WO2022168434A1 - Particle analysis device, particle analysis method, and program for particle analysis device - Google Patents

Particle analysis device, particle analysis method, and program for particle analysis device Download PDF

Info

Publication number
WO2022168434A1
WO2022168434A1 PCT/JP2021/045147 JP2021045147W WO2022168434A1 WO 2022168434 A1 WO2022168434 A1 WO 2022168434A1 JP 2021045147 W JP2021045147 W JP 2021045147W WO 2022168434 A1 WO2022168434 A1 WO 2022168434A1
Authority
WO
WIPO (PCT)
Prior art keywords
aggregation
particle
camera
particles
cell
Prior art date
Application number
PCT/JP2021/045147
Other languages
French (fr)
Japanese (ja)
Inventor
久 秋山
浩行 越川
哲也 森
康弘 立脇
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2022579366A priority Critical patent/JPWO2022168434A1/ja
Publication of WO2022168434A1 publication Critical patent/WO2022168434A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials

Definitions

  • the present invention relates to a particle analyzer that irradiates a sample containing particles with light and analyzes the state of the particles based on the captured image.
  • Patent Document 1 proposes calculating entropy for each pixel of a captured image in order to evaluate the dispersed state of particles. Specifically, in the invention described in Patent Document 1, a two-dimensional array detector is arranged so as to face an illumination mechanism, and particles are detected by transmitted light while flowing heterogeneous particles on the two-dimensional array detector in one direction. image is captured.
  • An object of the present invention is to provide a particle analyzer capable of numerically evaluating changes in thickness.
  • the present invention has found that, for example, in the case of a sample with a very small particle diameter such as nanoparticles, light is irradiated from the periphery of the cell and the light scattered by the particles is captured by a camera. This is based on the discovery for the first time that images corresponding to the degree of aggregation and changes in the shape of particles due to aggregation can be obtained by imaging with .
  • the particle analysis apparatus includes a camera that captures an image of a cell in which a sample containing particles is accommodated, and light that travels obliquely to an imaging optical axis of the camera to an irradiation target area of the cell. and an aggregation analysis unit that analyzes aggregation of particles in the sample based on the image captured by the camera.
  • a particle analysis method is a particle analysis method using a camera for capturing an image of a cell in which a sample containing particles is accommodated, wherein an irradiation target area of the cell is aligned with an imaging optical axis of the camera. and analyzing aggregation of particles in the sample based on the image captured by the camera.
  • the transmitted light intensity detected by the camera will change significantly accordingly. For this reason, if the detection sensitivity of the camera is adjusted to the state before agglutination, a saturated region will occur in the image after agglutination, and information about the particles will be lost. On the other hand, if the detection sensitivity of the camera is adjusted so that the saturated part in the image after aggregation becomes too small, the transmitted light intensity detected before aggregation becomes too small, making it impossible to calculate the particle characteristics. It's gone. Also, even if a camera with a wide luminance detection range is used, the change in transmitted light intensity is too large. Therefore, when performing image processing, the threshold value for binarization must be greatly changed according to the process of aggregation. Therefore, it is difficult to guarantee that the settings are appropriate for evaluating changes in particle shape and size due to agglomeration.
  • the scattered light intensity does not change much compared to the transmitted light intensity, so the brightness of each pixel of the image is saturated before and after aggregation. Since it is difficult for particles to become too small, the degree of aggregation of particles can be quantified and evaluated.
  • the aggregation analysis unit calculates an aggregation index indicating the degree of aggregation of particles based on the luminance distribution of the image captured by the camera. Any configuration may be used as long as it is configured to calculate.
  • the aggregation analysis unit uses the first image, which is the luminance distribution of the first image captured at the reference time point.
  • the aggregation index may be calculated by comparing the first luminance distribution with a second luminance distribution, which is the luminance distribution of a second image captured after a predetermined time has elapsed from the reference time point. .
  • correction is performed by multiplying each luminance of the second luminance distribution and the first luminance distribution by a predetermined value, or by adding a predetermined value to each luminance of the first luminance distribution.
  • the aggregation index may be calculated based on the difference luminance distribution obtained by the difference from the second luminance distribution. That is, it is expected that the particles in the second image where particles are not aggregated are in the same dispersed state as the particles in the first image captured at the reference time. Therefore, it can be said that the difference luminance distribution reduces the influence of the luminance of the portion where the particles are dispersed in the second image and emphasizes the luminance of the portion where the particles are aggregated. Therefore, with the difference luminance distribution, the aggregation index can reflect the degree of aggregation of the particles.
  • the aggregation analysis unit calculates the aggregation index based on each frequency of brightness equal to or greater than a predetermined value in the differential brightness distribution. Anything is fine.
  • Another aspect of the agglutination analysis unit is to generate a binarized image with a threshold value that is greater by a predetermined value than the peak with the lowest luminance in the luminance distribution of the imaged image, and generate a binarized image based on the binarized image. to calculate the aggregation index. That is, the inventors of the present application have found that when particles are dispersed, the brightness distribution of an image becomes a normal distribution having a peak at a certain brightness, whereas when aggregation occurs, the symmetry of the brightness distribution is lost and the brightness becomes high. It was found that the frequency increases on the luminance side.
  • the binarized image can reflect only the agglomerated portions.
  • the binarized image generated in this way it is easy to create an agglutination index that accurately reflects the degree of agglutination.
  • the threshold value is substantially It may be set based on the average value and standard deviation of the portion forming a normal distribution.
  • the size of aggregated particles can be numerically evaluated.
  • the aggregation analysis unit may calculate the skewness of the brightness distribution as the aggregation index.
  • the illumination mechanism includes a ring having an observation hole. and the camera is arranged to image the cell through the observation hole.
  • the particles contained in the sample are nanoparticles, and the size detectable in one pixel of the image captured by the camera is larger than the particle diameter of the nanoparticles. are mentioned.
  • the cell comprises a pair of light-transmitting plates spaced apart from each other by a predetermined distance, it is easy for the camera to capture an image reflecting the degree of aggregation by the light scattered by the nanoparticles.
  • the light emitted from the illumination mechanism includes a wavelength component that excites the fluorescence of the particles contained in the sample. If it is That is, in the present invention, since an image is captured with light scattered by particles, even light with a low intensity such as fluorescence can be captured as a difference in intensity in the image.
  • a rotating mechanism for rotating the cell or a portion of the cell is further provided to allow application of a shear force to the sample so that the relationship between shear force and aggregation can be evaluated. Anything is fine.
  • a temperature control mechanism for controlling the temperature of the cell should be provided. Just do it.
  • a camera for capturing an image of a cell in which a sample containing particles is accommodated is provided on the same side of the cell as the camera. and an illumination mechanism for irradiating an irradiation target area with light from the surroundings
  • the program used in the particle analysis apparatus for analyzing aggregation of particles in the sample based on the image captured by the camera.
  • a program for a particle analyzer which is characterized by causing a computer to exhibit the mechanisms of the agglutination analysis part and the function of the particle analyzer, may be used.
  • the program for the particle analyzer may be electronically distributed, or may be recorded on a program recording medium such as a CD, DVD, or flash memory.
  • the particle analysis apparatus As described above, with the particle analysis apparatus according to the present invention, it is possible to obtain an image in which the brightness changes according to the degree of aggregation, even for a sample containing particles with a small particle size such as nanoparticles. It is possible to numerically evaluate the degree of aggregation based on.
  • FIG. 2 is a functional block diagram of the particle analyzer of the first embodiment
  • FIG. 4 is an image diagram showing changes in an image captured by aggregation of nanoparticles captured by the particle analyzer of the first embodiment.
  • FIG. 1 A particle analyzer 100 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • FIG. 1 A particle analyzer 100 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • the particle analyzer 100 of the first embodiment analyzes aggregation of particles based on an image of a sample S containing particles.
  • Particles to be analyzed in the first embodiment are nanoparticles having a particle diameter on the order of 100 nm, for example.
  • the particle analysis apparatus 100 is configured as a vertical apparatus in which the imaging optical axis is set along the vertical direction. It has a side mounted camera 2 and an illumination mechanism 3 . That is, the particle analysis apparatus 100 includes an illumination mechanism 3 configured to irradiate light from the periphery of the cell 1 to an irradiation target area set in the cell 1, and an image of the particle using light scattered by the particle. It has a camera 2 for taking an image and a lens barrel 4 in which lenses and the like are accommodated.
  • the cell 1 can be of the type used for measuring a high-concentration sample S, for example.
  • the cell 1 includes a pair of light-transmitting plates 11 separated from each other by a predetermined distance, and spacers 12 provided between the light-transmitting plates 11 .
  • Each light-transmitting plate 11 is formed in the shape of a thin disc, and an annular vapor-deposited film having a thickness of about 1 ⁇ m is formed on the outer peripheral portion of the inner surface of one of the light-transmitting plates 11 .
  • This deposited film functions as the spacer 12 described above, and the sample S containing particles is accommodated in the accommodation space 13 surrounded by the light-transmitting plates 11 and the spacers 12 .
  • At least one of the light-transmitting plates 11 has an introduction hole (not shown) for introducing the sample S into the accommodation space 13 and a lead-out hole for leading the sample S from the accommodation space 13 to the outside. (not shown) are formed.
  • the illumination mechanism 3 is a ring-shaped illumination provided above the cell 1 and near the end of the lens barrel 4 on the cell 1 side.
  • the illumination mechanism 3 is configured to irradiate the cell 1 with light traveling obliquely with respect to the imaging optical axis OA of the camera 2 from the entire circumference.
  • the illumination mechanism 3 includes a ring-shaped housing 31 that has an observation hole 32 in the center and holds a large number of LEDs (not shown).
  • the optical axis of each LED provided in the ring-shaped housing 31 is directed toward the central axis of the observation hole 32, and the surroundings of the irradiation target area set in the cell 1 are irradiated so as to concentrate.
  • the illumination system 3 is configured as ambient illumination, and light with an angle of incidence of a predetermined angular range is incident on each point of the illuminated area over 360°. In other words, when the irradiation target area is viewed from a certain point, the rays are incident so as to concentrate on that point. It should be noted that the reflected component of the light emitted from the illumination mechanism 3 is configured so as not to enter the observation hole 32 or the lens barrel 4 . Therefore, only the light scattered by the particles in the cell 1 passes through the observation hole 32 and the lens barrel 4 to enter the camera 2 .
  • the camera 2 is equipped with a two-dimensional array detector such as a CCD, and a field of view of a predetermined size is set in the irradiation target area of the cell 1. Also, the imaging optical axis OA of the camera 2 is configured to enter the face plate portion of the cell 1 perpendicularly.
  • the size detectable by one pixel of the image captured by the camera 2 is larger than the particle diameter of the nanoparticles. In other words, since the resolution, which is the value obtained by dividing the area of the field of view by the number of pixels, is greater than 100 nm, it is not possible to detect the outline of a nanoparticle that fits in one pixel.
  • the camera 2 of the first embodiment can capture a color or monochrome image, and can detect the brightness of each pixel with, for example, 256 gradations (8 bits).
  • the particle analyzer 100 has a CPU, a memory, an A/D converter, a D/A converter, various input/output devices, and a computer connected to the illumination mechanism 3 and camera 2 .
  • the computer controls the operation of each device as shown in FIG. function as an aggregation analysis unit 52 that analyzes aggregation of particles.
  • the device control unit 51 controls each device such that the illumination mechanism 3 intermittently emits light in synchronization with the shutter timing of the camera 2, for example.
  • the aggregation analysis unit 52 analyzes aggregation of particles in the sample S based on the image captured by the camera 2 .
  • the aggregation analysis unit 52 calculates an aggregation index indicating the degree of particle aggregation based on each luminance distribution in the images of the plurality of samples S captured at different times.
  • the aggregation analysis unit 52 analyzes the first luminance distribution, which is the luminance distribution of the first image captured at the time when the sample S is introduced into the cell 1, which is the reference time, and An aggregation index is calculated from the second luminance distribution, which is the luminance distribution of the captured second image.
  • each bright spot in one image is substantially uniform, and as shown in FIG. Bright spots appear. It is considered that such a change occurs because the intensity of scattered light increases with aggregation. In addition, the number of such large bright spots increases as time elapses.
  • Fig. 4 shows an example of changes in luminance distribution due to aggregation.
  • the histogram of the first luminance distribution forms a normal distribution having a peak at a certain luminance as shown in FIG. 4(a).
  • the peak on the low-luminance side (left side) has a shape similar to a normal distribution similar to the peak shape of FIG. 4A, and the average value is slightly lower. Therefore, the peak on the low-luminance side of the second luminance distribution in FIG. 4B is considered to be the luminance of scattered light due to particles that have not aggregated and are in a dispersed state even after the elapse of a predetermined time.
  • the peak on the high brightness side (right side) of the second brightness distribution in FIG. 4B did not exist at the reference time, it is considered that the peak occurred due to an increase in scattered light intensity due to aggregation.
  • the aggregation analysis unit 52 extracts only the peaks on the high brightness side of the second brightness distribution in FIG. 4(b) and calculates the aggregation index in the following procedure.
  • the aggregation analysis unit 52 sets each luminance in the first luminance distribution so that the peak of the first luminance distribution and the peak on the low luminance side of the second luminance distribution overlap within a predetermined error range. Multiplying it, the corrected first luminance distribution is calculated. Then, the aggregation analysis unit 52 calculates a difference luminance distribution obtained by, for example, the difference between the second luminance distribution and the corrected first luminance distribution. The aggregation analysis unit 52 outputs the difference luminance distribution itself calculated in this way, for example, as an aggregation index. Alternatively, the aggregation analysis unit 52 may calculate the average value of the difference luminance distribution or the like as the aggregation index.
  • an image capturing changes in aggregation of particles can be captured by capturing the scattered light of the particles obtained by the illumination mechanism 3 configured as ambient illumination. That is, even if the optical settings of the particle analyzer 100 are not changed before and after agglutination, the pixels of the image are not saturated and the brightness is insufficient for particle analysis. can be done. Therefore, changes in the shape and size of particles due to aggregation can be reflected in each pixel of the image.
  • the aggregation analysis unit 52 detects the occurrence of aggregation by utilizing the fact that the portion representing the dispersed particles in the luminance distribution of the imaged image has a substantially normal distribution.
  • a difference luminance distribution which is the luminance distribution of the portion where the
  • the difference luminance distribution changes with the elapsed time and progress of aggregation, it is possible to calculate an aggregation index that quantifies the aggregation process appearing in each image based on the difference luminance distribution. That is, since it is thought that the magnitude of luminance in the differential luminance distribution correlates with the size of aggregated particles, and that each frequency correlates with the number of aggregated particles, changes in the shape and size of particles due to aggregation can be evaluated numerically.
  • the aggregation analysis unit 52 generates a binarized image by using a brightness that is greater by a predetermined value as a threshold than the peak with the lowest brightness in the brightness distribution of the captured image.
  • An aggregation index is calculated based on the valued image.
  • the aggregation analysis unit 52 determines that light scattered by aggregated particles is caused by a brightness higher than a predetermined value based on the brightness at the peak of the normal distribution, which is the brightness distribution of the particles in the dispersed state.
  • the threshold is set based on the average value and the standard deviation ⁇ of the portion of the luminance distribution that substantially forms a normal distribution.
  • the brightness that is the peak brightness of each normal distribution is used as a reference, and the brightness that is greater by 2 ⁇ is set as a threshold. Part 52 generates.
  • the unevenness that occurs in the part that deviates from the normal distribution is due to the agglomerated particles. Only the group is in the disambiguated state.
  • the first image and the second image shown in FIG. 3 can be converted into binarized images as shown in FIG. 7 in this modified example.
  • the aggregation analysis unit 52 calculates the size of the cluster of particles as an aggregation index from the binarized image.
  • the size of the aggregated particle group which is an index of aggregation, can be easily evaluated using a conventional image analysis algorithm.
  • the wavelength of the light emitted from the illumination mechanism 3 excites particles in the sample S to generate fluorescence.
  • the possibility that the excitation wavelength is included can be increased regardless of the sample, and a fluorescence image in which particles emit fluorescence can be easily obtained.
  • the edge of the target particle can be highlighted in the captured image, and only the target particle can be easily extracted to evaluate its size and shape.
  • the wavelength of the light emitted from the illumination mechanism 3 may be limited to the excitation wavelength of the particles.
  • the wavelength of the light emitted from the illumination mechanism 3 may be limited by using a filter that passes only a specific wavelength, or the light source of the illumination mechanism 3 may emit light of a specific wavelength.
  • an excitation light cut filter may be provided between the lens of the camera 2 and the cell 1 to extract only fluorescence of a specific wavelength.
  • the particle analysis apparatus 100 of the second embodiment is configured to evaluate the characteristics of particles by combining the analysis result of the particle image described in the first embodiment and the analysis result of the particle by laser diffraction.
  • the particle analyzer 100 of the second embodiment includes the first laser 6 that emits a red laser, the second laser 7 that emits a blue laser, and the particles diffracted or scattered by the particle analyzer 100 of the first embodiment.
  • a laser detection mechanism (not shown) for detecting the emitted laser light, a rotation mechanism (not shown) for rotating the entire cell 1 or a part of the cell 1, and a camera 2 are provided on the opposite side of the cell 1. and a transmitted illumination mechanism 8 .
  • one of the light-transmitting plates 11 of the cell 1 is rotated by the rotation mechanism to obtain an image of the particles while applying a shearing force to the sample S. can be done. Therefore, it becomes possible to numerically evaluate the effect of particle aggregation due to shear force.
  • the position of the field of view of the camera 2 on the cell 1 can be changed, and the characteristic evaluation regarding aggregation and the like of the entire sample S can be realized.
  • the particle diameter and shape may be measured, and the amount of transmitted light may be imaged by the camera 2 to calculate the concentration of the sample S and the like.
  • the particle size distribution For particles with a large particle size, it is possible to measure the particle size distribution based on red laser diffraction while evaluating aggregation using the captured image. For particles with a small particle size, the particle size distribution can be measured on the basis of blue laser diffraction while the aggregation is evaluated using the captured image. For example, it is conceivable to correct the influence of aggregation from the calculated particle size distribution.
  • the aggregation analysis unit may calculate the skewness of the luminance distribution as the aggregation index.
  • the degree of agglomeration can be numerically evaluated by utilizing the fact that the luminance distribution deviates from the normal distribution.
  • the corrected first luminance distribution in the first embodiment is not limited to multiplying each luminance of the first luminance distribution by a predetermined value, and may be corrected by adding a predetermined value to each luminance. Further, instead of correcting the first luminance distribution, the difference between the corrected second luminance distribution obtained by correcting the second luminance distribution and the first luminance distribution may be obtained to obtain the difference luminance distribution. Also, the reference time point at which the first luminance distribution is measured is not limited to the time point when the sample is introduced into the cell, and may be any time point. That is, the first luminance distribution and the second luminance distribution may be luminance distributions obtained from images of the same sample taken at different times.
  • the method of setting the threshold is not limited to this.
  • the threshold is set to a brightness that is 2 ⁇ greater than the average ⁇ , but the threshold may be a brightness that is 3 ⁇ greater than the average ⁇ .
  • an arbitrary value may be added to the average ⁇ as the threshold.
  • the threshold value may be set by multiplying the standard deviation ⁇ by the same magnification.
  • the particle analysis device was configured as a vertical device with the imaging optical axis along the vertical direction, but it may be configured as a horizontal device with the imaging optical axis along the horizontal direction.
  • the cell is not limited to the high-concentration sample cell shown in each embodiment. For example, an existing rectangular parallelepiped cell, flow cell, or the like may be used.
  • a temperature control mechanism may be provided to control the temperature of the cell, and the relationship between temperature change and particle aggregation may be numerically evaluated based on the captured image.
  • the temperature control mechanism may include a heater for heating the sample, or may include a cooler for cooling the sample.
  • the temperature control mechanism controls the temperature of the dispersion medium in which the particles are dispersed in the particles to adjust the viscosity of the dispersion medium. can also be done. In other words, it is also possible to evaluate the relationship between the viscosity of the dispersion medium and the aggregation of the particles.
  • the lighting mechanism is not limited to ring lighting, and may be, for example, dome-shaped lighting. That is, the illumination mechanism may irradiate the illumination target area of the cell with light that travels obliquely with respect to the imaging optical axis of the camera.
  • the illumination mechanism is not limited to irradiating light from the entire periphery of the imaging optical axis, and may irradiate light only from a partial range.
  • the illumination mechanism is not limited to being provided on the same side of the cell as the camera, and may be provided on the opposite side of the cell to the camera.
  • the illumination mechanism may be configured as a dark-field illumination, and the light emitted from the illumination mechanism that is reflected by the cell or the sample or transmitted through the cell or the sample does not directly enter the camera. so that only the light scattered by the particles is directly incident on the camera.
  • the light source is not limited to the LED, and may be one that emits light based on other principles.
  • the present invention it is possible to obtain an image in which the brightness changes according to the degree of aggregation even for a sample containing particles with a small particle size such as nanoparticles, and based on this image, the degree of aggregation can be numerically evaluated. It is possible to provide a particle analyzer capable of evaluating

Abstract

To provide a particle analysis device that is capable of capturing particle agglomeration even if particle sizes are small and numerically evaluating the extent of agglomeration, a particle analysis device according to the present invention is made to comprise: a camera for imaging a cell accommodating therein a sample including particles; an illumination mechanism for emitting, onto a region to be illuminated of the cell, light that travels diagonally in relation to the imaging optical axis of the camera; and an agglomeration analysis unit for analyzing the agglomeration of the particles in the sample on the basis of images captured by the camera.

Description

粒子分析装置、粒子分析方法、及び、粒子分析装置用プログラムParticle analyzer, particle analysis method, and program for particle analyzer
 本発明は、粒子の含まれる試料に対して光を照射し、撮像された画像に基づいて粒子の状態を分析する粒子分析装置に関するものである。 The present invention relates to a particle analyzer that irradiates a sample containing particles with light and analyzes the state of the particles based on the captured image.
 試料に含まれる粒子を評価するために、試料を撮像した画像に基づいて粒子径分布や粒子の分散状態を評価するための指標が算出されている。特許文献1では、粒子の分散状態を評価するために撮像された画像の各画素に関するエントロピーを算出することが提案されている。具体的に特許文献1記載の発明では、照明機構に対して対向するように2次元アレイ検出器を配置し、当該2次元アレイ検出器上において不均質粒子を一方向に流しながら透過光によって粒子の画像が撮像される。 In order to evaluate the particles contained in the sample, an index for evaluating the particle size distribution and particle dispersion state is calculated based on the image of the sample. Patent Document 1 proposes calculating entropy for each pixel of a captured image in order to evaluate the dispersed state of particles. Specifically, in the invention described in Patent Document 1, a two-dimensional array detector is arranged so as to face an illumination mechanism, and particles are detected by transmitted light while flowing heterogeneous particles on the two-dimensional array detector in one direction. image is captured.
特開2015-520397号公報JP 2015-520397 A
 しかしながら、エントロピーを凝集の指標として用いると、凝集によって粒子の形状や大きさがどのように変化するかについては数値化できない。つまり、粒子に凝集について実際に知りたい情報を十分に得られているとは言い難い。また、例えば粒子径のオーダが100nm程度のナノ粒子については、具体的にはどのような照明条件であればナノ粒子の凝集による変化を画像として捉えることができるかについても知られていない。 However, if entropy is used as an indicator of aggregation, it is not possible to quantify how the shape and size of particles change due to aggregation. In other words, it is difficult to say that sufficient information about aggregation of particles is obtained. In addition, for nanoparticles with a particle size on the order of 100 nm, for example, it is not known specifically under what illumination conditions changes due to aggregation of nanoparticles can be captured as an image.
 本発明は上述したような問題に鑑みてなされたものであり、粒子径が小さい場合においても粒子の凝集を画像における変化として捉えることができ、かつ、凝集の程度や凝集による粒子の形状や大きさの変化を数値的に評価可能な粒子分析装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems. An object of the present invention is to provide a particle analyzer capable of numerically evaluating changes in thickness.
 すなわち、本発明は本願発明者らの鋭意検討の結果、例えばナノ粒子のように粒子径が非常に小さい試料の場合には、セルの周囲から光を照射して粒子により散乱される光をカメラで撮像することで凝集度合いや凝集による粒子の形状の変化に応じた画像が得られることを初めて見出したことに基づくものである。 That is, as a result of extensive studies by the inventors of the present application, the present invention has found that, for example, in the case of a sample with a very small particle diameter such as nanoparticles, light is irradiated from the periphery of the cell and the light scattered by the particles is captured by a camera. This is based on the discovery for the first time that images corresponding to the degree of aggregation and changes in the shape of particles due to aggregation can be obtained by imaging with .
 具体的に本発明に係る粒子分析装置は、粒子を含む試料が内部に収容されたセルを撮像するカメラと、前記セルの照射対象領域に前記カメラの撮像光軸に対して斜めに進行する光を照射する照明機構と、前記カメラで撮像された画像に基づいて、前記試料中の粒子の凝集について分析する凝集分析部と、を備えたことを特徴とする。 Specifically, the particle analysis apparatus according to the present invention includes a camera that captures an image of a cell in which a sample containing particles is accommodated, and light that travels obliquely to an imaging optical axis of the camera to an irradiation target area of the cell. and an aggregation analysis unit that analyzes aggregation of particles in the sample based on the image captured by the camera.
 また、本発明に係る粒子分析方法は、粒子を含む試料が内部に収容されたセルを撮像するカメラを用いた粒子分析方法であって、前記セルの照射対象領域に前記カメラの撮像光軸に対して斜めに進行する光を照射することと、前記カメラで撮像された画像に基づいて、前記試料中の粒子の凝集について分析すること、を備えたことを特徴とする。 Further, a particle analysis method according to the present invention is a particle analysis method using a camera for capturing an image of a cell in which a sample containing particles is accommodated, wherein an irradiation target area of the cell is aligned with an imaging optical axis of the camera. and analyzing aggregation of particles in the sample based on the image captured by the camera.
 このようなものであれば、試料に対して前記カメラの撮像光軸に対して斜めに進行する光を照射することで、粒子で散乱される光の量を大きくしつつ、暗視野で画像を撮像できる。この結果、従来手法のように透過照明によって明視野で凝集による粒子の変化を撮像した場合と比較して、凝集の変化を捉えやすい。 With such a device, by irradiating the sample with light that travels obliquely with respect to the imaging optical axis of the camera, an image can be obtained in a dark field while increasing the amount of light scattered by the particles. I can take an image. As a result, it is easier to capture changes in aggregation than in the case of imaging changes in particles due to aggregation in a bright field with transmitted illumination as in the conventional method.
 すなわち、透過照明を用いる従来技術であれば、凝集により視野内の粒子の粗密が大きく変化すると、その分だけカメラで検出される透過光強度は非常に大きく変化する。このため、凝集前の状態にカメラの検出感度を合わせると、凝集後は画像内において飽和してしまう領域が発生し、粒子の情報が欠落してしまう。かといって、凝集後に画像中に飽和している部分が内容にカメラの検出感度を調節すると今度は凝集前において検出される透過光強度が小さくなりすぎてしまい、粒子特性を算出することができなくなってしまう。また、輝度の検出レンジが広いカメラを用いたとしても、透過光強度の変化が大きすぎるので、画像処理を行う際には凝集の過程に応じて二値化のための閾値を大きく変更させねばならず、凝集による粒子の形状や大きさの変化を評価するのに妥当な設定であるかどうは保証しにくい。 In other words, with the conventional technology that uses transmitted illumination, if the density of particles within the field of view changes significantly due to agglomeration, the transmitted light intensity detected by the camera will change significantly accordingly. For this reason, if the detection sensitivity of the camera is adjusted to the state before agglutination, a saturated region will occur in the image after agglutination, and information about the particles will be lost. On the other hand, if the detection sensitivity of the camera is adjusted so that the saturated part in the image after aggregation becomes too small, the transmitted light intensity detected before aggregation becomes too small, making it impossible to calculate the particle characteristics. It's gone. Also, even if a camera with a wide luminance detection range is used, the change in transmitted light intensity is too large. Therefore, when performing image processing, the threshold value for binarization must be greatly changed according to the process of aggregation. Therefore, it is difficult to guarantee that the settings are appropriate for evaluating changes in particle shape and size due to agglomeration.
 これに対して、本発明であれば凝集によって粒子径が大きく変化したとしても、散乱光強度は透過光強度と比較してそれほど変化しないので、凝集の前後で画像の各画素の輝度が飽和したり、小さくなりすぎたりしにくいので、粒子の凝集の程度を数値化して評価できる。 On the other hand, in the present invention, even if the particle size changes greatly due to aggregation, the scattered light intensity does not change much compared to the transmitted light intensity, so the brightness of each pixel of the image is saturated before and after aggregation. Since it is difficult for particles to become too small, the degree of aggregation of particles can be quantified and evaluated.
 撮像された画像に基づいて凝集度合いを数値的に評価できるようにするには、前記凝集分析部が、前記カメラで撮像された画像の輝度分布に基づいて、粒子の凝集度合いを示す凝集指標を算出するように構成されたものであればよい。 In order to numerically evaluate the degree of aggregation based on the captured image, the aggregation analysis unit calculates an aggregation index indicating the degree of aggregation of particles based on the luminance distribution of the image captured by the camera. Any configuration may be used as long as it is configured to calculate.
 経時的に粒子の凝集が進む場合において、凝集している部分を数値的にうまく評価できるようにするには、前記凝集分析部が、基準時点で撮像された第1画像の輝度分布である第1輝度分布と、前記基準時点から所定時間経過後に撮像された第2画像の輝度分布である第2輝度分布とを比較して、前記凝集指標を算出するように構成されたものであればよい。 In the case where aggregation of particles progresses over time, in order to be able to numerically evaluate the aggregated portion well, the aggregation analysis unit uses the first image, which is the luminance distribution of the first image captured at the reference time point. The aggregation index may be calculated by comparing the first luminance distribution with a second luminance distribution, which is the luminance distribution of a second image captured after a predetermined time has elapsed from the reference time point. .
 前記凝集分析部の具体的な構成例としては、前記第2輝度分布と、前記第1輝度分布の各輝度を所定倍した、又は、前記第1輝度分布の各輝度に所定値を加えた補正後第1輝度分布との差で得られる差分輝度分布に基づいて前記凝集指標を算出するように構成されたものが挙げられる。すなわち、前記第2画像において粒子が凝集していない部分は基準時点で撮像された前記第1画像中の粒子と同じような分散状態にあると予想される。したがって、前記差分輝度分布は前記第2画像において粒子が分散している部分の輝度の影響を低減し、凝集が発生している部分の輝度を強調したものと言える。このため、前記差分輝度分布であれば前記凝集指標は粒子の凝集度合いをより反映したものにできる。 As a specific configuration example of the aggregation analysis unit, correction is performed by multiplying each luminance of the second luminance distribution and the first luminance distribution by a predetermined value, or by adding a predetermined value to each luminance of the first luminance distribution. The aggregation index may be calculated based on the difference luminance distribution obtained by the difference from the second luminance distribution. That is, it is expected that the particles in the second image where particles are not aggregated are in the same dispersed state as the particles in the first image captured at the reference time. Therefore, it can be said that the difference luminance distribution reduces the influence of the luminance of the portion where the particles are dispersed in the second image and emphasizes the luminance of the portion where the particles are aggregated. Therefore, with the difference luminance distribution, the aggregation index can reflect the degree of aggregation of the particles.
 画像において粒子が凝集している部分の影響だけをより際立たせるようにするには、前記凝集分析部が、前記差分輝度分布において所定値以上の輝度の各度数に基づいて前記凝集指標を算出するものであればよい。 In order to make only the influence of the part where the particles aggregate in the image stand out, the aggregation analysis unit calculates the aggregation index based on each frequency of brightness equal to or greater than a predetermined value in the differential brightness distribution. Anything is fine.
 前記凝集分析部の別の態様としては、撮像された画像の輝度分布において最も輝度の小さいピークを基準として所定値だけ大きい輝度を閾値として二値化画像を生成し、当該二値化画像に基づいて前記凝集指標を算出するものが挙げられる。すなわち、本願発明者らは、粒子が分散している場合には画像の輝度分布はある輝度でピークを有する正規分布になるのに対して、凝集が発生すると輝度分布の対称性が崩れて高輝度側に度数が増えることを見出した。このため、粒子が分散している状態を代表するピークから所定値よりも高い輝度のものを抽出することで、前記二値化画像は凝集している部分だけを反映させることができる。また、このように生成された二値化画像であれば凝集度合いを正確に反映した凝集指標を作成しやすい。 Another aspect of the agglutination analysis unit is to generate a binarized image with a threshold value that is greater by a predetermined value than the peak with the lowest luminance in the luminance distribution of the imaged image, and generate a binarized image based on the binarized image. to calculate the aggregation index. That is, the inventors of the present application have found that when particles are dispersed, the brightness distribution of an image becomes a normal distribution having a peak at a certain brightness, whereas when aggregation occurs, the symmetry of the brightness distribution is lost and the brightness becomes high. It was found that the frequency increases on the luminance side. Therefore, by extracting peaks with brightness higher than a predetermined value from the peaks representing the dispersed state of the particles, the binarized image can reflect only the agglomerated portions. In addition, with the binarized image generated in this way, it is easy to create an agglutination index that accurately reflects the degree of agglutination.
 前記二値化画像が粒子の分散している部分はほとんど光らないようにして、ほぼ粒子の凝集している部分だけを光っている状態にするには、前記閾値が、輝度分布において実質的に正規分布をなしている部分の平均値と標準偏差に基づいて設定されるものであればよい。 In order for the binarized image to be such that the part where the particles are dispersed is hardly illuminated and the part where the particles are aggregated is illuminated, the threshold value is substantially It may be set based on the average value and standard deviation of the portion forming a normal distribution.
 前記凝集指標が、前記二値化画像中の輝点の大きさに基づいて算出されるものであれば、凝集している粒子の大きさを数値的に評価できる。 If the aggregation index is calculated based on the size of the bright spots in the binarized image, the size of aggregated particles can be numerically evaluated.
 簡単な統計指標によって粒子の凝集度合いを評価できるようにするには、前記凝集分析部が、前記凝集指標として前記輝度分布の歪度を算出するものが挙げられる。 In order to evaluate the degree of aggregation of particles using a simple statistical index, the aggregation analysis unit may calculate the skewness of the brightness distribution as the aggregation index.
 前記試料中の粒子の粒子径が前記カメラで撮像される画像の解像度によりも小さい場合でも粒子の凝集度合いを反映した画像を撮像可能な構成としては、前記照明機構が、観測孔を具備するリング状照明であり、前記カメラが前記観測孔を介して前記セルを撮像するように配置されたものが挙げられる。 As a configuration capable of capturing an image reflecting the degree of aggregation of particles even when the particle size of the particles in the sample is smaller than the resolution of the image captured by the camera, the illumination mechanism includes a ring having an observation hole. and the camera is arranged to image the cell through the observation hole.
 本発明の好適な適用例としては、前記試料に含まれる粒子が、ナノ粒子であり、前記カメラで撮像される画像の1画素で検出可能な大きさが、ナノ粒子の粒子径よりも大きいものが挙げられる。 As a preferred application example of the present invention, the particles contained in the sample are nanoparticles, and the size detectable in one pixel of the image captured by the camera is larger than the particle diameter of the nanoparticles. are mentioned.
 前記セルが、互いに所定距離離間する一対の透光板を具備するものであれば、ナノ粒子で散乱された光によって前記カメラで凝集度合いを反映した画像を撮像しやすい。 If the cell comprises a pair of light-transmitting plates spaced apart from each other by a predetermined distance, it is easy for the camera to capture an image reflecting the degree of aggregation by the light scattered by the nanoparticles.
 前記試料に含まれる粒子の輪郭を前記カメラで撮像しやすくするには、前記照明機構から射出される光が、前記試料に含まれる粒子に蛍光を励起する波長成分を含むように構成されたものであればよい。すなわち、本発明では粒子の散乱光で画像が撮像されるので、蛍光のような強度の小さい光であっても画像においては強度の違いとして捉えることができる。 In order to make it easier for the camera to capture the contours of the particles contained in the sample, the light emitted from the illumination mechanism includes a wavelength component that excites the fluorescence of the particles contained in the sample. If it is That is, in the present invention, since an image is captured with light scattered by particles, even light with a low intensity such as fluorescence can be captured as a difference in intensity in the image.
 前記試料に対してせん断力を加えることができるようにして、せん断力と凝集との間の関係を評価できるようにするには、前記セル又は前記セルの一部を回転させる回転機構をさらに備えたものであればよい。 A rotating mechanism for rotating the cell or a portion of the cell is further provided to allow application of a shear force to the sample so that the relationship between shear force and aggregation can be evaluated. Anything is fine.
 粒子が分散されている分散媒の粘性を変化させて、粘性の変化と凝集との間の関係を評価できるようにするには、前記セルを温調する温調機構をさらに備えたものであればよい。 In order to change the viscosity of the dispersion medium in which the particles are dispersed so that the relationship between the change in viscosity and aggregation can be evaluated, a temperature control mechanism for controlling the temperature of the cell should be provided. Just do it.
 例えばナノ粒子等の凝集度合いを数値的に評価するには、粒子を含む試料が内部に収容されたセルを撮像するカメラと、前記セルに対して前記カメラと同じ側に設けられ、当該セルの照射対象領域に対して周囲から光を照射する照明機構と、を備えた粒子分析装置に用いられるプログラムであって、前記カメラで撮像された画像に基づいて、前記試料中の粒子の凝集について分析する凝集分析部と、としての機構をコンピュータに発揮させることを特徴とする粒子分析装置用プログラムを用いれば良い。 For example, in order to numerically evaluate the degree of aggregation of nanoparticles or the like, a camera for capturing an image of a cell in which a sample containing particles is accommodated is provided on the same side of the cell as the camera. and an illumination mechanism for irradiating an irradiation target area with light from the surroundings, the program used in the particle analysis apparatus for analyzing aggregation of particles in the sample based on the image captured by the camera. A program for a particle analyzer, which is characterized by causing a computer to exhibit the mechanisms of the agglutination analysis part and the function of the particle analyzer, may be used.
 なお、粒子分析装置用プログラムは電子的に配信されるものであってもよいし、CD、DVD、フラッシュメモリ等のプログラム記録媒体に記録されたものであってもよい。 The program for the particle analyzer may be electronically distributed, or may be recorded on a program recording medium such as a CD, DVD, or flash memory.
 このように本発明に係る粒子分析装置であれば、例えばナノ粒子等の粒子径が小さい粒子を含む試料であっても、凝集度合いに応じて輝度が変化する画像を得ることができ、この画像に基づいて凝集度合いを数値的に評価することが可能となる。 As described above, with the particle analysis apparatus according to the present invention, it is possible to obtain an image in which the brightness changes according to the degree of aggregation, even for a sample containing particles with a small particle size such as nanoparticles. It is possible to numerically evaluate the degree of aggregation based on.
本発明の第1実施形態における粒子分析装置の構成を示す模式図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic diagram which shows the structure of the particle analyzer in 1st Embodiment of this invention. 第1実施形態の粒子分析装置の機能ブロック図。2 is a functional block diagram of the particle analyzer of the first embodiment; FIG. 第1実施形態の粒子分析装置で撮像されるナノ粒子の凝集による撮像される画像の変化を示すイメージ図。FIG. 4 is an image diagram showing changes in an image captured by aggregation of nanoparticles captured by the particle analyzer of the first embodiment. 基準時点の第1輝度分布と、所定時間経過後の第2輝度分布の一例を示すグラフ。7 is a graph showing an example of a first luminance distribution at a reference point of time and a second luminance distribution after a predetermined period of time has elapsed; 第1輝度分布と、補正後第2輝度分布から凝集による輝度分布を抽出するイメージを示すグラフ。7 is a graph showing an image of extracting a luminance distribution due to agglomeration from the first luminance distribution and the corrected second luminance distribution; 第1実施形態の変形例における二値化画像を生成するための閾値の一例を示すグラフ。7 is a graph showing an example of threshold values for generating a binarized image in the modified example of the first embodiment; 第1実施形態の変形例において生成される二値化画像のイメージ図。FIG. 5 is an image diagram of a binarized image generated in a modified example of the first embodiment; 本発明の第2実施形態における粒子分析装置の構成を示す模式図。The schematic diagram which shows the structure of the particle analyzer in 2nd Embodiment of this invention.
 本発明の第1実施形態における粒子分析装置100について図1乃至図4を参照しながら説明する。 A particle analyzer 100 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG.
 第1実施形態の粒子分析装置100は、粒子を含む試料Sを撮像した画像に基づいて粒子の凝集について分析するものである。第1実施形態で分析対象となる粒子は例えば100nmオーダの粒子径を有するナノ粒子である。 The particle analyzer 100 of the first embodiment analyzes aggregation of particles based on an image of a sample S containing particles. Particles to be analyzed in the first embodiment are nanoparticles having a particle diameter on the order of 100 nm, for example.
 図1に示すように粒子分析装置100は、撮像光軸が鉛直方向に沿って設定された縦型の装置として構成されており、粒子を含む試料Sが収容されているセル1に対して同じ側に設けられたカメラ2及び照明機構3を備えている。すなわち、粒子分析装置100は、セル1に設定された照射対象領域に対してセル1の周囲から光を照射するように構成された照明機構3と、粒子において散乱された光によって粒子の画像を撮像するカメラ2と、レンズ等が内部に収容された鏡筒4とを備えている。 As shown in FIG. 1, the particle analysis apparatus 100 is configured as a vertical apparatus in which the imaging optical axis is set along the vertical direction. It has a side mounted camera 2 and an illumination mechanism 3 . That is, the particle analysis apparatus 100 includes an illumination mechanism 3 configured to irradiate light from the periphery of the cell 1 to an irradiation target area set in the cell 1, and an image of the particle using light scattered by the particle. It has a camera 2 for taking an image and a lens barrel 4 in which lenses and the like are accommodated.
 セル1は、例えば高濃度の試料Sを測定するために用いられるタイプのものを用いることができる。第1実施形態ではセル1は、互いに所定距離離間する一対の透光板11と、各透光板11の間に設けられたスペーサ12とを備えている。各透光板11は概略薄板円盤状に形成されており、一方の透光板11の内側面における外周部に厚みが1μm程度の円環状の蒸着膜が形成される。この蒸着膜は、前述したスペーサ12として機能し、各透光板11及びスペーサ12によって囲われている収容スペース13に粒子を含む試料Sが収容される。また、透光板11のうちの少なくとも一方には、試料Sを収容スペース13内に導入するための導入孔(図示しない)と、試料Sを収容スペース13内から外部へ導出するための導出孔(図示しない)が形成されている。 The cell 1 can be of the type used for measuring a high-concentration sample S, for example. In the first embodiment, the cell 1 includes a pair of light-transmitting plates 11 separated from each other by a predetermined distance, and spacers 12 provided between the light-transmitting plates 11 . Each light-transmitting plate 11 is formed in the shape of a thin disc, and an annular vapor-deposited film having a thickness of about 1 μm is formed on the outer peripheral portion of the inner surface of one of the light-transmitting plates 11 . This deposited film functions as the spacer 12 described above, and the sample S containing particles is accommodated in the accommodation space 13 surrounded by the light-transmitting plates 11 and the spacers 12 . At least one of the light-transmitting plates 11 has an introduction hole (not shown) for introducing the sample S into the accommodation space 13 and a lead-out hole for leading the sample S from the accommodation space 13 to the outside. (not shown) are formed.
 照明機構3は、セル1の上方において鏡筒4のセル1側端部近傍に設けられたリング状照明である。照明機構3はセル1にカメラ2の撮像光軸OAに対して斜めに進行する光を全周から照射するように構成されている。より具体的には照明機構3は、中央部に観察孔32が開口するとともに、多数のLED(図示しない)を保持するリング状の筐体31を備えている。リング状の筐体31に設けられた各LEDの光軸は観察孔32の中心軸に向けてあり、セル1に設定されている照射対象領域の周囲から光が集中するように照射される。言い換えると、照明機構3は周囲照明として構成されており、照射対象領域の各点に所定角度範囲の入射角をなす光が360°にわたって入射することになる。言い換えると、照射対象領域のある点から視た場合には光線がその1点に集中するように入射する。なお、照明機構3から射出された光の反射成分については観察孔32内もしくは鏡筒4内に入射しないように構成されている。したがって、セル1内の粒子により散乱された光のみが観察孔32を通って鏡筒4を経由し、カメラ2に入射することになる。 The illumination mechanism 3 is a ring-shaped illumination provided above the cell 1 and near the end of the lens barrel 4 on the cell 1 side. The illumination mechanism 3 is configured to irradiate the cell 1 with light traveling obliquely with respect to the imaging optical axis OA of the camera 2 from the entire circumference. More specifically, the illumination mechanism 3 includes a ring-shaped housing 31 that has an observation hole 32 in the center and holds a large number of LEDs (not shown). The optical axis of each LED provided in the ring-shaped housing 31 is directed toward the central axis of the observation hole 32, and the surroundings of the irradiation target area set in the cell 1 are irradiated so as to concentrate. In other words, the illumination system 3 is configured as ambient illumination, and light with an angle of incidence of a predetermined angular range is incident on each point of the illuminated area over 360°. In other words, when the irradiation target area is viewed from a certain point, the rays are incident so as to concentrate on that point. It should be noted that the reflected component of the light emitted from the illumination mechanism 3 is configured so as not to enter the observation hole 32 or the lens barrel 4 . Therefore, only the light scattered by the particles in the cell 1 passes through the observation hole 32 and the lens barrel 4 to enter the camera 2 .
 カメラ2は、CCD等の2次元アレイ検出器を具備するものであり、セル1の照射対象領域中に所定の大きさの視野が設定されている。また、カメラ2の撮像光軸OAはセル1の面板部に対して垂直に入射するように構成されている。このカメラ2で撮像される画像の1画素で検出可能な大きさは、ナノ粒子の粒子径よりも大きい。言い換えると、視野の面積を画素数で割った値である解像度は100nmよりも大きいため、1画素中におさまるようなナノ粒子の輪郭を検出することはできない。したがって、撮像された画像から粒子の輪郭を検出し、面積相当径等の粒子径を算出する既存の手法を用いて粒子径分布を得ることは困難である。また、第1実施形態のカメラ2はカラー又はモノクロの画像を撮像可能なものであり、各画素の輝度については例えば256階調(8ビット)で検出可能である。 The camera 2 is equipped with a two-dimensional array detector such as a CCD, and a field of view of a predetermined size is set in the irradiation target area of the cell 1. Also, the imaging optical axis OA of the camera 2 is configured to enter the face plate portion of the cell 1 perpendicularly. The size detectable by one pixel of the image captured by the camera 2 is larger than the particle diameter of the nanoparticles. In other words, since the resolution, which is the value obtained by dividing the area of the field of view by the number of pixels, is greater than 100 nm, it is not possible to detect the outline of a nanoparticle that fits in one pixel. Therefore, it is difficult to obtain a particle size distribution using existing methods of detecting particle contours from captured images and calculating particle sizes such as area-equivalent diameters. In addition, the camera 2 of the first embodiment can capture a color or monochrome image, and can detect the brightness of each pixel with, for example, 256 gradations (8 bits).
 さらに粒子分析装置100は、CPU、メモリ、A/Dコンバータ、D/Aコンバータ、各種入出力機器を備え、照明機構3及びカメラ2に接続されたコンピュータを備えている。コンピュータは、メモリに格納されている粒子分析装置100用プログラムが実行されることにより、図2に示すように各機器の動作を制御する機器制御部51と、カメラ2で撮像される画像に基づいて粒子の凝集について分析する凝集分析部52としての機能を発揮する。 Furthermore, the particle analyzer 100 has a CPU, a memory, an A/D converter, a D/A converter, various input/output devices, and a computer connected to the illumination mechanism 3 and camera 2 . By executing the program for the particle analyzer 100 stored in the memory, the computer controls the operation of each device as shown in FIG. function as an aggregation analysis unit 52 that analyzes aggregation of particles.
 機器制御部51は、例えばカメラ2のシャッタタイミングに同期させて照明機構3を間欠的に発光させるように各機器を制御する。 The device control unit 51 controls each device such that the illumination mechanism 3 intermittently emits light in synchronization with the shutter timing of the camera 2, for example.
 凝集分析部52は、カメラ2で撮像された画像に基づいて試料S中の粒子の凝集を分析する。第1実施形態では、凝集分析部52はそれぞれ異なる時点で撮像された複数の試料Sの画像における各輝度分布に基づいて、粒子の凝集度合いを示す凝集指標を算出する。具体的には凝集分析部52は、基準時点であるセル1内に試料Sが導入された時点で撮像された第1画像の輝度分布である第1輝度分布と、基準時点から所定時間経過後に撮像された第2画像の輝度分布である第2輝度分布から凝集指標を算出する。 The aggregation analysis unit 52 analyzes aggregation of particles in the sample S based on the image captured by the camera 2 . In the first embodiment, the aggregation analysis unit 52 calculates an aggregation index indicating the degree of particle aggregation based on each luminance distribution in the images of the plurality of samples S captured at different times. Specifically, the aggregation analysis unit 52 analyzes the first luminance distribution, which is the luminance distribution of the first image captured at the time when the sample S is introduced into the cell 1, which is the reference time, and An aggregation index is calculated from the second luminance distribution, which is the luminance distribution of the captured second image.
 ここで、第1実施形態の粒子分析装置100によりナノ粒子を含む試料Sを撮像した場合、図3(a)の模式図に示すようにセル1内で試料Sが導入された基準時点の第1画像中における各輝点の大きさ及び輝度がほぼ均一であり、図3(b)に示すように所定時間経過後の第2画像では基準時点の第1画像よりも輝度が高く面積の大きい輝点が現れる。このような変化が生じるのは凝集に伴って散乱光強度が大きくなるためであると考えられる。また、このような大きな輝点はさらなる時間経過に伴って、その数が増加する。 Here, when the sample S containing nanoparticles is imaged by the particle analysis apparatus 100 of the first embodiment, as shown in the schematic diagram of FIG. The size and brightness of each bright spot in one image are substantially uniform, and as shown in FIG. Bright spots appear. It is considered that such a change occurs because the intensity of scattered light increases with aggregation. In addition, the number of such large bright spots increases as time elapses.
 次に凝集による輝度分布の変化例を図4に示す。図3(a)の第1画像に示すように基準時点で凝集がほぼ発生していない場合には、画像中において粒子から得られる輝度はある輝度の近傍でばらついている。このため、第1輝度分布のヒストグラムは、図4(a)に示すようにある輝度でピークを有する正規分布をなす。 Next, Fig. 4 shows an example of changes in luminance distribution due to aggregation. As shown in the first image of FIG. 3(a), when almost no aggregation occurs at the reference point, the brightness obtained from the particles in the image varies around a certain brightness. Therefore, the histogram of the first luminance distribution forms a normal distribution having a peak at a certain luminance as shown in FIG. 4(a).
 一方、図3(b)の第2画像に示すように所定時間経過(例えば基準時点から30分経過)し、凝集が進むにつれて、図4(b)に示すように第2輝度分布のヒストグラムには2つの山が形成される。ここで、図4(b)において低輝度側(左側)のピークは、図4(a)のピーク形状とよく似た正規分布に似た形状をなすとともに、若干平均値は下がっている。したがって、図4(b)における第2輝度分布の低輝度側のピークは凝集が発生しておらず、所定時間経過後でも分散した状態の粒子による散乱光の輝度であると考えられる。また、図4(b)における第2輝度分布高輝度側(右側)の山は基準時点では存在しなかったものであるから、凝集により散乱光強度が上昇することで発生したと考えられる。 On the other hand, as shown in the second image of FIG. 3(b), a predetermined time has passed (for example, 30 minutes have passed since the reference time point), and as the aggregation progresses, the histogram of the second luminance distribution changes as shown in FIG. 4(b). forms two mountains. Here, in FIG. 4B, the peak on the low-luminance side (left side) has a shape similar to a normal distribution similar to the peak shape of FIG. 4A, and the average value is slightly lower. Therefore, the peak on the low-luminance side of the second luminance distribution in FIG. 4B is considered to be the luminance of scattered light due to particles that have not aggregated and are in a dispersed state even after the elapse of a predetermined time. In addition, since the peak on the high brightness side (right side) of the second brightness distribution in FIG. 4B did not exist at the reference time, it is considered that the peak occurred due to an increase in scattered light intensity due to aggregation.
 これらのことから、以下のような手順で凝集分析部52は、図4(b)における第2輝度分布の高輝度側の山のみを抽出して凝集指標を算出する。 For these reasons, the aggregation analysis unit 52 extracts only the peaks on the high brightness side of the second brightness distribution in FIG. 4(b) and calculates the aggregation index in the following procedure.
 すなわち、凝集分析部52は、図5に示すように第1輝度分布のピークと第2輝度分布の低輝度側のピークが所定の誤差範囲内で重なり合うように第1輝度分布の各輝度を所定倍して補正後第1輝度分布を算出する。そして、凝集分析部52は、例えば第2輝度分布と補正後第1輝度分布との差で得られる差分輝度分布を算出する。このようにして算出された差分輝度分布そのものを例えば凝集指標として凝集分析部52は出力する。あるいは凝集分析部52は差分輝度分布の平均値等を凝集指標として算出してもよい。 That is, as shown in FIG. 5, the aggregation analysis unit 52 sets each luminance in the first luminance distribution so that the peak of the first luminance distribution and the peak on the low luminance side of the second luminance distribution overlap within a predetermined error range. Multiplying it, the corrected first luminance distribution is calculated. Then, the aggregation analysis unit 52 calculates a difference luminance distribution obtained by, for example, the difference between the second luminance distribution and the corrected first luminance distribution. The aggregation analysis unit 52 outputs the difference luminance distribution itself calculated in this way, for example, as an aggregation index. Alternatively, the aggregation analysis unit 52 may calculate the average value of the difference luminance distribution or the like as the aggregation index.
 このように構成された粒子分析装置100であれば、周囲照明として構成された照明機構3で得られる粒子の散乱光を撮像することで、粒子における凝集の変化を捉えた画像を撮像できる。すなわち、凝集の前後において粒子分析装置100の光学的な設定を変更しなくても、画像の各画素において飽和しているものや、粒子分析を行うのに不十分な輝度しかないものが発生しないようにできる。このため、画像の各画素に凝集による粒子の形状や大きさの変化を反映させることができる。 With the particle analyzer 100 configured in this manner, an image capturing changes in aggregation of particles can be captured by capturing the scattered light of the particles obtained by the illumination mechanism 3 configured as ambient illumination. That is, even if the optical settings of the particle analyzer 100 are not changed before and after agglutination, the pixels of the image are not saturated and the brightness is insufficient for particle analysis. can be done. Therefore, changes in the shape and size of particles due to aggregation can be reflected in each pixel of the image.
 また、撮像された画像の輝度分布において分散している粒子を表している部分がほぼ正規分布をなしていることを利用して、そのようなピークを差し引くことで凝集分析部52は凝集の発生している部分の輝度分布である差分輝度分布を得られる。 In addition, by subtracting such a peak, the aggregation analysis unit 52 detects the occurrence of aggregation by utilizing the fact that the portion representing the dispersed particles in the luminance distribution of the imaged image has a substantially normal distribution. A difference luminance distribution, which is the luminance distribution of the portion where the
 さらに、差分輝度分布は経過時間及び凝集の進行に伴って変化するので、差分輝度分布に基づいて各画像に現れている凝集過程を数値化した凝集指標を算出できる。すなわち、差分輝度分布における輝度の大きさは凝集している粒子の大きさに相関し、各度数は凝集している粒子の数と相関すると考えられるので、凝集による粒子の形状や大きさの変化を数値的に評価できる。 Furthermore, since the difference luminance distribution changes with the elapsed time and progress of aggregation, it is possible to calculate an aggregation index that quantifies the aggregation process appearing in each image based on the difference luminance distribution. That is, since it is thought that the magnitude of luminance in the differential luminance distribution correlates with the size of aggregated particles, and that each frequency correlates with the number of aggregated particles, changes in the shape and size of particles due to aggregation can be evaluated numerically.
 加えて、このような凝集指標であれば、凝集が進み大きな1つの粒子群が形成された場合には高輝度側にピークがシフトしていくと考えられる。したがって、凝集指標と粒子径との間に相関をもたせることができ、人間が撮像された各画像を視た場合の解釈に整合させることができる。 In addition, with such an aggregation index, it is thought that the peak shifts to the high brightness side when aggregation progresses and one large particle group is formed. Therefore, it is possible to establish a correlation between the aggregation index and the particle size, and to match the interpretation of each captured image by a human being.
 次に第1実施形態の変形例について説明する。変形例では凝集分析部52の構成及び動作が異なっている。 Next, a modified example of the first embodiment will be described. In the modified example, the configuration and operation of the aggregation analysis unit 52 are different.
 具体的には凝集分析部52は、図6に示すように撮像された画像の輝度分布において最も輝度の小さいピークを基準として所定値だけ大きい輝度を閾値として二値化画像を生成し、当該二値化画像に基づいて凝集指標を算出する。すなわち、分散状態の粒子の輝度分布である正規分布のピークの輝度を基準として、所定値だけ大きい輝度以上のものは凝集した粒子で散乱された光によるものであると凝集分析部52は判定する。この変形例では、閾値は輝度分布において実質的に正規分布をなしている部分の平均値と標準偏差σに基づいて設定される。図6では各正規分布のピークとなる輝度を基準として2σだけ大きい輝度を閾値として、この閾値よりも輝度が高い画素は白となり、この輝度以下のものは黒色とした二値化画像を凝集分析部52は生成する。 Specifically, as shown in FIG. 6, the aggregation analysis unit 52 generates a binarized image by using a brightness that is greater by a predetermined value as a threshold than the peak with the lowest brightness in the brightness distribution of the captured image. An aggregation index is calculated based on the valued image. In other words, the aggregation analysis unit 52 determines that light scattered by aggregated particles is caused by a brightness higher than a predetermined value based on the brightness at the peak of the normal distribution, which is the brightness distribution of the particles in the dispersed state. . In this modified example, the threshold is set based on the average value and the standard deviation σ of the portion of the luminance distribution that substantially forms a normal distribution. In FIG. 6, the brightness that is the peak brightness of each normal distribution is used as a reference, and the brightness that is greater by 2σ is set as a threshold. Part 52 generates.
 前述したように輝度分布のヒストグラムにおいて正規分布から外れた部分に発生するやまは凝集している粒子によるものであるので、二値化画像は凝集が発生し、所定の大きさ以上となった粒子群のみが明確化された状態となる。例えば図3に示した第1画像、第2画像はこの変形例では図7に示すような二値化画像に変換できる。そして、凝集分析部52は二値化画像から粒子群の塊の大きさを凝集指標として算出する。 As described above, in the histogram of the luminance distribution, the unevenness that occurs in the part that deviates from the normal distribution is due to the agglomerated particles. Only the group is in the disambiguated state. For example, the first image and the second image shown in FIG. 3 can be converted into binarized images as shown in FIG. 7 in this modified example. Then, the aggregation analysis unit 52 calculates the size of the cluster of particles as an aggregation index from the binarized image.
 このようなものであれば、時間が経過するごとに撮像された試料Sの画像について二値化画像を生成して、凝集過程をビジュアル的に明確化できる。また、凝集指標である凝集した粒子群の大きさについては、従来の画像解析アルゴリズムを利用して簡単に評価できる。 If it is like this, it is possible to visually clarify the aggregation process by generating a binarized image of the image of the sample S captured as time passes. Also, the size of the aggregated particle group, which is an index of aggregation, can be easily evaluated using a conventional image analysis algorithm.
 次に第1実施形態のさらに別の変形例について説明する。 Next, another modified example of the first embodiment will be described.
 この変形例では照明機構3から射出される光の波長が試料S中の粒子を励起して蛍光を発生させるように構成されている。例えば照明機構3に白色LEDを用いれば、試料によらず励起波長を含む可能性を高くすることができ、粒子が蛍光発光した蛍光画像が得やすくなる。このようなものであれば、撮像された画像において対象となる粒子のエッジを際立たせることができ、分析対象となる粒子だけを簡単に抽出してその大きさや形状を評価できる。 In this modified example, the wavelength of the light emitted from the illumination mechanism 3 excites particles in the sample S to generate fluorescence. For example, if a white LED is used for the illumination mechanism 3, the possibility that the excitation wavelength is included can be increased regardless of the sample, and a fluorescence image in which particles emit fluorescence can be easily obtained. With such a device, the edge of the target particle can be highlighted in the captured image, and only the target particle can be easily extracted to evaluate its size and shape.
 ここで、特定の蛍光粒子のみをより検出しやすくするために、照明機構3から射出される光の波長が、粒子の励起波長に限定されるように構成してもよい。例えば、特定波長のみを通すフィルターを用いて照明機構3から射出される光の波長を限定してもよいし、照明機構3の光源が特定波長の光を発するものであってもよい。また、カメラ2のレンズとセル1の間に励起光カットフィルターを設けて、特定波長の蛍光のみ抽出する構成であってもよい。 Here, in order to make it easier to detect only specific fluorescent particles, the wavelength of the light emitted from the illumination mechanism 3 may be limited to the excitation wavelength of the particles. For example, the wavelength of the light emitted from the illumination mechanism 3 may be limited by using a filter that passes only a specific wavelength, or the light source of the illumination mechanism 3 may emit light of a specific wavelength. Alternatively, an excitation light cut filter may be provided between the lens of the camera 2 and the cell 1 to extract only fluorescence of a specific wavelength.
 次に本発明の第2実施形態における粒子分析装置100について図8を参照しながら説明する。第2実施形態の粒子分析装置100は第1実施形態で説明した粒子の画像による分析結果と、レーザ回折による粒子の分析結果等を組み合わせて粒子の特性を評価するように構成されている。 Next, a particle analyzer 100 according to a second embodiment of the present invention will be described with reference to FIG. The particle analysis apparatus 100 of the second embodiment is configured to evaluate the characteristics of particles by combining the analysis result of the particle image described in the first embodiment and the analysis result of the particle by laser diffraction.
 すなわち、第2実施形態の粒子分析装置100は、第1実施形態の粒子分析装置100に赤色レーザを射出する第1レーザ6と、青色レーザを射出する第2レーザ7と、粒子で回折又は散乱されたレーザ光を検出するレーザ検出機構(図示しない)と、セル1全体又はセル1の一部を回転させる回転機構(図示しない)と、セル1に対してカメラ2とは反対側に設けられた透過照明機構8と、を備えている。 That is, the particle analyzer 100 of the second embodiment includes the first laser 6 that emits a red laser, the second laser 7 that emits a blue laser, and the particles diffracted or scattered by the particle analyzer 100 of the first embodiment. A laser detection mechanism (not shown) for detecting the emitted laser light, a rotation mechanism (not shown) for rotating the entire cell 1 or a part of the cell 1, and a camera 2 are provided on the opposite side of the cell 1. and a transmitted illumination mechanism 8 .
 このような第2実施形態の粒子分析装置100であれば、回転機構により例えばセル1の一方の透光板11を回転させることで試料Sに対してせん断力を加えながら粒子の画像を得ることができる。したがって、せん断力による粒子の凝集の影響を数値的に評価することが可能となる。 With the particle analysis apparatus 100 of the second embodiment, for example, one of the light-transmitting plates 11 of the cell 1 is rotated by the rotation mechanism to obtain an image of the particles while applying a shearing force to the sample S. can be done. Therefore, it becomes possible to numerically evaluate the effect of particle aggregation due to shear force.
 また、セル1を回転させることによってセル1上におけるカメラ2の視野の位置を変更して、試料S全体の凝集等に関する特性評価を実現できる。 In addition, by rotating the cell 1, the position of the field of view of the camera 2 on the cell 1 can be changed, and the characteristic evaluation regarding aggregation and the like of the entire sample S can be realized.
 透過照明機構8で得られる粒子の画像に基づいて、粒子径や形状を測定したり、透過光量をカメラ2で撮像して試料Sの濃度等を算出したりしてもよい。 Based on the image of the particles obtained by the transmitted illumination mechanism 8, the particle diameter and shape may be measured, and the amount of transmitted light may be imaged by the camera 2 to calculate the concentration of the sample S and the like.
 粒子径が大きい粒子については、撮像される画像による凝集の評価を行いつつ、並行して赤色レーザ回折に基づいた粒子径分布の測定を行うことができる。粒子径が小さい粒子については、撮像される画像による凝集の評価を行いつつ、並行して青色レーザ回折に基づいた粒子径分布の測定を行うことができる。例えば算出された粒子径分布から凝集による影響を補正するといったことが考えられる。 For particles with a large particle size, it is possible to measure the particle size distribution based on red laser diffraction while evaluating aggregation using the captured image. For particles with a small particle size, the particle size distribution can be measured on the basis of blue laser diffraction while the aggregation is evaluated using the captured image. For example, it is conceivable to correct the influence of aggregation from the calculated particle size distribution.
 その他の変形例について説明する。 Other modifications will be explained.
 第1実施形態の粒子分析装置において凝集分析部は凝集指標として輝度分布の歪度を算出するものであってもよい。このようなものであれば、輝度分布が正規分布から外れていくことを利用して、凝集度合いを数値的に評価できる。 In the particle analyzer of the first embodiment, the aggregation analysis unit may calculate the skewness of the luminance distribution as the aggregation index. With such a structure, the degree of agglomeration can be numerically evaluated by utilizing the fact that the luminance distribution deviates from the normal distribution.
 第1実施形態における補正後第1輝度分布については、第1輝度分布の各輝度を所定倍するものに限られず、各輝度について所定値だけ加える補正を行ったものであっても構わない。また、補正するのは第1輝度分布ではなく、第2輝度分布を補正した補正後第2輝度分布と、第1輝度分布との差をとって、差分輝度分布を得るようにしてもよい。また、第1輝度分布が測定される基準時点はセルに対して試料が導入された時点に限られるものではなく、任意の時点であってもよい。すなわち、第1輝度分布と第2輝度分布は同一の試料についてそれぞれ撮像時点が異なった画像から得られる輝度分布であればよい。 The corrected first luminance distribution in the first embodiment is not limited to multiplying each luminance of the first luminance distribution by a predetermined value, and may be corrected by adding a predetermined value to each luminance. Further, instead of correcting the first luminance distribution, the difference between the corrected second luminance distribution obtained by correcting the second luminance distribution and the first luminance distribution may be obtained to obtain the difference luminance distribution. Also, the reference time point at which the first luminance distribution is measured is not limited to the time point when the sample is introduced into the cell, and may be any time point. That is, the first luminance distribution and the second luminance distribution may be luminance distributions obtained from images of the same sample taken at different times.
 また、前述した第1実施形態の変形例では、撮像された画像の輝度分布において最も輝度の小さいピークを正規分布であると仮定してフィッティングを行うことにより得られる平均値μ(ピークの輝度)と標準偏差σに基づいて閾値を設定していたが、閾値の設定の仕方はこれに限られるものではない。例えば変形例では平均値μから2σだけ大きい輝度を閾値として設定していたが、平均値μから3σだけ大きい輝度を閾値としてもよい。あるいは標準偏差σを用いずに任意の値を平均値μに加えて閾値としてもよい。加えて、輝度分布の各輝度を所定倍して補正している場合には標準偏差σに同様の倍率を乗じて閾値を設定してもよい。 Further, in the modification of the first embodiment described above, the average value μ (peak luminance) obtained by performing fitting assuming that the peak with the lowest luminance in the luminance distribution of the captured image is a normal distribution and the standard deviation σ, the method of setting the threshold is not limited to this. For example, in the modified example, the threshold is set to a brightness that is 2σ greater than the average μ, but the threshold may be a brightness that is 3σ greater than the average μ. Alternatively, without using the standard deviation σ, an arbitrary value may be added to the average μ as the threshold. In addition, when each luminance of the luminance distribution is corrected by multiplying it by a predetermined value, the threshold value may be set by multiplying the standard deviation σ by the same magnification.
 各実施形態では粒子分析装置は撮像光軸が鉛直方向に沿った縦型の装置として構成されていたが、撮像光軸が水平方向に沿った横型の装置として構成してもよい。また、セルについては各実施形態で示した高濃度試料用のセルに限られるものではない。例えば既存の直方体形状をなすセルやフローセル等を用いても構わない。 In each embodiment, the particle analysis device was configured as a vertical device with the imaging optical axis along the vertical direction, but it may be configured as a horizontal device with the imaging optical axis along the horizontal direction. Also, the cell is not limited to the high-concentration sample cell shown in each embodiment. For example, an existing rectangular parallelepiped cell, flow cell, or the like may be used.
 セルを温調するための温調機構を設けて、温度変化と粒子の凝集との関係を撮像される画像に基づいて数値的に評価してもよい。ここで、温調機構は試料を加熱する加熱器を備えたものであってもよいし、試料を冷却するための冷却器を備えたものであってもよい。温調機構で粒子において粒子が分散している分散媒の温度を制御して、分散媒の粘性を調節し、例えば前述した回転機構によってせん断力を試料に加えた際における粒子の凝集変化の評価を行うこともできる。つまり、分散媒の粘性と粒子の凝集との関係性について評価することもできる。 A temperature control mechanism may be provided to control the temperature of the cell, and the relationship between temperature change and particle aggregation may be numerically evaluated based on the captured image. Here, the temperature control mechanism may include a heater for heating the sample, or may include a cooler for cooling the sample. The temperature control mechanism controls the temperature of the dispersion medium in which the particles are dispersed in the particles to adjust the viscosity of the dispersion medium. can also be done. In other words, it is also possible to evaluate the relationship between the viscosity of the dispersion medium and the aggregation of the particles.
 照明機構についてはリング照明に限られず、例えばドーム型照明等であってもよい。すなわち、照明機構はセルの照射対象領域にカメラの撮像光軸に対して斜めに進行する光を照射するものであればよい。例えば照明機構は撮像光軸の全周から光を照射するものに限られず、一部の範囲からのみ光を照射するものであってもよい。また、照明機構はセルに対してカメラと同じ側に設けられているものに限られず、セルに対してカメラとは反対側に設けられていても良い。加えて、照明機構は暗視野照明として構成されるものであればよく、照明機構から射出された光のうちセル又は試料で反射された光、セル又は試料を透過した光がカメラに直接入射しないようにし、粒子で散乱された光だけがカメラに直接入射するように配置及び構成されたものであればよい。また、光源についてはLEDに限られるものではなく、その他の原理で発光するものであってもよい。 The lighting mechanism is not limited to ring lighting, and may be, for example, dome-shaped lighting. That is, the illumination mechanism may irradiate the illumination target area of the cell with light that travels obliquely with respect to the imaging optical axis of the camera. For example, the illumination mechanism is not limited to irradiating light from the entire periphery of the imaging optical axis, and may irradiate light only from a partial range. Further, the illumination mechanism is not limited to being provided on the same side of the cell as the camera, and may be provided on the opposite side of the cell to the camera. In addition, the illumination mechanism may be configured as a dark-field illumination, and the light emitted from the illumination mechanism that is reflected by the cell or the sample or transmitted through the cell or the sample does not directly enter the camera. so that only the light scattered by the particles is directly incident on the camera. Moreover, the light source is not limited to the LED, and may be one that emits light based on other principles.
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や、各実施形態の一部同士の組み合わせを行っても構わない。 In addition, as long as it does not contradict the spirit of the present invention, various modifications of the embodiments and combinations of parts of the embodiments may be made.
 本発明であれば、例えばナノ粒子等の粒子径が小さい粒子を含む試料であっても、凝集度合いに応じて輝度が変化する画像を得ることができ、この画像に基づいて凝集度合いを数値的に評価することが可能な粒子分析装置を提供できる。 According to the present invention, it is possible to obtain an image in which the brightness changes according to the degree of aggregation even for a sample containing particles with a small particle size such as nanoparticles, and based on this image, the degree of aggregation can be numerically evaluated. It is possible to provide a particle analyzer capable of evaluating
100 :粒子分析装置
1   :セル
11  :透光板
12  :スペーサ
13  :収容スペース
2   :カメラ
3   :照明機構
31  :筐体
32  :観察孔
4   :鏡筒
51  :機器制御部
52  :凝集分析部
6   :第1レーザ
7   :第2レーザ
8   :透過照明機構
S   :試料
100 : Particle analyzer 1 : Cell 11 : Translucent plate 12 : Spacer 13 : Housing space 2 : Camera 3 : Illumination mechanism 31 : Housing 32 : Observation hole 4 : Lens barrel 51 : Equipment control unit 52 : Aggregation analysis unit 6 : First laser 7 : Second laser 8 : Transmitted illumination mechanism S : Sample

Claims (17)

  1.  粒子を含む試料が内部に収容されたセルを撮像するカメラと、
     前記セルの照射対象領域に前記カメラの撮像光軸に対して斜めに進行する光を照射する照明機構と、
     前記カメラで撮像された画像に基づいて、前記試料中の粒子の凝集について分析する凝集分析部と、を備えたことを特徴とする粒子分析装置。
    a camera for imaging a cell in which a sample containing particles is housed;
    an illumination mechanism that irradiates the irradiation target area of the cell with light that travels obliquely with respect to the imaging optical axis of the camera;
    and an aggregation analysis unit that analyzes aggregation of particles in the sample based on the image captured by the camera.
  2.  前記凝集分析部が、前記カメラで撮像された画像の輝度分布に基づいて、粒子の凝集度合いを示す凝集指標を算出するように構成された請求項1記載の粒子分析装置。 The particle analysis device according to claim 1, wherein the aggregation analysis unit is configured to calculate an aggregation index indicating the degree of aggregation of particles based on the luminance distribution of the image captured by the camera.
  3.  前記凝集分析部が、基準時点で撮像された第1画像の輝度分布である第1輝度分布と、前記基準時点から所定時間経過後に撮像された第2画像の輝度分布である第2輝度分布とを比較して、前記凝集指標を算出するように構成された請求項2記載の粒子分析装置。 The aggregation analysis unit performs a first luminance distribution, which is the luminance distribution of a first image captured at a reference time point, and a second luminance distribution, which is a luminance distribution of a second image captured after a predetermined time has elapsed from the reference time point. 3. The particle analyzer according to claim 2, wherein the aggregation index is calculated by comparing the .
  4.  前記凝集分析部が、第2輝度分布と、前記第1輝度分布の各輝度を所定倍した、又は、前記第1輝度分布の各輝度に所定値を加えた補正後第1輝度分布との差で得られる差分輝度分布に基づいて前記凝集指標を算出するように構成された請求項3記載の粒子分析装置。 difference between the second luminance distribution and the corrected first luminance distribution obtained by multiplying each luminance of the first luminance distribution by a predetermined value or adding a predetermined value to each luminance of the first luminance distribution; 4. The particle analysis apparatus according to claim 3, wherein the aggregation index is calculated based on the differential luminance distribution obtained in .
  5.  前記凝集分析部が、前記差分輝度分布において所定値以上の輝度の各度数に基づいて前記凝集指標を算出する請求項4記載の粒子分析装置。 The particle analysis apparatus according to claim 4, wherein the aggregation analysis unit calculates the aggregation index based on each frequency of brightness equal to or greater than a predetermined value in the differential brightness distribution.
  6.  前記凝集分析部が、撮像された画像の輝度分布において最も輝度の小さいピークを基準として所定値だけ大きい輝度を閾値として二値化画像を生成し、当該二値化画像に基づいて前記凝集指標を算出する請求項2記載の粒子分析装置。 The agglutination analysis unit generates a binarized image by using a peak having the lowest luminance as a reference in the luminance distribution of the imaged image and using a luminance that is greater by a predetermined value as a threshold, and calculates the agglutination index based on the binarized image. 3. The particle analyzer of claim 2, wherein the particle size is calculated.
  7.  前記閾値が、輝度分布において実質的に正規分布をなしている部分の平均値と標準偏差に基づいて設定される請求項6記載の粒子分析装置。 The particle analyzer according to claim 6, wherein the threshold value is set based on the average value and standard deviation of a portion of the luminance distribution that substantially forms a normal distribution.
  8.  前記凝集指標が、前記二値化画像中の輝点の大きさに基づいて算出される請求項7記載の粒子分析装置。 The particle analysis device according to claim 7, wherein the aggregation index is calculated based on the size of bright spots in the binarized image.
  9.  前記凝集分析部が、前記凝集指標として前記輝度分布の歪度を算出する請求項2記載の粒子分析装置。 The particle analysis device according to claim 2, wherein the aggregation analysis unit calculates the skewness of the brightness distribution as the aggregation index.
  10.  前記照明機構が、観測孔を具備するリング状照明であり、
     前記カメラが前記観測孔を介して前記セルを撮像するように配置された請求項1乃至9いずれかに記載の粒子分析装置。
    The illumination mechanism is a ring-shaped illumination having an observation hole,
    10. A particle analysis apparatus according to any one of claims 1 to 9, wherein said camera is arranged to image said cell through said observation hole.
  11.  前記試料に含まれる粒子が、ナノ粒子であり、
     前記カメラで撮像される画像の1画素で検出可能な大きさが、ナノ粒子の粒子径よりも大きい請求項1乃至10いずれかに記載の粒子分析装置。
    the particles contained in the sample are nanoparticles;
    11. The particle analyzer according to any one of claims 1 to 10, wherein a size detectable by one pixel of an image captured by said camera is larger than a particle diameter of nanoparticles.
  12.  前記セルが、互いに所定距離離間する一対の透光板を具備する請求項1乃至11いずれかに記載の粒子分析装置。 The particle analyzer according to any one of claims 1 to 11, wherein the cell comprises a pair of transparent plates spaced apart from each other by a predetermined distance.
  13.  前記照明機構から射出される光が、前記試料に含まれる粒子に蛍光を励起する波長成分を含むように構成された請求項1乃至12いずれかに記載の粒子分析装置。 The particle analysis apparatus according to any one of claims 1 to 12, wherein the light emitted from the illumination mechanism contains a wavelength component that excites fluorescence in particles contained in the sample.
  14.  前記セル又は前記セルの一部を回転させる回転機構をさらに備えた請求項1乃至13いずれかに記載の粒子分析装置。 The particle analyzer according to any one of claims 1 to 13, further comprising a rotation mechanism for rotating the cell or part of the cell.
  15.  前記セルを温調する温調機構をさらに備えた請求項1乃至12いずれかに記載の粒子分析装置。 The particle analyzer according to any one of claims 1 to 12, further comprising a temperature control mechanism for controlling the temperature of said cell.
  16.  粒子を含む試料が内部に収容されたセルを撮像するカメラを用いた粒子分析方法であって、
     前記セルの照射対象領域に前記カメラの撮像光軸に対して斜めに進行する光を照射することと、
     前記カメラで撮像された画像に基づいて、前記試料中の粒子の凝集について分析すること、を備えたことを特徴とする粒子分析方法。
    A particle analysis method using a camera for imaging a cell in which a sample containing particles is accommodated,
    irradiating an irradiation target area of the cell with light that travels obliquely with respect to the imaging optical axis of the camera;
    A particle analysis method, comprising analyzing aggregation of particles in the sample based on the image captured by the camera.
  17.  粒子を含む試料が内部に収容されたセルを撮像するカメラと、前記セルの照射対象領域に前記カメラの撮像光軸に対して斜めに進行する光を照射する照明機構と、を備えた粒子分析装置に用いられるプログラムであって、
     前記カメラで撮像された画像に基づいて、前記試料中の粒子の凝集について分析する凝集分析部と、としての機構をコンピュータに発揮させることを特徴とする粒子分析装置用プログラム。
    A particle analysis comprising: a camera that captures an image of a cell in which a sample containing particles is stored; and an illumination mechanism that irradiates an irradiation target area of the cell with light that travels obliquely with respect to the imaging optical axis of the camera. A program for use in a device comprising:
    A program for a particle analyzer, characterized by causing a computer to exhibit a mechanism as an agglutination analysis unit that analyzes agglutination of particles in the sample based on the image captured by the camera.
PCT/JP2021/045147 2021-02-05 2021-12-08 Particle analysis device, particle analysis method, and program for particle analysis device WO2022168434A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022579366A JPWO2022168434A1 (en) 2021-02-05 2021-12-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-017699 2021-02-05
JP2021017699 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022168434A1 true WO2022168434A1 (en) 2022-08-11

Family

ID=82741106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045147 WO2022168434A1 (en) 2021-02-05 2021-12-08 Particle analysis device, particle analysis method, and program for particle analysis device

Country Status (2)

Country Link
JP (1) JPWO2022168434A1 (en)
WO (1) WO2022168434A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210318A (en) * 2009-03-09 2010-09-24 Jfe Steel Corp Measuring device of dust, and estimation method of generation source
JP2014525583A (en) * 2011-08-29 2014-09-29 アムジェン インコーポレイテッド Method and apparatus for non-destructive detection of non-dissolved particles in a fluid
JP2015517677A (en) * 2012-05-24 2015-06-22 アッヴィ・インコーポレイテッド System and method for detection of particles in beneficial substances
WO2020037289A1 (en) * 2018-08-16 2020-02-20 Essenllix Corporation Homogeneous assay with particle aggregation or de-aggregation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210318A (en) * 2009-03-09 2010-09-24 Jfe Steel Corp Measuring device of dust, and estimation method of generation source
JP2014525583A (en) * 2011-08-29 2014-09-29 アムジェン インコーポレイテッド Method and apparatus for non-destructive detection of non-dissolved particles in a fluid
JP2015517677A (en) * 2012-05-24 2015-06-22 アッヴィ・インコーポレイテッド System and method for detection of particles in beneficial substances
WO2020037289A1 (en) * 2018-08-16 2020-02-20 Essenllix Corporation Homogeneous assay with particle aggregation or de-aggregation

Also Published As

Publication number Publication date
JPWO2022168434A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
US9360410B2 (en) Method and particle analyzer for determining a broad particle size distribution
EP3148411B1 (en) Imaging apparatus, imaging method and medical imaging system
CN106716125B (en) Nanoparticle analyzer
US8184294B2 (en) Apparatus and method for measuring haze of sheet materials or other materials
JP2014025720A (en) System for measuring moisture contents and grain sizes
KR20130109365A (en) Surface defect detecting apparatus and control method thereof
JP5920534B2 (en) Film thickness measuring method, film thickness measuring apparatus and recording medium
JP2020060598A (en) Optical device for fuel filter debris
US11879822B2 (en) Particle size distribution measuring device and program for particle size distribution measuring device
US11385156B2 (en) Particle size measuring apparatus and measuring method
JP7328871B2 (en) Particle size measuring device and measuring method
WO2022168434A1 (en) Particle analysis device, particle analysis method, and program for particle analysis device
JP2016020824A (en) Substrate inspection device and substrate inspection method
JP2014025719A (en) Moisture content measuring system
US11448579B2 (en) Particle size distribution measuring device and program for particle size distribution measuring device
JP6618269B2 (en) Particle size measuring system and particle size measuring method
JP5787668B2 (en) Defect detection device
JP2006112993A (en) Color bead discriminating device
WO2023095414A1 (en) Microparticle measurement method, microparticle measurement device, and microparticle measurement system
JP2006177751A (en) Color bead discrimination device
JPH02227642A (en) Surface inspecton device
KR20200053714A (en) System for Detecting Error of Patterns of Semiconductor Device and Method of Detecting The Error Using The Same
TW201409022A (en) Inspection method for inspecting defects of wafer surface
JP2005345339A (en) Measuring bead, color bead discrimination apparatus and color bead discrimination method
JP2008304311A (en) Method and device for inspecting defects in periodic pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579366

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924819

Country of ref document: EP

Kind code of ref document: A1