WO2022168215A1 - Variable-capacitance element - Google Patents

Variable-capacitance element Download PDF

Info

Publication number
WO2022168215A1
WO2022168215A1 PCT/JP2021/004012 JP2021004012W WO2022168215A1 WO 2022168215 A1 WO2022168215 A1 WO 2022168215A1 JP 2021004012 W JP2021004012 W JP 2021004012W WO 2022168215 A1 WO2022168215 A1 WO 2022168215A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
sealed container
variable
plasma
power supply
Prior art date
Application number
PCT/JP2021/004012
Other languages
French (fr)
Japanese (ja)
Inventor
宗 西岡
真悟 山浦
皓貴 内藤
研悟 西本
泰弘 西岡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/004012 priority Critical patent/WO2022168215A1/en
Priority to JP2022576356A priority patent/JP7229448B1/en
Publication of WO2022168215A1 publication Critical patent/WO2022168215A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma

Definitions

  • the present disclosure relates to variable capacitance elements.
  • variable-capacitance elements have been proposed as variable-capacitance elements that have both high power resistance and high-speed response.
  • plasma is formed between two parallel plate electrodes, and the electrostatic capacitance value between the parallel plate electrodes is made variable by adjusting the electron density of the plasma. .
  • the variable capacitance element described in Non-Patent Document 1 has a minimum Q value (Quality Factor) of "5" when the capacitance is scanned from the minimum value to the maximum value.
  • Q value of a varactor diode which is a widely used variable capacitance element, is about 200 at the minimum.
  • the plasma variable capacitance element described in Non-Patent Document 1 has a problem of high loss.
  • An object of the present disclosure is to solve the above problems, and to obtain a variable capacitance element that can operate with lower loss than conventional variable capacitance elements using plasma.
  • a variable capacitance element includes a sealed container in which gas is sealed, a first electrode provided inside the sealed container and grounded, and a first electrode provided inside the sealed container and A second electrode arranged to face the electrode, one end connected to the second electrode and the other end grounded, applying a DC voltage between the first electrode and the second electrode, A first variable power source capable of changing a DC voltage, and a discharge control unit capable of changing the electron density of the plasma by turning the gas enclosed inside the sealed container into a plasma state, wherein the first variable power source is a DC voltage. is adjusted, and the discharge controller adjusts the electron density of the plasma, whereby the impedance between the first electrode and the second electrode is variable.
  • the DC voltage applied between the first electrode and the second electrode provided inside the sealed container is adjusted to bring the gas enclosed inside the sealed container into a plasma state, thereby By adjusting the electron density of , the impedance between the first electrode and the second electrode is variable.
  • the variable capacitance element according to the present disclosure can operate with lower loss than conventional variable capacitance elements using plasma.
  • FIG. 1 is a schematic cross-sectional view showing an outline of a configuration of a variable capacitance element according to Embodiment 1;
  • FIG. FIG. 4 is an explanatory view showing a state between electrodes when a gas enclosed in a sealed container is brought into a plasma state;
  • 2 is a circuit diagram showing an equivalent circuit of the variable capacitance element according to Embodiment 1;
  • FIG. 4 is a graph showing the relationship between the capacitance value and the Q value in the variable capacitance element according to Embodiment 1;
  • FIG. 7 is a schematic cross-sectional view showing the outline of the configuration of a variable capacitance element according to Embodiment 2;
  • FIG. 11 is a schematic cross-sectional view showing the outline of the configuration of a variable capacitance element according to Embodiment 3;
  • FIG. 11 is a schematic cross-sectional view showing the outline of the configuration of a variable capacitance element according to a fourth embodiment;
  • FIG. 12 is a schematic cross-sectional view showing the outline of the configuration of a variable capacitance element according to Embodiment 5;
  • 14 is a graph showing the relationship between the capacitance value and the Q value in the variable capacitance element according to Embodiment 5.
  • FIG. FIG. 11 is a schematic cross-sectional view showing the outline of the configuration of a variable capacitance element according to Embodiment 6;
  • FIG. 11 is a circuit diagram showing an equivalent circuit of a variable capacitance element according to Embodiment 6;
  • FIG. 14 is a graph showing the relationship between the capacitance value and the Q value in the variable capacitance element according to Embodiment 6;
  • FIG. 1 is a schematic cross-sectional view showing the outline of the configuration of the variable capacitive element 1 according to Embodiment 1, and schematically shows the cross section of the main part of the variable capacitive element 1.
  • the variable capacitance element 1 includes a sealed container 2 , electrodes 3 , 4 , a power supply 5 and a discharge controller 6 .
  • An electrode 3 and an electrode 4 are provided inside the sealed container 2 .
  • the sealed container 2 is filled with an easily ionized gas such as helium, neon, or argon.
  • the electrode 3 is a plate-like electrode, and is a first electrode provided inside the sealed container 2 and grounded.
  • the electrode 3 is electrically connected to the ground through a first wiring provided so as not to allow communication between the inside of the sealed container 2 and the outside air.
  • the electrode 4 is a second electrode provided inside the sealed container 2 and arranged to face the electrode 3 .
  • the electrode 4 is a plate-like electrode, and forms a parallel plate electrode together with the electrode 3 inside the sealed container 2 .
  • the electrode 4 is electrically connected to one end of the power source 5 through a second wiring provided so as to prevent communication between the inside of the sealed container 2 and the outside air.
  • the power supply 5 has a negative terminal connected to the electrode 4 via a second wiring, and a positive terminal grounded. Power supply. Also, the power supply 5 can change the DC voltage applied between the electrodes 3 and 4 .
  • the discharge control unit 6 can change the electron density of the plasma 7 by putting the gas enclosed inside the sealed container 2 into a plasma state. For example, the discharge control unit 6 applies electric power between the electrodes 3 and 4 to discharge and ionize the gas, thereby creating a plasma state. Further, the discharge controller 6 can change the electron density of the plasma 7 by adjusting the power applied between the electrodes 3 and 4 .
  • variable capacitance element 1 varies the impedance between the electrodes 3 and 4 by adjusting the DC voltage with the power supply 5 and adjusting the electron density of the plasma 7 with the discharge controller 6 . That is, the variable capacitance element 1 not only adjusts the electron density of the plasma 7 by the discharge control unit 6, but also adjusts the DC voltage applied between the electrodes 3 and 4 by the power source 5, so that the electrodes 3 and 4 4 can be varied. As a result, the variable capacitance element 1 can realize variable capacitance using the plasma 7 with low loss.
  • FIG. 2 is an explanatory view showing the state between the electrodes 3 and 4 when the gas enclosed in the sealed container 2 is brought into a plasma state.
  • a bulk region 7a and sheath regions 7b and 7c are formed between the electrodes 3 and 4, as shown in FIG.
  • the bulk region 7a is the main part of the plasma 7 and the ions of the gas are mainly formed in the bulk region 7a.
  • sheath region 7 b is a region formed near electrode 3
  • sheath region 7 c is a region formed near electrode 4 .
  • the thickness of the sheath regions 7b and 7c largely determines the capacitance value of the plasma-based capacitive element.
  • the dielectric constant ⁇ sheath of the sheath regions 7b and 7c can be expressed by the following formula ( 1 ) using the vacuum dielectric constant ⁇ 0.
  • Equation (1) above assumes that the vacuum and dielectric constant are equivalent. This is because the relationship n e ⁇ n i is established between the electron density n e contained in the sheath regions 7b and 7c and the ion density n i of the gas, and furthermore, the ions are applied from the outside due to their inertia. This is because they do not move following a high frequency (RF) electric field.
  • RF high frequency
  • each thickness s of the sheath regions 7b and 7c is represented by the following formula (2).
  • e indicates the elementary charge
  • V0 indicates the sheath potential.
  • the sheath potential V0 at the sheath region 7b near the electrode 3 is the potential difference between the electrode 3 and the interface between the bulk region 7a and the sheath region 7b.
  • the sheath potential V 0 can be expressed by the following formula (3) by considering the DC voltage V bias applied by the power supply 5 .
  • V float in the above formula (3) can be represented by the following formula (4).
  • kB is the Boltzmann constant
  • T e is the electron temperature
  • me is the electron mass
  • mi is the ion mass.
  • the dielectric constant ⁇ bulk of the bulk region 7a can be expressed by the following equation (5).
  • ⁇ m is the electron collision frequency in the plasma 7
  • is the angular frequency of the electromagnetic wave.
  • the thickness l of the bulk region 7a consists of a sheath width s1 that is the thickness of the sheath region 7b formed near the electrode 3, a sheath width s2 that is the thickness of the sheath region 7c formed near the electrode 4 , and Using the distance d between the electrode 3 and the electrode 4, it can be represented by the following formula (6).
  • the electrostatic capacitance value C of the capacitive element formed by sandwiching the medium having the dielectric constant ⁇ r between the electrodes 3 and 4 is expressed by the following formula (7).
  • A indicates the area of the electrode 3 and the area of the electrode 4, and it is assumed that the areas where the electrodes 3 and 4 face each other are the same.
  • the impedance Z of the capacitive element is represented by the following formula (8). i is the imaginary unit.
  • FIG. 3 is a circuit diagram showing an equivalent circuit of the variable capacitance element 1, showing an equivalent circuit relating to the impedance Z total .
  • the impedance Z total is equivalent to the impedance of a parallel plate capacitor in which the bulk region 7a and the sheath regions 7b and 7c shown in FIG. 2 are sandwiched between two plate electrodes.
  • Z total can be represented by the following formula (9).
  • Z s1 is the impedance of the sheath region 7b formed near the electrode 3
  • Z bulk is the impedance of the bulk region 7a
  • Z s2 is the impedance of the sheath region 7c formed near the electrode 4; That is, Z s1 , Z bulk and Z s2 are impedances of parallel plate capacitors sandwiched between two plate-like electrodes 3 and 4 .
  • Z s1 , Z bulk and Z s2 can be represented by the following formulas (10), (11) and (12) respectively.
  • A indicates the area of the electrode 3 and the area of the electrode 4, and the area where the electrode 3 and the electrode 4 face each other is There is the same.
  • the capacitance value C total and the series parasitic resistance value R total of the variable capacitive element are given by the following equation (13) and the following formula (14), respectively.
  • Im( Ztotal ) indicates the imaginary part of Ztotal
  • Re( Ztotal ) indicates the real part of Ztotal .
  • the Q value of the variable capacitance element can be expressed by the following equation (15).
  • the sheath width s 1 of 7b, the sheath width s 2 of sheath region 7c and the thickness l of bulk region 7a are all functions of the electron density n e contained in sheath regions 7b and 7c. Therefore, the impedance between the electrodes 3 and 4 becomes variable by the discharge control unit 6 adjusting the electron density ne between the electrodes 3 and 4 .
  • FIG. 4 is a graph showing the relationship between the capacitance value and the Q value in the variable capacitance element 1.
  • the capacitance value C total of the equivalent circuit model of the variable capacitance element 1 using the equivalent circuit model of FIG.
  • the dependence on the Q value is shown for each DC voltage V bias .
  • the discharge controller 6 makes the electron density n e variable in the range from 0(m ⁇ 3 ) to 10 20 (m ⁇ 3 ).
  • Curve B shows the relationship between the capacitance value C total and the Q value when the DC voltage V bias is 30 (V).
  • Curve C shows the relationship between the capacitance value C total and the Q value when the DC voltage V bias is 60 (V)
  • curve D shows the relationship when the DC voltage V bias is 100 (V). and the Q value.
  • V bias 0 (V)
  • the Q value is improved to about "15".
  • the variable capacitance element 1 includes the sealed container 2 in which gas is sealed, the electrode 3 provided inside the sealed container 2 and grounded, and the sealed container 2 and an electrode 4 provided inside the sealed container 2 and arranged opposite to the electrode 3, and an electrode 3 and an electrode 4 having one end connected to the electrode 4 and the other end grounded and provided inside the sealed container 2.
  • a power source 5 that applies a DC voltage between the .
  • the power supply 5 adjusts the DC voltage applied between the electrodes 3 and 4
  • the discharge control unit 6 adjusts the electron density of the plasma 7, thereby controlling the voltage between the electrodes 3 and 4. can be adjusted, it is possible to operate with a lower loss than the conventional variable capacitance element using plasma.
  • FIG. 5 is a schematic cross-sectional view showing the outline of the configuration of the variable capacitive element 1A according to the second embodiment, and schematically shows the cross section of the main part of the variable capacitive element 1A.
  • the variable capacitance element 1A includes a sealed container 2A, electrodes 3, 4, a power source 5 and a discharge control section 6A.
  • the discharge control section 6A is configured with an electrode 8, an electrode 9 and a power supply 10. As shown in FIG.
  • electrodes 8 and 9 are provided inside the sealed container 2A. Furthermore, the sealed container 2A is filled with an easily ionized gas such as helium, neon, or argon.
  • the electrode 8 is a third electrode provided inside the sealed container 2A and arranged at a position orthogonal to the direction in which the electrodes 3 and 4 face each other.
  • the electrode 8 is connected to the positive terminal of the power supply 10 via a third wiring provided so as not to allow communication between the inside of the sealed container 2A and the outside air.
  • the electrode 9 is a fourth electrode that is provided inside the sealed container 2A, has the electrodes 3 and 4 interposed between it and the electrode 8, and is arranged to face the electrode 8.
  • the electrode 9 is electrically connected to the negative terminal of the power supply 10 and to the ground through a fourth wiring provided so as not to allow communication between the inside of the sealed container 2A and the outside air.
  • the power supply 10 is a second variable power supply having a positive terminal connected to the electrode 8 via a third wiring and a negative terminal connected to the electrode 9 and ground via a fourth wiring. .
  • the power supply 10 applies a DC voltage between the electrodes 8 and 9 to bring the gas enclosed inside the sealed container 2A into a plasma state, and applies a DC voltage between the electrodes 8 and 9. By changing, the electron density of the plasma 7 can be changed.
  • the discharge control section 6A is provided inside the sealed container 2A and arranged at a position orthogonal to the direction in which the electrodes 3 and 4 face each other. and an electrode 9 provided inside the sealed container 2A, interposed between the electrode 8 and the electrode 3 and the electrode 4, and arranged to face the electrode 8, and the negative electrode side is grounded, By applying a voltage between the electrodes 8 and 9, the gas enclosed inside the sealed container 2A is brought into a plasma state, and by changing the power applied between the electrodes 8 and 9, plasma is generated. 7 with a variable electron density power supply 10 .
  • variable capacitance element 1A adjusts the DC voltage applied between the electrodes 3 and 4 by the power source 5, and adjusts the electron density of the plasma 7 by the discharge control unit 6A. can be adjusted, it is possible to operate with a lower loss than the conventional variable capacitance element using plasma.
  • FIG. 6 is a schematic cross-sectional view showing the outline of the configuration of the variable capacitive element 1B according to the third embodiment, and schematically shows the cross section of the main part of the variable capacitive element 1B.
  • the variable capacitance element 1B includes a sealed container 2, electrodes 3, electrodes 4, a power source 5 and a discharge control section 6B.
  • the discharge control section 6B is configured with a coil 11 and a power source 12 .
  • the coil 11 is a coil spirally wound around the outer circumference of the sealed container 2, and the electrodes 3 and 4 are electrically insulated.
  • the power source 12 is a third variable power source that applies high-frequency power to both ends of the coil 11 to bring the gas sealed inside the sealed container 2 into a plasma state. Also, the power supply 12 is realized by an AC power supply, and the electron density of the plasma 7 can be changed by changing the high frequency power applied to both ends of the coil 11 .
  • the discharge control section 6B includes the coil 11 spirally wound around the outer peripheral portion of the sealed container 2 while being insulated from the electrodes 3 and 4.
  • the variable capacitance element 1B adjusts the DC voltage applied between the electrodes 3 and 4 by the power source 5, and adjusts the electron density of the plasma 7 by the discharge control unit 6B. can be adjusted, it is possible to operate with a lower loss than the conventional variable capacitance element using plasma.
  • variable-capacitance element 1B can be expected to have a longer life than the variable-capacitance element 1A having the discharge control section 6A.
  • FIG. 7 is a schematic cross-sectional view showing the outline of the configuration of the variable capacitance element 1C according to the fourth embodiment, and schematically shows the cross section of the main portion of the variable capacitance element 1C.
  • the variable capacitance element 1C includes a sealed container 2A, electrodes 3, 4, a power supply 5, a discharge control section 6A, filter elements 13 and 14.
  • FIG. 1A the same components as those in FIGS. 1 and 5 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the variable capacitance element 1C includes a sealed container 2A, electrodes 3, 4, a power supply 5, a discharge control section 6A, filter elements 13 and 14.
  • the filter element 13 is a first filter element provided between the electrode 3 and the ground, and selectively passes, for example, high-frequency signals in a target frequency band.
  • the filter element 13 is provided between the electrode 3 and the ground in the first wiring that is provided so as to prevent communication between the inside of the sealed container 2A and the outside air and electrically connects the electrode 3 and the ground. .
  • the filter element 14 is a second filter element provided between the electrode 4 and the negative terminal of the power source 5, and similarly to the filter element 13, for example, selectively filters a high-frequency signal in a target frequency band. let it pass.
  • the filter element 14 is provided so as not to allow communication between the inside of the sealed container 2A and the outside air, and is connected between the electrode 4 and the power source in the second wiring that electrically connects the electrode 4 and the negative terminal of the power source 5. 5.
  • Filter element 13 and filter element 14 are electrically open for a high-frequency signal applied between electrodes 3 and 4, and electrically short-circuited for a direct-current signal applied between electrodes 3 and 4. is designed to be This is because the impedance of the coil with the inductance L is expressed by j ⁇ L, where j is the imaginary unit and ⁇ is the angular frequency of the electromagnetic wave. It means you should.
  • FIG. 7 shows that the filter element 13 and the filter element 14 are provided with respect to the variable capacitance element 1A shown in FIG.
  • the filter element 13 and the filter element 14 may be provided. Even in the variable capacitance element 1 ⁇ /b>C configured in this way, the influence of the power supply 5 on the impedance between the electrodes 3 and 4 is reduced.
  • variable capacitance element 1C includes the filter element 13 and the filter element 14, the electrode 3 is grounded through the filter element 13, and the electrode 4 is grounded through the filter element 14. It is connected to one end of the power supply 5 .
  • Filter element 13 and filter element 14 can reduce the influence of power supply 5 that applies a DC voltage between electrodes 3 and 4 on the impedance between electrodes 3 and 4 .
  • FIG. 8 is a schematic cross-sectional view showing the outline of the configuration of the variable capacitive element 1D according to the fifth embodiment, and schematically shows the cross section of the main part of the variable capacitive element 1D.
  • the variable capacitance element 1 ⁇ /b>D includes a sealed container 2 ⁇ /b>A, electrodes 3 , 4 , a power source 5 , a discharge control section 6 ⁇ /b>A, filter elements 15 and 16 .
  • the filter element 15 is a third filter element provided between the electrode 3 and the negative terminal of the power supply 5, and selectively passes, for example, high-frequency signals in a target frequency band.
  • the filter element 15 is provided between the electrode 3 and the power source 5 in the third wiring that electrically connects the electrode 3 and the power source 5 so as not to allow communication between the inside of the sealed container 2A and the outside air. be provided.
  • the filter element 16 is a fourth filter element provided between the electrode 4 and the negative terminal of the power supply 5, and similarly to the filter element 15, for example, selectively filters a high-frequency signal in a target frequency band. let it pass.
  • the filter element 16 is provided so as not to allow communication between the inside of the sealed container 2A and the outside air, and is connected between the electrode 4 and the power source in the second wiring that electrically connects the electrode 4 and the negative terminal of the power source 5. 5.
  • the electrode 3 of the variable capacitance element 1D is connected to the power supply 5 via the filter element 15, and the electrode 4 is connected to the power supply 5 via the filter element 16.
  • FIG. 1D the sheath region 7b formed in the vicinity of the electrode 3 and the sheath region 7c formed in the vicinity of the electrode 4 are applied as if the DC voltage V bias included in the above formula (3) is applied. state.
  • FIG. 9 is a graph showing the relationship between the capacitance value C total and the Q value in the variable capacitance element 1D.
  • the configuration of the variable capacitance element 1D is represented by the equivalent circuit model shown in FIG. 4 shows the relationship between the electrostatic capacitance value C total and the Q value when a DC voltage V bias is applied to both of .
  • the gas enclosed in the sealed container 2A is argon.
  • curve E shows the relationship between the capacitance value C total and the Q value when the DC voltage V bias is 100 (V) in the variable capacitance element 1D shown in FIG.
  • Curve F shows the relationship between the capacitance value C total and the Q value when the DC voltage V bias is 100 (V) in the variable capacitance element 1 shown in FIG. ).
  • variable capacitive element 1D is provided with filter element 15 and filter element 16, and compared with variable capacitive element 1 shown in Embodiment 1, the minimum value of the Q value is " improved from 4 to 5. That is, the variable-capacitance element 1D operates with less loss than the variable-capacitance element 1 does.
  • FIG. 8 shows that the filter element 15 and the filter element 16 are provided with respect to the variable capacitance element 1A shown in FIG.
  • the filter element 15 and the filter element 16 may be provided.
  • Even the variable capacitance element 1 ⁇ /b>D configured in this way operates with a lower loss than the variable capacitance element 1 .
  • variable capacitance element 1D includes the filter element 15 and the filter element 16, and the electrode 3 is connected to one end of the power supply 5 via the filter element 15. Electrode 4 is connected to one end of power supply 5 via filter element 16 . Filter element 15 and filter element 16 allow variable capacitive element 1D to operate with a lower loss than variable capacitive element 1 .
  • FIG. 10 is a schematic cross-sectional view showing the outline of the configuration of the variable capacitive element 1E according to the sixth embodiment, and schematically shows the cross section of the main part of the variable capacitive element 1E.
  • the variable capacitance element 1 ⁇ /b>E includes a sealed container 2 , electrodes 3 , 4 , a power supply 5 , a discharge controller 6 , electrodes 17 , 18 , dielectrics 19 and 20 .
  • the electrode 17 is a fifth electrode provided inside the sealed container 2 and arranged to face the electrode 3 on the side opposite to the side on which the electrode 3 faces the electrode 4 .
  • electrode 17 is a plate-like electrode having the same area as electrode 3 .
  • the electrode 18 is a sixth electrode provided inside the sealed container 2 and arranged to face the electrode 4 on the side opposite to the side on which the electrode 4 faces the electrode 3 .
  • electrode 18 is a plate-like electrode having the same area as electrode 4 .
  • the electrode 3 is a plate-like electrode having the same area as the electrode 4 .
  • a dielectric 19 is a first dielectric provided between the electrodes 3 and 17 .
  • the dielectric 19 is placed in physical contact with the surface of the electrode 3 that is not in contact with the plasma 7 .
  • Dielectric 20 is a second dielectric provided between electrodes 4 and 18 .
  • the dielectric 20 is placed in physical contact with the surface of the electrode 4 that is not in contact with the plasma 7 .
  • variable capacitance element 1E includes a circuit for applying a high frequency electric field to the electrodes 17 and 18. That is, in the variable capacitive element 1E, the circuit applies a high-frequency electric field to the electrodes 17 and 18, so that the structure sandwiched between the electrodes 17 and 18 functions as a capacitive element.
  • FIG. 11 is a circuit diagram showing an equivalent circuit of the variable capacitance element 1E. 11 , the equivalent circuit model shown in FIG. 4 and the electrode 18 with a dielectric 20 provided in series with a capacitance capacitor C2 .
  • Capacitors C1 and C2 can be represented by the following equations ( 16 ) and (17).
  • ⁇ r1 is the relative permittivity of the dielectric 19
  • ⁇ r2 is the relative permittivity of the dielectric 20
  • t 1 is the thickness of dielectric 19
  • t 2 is the thickness of dielectric 20 .
  • FIG. 12 is a graph showing the relationship between the capacitance value C total and the Q value in the variable capacitance element . and the Q value are shown for each DC voltage V bias .
  • the discharge controller 6 makes the electron density n e variable in the range from 0(m ⁇ 3 ) to 10 20 (m ⁇ 3 ).
  • the gas enclosed in the sealed container 2 is argon.
  • the electron density n e , the angular frequency ⁇ of the electromagnetic wave, the area A of the electrodes 3 and 4, the distance d between the electrodes 3 and 4, the electron temperature Te, the gas temperature, the gas pressure, and the mass of argon ions m i , and the collision frequency ⁇ m of electrons in the plasma 7, the same values as in the calculation in FIG. 4 are used.
  • Both dielectric 19 and dielectric 20 are quartz glass (relative permittivity 3.7). Also, the thickness t1 of the dielectric 19 and the thickness t2 of the dielectric 20 are varied within the range of 0 (mm) to 1 (mm). It is assumed that the thickness t1 of the dielectric 19 and the thickness t2 of the dielectric 20 are equal.
  • loading the capacitors C1 and C2 reduces the variable width of the capacitance value C total , but improves the Q value.
  • the Q value is improved to about "100".
  • FIG. 10 shows the variable capacitance element 1 shown in FIG .
  • the variable-capacitance element 1E is any one of the variable-capacitance element 1A shown in FIG. 5, the variable-capacitance element 1B shown in FIG. 6, the variable-capacitance element 1C shown in FIG. 7, and the variable-capacitance element 1D shown in FIG.
  • capacitors C1 and C2 may be loaded. Even the variable-capacitance element 1 ⁇ /b>E configured in this way operates with a lower loss than the variable-capacitance element 1 .
  • variable capacitance element 1E is provided inside the sealed container 2, and the electrode 3 is arranged to face the electrode 3 on the side opposite to the side facing the electrode 4. between the electrode 17, the electrode 18 provided inside the sealed container 2 and facing the electrode 4 on the side opposite to the side where the electrode 4 faces the electrode 3, and the electrode 3 and the electrode 17 A first dielectric provided and a dielectric 20 provided between electrodes 4 and 18 .
  • the variable capacitance element 1E adjusts the DC voltage applied between the electrodes 3 and 4 by the power source 5, and adjusts the electron density of the plasma 7 by the discharge control unit 6, thereby controlling the voltage between the electrodes 3 and 4. Since the impedance between the electrode 17 and the electrode 18 can be adjusted, it is possible to operate with lower loss than the conventional variable capacitance element using plasma.
  • variable capacitance element can be used, for example, in a plasma processing apparatus.
  • variable capacitance element 1, 1A, 1B, 1C, 1D, 1E variable capacitance element, 2, 2A sealed container, 3, 4, 8, 9, 17, 18 electrode, 5, 10, 12 power supply, 6 discharge control section, 7 plasma, 7a Bulk region, 7b, 7c Sheath region, 11 Coil, 13, 14, 15, 16 Filter element, 19, 20 Dielectric.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

A variable-capacitance element (1) is provided with: a sealed container (2) containing a gas; a first electrode (3) that is disposed inside of the sealed container (2) and is grounded; a second electrode (4) disposed inside of the sealed container (2) to face the first electrode (3); a first variable power supply (5) one end of which is connected to the second electrode (4) and another end of which is grounded, the first variable power supply (5) being configured to apply a direct-current voltage between the first electrode (3) and the second electrode (4) and capable of changing the direct-current voltage; and a discharge controller (6) that converts the gas contained in the sealed container (2) into a plasma state and is capable of changing the electron density of plasma (7). The impedance between the first electrode (3) and the second electrode (4) can be changed by adjusting the direct-current voltage with the first variable power supply (5) and adjusting the electron density of the plasma (7) with the discharge controller (6).

Description

可変容量素子Variable capacitance element
 本開示は、可変容量素子に関する。 The present disclosure relates to variable capacitance elements.
 近年、高い耐電力と高速な応答を兼ね備えた可変容量素子としてプラズマ可変容量素子が提案されている。例えば、非特許文献1に記載される可変容量素子は、2枚の平行平板電極間にプラズマを形成し、プラズマの電子密度を調整することにより平行平板電極間の静電容量値を可変としている。 In recent years, plasma variable-capacitance elements have been proposed as variable-capacitance elements that have both high power resistance and high-speed response. For example, in the variable capacitance element described in Non-Patent Document 1, plasma is formed between two parallel plate electrodes, and the electrostatic capacitance value between the parallel plate electrodes is made variable by adjusting the electron density of the plasma. .
 非特許文献1に記載された可変容量素子は、静電容量を最小値から最大値まで走査した際に、Q値(Quality Factor)の最小値は「5」である。これに対して、一般に広く使用される可変容量素子であるバラクタダイオードのQ値は最小で200程度である。このように、非特許文献1に記載されたプラズマ可変容量素子は、高損失であるという課題があった。 The variable capacitance element described in Non-Patent Document 1 has a minimum Q value (Quality Factor) of "5" when the capacitance is scanned from the minimum value to the maximum value. On the other hand, the Q value of a varactor diode, which is a widely used variable capacitance element, is about 200 at the minimum. Thus, the plasma variable capacitance element described in Non-Patent Document 1 has a problem of high loss.
 本開示は上記課題を解決するものであり、プラズマを用いた従来の可変容量素子よりも低損失に動作することができる可変容量素子を得ることを目的とする。 An object of the present disclosure is to solve the above problems, and to obtain a variable capacitance element that can operate with lower loss than conventional variable capacitance elements using plasma.
 本開示に係る可変容量素子は、内部にガスが封入された密封容器と、密封容器の内部に設けられ、かつ接地された第1の電極と、密封容器の内部に設けられ、かつ第1の電極と対向して配置された第2の電極と、一端が第2の電極に接続され、他端が接地され、第1の電極と第2の電極との間に直流電圧を印加し、当該直流電圧を変更可能な第1の可変電源と、密封容器の内部に封入されたガスをプラズマ状態とし、プラズマの電子密度を変更可能な放電制御部とを備え、第1の可変電源が直流電圧を調整し、放電制御部がプラズマの電子密度を調整することにより、第1の電極と第2の電極との間のインピーダンスが可変である。 A variable capacitance element according to the present disclosure includes a sealed container in which gas is sealed, a first electrode provided inside the sealed container and grounded, and a first electrode provided inside the sealed container and A second electrode arranged to face the electrode, one end connected to the second electrode and the other end grounded, applying a DC voltage between the first electrode and the second electrode, A first variable power source capable of changing a DC voltage, and a discharge control unit capable of changing the electron density of the plasma by turning the gas enclosed inside the sealed container into a plasma state, wherein the first variable power source is a DC voltage. is adjusted, and the discharge controller adjusts the electron density of the plasma, whereby the impedance between the first electrode and the second electrode is variable.
 本開示によれば、密封容器の内部に設けられた第1の電極と第2の電極との間に印加した直流電圧を調整し、密封容器の内部に封入されたガスをプラズマ状態とし、プラズマの電子密度を調整することにより、第1の電極と第2の電極との間のインピーダンスが可変である。本開示に係る可変容量素子は、第1の電極と第2の電極との間のインピーダンスを調整することにより、プラズマを用いた従来の可変容量素子よりも低損失に動作することができる。 According to the present disclosure, the DC voltage applied between the first electrode and the second electrode provided inside the sealed container is adjusted to bring the gas enclosed inside the sealed container into a plasma state, thereby By adjusting the electron density of , the impedance between the first electrode and the second electrode is variable. By adjusting the impedance between the first electrode and the second electrode, the variable capacitance element according to the present disclosure can operate with lower loss than conventional variable capacitance elements using plasma.
実施の形態1に係る可変容量素子の構成の概要を示す断面模式図である。1 is a schematic cross-sectional view showing an outline of a configuration of a variable capacitance element according to Embodiment 1; FIG. 密封容器に封入されたガスをプラズマ状態とした際の電極間の様子を示す説明図である。FIG. 4 is an explanatory view showing a state between electrodes when a gas enclosed in a sealed container is brought into a plasma state; 実施の形態1に係る可変容量素子の等価回路を示す回路図である。2 is a circuit diagram showing an equivalent circuit of the variable capacitance element according to Embodiment 1; FIG. 実施の形態1に係る可変容量素子における静電容量値とQ値との関係を示すグラフである。4 is a graph showing the relationship between the capacitance value and the Q value in the variable capacitance element according to Embodiment 1; 実施の形態2に係る可変容量素子の構成の概要を示す断面模式図である。FIG. 7 is a schematic cross-sectional view showing the outline of the configuration of a variable capacitance element according to Embodiment 2; 実施の形態3に係る可変容量素子の構成の概要を示す断面模式図である。FIG. 11 is a schematic cross-sectional view showing the outline of the configuration of a variable capacitance element according to Embodiment 3; 実施の形態4に係る可変容量素子の構成の概要を示す断面模式図である。FIG. 11 is a schematic cross-sectional view showing the outline of the configuration of a variable capacitance element according to a fourth embodiment; 実施の形態5に係る可変容量素子の構成の概要を示す断面模式図である。FIG. 12 is a schematic cross-sectional view showing the outline of the configuration of a variable capacitance element according to Embodiment 5; 実施の形態5に係る可変容量素子における静電容量値とQ値との関係を示すグラフである。14 is a graph showing the relationship between the capacitance value and the Q value in the variable capacitance element according to Embodiment 5. FIG. 実施の形態6に係る可変容量素子の構成の概要を示す断面模式図である。FIG. 11 is a schematic cross-sectional view showing the outline of the configuration of a variable capacitance element according to Embodiment 6; 実施の形態6に係る可変容量素子の等価回路を示す回路図である。FIG. 11 is a circuit diagram showing an equivalent circuit of a variable capacitance element according to Embodiment 6; 実施の形態6に係る可変容量素子における静電容量値とQ値との関係を示すグラフである。FIG. 14 is a graph showing the relationship between the capacitance value and the Q value in the variable capacitance element according to Embodiment 6; FIG.
実施の形態1.
 図1は、実施の形態1に係る可変容量素子1の構成の概要を示す断面模式図であって、可変容量素子1の主要部分の断面を概略的に示している。図1において、可変容量素子1は、密封容器2、電極3、電極4、電源5および放電制御部6を備えている。密封容器2の内部には電極3および電極4が設けられている。さらに、密封容器2には、ヘリウム、ネオンまたはアルゴンなどの電離しやすいガスが封入される。
Embodiment 1.
FIG. 1 is a schematic cross-sectional view showing the outline of the configuration of the variable capacitive element 1 according to Embodiment 1, and schematically shows the cross section of the main part of the variable capacitive element 1. As shown in FIG. In FIG. 1 , the variable capacitance element 1 includes a sealed container 2 , electrodes 3 , 4 , a power supply 5 and a discharge controller 6 . An electrode 3 and an electrode 4 are provided inside the sealed container 2 . Furthermore, the sealed container 2 is filled with an easily ionized gas such as helium, neon, or argon.
 電極3は、平板状の電極であり、密封容器2の内部に設けられ、かつ接地された第1の電極である。例えば、電極3は、密封容器2の内部と外気とを連通させないように設けられた第1の配線によってアースと電気的に接続されている。 The electrode 3 is a plate-like electrode, and is a first electrode provided inside the sealed container 2 and grounded. For example, the electrode 3 is electrically connected to the ground through a first wiring provided so as not to allow communication between the inside of the sealed container 2 and the outside air.
 電極4は、密封容器2の内部に設けられ、かつ電極3と対向して配置された第2の電極である。電極4は、平板状の電極であり、密封容器2の内部において、電極3とともに、平行平板電極を構成する。例えば、電極4は、密封容器2の内部と外気とを連通させないように設けられた第2の配線によって電源5の一端と電気的に接続されている。 The electrode 4 is a second electrode provided inside the sealed container 2 and arranged to face the electrode 3 . The electrode 4 is a plate-like electrode, and forms a parallel plate electrode together with the electrode 3 inside the sealed container 2 . For example, the electrode 4 is electrically connected to one end of the power source 5 through a second wiring provided so as to prevent communication between the inside of the sealed container 2 and the outside air.
 電源5は、第2の配線を介して負極側の端子が電極4に接続されており、正極側の端子が接地され、電極3と電極4との間に直流電圧を印加する第1の可変電源である。また、電源5は、電極3と電極4との間に印加した直流電圧を変更可能である。 The power supply 5 has a negative terminal connected to the electrode 4 via a second wiring, and a positive terminal grounded. Power supply. Also, the power supply 5 can change the DC voltage applied between the electrodes 3 and 4 .
 放電制御部6は、密封容器2の内部に封入されたガスをプラズマ状態とし、プラズマ7の電子密度を変更可能である。例えば、放電制御部6は、電極3と電極4との間に電力を印加してガスを放電させて電離させることにより、プラズマ状態とする。また、放電制御部6は、電極3と電極4との間に印加する電力を調整することにより、プラズマ7の電子密度を変更することができる。 The discharge control unit 6 can change the electron density of the plasma 7 by putting the gas enclosed inside the sealed container 2 into a plasma state. For example, the discharge control unit 6 applies electric power between the electrodes 3 and 4 to discharge and ionize the gas, thereby creating a plasma state. Further, the discharge controller 6 can change the electron density of the plasma 7 by adjusting the power applied between the electrodes 3 and 4 .
 可変容量素子1は、電源5が直流電圧を調整し、放電制御部6がプラズマ7の電子密度を調整することにより、電極3と電極4との間のインピーダンスを可変とする。
 すなわち、可変容量素子1は、放電制御部6によるプラズマ7の電子密度の調整だけでなく、電源5が電極3と電極4との間に印加する直流電圧を調整することにより、電極3と電極4との間のインピーダンスを変更することができる。これにより、可変容量素子1は、プラズマ7を用いた可変容量を低損失に実現できる。
The variable capacitance element 1 varies the impedance between the electrodes 3 and 4 by adjusting the DC voltage with the power supply 5 and adjusting the electron density of the plasma 7 with the discharge controller 6 .
That is, the variable capacitance element 1 not only adjusts the electron density of the plasma 7 by the discharge control unit 6, but also adjusts the DC voltage applied between the electrodes 3 and 4 by the power source 5, so that the electrodes 3 and 4 4 can be varied. As a result, the variable capacitance element 1 can realize variable capacitance using the plasma 7 with low loss.
 可変容量素子1の原理は、以下の通りである。
 図2は、密封容器2に封入されたガスをプラズマ状態とした際の電極3と電極4との間の様子を示す説明図である。密封容器2に封入されたガスをプラズマ状態とすると、電極3と電極4との間には、図2に示すように、バルク領域7a、シース領域7bおよび7cが形成される。バルク領域7aはプラズマ7の主部であり、ガスのイオンは、主にバルク領域7aで形成される。
The principle of the variable capacitance element 1 is as follows.
FIG. 2 is an explanatory view showing the state between the electrodes 3 and 4 when the gas enclosed in the sealed container 2 is brought into a plasma state. When the gas enclosed in the sealed container 2 is brought into a plasma state, a bulk region 7a and sheath regions 7b and 7c are formed between the electrodes 3 and 4, as shown in FIG. The bulk region 7a is the main part of the plasma 7 and the ions of the gas are mainly formed in the bulk region 7a.
 プラズマ7において、シース領域7bは電極3の近傍に形成される領域であり、シース領域7cは電極4の近傍に形成される領域である。シース領域7bおよび7cの厚さが、プラズマを用いた容量素子の静電容量値の大部分を決定する。シース領域7bおよび7cの誘電率εsheathは、真空の誘電率εを用いて、下記式(1)で表すことができる。
Figure JPOXMLDOC01-appb-I000001
In plasma 7 , sheath region 7 b is a region formed near electrode 3 , and sheath region 7 c is a region formed near electrode 4 . The thickness of the sheath regions 7b and 7c largely determines the capacitance value of the plasma-based capacitive element. The dielectric constant ε sheath of the sheath regions 7b and 7c can be expressed by the following formula ( 1 ) using the vacuum dielectric constant ε0.
Figure JPOXMLDOC01-appb-I000001
 上記式(1)では、真空と誘電率とが等価であると仮定している。これは、シース領域7bおよび7cに含まれる電子密度nとガスのイオン密度nとの間にn≪nの関係が成立し、さらに、イオンが、その慣性によって、外部から印加された高周波(RF)の電界に追随して運動しないことに起因する。 Equation (1) above assumes that the vacuum and dielectric constant are equivalent. This is because the relationship n e <<n i is established between the electron density n e contained in the sheath regions 7b and 7c and the ion density n i of the gas, and furthermore, the ions are applied from the outside due to their inertia. This is because they do not move following a high frequency (RF) electric field.
 シース領域7bおよび7cの各厚みsは、下記式(2)で表される。ただし、下記式(2)において、eは電気素量を示しており、Vはシース電位を表している。例えば、電極3の近傍のシース領域7bにおけるシース電位Vは、バルク領域7aとシース領域7bとの境界面と、電極3との間の電位差である。
Figure JPOXMLDOC01-appb-I000002
Each thickness s of the sheath regions 7b and 7c is represented by the following formula (2). However, in the following formula ( 2 ), e indicates the elementary charge, and V0 indicates the sheath potential. For example, the sheath potential V0 at the sheath region 7b near the electrode 3 is the potential difference between the electrode 3 and the interface between the bulk region 7a and the sheath region 7b.
Figure JPOXMLDOC01-appb-I000002
 シース電位Vは、電源5が印加する直流電圧Vbiasを考慮することにより、下記式(3)で表すことができる。
Figure JPOXMLDOC01-appb-I000003
The sheath potential V 0 can be expressed by the following formula (3) by considering the DC voltage V bias applied by the power supply 5 .
Figure JPOXMLDOC01-appb-I000003
 上記式(3)におけるVfloatは、下記式(4)で表すことができる。下記式(4)中において、kはボルツマン定数であり、Tは電子温度であり、mは電子の質量であり、mはイオンの質量である。なお、バルク領域7aはn=nの関係が成立する領域である。
Figure JPOXMLDOC01-appb-I000004
V float in the above formula (3) can be represented by the following formula (4). In the following formula (4), kB is the Boltzmann constant, T e is the electron temperature, me is the electron mass, and mi is the ion mass. The bulk region 7a is a region in which the relationship n e =n i holds.
Figure JPOXMLDOC01-appb-I000004
 低温プラズマかつ外部磁場がない場合、バルク領域7aの誘電率εbulkは、下記式(5)で表すことができる。下記式(5)において、νは、プラズマ7中の電子の衝突周波数であり、ωは、電磁波の角周波数である。
Figure JPOXMLDOC01-appb-I000005
In the case of low-temperature plasma and no external magnetic field, the dielectric constant ε bulk of the bulk region 7a can be expressed by the following equation (5). In the following equation (5), νm is the electron collision frequency in the plasma 7, and ω is the angular frequency of the electromagnetic wave.
Figure JPOXMLDOC01-appb-I000005
 バルク領域7aの厚みlは、電極3の近傍に形成されたシース領域7bの厚みであるシース幅sと、電極4の近傍に形成されたシース領域7cの厚みであるシース幅sと、電極3と電極4との間の距離dとを用いて、下記式(6)で表すことができる。
Figure JPOXMLDOC01-appb-I000006
The thickness l of the bulk region 7a consists of a sheath width s1 that is the thickness of the sheath region 7b formed near the electrode 3, a sheath width s2 that is the thickness of the sheath region 7c formed near the electrode 4 , and Using the distance d between the electrode 3 and the electrode 4, it can be represented by the following formula (6).
Figure JPOXMLDOC01-appb-I000006
 また、比誘電率εの媒質を電極3と電極4との間に挟んで構成された容量素子の静電容量値Cは、下記式(7)で表される。ただし、Aは、電極3の面積と電極4の面積とを示しており、電極3と電極4とが対向する面積は同じあると仮定する。
Figure JPOXMLDOC01-appb-I000007
Further, the electrostatic capacitance value C of the capacitive element formed by sandwiching the medium having the dielectric constant εr between the electrodes 3 and 4 is expressed by the following formula (7). However, A indicates the area of the electrode 3 and the area of the electrode 4, and it is assumed that the areas where the electrodes 3 and 4 face each other are the same.
Figure JPOXMLDOC01-appb-I000007
 上記容量素子のインピーダンスZは、下記式(8)で表される。iは虚数単位である。
Figure JPOXMLDOC01-appb-I000008
The impedance Z of the capacitive element is represented by the following formula (8). i is the imaginary unit.
Figure JPOXMLDOC01-appb-I000008
 上記式(1)から上記式(8)を用いることにより、電極3と電極4との間のインピーダンスZtotalが求められる。図3は可変容量素子1の等価回路を示す回路図であり、インピーダンスZtotalに関する等価回路を示している。インピーダンスZtotalは、図2に示したバルク領域7aとシース領域7bおよび7cとを、2枚の平板電極で挟んだ平行平板キャパシタが有するインピーダンスと等価である。 The impedance Z total between the electrodes 3 and 4 can be obtained by using the above equations (1) to (8). FIG. 3 is a circuit diagram showing an equivalent circuit of the variable capacitance element 1, showing an equivalent circuit relating to the impedance Z total . The impedance Z total is equivalent to the impedance of a parallel plate capacitor in which the bulk region 7a and the sheath regions 7b and 7c shown in FIG. 2 are sandwiched between two plate electrodes.
 Ztotalは、下記式(9)で表すことができる。下記式(9)において、Zs1は、電極3の近傍に形成されたシース領域7bのインピーダンスである。Zbulkは、バルク領域7aのインピーダンスである。Zs2は、電極4の近傍に形成されたシース領域7cのインピーダンスである。すなわち、Zs1、ZbulkおよびZs2は、2枚の平板状の電極3と電極4とで挟んだ平行平板キャパシタのインピーダンスである。
Figure JPOXMLDOC01-appb-I000009
Z total can be represented by the following formula (9). In the following equation (9), Z s1 is the impedance of the sheath region 7b formed near the electrode 3; Z bulk is the impedance of the bulk region 7a. Z s2 is the impedance of the sheath region 7c formed near the electrode 4; That is, Z s1 , Z bulk and Z s2 are impedances of parallel plate capacitors sandwiched between two plate- like electrodes 3 and 4 .
Figure JPOXMLDOC01-appb-I000009
 Zs1、ZbulkおよびZs2は、下記式(10)、下記式(11)および下記式(12)でそれぞれ表すことができる。なお、下記式(10)、下記式(11)および下記式(12)において、Aは、電極3の面積と電極4の面積とを示しており、電極3と電極4とが対向する面積は同じある。
Figure JPOXMLDOC01-appb-I000010
Z s1 , Z bulk and Z s2 can be represented by the following formulas (10), (11) and (12) respectively. In the following formulas (10), (11) and (12) below, A indicates the area of the electrode 3 and the area of the electrode 4, and the area where the electrode 3 and the electrode 4 face each other is There is the same.
Figure JPOXMLDOC01-appb-I000010
 電極3と電極4との間のインピーダンスを、直列寄生抵抗を有する可変容量素子と仮定した場合、当該可変容量素子の静電容量値Ctotalおよび直列寄生抵抗値Rtotalは、下記式(13)および下記式(14)でそれぞれ表すことができる。なお、下記式(13)および下記式(14)において、Im(Ztotal)は、Ztotalの虚部を示しており、Re(Ztotal)は、Ztotalの実部を示している。
Figure JPOXMLDOC01-appb-I000011
Assuming that the impedance between the electrodes 3 and 4 is a variable capacitive element having a series parasitic resistance, the capacitance value C total and the series parasitic resistance value R total of the variable capacitive element are given by the following equation (13) and the following formula (14), respectively. In the following formulas (13) and (14), Im( Ztotal ) indicates the imaginary part of Ztotal , and Re( Ztotal ) indicates the real part of Ztotal .
Figure JPOXMLDOC01-appb-I000011
 さらに、上記可変容量素子のQ値は、下記式(15)で表すことができる。
Figure JPOXMLDOC01-appb-I000012
Furthermore, the Q value of the variable capacitance element can be expressed by the following equation (15).
Figure JPOXMLDOC01-appb-I000012
 上記式(2)、上記式(5)および上記式(6)から明らかなように、上記式(10)から上記式(12)までに含まれる、バルク領域7aの誘電率εbulk、シース領域7bのシース幅s、シース領域7cのシース幅sおよびバルク領域7aの厚みlは、全てシース領域7bおよび7cに含まれる電子密度nの関数である。このため、放電制御部6が、電極3と電極4との間に存在する電子密度nを調整することで、電極3と電極4との間のインピーダンスが可変となる。 As is clear from the above formulas (2), (5), and (6), the dielectric constant ε bulk of the bulk region 7a and the sheath region 7a included in the above formulas (10) to (12) The sheath width s 1 of 7b, the sheath width s 2 of sheath region 7c and the thickness l of bulk region 7a are all functions of the electron density n e contained in sheath regions 7b and 7c. Therefore, the impedance between the electrodes 3 and 4 becomes variable by the discharge control unit 6 adjusting the electron density ne between the electrodes 3 and 4 .
 図4は、可変容量素子1における静電容量値とQ値との関係を示すグラフであり、図3の等価回路モデルを用いた可変容量素子1の等価回路モデルの静電容量値CtotalとQ値との依存性を、直流電圧Vbiasごとに示したものである。図4において、放電制御部6は、電子密度nを0(m-3)から1020(m-3)の範囲で可変としている。 FIG. 4 is a graph showing the relationship between the capacitance value and the Q value in the variable capacitance element 1. The capacitance value C total of the equivalent circuit model of the variable capacitance element 1 using the equivalent circuit model of FIG. The dependence on the Q value is shown for each DC voltage V bias . In FIG. 4, the discharge controller 6 makes the electron density n e variable in the range from 0(m −3 ) to 10 20 (m −3 ).
 静電容量値CtotalとQ値との関係を算出するにあたり、電磁波の角周波数ωを、ω=94.2(Mrad/s)とし、電極3および電極4の面積AをA=10(mm)とし、電極3と電極4との間の距離dをd=10(mm)とし、電子温度Teを、Te=1(eV)としている。また、密封容器2に封入したガスはアルゴンであり、ガス温度を0.1(eV)とし、ガス圧力を266(Pa)とし、アルゴンイオンの質量mを、m=6.7×10-26(kg)とし、プラズマ7中の電子の衝突周波数νを、ν=1.4×1010(Hz)としている。 In calculating the relationship between the capacitance value C total and the Q value, the angular frequency ω of the electromagnetic wave is set to ω=94.2 (Mrad/s), and the area A of the electrodes 3 and 4 is set to A=10 3 ( mm 2 ), the distance d between the electrodes 3 and 4 is d=10 3 (mm), and the electron temperature Te is Te=1 (eV). The gas enclosed in the sealed container 2 is argon, the gas temperature is 0.1 (eV), the gas pressure is 266 (Pa), and the mass mi of argon ions is m i = 6.7×10 −26 (kg), and the collision frequency ν m of electrons in the plasma 7 is ν m =1.4×10 10 (Hz).
 図4において、曲線Aは、直流電圧Vbiasが0(V)である際の静電容量値CtotalとQ値との関係を示している。Vbias=0(V)である場合、電源5によって電極3と電極4との間に直流電圧が印加されないことを意味する。すなわち、曲線Aが示す静電容量値CtotalとQ値との関係は、非特許文献1に記載された従来の可変容量素子に対応する。 In FIG. 4, curve A shows the relationship between the capacitance value C total and the Q value when the DC voltage V bias is 0 (V). If V bias =0 (V), it means that no DC voltage is applied between the electrodes 3 and 4 by the power supply 5 . That is, the relationship between the capacitance value C total and the Q value indicated by the curve A corresponds to the conventional variable capacitance element described in Non-Patent Document 1.
 また、曲線Bは、直流電圧Vbiasが30(V)である際の静電容量値CtotalとQ値との関係を示している。曲線Cは、直流電圧Vbiasが60(V)である際の静電容量値CtotalとQ値との関係を示しており、曲線Dは、直流電圧Vbiasが100(V)である際の静電容量値CtotalとQ値との関係を示している。 Curve B shows the relationship between the capacitance value C total and the Q value when the DC voltage V bias is 30 (V). Curve C shows the relationship between the capacitance value C total and the Q value when the DC voltage V bias is 60 (V), and curve D shows the relationship when the DC voltage V bias is 100 (V). and the Q value.
 図4から明らかなように、Vbias=0(V)を印加することによって可変容量素子1のQ値が改善されている。例えば、可変容量素子1の静電容量がCtotal=10(pF)である場合、曲線Aが示すVbias=0(V)における静電容量値CtotalとQ値との関係では、Q値は「2」程度である。これに対して、曲線Dが示すVbias=100(V)における静電容量値CtotalとQ値との関係では、Q値が「15」程度まで改善している。 As is clear from FIG. 4, the Q value of the variable capacitance element 1 is improved by applying V bias =0 (V). For example, when the capacitance of the variable capacitance element 1 is C total =10 (pF), the relationship between the capacitance value C total and the Q value at V bias =0 (V) indicated by the curve A is is about "2". On the other hand, in the relationship between the capacitance value C total and the Q value at V bias =100 (V) indicated by the curve D, the Q value is improved to about "15".
 以上のように、実施の形態1に係る可変容量素子1は、内部にガスが封入された密封容器2と、密封容器2の内部に設けられ、かつ接地されている電極3と、密封容器2の内部に設けられ、かつ電極3と対向して配置された電極4と、一端が電極4に接続され、他端が接地され、密封容器2の内部に設けられた電極3と電極4との間に直流電圧を印加し、当該直流電圧を変更可能な電源5と、密封容器2の内部に封入されたガスをプラズマ状態とし、プラズマ7の電子密度を変更可能な放電制御部6とを備える。可変容量素子1は、電源5が電極3と電極4との間に印加する直流電圧を調整し、放電制御部6がプラズマ7の電子密度を調整することにより、電極3と電極4との間のインピーダンスを調整できるので、プラズマを用いた従来の可変容量素子よりも低損失に動作することができる。 As described above, the variable capacitance element 1 according to Embodiment 1 includes the sealed container 2 in which gas is sealed, the electrode 3 provided inside the sealed container 2 and grounded, and the sealed container 2 and an electrode 4 provided inside the sealed container 2 and arranged opposite to the electrode 3, and an electrode 3 and an electrode 4 having one end connected to the electrode 4 and the other end grounded and provided inside the sealed container 2. A power source 5 that applies a DC voltage between the . In the variable capacitance element 1, the power supply 5 adjusts the DC voltage applied between the electrodes 3 and 4, and the discharge control unit 6 adjusts the electron density of the plasma 7, thereby controlling the voltage between the electrodes 3 and 4. can be adjusted, it is possible to operate with a lower loss than the conventional variable capacitance element using plasma.
実施の形態2.
 図5は、実施の形態2に係る可変容量素子1Aの構成の概要を示す断面模式図であり、可変容量素子1Aの主要部分の断面を概略的に示している。図5において、図1と同一の構成要素には同一の符号を付して説明を省略する。可変容量素子1Aは、密封容器2A、電極3、電極4、電源5および放電制御部6Aを備える。放電制御部6Aは、電極8、電極9および電源10を備えて構成される。
Embodiment 2.
FIG. 5 is a schematic cross-sectional view showing the outline of the configuration of the variable capacitive element 1A according to the second embodiment, and schematically shows the cross section of the main part of the variable capacitive element 1A. In FIG. 5, the same components as those in FIG. 1 are assigned the same reference numerals, and descriptions thereof are omitted. The variable capacitance element 1A includes a sealed container 2A, electrodes 3, 4, a power source 5 and a discharge control section 6A. The discharge control section 6A is configured with an electrode 8, an electrode 9 and a power supply 10. As shown in FIG.
 密封容器2Aの内部には、電極3および電極4に加え、電極8および電極9が設けられている。さらに、密封容器2Aには、ヘリウム、ネオンまたはアルゴンなどの電離しやすいガスが封入される。 In addition to the electrodes 3 and 4, electrodes 8 and 9 are provided inside the sealed container 2A. Furthermore, the sealed container 2A is filled with an easily ionized gas such as helium, neon, or argon.
 電極8は、密封容器2Aの内部に設けられ、かつ電極3と電極4とが対向する方向に直交する位置に配置された第3の電極である。例えば、電極8は、密封容器2Aの内部と外気とを連通させないように設けられた第3の配線によって電源10の正極側の端子に接続されている。 The electrode 8 is a third electrode provided inside the sealed container 2A and arranged at a position orthogonal to the direction in which the electrodes 3 and 4 face each other. For example, the electrode 8 is connected to the positive terminal of the power supply 10 via a third wiring provided so as not to allow communication between the inside of the sealed container 2A and the outside air.
 電極9は、密封容器2Aの内部に設けられ、かつ、電極8との間に電極3および電極4が介在し、かつ電極8と対向して配置された第4の電極である。電極9は、密封容器2Aの内部と外気とを連通させないに設けられた第4の配線によって電源10の負極側の端子およびアースと電気的に接続されている。 The electrode 9 is a fourth electrode that is provided inside the sealed container 2A, has the electrodes 3 and 4 interposed between it and the electrode 8, and is arranged to face the electrode 8. The electrode 9 is electrically connected to the negative terminal of the power supply 10 and to the ground through a fourth wiring provided so as not to allow communication between the inside of the sealed container 2A and the outside air.
 電源10は、第3の配線を介して正極側の端子が電極8と接続され、第4の配線を介して負極側の端子が電極9およびアースと接続されている第2の可変電源である。電源10は、電極8と電極9との間に直流電圧を印加することで、密封容器2Aの内部に封入されたガスをプラズマ状態とし、電極8と電極9との間に印加する直流電圧を変更することにより、プラズマ7の電子密度を変更可能である。 The power supply 10 is a second variable power supply having a positive terminal connected to the electrode 8 via a third wiring and a negative terminal connected to the electrode 9 and ground via a fourth wiring. . The power supply 10 applies a DC voltage between the electrodes 8 and 9 to bring the gas enclosed inside the sealed container 2A into a plasma state, and applies a DC voltage between the electrodes 8 and 9. By changing, the electron density of the plasma 7 can be changed.
 以上のように、実施の形態2に係る可変容量素子1Aにおいて、放電制御部6Aが、密封容器2Aの内部に設けられ、かつ電極3と電極4とが対向する方向に直交する位置に配置された電極8と、密封容器2Aの内部に設けられ、かつ、電極8との間に電極3および電極4が介在し、かつ電極8と対向して配置された電極9と、負極側が接地され、電極8と電極9との間に電圧を印加することで、密封容器2Aの内部に封入されたガスをプラズマ状態とし、電極8と電極9との間に印加する電力を変更することにより、プラズマ7の電子密度を変更可能な電源10を備える。可変容量素子1Aは、電源5が電極3と電極4との間に印加する直流電圧を調整し、放電制御部6Aがプラズマ7の電子密度を調整することにより、電極3と電極4との間のインピーダンスを調整できるので、プラズマを用いた従来の可変容量素子よりも低損失に動作することができる。 As described above, in the variable capacitance element 1A according to the second embodiment, the discharge control section 6A is provided inside the sealed container 2A and arranged at a position orthogonal to the direction in which the electrodes 3 and 4 face each other. and an electrode 9 provided inside the sealed container 2A, interposed between the electrode 8 and the electrode 3 and the electrode 4, and arranged to face the electrode 8, and the negative electrode side is grounded, By applying a voltage between the electrodes 8 and 9, the gas enclosed inside the sealed container 2A is brought into a plasma state, and by changing the power applied between the electrodes 8 and 9, plasma is generated. 7 with a variable electron density power supply 10 . The variable capacitance element 1A adjusts the DC voltage applied between the electrodes 3 and 4 by the power source 5, and adjusts the electron density of the plasma 7 by the discharge control unit 6A. can be adjusted, it is possible to operate with a lower loss than the conventional variable capacitance element using plasma.
実施の形態3.
 図6は、実施の形態3に係る可変容量素子1Bの構成の概要を示す断面模式図であり、可変容量素子1Bの主要部分の断面を概略的に示している。図6において、図1と同一の構成要素には同一の符号を付して説明を省略する。可変容量素子1Bは、密封容器2、電極3、電極4、電源5および放電制御部6Bを備える。放電制御部6Bは、コイル11および電源12を備えて構成される。
Embodiment 3.
FIG. 6 is a schematic cross-sectional view showing the outline of the configuration of the variable capacitive element 1B according to the third embodiment, and schematically shows the cross section of the main part of the variable capacitive element 1B. In FIG. 6, the same components as in FIG. 1 are denoted by the same reference numerals, and descriptions thereof are omitted. The variable capacitance element 1B includes a sealed container 2, electrodes 3, electrodes 4, a power source 5 and a discharge control section 6B. The discharge control section 6B is configured with a coil 11 and a power source 12 .
 コイル11は、密封容器2の外周部にらせん状に巻回されたコイルであり、電極3と電極4とは電気的に絶縁状態である。電源12は、コイル11の両端に高周波電力を印加することで、密封容器2の内部に封入されたガスをプラズマ状態とする第3の可変電源である。また、電源12は、交流電源で実現され、コイル11の両端に印加する高周波電力を変更することで、プラズマ7の電子密度を変更可能である。 The coil 11 is a coil spirally wound around the outer circumference of the sealed container 2, and the electrodes 3 and 4 are electrically insulated. The power source 12 is a third variable power source that applies high-frequency power to both ends of the coil 11 to bring the gas sealed inside the sealed container 2 into a plasma state. Also, the power supply 12 is realized by an AC power supply, and the electron density of the plasma 7 can be changed by changing the high frequency power applied to both ends of the coil 11 .
 以上のように、実施の形態3に係る可変容量素子1Bにおいて、放電制御部6Bが、電極3と電極4と絶縁した状態で密封容器2の外周部にらせん状に巻回されたコイル11と、コイル11の両端に高周波電力を印加することで、密封容器2の内部に封入されたガスをプラズマ状態とし、コイル11の両端に印加する高周波電力を変更することにより、プラズマの電子密度を変更可能な電源12とを備える。可変容量素子1Bは、電源5が電極3と電極4との間に印加する直流電圧を調整し、放電制御部6Bがプラズマ7の電子密度を調整することにより、電極3と電極4との間のインピーダンスを調整できるので、プラズマを用いた従来の可変容量素子よりも低損失に動作することができる。 As described above, in the variable capacitance element 1B according to the third embodiment, the discharge control section 6B includes the coil 11 spirally wound around the outer peripheral portion of the sealed container 2 while being insulated from the electrodes 3 and 4. By applying high-frequency power to both ends of the coil 11, the gas enclosed inside the sealed container 2 is brought into a plasma state, and by changing the high-frequency power applied to both ends of the coil 11, the electron density of the plasma is changed. and a possible power source 12 . The variable capacitance element 1B adjusts the DC voltage applied between the electrodes 3 and 4 by the power source 5, and adjusts the electron density of the plasma 7 by the discharge control unit 6B. can be adjusted, it is possible to operate with a lower loss than the conventional variable capacitance element using plasma.
 また、放電制御部6Bでは、プラズマ7の形成を目的とした高電圧が印加される電極が密封容器2の内部に設けられていない。このため、放電制御部6Bは、ガスの電離によって生じたイオンガスが衝突して電極を削るスパッタリングに起因した電極の破壊が生じない。このため、可変容量素子1Bは、放電制御部6Aを有した可変容量素子1Aに比べて長寿命化を期待することができる。 Further, in the discharge control unit 6B, an electrode to which a high voltage is applied for the purpose of forming the plasma 7 is not provided inside the sealed container 2. Therefore, in the discharge control unit 6B, the electrodes are not destroyed due to the sputtering that scrapes the electrodes due to the collision of the ion gas generated by the ionization of the gas. Therefore, the variable-capacitance element 1B can be expected to have a longer life than the variable-capacitance element 1A having the discharge control section 6A.
実施の形態4.
 図7は、実施の形態4に係る可変容量素子1Cの構成の概要を示す断面模式図であり、可変容量素子1Cの主要部分の断面を概略的に示している。図7において、図1および図5と同一の構成要素には同一の符号を付して説明を省略する。可変容量素子1Cは、密封容器2A、電極3、電極4、電源5、放電制御部6A、フィルタ素子13およびフィルタ素子14を備える。
Embodiment 4.
FIG. 7 is a schematic cross-sectional view showing the outline of the configuration of the variable capacitance element 1C according to the fourth embodiment, and schematically shows the cross section of the main portion of the variable capacitance element 1C. In FIG. 7, the same components as those in FIGS. 1 and 5 are denoted by the same reference numerals, and descriptions thereof are omitted. The variable capacitance element 1C includes a sealed container 2A, electrodes 3, 4, a power supply 5, a discharge control section 6A, filter elements 13 and 14. FIG.
 フィルタ素子13は、電極3とアースとの間に設けられた第1のフィルタ素子であり、例えば、目的の周波数帯域の高周波信号を選択的に通過させる。フィルタ素子13は、密封容器2Aの内部と外気とを連通させないように設けられて電極3とアースとの間を電気的に接続する第1の配線における、電極3とアースとの間に設けられる。 The filter element 13 is a first filter element provided between the electrode 3 and the ground, and selectively passes, for example, high-frequency signals in a target frequency band. The filter element 13 is provided between the electrode 3 and the ground in the first wiring that is provided so as to prevent communication between the inside of the sealed container 2A and the outside air and electrically connects the electrode 3 and the ground. .
 フィルタ素子14は、電極4と電源5の負極側の端子との間に設けられた第2のフィルタ素子であり、フィルタ素子13と同様に、例えば、目的の周波数帯域の高周波信号を選択的に通過させる。フィルタ素子14は、密封容器2Aの内部と外気とを連通させないように設けられて電極4と電源5の負極側の端子との間を電気的に接続する第2の配線における、電極4と電源5との間に設けられる。 The filter element 14 is a second filter element provided between the electrode 4 and the negative terminal of the power source 5, and similarly to the filter element 13, for example, selectively filters a high-frequency signal in a target frequency band. let it pass. The filter element 14 is provided so as not to allow communication between the inside of the sealed container 2A and the outside air, and is connected between the electrode 4 and the power source in the second wiring that electrically connects the electrode 4 and the negative terminal of the power source 5. 5.
 フィルタ素子13およびフィルタ素子14は、電極3と電極4との間に印加する高周波信号において電気的に開放であり、電極3と電極4との間に印加する直流信号においては電気的に短絡になるように設計されている。これは、jを虚数単位とし、ωを電磁波の角周波数とした場合、インダクタンスLのコイルが有するインピーダンスはjωLで表されるので、上記高周波信号の周波数においてほぼ開放とみなせる程度のインダクタンスLを選定すればよいことを意味する。 Filter element 13 and filter element 14 are electrically open for a high-frequency signal applied between electrodes 3 and 4, and electrically short-circuited for a direct-current signal applied between electrodes 3 and 4. is designed to be This is because the impedance of the coil with the inductance L is expressed by jωL, where j is the imaginary unit and ω is the angular frequency of the electromagnetic wave. It means you should.
 図7に示すように、フィルタ素子13およびフィルタ素子14を配置することで、電極3と電極4との間に印加される高周波信号からみて、電極3と電極4との間に直流電圧を印加する回路である電源5は開放されている。すなわち、所望の高周波信号が印加された電極3と電極4との間のインピーダンスは、電極3と電極4との間に直流電圧を印加する電源5による影響を受けない。 As shown in FIG. 7, by arranging the filter element 13 and the filter element 14, a DC voltage is applied between the electrodes 3 and 4 in view of the high frequency signal applied between the electrodes 3 and 4. The power supply 5, which is the circuit for In other words, the impedance between the electrodes 3 and 4 to which the desired high-frequency signal is applied is not affected by the power supply 5 that applies the DC voltage between the electrodes 3 and 4 .
 なお、図7は図5に示した可変容量素子1Aに対してフィルタ素子13およびフィルタ素子14を設けたものを示したが、可変容量素子1Cは、図6に示した可変容量素子1Bに対して、フィルタ素子13およびフィルタ素子14を設けたものであってもよい。このように構成された可変容量素子1Cであっても、電極3と電極4との間のインピーダンスに対する電源5の影響が低減される。 FIG. 7 shows that the filter element 13 and the filter element 14 are provided with respect to the variable capacitance element 1A shown in FIG. Alternatively, the filter element 13 and the filter element 14 may be provided. Even in the variable capacitance element 1</b>C configured in this way, the influence of the power supply 5 on the impedance between the electrodes 3 and 4 is reduced.
 以上のように、実施の形態4に係る可変容量素子1Cは、フィルタ素子13およびフィルタ素子14を備え、電極3は、フィルタ素子13を介して接地され、電極4は、フィルタ素子14を介して電源5の一端に接続される。フィルタ素子13およびフィルタ素子14によって、電極3と電極4との間に直流電圧を印加する電源5が、電極3と電極4との間のインピーダンスに与える影響を低減することができる。 As described above, the variable capacitance element 1C according to the fourth embodiment includes the filter element 13 and the filter element 14, the electrode 3 is grounded through the filter element 13, and the electrode 4 is grounded through the filter element 14. It is connected to one end of the power supply 5 . Filter element 13 and filter element 14 can reduce the influence of power supply 5 that applies a DC voltage between electrodes 3 and 4 on the impedance between electrodes 3 and 4 .
実施の形態5.
 図8は、実施の形態5に係る可変容量素子1Dの構成の概要を示す断面模式図であり、可変容量素子1Dの主要部分の断面を概略的に示している。図8において、図1と同一の構成要素には同一の符号を付して説明を省略する。可変容量素子1Dは、密封容器2A、電極3、電極4、電源5、放電制御部6A、フィルタ素子15およびフィルタ素子16を備える。
Embodiment 5.
FIG. 8 is a schematic cross-sectional view showing the outline of the configuration of the variable capacitive element 1D according to the fifth embodiment, and schematically shows the cross section of the main part of the variable capacitive element 1D. In FIG. 8, the same components as those in FIG. 1 are assigned the same reference numerals, and descriptions thereof are omitted. The variable capacitance element 1</b>D includes a sealed container 2</b>A, electrodes 3 , 4 , a power source 5 , a discharge control section 6</b>A, filter elements 15 and 16 .
 フィルタ素子15は、電極3と電源5の負極側の端子との間に設けられた第3のフィルタ素子であり、例えば、目的の周波数帯域の高周波信号を選択的に通過させる。フィルタ素子15は、密封容器2Aの内部と外気とを連通させないように設けられて電極3と電源5との間を電気的に接続する第3の配線における、電極3と電源5との間に設けられる。 The filter element 15 is a third filter element provided between the electrode 3 and the negative terminal of the power supply 5, and selectively passes, for example, high-frequency signals in a target frequency band. The filter element 15 is provided between the electrode 3 and the power source 5 in the third wiring that electrically connects the electrode 3 and the power source 5 so as not to allow communication between the inside of the sealed container 2A and the outside air. be provided.
 フィルタ素子16は、電極4と電源5の負極側の端子との間に設けられた第4のフィルタ素子であり、フィルタ素子15と同様に、例えば、目的の周波数帯域の高周波信号を選択的に通過させる。フィルタ素子16は、密封容器2Aの内部と外気とを連通させないように設けられて電極4と電源5の負極側の端子との間を電気的に接続する第2の配線における、電極4と電源5との間に設けられる。 The filter element 16 is a fourth filter element provided between the electrode 4 and the negative terminal of the power supply 5, and similarly to the filter element 15, for example, selectively filters a high-frequency signal in a target frequency band. let it pass. The filter element 16 is provided so as not to allow communication between the inside of the sealed container 2A and the outside air, and is connected between the electrode 4 and the power source in the second wiring that electrically connects the electrode 4 and the negative terminal of the power source 5. 5.
 可変容量素子1Dは、フィルタ素子15を介して電極3が電源5に接続され、フィルタ素子16を介して電極4が電源5に接続されている。これにより、電極3の近傍に形成されるシース領域7bと電極4の近傍に形成されたシース領域7cに対して、あたかも上記式(3)に含まれる直流電圧Vbiasが印加された場合と同様の状態になる。 The electrode 3 of the variable capacitance element 1D is connected to the power supply 5 via the filter element 15, and the electrode 4 is connected to the power supply 5 via the filter element 16. FIG. As a result, the sheath region 7b formed in the vicinity of the electrode 3 and the sheath region 7c formed in the vicinity of the electrode 4 are applied as if the DC voltage V bias included in the above formula (3) is applied. state.
 図9は、可変容量素子1Dにおける静電容量値CtotalとQ値との関係を示すグラフであり、可変容量素子1Dの構成を図3に示した等価回路モデルで表して、電極3と電極4との双方に直流電圧Vbiasを印加した際の静電容量値CtotalとQ値との関係を示している。図9において、密封容器2Aに封入したガスはアルゴンである。電子密度n、電磁波の角周波数ω、電極3および電極4の面積A、電極3と電極4との間の距離d、電子温度Te、ガス温度、ガス圧力、アルゴンイオンの質量m、および、プラズマ7中の電子の衝突周波数νといった各種の物理パラメータは、図4における計算と同値を用いている。 FIG. 9 is a graph showing the relationship between the capacitance value C total and the Q value in the variable capacitance element 1D. The configuration of the variable capacitance element 1D is represented by the equivalent circuit model shown in FIG. 4 shows the relationship between the electrostatic capacitance value C total and the Q value when a DC voltage V bias is applied to both of . In FIG. 9, the gas enclosed in the sealed container 2A is argon. the electron density n e , the angular frequency ω of the electromagnetic wave, the area A of the electrodes 3 and 4, the distance d between the electrodes 3 and 4, the electron temperature Te, the gas temperature, the gas pressure, the mass of argon ions m i , and , and the collision frequency ν m of electrons in the plasma 7, the same values as in the calculation in FIG. 4 are used.
 図9において、曲線Eは、図8に示した可変容量素子1Dにおいて、直流電圧Vbiasが100(V)である際の静電容量値CtotalとQ値との関係を示している。また、曲線Fは、図1に示した可変容量素子1において、直流電圧Vbiasが100(V)である際の静電容量値CtotalとQ値との関係(図4における曲線Dの関係)を示している。
 図9から明らかなように、可変容量素子1Dは、フィルタ素子15およびフィルタ素子16を設けたことで、実施の形態1に示した可変容量素子1と比較して、Q値の最小値が「4」から「5」程度まで改善している。すなわち、可変容量素子1Dは、可変容量素子1よりも低損失に動作する。
In FIG. 9, curve E shows the relationship between the capacitance value C total and the Q value when the DC voltage V bias is 100 (V) in the variable capacitance element 1D shown in FIG. Curve F shows the relationship between the capacitance value C total and the Q value when the DC voltage V bias is 100 (V) in the variable capacitance element 1 shown in FIG. ).
As is clear from FIG. 9, variable capacitive element 1D is provided with filter element 15 and filter element 16, and compared with variable capacitive element 1 shown in Embodiment 1, the minimum value of the Q value is " improved from 4 to 5. That is, the variable-capacitance element 1D operates with less loss than the variable-capacitance element 1 does.
 なお、図8は図5に示した可変容量素子1Aに対してフィルタ素子15およびフィルタ素子16を設けたものを示したが、可変容量素子1Dは、図6に示した可変容量素子1Bに対して、フィルタ素子15およびフィルタ素子16を設けたものであってもよい。このように構成された可変容量素子1Dであっても可変容量素子1よりも低損失に動作する。 FIG. 8 shows that the filter element 15 and the filter element 16 are provided with respect to the variable capacitance element 1A shown in FIG. Alternatively, the filter element 15 and the filter element 16 may be provided. Even the variable capacitance element 1</b>D configured in this way operates with a lower loss than the variable capacitance element 1 .
 以上のように、実施の形態5に係る可変容量素子1Dは、フィルタ素子15およびフィルタ素子16を備え、電極3は、フィルタ素子15を介して電源5の一端に接続される。電極4は、フィルタ素子16を介して電源5の一端に接続される。フィルタ素子15およびフィルタ素子16によって、可変容量素子1Dは、可変容量素子1よりも低損失に動作する。 As described above, the variable capacitance element 1D according to Embodiment 5 includes the filter element 15 and the filter element 16, and the electrode 3 is connected to one end of the power supply 5 via the filter element 15. Electrode 4 is connected to one end of power supply 5 via filter element 16 . Filter element 15 and filter element 16 allow variable capacitive element 1D to operate with a lower loss than variable capacitive element 1 .
実施の形態6.
 図10は、実施の形態6に係る可変容量素子1Eの構成の概要を示す断面模式図であり、可変容量素子1Eの主要部分の断面を概略的に示している。図10において、図1と同一の構成要素には同一の符号を付して説明を省略する。可変容量素子1Eは、密封容器2、電極3、電極4、電源5、放電制御部6、電極17、電極18、誘電体19および誘電体20を備える。
Embodiment 6.
FIG. 10 is a schematic cross-sectional view showing the outline of the configuration of the variable capacitive element 1E according to the sixth embodiment, and schematically shows the cross section of the main part of the variable capacitive element 1E. In FIG. 10, the same components as those in FIG. 1 are assigned the same reference numerals, and descriptions thereof are omitted. The variable capacitance element 1</b>E includes a sealed container 2 , electrodes 3 , 4 , a power supply 5 , a discharge controller 6 , electrodes 17 , 18 , dielectrics 19 and 20 .
 電極17は、密封容器2の内部に設けられ、かつ電極3が電極4と対向する側とは反対側において電極3と対向して配置された第5の電極である。例えば、電極17は、電極3と同じ面積を有した平板状の電極である。電極18は、密封容器2の内部に設けられて、かつ電極4が電極3と対向する側とは反対側において電極4と対向して配置された第6の電極である。例えば、電極18は、電極4と同じ面積を有した平板状の電極である。
 なお、電極3は、電極4と同じ面積を有した平板状の電極である。
The electrode 17 is a fifth electrode provided inside the sealed container 2 and arranged to face the electrode 3 on the side opposite to the side on which the electrode 3 faces the electrode 4 . For example, electrode 17 is a plate-like electrode having the same area as electrode 3 . The electrode 18 is a sixth electrode provided inside the sealed container 2 and arranged to face the electrode 4 on the side opposite to the side on which the electrode 4 faces the electrode 3 . For example, electrode 18 is a plate-like electrode having the same area as electrode 4 .
In addition, the electrode 3 is a plate-like electrode having the same area as the electrode 4 .
 誘電体19は、電極3と電極17との間に設けられた第1の誘電体である。例えば、誘電体19は、電極3におけるプラズマ7と接していない面に対して物理的に密着して配置される。誘電体20は、電極4と電極18との間に設けられた第2の誘電体である。例えば、誘電体20は、電極4におけるプラズマ7と接していない面に対して物理的に密着して配置される。 A dielectric 19 is a first dielectric provided between the electrodes 3 and 17 . For example, the dielectric 19 is placed in physical contact with the surface of the electrode 3 that is not in contact with the plasma 7 . Dielectric 20 is a second dielectric provided between electrodes 4 and 18 . For example, the dielectric 20 is placed in physical contact with the surface of the electrode 4 that is not in contact with the plasma 7 .
 なお、図10において記載が省略されているが、可変容量素子1Eは、電極17と電極18とに高周波電界を印加する回路を備えている。すなわち、可変容量素子1Eにおいては、当該回路が、電極17と電極18とに高周波電界を印加することにより、電極17と電極18とにより挟まれた構造体が容量素子として機能する。 Although not shown in FIG. 10, the variable capacitance element 1E includes a circuit for applying a high frequency electric field to the electrodes 17 and 18. That is, in the variable capacitive element 1E, the circuit applies a high-frequency electric field to the electrodes 17 and 18, so that the structure sandwiched between the electrodes 17 and 18 functions as a capacitive element.
 図11は、可変容量素子1Eの等価回路を示す回路図である。図11に示す等価回路モデルは、図1で示した可変容量素子1に対して、電極3と電極17との間に誘電体19を設けて構成されるキャパシタCを直列に装荷し、電極4と電極18との間に誘電体20を設けて構成される容量のキャパシタンCを直列に装荷したものと等しい。 FIG. 11 is a circuit diagram showing an equivalent circuit of the variable capacitance element 1E. 11 , the equivalent circuit model shown in FIG. 4 and the electrode 18 with a dielectric 20 provided in series with a capacitance capacitor C2 .
 キャパシタCおよびCは、下記式(16)および下記式(17)によって表すことができる。下記式(16)および下記式(17)において、εr1は、誘電体19の比誘電率であり、εr2は、誘電体20の比誘電率である。tは、誘電体19の厚みであり、tは、誘電体20の厚みである。
Figure JPOXMLDOC01-appb-I000013
Capacitors C1 and C2 can be represented by the following equations ( 16 ) and (17). In the following equations (16) and (17), ε r1 is the relative permittivity of the dielectric 19 and ε r2 is the relative permittivity of the dielectric 20 . t 1 is the thickness of dielectric 19 and t 2 is the thickness of dielectric 20 .
Figure JPOXMLDOC01-appb-I000013
 図12は、可変容量素子における静電容量値CtotalとQ値との関係を示すグラフであり、図11の等価回路モデルを用いた可変容量素子1Eの等価回路モデルの静電容量値CtotalとQ値との依存性を、直流電圧Vbiasごとに示したものである。図12において、放電制御部6は、電子密度nを0(m-3)から1020(m-3)の範囲で可変としている。図12において、密封容器2に封入したガスはアルゴンである。また、電子密度n、電磁波の角周波数ω、電極3および電極4の面積A、電極3と電極4との間の距離d、電子温度Te、ガス温度、ガス圧力、アルゴンイオンの質量m、および、プラズマ7中の電子の衝突周波数νといった各種の物理パラメータは、図4における計算と同値を用いている。 FIG. 12 is a graph showing the relationship between the capacitance value C total and the Q value in the variable capacitance element . and the Q value are shown for each DC voltage V bias . In FIG. 12, the discharge controller 6 makes the electron density n e variable in the range from 0(m −3 ) to 10 20 (m −3 ). In FIG. 12, the gas enclosed in the sealed container 2 is argon. Further, the electron density n e , the angular frequency ω of the electromagnetic wave, the area A of the electrodes 3 and 4, the distance d between the electrodes 3 and 4, the electron temperature Te, the gas temperature, the gas pressure, and the mass of argon ions m i , and the collision frequency ν m of electrons in the plasma 7, the same values as in the calculation in FIG. 4 are used.
 誘電体19および誘電体20はともに石英ガラス(比誘電率3.7)である。また、誘電体19の厚みtおよび誘電体20の厚みtを0(mm)から1(mm)の範囲で変化させている。なお、誘電体19の厚みtおよび誘電体20の厚みtは等しいものとする。図12において、曲線A1は、直流電圧Vbiasが100(V)であり、t=tが0(mm)である際の静電容量値CtotalとQ値との関係を示している。t=tが0(mm)である場合、可変容量素子1Eには、キャパシタCおよびCが存在しないことを意味する。すなわち、曲線A1が示す静電容量値CtotalとQ値との関係は、図1に示した可変容量素子に1対応する。 Both dielectric 19 and dielectric 20 are quartz glass (relative permittivity 3.7). Also, the thickness t1 of the dielectric 19 and the thickness t2 of the dielectric 20 are varied within the range of 0 (mm) to 1 (mm). It is assumed that the thickness t1 of the dielectric 19 and the thickness t2 of the dielectric 20 are equal. In FIG. 12, curve A1 shows the relationship between the capacitance value C total and the Q value when the DC voltage V bias is 100 (V) and t 1 =t 2 is 0 (mm). . When t 1 =t 2 is 0 (mm), it means that the capacitors C 1 and C 2 do not exist in the variable capacitance element 1E. That is, the relationship between the capacitance value C total and the Q value indicated by the curve A1 corresponds to 1 for the variable capacitance element shown in FIG.
 また、図12において、曲線B1は、直流電圧Vbiasが100(V)であり、t=tが0.1(mm)である際の静電容量値CtotalとQ値との関係を示している。曲線C1は、直流電圧Vbiasが100(V)であり、t=tが0.5(mm)である際の静電容量値CtotalとQ値との関係を示しており、曲線D1は、直流電圧Vbiasが100(V)であり、t=tが1.0(mm)である際の静電容量値CtotalとQ値との関係を示している。 Further, in FIG. 12, a curve B1 shows the relationship between the capacitance value C total and the Q value when the DC voltage V bias is 100 (V) and t 1 =t 2 is 0.1 (mm). is shown. A curve C1 shows the relationship between the capacitance value C total and the Q value when the DC voltage V bias is 100 (V) and t 1 =t 2 is 0.5 (mm). D1 indicates the relationship between the capacitance value C total and the Q value when the DC voltage V bias is 100 (V) and t 1 =t 2 is 1.0 (mm).
 図12から明らかなように、キャパシタCおよびCを装荷することで、静電容量値Ctotalの可変幅は縮小するが、Q値は改善される。例えば、静電容量Ctotal=10(pF)の場合、曲線A1が示すt=t=0(mm)における静電容量値CtotalとQ値との関係において、Q値は「15」程度である。これに対し、曲線D1が示すt=t=1.0(mm)における静電容量値CtotalとQ値との関係において、Q値は「100」程度まで改善している。 As is clear from FIG. 12, loading the capacitors C1 and C2 reduces the variable width of the capacitance value C total , but improves the Q value. For example, when the capacitance C total =10 (pF), the Q value is “15” in the relationship between the capacitance value C total and the Q value at t 1 =t 2 =0 (mm) indicated by the curve A1. degree. On the other hand, in the relationship between the capacitance value C total and the Q value at t 1 =t 2 =1.0 (mm) indicated by the curve D1, the Q value is improved to about "100".
 なお、図10は、図1に示した可変容量素子1に対して、電極17、電極18、誘電体19および誘電体20から構成されたキャパシタCおよびCを装荷したものを示したが、可変容量素子1Eは、図5に示した可変容量素子1A、図6に示した可変容量素子1B、図7に示した可変容量素子1Cおよび図8に示した可変容量素子1Dのうちのいずれかに対して、キャパシタCおよびCを装荷したものであってもよい。このように構成された可変容量素子1Eであっても可変容量素子1よりも低損失に動作する。 FIG. 10 shows the variable capacitance element 1 shown in FIG . , the variable-capacitance element 1E is any one of the variable-capacitance element 1A shown in FIG. 5, the variable-capacitance element 1B shown in FIG. 6, the variable-capacitance element 1C shown in FIG. 7, and the variable-capacitance element 1D shown in FIG. Alternatively , capacitors C1 and C2 may be loaded. Even the variable-capacitance element 1</b>E configured in this way operates with a lower loss than the variable-capacitance element 1 .
 以上のように、実施の形態6に係る可変容量素子1Eは、密封容器2の内部に設けられ、かつ電極3が電極4と対向する側とは反対側において電極3と対向して配置された電極17と、密封容器2の内部に設けられ、かつ電極4が電極3と対向する側とは反対側において電極4と対向して配置された電極18と、電極3と電極17との間に設けられた第1の誘電体と、電極4と電極18との間に設けられた誘電体20を備える。
 可変容量素子1Eは、電源5が電極3と電極4との間に印加する直流電圧を調整し、放電制御部6がプラズマ7の電子密度を調整することにより、電極3と電極4との間を含む電極17と電極18との間におけるインピーダンスを調整できるので、プラズマを用いた従来の可変容量素子よりも低損失に動作することができる。
As described above, the variable capacitance element 1E according to Embodiment 6 is provided inside the sealed container 2, and the electrode 3 is arranged to face the electrode 3 on the side opposite to the side facing the electrode 4. between the electrode 17, the electrode 18 provided inside the sealed container 2 and facing the electrode 4 on the side opposite to the side where the electrode 4 faces the electrode 3, and the electrode 3 and the electrode 17 A first dielectric provided and a dielectric 20 provided between electrodes 4 and 18 .
The variable capacitance element 1E adjusts the DC voltage applied between the electrodes 3 and 4 by the power source 5, and adjusts the electron density of the plasma 7 by the discharge control unit 6, thereby controlling the voltage between the electrodes 3 and 4. Since the impedance between the electrode 17 and the electrode 18 can be adjusted, it is possible to operate with lower loss than the conventional variable capacitance element using plasma.
 なお、各実施の形態の組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。 It should be noted that it is possible to omit any component in each of the combinations of the embodiments, the modification of the components of each of the embodiments, or the configuration of each of the embodiments.
 本開示に係る可変容量素子は、例えば、プラズマ処理装置に利用可能である。 A variable capacitance element according to the present disclosure can be used, for example, in a plasma processing apparatus.
 1,1A,1B,1C,1D,1E 可変容量素子、2,2A 密封容器、3,4,8,9,17,18 電極、5,10,12 電源、6 放電制御部、7 プラズマ、7a バルク領域、7b,7c シース領域、11 コイル、13,14,15,16 フィルタ素子、19,20 誘電体。 1, 1A, 1B, 1C, 1D, 1E variable capacitance element, 2, 2A sealed container, 3, 4, 8, 9, 17, 18 electrode, 5, 10, 12 power supply, 6 discharge control section, 7 plasma, 7a Bulk region, 7b, 7c Sheath region, 11 Coil, 13, 14, 15, 16 Filter element, 19, 20 Dielectric.

Claims (6)

  1.  内部にガスが封入された密封容器と、
     前記密封容器の内部に設けられ、かつ接地された第1の電極と、
     前記密封容器の内部に設けられ、かつ前記第1の電極と対向して配置された第2の電極と、
     一端が前記第2の電極に接続され、他端が接地され、前記第1の電極と前記第2の電極との間に直流電圧を印加し、当該直流電圧を変更可能な第1の可変電源と、
     前記密封容器の内部に封入されたガスをプラズマ状態とし、プラズマの電子密度を変更可能な放電制御部と、
     を備え、
     前記第1の可変電源が前記直流電圧を調整し、前記放電制御部がプラズマの電子密度を調整することにより、前記第1の電極と前記第2の電極との間のインピーダンスを可変とすること
     を特徴とする可変容量素子。
    a sealed container in which gas is sealed;
    a first electrode provided inside the sealed container and grounded;
    a second electrode provided inside the sealed container and arranged to face the first electrode;
    A first variable power supply having one end connected to the second electrode and the other end grounded, applying a DC voltage between the first electrode and the second electrode, and capable of changing the DC voltage When,
    a discharge control unit capable of changing the electron density of the plasma by bringing the gas enclosed inside the sealed container into a plasma state;
    with
    The impedance between the first electrode and the second electrode is made variable by the first variable power source adjusting the DC voltage and the discharge control section adjusting the electron density of the plasma. A variable capacitance element characterized by:
  2.  前記放電制御部は、
     前記密封容器の内部に設けられ、かつ前記第1の電極と前記第2の電極とが対向する方向に直交する位置に配置された第3の電極と、
     前記密封容器の内部に設けられ、かつ、前記第3の電極との間に前記第1の電極および前記第2の電極が介在し、かつ前記第3の電極と対向して配置された第4の電極と、
     負極側が接地され、前記第3の電極と前記第4の電極との間に電圧を印加することで、前記密封容器の内部に封入されたガスをプラズマ状態とし、前記第3の電極と前記第4の電極との間に印加する電圧を変更することにより、プラズマの電子密度を変更可能な第2の可変電源と、を備えたこと
     を特徴とする請求項1に記載の可変容量素子。
    The discharge control unit
    a third electrode provided inside the sealed container and arranged at a position orthogonal to the direction in which the first electrode and the second electrode face each other;
    A fourth electrode provided inside the sealed container, with the first electrode and the second electrode interposed between itself and the third electrode, and arranged to face the third electrode an electrode of
    The negative electrode side is grounded, and a voltage is applied between the third electrode and the fourth electrode to bring the gas enclosed inside the sealed container into a plasma state, thereby connecting the third electrode and the fourth electrode. 2. The variable capacitance element according to claim 1, further comprising a second variable power supply capable of changing the electron density of the plasma by changing the voltage applied between the 4 electrodes.
  3.  前記放電制御部は、
     前記第1の電極と前記第2の電極と絶縁した状態で前記密封容器の外周部にらせん状に巻回されたコイルと、
     前記コイルの両端に高周波電力を印加することで、前記密封容器の内部に封入されたガスをプラズマ状態とし、前記コイルの両端に印加する高周波電力を変更することにより、プラズマの電子密度を変更可能な第3の可変電源と、を備えたこと
     を特徴とする請求項1に記載の可変容量素子。
    The discharge control unit
    a coil spirally wound around the outer periphery of the sealed container in a state of being insulated from the first electrode and the second electrode;
    By applying high-frequency power to both ends of the coil, the gas enclosed inside the sealed container is brought into a plasma state, and by changing the high-frequency power applied to both ends of the coil, the electron density of the plasma can be changed. 3. The variable capacitance element according to claim 1, further comprising a third variable power supply.
  4.  第1のフィルタ素子と、
     第2のフィルタ素子と、
     を備え、
     前記第1の電極は、前記第1のフィルタ素子を介して接地され、
     前記第2の電極は、前記第2のフィルタ素子を介して前記第1の可変電源の一端に接続されていること
     を特徴とする請求項1から請求項3のいずれか1項に記載の可変容量素子。
    a first filter element;
    a second filter element;
    with
    the first electrode is grounded through the first filter element;
    The variable power supply according to any one of claims 1 to 3, wherein the second electrode is connected to one end of the first variable power supply via the second filter element. capacitive element.
  5.  第3のフィルタ素子と、
     第4のフィルタ素子と、
     を備え、
     前記第1の電極は、前記第3のフィルタ素子を介して前記第1の可変電源の一端に接続され、
     前記第2の電極は、前記第4のフィルタ素子を介して前記第1の可変電源の一端に接続されていること
     を特徴とする請求項1から請求項3のいずれか1項に記載の可変容量素子。
    a third filter element;
    a fourth filter element;
    with
    the first electrode is connected to one end of the first variable power supply via the third filter element;
    The variable power supply according to any one of claims 1 to 3, wherein the second electrode is connected to one end of the first variable power supply via the fourth filter element. capacitive element.
  6.  前記密封容器の内部に設けられ、かつ前記第1の電極が前記第2の電極と対向する側とは反対側において当該第1の電極と対向して配置された第5の電極と、
     前記密封容器の内部に設けられ、かつ前記第2の電極が前記第1の電極と対向する側とは反対側において当該第2の電極と対向して配置された第6の電極と、
     前記第1の電極と前記第5の電極との間に設けられた第1の誘電体と、
     前記第2の電極と前記第6の電極との間に設けられた第2の誘電体と、
     を備え、
     前記第1の可変電源が前記直流電圧を調整し、前記放電制御部がプラズマの電子密度を調整することにより、前記第1の電極と前記第2の電極との間を含む前記第5の電極と前記第6の電極との間におけるインピーダンスを可変とすること
     を特徴とする請求項1から請求項3のいずれか1項に記載の可変容量素子。
    a fifth electrode provided inside the sealed container and arranged opposite to the first electrode on the side opposite to the side on which the first electrode faces the second electrode;
    a sixth electrode provided inside the hermetic container and arranged to face the second electrode on the side opposite to the side on which the second electrode faces the first electrode;
    a first dielectric provided between the first electrode and the fifth electrode;
    a second dielectric provided between the second electrode and the sixth electrode;
    with
    The fifth electrode including between the first electrode and the second electrode is controlled by the first variable power supply adjusting the DC voltage and the discharge control unit adjusting the electron density of the plasma. 4. The variable capacitance element according to any one of claims 1 to 3, wherein the impedance between the and the sixth electrode is variable.
PCT/JP2021/004012 2021-02-04 2021-02-04 Variable-capacitance element WO2022168215A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/004012 WO2022168215A1 (en) 2021-02-04 2021-02-04 Variable-capacitance element
JP2022576356A JP7229448B1 (en) 2021-02-04 2021-02-04 Variable capacitance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/004012 WO2022168215A1 (en) 2021-02-04 2021-02-04 Variable-capacitance element

Publications (1)

Publication Number Publication Date
WO2022168215A1 true WO2022168215A1 (en) 2022-08-11

Family

ID=82740966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004012 WO2022168215A1 (en) 2021-02-04 2021-02-04 Variable-capacitance element

Country Status (2)

Country Link
JP (1) JP7229448B1 (en)
WO (1) WO2022168215A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243990A (en) * 1992-12-16 1994-09-02 Hitachi Ltd Impedance matching method and device thereof
JPH07169590A (en) * 1993-09-16 1995-07-04 Fujitsu Ltd Electron density measuring method and device thereof and electron density control device and plasma processing device
JP2002540582A (en) * 1999-03-31 2002-11-26 ラム リサーチ コーポレーション Plasma processor with coil having variable high frequency coupling
JP2013098177A (en) * 2011-10-31 2013-05-20 Semes Co Ltd Substrate processing device and impedance matching method
JP2017155292A (en) * 2016-03-02 2017-09-07 東京エレクトロン株式会社 Substrate treatment apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101174450B1 (en) 2007-09-14 2012-08-16 독립행정법인 산업기술종합연구소 Virtual reality environment creating device, and controller device
JP6243990B2 (en) 2016-10-24 2017-12-06 ローム株式会社 Reset circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243990A (en) * 1992-12-16 1994-09-02 Hitachi Ltd Impedance matching method and device thereof
JPH07169590A (en) * 1993-09-16 1995-07-04 Fujitsu Ltd Electron density measuring method and device thereof and electron density control device and plasma processing device
JP2002540582A (en) * 1999-03-31 2002-11-26 ラム リサーチ コーポレーション Plasma processor with coil having variable high frequency coupling
JP2013098177A (en) * 2011-10-31 2013-05-20 Semes Co Ltd Substrate processing device and impedance matching method
JP2017155292A (en) * 2016-03-02 2017-09-07 東京エレクトロン株式会社 Substrate treatment apparatus

Also Published As

Publication number Publication date
JPWO2022168215A1 (en) 2022-08-11
JP7229448B1 (en) 2023-02-27

Similar Documents

Publication Publication Date Title
US5608364A (en) Layered stripline filter including inductive coupling adjustment strip
US6816356B2 (en) Integrated broadband ceramic capacitor array
US6353206B1 (en) Plasma system with a balanced source
US7537672B1 (en) Apparatus for plasma processing
US6853534B2 (en) Tunable capacitor
US7307829B1 (en) Integrated broadband ceramic capacitor array
US20130112666A1 (en) Plasma processing apparatus
JP2002532889A (en) Electrically tunable filter with dielectric varactor
JP6309683B1 (en) Plasma processing equipment
EP3648551B1 (en) Plasma treatment device
US20110043304A1 (en) Left-handed resonator and left-handed filter using the same
WO2022168215A1 (en) Variable-capacitance element
US9424994B2 (en) Tunable interdigitated capacitor
KR102589701B1 (en) Etching uniformity control device and method
WO2020179046A1 (en) Resonator coupling structure and frequency filter
JP7518847B2 (en) RF power variable capacitor and method of manufacturing same
JP7003344B2 (en) Variable capacitance element
JP3023939B2 (en) Low pass filter for high frequency
US10673112B2 (en) Coaxial line, resonator, and filter
KR102360910B1 (en) Vacuum capacitor and manufacturing method of the same
JP4940890B2 (en) Capacitor element and manufacturing method thereof
JPS60153618A (en) Tuner
JPH0582761B2 (en)
JPH0846469A (en) Laminated lc low-pass filter
CN118737609A (en) Coil assembly and semiconductor processing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576356

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924612

Country of ref document: EP

Kind code of ref document: A1