込まれる。  Metal tabular grains are manufactured, for example, by a publicly known synthetic method. Examples of methods for synthesizing tabular metal grains include a liquid phase method. Liquid phase methods include, for example, chemical reduction methods, photochemical reduction methods, and electrochemical reduction methods. From the viewpoint of the controllability of the shape and size of the metal tabular grains, the chemical reduction method and the photochemical reduction method are preferred. As a method for synthesizing tabular metal grains, for example, there is a method in which seed crystals are fixed on the surface of a transparent base material, and then the grains are crystal-grown in a tabular shape. A method for synthesizing tabular metal grains is described, for example, in JP-A-2014-194446. The contents of the above documents are incorporated herein by reference.
 本開示の一実施形態に係る金属平板粒子分散液は、1種又は2種以上の金属平板粒子を含んでもよい。 A metal tabular particle dispersion according to an embodiment of the present disclosure may contain one or more types of metal tabular particles.
 金属平板粒子分散液に占める金属平板粒子の割合は、0.3質量%~30質量%であることが好ましく、0.5質量%~25質量%であることがより好ましく、1質量%~20質量%であることが特に好ましい。金属平板粒子分散液に占める金属平板粒子の割合が大きくなると、熱線遮蔽性が向上する。金属平板粒子分散液に占める金属平板粒子の割合が小さくなると、分散性が向上する。 The proportion of the metal tabular grains in the metal tabular grain dispersion is preferably 0.3% by mass to 30% by mass, more preferably 0.5% by mass to 25% by mass, and 1% by mass to 20% by mass. % by weight is particularly preferred. When the proportion of the metal tabular particles in the metal tabular particle dispersion increases, the heat ray shielding property is improved. When the proportion of the metal tabular particles in the metal tabular particle dispersion becomes small, the dispersibility is improved.
[液状可塑剤]
 本開示の一実施形態に係る金属平板粒子分散液は、液状可塑剤を含む。「液状可塑剤」に関して使用される用語「液状」とは、標準気圧(すなわち、1013.25hPa)及び25℃の環境下で物質が液体の状態にあることを意味する。金属平板粒子分散液において、液状可塑剤は、金属平板粒子の分散性の向上に寄与する。金属平板粒子分散液が合わせガラス用中間膜の原材料として使用される場合、液状可塑剤は、合わせガラス用中間膜を柔らかくすることに寄与する。
[Liquid plasticizer]
A metal tabular particle dispersion according to an embodiment of the present disclosure contains a liquid plasticizer. The term "liquid" as used with respect to "liquid plasticizer" means that the substance is in a liquid state under normal atmospheric pressure (ie 1013.25 hPa) and 25°C. In the metal tabular particle dispersion liquid, the liquid plasticizer contributes to improving the dispersibility of the metal tabular particles. When the metal tabular particle dispersion is used as a raw material for the interlayer film for laminated glass, the liquid plasticizer contributes to softening the interlayer film for laminated glass.
 液状可塑剤の種類は、制限されない。液状可塑剤は、公知の液状可塑剤を包含する。液状可塑剤としては、例えば、脂肪酸エステル及びリン酸化合物が挙げられる。 The type of liquid plasticizer is not limited. Liquid plasticizers include known liquid plasticizers. Liquid plasticizers include, for example, fatty acid esters and phosphoric acid compounds.
 脂肪酸エステルとしては、例えば、ジヘキシルアジペート、テトラエチレングリコールジ(2-エチルヘキサノエート)、トリエチレングリコールジ(2-エチルブチレート)、トリエチレングリコールジ(2-エチルヘキサノエート)、トリエチレングリコールジカプリレート、トリエチレングリコールジ(n-オクタノエート)、トリエチレングリコールジヘプタノエート、テトラエチレングリコールジヘプタノエート、ジブチルセバケート、ジオクチルアゼレート、ジブチルカルビトールアジペート、エチレングリコールジ(2-エチルブチレート)、1,3-プロピレングリコールジ(2-エチルブチレート)、1,4-プロピレングリコールジ(2-エチルブチレート)、1,4-ブチレングリコールジ(2-エチルブチレート)、1,2-ブチレングリコールジ(2-エチレンブチレート)、ジエチレングリコールジ(2-エチルブチレート)、ジエチレングリコールジ(2-エチルヘキサノエート)、ジプロピレングリコールジ(2-エチルブチレート)、トリエチレングリコールジ(2-エチルペンタノエート)、テトラエチレングリコールジ(2-エチルブチレート)、ジエチレングリコールジカプリエート、トリエチレングリコールビス(2-エチルブチレート)、トリエチレングリコールジヘプタノエート、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ヘプチルとアジピン酸ノニルとの混合物、アジピン酸ジイソノニル、アジピン酸ヘプチルノニル、セバシン酸ジブチル、油変性セバシン酸アルキド、リン酸エステルとアジピン酸エステルとの混合物及びアジピン酸エステルが挙げられる。 Examples of fatty acid esters include dihexyl adipate, tetraethylene glycol di(2-ethylhexanoate), triethylene glycol di(2-ethylbutyrate), triethylene glycol di(2-ethylhexanoate), triethylene Glycol dicaprylate, triethylene glycol di(n-octanoate), triethylene glycol diheptanoate, tetraethylene glycol diheptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di(2- ethyl butyrate), 1,3-propylene glycol di(2-ethylbutyrate), 1,4-propylene glycol di(2-ethylbutyrate), 1,4-butylene glycol di(2-ethylbutyrate), 1,2-butylene glycol di(2-ethylene butyrate), diethylene glycol di(2-ethylbutyrate), diethylene glycol di(2-ethylhexanoate), dipropylene glycol di(2-ethylbutyrate), triethylene Glycol di(2-ethylpentanoate), Tetraethylene glycol di(2-ethylbutyrate), Diethylene glycol dicapriate, Triethylene glycol bis(2-ethylbutyrate), Triethylene glycol diheptanoate, Adipic acid Dihexyl, dioctyl adipate, hexyl cyclohexyl adipate, mixture of heptyl adipate and nonyl adipate, diisononyl adipate, heptyl nonyl adipate, dibutyl sebacate, oil-modified alkyd sebacate, mixture of phosphate and adipate and adipates.
 リン酸化合物としては、例えば、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート及びトリイソプロピルホスファイトが挙げられる。 Examples of phosphoric acid compounds include tributoxyethyl phosphate, isodecylphenyl phosphate and triisopropyl phosphite.
 分散性の向上の観点から、液状可塑剤は、脂肪酸エステルであることが好ましく、ジヘキシルアジペート、トリエチレングリコールジ(2-エチルヘキサノエート)、テトラエチレングリコールジ(2-エチルヘキサノエート)、トリエチレングリコールジ(2-エチルブチレート)、テトラエチレングリコールジ(2-エチルブチレート)、テトラエチレングリコールジヘプタノエート及びトリエチレングリコールジヘプタノエートからなる群より選択される少なくとも1種であることがより好ましく、トリエチレングリコールジ(2-エチルヘキサノエート)であることが特に好ましい。 From the viewpoint of improving dispersibility, the liquid plasticizer is preferably a fatty acid ester, such as dihexyl adipate, triethylene glycol di(2-ethylhexanoate), tetraethylene glycol di(2-ethylhexanoate), At least one selected from the group consisting of triethylene glycol di(2-ethylbutyrate), tetraethylene glycol di(2-ethylbutyrate), tetraethylene glycol diheptanoate and triethylene glycol diheptanoate is more preferred, and triethylene glycol di(2-ethylhexanoate) is particularly preferred.
 本開示の一実施形態に係る合わせ金属平板粒子分散液は、1種又は2種以上の液状可塑剤を含んでもよい。 The combined metal tabular particle dispersion according to one embodiment of the present disclosure may contain one or more liquid plasticizers.
 熱線遮蔽性及び分散性の観点から、金属平板粒子分散液に占める液状可塑剤の割合は、50質量%~99.7質量%であることが好ましく、60質量%~99.5質量%であることがより好ましく、70質量%~99質量%であることが特に好ましい。 From the viewpoint of heat ray shielding properties and dispersibility, the proportion of the liquid plasticizer in the metal tabular particle dispersion is preferably 50% by mass to 99.7% by mass, more preferably 60% by mass to 99.5% by mass. is more preferable, and 70% by mass to 99% by mass is particularly preferable.
 熱線遮蔽性及び分散性の観点から、金属平板粒子の含有量に対する液状可塑剤の含有量の比は、質量換算で、1~1,000であることが好ましく、2~500であることがより好ましく、3~200であることが特に好ましい。 From the viewpoint of heat ray shielding properties and dispersibility, the ratio of the content of the liquid plasticizer to the content of the tabular metal particles is preferably 1 to 1,000, more preferably 2 to 500, in terms of mass. 3 to 200 is particularly preferred.
[溶剤]
 本開示の一実施形態に係る金属平板粒子分散液は、溶剤を更に含んでもよい。溶剤としては、例えば、水及び有機溶剤が挙げられる。好ましい有機溶剤としては、例えば、1013.25hPaにおける沸点が100℃以上である有機溶剤が挙げられる。
[solvent]
The metal tabular particle dispersion according to an embodiment of the present disclosure may further contain a solvent. Examples of solvents include water and organic solvents. Preferred organic solvents include, for example, organic solvents having a boiling point of 100° C. or higher at 1013.25 hPa.
 本開示の一実施形態に係る金属平板粒子分散液は、1013.25hPaにおける沸点が100℃以上である有機溶剤(以下、「特定有機溶剤」という場合がある。)を更に含むことが好ましい。特定有機溶剤は、金属平板粒子の分散性の向上に寄与する。 It is preferable that the metal tabular particle dispersion liquid according to an embodiment of the present disclosure further contains an organic solvent having a boiling point of 100°C or higher at 1013.25 hPa (hereinafter sometimes referred to as "specific organic solvent"). The specific organic solvent contributes to improving the dispersibility of the tabular metal particles.
 特定有機溶剤としては、例えば、トルエン、キシレン、1,2-ジブロモエタン、テトラクロロエチレン、クロロベンゼン、ブロモベンゼン、o-ジクロロベンゼン、1-ブタノール、イソブチルアルコール、イソペンチルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール、2-メトキシエタノール、2-エトキシエタノール、フェノール、ベンジルアルコール、クレゾール、ジエチレングリコール、トリエチレングリコール、グリセリン、1,4-ジオキサン、アニソール、ジエチレングリコールジメチルエーテル、メチルカルビトール、エチルカルビトール、フルフラール、シクロヘキサン、蟻酸、酢酸、無水酢酸、トリクロロ酢酸、酢酸ブチル、炭酸プロピレン、炭酸エチレン、炭酸プロピレン、ホルムアミド、n-メチルホルムアミド、N,N’-ジメチルホルムアミドn-メチルアミド、N,N’-ジメチルアセトアミド、スクシノニトリル、ニトロメタン、ニトロベンゼン、エチレンジアミン、ピリジン、ピペリジン、モルホリン、ジメチルスルホキシド、スルホラン及びフェネトールが挙げられる。 Examples of specific organic solvents include toluene, xylene, 1,2-dibromoethane, tetrachloroethylene, chlorobenzene, bromobenzene, o-dichlorobenzene, 1-butanol, isobutyl alcohol, isopentyl alcohol, cyclohexanol, ethylene glycol, propylene glycol. , 2-methoxyethanol, 2-ethoxyethanol, phenol, benzyl alcohol, cresol, diethylene glycol, triethylene glycol, glycerin, 1,4-dioxane, anisole, diethylene glycol dimethyl ether, methyl carbitol, ethyl carbitol, furfural, cyclohexane, formic acid , acetic acid, acetic anhydride, trichloroacetic acid, butyl acetate, propylene carbonate, ethylene carbonate, propylene carbonate, formamide, n-methylformamide, N,N'-dimethylformamide n-methylamide, N,N'-dimethylacetamide, succinonitrile , nitromethane, nitrobenzene, ethylenediamine, pyridine, piperidine, morpholine, dimethylsulfoxide, sulfolane and phenetole.
 本開示の一実施形態に係る金属平板粒子分散液は、1種又は2種以上の溶剤を含んでもよい。 A metal tabular particle dispersion according to an embodiment of the present disclosure may contain one or more solvents.
 分散性の観点から、金属平板粒子分散液に占める溶剤(好ましくは特定有機溶剤)の割合は、0.1質量%以上100質量%未満であることが好ましく、1質量%~50質量%であることがより好ましく、2質量%~20質量%であることが特に好ましい。 From the viewpoint of dispersibility, the ratio of the solvent (preferably the specific organic solvent) in the metal tabular particle dispersion is preferably 0.1% by mass or more and less than 100% by mass, and is 1% by mass to 50% by mass. is more preferable, and 2% by mass to 20% by mass is particularly preferable.
[分散剤]
 本開示の一実施形態に係る金属平板粒子分散液は、分散剤を更に含んでもよい。分散剤の種類は、制限されない。分散剤は、公知の分散剤を包含する。好ましい分散剤としては、例えば、液状可塑剤に溶ける分散剤が挙げられる。
[Dispersant]
The metal tabular particle dispersion according to an embodiment of the present disclosure may further contain a dispersant. The type of dispersant is not limited. Dispersants include known dispersants. Preferred dispersants include, for example, dispersants that are soluble in liquid plasticizers.
 本開示の一実施形態に係る金属平板粒子分散液は、液状可塑剤に溶ける分散剤(以下、「特定分散剤」という場合がある。)を更に含むことが好ましい。「液状可塑剤に溶ける分散剤」に関して使用される用語「液状可塑剤に溶ける」とは、25℃の液状可塑剤100gに対して0.1g以上溶解する性質を意味する。特定分散剤は、金属平板粒子の分散性の向上に寄与する。 It is preferable that the metal tabular particle dispersion liquid according to an embodiment of the present disclosure further includes a dispersant that dissolves in the liquid plasticizer (hereinafter sometimes referred to as "specific dispersant"). The term "soluble in the liquid plasticizer" used in relation to the "dispersant soluble in the liquid plasticizer" means the property of dissolving 0.1 g or more per 100 g of the liquid plasticizer at 25°C. The specific dispersant contributes to improving the dispersibility of the tabular metal grains.
 特定分散剤としては、例えば、アクリル樹脂、リン酸エステル、ポリウレタン、エポキシ樹脂及びポリグリセリン脂肪酸エステルが挙げられる。分散性の向上の観点から、特定分散剤は、ポリグリセリン脂肪酸エステルであることが好ましい。 Specific dispersants include, for example, acrylic resins, phosphate esters, polyurethanes, epoxy resins, and polyglycerin fatty acid esters. From the viewpoint of improving dispersibility, the specific dispersant is preferably a polyglycerin fatty acid ester.
 ポリグリセリン脂肪酸エステルとしては、例えば、ポリグリセリン縮合リシノール酸エステル及びポリグリセリン結合リシノレイン酸エステルが挙げられる。ポリグリセリン脂肪酸エステルとしては、例えば、特開2013-112791号公報に記載されたポリグリセリン脂肪酸エステルも挙げられる。ポリグリセリン脂肪酸エステルの市販品としては、例えば、「SYグリスター」(阪本薬品工業株式会社)が挙げられる。ポリグリセリン結合リシノレイン酸エステルの市販品としては、例えば、「SYグリスターCRED」(阪本薬品工業株式会社)が挙げられる。 Polyglycerin fatty acid esters include, for example, polyglycerin condensed ricinoleic acid esters and polyglycerin-bound ricinoleic acid esters. Polyglycerin fatty acid esters include, for example, polyglycerin fatty acid esters described in JP-A-2013-112791. Examples of commercially available polyglycerin fatty acid esters include "SY Glister" (Sakamoto Yakuhin Kogyo Co., Ltd.). Commercially available products of polyglycerin-bound ricinoleate include, for example, "SY Glister CRED" (Sakamoto Yakuhin Kogyo Co., Ltd.).
 本開示の一実施形態に係る金属平板粒子分散液は、1種又は2種以上の分散剤を含んでもよい。 A metal tabular particle dispersion according to an embodiment of the present disclosure may contain one or more dispersants.
 分散性の観点から、金属平板粒子分散液に占める分散剤(好ましくは特定分散剤)の割合は、0.1質量%~50質量%であることが好ましく、0.2質量%~20質量%であることがより好ましく、0.5質量%~10質量%であることが特に好ましい。 From the viewpoint of dispersibility, the proportion of the dispersant (preferably the specific dispersant) in the metal tabular particle dispersion is preferably 0.1% by mass to 50% by mass, more preferably 0.2% by mass to 20% by mass. is more preferable, and 0.5% by mass to 10% by mass is particularly preferable.
 分散性の観点から、金属平板粒子の含有量に対する分散剤(好ましくは特定分散剤)の含有量の比は、質量換算で、0.01~100であることが好ましく、0.05~50であることがより好ましく、0.1~10であることが特に好ましい。 From the viewpoint of dispersibility, the ratio of the content of the dispersant (preferably the specific dispersant) to the content of the metal tabular grains is preferably 0.01 to 100, more preferably 0.05 to 50 in terms of mass. It is more preferably 0.1 to 10, particularly preferably 0.1 to 10.
[水溶性樹脂]
 本開示の一実施形態に係る金属平板粒子分散液は、必要に応じて、水溶性樹脂を更に含んでもよい。ただし、後述のとおり、本開示の一実施形態に係る金属平板粒子分散液では、水溶性樹脂の含有量が少ないことが好ましい。「水溶性樹脂」に関して使用される用語「水溶性」とは、25℃の水100gに対して5g以上溶解する性質を意味する。
[Water-soluble resin]
The metal tabular particle dispersion according to an embodiment of the present disclosure may further contain a water-soluble resin, if necessary. However, as will be described later, it is preferable that the content of the water-soluble resin is small in the metal tabular particle dispersion according to an embodiment of the present disclosure. The term "water-soluble" used in relation to the "water-soluble resin" means a property of dissolving 5 g or more in 100 g of water at 25°C.
 水溶性樹脂としては、例えば、ポリビニルアセタール、ポリビニルアルコール、アクリル樹脂、ポリカーボネート、ポリ塩化ビニル、ポリエステル、ポリウレタン、ゼラチン及びセルロースが挙げられる。ただし、後述するように、分散性の向上の観点から、水溶性樹脂の使用量は制限されることが好ましい。 Examples of water-soluble resins include polyvinyl acetal, polyvinyl alcohol, acrylic resin, polycarbonate, polyvinyl chloride, polyester, polyurethane, gelatin and cellulose. However, as will be described later, from the viewpoint of improving dispersibility, it is preferable to limit the amount of the water-soluble resin used.
 本開示の一実施形態に係る金属平板粒子分散液は、1種又は2種以上の水溶性樹脂を含んでもよい。 A metal tabular particle dispersion according to an embodiment of the present disclosure may contain one or more water-soluble resins.
 本開示の一実施形態に係る金属平板粒子分散液において、水溶性樹脂の含有量は、少ないことが好ましい。金属平板粒子の含有量に対する水溶性樹脂の含有量の比は、質量換算で、1%以下であることが好ましく、0.5%以下であることがより好ましく、0.2%以下であることが特に好ましい。金属平板粒子の含有量に対する水溶性樹脂の含有量の比は、質量換算で0%であってもよい。金属平板粒子の含有量に対する水溶性樹脂の含有量の比が小さくなると、金属平板粒子と液状可塑剤との親和性が向上し、分散性が向上する。 In the metal tabular particle dispersion liquid according to an embodiment of the present disclosure, it is preferable that the content of the water-soluble resin is small. The ratio of the content of the water-soluble resin to the content of the tabular metal particles is preferably 1% or less, more preferably 0.5% or less, and 0.2% or less in terms of mass. is particularly preferred. The ratio of the content of the water-soluble resin to the content of the tabular metal particles may be 0% in terms of mass. When the ratio of the content of the water-soluble resin to the content of the tabular metal particles is reduced, the affinity between the tabular metal particles and the liquid plasticizer is improved, and the dispersibility is improved.
 水溶性樹脂の含有量は、BCA法(ビシコニン酸法)によって測定される。具体的な手順(1)~(3)を以下に示す。 The content of water-soluble resin is measured by the BCA method (viciconinic acid method). Specific procedures (1) to (3) are shown below.
 (1)水溶性樹脂(10g)とイオン交換水(115g)との混合物(以下、本段落において、「母液1」という。)、水溶性樹脂(5g)とイオン交換水(120g)との混合物(以下、本段落において、「母液2」という。)、水溶性樹脂(5g)とイオン交換水(245g)との混合物(以下、本段落において、「母液3」という。)及び水溶性樹脂(5g)とイオン交換水(495g)との混合物(以下、本段落において、「母液4」という。)を調製する。各母液を静止した状態で30分間置いた後、40℃及び30分間の条件で撹拌しながら母液中の水溶性樹脂をイオン交換水に溶解させて、検量線用液を得る。母液1を用いて得られた検量線用液(2.5mL)を第1の試験管に入れ、母液2を用いて得られた検量線用液(2.5mL)を第2の試験管に入れ、母液3を用いて得られた検量線用液(2.5mL)を第3の試験管に入れ、そして、母液4を用いて得られた検量線用液(2.5mL)を第4の試験管に入れる。
 (2)試験管に対象の分散液(1mL)及びイオン交換水(1.5mL)を入れ、定量用試料を調製する。
 (3)Thermo Fisher Scientific社製のMicro BCA Protein Assay Kit液の試薬A、試薬B及び試薬Cをそれぞれ25:24:1の体積比で混合した定量試薬を用意する。検量線用液を含む各試験管に定量試薬(2.5mL)を入れ、そして、定量用試料を含む試験管に定量試薬(2.5mL)を入れた後、各試験管に栓をしてよく撹拌する。各試験管における試料を、恒温振とう槽を使用して、60℃、1時間及び160往復/分の振とう速度で発色させ、室温に冷却して10分後、株式会社日立製作所製U-3300を使用してすみやかに562nmの吸光度を測定する。検量線用液の吸光度に基づいて、定量用試料に含まれる水溶性樹脂の量を計算する。
(1) A mixture of water-soluble resin (10 g) and ion-exchanged water (115 g) (hereinafter referred to as "mother liquor 1" in this paragraph), a mixture of water-soluble resin (5 g) and ion-exchanged water (120 g) (hereinafter referred to as "mother liquor 2" in this paragraph), a mixture of water-soluble resin (5 g) and ion-exchanged water (245 g) (hereinafter referred to as "mother liquor 3" in this paragraph), and water-soluble resin ( 5 g) and deionized water (495 g) (hereinafter referred to as "mother liquor 4" in this paragraph) is prepared. After standing each mother liquor for 30 minutes, the water-soluble resin in the mother liquor is dissolved in deionized water while stirring at 40° C. for 30 minutes to obtain a calibration curve solution. Put the calibration curve solution (2.5 mL) obtained using the mother liquor 1 into the first test tube, and the calibration curve solution (2.5 mL) obtained using the mother liquor 2 into the second test tube. A calibration solution (2.5 mL) obtained using mother liquor 3 was added to a third test tube, and a calibration solution (2.5 mL) obtained using mother liquor 4 was added to a fourth test tube. into a test tube.
(2) Put the target dispersion (1 mL) and ion-exchanged water (1.5 mL) into a test tube to prepare a quantitative sample.
(3) Prepare quantitative reagents by mixing reagent A, reagent B, and reagent C of Micro BCA Protein Assay Kit solution manufactured by Thermo Fisher Scientific at a volume ratio of 25:24:1, respectively. Put the quantitative reagent (2.5 mL) into each test tube containing the calibration solution, and put the quantitative reagent (2.5 mL) into the test tube containing the sample for quantitative determination, and then plug each test tube. Stir well. Using a constant temperature shaking bath, the sample in each test tube is colored at 60 ° C., 1 hour and 160 reciprocating / min shaking speed, cooled to room temperature 10 minutes later, U- Measure the absorbance at 562 nm immediately using the 3300. Based on the absorbance of the calibration curve solution, the amount of water-soluble resin contained in the quantitative sample is calculated.
[製造方法]
 本開示の一実施形態に係る金属平板粒子分散液の製造方法は、制限されない。金属平板粒子分散液は、例えば、金属平板粒子と液状可塑剤との混合によって製造される。金属平板粒子と液状可塑剤との混合は、加熱条件下で実施されてもよい。加熱温度は、20℃~150℃であることが好ましい。
[Production method]
A method for producing a metal tabular particle dispersion liquid according to an embodiment of the present disclosure is not limited. The metal tabular particle dispersion is produced, for example, by mixing the metal tabular particles and a liquid plasticizer. Mixing of the metal tabular particles and the liquid plasticizer may be carried out under heating conditions. The heating temperature is preferably 20°C to 150°C.
 金属平板粒子分散液の製造方法では、金属平板粒子の供給源として、金属平板粒子と、分散剤と、溶剤と、を含む組成物が使用されてもよい。上記のような組成物は、例えば、液相法による金属平板粒子の製造過程で得られる。液相法では、分散剤として水溶性樹脂(例えば、ゼラチン)、そして、溶剤として水が使用されることが多い。 In the method for producing a metal tabular particle dispersion, a composition containing metal tabular particles, a dispersant, and a solvent may be used as the supply source of the metal tabular particles. The composition as described above is obtained, for example, in the process of manufacturing tabular metal grains by a liquid phase method. Liquid-phase methods often use a water-soluble resin (eg, gelatin) as a dispersant and water as a solvent.
 金属平板粒子の供給源として使用される組成物が分散剤として水溶性樹脂を含む場合、水溶性樹脂は、液状可塑剤に対して高い親和性を有する分散剤に置き換えられることが好ましい。既述したとおり、水溶性樹脂の含有率が小さくなると、金属平板粒子と液状可塑剤との親和性が向上し、分散性が向上する。液状可塑剤に対して高い親和性を有する分散剤としては、例えば、既述した特定分散剤が挙げられる。 When the composition used as the supply source of the metal tabular particles contains a water-soluble resin as a dispersant, the water-soluble resin is preferably replaced with a dispersant that has a high affinity for the liquid plasticizer. As described above, when the content of the water-soluble resin is reduced, the affinity between the metal tabular particles and the liquid plasticizer is improved, and the dispersibility is improved. Examples of the dispersant having a high affinity for the liquid plasticizer include the specific dispersant described above.
 水溶性樹脂を液状可塑剤に対して高い親和性を有する分散剤に置き換えることは、例えば、水溶性樹脂を分解する物質の存在下で実施されることが好ましい。水溶性樹脂が分解されると、分散剤の置換が容易に起こる。水溶性樹脂の一種であるゼラチンを分解する物質としては、例えば、タンパク質分解酵素が挙げられる。タンパク質分解酵素の市販品としては、例えば、ビオプラーゼAL-15FG(ナガセケムテックス株式会社)が挙げられる。 The replacement of the water-soluble resin with a dispersant that has a high affinity for the liquid plasticizer is preferably carried out, for example, in the presence of a substance that decomposes the water-soluble resin. When the water-soluble resin is degraded, dispersant replacement readily occurs. Substances that decompose gelatin, which is a type of water-soluble resin, include, for example, proteolytic enzymes. Examples of commercially available proteolytic enzymes include Bioplase AL-15FG (Nagase ChemteX Corporation).
 水溶性樹脂が液状可塑剤に対して高い親和性を有する分散剤に置き換えられると、金属平板粒子は、通常、液状可塑剤を含む油相に分散される。金属平板粒子を含む油相の取り出しによって、金属平板粒子分散液が得られる。 When the water-soluble resin is replaced with a dispersant that has a high affinity for the liquid plasticizer, the metal tabular particles are usually dispersed in the oil phase containing the liquid plasticizer. A metal tabular particle dispersion is obtained by taking out the oil phase containing the metal tabular particles.
[用途]
 本開示の一実施形態に係る金属平板粒子分散液は、例えば、合わせガラス用中間膜及び合わせガラスの原材料として使用される。合わせガラス用中間膜は、合わせガラスの原材料として使用される。合わせガラスの用途としては、例えば、乗り物(例えば、自動車、鉄道車両及び飛行機)の窓ガラス及び建物の窓ガラスが挙げられる。ただし、金属平板粒子分散液の用途は、上記した具体例に制限されるものではない。
[Use]
A metal tabular particle dispersion liquid according to an embodiment of the present disclosure is used, for example, as a raw material for an intermediate film for laminated glass and laminated glass. The interlayer film for laminated glass is used as a raw material for laminated glass. Applications of laminated glass include, for example, vehicle (eg, automobile, railcar and airplane) glazing and building glazing. However, the use of the metal tabular particle dispersion liquid is not limited to the specific examples described above.
<合わせガラス用中間膜の製造方法>
 本開示の一実施形態に係る合わせガラス用中間膜の製造方法は、本開示の一実施形態に係る金属平板粒子分散液を用いて合わせガラス用中間膜を得ること(以下、「中間膜の形成工程」という場合がある。)を含む。合わせガラス用中間膜の原材料として金属平板粒子分散液が使用されると、合わせガラス用中間膜の熱線遮蔽性が向上する。しかも、金属平板粒子分散液は、合わせガラス用中間膜の原材料として一般的に使用されているポリビニルブチラール(PVB)といった重合体に混ざりやすい。この結果、合わせガラス用中間膜のヘイズが低減する。
<Method for producing interlayer film for laminated glass>
A method for producing an interlayer film for laminated glass according to an embodiment of the present disclosure is to obtain an interlayer film for laminated glass using a metal tabular particle dispersion liquid according to an embodiment of the present disclosure (hereinafter, “formation of interlayer film (sometimes referred to as "process"). When the metal tabular particle dispersion is used as the raw material for the interlayer film for laminated glass, the heat ray shielding property of the interlayer film for laminated glass is improved. Moreover, the metal tabular particle dispersion is easily mixed with a polymer such as polyvinyl butyral (PVB), which is commonly used as a raw material for interlayer films for laminated glass. As a result, the haze of the interlayer film for laminated glass is reduced.
 原材料として使用される金属平板粒子分散液の態様は、上記「金属平板粒子分散液」の項に記載されている。原材料として使用される金属平板粒子分散液の好ましい態様は、上記「金属平板粒子分散液」の項に記載された金属平板粒子分散液の好ましい態様と同じである。 The aspect of the metal tabular particle dispersion liquid used as the raw material is described in the above section "Metal tabular particle dispersion liquid". Preferred aspects of the metal tabular particle dispersion liquid used as the raw material are the same as the preferred aspects of the metal tabular particle dispersion liquid described in the above section "Metal tabular particle dispersion liquid".
 本開示の一実施形態に係る合わせガラス用中間膜の製造方法(具体的には、中間膜の形成工程)は、金属平板粒子分散液と重合体とを混合すること(以下、「混合工程」という場合がある。)と、金属平板粒子分散液と重合体との混合によって得られた組成物を、押出機を用いて押し出すこと(以下、「第1の押出工程」という場合がある。)と、を含むことが好ましい。混合工程及び第1の押出工程は、合わせガラス用中間膜の熱線遮蔽性の向上及び合わせガラス用中間膜のヘイズの低減に寄与する。 A method for producing an interlayer film for laminated glass according to an embodiment of the present disclosure (specifically, a step of forming an interlayer) includes mixing a metal tabular particle dispersion and a polymer (hereinafter, “mixing step” ), and extruding the composition obtained by mixing the metal tabular particle dispersion and the polymer using an extruder (hereinafter sometimes referred to as the “first extrusion step”). and preferably include The mixing step and the first extrusion step contribute to improving the heat ray shielding property of the interlayer film for laminated glass and reducing the haze of the interlayer film for laminated glass.
 重合体としては、例えば、ポリビニルアセタール、ポリビニルアルコール、アクリル樹脂、ポリカーボネート、ポリ塩化ビニル、ポリエステル、ポリウレタン、ゼラチン及びセルロースが挙げられる。 Examples of polymers include polyvinyl acetal, polyvinyl alcohol, acrylic resin, polycarbonate, polyvinyl chloride, polyester, polyurethane, gelatin and cellulose.
 重合体は、ポリビニルアセタールを含むことが好ましい。ポリビニルアセタールは、-O-CHR-O-結合を含む環状構造を含むことが好ましい。Rは、水素原子又は1価の有機基を表す。環状構造は、6員環構造であることが好ましい。Rは、1価の有機基であることが好ましい。1価の有機基としては、例えば、アルキル基が挙げられる。アルキル基は、直鎖状、分岐状又は環状のアルキル基であってもよい。アルキル基の炭素数は、1~10であることが好ましく、2~8であることがより好ましく、2~4であることが特に好ましい。ポリビニルアセタールとしては、例えば、ポリビニルホルマール及びポリビニルブチラール(PVB)が挙げられる。ポリビニルアセタールは、ポリビニルブチラール(PVB)であることが好ましい。 Preferably, the polymer comprises polyvinyl acetal. The polyvinyl acetal preferably contains a cyclic structure containing —O—CHR 1 —O— bonds. R 1 represents a hydrogen atom or a monovalent organic group. The cyclic structure is preferably a 6-membered ring structure. R 1 is preferably a monovalent organic group. Examples of monovalent organic groups include alkyl groups. Alkyl groups may be linear, branched or cyclic alkyl groups. The number of carbon atoms in the alkyl group is preferably 1-10, more preferably 2-8, and particularly preferably 2-4. Polyvinyl acetals include, for example, polyvinyl formal and polyvinyl butyral (PVB). The polyvinyl acetal is preferably polyvinyl butyral (PVB).
 ポリビニルアセタールと可塑剤との相溶性向上の観点から、ポリビニルアセタールのアセタール化度は、55mol%以上であることが好ましく、67mol%以上であることがより好ましい。ポリビニルアセタールの製造時間の短縮の観点から、ポリビニルアセタールのアセタール化度は、75mol%以下であることが好ましく、71mol%以下であることがより好ましい。アセタール化度は、例えば、「ASTMD1396-92」に準拠した方法により算出される。 From the viewpoint of improving the compatibility between the polyvinyl acetal and the plasticizer, the degree of acetalization of the polyvinyl acetal is preferably 55 mol% or more, more preferably 67 mol% or more. From the viewpoint of shortening the production time of polyvinyl acetal, the degree of acetalization of polyvinyl acetal is preferably 75 mol % or less, more preferably 71 mol % or less. The degree of acetalization is calculated, for example, by a method based on "ASTM D1396-92".
 ポリビニルアセタールは、合成品又は市販品であってもよい。ポリビニルアセタールは、例えば、公知の方法によって製造される。ポリビニルアセタールは、例えば、ポリビニルアルコールをアルデヒドによりアセタール化することにより製造される。 The polyvinyl acetal may be a synthetic product or a commercial product. Polyvinyl acetal is produced, for example, by a known method. Polyvinyl acetal is produced, for example, by acetalizing polyvinyl alcohol with an aldehyde.
 ポリビニルアルコールは、合成品又は市販品であってもよい。ポリビニルアルコールは、例えば、ポリ酢酸ビニルをけん化することにより製造される。ポリビニルアルコールのけん化度は、70mol%~99.9mol%であることが好ましい。合わせガラスの耐貫通性の向上の観点から、ポリビニルアルコールの平均重合度は、200以上であることが好ましく、500以上であることがより好ましく、1,500以上であることが特に好ましい。さらに、ポリビニルアルコールの平均重合度は、1,600以上であることが好ましく、2,600以上であることがより好ましく、2、700以上であることが特に好ましい。合わせガラス用中間膜の形成の容易性の観点から、ポリビニルアルコールの平均重合度は、5,000以下であることが好ましく、4,000以下であることがより好ましく、3,500以下であることが特に好ましい。ポリビニルアルコールの平均重合度は、例えば、「JIS K 6726:1994」(ポリビニルアルコール試験方法)に準拠した方法により求められる。  The polyvinyl alcohol may be a synthetic product or a commercial product. Polyvinyl alcohol is produced, for example, by saponifying polyvinyl acetate. The degree of saponification of polyvinyl alcohol is preferably 70 mol % to 99.9 mol %. From the viewpoint of improving the penetration resistance of laminated glass, the average degree of polymerization of polyvinyl alcohol is preferably 200 or more, more preferably 500 or more, and particularly preferably 1,500 or more. Furthermore, the average degree of polymerization of polyvinyl alcohol is preferably 1,600 or more, more preferably 2,600 or more, and particularly preferably 2,700 or more. From the viewpoint of ease of forming an interlayer film for laminated glass, the average degree of polymerization of polyvinyl alcohol is preferably 5,000 or less, more preferably 4,000 or less, and 3,500 or less. is particularly preferred. The average degree of polymerization of polyvinyl alcohol is determined, for example, by a method conforming to "JIS K 6726:1994" (polyvinyl alcohol test method).
 好ましいアルデヒドとしては、例えば、炭素数が1~10のアルデヒドが挙げられる。炭素数が1~10のアルデヒドとしては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド及びベンズアルデヒドが挙げられる。プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド又はn-ヘキシルアルデヒドが好ましく、プロピオンアルデヒド、n-ブチルアルデヒド又はイソブチルアルデヒドがより好ましく、n-ブチルアルデヒドが特に好ましい。 Preferred aldehydes include, for example, aldehydes having 1 to 10 carbon atoms. Examples of aldehydes having 1 to 10 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, n -nonylaldehyde, n-decylaldehyde and benzaldehyde. Propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde or n-hexylaldehyde are preferred, propionaldehyde, n-butyraldehyde or isobutyraldehyde are more preferred, and n-butyraldehyde is particularly preferred.
 混合工程は、例えば、公知の方法によって実施される。混合工程は、押出機及び押出機に付随した混練装置の中で実施されてもよい。混合工程において、他の成分が添加されてもよい。他の成分は、混合工程によって得られた組成物に添加されてもよい。 The mixing step is performed, for example, by a known method. The mixing step may be performed in an extruder and a kneading device associated with the extruder. Other ingredients may be added during the mixing step. Other ingredients may be added to the composition obtained by the mixing step.
 他の成分としては、例えば、特開2014-194446号公報の段落0066~段落0067に記載された添加剤が挙げられる。他の成分としては、例えば、酸化防止剤も挙げられる。 Other components include, for example, additives described in paragraphs 0066 to 0067 of JP-A-2014-194446. Other ingredients also include, for example, antioxidants.
 酸化防止剤としては、例えば、フェノール系酸化防止剤、硫黄系酸化防止剤及びリン系酸化防止剤が挙げられる。フェノール系酸化防止剤は、フェノール骨格を含む酸化防止剤である。硫黄系酸化防止剤は、硫黄原子を含む酸化防止剤である。リン系酸化防止剤は、リン原子を含む酸化防止剤である。酸化防止剤は、フェノール系酸化防止剤又はリン系酸化防止剤であることが好ましい。 Examples of antioxidants include phenol antioxidants, sulfur antioxidants and phosphorus antioxidants. A phenolic antioxidant is an antioxidant containing a phenol skeleton. A sulfur antioxidant is an antioxidant containing a sulfur atom. A phosphorus antioxidant is an antioxidant containing a phosphorus atom. The antioxidant is preferably a phenolic antioxidant or a phosphorus antioxidant.
 フェノール系酸化防止剤としては、例えば、2,6-ジ-t-ブチル-p-クレゾール(BHT)、ブチル化ヒドロキシアニソール(BHA)、2,6-ジ-t-ブチル-4-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス(4-メチル-6-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェノール)、1,1,3-トリス-(2-メチル-ヒドロキシ-5-t-ブチルフェニル)ブタン、テトラキス[メチレン-3-(3’,5’-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、1,3,3-トリス-(2-メチル-4-ヒドロキシ-5-t-ブチルフェノール)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,3’-t-ブチルフェノール)ブチリックアッシドグリコールエステル及びビス(3-t-ブチル-4-ヒドロキシ-5-メチルベンゼンプロパン酸)エチレンビス(オキシエチレン)が挙げられる。 Phenolic antioxidants include, for example, 2,6-di-t-butyl-p-cresol (BHT), butylated hydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, Stearyl-β-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,2′-methylenebis(4-methyl-6-butylphenol), 2,2′-methylenebis(4-ethyl-6 -t-butylphenol), 4,4′-butylidene-bis(3-methyl-6-t-butylphenol), 1,1,3-tris-(2-methyl-hydroxy-5-t-butylphenyl)butane, tetrakis[methylene-3-(3′,5′-butyl-4-hydroxyphenyl)propionate]methane, 1,3,3-tris-(2-methyl-4-hydroxy-5-t-butylphenol)butane, 1 , 3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, bis(3,3′-t-butylphenol)butyric acid glycol ester and bis(3-t-butyl-4-hydroxy-5-methylbenzenepropanoic acid) ethylene bis(oxyethylene).
 リン系酸化防止剤としては、例えば、トリデシルホスファイト、トリス(トリデシル)ホスファイト、トリフェニルホスファイト、トリノニルフェニルホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ビス(デシル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ビス(2,4-ジ-t-ブチル-6-メチルフェニル)エチルエステル亜リン酸、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト及び2,2’-メチレンビス(4,6-ジ-t-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラスが挙げられる。 Phosphorus-based antioxidants include, for example, tridecyl phosphite, tris(tridecyl) phosphite, triphenyl phosphite, trinonylphenyl phosphite, bis(tridecyl) pentaerythritol diphosphite, bis(decyl) pentaerythritol diphosphite, Phosphite, tris(2,4-di-t-butylphenyl)phosphite, bis(2,4-di-t-butyl-6-methylphenyl)ethyl ester phosphorous acid, tris(2,4-di- t-butylphenyl)phosphite and 2,2'-methylenebis(4,6-di-t-butyl-1-phenyloxy)(2-ethylhexyloxy)phosphorus.
 第1の押出工程において、混合工程によって得られた組成物は、押出機を用いて押し出される。押出機から押し出された組成物の形状は、通常、押出機の出口(すなわち、吐出口)の形状に対応する。例えば、第1の押出工程によって、膜状の組成物が得られる。押出機から押し出された組成物は、合わせガラス用中間膜において金属平板粒子を含む領域を形成できる。 In the first extrusion step, the composition obtained by the mixing step is extruded using an extruder. The shape of the composition extruded from the extruder usually corresponds to the shape of the exit (ie, discharge port) of the extruder. For example, a first extrusion step results in a film-like composition. The composition extruded from the extruder can form regions containing metal tabular particles in the interlayer film for laminated glass.
 押出機は、公知の押出機であってもよい。押出機の条件は、例えば、合わせガラス用中間膜の厚さに応じて決定される。合わせガラス用中間膜の厚さを薄くするためには、圧力を大きくすること、そして、温度を大きくすることが有効である。本開示の一実施形態に係る合わせガラス用中間膜の製造方法は、10kgf/cm~150kgf/cmの圧力及び140℃~250℃の温度の条件で、金属平板粒子分散液と重合体との混合によって得られた組成物を、押出機を用いて押し出すことを含むことが好ましい。 The extruder may be any known extruder. The extruder conditions are determined, for example, according to the thickness of the interlayer film for laminated glass. In order to reduce the thickness of the interlayer film for laminated glass, it is effective to increase the pressure and temperature. A method for manufacturing an interlayer film for laminated glass according to an embodiment of the present disclosure comprises a metal flat particle dispersion and a polymer under conditions of a pressure of 10 kgf/cm 2 to 150 kgf/cm 2 and a temperature of 140°C to 250°C. It preferably comprises extruding the composition obtained by mixing with an extruder.
 第1の押出工程において押出機から押し出された組成物(以下、「第1中間膜」という。)は、合わせガラス用中間膜又は合わせガラス用中間膜の原材料として使用される。例えば、合わせガラス用中間膜の原材料として第1中間膜が使用される場合、合わせガラス用中間膜は、第1中間膜と他の中間膜とを重ねる過程を経て製造されてもよい。例えば、本開示の一実施形態に係る合わせガラス用中間膜の製造方法(具体的には、中間膜の形成工程)は、第1中間膜を、重合体を含む2つの中間膜(以下、2つの中間膜をそれぞれ「第2中間膜」及び「第3中間膜」という。)の間に挟み、押出機を用いて押し出すこと(以下、「第2の押出工程」という場合がある。)を更に含んでもよい。第2の押出工程において第2中間膜、第1中間膜及び第3中間膜をこの順に重ねて押し出すことで、合わせガラス用中間膜の厚さ方向における金属平板粒子の存在範囲を小さくし、合わせガラス用中間膜の熱線遮蔽性を向上できる。 The composition extruded from the extruder in the first extrusion step (hereinafter referred to as "first intermediate film") is used as an intermediate film for laminated glass or a raw material for an intermediate film for laminated glass. For example, when a first interlayer film is used as a raw material for an interlayer film for laminated glass, the interlayer film for laminated glass may be manufactured through a process of stacking the first interlayer film and another interlayer film. For example, a method for manufacturing an interlayer film for laminated glass (specifically, a step of forming an interlayer film) according to an embodiment of the present disclosure includes forming a first interlayer film into two interlayer films containing a polymer (hereinafter referred to as two (hereinafter referred to as "second intermediate film" and "third intermediate film") and extruding using an extruder (hereinafter sometimes referred to as "second extrusion step"). may further include: In the second extrusion step, the second intermediate film, the first intermediate film, and the third intermediate film are stacked in this order and extruded to reduce the existence range of the metal tabular particles in the thickness direction of the interlayer film for laminated glass, The heat ray shielding property of the interlayer film for glass can be improved.
 第1中間膜は、既述のとおり、金属平板粒子分散液と重合体との混合によって得られた組成物を、押出機を用いて押し出すことによって製造される。 As described above, the first intermediate film is produced by extruding, using an extruder, a composition obtained by mixing a dispersion of metal tabular particles and a polymer.
 第2中間膜及び第3中間膜の各々は、例えば、重合体を含む組成物又は重合体を、押出機を用いて押し出すことにより製造される。原材料として使用される重合体としては、例えば、既述した重合体が挙げられる。第2中間膜及び第3中間膜の各々は、可塑剤(好ましくは液状可塑剤)を含むことが好ましい。第2中間膜及び第3中間膜の各々は、必要に応じて、既述した他の成分を含んでもよい。 Each of the second intermediate film and the third intermediate film is produced, for example, by extruding a composition containing a polymer or a polymer using an extruder. Polymers used as raw materials include, for example, the polymers described above. Each of the second intermediate film and the third intermediate film preferably contains a plasticizer (preferably a liquid plasticizer). Each of the second intermediate film and the third intermediate film may contain other components as described above, if necessary.
 第2の押出工程において使用される押出機は、第1の押出工程において使用される押出機と同じであっても異なっていてもよい。第2の押出工程の好ましい条件は、第1の押出工程の好ましい条件と同じである。 The extruder used in the second extrusion step may be the same as or different from the extruder used in the first extrusion step. Preferred conditions for the second extrusion step are the same as preferred conditions for the first extrusion step.
 第2の押出工程において押出機から押し出された組成物は、第1中間膜と同様に、合わせガラス用中間膜又は合わせガラス用中間膜の原材料として使用される。第2の押出工程において押出機から押し出された組成物は、後述のとおり、他の中間膜に重ねて使用されてもよい。 The composition extruded from the extruder in the second extrusion step is used as a raw material for an intermediate film for laminated glass or an intermediate film for laminated glass, similar to the first intermediate film. The composition extruded from the extruder in the second extrusion step may be used over other interlayers, as described below.
 本開示の一実施形態に係る合わせガラス用中間膜の製造方法(具体的には、中間膜の形成工程)は、第2の押出工程において押出機から押し出された組成物を、重合体を含む2つの中間膜(以下、2つの中間膜をそれぞれ「第4中間膜」及び「第5中間膜」という。)の間に挟み、押出機を用いて押し出すことを更に含んでもよい。上記のような工程では、第4中間膜、第2中間膜、第1中間膜、第3中間膜及び第5中間膜がこの順に重ねられてもよく、又は第5中間膜、第2中間膜、第1中間膜、第3中間膜及び第4中間膜がこの順に重ねられてもよい。 A method for producing an interlayer film for laminated glass according to an embodiment of the present disclosure (specifically, a step of forming an interlayer film) includes a composition extruded from an extruder in a second extrusion step, containing a polymer It may further include sandwiching between two intermediate films (hereinafter, the two intermediate films are referred to as "fourth intermediate film" and "fifth intermediate film", respectively) and extruding using an extruder. In the above steps, the fourth intermediate film, the second intermediate film, the first intermediate film, the third intermediate film and the fifth intermediate film may be stacked in this order, or the fifth intermediate film and the second intermediate film may be stacked in this order. , the first intermediate film, the third intermediate film and the fourth intermediate film may be stacked in this order.
 第4中間膜及び第5中間膜の各々は、例えば、既述した第2中間膜又は第3中間膜の製造方法と同じ方法により製造される。第4中間膜及び第5中間膜の各々は、可塑剤(好ましくは液状可塑剤)を含むことが好ましい。第4中間膜及び第5中間膜の各々は、必要に応じて、既述した他の成分を含んでもよい。 Each of the fourth intermediate film and the fifth intermediate film is manufactured by, for example, the same method as the manufacturing method of the second intermediate film or the third intermediate film described above. Each of the fourth intermediate film and the fifth intermediate film preferably contains a plasticizer (preferably a liquid plasticizer). Each of the fourth intermediate film and the fifth intermediate film may contain other components as described above, if necessary.
 次に、図1を参照して合わせガラス用中間膜の製造方法を説明する。ただし、合わせガラス用中間膜の製造方法は、以下の方法に制限されるものではない。図1は、合わせガラス用中間膜及び合わせガラスの製造方法の一例を示す概略図である。図1では、合わせガラス用中間膜及び合わせガラスの製造方法の説明のために、原材料として使用される中間膜と中間膜との境界が示されている。実際の合わせガラス用中間膜において、図1に示されるような中間膜と中間膜との境界の一部又は全部は明確に観察されないことがある。 Next, a method for manufacturing an interlayer film for laminated glass will be described with reference to FIG. However, the method for producing the interlayer film for laminated glass is not limited to the following method. FIG. 1 is a schematic diagram showing an example of a method for producing an intermediate film for laminated glass and a laminated glass. In FIG. 1, the boundaries between the intermediate films used as raw materials are shown for the explanation of the intermediate film for laminated glass and the method of manufacturing the laminated glass. In an actual interlayer film for laminated glass, some or all of the boundary between interlayer films as shown in FIG. 1 may not be clearly observed.
 図1(a)に示されるように、中間膜10、金属平板粒子Pを含む中間膜11及び中間膜12をこの順に重ねて、押出機を用いて押し出すことにより、中間膜の積層体100が得られる。得られた中間膜の積層体100を用いて、図1(b)に示されるように、中間膜13、中間膜10、中間膜11、中間膜12及び中間膜14をこの順に重ねて、押出機を用いて押し出すことにより、合わせガラス用中間膜200が得られる。中間膜10は、既述した第2中間膜に対応し、中間膜11は、既述した第1中間膜に対応し、中間膜12は、既述した第3中間膜に対応し、中間膜13は、既述した第4中間膜に対応し、中間膜14は、既述した第5中間膜に対応する。 As shown in FIG. 1(a), an intermediate film 10, an intermediate film 11 containing metal tabular particles P, and an intermediate film 12 are stacked in this order and extruded using an extruder to obtain an intermediate film laminate 100. can get. Using the obtained laminate 100 of interlayer films, interlayer films 13, 10, 11, 12 and 14 are laminated in this order as shown in FIG. The intermediate film for laminated glass 200 is obtained by extrusion using a machine. The intermediate film 10 corresponds to the second intermediate film, the intermediate film 11 corresponds to the first intermediate film, and the intermediate film 12 corresponds to the third intermediate film. Reference numeral 13 corresponds to the already-described fourth intermediate film, and intermediate film 14 corresponds to the already-described fifth intermediate film.
 本開示の一実施形態に係る合わせガラス用中間膜の製造方法によって得られる合わせガラス用中間膜は、少なくとも金属平板粒子を含む。金属平板粒子分散液を用いて形成される合わせガラス用中間膜は、金属平板粒子分散液の成分の一部又は全部を含んでもよい。ただし、金属平板粒子分散液の成分のうち揮発性の高い成分(例えば、溶剤)は、合わせガラス用中間膜の製造過程で意図的又は偶発的に除かれることがあるため、合わせガラス用中間膜に含まれないことがある。 The interlayer film for laminated glass obtained by the method for producing an interlayer film for laminated glass according to an embodiment of the present disclosure contains at least metal tabular particles. The interlayer film for laminated glass formed using the metal tabular particle dispersion may contain a part or all of the components of the metal tabular particle dispersion. However, highly volatile components (e.g., solvent) among the components of the metal tabular particle dispersion liquid may be intentionally or accidentally removed during the manufacturing process of the interlayer film for laminated glass. may not be included in
 合わせガラス用中間膜は、見かけ上、単層構造又は多層構造を有してもよい。合わせガラス用中間膜は、他の層を含んでもよい。他の層としては、例えば、熱線吸収層、紫外線吸収層、粘着層、ハードコート層及びオーバーコート層が挙げられる。また、他の層としては、例えば、特開2014-194446号公報の段落0068~段落0072に記載された支持体、特開2014-194446号公報の段落0085に記載されたアンダーコート層及び特開2014-194446号公報の段落0086に記載されたバックコート層も挙げられる。 The interlayer film for laminated glass may apparently have a single-layer structure or a multi-layer structure. The interlayer for laminated glass may contain other layers. Other layers include, for example, a heat ray absorbing layer, an ultraviolet absorbing layer, an adhesive layer, a hard coat layer and an overcoat layer. Further, other layers include, for example, a support described in paragraphs 0068 to 0072 of JP-A-2014-194446, an undercoat layer described in paragraph 0085 of JP-A-2014-194446, and a JP-A-2014-194446. Also included are the back coat layers described in paragraph 0086 of JP-A-2014-194446.
 合わせガラス用中間膜は、金属酸化物粒子を含む熱線吸収層を含んでもよい。 The interlayer film for laminated glass may include a heat-absorbing layer containing metal oxide particles.
 金属酸化物粒子における金属酸化物としては、錫ドープ酸化インジウム(ITO)、セシウムドープ酸化タングステン(CWO)、アンチモンドープ酸化錫(ATO)、酸化亜鉛、アンチモン酸亜鉛、酸化チタン、酸化インジウム、酸化錫、酸化アンチモン、ガラスセラミックス及び六ホウ化ランタン(LaB)が挙げられる。セシウムドープ酸化タングステンの組成としては、例えば、Cs0.33WOが挙げられる。金属酸化物粒子における金属酸化物は、錫ドープ酸化インジウム(ITO)及びセシウムドープ酸化タングステン(CWO)からなる群より選択される少なくとも1種であることが好ましい。 Metal oxides in the metal oxide particles include tin-doped indium oxide (ITO), cesium-doped tungsten oxide (CWO), antimony-doped tin oxide (ATO), zinc oxide, zinc antimonate, titanium oxide, indium oxide, and tin oxide. , antimony oxide, glass ceramics and lanthanum hexaboride (LaB 6 ). A composition of cesium-doped tungsten oxide includes, for example, Cs 0.33 WO 3 . The metal oxide in the metal oxide particles is preferably at least one selected from the group consisting of tin-doped indium oxide (ITO) and cesium-doped tungsten oxide (CWO).
 可視光透過率の低下及びヘイズの発生を抑制する観点から、金属酸化物粒子の一次粒子の体積平均粒径は、100nm以下であることが好ましく、80nm以下であることがより好ましく、60nm以下であることが特に好ましい。 From the viewpoint of suppressing a decrease in visible light transmittance and generation of haze, the volume average particle size of the primary particles of the metal oxide particles is preferably 100 nm or less, more preferably 80 nm or less, and 60 nm or less. It is particularly preferred to have
 金属酸化物粒子の形状としては、例えば、球状、針状及び板状が挙げられる。  The shape of the metal oxide particles includes, for example, a spherical shape, a needle shape, and a plate shape.
 熱線吸収層は、1種又は2種以上の金属酸化物粒子を含んでもよい。 The heat-absorbing layer may contain one or more metal oxide particles.
 熱線吸収層における金属酸化物粒子の含有率は、熱線吸収層の全質量に対して、0.5g/m~5.0g/mであることが好ましく、0.5g/m~4.0g/mであることがより好ましく、1.0g/m~3.0g/mであることが特に好ましい。金属酸化物粒子の含有率が0.5g/m以上であると、熱線遮蔽性が向上する。金属酸化物粒子の含有率が5g/m以下であると、可視光透過率が向上する。熱線吸収層におけるセシウムドープ酸化タングステン(CWO)の含有率は、熱線吸収層の全質量に対して、0.3g/m~1.3g/mであることが好ましく、0.6g/m~1.3g/mであることがより好ましい。ITOとCWOとを併用する場合、ITO及びCWOの質量比(すなわち、ITO:CWO)は、5~95:95~5であることが好ましく、10~90:90~10であることがより好ましく、20~80:80~20であることがさらに好ましい。 The content of metal oxide particles in the heat ray absorbing layer is preferably 0.5 g/m 2 to 5.0 g/m 2 , more preferably 0.5 g/m 2 to 4 g/m 2 with respect to the total mass of the heat ray absorbing layer. 0 g/m 2 is more preferred, and 1.0 g/m 2 to 3.0 g/m 2 is particularly preferred. When the content of the metal oxide particles is 0.5 g/m 2 or more, the heat ray shielding properties are improved. When the content of the metal oxide particles is 5 g/m 2 or less, the visible light transmittance is improved. The content of cesium-doped tungsten oxide (CWO) in the heat-absorbing layer is preferably 0.3 g/m 2 to 1.3 g/m 2 , more preferably 0.6 g/m 2 with respect to the total mass of the heat-absorbing layer. More preferably 2 to 1.3 g/m 2 . When ITO and CWO are used in combination, the mass ratio of ITO and CWO (that is, ITO:CWO) is preferably 5-95:95-5, more preferably 10-90:90-10. , 20-80:80-20.
 熱線吸収層の厚さは、0.5μm~10μmの範囲内であることが好ましく、1.0μm~3.0μmの範囲内であることが好ましい。 The thickness of the heat ray absorbing layer is preferably within the range of 0.5 μm to 10 μm, more preferably within the range of 1.0 μm to 3.0 μm.
 熱線吸収層の好ましい態様は、特開2014-194446号公報の段落0036~段落0039に記載されている。上記文献の内容は、参照により本明細書に取り込まれる。 A preferred embodiment of the heat-absorbing layer is described in paragraphs 0036 to 0039 of JP-A-2014-194446. The contents of the above documents are incorporated herein by reference.
 本開示の一実施形態に係る合わせガラス用中間膜は、紫外線吸収層を含んでもよい。紫外線吸収層は、紫外線吸収という機能に加えて他の機能を有する層であってもよい。紫外線吸収層に複数の機能が付与されると、合わせガラス用中間膜の厚さを小さくできる。紫外線吸収層の数は、1つ又は2つ以上であってもよい。合わせガラス用中間膜の厚さの低減の観点から、本開示の一実施形態に係る合わせガラス用中間膜は、1つの紫外線吸収層を含むことが好ましい。 The interlayer film for laminated glass according to one embodiment of the present disclosure may include an ultraviolet absorbing layer. The ultraviolet absorption layer may be a layer having other functions in addition to the function of absorbing ultraviolet rays. When a plurality of functions are imparted to the ultraviolet absorbing layer, the thickness of the interlayer film for laminated glass can be reduced. The number of ultraviolet absorbing layers may be one or two or more. From the viewpoint of reducing the thickness of the interlayer film for laminated glass, the interlayer film for laminated glass according to one embodiment of the present disclosure preferably includes one ultraviolet absorbing layer.
 紫外線吸収層の波長390nmにおける透過率は、50%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることが特に好ましい。紫外線吸収層の波長390nmにおける透過率が小さくなると、太陽光の紫外線による合わせガラス用中間膜が劣化すること、室内にいる人が有害な紫外線を浴びること、又は室内の調度品が色褪せたりすることを防ぐことができる。紫外線吸収層の波長390nmにおける透過率は、例えば、紫外線吸収層における紫外線吸収剤の含有率及び種類によって調整される。 The transmittance of the ultraviolet absorption layer at a wavelength of 390 nm is preferably 50% or less, more preferably 40% or less, and particularly preferably 30% or less. When the transmittance of the ultraviolet absorption layer at a wavelength of 390 nm becomes small, the interlayer film for laminated glass deteriorates due to the ultraviolet rays of sunlight, the people in the room are exposed to harmful ultraviolet rays, or the furniture in the room fades. can be prevented. The transmittance of the ultraviolet absorbing layer at a wavelength of 390 nm is adjusted, for example, by the content and type of the ultraviolet absorbing agent in the ultraviolet absorbing layer.
 紫外線吸収層は、紫外線吸収剤を含むことが好ましい。紫外線吸収剤としては、例えば、トリアジン系化合物、ベンゾトリアゾール系化合物、環状イミノエステル系化合物、ベンゾフェノン系化合物、メロシアニン系化合物、シアニン系化合物、ジベンゾイルメタン系化合物、桂皮酸系化合物、シアノアクリレート系化合物及び安息香酸エステル系化合物が挙げられる。紫外線吸収剤としては、特開2012-136019号公報の段落0040~段落0088に記載された化合物も挙げられる。上記文献の内容は、参照により本明細書に取り込まれる。 The ultraviolet absorbing layer preferably contains an ultraviolet absorber. Examples of UV absorbers include triazine-based compounds, benzotriazole-based compounds, cyclic iminoester-based compounds, benzophenone-based compounds, merocyanine-based compounds, cyanine-based compounds, dibenzoylmethane-based compounds, cinnamic acid-based compounds, and cyanoacrylate-based compounds. and benzoic acid ester compounds. Examples of UV absorbers also include compounds described in paragraphs 0040 to 0088 of JP-A-2012-136019. The contents of the above documents are incorporated herein by reference.
 紫外線吸収層は、1種又は2種以上の紫外線吸収剤を含んでもよい。 The ultraviolet absorbing layer may contain one or more ultraviolet absorbers.
 紫外線吸収剤の含有率は、制限されない。紫外線吸収剤の含有率は、例えば、紫外線吸収層の機能、すなわち、要求される紫外線の透過率に応じて決定される。 The content of UV absorbers is not limited. The content of the ultraviolet absorbent is determined, for example, according to the function of the ultraviolet absorbing layer, that is, the required ultraviolet transmittance.
 紫外線吸収層は、バインダーとして重合体を含んでもよい。重合体としては、例えば、アクリル樹脂、ポリビニルブチラール、ポリビニルアルコール及びポリエステルが挙げられる。なお、金属平板粒子による熱線反射の向上の観点から、重合体は、波長450nm~1,500nmの領域に吸収を有しない重合体から選択されることが好ましい。 The ultraviolet absorbing layer may contain a polymer as a binder. Polymers include, for example, acrylic resins, polyvinyl butyral, polyvinyl alcohol, and polyesters. From the viewpoint of improving heat reflection by the metal tabular particles, the polymer is preferably selected from polymers that do not absorb light in the wavelength range of 450 nm to 1,500 nm.
 紫外線吸収層は、低屈折率を有する微粒子及び高屈折率を有する微粒子からなる群より選択される少なくとも1種を含んでもよい。低屈折率を有する微粒子は、紫外線吸収層の屈折率を低減できる。高屈折率を有する微粒子は、紫外線吸収層の屈折率を増大できる。低屈折率を有する微粒子としては、例えば、フッ化マグネシウム微粒子及びシリカ微粒子が挙げられる。屈折率、分散安定性及びコストの観点から、シリカ微粒子が好ましい。屈折率の低減の観点から、中空シリカ微粒子が好ましい。中空シリカ微粒子の屈折率は、1.17~1.40であることが好ましく、1.17~1.35であることがより好ましくは、1.17~1.30であることが特に好ましい。中空シリカ微粒子の屈折率は、粒子全体の屈折率を表し、中空シリカ微粒子を形成している外殻のシリカのみの屈折率を表すものではない。低屈折率を有する微粒子の平均粒径は、30nm~100nmであることが好ましく、35nm~80nmであることがより好ましく、40nm~60nmであることが特に好ましい。高屈折率を有する微粒子としては、例えば、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、スズ及びアンチモンからなる群より選択される少なくとも1種を含む金属酸化物微粒子が挙げられる。高屈折率を有する微粒子の平均粒径は、0.2μm以下であることが好ましく、0.1μm以下であることがより好ましく、0.06μm以下であることが特に好ましい。 The ultraviolet absorbing layer may contain at least one selected from the group consisting of fine particles having a low refractive index and fine particles having a high refractive index. Fine particles with a low refractive index can reduce the refractive index of the UV absorbing layer. Fine particles with a high refractive index can increase the refractive index of the UV absorbing layer. Fine particles having a low refractive index include, for example, magnesium fluoride fine particles and silica fine particles. Silica fine particles are preferred from the viewpoint of refractive index, dispersion stability and cost. From the viewpoint of reducing the refractive index, hollow silica fine particles are preferred. The refractive index of the hollow silica fine particles is preferably 1.17 to 1.40, more preferably 1.17 to 1.35, particularly preferably 1.17 to 1.30. The refractive index of the hollow silica fine particles represents the refractive index of the entire particle, and does not represent the refractive index of only the outer shell silica forming the hollow silica fine particles. The average particle size of the fine particles having a low refractive index is preferably 30 nm to 100 nm, more preferably 35 nm to 80 nm, and particularly preferably 40 nm to 60 nm. Fine particles having a high refractive index include, for example, metal oxide fine particles containing at least one selected from the group consisting of titanium, zirconium, aluminum, indium, zinc, tin and antimony. The average particle size of the fine particles having a high refractive index is preferably 0.2 μm or less, more preferably 0.1 μm or less, and particularly preferably 0.06 μm or less.
 紫外線遮蔽性の観点から、紫外線吸収層の厚さは、5μm以上であることが好ましく、10μm以上であることがより好ましい。可視光透過性の観点から、紫外線吸収層の厚さは、200μm以下であることが好ましく、100μm以下であることがより好ましい。 From the viewpoint of ultraviolet shielding properties, the thickness of the ultraviolet absorbing layer is preferably 5 μm or more, more preferably 10 μm or more. From the viewpoint of visible light transmission, the thickness of the ultraviolet absorbing layer is preferably 200 μm or less, more preferably 100 μm or less.
 紫外線吸収層の好ましい態様は、特開2014-194446号公報の段落0073~段落0079に記載されている。上記文献の内容は、参照により本明細書に取り込まれる。 A preferred embodiment of the ultraviolet absorbing layer is described in paragraphs 0073 to 0079 of JP-A-2014-194446. The contents of the above documents are incorporated herein by reference.
 本開示の一実施形態に係る合わせガラス用中間膜は、粘着層を含んでもよい。 The interlayer film for laminated glass according to one embodiment of the present disclosure may include an adhesive layer.
 粘着層の成分としては、例えば、ポリビニルブチラール、アクリル樹脂、スチレン/アクリル樹脂、ポリウレタン、ポリエステル及びシリコーンが挙げられる。粘着層の成分としては、例えば、帯電防止剤、滑剤及びブロッキング防止剤も挙げられる。 Components of the adhesive layer include, for example, polyvinyl butyral, acrylic resin, styrene/acrylic resin, polyurethane, polyester and silicone. Components of the adhesive layer also include, for example, antistatic agents, lubricants and antiblocking agents.
 粘着層の厚さは、0.1μm~30μmの範囲内であることが好ましく、5μm~20μmの範囲内であることがより好ましい。 The thickness of the adhesive layer is preferably within the range of 0.1 μm to 30 μm, more preferably within the range of 5 μm to 20 μm.
 粘着層の好ましい態様は、特開2014-194446号公報の段落0080~段落0081に記載されている。上記文献の内容は、参照により本明細書に取り込まれる。 A preferred embodiment of the adhesive layer is described in paragraphs 0080 to 0081 of JP-A-2014-194446. The contents of the above documents are incorporated herein by reference.
 本開示の一実施形態に係る合わせガラス用中間膜は、ハードコート層を含んでもよい。ハードコート層は、合わせガラス用中間膜に耐擦傷性を付与できる。 The interlayer film for laminated glass according to one embodiment of the present disclosure may include a hard coat layer. The hard coat layer can impart scratch resistance to the interlayer film for laminated glass.
 ハードコート層の成分としては、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂及びフッ素系樹脂が挙げられる。ハードコート層は、金属酸化物粒子を含んでもよい。 Components of the hard coat layer include, for example, acrylic resins, silicone resins, melamine resins, urethane resins, alkyd resins, and fluorine resins. The hard coat layer may contain metal oxide particles.
 ハードコート層の厚さは、1μm~50μmの範囲内であることが好ましい。 The thickness of the hard coat layer is preferably within the range of 1 μm to 50 μm.
 ハードコート層の好ましい態様は、特開2014-194446号公報の段落0082に記載されている。上記文献の内容は、参照により本明細書に取り込まれる。 A preferred embodiment of the hard coat layer is described in paragraph 0082 of JP-A-2014-194446. The contents of the above documents are incorporated herein by reference.
 本開示の一実施形態に係る合わせガラス用中間膜は、オーバーコート層を含んでもよい。 The interlayer film for laminated glass according to one embodiment of the present disclosure may include an overcoat layer.
 オーバーコート層の成分としては、例えば、バインダー、マット剤及び界面活性剤が挙げられる。バインダーとしては、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂及びフッ素系樹脂が挙げられる。 Components of the overcoat layer include, for example, binders, matting agents and surfactants. Examples of binders include acrylic resins, silicone resins, melamine resins, urethane resins, alkyd resins, and fluorine resins.
 オーバーコート層の厚さは、0.01μm~5μmの範囲内であることが好ましく、0.05μm~1μmの範囲内であることがより好ましい。 The thickness of the overcoat layer is preferably within the range of 0.01 μm to 5 μm, more preferably within the range of 0.05 μm to 1 μm.
 オーバーコート層の好ましい態様は、特開2014-194446号公報の段落0083~段落0085に記載されている。上記文献の内容は、参照により本明細書に取り込まれる。 A preferred embodiment of the overcoat layer is described in paragraphs 0083 to 0085 of JP-A-2014-194446. The contents of the above documents are incorporated herein by reference.
 熱線遮蔽性及び可視光透過率の向上の観点から、本開示の一実施形態に係る合わせガラス用中間膜の厚さは、10μm~2,000μmの範囲内であることが好ましく、20μm~1,500μmの範囲内であることがより好ましく、30μm~1,000μmの範囲内であることが特に好ましい。 From the viewpoint of improving heat ray shielding properties and visible light transmittance, the thickness of the interlayer film for laminated glass according to an embodiment of the present disclosure is preferably in the range of 10 μm to 2,000 μm, preferably 20 μm to 1,000 μm. It is more preferably within the range of 500 μm, and particularly preferably within the range of 30 μm to 1,000 μm.
 本開示の一実施形態に係る合わせガラス用中間膜の製造方法によって得られる合わせガラス用中間膜は、種々の合わせガラスの中間膜として使用される。合わせガラスの用途としては、例えば、乗り物(例えば、自動車、鉄道車両及び飛行機)の窓ガラス及び建物の窓ガラスが挙げられる。 The interlayer film for laminated glass obtained by the method for producing an interlayer film for laminated glass according to an embodiment of the present disclosure is used as an interlayer film for various laminated glasses. Applications of laminated glass include, for example, vehicle (eg, automobile, railcar and airplane) glazing and building glazing.
<合わせガラスの製造方法>
 本開示の一実施形態に係る合わせガラスは、例えば、合わせガラス用中間膜を2つのガラス板(以下、2つのガラス板をそれぞれ「第1ガラス板」及び「第2ガラス板」という場合がある。)の間に挟むことによって製造される。本開示の一実施形態に係る合わせガラスの製造方法は、合わせガラス用中間膜を2つのガラス板の間に挟み、加熱しながら圧着することを含むことが好ましい。
<Method for producing laminated glass>
In the laminated glass according to an embodiment of the present disclosure, for example, an interlayer film for laminated glass is divided into two glass plates (hereinafter, the two glass plates may be referred to as "first glass plate" and "second glass plate", respectively). .). A method for manufacturing laminated glass according to an embodiment of the present disclosure preferably includes sandwiching an interlayer film for laminated glass between two glass plates and pressing them while heating.
 合わせガラス用中間膜は、例えば、上記「合わせガラス用中間膜の製造方法」の項に記載された方法によって製造される。合わせガラス用中間膜は、上記「合わせガラス用中間膜の製造方法」の項に記載された方法によって製造された合わせガラス用中間膜であることが好ましい。 The interlayer film for laminated glass is manufactured, for example, by the method described in the section "Method for producing interlayer film for laminated glass" above. The interlayer film for laminated glass is preferably an interlayer film for laminated glass produced by the method described in the section "Method for producing interlayer film for laminated glass" above.
 ガラス板の種類は、制限されない。ガラス板は、公知のガラス板であってもよい。ガラス板としては、青板ガラス及びグリーンガラスが挙げられる。ガラス板は、ガラス代替樹脂成形体であってもよい。ガラス代替樹脂としては、例えば、ポリカーボネート及びアクリル樹脂が挙げられる。ガラス代替樹脂成形体は、ガラス代替樹脂の上にハードコート層を形成することにより製造されてもよい。ハードコート層としては、例えば、アクリル系ハードコート材、シリコーン系ハードコート材又はメラミン系ハードコート材に無機微粒子を分散させた層が挙げられる。無機微粒子としては、例えば、シリカ、チタニア、アルミナ及びジルコニアが挙げられる。第1ガラス板の種類は、第2ガラス板の種類と同じであっても異なっていてもよい。 The type of glass plate is not limited. The glass plate may be a known glass plate. Glass plates include soda plate glass and green glass. The glass plate may be a glass substitute resin molding. Glass substitute resins include, for example, polycarbonate and acrylic resins. The glass substitute resin molded article may be produced by forming a hard coat layer on the glass substitute resin. Examples of the hard coat layer include a layer in which inorganic fine particles are dispersed in an acrylic hard coat material, a silicone hard coat material, or a melamine hard coat material. Examples of inorganic fine particles include silica, titania, alumina and zirconia. The type of the first glass plate may be the same as or different from the type of the second glass plate.
 本開示の一実施形態に係る合わせガラスの製造方法において、合わせガラス用中間膜及び2つのガラス板は、予備圧着された後、オートクレーブといった装置において加熱しながら圧着されてもよい。予備圧着は、例えば、減圧環境下、80℃~120℃の温度及び30分間~60分間の処理時間で実施される。オートクレーブによる加熱圧着は、例えば、1.0MPa~1.5MPaの圧力及び120℃~150℃の温度で実施される。加熱圧着の時間は、20分間~90分間であることが好ましい。 In the method for manufacturing laminated glass according to an embodiment of the present disclosure, the interlayer film for laminated glass and the two glass plates may be pre-press-bonded and then pressure-bonded while being heated in a device such as an autoclave. Preliminary pressure bonding is performed, for example, under a reduced pressure environment at a temperature of 80° C. to 120° C. for a treatment time of 30 minutes to 60 minutes. Thermocompression bonding by an autoclave is performed, for example, at a pressure of 1.0 MPa to 1.5 MPa and a temperature of 120°C to 150°C. The time for thermocompression bonding is preferably 20 to 90 minutes.
 合わせガラス用中間膜とガラス板とを加熱圧着させる範囲は、ガラス板の全面積にわたる範囲でもよく、又はガラス板の周縁部のみでもよい。ガラス板の周縁部の加熱圧着は、シワの発生をより抑制できる。 The range in which the interlayer film for laminated glass and the glass plate are heat-pressed may be a range over the entire area of the glass plate, or may be only the peripheral edge of the glass plate. The thermocompression bonding of the peripheral portion of the glass plate can further suppress the occurrence of wrinkles.
 本開示の一実施形態に係る合わせガラスの製造方法では、加熱圧着の後に適宜圧力を開放しながら放冷して、合わせガラス体を製造してもよい。加熱圧着の後に圧力を保持した状態で降温することが、合わせガラス体のシワ及び割れを改善する観点から好ましい。「圧力を保持した状態で降温する」とは、40℃のときの装置内部の圧力が加熱圧着時の圧力の75%~100%となるように降温することを意味する。圧力を保持した状態で降温する方法としては、装置内部の圧力が温度減少に伴って自然と低下していくように装置内部から圧力を漏らさずに降温する方法又は装置内部の圧力が温度減少に伴って減少しないように外部から更に加圧しながら降温する方法が好ましい。圧力を保持した状態で降温する場合、120℃~150℃で加熱圧着した後、40℃まで1時間~5時間かけて放冷することが好ましい。 In the method for producing a laminated glass according to an embodiment of the present disclosure, the laminated glass body may be produced by allowing it to cool while appropriately releasing the pressure after the thermocompression bonding. From the viewpoint of improving wrinkles and cracks in the laminated glass body, it is preferable to lower the temperature while the pressure is maintained after the thermocompression bonding. The expression "lowering the temperature while maintaining the pressure" means that the pressure inside the device at 40°C is lowered to 75% to 100% of the pressure during thermocompression bonding. As a method of lowering the temperature while maintaining the pressure, there is a method of lowering the temperature without leaking the pressure from the inside of the device so that the pressure inside the device naturally decreases as the temperature decreases, or a method in which the pressure inside the device decreases as the temperature decreases. A method of lowering the temperature while further pressurizing it from the outside is preferable so as not to reduce the temperature. When the temperature is lowered while the pressure is maintained, it is preferable to heat and press-bond at 120° C. to 150° C. and then allow to cool to 40° C. over 1 hour to 5 hours.
 本開示の一実施形態に係る合わせガラスの製造方法では、圧力を保持した状態で降温した後、圧力を開放することが好ましい。圧力を保持した状態で降温した後、装置内部の温度が40℃以下になった後に圧力を開放して降温することが好ましい。 In the method for manufacturing laminated glass according to an embodiment of the present disclosure, it is preferable to release the pressure after the temperature is lowered while the pressure is maintained. After the temperature is lowered while the pressure is maintained, it is preferable to release the pressure and lower the temperature after the temperature inside the apparatus reaches 40° C. or less.
 本開示の一実施形態に係る合わせガラスの製造方法は、(1)合わせガラス用中間膜を2つのガラス板の間に挟むことと、(2)合わせガラス用中間膜及び2つのガラス板を、1.0MPa~1.5MPaの圧力及び120℃~150℃の温度で加熱圧着することと、(3)圧力を保持した状態で降温することと、(4)圧力を開放することと、を含むことが好ましい。 A method for manufacturing laminated glass according to an embodiment of the present disclosure includes (1) sandwiching an interlayer film for laminated glass between two glass plates; (3) lowering the temperature while maintaining the pressure; and (4) releasing the pressure. preferable.
 次に、図1を参照して合わせガラスの製造方法を説明する。ただし、合わせガラスの製造方法は、以下の方法に制限されるものではない。図1(c)に示されるように、合わせガラス300は、合わせガラス用中間膜200を第1ガラス板20と第2ガラス板21との間に挟み、加熱しながら圧着することにより得られる。 Next, a method for manufacturing laminated glass will be described with reference to FIG. However, the method for producing laminated glass is not limited to the following method. As shown in FIG. 1(c), the laminated glass 300 is obtained by sandwiching the interlayer film 200 for laminated glass between the first glass plate 20 and the second glass plate 21 and pressing them while heating.
 本開示の一実施形態に係る合わせガラスの製造方法によって得られる合わせガラスは、合わせガラス用中間膜と、合わせガラス用中間膜を挟む2つのガラス板と、を含む。すなわち、合わせガラスは、第1ガラス板と、合わせガラス用中間膜と、第2ガラス板と、をこの順に含む。合わせガラス用中間膜は、2つのガラス板の少なくとも1つに接触してもよい。ガラス板と合わせガラス用中間膜との間に、他の層が配置されてもよい。 A laminated glass obtained by a method for manufacturing laminated glass according to an embodiment of the present disclosure includes an intermediate film for laminated glass and two glass plates sandwiching the intermediate film for laminated glass. That is, the laminated glass includes a first glass plate, an intermediate film for laminated glass, and a second glass plate in this order. The interlayer for laminated glass may contact at least one of the two glass sheets. Another layer may be arranged between the glass plate and the interlayer film for laminated glass.
 本開示の一実施形態に係る合わせガラスは、他の層を含んでもよい。他の層としては、上記「合わせガラス用中間膜」の項に記載された他の層が挙げられる。 A laminated glass according to an embodiment of the present disclosure may include other layers. Other layers include the other layers described in the above section "Interlayer film for laminated glass".
 本開示の一実施形態に係る合わせガラスの用途としては、例えば、乗り物(例えば、自動車、鉄道車両及び飛行機)の窓ガラス及び建物の窓ガラスが挙げられる。本開示の一実施形態に係る合わせガラスは、自動車用の窓ガラスとして使用されることが好ましい。 Applications of the laminated glass according to an embodiment of the present disclosure include, for example, window glass for vehicles (for example, automobiles, railroad vehicles, and airplanes) and window glass for buildings. A laminated glass according to an embodiment of the present disclosure is preferably used as a window glass for automobiles.
 以下、実施例により本開示を詳細に説明する。ただし、本開示は、以下の実施例に制限されるものではない。以下の実施例に示される材料、使用量、割合、処理内容及び処理手順は、本開示の趣旨を逸脱しない範囲で適宜変更されてもよい。 The present disclosure will be described in detail below with reference to examples. However, the present disclosure is not limited to the following examples. Materials, usage amounts, proportions, processing details, and processing procedures shown in the following examples may be changed as appropriate without departing from the scope of the present disclosure.
<分散液B1>
 以下の手順によって、分散液B1を調製した。分散液B1は、本開示における金属平板粒子分散液である。
<Dispersion B1>
Dispersion B1 was prepared by the following procedure. Dispersion B1 is a metal tabular particle dispersion in the present disclosure.
(分散液A1)
 反応釜中の純水(308mL)に1質量%のクエン酸ナトリウム水溶液(24.5mL)及び8g/Lのポリスチレンスルホン酸ナトリウム水溶液(16.7mL)を添加し、35℃まで加熱した。溶液に2.3質量%の水素化ほう素ナトリウム水溶液(1mL)を添加し、次に、0.6mmol/Lの硝酸銀水溶液(316mL)を撹拌しながら添加した。得られた溶液を20分間撹拌した後、1質量%のクエン酸ナトリウム水溶液(24.5mL)、10mmol/Lのアスコルビン酸水溶液(33mL)及び純水(274mL)を添加した。得られた溶液に0.6mmol/Lの硝酸銀水溶液(199mL)を撹拌しながら添加した。30分間撹拌しながら液温度を30℃に冷却した後に、0.35mol/Lのメチルヒドロキノン水溶液(197mL)及びゼラチン水溶液を反応釜に添加した。ゼラチン水溶液は、重量平均分子量が20万の不活性ゼラチン(33.5g)と重量平均分子量が2万の酸化処理ゼラチン(22.3g)とを純水(409mL)に溶解して調製された。次に、13.5質量%の亜硫酸ナトリウム水溶液(67mL)、10質量%の硝酸銀水溶液(228mL)及び純水(369mL)を混合して調製された亜硫酸銀の白色沈殿物混合液を反応釜に添加した。得られた溶液を75分間撹拌した後、1mol/LのNaOH(123ml)及び2質量%の1-(5-メチルウレイドフェニル)-5-メルカプトテトラゾール水溶液(4.46mL)を反応釜に添加して、分散液A1を得た。分散液A1において、平均円相当径が120nmである六角形状の銀平板粒子が生成していることを確認した。
(Dispersion A1)
A 1% by mass sodium citrate aqueous solution (24.5 mL) and an 8 g/L sodium polystyrene sulfonate aqueous solution (16.7 mL) were added to pure water (308 mL) in a reactor and heated to 35°C. A 2.3% by weight sodium borohydride aqueous solution (1 mL) was added to the solution, and then a 0.6 mmol/L aqueous silver nitrate solution (316 mL) was added with stirring. After stirring the obtained solution for 20 minutes, 1% by mass sodium citrate aqueous solution (24.5 mL), 10 mmol/L ascorbic acid aqueous solution (33 mL) and pure water (274 mL) were added. A 0.6 mmol/L silver nitrate aqueous solution (199 mL) was added to the resulting solution while stirring. After cooling the liquid temperature to 30° C. with stirring for 30 minutes, a 0.35 mol/L aqueous methylhydroquinone solution (197 mL) and an aqueous gelatin solution were added to the reactor. The aqueous gelatin solution was prepared by dissolving inert gelatin (33.5 g) with a weight average molecular weight of 200,000 and oxidized gelatin (22.3 g) with a weight average molecular weight of 20,000 in pure water (409 mL). Next, a silver sulfite white precipitate mixture prepared by mixing 13.5% by mass sodium sulfite aqueous solution (67 mL), 10% by mass aqueous silver nitrate solution (228 mL) and pure water (369 mL) was added to the reactor. added. After the resulting solution was stirred for 75 minutes, 1 mol/L NaOH (123 ml) and 2 wt% 1-(5-methylureidophenyl)-5-mercaptotetrazole aqueous solution (4.46 mL) were added to the reaction vessel. to obtain a dispersion liquid A1. It was confirmed that hexagonal tabular silver particles having an average equivalent circle diameter of 120 nm were produced in the dispersion liquid A1.
(分散液B1)
 分散液A1(200mL)と、タンパク質分解酵素(ナガセケムテックス株式会社製のビオプラーゼAL-15FG、1g)と、ポリグリセリン脂肪酸エステル(阪本薬品工業株式会社製のポリグリセリン結合リシノレイン酸エステル「SYグリスターCRED」、0.5g)と、可塑剤(トリエチレングリコールジ(2-エチルヘキサノエート)、10g)とを混合し、40℃でよく撹拌した。上記の工程により、銀平板粒子の分散剤であるゼラチンをタンパク質分解酵素で分解し、分散剤をポリグリセリン脂肪酸エステルに置換をして、液状可塑剤を含む油相に銀平板粒子を分散させた。水相の液を捨てて、分散液B1を得た。分散液B1に占める銀平板粒子の割合は10質量%であった。
(Dispersion B1)
Dispersion A1 (200 mL), proteolytic enzyme (Bioplase AL-15FG, 1 g, manufactured by Nagase Chemtex Co., Ltd.), and polyglycerin fatty acid ester (manufactured by Sakamoto Pharmaceutical Co., Ltd., polyglycerin-bound ricinoleic acid ester "SY Glyster CRED , 0.5 g) and a plasticizer (triethylene glycol di(2-ethylhexanoate), 10 g) were mixed and stirred well at 40°C. Through the above steps, gelatin, which is a dispersant for silver tabular particles, is decomposed with a proteolytic enzyme, the dispersant is replaced with polyglycerin fatty acid ester, and silver tabular particles are dispersed in an oil phase containing a liquid plasticizer. . The aqueous phase liquid was discarded to obtain dispersion liquid B1. The proportion of silver tabular grains in Dispersion B1 was 10% by mass.
(銀平板粒子のメジアン径)
 分散液B1における銀平板粒子のメジアン径を、日機装株式会社製マイクロトラック粒度分布計を用いて測定した。体積基準に基づく銀平板粒子のメジアン径は、80nmであった。
(Median diameter of silver tabular grains)
The median diameter of the silver tabular grains in Dispersion B1 was measured using a Microtrac particle size distribution meter manufactured by Nikkiso Co., Ltd. The median diameter of the silver tabular grains on a volume basis was 80 nm.
(銀平板粒子の平均円相当径)
分散液B1をメッシュの上に滴下し、溶剤を揮発させた後、透過型電子顕微鏡(TEM)を用いて、5,000倍~20,000倍の範囲の観察倍率で銀平板粒子を観察した。得られた像を画像処理ソフト「ImageJ」に取り込み、画像処理を施した。複数の視野のTEM像から任意に抽出した1,000個の銀平板粒子の画像解析を行い、1,000個の銀平板粒子の平均円相当径を算出した。銀平板粒子の平均円相当径は、120nmであった。
(Average circle equivalent diameter of silver tabular grains)
Dispersion B1 was dropped onto the mesh to evaporate the solvent, and then the silver tabular grains were observed using a transmission electron microscope (TEM) at an observation magnification ranging from 5,000 times to 20,000 times. . The obtained image was loaded into image processing software "ImageJ" and subjected to image processing. Image analysis was performed on 1,000 silver tabular grains arbitrarily extracted from TEM images of a plurality of fields of view, and the average circle equivalent diameter of the 1,000 silver tabular grains was calculated. The average equivalent circle diameter of the silver tabular grains was 120 nm.
(銀平板粒子の厚さ)
 分散液B1をシリコン基板上に滴下して乾燥し、銀平板粒子の厚さをFIB-TEM法により測定した。具体的に、5,000倍~20,000倍の範囲の撮影倍率で100個の銀平板粒子を観察し、100個の金属平板粒子の厚さを算術平均することによって、銀平板粒子の平均厚さを算出した。銀平板粒子の平均厚さは、8nmであった。銀平板粒子の平均円相当径が120nmであり、銀平板粒子の平均厚さが8nmであることから、銀平板粒子の体積が求まり、この体積になるときの球の直径は56nmと求まる。これを銀平板粒子の1次粒子径とした。既述したマイクロトラック粒度分布計を用いて測定された銀平板粒子のメジアン径は粒子の凝集状態を反映して1次粒子径よりも大きくなる。したがって、銀平板粒子のメジアン径が銀平板粒子の1次粒子径に近いほど分散状態がいいことを表す。
(Thickness of silver tabular grain)
Dispersion B1 was dropped onto a silicon substrate and dried, and the thickness of silver tabular grains was measured by the FIB-TEM method. Specifically, 100 silver tabular grains were observed at a magnification in the range of 5,000 to 20,000 times, and the thickness of 100 metal tabular grains was arithmetically averaged to obtain an average of the silver tabular grains. Thickness was calculated. The average thickness of the silver tabular grains was 8 nm. Since the average equivalent circle diameter of the silver tabular grains is 120 nm and the average thickness of the silver tabular grains is 8 nm, the volume of the silver tabular grains can be determined, and the diameter of the sphere at this volume is determined to be 56 nm. This was taken as the primary particle size of the silver tabular grains. The median diameter of tabular silver grains measured using the aforementioned Microtrac grain size distribution analyzer is larger than the primary grain diameter, reflecting the aggregation state of the grains. Therefore, the closer the median diameter of the silver tabular grains to the primary particle diameter of the silver tabular grains, the better the dispersion state.
<分散液B2>
 分散液A1を200mL抽出し、遠心分離機(株式会社コクサン製、H200-N)を用いて7,000rpm及び60分間の条件で遠心分離を行い、銀平板粒子を沈殿させた。遠心分離後の上澄み液を190mL捨て、残った銀平板粒子に0.2mmol/LのNaOH水溶液(9mL)を添加し、卓上型ホモジナイザー(三井電気精機株式会社製、SpinMix08)を用いて15,000rpm及び20分間の条件で分散させることで、分散液B2を調液した。分散液B2に占める銀平板粒子の割合は5質量%であった。既述した方法に準じて、銀平板粒子の粒子径及び平均厚さを測定した。分散液B2における銀平板粒子のメジアン径(具体的には、体積基準に基づくメジアン径)は、150nmであった。銀平板粒子の平均円相当径は、120nmであった。銀平板粒子の平均厚さは、8nmであった。よって、銀平板粒子の1次粒子径は56nmであった。
<Dispersion B2>
200 mL of the dispersion A1 was extracted and centrifuged at 7,000 rpm for 60 minutes using a centrifuge (manufactured by Kokusan Co., Ltd., H200-N) to precipitate silver tabular particles. 190 mL of the supernatant after centrifugation was discarded, 0.2 mmol/L NaOH aqueous solution (9 mL) was added to the remaining silver tabular particles, and the mixture was spun at 15,000 rpm using a desktop homogenizer (SpinMix08, manufactured by Mitsui Electric Seiki Co., Ltd.). and dispersion for 20 minutes to prepare a dispersion liquid B2. The proportion of silver tabular grains in Dispersion B2 was 5% by mass. The grain size and average thickness of the silver tabular grains were measured according to the method described above. The median diameter (specifically, the median diameter based on volume) of the silver tabular grains in dispersion B2 was 150 nm. The average equivalent circle diameter of the silver tabular grains was 120 nm. The average thickness of the silver tabular grains was 8 nm. Therefore, the primary particle diameter of the silver tabular grains was 56 nm.
<分散液B3>
 以下の手順によって、分散液B3を調製した。分散液B3は、本開示における金属平板粒子分散液である。
<Dispersion B3>
Dispersion B3 was prepared by the following procedure. Dispersion B3 is a metal tabular particle dispersion in the present disclosure.
(分散液A3)
 2.5mmol/Lのクエン酸ナトリウム水溶液(50mL)に0.5g/Lのポリスチレンスルホン酸水溶液(2.5mL)を添加し、35℃まで加熱した。得られた溶液に10mmol/Lの水素化ほう素ナトリウム水溶液(3mL)を添加し、0.5mmol/Lの硝酸銀水溶液(50mL)を20mL/分で撹拌しながら添加した。得られた溶液を30分間撹拌し、種溶液を作製した。
(Dispersion A3)
A 0.5 g/L polystyrenesulfonic acid aqueous solution (2.5 mL) was added to a 2.5 mmol/L sodium citrate aqueous solution (50 mL), and the mixture was heated to 35°C. A 10 mmol/L sodium borohydride aqueous solution (3 mL) was added to the resulting solution, and a 0.5 mmol/L silver nitrate aqueous solution (50 mL) was added with stirring at 20 mL/min. The resulting solution was stirred for 30 minutes to form a seed solution.
 反応釜中に2.5mmol/Lのクエン酸ナトリウム水溶液(132.7mL)及びイオン交換水(87.1mL)を添加し、35℃まで加熱した。反応釜中の溶液に、10mmol/Lのアスコルビン酸水溶液(2mL)を添加し、種溶液(42.4mL)を添加し、0.5mmol/Lの硝酸銀水溶液(79.6mL)を10mL/分で撹拌しながら添加した。30分間撹拌した後、0.35mol/Lのヒドロキノンスルホン酸カリウム水溶液(71.1mL)を反応釜に添加し、7質量%のゼラチン水溶液(200g)を反応釜に添加した。反応釜中の溶液に、0.25mol/Lの亜硫酸ナトリウム水溶液(107mL)と0.47mol/Lの硝酸銀水溶液(107mL)とを混合して調製された亜硫酸銀の白色沈殿物混合液を添加した。白色沈殿物混合液を添加した後すぐに0.17mol/LのNaOH水溶液(72mL)を反応釜に添加した。NaOH水溶液の添加では、pHが10を超えないように添加速度を調節しながらNaOH水溶液を添加した。混合物を300分間撹拌し、分散液A3を得た。分散液A3において、平均円相当径が200nmである六角形状の銀平板粒子が生成していることを確認した。 A 2.5 mmol/L sodium citrate aqueous solution (132.7 mL) and ion-exchanged water (87.1 mL) were added to the reactor and heated to 35°C. To the solution in the reaction kettle, 10 mmol/L ascorbic acid aqueous solution (2 mL) was added, seed solution (42.4 mL) was added, and 0.5 mmol/L silver nitrate aqueous solution (79.6 mL) was added at 10 mL/min. Add with stirring. After stirring for 30 minutes, a 0.35 mol/L potassium hydroquinone sulfonate aqueous solution (71.1 mL) was added to the reaction kettle, and a 7 mass % gelatin aqueous solution (200 g) was added to the reaction kettle. A silver sulfite white precipitate mixture prepared by mixing 0.25 mol/L sodium sulfite aqueous solution (107 mL) and 0.47 mol/L silver nitrate aqueous solution (107 mL) was added to the solution in the reaction kettle. . Immediately after adding the white precipitate mixture, 0.17 mol/L NaOH aqueous solution (72 mL) was added to the reactor. In the addition of the NaOH aqueous solution, the NaOH aqueous solution was added while adjusting the addition rate so that the pH did not exceed 10. The mixture was stirred for 300 minutes to obtain Dispersion A3. It was confirmed that hexagonal tabular silver particles having an average equivalent circle diameter of 200 nm were produced in the dispersion liquid A3.
(分散液B3)
 分散液A3(200mL)と、タンパク質分解酵素(ナガセケムテックス株式会社製のビオプラーゼAL-15FG、1g)と、ポリグリセリン脂肪酸エステル(阪本薬品工業株式会社製のポリグリセリン結合リシノレイン酸エステル「SYグリスターCRED」、0.5g)と、可塑剤(トリエチレングリコールジ(2-エチルヘキサノエート)、10g)とを混合し、40℃でよく撹拌した。上記の工程により、銀平板粒子の分散剤であるゼラチンをタンパク質分解酵素で分解し、分散剤をポリグリセリン脂肪酸エステルに置換をして、液状可塑剤を含む油相に銀平板粒子を分散させた。水相の液を捨てて、分散液B3を得た。分散液B3に占める銀平板粒子の割合は10質量%であった。既述した方法に準じて、銀平板粒子の粒子径及び平均厚さを測定した。分散液B3における銀平板粒子のメジアン径(具体的には、体積基準に基づくメジアン径)は、120nmであった。銀平板粒子の平均円相当径は、200nmであった。銀平板粒子の平均厚さは、10nmであった。よって、銀平板粒子の1次粒子径は84nmであった。
(Dispersion B3)
Dispersion A3 (200 mL), proteolytic enzyme (Bioplase AL-15FG, 1 g, manufactured by Nagase Chemtex Co., Ltd.), and polyglycerin fatty acid ester (manufactured by Sakamoto Pharmaceutical Co., Ltd., polyglycerin-bound ricinoleic acid ester "SY Glyster CRED , 0.5 g) and a plasticizer (triethylene glycol di(2-ethylhexanoate), 10 g) were mixed and stirred well at 40°C. Through the above steps, gelatin, which is a dispersant for silver tabular particles, is decomposed with a proteolytic enzyme, the dispersant is replaced with polyglycerin fatty acid ester, and silver tabular particles are dispersed in an oil phase containing a liquid plasticizer. . The aqueous phase liquid was discarded to obtain a dispersion liquid B3. The proportion of silver tabular grains in Dispersion B3 was 10% by mass. The grain size and average thickness of the silver tabular grains were measured according to the method described above. The median diameter (specifically, the median diameter based on the volume) of the silver tabular grains in Dispersion B3 was 120 nm. The average circle equivalent diameter of the silver tabular grains was 200 nm. The average thickness of the silver tabular grains was 10 nm. Therefore, the primary particle diameter of the silver tabular grains was 84 nm.
<分散液C1>
 遮熱粒子としてCs0.33WO粒子(CWO粒子、粒度分布における50%径:1.2μm、粒度分布における95%径:4.8μm、100質量部)と、分散剤としてポリグリセリン脂肪酸エステル「SYグリスターCRED」(5質量部)と、可塑剤としてトリエチレングリコールジ(2-エチルヘキサノエート)(3,500質量部)と、を混合し、3kgのスラリーを調製した。
<Dispersion C1>
Cs 0.33 WO 3 particles (CWO particles, 50% diameter in particle size distribution: 1.2 μm, 95% diameter in particle size distribution: 4.8 μm, 100 parts by mass) as heat shielding particles, and polyglycerol fatty acid ester as a dispersant “SY Glister CRED” (5 parts by mass) and triethylene glycol di(2-ethylhexanoate) (3,500 parts by mass) as a plasticizer were mixed to prepare 3 kg of slurry.
 次に、スラリーをビーズと共に媒体撹拌ミルに投入し、スラリーを循環させて粉砕、そして、分散処理を行った。媒体撹拌ミルは、横型円筒形のアニュラータイプ(アシザワ・ファインテック株式会社製)であり、ベッセル内壁及びローター(回転撹拌部)の材質はZrOである。ビーズとして、直径が0.1mmのYSZ(Yttria-Stabilized Zirconia:イットリア安定化ジルコニア)製のビーズを使用した。ローターの回転速度は、13m/秒とし、1kg/分のスラリー流量にて12時間粉砕して分散液C1を調製した。分散液C1に占めるCs0.33WOの割合は、24.7質量%であった。既述した方法に準じて、分散液C1におけるCs0.33WOの粒子径を測定した。Cs0.33WOのメジアン径(具体的には、体積基準に基づくメジアン径)は、18nmであった。分散液C1をメッシュの上に滴下し、溶剤を揮発させた後、透過型電子顕微鏡(TEM)を用いて、5,000倍~20,000倍の範囲の観察倍率でCs0.33WO粒子を観察した。得られた像を画像処理ソフト「ImageJ」に取り込み、画像処理を施した。複数の視野のTEM像から任意に抽出した1,000個の銀平板粒子の画像解析を行い、1,000個のCs0.33WO粒子の平均円相当径を算出した。Cs0.33WO粒子がほぼ球形であることから、この平均円相当径をCs0.33WO粒子の1次粒子径とし、14nmであった。 Next, the slurry was put into a medium agitating mill together with the beads, and the slurry was circulated to be pulverized and dispersed. The medium stirring mill is a horizontal cylindrical annular type (manufactured by Ashizawa Finetech Co., Ltd.), and the inner wall of the vessel and the rotor (rotary stirring part) are made of ZrO2. YSZ (Yttria-Stabilized Zirconia) beads with a diameter of 0.1 mm were used as the beads. The rotational speed of the rotor was set to 13 m/sec, and the powder was pulverized for 12 hours at a slurry flow rate of 1 kg/min to prepare dispersion C1. The proportion of Cs 0.33 WO 3 in dispersion C1 was 24.7% by mass. The particle size of Cs 0.33 WO 3 in dispersion liquid C1 was measured according to the method described above. The median diameter of Cs 0.33 WO 3 (specifically, median diameter based on volume) was 18 nm. After dropping the dispersion C1 on the mesh and volatilizing the solvent, Cs 0.33 WO 3 was observed using a transmission electron microscope (TEM) at an observation magnification ranging from 5,000 times to 20,000 times. Particles were observed. The obtained image was loaded into image processing software "ImageJ" and subjected to image processing. Image analysis was performed on 1,000 silver tabular grains arbitrarily extracted from TEM images of multiple fields of view, and the average circle equivalent diameter of 1,000 Cs 0.33 WO 3 grains was calculated. Since the Cs 0.33 WO 3 particles are almost spherical, this average circular equivalent diameter was taken as the primary particle diameter of the Cs 0.33 WO 3 particles and was 14 nm.
<ポリビニルアセタールP>
 撹拌装置を備えた反応器に、イオン交換水(2,500mL)、1,700の平均重合度及び99.1mol%のけん化度を有するポリビニルアルコール(300g)を入れ、撹拌しながら加熱溶解し、溶液を得た。得られた溶液に触媒として60質量%硝酸(22.6g)を添加し、温度を10℃に調整した後、撹拌しながらn-ブチルアルデヒド(169g)を添加したところ、白色粒子状のポリビニルブチラールが析出した。析出してから20分後に、60質量%硝酸(86.3g)を添加し、65℃に加熱し、67.5℃で2時間熟成させた。次いで、溶液を冷却し、中和した後、ポリビニルブチラールを水洗し、乾燥させることにより、ポリビニルアセタールPを得た。
<Polyvinyl Acetal P>
Ion-exchanged water (2,500 mL) and polyvinyl alcohol (300 g) having an average degree of polymerization of 1,700 and a degree of saponification of 99.1 mol% are placed in a reactor equipped with a stirrer, heated and dissolved with stirring, A solution was obtained. 60% by mass nitric acid (22.6 g) was added as a catalyst to the resulting solution, the temperature was adjusted to 10° C., and then n-butyraldehyde (169 g) was added with stirring. precipitated. Twenty minutes after precipitation, 60% by weight nitric acid (86.3 g) was added, heated to 65° C., and aged at 67.5° C. for 2 hours. Next, after the solution was cooled and neutralized, the polyvinyl butyral was washed with water and dried to obtain polyvinyl acetal P.
<ポリビニルアセタールQ>
 撹拌装置を備えた反応器に、イオン交換水(3,244mL)、3,000の平均重合度及び88.2mol%のけん化度を有するポリビニルアルコール(300g)を入れ、撹拌しながら加熱溶解し、溶液を得た。得られた溶液に触媒として60質量%硝酸(47.3g)を添加し、温度を10℃に調整した後、撹拌しながらn-ブチルアルデヒド(199g)を添加したところ、白色粒子状のポリビニルブチラールが析出した。析出してから20分後に、60質量%硝酸(144g)を添加し、65℃に加熱し、67.5℃で2時間熟成させた。次いで、溶液を冷却し、中和した後、ポリビニルブチラールを水洗し、乾燥させることにより、ポリビニルアセタールQを得た。
<Polyvinyl Acetal Q>
Ion-exchanged water (3,244 mL), polyvinyl alcohol (300 g) having an average degree of polymerization of 3,000 and a degree of saponification of 88.2 mol% are placed in a reactor equipped with a stirring device, and dissolved by heating with stirring, A solution was obtained. 60% by mass nitric acid (47.3 g) was added as a catalyst to the resulting solution, the temperature was adjusted to 10° C., and then n-butyraldehyde (199 g) was added with stirring to give white particulate polyvinyl butyral. precipitated. Twenty minutes after precipitation, 60% by weight nitric acid (144 g) was added, heated to 65° C., and aged at 67.5° C. for 2 hours. Next, after the solution was cooled and neutralized, the polyvinyl butyral was washed with water and dried to obtain polyvinyl acetal Q.
<中間膜A>
 ポリビニルアセタールP(100質量部)と、可塑剤(トリエチレングリコールジ(2-エチルヘキサノエート)、30質量部)と、紫外線吸収剤(Tinuvin477、0.2質量部)と、酸化防止剤(2,6-ジ-t-ブチル-p-クレゾール:BHT、0.2質量部)とを混合し、中間膜Aを形成するための組成物を得た。得られた組成物を、押出機を用いて押し出すことにより、中間膜A(厚さ:1,000μm)を作製した。
<Intermediate film A>
Polyvinyl acetal P (100 parts by mass), a plasticizer (triethylene glycol di(2-ethylhexanoate), 30 parts by mass), an ultraviolet absorber (Tinuvin477, 0.2 parts by mass), and an antioxidant ( 2,6-di-t-butyl-p-cresol: BHT, 0.2 parts by mass) to obtain a composition for forming the intermediate film A. An intermediate film A (thickness: 1,000 μm) was produced by extruding the resulting composition using an extruder.
<中間膜B>
 分散液B1(50質量部)に、ポリビニルアセタールQ(10質量部)を加えて混練し、さらに、酸化防止剤(2,6-ジ-t-ブチル-p-クレゾール:BHT、0.2質量部)を混合し、ポリビニルアセタール中間膜Bを形成するための組成物を得た。得られた組成物を、押出機を用いて押し出すことにより、中間膜B(厚さ:20μm)を作製した。
<Intermediate film B>
Polyvinyl acetal Q (10 parts by mass) was added to dispersion B1 (50 parts by mass) and kneaded, and an antioxidant (2,6-di-t-butyl-p-cresol: BHT, 0.2 mass Part) were mixed to obtain a composition for forming a polyvinyl acetal intermediate film B. An intermediate film B (thickness: 20 μm) was produced by extruding the obtained composition using an extruder.
<中間膜C>
 中間膜A、中間膜B及び中間膜Aをこの順に重ねて、押出機を用いて押し出すことにより、中間膜X(厚さ:20μm)を作製した。中間膜A、中間膜X及び中間膜Aをこの順に重ねて、押出機を用いて押し出すことにより、中間膜C(厚さ:760μm)を作製した。
<Intermediate film C>
An intermediate film X (thickness: 20 μm) was produced by stacking the intermediate film A, the intermediate film B, and the intermediate film A in this order and extruding them using an extruder. An intermediate film C (thickness: 760 μm) was produced by stacking the intermediate film A, the intermediate film X and the intermediate film A in this order and extruding them using an extruder.
<中間膜D>
 分散液B2(70質量部)にエタノール(90質量部)を加え、ポリビニルアセタールQ(7質量部)を加えて、よく混ぜてから80℃で水及びエタノールをよく蒸発させ、銀平板粒子を含むポリビニルアセタール粉末Vを得た。ポリビニルアセタール粉末V(100質量部)と、可塑剤(トリエチレングリコールジ(2-エチルヘキサノエート)、15質量部)と、酸化防止剤(2,6-ジ-t-ブチル-p-クレゾール:BHT、0.2質量部)とを混合し、中間膜Dを形成するための組成物を得た。得られた組成物を、押出機を用いて押し出すことにより、中間膜D(厚さ:20μm)を作製した。
<Intermediate film D>
Ethanol (90 parts by mass) is added to dispersion liquid B2 (70 parts by mass), polyvinyl acetal Q (7 parts by mass) is added, mixed well, water and ethanol are evaporated well at 80 ° C., and silver tabular particles are included. A polyvinyl acetal powder V was obtained. Polyvinyl acetal powder V (100 parts by mass), a plasticizer (triethylene glycol di(2-ethylhexanoate), 15 parts by mass), and an antioxidant (2,6-di-t-butyl-p-cresol : BHT, 0.2 parts by mass) to obtain a composition for forming an intermediate film D. An intermediate film D (thickness: 20 μm) was produced by extruding the resulting composition using an extruder.
<中間膜E>
 中間膜A、中間膜D及び中間膜Aをこの順に重ねて、押出機を用いて押し出すことにより、中間膜Y(厚さ:20μm)を作製した。中間膜A、中間膜Y及び中間膜Aをこの順に重ねて、押出機を用いて押し出すことにより、中間膜E(厚さ:760μm)を作製した。
<Intermediate film E>
An intermediate film Y (thickness: 20 μm) was produced by stacking the intermediate film A, the intermediate film D, and the intermediate film A in this order and extruding them using an extruder. An intermediate film E (thickness: 760 μm) was produced by stacking the intermediate film A, the intermediate film Y, and the intermediate film A in this order and extruding them using an extruder.
<中間膜F>
 ポリビニルアセタールP(100質量部)に分散液C1(Cs0.33WOの濃度:24.7質量%、9.8質量部)を加え、可塑剤(トリエチレングリコールジ(2-エチルヘキサノエート)、30.2質量部)を加え、ミキシングロールを用いて十分に混練した後、プレス成形機を用いて150℃及び30分間の条件でプレス成形し、中間膜F(厚さ:760μm)を作製した。
<Intermediate film F>
Dispersion C1 (Cs 0.33 WO 3 concentration: 24.7% by mass, 9.8 parts by mass) was added to polyvinyl acetal P (100 parts by mass), and a plasticizer (triethylene glycol di(2-ethylhexano ate), 30.2 parts by mass) was added and sufficiently kneaded using a mixing roll, and then press-molded under conditions of 150 ° C. and 30 minutes using a press molding machine to obtain an intermediate film F (thickness: 760 μm). was made.
<ガラス板>
 洗浄及び乾燥した2つのガラス板を準備した。具体的に、2つのガラス板は、青板ガラス(縦25cm×横10cm×厚さ2mm)及びグリーンガラス(縦25cm×横10cm×厚さ2mm)を含む。
<Glass plate>
Two glass plates, washed and dried, were prepared. Specifically, the two glass plates include soda plate glass (length 25 cm×width 10 cm×thickness 2 mm) and green glass (length 25 cm×width 10 cm×thickness 2 mm).
<実施例1>
 以下の順番で3つの部材を重ね合わせて、積層体を作製した。
 第1ガラス板:青板ガラス
 合わせガラス用中間膜:中間膜C
 第2ガラス板:青板ガラス
<Example 1>
A laminate was produced by stacking the three members in the following order.
First glass plate: Soda plate glass Interlayer film for laminated glass: Interlayer film C
Second glass plate: soda plate glass
 得られた積層体をゴムバック内に入れ、2,660Pa(20torr)の真空度で20分間脱気した。脱気したままで積層体をオートクレーブにおいて90℃で30分間保持しつつ、真空プレスした。予備圧着された積層体を、オートクレーブにおいて135℃及び1.2MPa(12kg/cm)の条件で20分間圧着し、合わせガラスを得た。 The obtained laminate was placed in a rubber bag and deaerated for 20 minutes at a degree of vacuum of 2,660 Pa (20 torr). The laminate was vacuum pressed while being held at 90° C. for 30 minutes in an autoclave while being degassed. The preliminarily pressure-bonded laminate was pressure-bonded in an autoclave at 135° C. and 1.2 MPa (12 kg/cm 2 ) for 20 minutes to obtain a laminated glass.
<実施例2>
 分散液B1の調製において可塑剤として使用されたトリエチレングリコールジ(2-エチルヘキサノエート)に代えてジヘキシルアジペート(DHA)を用い、そして、中間膜の作製において可塑剤として使用されたトリエチレングリコールジ(2-エチルヘキサノエート)に代えてジヘキシルアジペート(DHA)を用いたこと以外は、実施例1の方法と同じ方法によって合わせガラスを得た。
<Example 2>
Using dihexyl adipate (DHA) instead of triethylene glycol di(2-ethylhexanoate) used as a plasticizer in the preparation of dispersion B1 and triethylene used as a plasticizer in the preparation of the interlayer A laminated glass was obtained in the same manner as in Example 1, except that dihexyl adipate (DHA) was used instead of glycol di(2-ethylhexanoate).
<実施例3>
 分散液B1の調製において可塑剤として使用されたトリエチレングリコールジ(2-エチルヘキサノエート)の添加量を10gから330gに変更したこと以外は、実施例1の方法と同じ方法によって合わせガラスを得た。
<Example 3>
Laminated glass was prepared in the same manner as in Example 1, except that the amount of triethylene glycol di(2-ethylhexanoate) used as a plasticizer in the preparation of dispersion B1 was changed from 10 g to 330 g. Obtained.
<実施例4>
 分散液B1の調製において可塑剤として使用されたトリエチレングリコールジ(2-エチルヘキサノエート)の添加量を10gから100gに変更したこと以外は、実施例1の方法と同じ方法によって合わせガラスを得た。
<Example 4>
Laminated glass was prepared in the same manner as in Example 1, except that the amount of triethylene glycol di(2-ethylhexanoate) used as a plasticizer in the preparation of dispersion B1 was changed from 10 g to 100 g. Obtained.
<実施例5>
 分散液B1の調製において可塑剤として使用されたトリエチレングリコールジ(2-エチルヘキサノエート)の添加量を10gから20gに変更したこと以外は、実施例1の方法と同じ方法によって合わせガラスを得た。
<Example 5>
Laminated glass was prepared in the same manner as in Example 1, except that the amount of triethylene glycol di(2-ethylhexanoate) used as a plasticizer in the preparation of dispersion B1 was changed from 10 g to 20 g. Obtained.
<実施例6>
 分散液B1の調製において可塑剤として使用されたトリエチレングリコールジ(2-エチルヘキサノエート)の添加量を10gから5gに変更したこと以外は、実施例1の方法と同じ方法によって合わせガラスを得た。
<Example 6>
Laminated glass was prepared in the same manner as in Example 1, except that the amount of triethylene glycol di(2-ethylhexanoate) used as a plasticizer in the preparation of dispersion B1 was changed from 10 g to 5 g. Obtained.
<実施例7>
 分散液B1の調製において可塑剤として使用されたトリエチレングリコールジ(2-エチルヘキサノエート)の添加量を10gから3gに変更したこと以外は、実施例1の方法と同じ方法によって合わせガラスを得た。
<Example 7>
Laminated glass was prepared in the same manner as in Example 1, except that the amount of triethylene glycol di(2-ethylhexanoate) used as a plasticizer in the preparation of dispersion B1 was changed from 10 g to 3 g. Obtained.
<実施例8>
 分散液B1の調製において、タンパク質分解酵素(ナガセケムテックス株式会社製のビオプラーゼAL-15FG)の添加量を1gから0.2gに変更したこと以外は、実施例1の方法と同じ方法によって合わせガラスを得た。
<Example 8>
Laminated glass was prepared in the same manner as in Example 1, except that in the preparation of dispersion B1, the amount of proteolytic enzyme (Bioplase AL-15FG manufactured by Nagase ChemteX Co., Ltd.) was changed from 1 g to 0.2 g. got
<実施例9>
 分散液B1の調製において、タンパク質分解酵素(ナガセケムテックス株式会社製のビオプラーゼAL-15FG)を加えた後の混合における温度を40℃から30℃に変更したこと以外は、実施例8の方法と同じ方法によって合わせガラスを得た。
<Example 9>
In the preparation of dispersion B1, the method of Example 8 was repeated except that the temperature in the mixing after adding the proteolytic enzyme (Bioplase AL-15FG manufactured by Nagase ChemteX Corporation) was changed from 40°C to 30°C. A laminated glass was obtained by the same method.
<実施例10>
 分散液B1の調製において、タンパク質分解酵素(ナガセケムテックス株式会社製のビオプラーゼAL-15FG)を加えた後に0.5mol/Lの硫酸(1g)を更に加えたこと以外は、実施例9の方法と同じ方法によって合わせガラスを得た。
<Example 10>
In the preparation of dispersion B1, the method of Example 9 except that 0.5 mol / L sulfuric acid (1 g) was further added after adding the protease (Bioplase AL-15FG manufactured by Nagase ChemteX Co., Ltd.) Laminated glass was obtained by the same method as above.
<実施例11>
 分散液B1の調製において、タンパク質分解酵素(ナガセケムテックス株式会社製のビオプラーゼAL-15FG)を加えた後に0.5mol/Lの硫酸(2g)を更に加えたこと以外は、実施例9の方法と同じ方法によって合わせガラスを得た。
<Example 11>
In the preparation of dispersion B1, the method of Example 9 except that 0.5 mol / L sulfuric acid (2 g) was further added after adding the protease (Bioplase AL-15FG manufactured by Nagase ChemteX Co., Ltd.) Laminated glass was obtained by the same method as above.
<実施例12>
 分散液B1を分散液B3に変更したこと以外は、実施例1の方法と同じ方法によって合わせガラスを得た。
<Example 12>
A laminated glass was obtained in the same manner as in Example 1, except that Dispersion B1 was changed to Dispersion B3.
<比較例1>
 中間膜Cを中間膜Eに変更したこと以外は、実施例1の方法と同じ方法によって合わせガラスを得た。
<Comparative Example 1>
A laminated glass was obtained in the same manner as in Example 1, except that the intermediate film C was changed to the intermediate film E.
<比較例2>
 中間膜Cを中間膜Fに変更したこと以外は、実施例1の方法と同じ方法によって合わせガラスを得た。
<Comparative Example 2>
A laminated glass was obtained in the same manner as in Example 1, except that the intermediate film C was changed to the intermediate film F.
<分散性>
 既述した金属粒子の1次粒子径に対する既述した金属粒子のメジアン径の比に基づいて、以下の基準に従って、金属粒子分散液における金属粒子の分散性を評価した。評価結果を表1に示す。
 A:1~1.5
 B:1.5~2.0
 C:2.0~2.5
 D:2.5以上
<Dispersibility>
Based on the ratio of the median diameter of the metal particles to the primary particle diameter of the metal particles, the dispersibility of the metal particles in the metal particle dispersion liquid was evaluated according to the following criteria. Table 1 shows the evaluation results.
A: 1-1.5
B: 1.5-2.0
C: 2.0-2.5
D: 2.5 or more
<日射反射率>
 積分球ユニットISN-723を付属した紫外可視近赤外分光機(日本分光株式会社製、V-670)を用いて、合わせガラスの透過及び反射スペクトル(波長:300nm~2500nm)を測定した。「JIS Z 8722:2009」及び「JIS R 3106:2019」に従って、合わせガラスの第1ガラス板に光を照射して合わせガラスの日射反射率を求めた。測定結果を表1に示す。
<Solar reflectance>
Using an ultraviolet-visible-near-infrared spectrometer (manufactured by JASCO Corporation, V-670) equipped with an integrating sphere unit ISN-723, the transmission and reflection spectra (wavelength: 300 nm to 2500 nm) of the laminated glass were measured. According to "JIS Z 8722:2009" and "JIS R 3106:2019", the first glass plate of the laminated glass was irradiated with light to determine the solar reflectance of the laminated glass. Table 1 shows the measurement results.
<ヘイズ>
 ヘイズメーター(NDH-5000、日本電色工業株式会社製)を用いて、合わせガラスのヘイズを測定した。測定結果を表1に示す。
<Haze>
A haze meter (NDH-5000, manufactured by Nippon Denshoku Industries Co., Ltd.) was used to measure the haze of the laminated glass. Table 1 shows the measurement results.
<水溶性樹脂の定量>
 水溶性樹脂であるゼラチンの含有量は、BCA法(ビシコニン酸法)によって測定された。具体的な手順(1)~(3)を以下に示す。
 (1)水溶性樹脂(10g)とイオン交換水(115g)との混合物(以下、本段落において、「母液1」という。)、水溶性樹脂(5g)とイオン交換水(120g)との混合物(以下、本段落において、「母液2」という。)、水溶性樹脂(5g)とイオン交換水(245g)との混合物(以下、本段落において、「母液3」という。)及び水溶性樹脂(5g)とイオン交換水(495g)との混合物(以下、本段落において、「母液4」という。)を調製した。各母液を静止した状態で30分間置いた後、40℃及び30分間の条件で撹拌しながら母液中の水溶性樹脂をイオン交換水に溶解させて、検量線用ゼラチン液を得た。母液1を用いて得られた検量線用ゼラチン液(2.5mL)を第1の試験管に入れ、母液2を用いて得られた検量線用ゼラチン液(2.5mL)を第2の試験管に入れ、母液3を用いて得られた検量線用ゼラチン液(2.5mL)を第3の試験管に入れ、そして、母液4を用いて得られた検量線用ゼラチン液(2.5mL)を第4の試験管に入れた。
 (2)試験管に対象の分散液(1mL)及びイオン交換水(1.5mL)を入れ、ゼラチン定量用試料を調製した。
 (3)Thermo Fisher Scientific社製のMicro BCA Protein Assay Kit液の試薬A、試薬B及び試薬Cをそれぞれ25:24:1の体積比で混合した定量試薬を用意した。検量線用ゼラチン液を含む各試験管に定量試薬(2.5mL)を入れ、そして、ゼラチン定量用試料を含む試験管に定量試薬(2.5mL)を入れた後、各試験管に栓をしてよく撹拌した。各試験管における試料を、恒温振とう槽を使用して、60℃、1時間及び160往復/分の振とう速度で発色させ、室温に冷却して10分後、株式会社日立製作所製U-3300を使用してすみやかに562nmの吸光度を測定した。検量線用ゼラチン液の吸光度に基づいて、ゼラチン定量用試料に含まれるゼラチンの量を計算した。
<Quantification of water-soluble resin>
The content of gelatin, which is a water-soluble resin, was measured by the BCA method (viciconinic acid method). Specific procedures (1) to (3) are shown below.
(1) A mixture of water-soluble resin (10 g) and ion-exchanged water (115 g) (hereinafter referred to as "mother liquor 1" in this paragraph), a mixture of water-soluble resin (5 g) and ion-exchanged water (120 g) (hereinafter referred to as "mother liquor 2" in this paragraph), a mixture of water-soluble resin (5 g) and ion-exchanged water (245 g) (hereinafter referred to as "mother liquor 3" in this paragraph), and water-soluble resin ( 5 g) and deionized water (495 g) (hereinafter referred to as "mother liquor 4" in this paragraph) was prepared. After standing each mother liquor for 30 minutes, the water-soluble resin in the mother liquor was dissolved in deionized water while stirring at 40° C. for 30 minutes to obtain a gelatin solution for calibration curve. The standard curve gelatin solution (2.5 mL) obtained using mother liquor 1 was placed in the first test tube, and the standard curve gelatin solution (2.5 mL) obtained using mother liquor 2 was added to the second test tube. A standard gelatin solution (2.5 mL) obtained using mother liquor 3 was added to a third test tube, and a standard gelatin solution (2.5 mL) obtained using mother liquor 4 was added to a third test tube. ) was placed in a fourth test tube.
(2) A subject dispersion (1 mL) and deionized water (1.5 mL) were placed in a test tube to prepare a sample for gelatin determination.
(3) A quantitative reagent was prepared by mixing reagent A, reagent B, and reagent C of Micro BCA Protein Assay Kit solution manufactured by Thermo Fisher Scientific at a volume ratio of 25:24:1, respectively. Put the quantitative reagent (2.5 mL) into each test tube containing the gelatin solution for the standard curve, and after putting the quantitative reagent (2.5 mL) into the test tube containing the sample for gelatin determination, cap each test tube. and stirred well. Using a constant temperature shaking bath, the sample in each test tube is colored at 60 ° C., 1 hour and 160 reciprocating / min shaking speed, cooled to room temperature 10 minutes later, U- A 3300 was used to immediately measure absorbance at 562 nm. Based on the absorbance of the gelatin solution for the calibration curve, the amount of gelatin contained in the sample for gelatin quantification was calculated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、以下の用語は、それぞれ、次の意味を有する。
 「銀平板粒子」:50質量%以上の銀を含む金属平板粒子
 「CWO粒子」:Cs0.33WO粒子
 「3GO」:トリエチレングリコールジ(2-エチルヘキサノエート)(液状可塑剤)
 「DHA」:ジヘキシルアジペート(液状可塑剤)
In Table 1, the following terms have the following meanings, respectively.
"Silver tabular particles": metal tabular particles containing 50% by mass or more of silver "CWO particles": Cs 0.33 WO 3 particles "3GO": triethylene glycol di(2-ethylhexanoate) (liquid plasticizer)
"DHA": dihexyl adipate (liquid plasticizer)
 表1は、実施例1~12における金属平板粒子分散液の分散性が、比較例1における金属平板粒子分散液の分散性より優れていることを示す。表1は、実施例1~12における金属平板粒子分散液を用いることで、合わせガラスの熱線遮蔽性が向上し、そして、合わせガラスのヘイズが低減することを示す。一方、比較例2における分散液を用いて得られた合わせガラスは銀平板粒子を含んでいないため、比較例2における熱線遮蔽性は、実施例1~12における熱線遮蔽性よりも劣っていた。 Table 1 shows that the dispersibility of the metal tabular particle dispersions in Examples 1 to 12 is superior to that of the metal tabular particle dispersion in Comparative Example 1. Table 1 shows that the use of the metal tabular particle dispersions in Examples 1 to 12 improves the heat ray shielding properties of the laminated glass and reduces the haze of the laminated glass. On the other hand, since the laminated glass obtained using the dispersion in Comparative Example 2 did not contain silver tabular particles, the heat ray shielding properties of Comparative Example 2 were inferior to those of Examples 1 to 12.
 2021年2月5日に出願された日本国特許出願2021-017409号の開示は、参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2021-017409 filed on February 5, 2021 is incorporated herein by reference. All publications, patent applications and technical standards mentioned herein are expressly incorporated herein by reference to the same extent as if each individual publication, patent application or technical standard were specifically and individually indicated to be incorporated by reference. incorporated by reference into the book.
 P:金属平板粒子
 10、11、12、13、14:中間膜
 20:第1ガラス板
 21:第2ガラス板
 100:中間膜の積層体
 200:合わせガラス用中間膜
 300:合わせガラス
P: Metal flat particles 10, 11, 12, 13, 14: Intermediate film 20: First glass plate 21: Second glass plate 100: Laminate of intermediate film 200: Intermediate film for laminated glass 300: Laminated glass

Claims (9)

  1.  50質量%以上の銀を含む金属平板粒子と、
     液状可塑剤と、を含む、
     金属平板粒子分散液。
    Metal tabular grains containing 50% by mass or more of silver;
    a liquid plasticizer,
    Metal tabular particle dispersion liquid.
  2.  金属平板粒子分散液に占める前記金属平板粒子の割合が、0.5質量%~25質量%である、請求項1に記載の金属平板粒子分散液。 The metal tabular particle dispersion according to claim 1, wherein the proportion of the metal tabular particles in the metal tabular particle dispersion is 0.5% by mass to 25% by mass.
  3.  前記金属平板粒子の平均円相当径が、10nm~300nmであり、かつ、前記金属平板粒子の平均アスペクト比が、10以上である、請求項1又は請求項2に記載の金属平板粒子分散液。 The metal tabular particle dispersion liquid according to claim 1 or claim 2, wherein the average equivalent circle diameter of the metal tabular particles is 10 nm to 300 nm, and the average aspect ratio of the metal tabular particles is 10 or more.
  4.  前記金属平板粒子の含有量に対する水溶性樹脂の含有量の比が、質量換算で1%以下である、請求項1~請求項3のいずれか1項に記載の金属平板粒子分散液。 The metal tabular particle dispersion liquid according to any one of claims 1 to 3, wherein the ratio of the content of the water-soluble resin to the content of the metal tabular particles is 1% or less in terms of mass.
  5.  前記液状可塑剤が、脂肪酸エステルである、請求項1~請求項4のいずれか1項に記載の金属平板粒子分散液。 The metal tabular particle dispersion liquid according to any one of claims 1 to 4, wherein the liquid plasticizer is a fatty acid ester.
  6.  前記液状可塑剤が、ジヘキシルアジペート、トリエチレングリコールジ(2-エチルヘキサノエート)、テトラエチレングリコールジ(2-エチルヘキサノエート)、トリエチレングリコールジ(2-エチルブチレート)、テトラエチレングリコールジ(2-エチルブチレート)、テトラエチレングリコールジヘプタノエート及びトリエチレングリコールジヘプタノエートからなる群より選択される少なくとも1種である、請求項1~請求項4のいずれか1項に金属平板粒子分散液。 The liquid plasticizer is dihexyl adipate, triethylene glycol di(2-ethylhexanoate), tetraethylene glycol di(2-ethylhexanoate), triethylene glycol di(2-ethylbutyrate), tetraethylene glycol Di(2-ethylbutyrate), at least one selected from the group consisting of tetraethylene glycol diheptanoate and triethylene glycol diheptanoate, according to any one of claims 1 to 4 Metal tabular particle dispersion liquid.
  7.  1013.25hPaにおける沸点が100℃以上である有機溶剤を更に含む、請求項1~請求項6のいずれか1項に記載の金属平板粒子分散液。 The metal tabular particle dispersion liquid according to any one of claims 1 to 6, further comprising an organic solvent having a boiling point of 100°C or higher at 1013.25 hPa.
  8.  前記液状可塑剤に溶ける分散剤を更に含む、請求項1~請求項7のいずれか1項に記載の金属平板粒子分散液。 The metal tabular particle dispersion liquid according to any one of claims 1 to 7, further comprising a dispersant that dissolves in the liquid plasticizer.
  9.  請求項1~請求項8のいずれか1項に記載の金属平板粒子分散液を用いて合わせガラス用中間膜を得ることを含む、合わせガラス用中間膜の製造方法。 A method for producing an interlayer film for laminated glass, comprising obtaining an interlayer film for laminated glass using the metal tabular particle dispersion liquid according to any one of claims 1 to 8.
PCT/JP2021/045908 2021-02-05 2021-12-13 Metal planar paticle dispersion liquid and method for producing intermediate film for laminated glass WO2022168451A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021017409 2021-02-05
JP2021-017409 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022168451A1 true WO2022168451A1 (en) 2022-08-11

Family

ID=82742199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045908 WO2022168451A1 (en) 2021-02-05 2021-12-13 Metal planar paticle dispersion liquid and method for producing intermediate film for laminated glass

Country Status (1)

Country Link
WO (1) WO2022168451A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001014943A (en) * 1999-06-30 2001-01-19 Harima Chem Inc Circuit drawing conductive paste and circuit printing method
JP2013506295A (en) * 2009-09-24 2013-02-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Polymer thick film silver electrode composition for use as a plating link
WO2019003783A1 (en) * 2017-06-30 2019-01-03 富士フイルム株式会社 Heat-ray shielding material, intermediate film for laminated glass, and laminated glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001014943A (en) * 1999-06-30 2001-01-19 Harima Chem Inc Circuit drawing conductive paste and circuit printing method
JP2013506295A (en) * 2009-09-24 2013-02-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Polymer thick film silver electrode composition for use as a plating link
WO2019003783A1 (en) * 2017-06-30 2019-01-03 富士フイルム株式会社 Heat-ray shielding material, intermediate film for laminated glass, and laminated glass

Similar Documents

Publication Publication Date Title
JP6374914B2 (en) Laminated glass interlayer film and laminated glass
JP5220956B2 (en) Laminated glass interlayer film and laminated glass
KR101782657B1 (en) Intermediate film for laminated glass, and laminated glass
KR101066056B1 (en) Tin-doped indium oxide microparticle dispersion, process for producing the same, interlayer for laminated glass having heat-ray blocking property produced with the dispersion, and laminated glass
EP2650266B1 (en) Interlayer for laminated glass, and laminated glass
WO2012108537A1 (en) Interlayer for laminated glass and laminated glass
WO2001025162A1 (en) Intermediate film for laminated glass and laminated glass
CN110077061A (en) Intermediate film for laminated glasses and laminated glass
JP3897519B2 (en) Laminated glass interlayer film and laminated glass
JP2012530034A (en) Low haze, infrared absorbing interlayer film for laminated glass
EP2915786B1 (en) Interlayer for laminated glass, and laminated glass
WO2022168450A1 (en) Intermediate film for laminated glass, and laminated glass
WO2022168451A1 (en) Metal planar paticle dispersion liquid and method for producing intermediate film for laminated glass
JP6386305B2 (en) Laminated glass interlayer film and laminated glass
JP2012148915A (en) Interlayer for laminated glass, and laminated glass
WO2015059829A1 (en) Multilayer film and intermediate film for laminated glass formed of same
JP5438642B2 (en) Dispersion, interlayer film for laminated glass and laminated glass
JP2012066954A (en) Intermediate film for laminated glass and laminated glass
JP2012131659A (en) Laminated glass, and method for fixing glass
WO2022168436A1 (en) Laminated glass and laminated glass middle film
JP2012066955A (en) Intermediate film for laminated glass and laminated glass
JP2009256173A (en) Intermediate film for laminate glass
TW202311033A (en) Dispersion, resin composition, intermediate film for laminated glass, and laminated glass
JP2006027963A (en) Interlayer film for laminated glass and laminated glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924836

Country of ref document: EP

Kind code of ref document: A1