WO2022168150A1 - Channel device and nucleic acid amplification reactor - Google Patents

Channel device and nucleic acid amplification reactor Download PDF

Info

Publication number
WO2022168150A1
WO2022168150A1 PCT/JP2021/003702 JP2021003702W WO2022168150A1 WO 2022168150 A1 WO2022168150 A1 WO 2022168150A1 JP 2021003702 W JP2021003702 W JP 2021003702W WO 2022168150 A1 WO2022168150 A1 WO 2022168150A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
nucleic acid
acid amplification
amplification reaction
water
Prior art date
Application number
PCT/JP2021/003702
Other languages
French (fr)
Japanese (ja)
Inventor
祐美子 合志
友幸 坂井
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2021/003702 priority Critical patent/WO2022168150A1/en
Publication of WO2022168150A1 publication Critical patent/WO2022168150A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a channel device and a nucleic acid amplification reactor.
  • Methods for amplifying nucleic acids include isothermal amplification methods such as the PCR (Polymerase Chain Reaction) method and the LAMP (Loop-Mediated Isothermal Amplification) method.
  • the PCR method consists of DNA denaturation (dissociation of double-stranded DNA into single-stranded DNA), annealing (complementary primer binding to single-stranded DNA), and elongation (double-stranded DNA replication by complementary strand synthesis). is repeated at different temperatures to amplify the target DNA. Typically, heat denaturation is performed at about 95°C, annealing at about 60-65°C, and extension at about 72°C. In isothermal amplification methods, the reactions corresponding to these cycles are carried out at a constant temperature of the order of 35-65°C.
  • Nucleic acid amplification/detection mechanisms and dedicated devices have various forms, but a typical test flow includes the step of collecting a specimen, the step of introducing a solution (sample) from which the nucleic acid of a pathogen is extracted into a dedicated device, and the step of nucleic acid amplification. It consists of a step of amplifying the target gene in a reactor and a step of detecting the amplified product.
  • a microchannel (microchannel chip) formed on a substrate has been proposed as a dedicated device for nucleic acid amplification reaction. By moving the sample inside the microfluidic chip installed on heat blocks set to different temperature zones, each heat block can be maintained at a preset temperature to achieve the temperature changes necessary for PCR. can.
  • the success or failure of the nucleic acid amplification reaction is greatly affected by the concentration of the reagent composition. It is also beneficial to reduce sample temperature variations. For this reason, it is extremely important to precisely control and maintain a constant amount of the sample liquid introduced into the device for nucleic acid amplification reaction.
  • Patent Document 1 describes a method of aspirating a container containing a sample with a special pipette provided with a structure for releasing liquid that has been aspirated in excess of a target volume and introducing it into a device.
  • biological specimens such as nasal secretions and blood contain numerous nucleic acid amplification reaction inhibitors such as mucin and blood components. step is often required.
  • Filter filtration of the sample is a simple way to remove reaction inhibitors. Since this process requires a pressure of about several kPa, it is impossible to obtain sufficient pressure by manual suction operation, and a dedicated filtering device is required. In addition, when passing through the filter, liquid residue tends to remain on the filter, and the entire amount of the introduced liquid cannot be recovered at a later stage, so even if it is weighed before passing through the filter, the desired amount cannot be introduced into the device. Therefore, in this method, after the sample is filtered, it is necessary to transfer the sample to a separate device for weighing and introduce it into the chip, which complicates the operator's operation multiple times.
  • Patent Document 2 as a method of dispensing a predetermined amount of sample in a microchannel chip, two sample introduction ports are opened on the chip, and the channel volume of the dispensing channel provided between them is measured. A structure is described that defines a sample volume that In this method, the sample can be introduced by connecting a pipette or dropper to the sample inlet and pressurizing it. Need to check carefully. In addition, because of the structure in which the surplus sample is discharged to one of the sample inlets, contamination of the surplus sample may contaminate the apparatus.
  • Patent Document 3 describes a microvalve used for controlling a trace amount of fluid sample.
  • the present invention has been made to solve such problems, and provides a channel device and a nucleic acid amplification reaction apparatus that can more precisely control the amount of sample liquid to be introduced into the device for nucleic acid amplification reaction. With the goal.
  • An example of the flow path device is a sample introduction port for introducing a sample; a water absorbing portion provided around the sample inlet; a non-water-absorbing region between the sample inlet and the water-absorbing portion; a nucleic acid amplification reaction section; a channel for guiding the sample introduced from the sample introduction port to the nucleic acid amplification reaction section; Prepare.
  • An example of the nucleic acid amplification reaction device is A nucleic acid amplification reaction apparatus comprising the flow channel device described above, a temperature control mechanism that forms a temperature zone used for nucleic acid amplification reaction; a liquid transfer control mechanism for moving the sample in the channel device; Prepare.
  • the flow path device and the nucleic acid amplification reaction apparatus According to the flow path device and the nucleic acid amplification reaction apparatus according to the present invention, it is possible to more precisely control the amount of sample liquid to be introduced into the device for nucleic acid amplification reaction.
  • nucleic acid amplification reaction apparatus that enables accurate sample weighing with simple operations and that can be stably operated.
  • Example 1 Device configuration diagram of Example 1 Device sectional view of Example 1 Configuration diagram of device 101 for nucleic acid amplification reaction Sectional view of device 101 for nucleic acid amplification reaction Enlarged view around the sample inlet 106 Cross-sectional view around the sample inlet 106 Work flow of Example 1 Work flow of Example 1 in endpoint nucleic acid detection system External view of nucleic acid amplification reaction device 201 according to Example 2 Device configuration diagram of a nucleic acid amplification reaction device 201 according to a modification of Example 2 Sectional view of device 101 for nucleic acid amplification reaction according to Example 3 A configuration diagram of a device 101 for nucleic acid amplification reaction according to Example 4.
  • FIG. 1 shows the device configuration of the nucleic acid amplification reaction device 201 .
  • 2 shows a cross-sectional view of the nucleic acid amplification reaction device 201. As shown in FIG. FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • the nucleic acid amplification reaction apparatus 201 includes a nucleic acid amplification reaction device 101 and a device holding section 202 .
  • the nucleic acid amplification reaction device 101 is placed in the device holding section 202 .
  • the nucleic acid amplification reaction apparatus 201 includes a device holding section 202 made of PEEK (polyetheretherketone), a cover 203 made of PC (polycarbonate), and a liquid delivery device 213 .
  • Device holder 202 includes pump connection 204 and external heat sources 206 and 207 .
  • the cover 203 has a role of preventing the nucleic acid amplification reaction device 101 placed on the device holding portion 202 from floating and fixing it at a predetermined position.
  • a material other than PEEK can be used as the material of the device holding portion 202, but a material with a heat resistance temperature of 100°C or higher and a low thermal conductivity is preferable. It is preferable that the material of the cover 203 has a heat resistance temperature of about 70° C. and a low thermal conductivity.
  • the external heat sources 206 and 207 each contain a thermocouple and a heater.
  • the nucleic acid amplification reaction device 201 has a temperature controller 208 .
  • a temperature controller 208 controls the external heat sources 206 and 207 to keep the surface at a predetermined temperature.
  • temperature controller 208 and external heat sources 206 and 207 function as a temperature control mechanism that forms a temperature zone used for nucleic acid amplification reaction.
  • the target temperature of the first temperature zone is the annealing and extension temperature zone (eg, 68 ° C.)
  • the target temperature of the second temperature zone is the denaturation temperature zone (eg, 98 ° C.).
  • the first temperature range may be the denaturation temperature range and the second temperature range may be the annealing and extension temperature range.
  • the liquid delivery device 213 incorporates a syringe pump 205 and functions as a liquid delivery control mechanism for moving the sample in the nucleic acid amplification reaction device 101 .
  • the operation of the syringe pump 205 moves the sample within the channel.
  • a diaphragm pump, a microblower, or the like may be used for the liquid delivery device 213 .
  • the liquid delivery device 213 and the pump connection section 204 are connected by a tube 210 .
  • the fluorescence detection unit 209 is composed of an objective lens (not shown), a dichroic mirror 215, and a photodetector 216, and is connected to the excitation light irradiation unit 214 and the signal detection circuit 211.
  • FIG. 3 shows a plan view of the nucleic acid amplification reaction device 101
  • FIG. 4 shows a cross-sectional view taken along line AA of FIG.
  • the nucleic acid amplification reaction device 101 includes a sample introduction port 106 , a sample introduction channel 107 , a nucleic acid amplification reaction section 108 , an air channel 109 and a vent port 110 .
  • the sample introduction channel 107 is a channel that guides the sample introduced from the sample introduction port 106 to the nucleic acid amplification reaction section 108 .
  • the nucleic acid amplification reaction device 101 functions as a channel device.
  • the sample inlet is a configuration for introducing samples.
  • the sample inlet 106 and vent 110 are located at the end points of the channel and are processed as through holes on the substrate 102 .
  • a sealing material 105 is adhered to the lower surface of the substrate 102 .
  • the sample inlet 106 and the vent 110 are opened on the upper surface of the substrate 102 (that is, the surface opposite to the surface to which the sealing material 105 is adhered).
  • the shape of the sample inlet 106 may not be cylindrical, and may be conical or countersunk, for example. It is preferable that the shape of the sample inlet 106 when viewed from above is a shape without corners (circular, elliptical, etc.). The shape is not limited to these, and any shape may be employed as long as the sample 115 (see FIG. 6) at the sample introduction port 106 can be drawn into the sample introduction channel 107 .
  • the sample inlet 106 has no corners (for example, a circular shape) as viewed from above, it is possible to prevent unexpected leakage of the sample from the corners, and the force acting on the dropped sample is isotropic. and stable weighing can be achieved.
  • the air flow path 109 that connects the air vent 110 and the nucleic acid amplification reaction section 108 has a filter 111 that does not allow passage of nucleic acids in the middle.
  • a substrate 102 made of polycarbonate (PC) of 80 mm ⁇ 30 mm ⁇ 3 mm in thickness is provided with a sample introduction channel 107 of 0.3 mm in width and 0.3 mm in depth, and a sample introduction channel 107 of 0.8 mm in width and 0.8 mm in depth.
  • the flow path of the nucleic acid amplification reaction section 108 and the air flow path 109 of 0.6 mm, the sample introduction port 106 of 3 mm in diameter, and the air vent 110 of 1 mm in diameter were manufactured by cutting.
  • a sealing material 105 made of polyolefin (PO) having a thickness of 0.1 mm was crimped to the entire cut surface of the substrate 102 to form a flow path.
  • the material of the substrate 102 does not have to be PC, and other resins such as acrylic resin (PMMA) and cycloolefin polymer (COP) may be used.
  • the material of the sealing material 105 may not be PO, and may be another resin such as polypropylene.
  • Example 1 the sample does not enter the sample introduction port 106 or the sample introduction channel 107 of the nucleic acid amplification reaction device 101 prior to a certain position, and remains at a certain position from the time the sample is dropped until the weighing is completed. It is preferable to keep it. Therefore, it is beneficial to provide a valve mechanism in the sample introduction channel 107 .
  • the thickness of the sample introduction channel 107 is about 1/10 or less of the depth of the sample introduction port 106, and the sample does not enter the sample introduction channel 107 unless a constant pressure is applied.
  • This can also be achieved by constructing a valve mechanism that does not allow When configuring such a valve mechanism, the minimum pressure (water intrusion pressure) at which the sample 115 at the sample introduction port 106 flows into the sample introduction channel 107 at the interface between the sample introduction port 106 and the sample introduction channel 107 ) is greater than the atmospheric pressure.
  • the channel of the nucleic acid amplification reaction section 108 is a single channel without branches, and has a first temperature region 113 and a second temperature region 114 .
  • the first temperature region 113 is in contact with the external heat source 206
  • the second temperature region 114 is in contact with the external heat source 207, respectively.
  • Vent 110 is connected to liquid delivery device 213 via pump connection 204 .
  • FIG. 5 shows an enlarged view of the vicinity of the sample introduction port 106
  • FIG. 6 shows a cross-sectional view of the sample introduction port 106 when the sample is dropped.
  • a water-absorbing pad 103 as a water-absorbing portion was provided around the sample inlet 106 with a non-water-absorbing region 104 having a width of 2 mm.
  • the non-absorbent area 104 is the area between the sample inlet 106 and the absorbent pad 103 .
  • the water absorbing pad 103 is ring-shaped with an inner diameter of 7 mm and an outer diameter of 20 mm. Filter paper, porous resin, or the like can be used as the water absorbing pad 103 . It is preferable that the water absorbing pad 103 has sufficient water absorbing ability to absorb the entire amount of the sample that can be dripped.
  • the outer shape may be rectangular instead of circular.
  • the water absorption pad 103 may be installed on the surface of the device for nucleic acid amplification reaction 101 with a double-sided tape or the like, or may be simply left standing.
  • one or more types of DNA to be detected a primer that specifically reacts with the target DNA, a fluorescent dye, a thermostable enzyme, and four types of deoxyribonucleoside triphosphates (dATP, dCTP , dGTP, dTTP) was used as a sample.
  • a PCR reaction system was constructed using 23 ⁇ L of sample.
  • Fluorescent dyes for nucleic acid detection are, for example, TaqMan probes and Cycleave probes that specifically bind to nucleic acids to be detected, and fluorescent labeled probes called molecular beacons.
  • an intercalator such as SYBR Green may be used.
  • a real-time PCR reagent kit or the like can be used as these reagent systems.
  • FIG. 7 shows an operation flow from sample introduction to target gene detection. Each operation step will be described below with reference to FIG.
  • the amount of the sample to be dropped must exceed the volume of the sample introduction port 106 and must reach the water absorption pad 103 at least once. Specifically, in the case of this embodiment, about 60 to 300 ⁇ L of the sample may be dropped with respect to the target liquid volume of 23 ⁇ L.
  • nucleic acid amplification reaction device 101 according to Example 1, it is possible to more precisely control the amount of sample liquid to be introduced.
  • the discharge operation of the syringe pump 205 applies pressure in the flow channel to move the sample to the first temperature region 113 (Fig. 7f). Annealing and elongation reactions are performed by holding the sample in the first temperature region 113 for a certain period of time (7 seconds in this example) (FIG. 7g).
  • the suction operation of the syringe pump 205 moves the sample to the second temperature region 114 (Fig. 7h).
  • the fluorescence detection unit 209 (FIG. 2).
  • the fluorescence intensity detected by the fluorescence detection unit 209 is converted into an electric signal by the signal detection circuit 211 and analyzed to measure the amount of amplified nucleic acid.
  • the denaturation reaction is performed by holding the sample in the second temperature region 114 for a certain period of time (3 seconds in this example) (Fig. 7i).
  • a certain period of time 3 seconds in this example
  • a predetermined number of times 40 times in this embodiment
  • a specific region of DNA to be detected is amplified. This allows real-time PCR to be performed in about 8 minutes.
  • the nucleic acid detection method is a real-time PCR method in which nucleic acid amplification is sequentially detected in each cycle using a reagent containing a fluorescent dye, but the method is not limited to this. It is also possible to construct an endpoint detection system that detects the final amount of nucleic acid after the nucleic acid amplification reaction is completed.
  • the configuration of the nucleic acid amplification reaction device 201 does not include the fluorescence detection unit 209, the excitation light irradiation unit 214, the dichroic mirror 215, the photodetector 216, and the signal detection circuit 211. Different from Example 1.
  • Fig. 8 shows the operation flow from sample introduction to target gene detection when using the endpoint detection system.
  • the operation flow from the dropping of the sample (FIG. 8a) to the temperature rise of the sample (FIG. 8e) is the same as that of the first embodiment (FIG. 7).
  • the discharge operation of the syringe pump 205 applies pressure in the flow channel to move the sample to the first temperature region 113 (Fig. 8f).
  • Annealing and elongation reactions are performed by holding the sample in the first temperature region 113 for a certain period of time (7 seconds in this example) (FIG. 8g).
  • the suction action of the syringe pump 205 moves the sample to the second temperature zone 114 (Fig. 8h).
  • a denaturation reaction is performed by holding the sample in the second temperature region 114 for a certain period of time (3 seconds in this example) (Fig. 8i).
  • the specific region of the DNA to be detected is amplified. Thereafter, the sample is moved to the sample introduction port 106 by the discharge operation of the syringe pump 205 (Fig. 8j). The sample returned to the sample inlet is recovered, and the amplified nucleic acid is detected by electrophoresis, hybridization, or the like (Fig. 8k). Thereby, the nucleic acid amplification reaction can be performed in about 8 minutes, and the post-reaction sample can be measured by any method.
  • the amount of sample liquid to be introduced into the device for nucleic acid amplification reaction can be controlled more precisely.
  • Example 2 of the present invention will be described below. It should be noted that descriptions of parts common to the first embodiment may be omitted.
  • FIG. 9 is an external view of a nucleic acid amplification reaction device 201 equipped with a guide mechanism for easily determining the sample dropping position.
  • the device pullout part 217 has a holding part that holds the nucleic acid amplification reaction device 101 at a fixed position and a dropping guide 218, and can be pulled out from the nucleic acid amplification reaction apparatus 201 by a fixed distance.
  • the dropping guide 218 functions as a guide part for guiding the dropping of the sample into the sample introduction port 106 .
  • Drop guide 218 is provided, for example, above sample inlet 106 .
  • the drip guide 218 is a circular opening in this embodiment and is arranged to be movable to a position coaxial with the sample inlet 106 .
  • the device pull-out portion 217 is automatically pulled out, and the drop guide 218 stops at a position where the dropper for sample dropping can be installed.
  • the dropping guide 218 is configured so that the dropper for sample dropping can be fixed to the sample introduction port 106 when dropping the sample.
  • the nucleic acid amplification reaction device 101 is installed in the device drawer 217, and the dropper for sample dropping is placed on the dropping guide 218 to drop the sample.
  • the device withdrawal section 217 is pulled back into the nucleic acid amplification reaction apparatus 201 and the nucleic acid amplification reaction device 101 is installed on the device holding section 202 .
  • the sample can be dropped from the sample introduction port 106 without deviating.
  • the sample dropping operation can also be performed outside the nucleic acid amplification reaction device 201.
  • FIG. 10 shows the nucleic acid when a sample is introduced into the nucleic acid amplification reaction device 101 outside the nucleic acid amplification reaction device 201 and then the nucleic acid amplification reaction device 101 is installed in the nucleic acid amplification reaction device 201 in Example 2.
  • 1 is a configuration diagram of an amplification reaction device 201.
  • valve 212 differs from the configuration shown in FIG. 1 in that a valve 212 is provided.
  • a valve 212 is provided between the liquid transfer device 213 and the nucleic acid amplification reaction device 101 .
  • Valve 212 can be open to the atmosphere.
  • the weighing characteristics may change due to the influence of gravity. preferably.
  • the installation of the nucleic acid amplification reaction device 101 is performed with the valve 212 open to the atmosphere in order to prevent the air in the channel from being discharged to the sample introduction port 106 and air bubbles from entering the sample. If the cover 203 is closed to fix the device 101 for nucleic acid amplification reaction, and the valve 212 is closed before the sample is sucked into the sample introduction channel 107, liquid transfer can be started.
  • Example 3 of the present invention will be described below. Note that the description of the parts common to the first or second embodiment may be omitted.
  • FIG. 11 shows a configuration diagram of the vicinity of the sample introduction port 106 of the device 101 for nucleic acid amplification reaction according to Example 3. As shown in FIG. Parts that do not appear in FIG. 11 can be the same as those in the first embodiment, for example.
  • the nucleic acid amplification reaction device 101 stores reagents 116 (for example, reaction reagents) required for PCR in the channel.
  • the reagent 116 includes a primer that specifically reacts with the target DNA, a fluorescent dye, a thermostable enzyme, four types of deoxyribonucleoside triphosphates (dATP, dCTP, dGTP, dTTP), and the like.
  • a reagent storage section 117 having a width of 0.8 mm, a length of 1.5 mm, and a depth of 1.5 mm was prepared at the end of the sample introduction channel 107 of the device for nucleic acid amplification reaction 101, and a reagent 116 was placed in the reagent storage section 117. solidified.
  • the reagent storage section 117 functions as a reagent installation section for installing a reagent for nucleic acid amplification reaction.
  • the reagent 116 is solid or gel, and may be molded into a bead shape as shown in FIG. It is preferable to use a composition that is readily soluble and easily mixed with a sample that is a solution component.
  • the sample dropped into the sample introduction port 106 in this embodiment was a nucleic acid extract of a specimen (nasal discharge, etc.). A certain amount of the sample was weighed out from the dropped sample based on the same principle as in Example 1, and then the weighed sample was introduced into the sample introduction channel 107 .
  • the reagent storage section 117 When the sample passes through the reagent storage section 117 in the middle of the step of moving the sample to the nucleic acid amplification reaction section, the reagent 116 dissolves and the reagent components diffuse within the sample.
  • the reagent storage section 117 also functions as a reagent mixing section that mixes the sample and the reagent.
  • nucleic acid amplification and detection are performed according to the flow of Figures 7d-i or the flow of Figures 8d-k.
  • a nucleic acid amplification reaction can be achieved without the need for a pretreatment of mixing PCR reagents with the sample to be dropped, and at the same time, the use of reagents can be minimized.
  • a step of reciprocating the sample several times by suction and pressure operation of the syringe pump 205 in the vicinity of the reagent storage unit 117 or in the first temperature region 113 or the second temperature region 114 before starting the PCR cycle to mix the reagent components. may be added.
  • the single reagent storage unit 117 functions as a reagent installation unit for installing reagents for nucleic acid amplification reactions, and also as a reagent mixing unit for mixing samples and reagents. Function. Alternatively, they may be configured separately. For example, the reagent installing section and the reagent mixing section may be provided as different spaces.
  • FIG. 12(a) shows a nucleic acid amplification reaction device 101 having a nucleic acid reverse transcription reaction region.
  • FIG. 12(b) shows a cross-sectional view (taken along line AA in FIG. 12(a)) when the nucleic acid amplification reaction device 101 is installed in the nucleic acid amplification reaction apparatus 201. As shown in FIG.
  • the third temperature region 118 is provided between the sample introduction channel 107 and the first temperature region 113, and the nucleic acid amplification reaction device 201 also has the third temperature It differs in that an external heat source 220 corresponding to the region 118 is provided.
  • the third temperature region 118 is kept at the RT temperature (45° C. in this embodiment) by the external heat source 220 .
  • the sample consisted of one type of DNA to be detected, a primer that specifically reacts with the target DNA, a thermostable enzyme, and four types of deoxyribonucleoside triphosphates (dATP, dCTP, dGTP, dTTP ) and further including reverse transcriptase.
  • dATP deoxyribonucleoside triphosphate
  • dCTP deoxyribonucleoside triphosphate
  • dGTP dGTP
  • dTTP deoxyribonucleoside triphosphates
  • a sample is introduced into the nucleic acid amplification reaction device 101 in the same flow as in FIGS. 7a to 7c.
  • the introduced sample is moved to the third temperature region 118 and stopped for a certain period of time (60 seconds in this embodiment).
  • a certain period of time 60 seconds in this embodiment.
  • a detection unit 112 is provided, a reagent system containing a fluorescent dye is used, and a nucleic acid amplification reaction apparatus 201 is provided with a fluorescence detection unit 209 as shown in FIG. 2 to provide a real-time fluorescence detection system.
  • the amplified nucleic acid can be detected according to the flow of FIGS. 7d to 7i.
  • the third temperature region 118 may be arranged between the first temperature region 113 and the second temperature region 114 or may be arranged between the second temperature region 114 and the filter 111 .
  • Example 5 of the present invention will be described below. Note that descriptions of parts common to the first to fourth embodiments may be omitted.
  • FIG. 13(a) shows a nucleic acid amplification reaction device 101 based on the isothermal amplification method
  • FIG. 13(b) is a sectional view when the nucleic acid amplification reaction device 101 is installed in the nucleic acid amplification reaction apparatus 201 (FIG. 13(a)).
  • AA line sectional view shows a nucleic acid amplification reaction device 101 based on the isothermal amplification method
  • the sample consisted of one type of DNA to be detected, four types of primers that specifically react with the target DNA, a thermostable enzyme, and four types of deoxyribonucleoside triphosphates (dATP, dCTP, dGTP, dTTP) are mixed.
  • dATP deoxyribonucleoside triphosphate
  • the first temperature region 113 is kept at the isothermal amplification reaction temperature (65° C. in this embodiment) by the external heat source 206 .
  • a sample is introduced into the nucleic acid amplification reaction device 101 in the same flow as in FIGS. 7a to 7c.
  • the introduced sample is moved to the first temperature region 113 and stopped for a certain period of time (for example, 10 minutes).
  • a certain period of time for example, 10 minutes
  • sample collection and nucleic acid detection can be performed according to the flow of Figures 8j and k. Further, if the nucleic acid amplification reaction apparatus 201 is configured to have a real-time fluorescence detection system such as the fluorescence detection unit 209, it is possible to detect the amplified nucleic acid during the nucleic acid amplification reaction.
  • a real-time fluorescence detection system such as the fluorescence detection unit 209
  • the first temperature region 113 and the second temperature region 114 are all isothermal (for example, 65° C.)
  • the nucleic acid amplification reaction can be carried out by the isothermal amplification method as in the present embodiment.
  • Example 6 of the present invention shows the specific operation of the sample weighing mechanism in Examples 1-5.
  • FIGS. 14(a) to (d) are schematic cross-sectional views of the vicinity of the cylindrical sample inlet 106, showing the operation from the contact of the sample 115 with the water-absorbing pad 103 to the end of the water-absorbing operation and reaching a steady state.
  • the sample 115 When the sample 115 is dripped from above the sample introduction port 106, the sample 115 accumulates in the sample introduction port 106 and spreads to the non-water absorbing region 104 (Fig. 14(a)).
  • Example 6 the upper end of the water-absorbing pad 103 is at a height higher than the upper end of the sample introduction port 106, so only the sample overflowing above the sample introduction port 106 can be efficiently absorbed. However, it is also possible to arrange the upper end of the absorbent pad 103 at a lower height than the upper end of the sample inlet 106 .
  • the liquid surface of the sample 115 gradually decreases, and the moment the liquid surface contacts the end of the sample inlet 106, the sample 115 in the sample inlet 106 and the sample 115 on the non-water-absorbing region 104 rupture (Fig. 14(c)).
  • the sample 115 that was present on the non-absorbing region 104 when the sample 115 was torn is quickly absorbed by the water absorbing pad 103, and a certain amount of the sample 115 remains in the sample inlet 106 (Fig. 14 ( d)).
  • the amount of sample 115 remaining on sample inlet 106 and non-absorbing region 104 until contacting water-absorbing pad 103 depends on the distance to water-absorbing pad 103, the wettability of the material of non-absorbing region 104, the surface tension of sample 115, etc.
  • the amount of sample 115 required to reach volume is less.
  • FIG. 15 is an example of a cross-sectional schematic diagram of the vicinity of the sample introduction port 106 at the end of sample dropping when the weighing of the present invention fails. In this way, if the dropping operation is terminated without the dropped sample 115 coming into contact with the water absorbent pad 103, more sample 115 than the weighing target will remain.
  • the amount of liquid dropped from the first time onwards is greater than or equal to the amount that the sample touches the absorbent pad 103 (Fig. 14(a)).
  • the amount of liquid dropped from the second time onwards is larger than the difference between the amount of liquid at the moment when the absorbent pad 103 is touched (FIG. 14(a)) and the target amount of liquid (FIG. 14(d)).
  • the amount of liquid remaining in the sample introduction port 106 is approximately determined by the volume of the sample introduction port 106, but is also affected by the wettability of the sample introduction port 106.
  • the relationship between the shape of the sample inlet and the volume of the sample remaining in the sample inlet 106 after water absorption by the water absorbent pad is completed (FIG. 14(d)) will be described.
  • be the angle formed by the non-water-absorbing region 104 (more precisely, its surface) and the side wall surface of the sample inlet 106 (angle ⁇ in FIG. 16). If one of the surfaces is a curved surface (for example, a cylindrical surface or a conical surface), the angle formed by the lines appearing in the vertical cross section can be ⁇ , as shown in FIG.
  • the liquid surface of the sample remaining in the sample introduction port 106 makes a certain contact angle with the side wall surface of the sample introduction port 106 .
  • this contact angle is smaller than (180°- ⁇ )
  • the sample liquid surface is convex downward
  • is 90°.
  • the contact angle of the side wall surface of the sample inlet 106 is about 95°, so that the sample liquid surface becomes nearly horizontal and slightly convex when the water absorption is completed.
  • the volume of the sample inlet 106 is reduced by the amount of nucleic acid amplification.
  • the volume of the sample inlet 106 is By designing the volume of the sample to be introduced into the nucleic acid amplification reaction part or more, the volume of the sample liquid to be weighed can be controlled with high accuracy.
  • the volume of the sample introduction port 106 is used for nucleic acid amplification. It is preferable that the sample volume be equal to or larger than the volume of the sample introduced into the reaction section 108 . Similarly, when the contact angle between the liquid surface of the sample and the side wall surface of the sample introduction port 106 is (180° ⁇ ) or more, the volume of the sample introduction port 106 is introduced into the nucleic acid amplification reaction section 108. A sample volume or less is preferable.
  • the contact angle of the liquid on the non-water-absorbing region 104 becomes small, so the amount of dripping liquid until the start of water absorption is small. Become.
  • the distance from the sample inlet 106 to the absorbent pad 103 is more than a certain distance, the amount of liquid remaining in the sample inlet 106 is constant regardless of these conditions. Therefore, highly robust weighing is possible with respect to physical properties such as the surface state of the non-water absorbing region 104 and the surface tension of the sample 115 .
  • a similar water absorption phenomenon occurs when a sample drop portion is determined on the substrate plane without providing a recessed structure like the sample inlet 106, and a water absorption pad is placed at a certain distance from the sample drop portion.
  • the amount of liquid remaining in the sample dripping portion is smaller than the amount of dripped liquid compared to the case of having a concave structure, the difference between the amount of dripped liquid until it touches the water absorbing pad 103 and the target liquid amount becomes large. Cheap.
  • the amount of liquid remaining on the substrate is determined only by the wettability of the substrate or the distance of the absorbent pad, the degree of freedom in design is low.
  • the material of the substrate 102, the shape of the sample introduction port 106, etc. can be selected more freely, and the target liquid volume to be weighed can be increased. Can be set freely.
  • Example 7 of the present invention will be described below. Note that descriptions of parts common to the first to sixth embodiments may be omitted.
  • the substrate 102 has a groove 119 for installing the water absorbing pad 103 , and the bottom surface of the water absorbing pad 103 is positioned lower than the upper end of the sample inlet 106 .
  • the width (radial dimension) of the groove 119 may be equal to or greater than the width (radial dimension) of the water absorbent pad 103 .
  • non-water-absorbing region 104 exists not only around the upper end of the sample introduction port 106 but also partially below the upper end of the sample introduction port 106 (the bottom of the groove 119).
  • the lower surface of the water absorbing pad 103 may be positioned lower or higher than the upper end of the sample inlet 106 as shown in FIG. 17(a).
  • the thickness of the nucleic acid amplification reaction device 101 (the axial dimension of the water absorption pad 103 ) needs to be reduced due to the convenience of designing the nucleic acid amplification reaction device 201 , Even if the area where the water absorbing pad 103 can be installed is limited, it is possible to install the water absorbing pad 103 having a water retention capacity capable of sufficiently absorbing the dropped sample.
  • the groove 119 serves as a positioning guide when installing the water absorbing pad 103, and the nucleic acid amplification reaction device 101 can be easily manufactured.
  • the groove 119 is formed in the substrate 102 having the same thickness as the sample introduction port 106, but as a modification, the sample introduction port 106 and the non-water absorbing region 104 protrude in the thickness direction.
  • a shape in which the peripheral substrate 102 is thin may be used. As a result, the thickness of the substrate 102 other than the sample inlet 106, non-water-absorbing region 104, and water-absorbing pad 103 can be reduced, and the size and/or weight of the nucleic acid amplification reaction device 101 can be reduced.
  • FIG. 17(b) shows an embodiment in which a portion of the side wall of the sample inlet 106 is processed into a conical surface, and the non-water-absorbing region 104 is sloped.
  • the non-water-absorbing region 104 may be provided with a certain width or more between the upper end of the sample introduction port 106 and the water-absorbing pad 103 .
  • the non-water absorbing region 104 does not have to be a horizontal surface.
  • the non-absorbing area 104 can be arranged at a lower position, so the amount of dripping liquid is smaller than that of the embodiment in which the non-absorbing area 104 having the same width is provided horizontally. , the weighing of the present invention can be carried out.
  • Example 8 of the present invention is an experimental example related to the sample weighing mechanism of Examples 1-7.
  • a through-hole (corresponding to the sample introduction port) with a diameter of 3 mm corresponding to the sample introduction port 106 was made in the center of a hydrophobic polycarbonate (PC) resin substrate of 50 mm x 50 mm x 3 mm thickness.
  • a polyolefin (PO) seal having a thickness of 0.1 mm was crimped to one side of the substrate, and the weight was measured. After that, the substrate was placed on a horizontal table with the surface to which the seal was crimped down, and a 40 mm ⁇ 40 mm water absorption pad (Atto blotting filter paper, CB-20A) with a hole was placed so that it was concentric with the through hole of the substrate. was placed on the substrate for a period of time.
  • FIG. 18 shows the distance from the through-hole (strictly speaking, its upper edge) to the water-absorbing pad (for example, the difference between the inner diameter of the through-hole and the inner diameter of the hole in the water-absorbing pad), and the amount of pure water until the water-absorbing pad starts to absorb water. and the total amount of dripping liquid.
  • the average amount of dripping liquid is 40 ⁇ L. , 60 ⁇ L on average at 2 mm, and 100 ⁇ L on average at 2.5 mm.
  • Fig. 19 shows the relationship between the distance from the through-hole (strictly speaking, its upper edge) to the absorbent pad and the amount of liquid remaining in the through-hole.
  • the distance to the water-absorbing pad was 1 mm or more
  • the amount of liquid remaining in the through-hole was approximately 23 ⁇ L ⁇ 1 ⁇ L regardless of the distance to the water-absorbing pad. From these results, it can be seen that the method of the present invention can achieve sufficient weighing accuracy to carry out stable nucleic acid amplification reactions.
  • Example 9 of the present invention is an experimental example related to the sample weighing mechanism of Examples 1-7.
  • FIG. 20 shows the relationship between the amount of sample liquid dropped and the amount of liquid remaining in the through-hole. If the amount of liquid does not reach the absorbent pad, the amount of liquid remaining in the through-holes is the same as the amount of liquid dropped. When the amount of liquid that exceeded the volume of the through-hole and contacted the water-absorbing pad was put in, the amount of liquid remaining in the through-hole was approximately 23 ⁇ L ⁇ 0.4 ⁇ L regardless of the distance to the water-absorbing pad.
  • Example 10 of the present invention is an experimental example related to the sample weighing mechanism of Examples 1-7.
  • the entire surface of one of the substrates was irradiated with ultraviolet light (excimer lamp, wavelength 172 nm) for 6 minutes, and after irradiation, 2 ⁇ L of pure water was dropped again on the substrate surface, and the contact angle was measured. After measuring the contact angle, the dripped pure water was immediately removed.
  • ultraviolet light excimer lamp, wavelength 172 nm
  • a polyolefin (PO) seal with a thickness of 0.1 mm was crimped to one side of each substrate, and the weight was measured.
  • the substrate was placed on a horizontal table with the surface to which the seal was crimped downward, and a 15 mm ⁇ 15 mm water absorption pad (Atto blotting filter paper, CB-20A) with a hole of 6 mm in diameter was placed in a concentric circle with the through hole of the substrate. It was left still on the substrate so that
  • the contact angle was about 95° with any substrate.
  • the contact angle of the substrate irradiated with ultraviolet light was about 60°.
  • the liquid surface remaining in the through-hole was almost horizontal and slightly convex, and the liquid volume was about 23 ⁇ L ⁇ 0.4 ⁇ L.
  • the surface of the liquid remaining in the through hole was convex downward, and the amount of liquid was about 19.5 ⁇ 0.2 ⁇ L.
  • the nucleic acid amplification reaction can be selected from the following. - polymerase chain reaction (PCR) - reverse transcription PCR (RT-PCR) - Multiplex PCR - Multiplex RT-PCR - real-time PCR - real-time RT-PCR - DNA isothermal amplification
  • PCR polymerase chain reaction
  • RT-PCR reverse transcription PCR

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

This channel device comprises a sample introduction port for introducing a sample, a water-absorbing portion provided around the sample introduction port, a non-water-absorbing portion between the sample introduction port and the water-absorbing portion, a nucleic acid amplification reaction portion, and a channel for leading the sample introduced from the sample introduction port to the nucleic acid amplification reaction portion. This nucleic acid amplification reactor comprises a channel device, a temperature control mechanism for forming a temperature zone used in a nucleic acid amplification reaction, and a liquid feed control mechanism for moving a sample within the channel device.

Description

流路デバイスおよび核酸増幅反応装置Flow path device and nucleic acid amplification reactor
 本発明は、流路デバイスおよび核酸増幅反応装置に関する。 The present invention relates to a channel device and a nucleic acid amplification reactor.
 核酸を増幅する方法として、PCR(Polymerase Chain Reaction)法や、LAMP(Loop―Mediated Isothermal Amplification)法などの等温増幅法がある。PCR法は、DNAの変性(二本鎖DNAの一本鎖DNAへの乖離)、アニーリング(一本鎖DNAへの相補的なプライマの結合)、伸長(相補鎖合成による二本鎖DNA複製)の3ステップを、それぞれ異なる温度で繰り返すことで、目的のDNAを増幅する方法である。典型的には、熱変性は95℃程度、アニーリングは60~65℃程度、伸長は72℃程度で実施される。等温増幅法の場合、これらのサイクルに対応する反応が35~65℃程度の一定温度で実施される。 Methods for amplifying nucleic acids include isothermal amplification methods such as the PCR (Polymerase Chain Reaction) method and the LAMP (Loop-Mediated Isothermal Amplification) method. The PCR method consists of DNA denaturation (dissociation of double-stranded DNA into single-stranded DNA), annealing (complementary primer binding to single-stranded DNA), and elongation (double-stranded DNA replication by complementary strand synthesis). is repeated at different temperatures to amplify the target DNA. Typically, heat denaturation is performed at about 95°C, annealing at about 60-65°C, and extension at about 72°C. In isothermal amplification methods, the reactions corresponding to these cycles are carried out at a constant temperature of the order of 35-65°C.
 近年、核酸増幅・検出装置と使い捨ての専用デバイスを用いた迅速遺伝子検査システムが提案されている。核酸増幅・検出機構および専用デバイスには様々な形態があるが、典型的な検査フローは、検体を採取するステップ、病原体の核酸を抽出した溶液(サンプル)を専用デバイスに導入するステップ、核酸増幅反応装置で目的遺伝子を増幅するステップ、増幅産物を検出するステップから成る。核酸増幅反応のための専用デバイスとしては、基板に形成された微細流路(マイクロ流路チップ)が提案されている。異なる温度帯に設定されたヒートブロック上に設置したマイクロ流路チップ内でサンプルを移動させることにより、各ヒートブロックは予め設定した所定の温度に保持するだけで、PCRに必要な温度変化を達成できる。 In recent years, rapid genetic testing systems using nucleic acid amplification/detection equipment and disposable dedicated devices have been proposed. Nucleic acid amplification/detection mechanisms and dedicated devices have various forms, but a typical test flow includes the step of collecting a specimen, the step of introducing a solution (sample) from which the nucleic acid of a pathogen is extracted into a dedicated device, and the step of nucleic acid amplification. It consists of a step of amplifying the target gene in a reactor and a step of detecting the amplified product. A microchannel (microchannel chip) formed on a substrate has been proposed as a dedicated device for nucleic acid amplification reaction. By moving the sample inside the microfluidic chip installed on heat blocks set to different temperature zones, each heat block can be maintained at a preset temperature to achieve the temperature changes necessary for PCR. can.
特開2018-20283号公報JP 2018-20283 A 特開2019-198335号公報JP 2019-198335 A 特開2004-358635号公報JP 2004-358635 A
 従来の技術では、核酸増幅反応用デバイスに導入するサンプル液量を精密に制御することが困難であるという課題があった。 With conventional technology, there was the problem that it was difficult to precisely control the amount of sample liquid to be introduced into the device for nucleic acid amplification reaction.
 核酸増幅反応の成否は試薬組成の濃度に大きく影響を受ける。また、サンプルの温度ムラを抑えることが有益である。このため、核酸増幅反応用デバイスに導入するサンプル液量を精密に制御し一定とすることが極めて重要である。 The success or failure of the nucleic acid amplification reaction is greatly affected by the concentration of the reagent composition. It is also beneficial to reduce sample temperature variations. For this reason, it is extremely important to precisely control and maintain a constant amount of the sample liquid introduced into the device for nucleic acid amplification reaction.
 これは、熟達した操作者がマイクロピペット等の精密秤量器具の使用を許される環境であれば、通常達成しうる。しかし、クリニック等を含めた多くの医療現場に導入されうる検査システムとするためには、非熟達者が専用の秤量器具の使用なく簡便な操作のみで、上記を達成できる必要がある。 This can usually be achieved in environments where skilled operators are allowed to use precision weighing instruments such as micropipettes. However, in order to make a testing system that can be introduced into many medical sites including clinics, it is necessary that non-experts can achieve the above with simple operations without using special weighing instruments.
 特許文献1には、目標液量以上に吸引した液体を逃がす構造を設けた専用ピペットにより、サンプルが入った容器から専用のピペットで吸引し、それをデバイスに導入する方法が記載されている。一方で、鼻汁や血液といった生体由来の検体には、ムチンや血液成分のような核酸増幅反応阻害物質が多数含まれるため、高感度で安定した病原体検出を実現するには、反応阻害物質を除去するステップがしばしば必要となる。 Patent Document 1 describes a method of aspirating a container containing a sample with a special pipette provided with a structure for releasing liquid that has been aspirated in excess of a target volume and introducing it into a device. On the other hand, biological specimens such as nasal secretions and blood contain numerous nucleic acid amplification reaction inhibitors such as mucin and blood components. step is often required.
 反応阻害物質を簡易に除去する方法として、サンプルのフィルタろ過がある。この工程には数kPa程度の圧力を要するため、手作業での吸引動作で十分な圧力を得ることは不可能であり、専用のろ過装置が必要となる。また、フィルタ通過時にはフィルタ上での液残りが生じやすく、投入した液全量を後段で回収することはできないため、フィルタ通過前に秤量しても、所望の量をデバイスに導入することができない。そのため、本方式では、サンプルをフィルタ精製後、別途秤取用のデバイスに移してチップに導入する手順が必要となり、作業者の操作が複数回にわたり煩雑になる。 Filter filtration of the sample is a simple way to remove reaction inhibitors. Since this process requires a pressure of about several kPa, it is impossible to obtain sufficient pressure by manual suction operation, and a dedicated filtering device is required. In addition, when passing through the filter, liquid residue tends to remain on the filter, and the entire amount of the introduced liquid cannot be recovered at a later stage, so even if it is weighed before passing through the filter, the desired amount cannot be introduced into the device. Therefore, in this method, after the sample is filtered, it is necessary to transfer the sample to a separate device for weighing and introduce it into the chip, which complicates the operator's operation multiple times.
 特許文献2には、マイクロ流路チップ内で所定量のサンプルを分注する方法として、チップ上に2つの試料導入口を開口し、この間に設けた分注流路の流路体積により秤取する試料体積を規定する構造が記載されている。この方法は、ピペットやスポイトを試料導入口に接続し加圧することでサンプルを導入できるが、分岐流路へ注入する際に気泡が混入すると所望のサンプル量を投入できないため、秤取の成否を注意深く確認する必要がある。また、余剰サンプルを一方の試料導入口へ排出する構成のため、余剰サンプルのコンタミネーションにより装置汚染が生じる恐れがある。 In Patent Document 2, as a method of dispensing a predetermined amount of sample in a microchannel chip, two sample introduction ports are opened on the chip, and the channel volume of the dispensing channel provided between them is measured. A structure is described that defines a sample volume that In this method, the sample can be introduced by connecting a pipette or dropper to the sample inlet and pressurizing it. Need to check carefully. In addition, because of the structure in which the surplus sample is discharged to one of the sample inlets, contamination of the surplus sample may contaminate the apparatus.
 なお、特許文献3には、微量流体試料の制御等に用いるマイクロバルブが記載されている。 In addition, Patent Document 3 describes a microvalve used for controlling a trace amount of fluid sample.
 以上のように、現行の核酸増幅反応に基づく遺伝子検査は、核酸増幅反応用デバイスに導入するサンプル液量を精密に制御することが困難なため、クリニックのような人的・時間的リソースが制限される環境下で許容される形態ではない。 As described above, current genetic tests based on nucleic acid amplification reactions are difficult to precisely control the amount of sample liquid introduced into nucleic acid amplification reaction devices, which limits the human and time resources of clinics. It is not an acceptable form under the environment where it is used.
 本発明はこのような課題を解決するためになされたものであり、核酸増幅反応用デバイスに導入するサンプル液量をより精密に制御することができる流路デバイスおよび核酸増幅反応装置を提供することを目的とする。 The present invention has been made to solve such problems, and provides a channel device and a nucleic acid amplification reaction apparatus that can more precisely control the amount of sample liquid to be introduced into the device for nucleic acid amplification reaction. With the goal.
 本発明に係る流路デバイスの一例は、
 サンプルを導入するサンプル導入口と、
 前記サンプル導入口の周囲に設けられた吸水部と、
 前記サンプル導入口と前記吸水部の間の非吸水領域と、
 核酸増幅反応部と、
 前記サンプル導入口から導入される前記サンプルを前記核酸増幅反応部に導く流路と、
を備える。
An example of the flow path device according to the present invention is
a sample introduction port for introducing a sample;
a water absorbing portion provided around the sample inlet;
a non-water-absorbing region between the sample inlet and the water-absorbing portion;
a nucleic acid amplification reaction section;
a channel for guiding the sample introduced from the sample introduction port to the nucleic acid amplification reaction section;
Prepare.
 本発明に係る核酸増幅反応装置の一例は、
 上述の流路デバイスを備える、核酸増幅反応装置であって、
 核酸増幅反応に用いる温度帯を形成する温度制御機構と、
 前記流路デバイス内のサンプルを移動させる送液制御機構と、
を備える。
An example of the nucleic acid amplification reaction device according to the present invention is
A nucleic acid amplification reaction apparatus comprising the flow channel device described above,
a temperature control mechanism that forms a temperature zone used for nucleic acid amplification reaction;
a liquid transfer control mechanism for moving the sample in the channel device;
Prepare.
 本発明に係る流路デバイスおよび核酸増幅反応装置によれば、核酸増幅反応用デバイスに導入するサンプル液量をより精密に制御することができる。 According to the flow path device and the nucleic acid amplification reaction apparatus according to the present invention, it is possible to more precisely control the amount of sample liquid to be introduced into the device for nucleic acid amplification reaction.
 このため、たとえば、簡易な操作で精密なサンプル秤量が可能となり、安定な運用が可能な核酸増幅反応装置を提供することができる。 For this reason, for example, it is possible to provide a nucleic acid amplification reaction apparatus that enables accurate sample weighing with simple operations and that can be stably operated.
 上記以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。 Problems, configurations and effects other than the above will be clarified by the following description of the embodiments.
実施例1の装置構成図Device configuration diagram of Example 1 実施例1の装置断面図Device sectional view of Example 1 核酸増幅反応用デバイス101の構成図Configuration diagram of device 101 for nucleic acid amplification reaction 核酸増幅反応用デバイス101の断面図Sectional view of device 101 for nucleic acid amplification reaction サンプル導入口106周辺の拡大図Enlarged view around the sample inlet 106 サンプル導入口106周辺の断面図Cross-sectional view around the sample inlet 106 実施例1の作業フローWork flow of Example 1 エンドポイント核酸検出系での実施例1の作業フローWork flow of Example 1 in endpoint nucleic acid detection system 実施例2に係る核酸増幅反応装置201の外観図External view of nucleic acid amplification reaction device 201 according to Example 2 実施例2の変形例に係る核酸増幅反応装置201の装置構成図Device configuration diagram of a nucleic acid amplification reaction device 201 according to a modification of Example 2 実施例3に係る核酸増幅反応用デバイス101の断面図Sectional view of device 101 for nucleic acid amplification reaction according to Example 3 実施例4に係る核酸増幅反応用デバイス101の構成図A configuration diagram of a device 101 for nucleic acid amplification reaction according to Example 4. 実施例5に係る核酸増幅反応用デバイス101の構成図Configuration diagram of device 101 for nucleic acid amplification reaction according to Example 5 実施例6に用いられるサンプル秤量機構を説明するための断面図Sectional view for explaining the sample weighing mechanism used in Example 6 実施例6において、サンプル秤量にあたり望ましくない参考例を説明するための断面図Sectional view for explaining an undesirable reference example for weighing a sample in Example 6 実施例6の変形例に係るサンプル導入口106周辺の断面図Cross-sectional view around the sample introduction port 106 according to the modification of the sixth embodiment 実施例7に示す実施形態のサンプル導入口106周辺の断面図Cross-sectional view around the sample introduction port 106 of the embodiment shown in Example 7 実施例1~7における、吸水パッド距離と滴下液量の関係を示すグラフGraph showing the relationship between the water absorption pad distance and the amount of dripping liquid in Examples 1 to 7 実施例1~7における、吸水パッド距離と残留液量の関係を示すグラフGraph showing the relationship between water absorption pad distance and residual liquid amount in Examples 1 to 7 実施例1~7における、滴下液量と残留液量の関係を示すグラフGraph showing the relationship between the amount of dripping liquid and the amount of residual liquid in Examples 1 to 7
 以下、図面に従って本発明の実施の形態を説明する。 Embodiments of the present invention will be described below with reference to the drawings.
 以下、本発明の実施例1に関わる核酸増幅反応装置201について説明する。図1に核酸増幅反応装置201の装置構成を示す。また、図2に核酸増幅反応装置201の装置断面図を示す。図2は、図1のA-A線断面図である。 The nucleic acid amplification reaction device 201 related to Example 1 of the present invention will be described below. FIG. 1 shows the device configuration of the nucleic acid amplification reaction device 201 . 2 shows a cross-sectional view of the nucleic acid amplification reaction device 201. As shown in FIG. FIG. 2 is a cross-sectional view taken along line AA of FIG.
 核酸増幅反応装置201は核酸増幅反応用デバイス101およびデバイス保持部202を備える。核酸増幅反応用デバイス101はデバイス保持部202に配置される。核酸増幅反応装置201は、PEEK(ポリエーテルエーテルケトン)製のデバイス保持部202、PC(ポリカーボネート)製のカバー203、送液装置213を備える。デバイス保持部202は、ポンプ接続部204、外部熱源206および207を備える。カバー203は、デバイス保持部202に設置した核酸増幅反応用デバイス101の浮き上がりを防ぎ、所定の位置に固定する役割を持つ。 The nucleic acid amplification reaction apparatus 201 includes a nucleic acid amplification reaction device 101 and a device holding section 202 . The nucleic acid amplification reaction device 101 is placed in the device holding section 202 . The nucleic acid amplification reaction apparatus 201 includes a device holding section 202 made of PEEK (polyetheretherketone), a cover 203 made of PC (polycarbonate), and a liquid delivery device 213 . Device holder 202 includes pump connection 204 and external heat sources 206 and 207 . The cover 203 has a role of preventing the nucleic acid amplification reaction device 101 placed on the device holding portion 202 from floating and fixing it at a predetermined position.
 デバイス保持部202の材質としては、PEEK以外を用いることもできるが、100℃以上の耐熱温度で、熱伝導率の低いものが好ましい。カバー203の材質は、70℃程度の耐熱温度で、熱伝導率の低いものが好ましい。 A material other than PEEK can be used as the material of the device holding portion 202, but a material with a heat resistance temperature of 100°C or higher and a low thermal conductivity is preferable. It is preferable that the material of the cover 203 has a heat resistance temperature of about 70° C. and a low thermal conductivity.
 外部熱源206、207は、それぞれ熱電対とヒータが内蔵されている。核酸増幅反応装置201は温度制御器208を備える。温度制御器208は、外部熱源206、207について、表面を所定の温度に保つよう制御する。このように、温度制御器208および外部熱源206、207は、核酸増幅反応に用いる温度帯を形成する温度制御機構として機能する。 The external heat sources 206 and 207 each contain a thermocouple and a heater. The nucleic acid amplification reaction device 201 has a temperature controller 208 . A temperature controller 208 controls the external heat sources 206 and 207 to keep the surface at a predetermined temperature. Thus, temperature controller 208 and external heat sources 206 and 207 function as a temperature control mechanism that forms a temperature zone used for nucleic acid amplification reaction.
 本実施例では、PCRの高速化のため、変性とアニーリングおよび伸長とを2つの温度帯で繰り返してPCRを行う2ステップPCRと呼ばれる方式を採用した。ニッケルメッキを施した銅製の外部熱源206、207を用い、第1温度領域の目標温度をアニーリングおよび伸長温度帯(例えば68℃)とし、第2温度領域の目標温度を変性温度帯(例えば98℃)とした。第1温度領域を変性温度帯、第2温度領域をアニーリングおよび伸長温度帯としてもよい。 In this example, in order to speed up PCR, a method called 2-step PCR was adopted in which denaturation, annealing, and elongation were repeated in two temperature ranges. Using nickel-plated copper external heat sources 206, 207, the target temperature of the first temperature zone is the annealing and extension temperature zone (eg, 68 ° C.), and the target temperature of the second temperature zone is the denaturation temperature zone (eg, 98 ° C.). ). The first temperature range may be the denaturation temperature range and the second temperature range may be the annealing and extension temperature range.
 送液装置213はシリンジポンプ205を内蔵し、核酸増幅反応用デバイス101内のサンプルを移動させる送液制御機構として機能する。シリンジポンプ205の動作により、流路内でサンプルが移動する。送液装置213には、ダイアフラムポンプやマイクロブロアなどを用いてもよい。送液装置213およびポンプ接続部204は、チューブ210で接続される。 The liquid delivery device 213 incorporates a syringe pump 205 and functions as a liquid delivery control mechanism for moving the sample in the nucleic acid amplification reaction device 101 . The operation of the syringe pump 205 moves the sample within the channel. A diaphragm pump, a microblower, or the like may be used for the liquid delivery device 213 . The liquid delivery device 213 and the pump connection section 204 are connected by a tube 210 .
 蛍光検出部209は、対物レンズ(図示せず)、ダイクロイックミラー215、光検出器216で構成され、励起光照射部214および信号検出用回路211と接続される。 The fluorescence detection unit 209 is composed of an objective lens (not shown), a dichroic mirror 215, and a photodetector 216, and is connected to the excitation light irradiation unit 214 and the signal detection circuit 211.
 次に、実施例1に関わる核酸増幅反応用デバイス101について説明する。図3に核酸増幅反応用デバイス101の平面図を、図4に図3のA-A線断面図を示す。核酸増幅反応用デバイス101は、サンプル導入口106、サンプル導入流路107、核酸増幅反応部108、空気流路109、通気口110を備える。サンプル導入流路107は、サンプル導入口106から導入されるサンプルを核酸増幅反応部108に導く流路である。このように、核酸増幅反応用デバイス101は流路デバイスとして機能する。 Next, the nucleic acid amplification reaction device 101 related to Example 1 will be described. FIG. 3 shows a plan view of the nucleic acid amplification reaction device 101, and FIG. 4 shows a cross-sectional view taken along line AA of FIG. The nucleic acid amplification reaction device 101 includes a sample introduction port 106 , a sample introduction channel 107 , a nucleic acid amplification reaction section 108 , an air channel 109 and a vent port 110 . The sample introduction channel 107 is a channel that guides the sample introduced from the sample introduction port 106 to the nucleic acid amplification reaction section 108 . Thus, the nucleic acid amplification reaction device 101 functions as a channel device.
 サンプル導入口はサンプルを導入するための構成である。サンプル導入口106および通気口110は流路の端点に位置し、基板102上では貫通穴として加工される。基板102の下面にはシール材105が接着される。サンプル導入口106および通気口110は、基板102の上面(すなわちシール材105を接着した面の反対側表面)で開口している。 The sample inlet is a configuration for introducing samples. The sample inlet 106 and vent 110 are located at the end points of the channel and are processed as through holes on the substrate 102 . A sealing material 105 is adhered to the lower surface of the substrate 102 . The sample inlet 106 and the vent 110 are opened on the upper surface of the substrate 102 (that is, the surface opposite to the surface to which the sealing material 105 is adhered).
 サンプル導入口106の形状は円筒形でなくてもよく、例えば円錐形や皿ねじ形などであってもよい。サンプル導入口106の上から見た形状は、角のない形状(円形や楕円形など)であれば好適である。これらの限らず、サンプル導入口106にあるサンプル115(図6参照)をサンプル導入流路107に引き込める形状であればよい。 The shape of the sample inlet 106 may not be cylindrical, and may be conical or countersunk, for example. It is preferable that the shape of the sample inlet 106 when viewed from above is a shape without corners (circular, elliptical, etc.). The shape is not limited to these, and any shape may be employed as long as the sample 115 (see FIG. 6) at the sample introduction port 106 can be drawn into the sample introduction channel 107 .
 サンプル導入口106の上から見た形状が角のない形状(たとえば円形)であることにより、角部分からの予期せぬサンプル漏出を防止できるほか、滴下したサンプルに作用する力が等方的になり、安定した秤量が実現できる。 Since the sample inlet 106 has no corners (for example, a circular shape) as viewed from above, it is possible to prevent unexpected leakage of the sample from the corners, and the force acting on the dropped sample is isotropic. and stable weighing can be achieved.
 通気口110と核酸増幅反応部108とを接続する空気流路109は、その途中に、核酸の通過を許さないフィルタ111を備える。 The air flow path 109 that connects the air vent 110 and the nucleic acid amplification reaction section 108 has a filter 111 that does not allow passage of nucleic acids in the middle.
 核酸増幅反応用デバイス101として、80mm×30mm×厚み3mmのポリカーボネート(PC)製の基板102に、幅0.3mm、深さ0.3mmのサンプル導入流路107と、幅0.8mm、深さ0.6mmの核酸増幅反応部108の流路および空気流路109と、直径3mmのサンプル導入口106と、直径1mmの通気口110とを、切削加工にて製作した。その後、基板102の切削面全面に、厚み0.1mmのポリオレフィン(PO)製のシール材105を圧着することで、流路を形成した。 As the nucleic acid amplification reaction device 101, a substrate 102 made of polycarbonate (PC) of 80 mm × 30 mm × 3 mm in thickness is provided with a sample introduction channel 107 of 0.3 mm in width and 0.3 mm in depth, and a sample introduction channel 107 of 0.8 mm in width and 0.8 mm in depth. The flow path of the nucleic acid amplification reaction section 108 and the air flow path 109 of 0.6 mm, the sample introduction port 106 of 3 mm in diameter, and the air vent 110 of 1 mm in diameter were manufactured by cutting. Thereafter, a sealing material 105 made of polyolefin (PO) having a thickness of 0.1 mm was crimped to the entire cut surface of the substrate 102 to form a flow path.
 基板102の材質はPCでなくてもよく、アクリル樹脂(PMMA)、シクロオレフィンポリマ(COP)などその他の樹脂でもよい。シール材105の材質はPOでなくてもよく、ポリプロピレンなどその他の樹脂でもよい。 The material of the substrate 102 does not have to be PC, and other resins such as acrylic resin (PMMA) and cycloolefin polymer (COP) may be used. The material of the sealing material 105 may not be PO, and may be another resin such as polypropylene.
 実施例1においては、サンプル滴下から秤量が完了するまでの間、サンプルは核酸増幅反応用デバイス101のサンプル導入口106またはサンプル導入流路107の一定位置より先に侵入することなく、一定位置に留めおかれるようにすると好適である。そのために、サンプル導入流路107中にバルブ機構を設けることが有益である。 In Example 1, the sample does not enter the sample introduction port 106 or the sample introduction channel 107 of the nucleic acid amplification reaction device 101 prior to a certain position, and remains at a certain position from the time the sample is dropped until the weighing is completed. It is preferable to keep it. Therefore, it is beneficial to provide a valve mechanism in the sample introduction channel 107 .
 これは、例えば特許文献3のようなマイクロバルブを流路内に設置して制御してもよい。または、本実施例のように、サンプル導入流路107をサンプル導入口106の深さの1/10程度またはそれ以下の太さとし、一定の圧力が印加されない限りサンプル導入流路107へのサンプル侵入を許さないバルブ機構を構成することによっても達成できる。このようなバルブ機構を構成する場合、サンプル導入口106とサンプル導入流路107の境界面において、サンプル導入口106にあるサンプル115がサンプル導入流路107に流入する最小圧力(ウォーターイントリュージョン圧)が大気圧より大きくなるように、サンプル導入流路107の断面積を設計すればよい。 This may be controlled by, for example, installing a microvalve as in Patent Document 3 in the channel. Alternatively, as in this embodiment, the thickness of the sample introduction channel 107 is about 1/10 or less of the depth of the sample introduction port 106, and the sample does not enter the sample introduction channel 107 unless a constant pressure is applied. This can also be achieved by constructing a valve mechanism that does not allow When configuring such a valve mechanism, the minimum pressure (water intrusion pressure) at which the sample 115 at the sample introduction port 106 flows into the sample introduction channel 107 at the interface between the sample introduction port 106 and the sample introduction channel 107 ) is greater than the atmospheric pressure.
 核酸増幅反応部108の流路は、分岐のない1本の流路であり、第1温度領域113および第2温度領域114を備える。第1温度領域113は外部熱源206と、第2温度領域114は外部熱源207と、それぞれ接する。通気口110は、ポンプ接続部204を介して送液装置213と接続する。 The channel of the nucleic acid amplification reaction section 108 is a single channel without branches, and has a first temperature region 113 and a second temperature region 114 . The first temperature region 113 is in contact with the external heat source 206, and the second temperature region 114 is in contact with the external heat source 207, respectively. Vent 110 is connected to liquid delivery device 213 via pump connection 204 .
 図5にサンプル導入口106付近の拡大図を、図6にはサンプル滴下時のサンプル導入口106の断面図を示す。サンプル導入口106の周囲に、幅2mmの非吸水領域104を隔て、吸水部としての吸水パッド103を設けた。非吸水領域104は、サンプル導入口106と吸水パッド103との間の領域である。 FIG. 5 shows an enlarged view of the vicinity of the sample introduction port 106, and FIG. 6 shows a cross-sectional view of the sample introduction port 106 when the sample is dropped. A water-absorbing pad 103 as a water-absorbing portion was provided around the sample inlet 106 with a non-water-absorbing region 104 having a width of 2 mm. The non-absorbent area 104 is the area between the sample inlet 106 and the absorbent pad 103 .
 吸水パッド103は内径7mm、外径20mmのリング状である。吸水パッド103としては、ろ紙や多孔質性の樹脂などを用いることができる。吸水パッド103は、滴下されうるサンプルを全量吸水できる十分な吸水能力があると好適である。外形は円形ではなく四角形などでもよい。吸水パッド103の設置方法は、核酸増幅反応用デバイス101表面に両面テープなどで接着してもよいし、静置するのみでもよい。 The water absorbing pad 103 is ring-shaped with an inner diameter of 7 mm and an outer diameter of 20 mm. Filter paper, porous resin, or the like can be used as the water absorbing pad 103 . It is preferable that the water absorbing pad 103 has sufficient water absorbing ability to absorb the entire amount of the sample that can be dripped. The outer shape may be rectangular instead of circular. The water absorption pad 103 may be installed on the surface of the device for nucleic acid amplification reaction 101 with a double-sided tape or the like, or may be simply left standing.
 本実施例では、検出対象である一種類もしくは複数種類のDNAと、標的DNAに特異的に反応するプライマと、蛍光色素と、耐熱性酵素と、4種類のデオキシリボヌクレオシド三リン酸(dATP、dCTP、dGTP、dTTP)とを混合したPCR反応液をサンプルとした。23μLのサンプルを用いてPCR反応系を構築した。核酸検出のための蛍光色素は、たとえば、検出対象の核酸に特異的に結合するTaqManプローブやCycleaveプローブ、モルキュラービーコンと呼ばれるような蛍光標識プローブである。また、SYBR Green等のインターカレータを用いてもよい。これら試薬系としては、リアルタイムPCR用試薬キットなどを使用することができる。 In this example, one or more types of DNA to be detected, a primer that specifically reacts with the target DNA, a fluorescent dye, a thermostable enzyme, and four types of deoxyribonucleoside triphosphates (dATP, dCTP , dGTP, dTTP) was used as a sample. A PCR reaction system was constructed using 23 μL of sample. Fluorescent dyes for nucleic acid detection are, for example, TaqMan probes and Cycleave probes that specifically bind to nucleic acids to be detected, and fluorescent labeled probes called molecular beacons. Also, an intercalator such as SYBR Green may be used. A real-time PCR reagent kit or the like can be used as these reagent systems.
 本実施例のサンプル導入は、核酸増幅反応用デバイス101をデバイス保持部202に設置した状態で行った。図7に、サンプル導入から目的遺伝子検出までの動作フローを示した。以下、図7に沿って各動作ステップについて説明する。 The sample introduction in this example was performed with the nucleic acid amplification reaction device 101 installed in the device holding portion 202 . FIG. 7 shows an operation flow from sample introduction to target gene detection. Each operation step will be described below with reference to FIG.
 本実施例では、サンプル導入口106には目標液量を超えるサンプルが滴下されることを前提とする。また、サンプル滴下量は、サンプル導入口106の容積を超え、吸水パッド103に少なくとも一度は到達する液量である必要がある。具体的には、本実施例の場合は、目標液量23μLに対して60~300μL程度のサンプルを滴下すればよい。 In this embodiment, it is assumed that a sample exceeding the target liquid volume is dropped into the sample introduction port 106 . Also, the amount of the sample to be dropped must exceed the volume of the sample introduction port 106 and must reach the water absorption pad 103 at least once. Specifically, in the case of this embodiment, about 60 to 300 μL of the sample may be dropped with respect to the target liquid volume of 23 μL.
 サンプル導入口106に60~300μL程度のサンプルを滴下すると、滴下したサンプル導入口106の容積を超えて基板102表面の非吸水領域104に接し、吸水パッド103に到達する(図7a)。非吸水領域104に溢れ出たサンプルは、吸水パッド103の毛細管現象に基づく吸引力により、吸水パッド103に吸引される(図7b)。 When about 60 to 300 μL of sample is dropped into the sample inlet 106, the volume of the dropped sample inlet 106 is exceeded and touches the non-water-absorbing region 104 on the surface of the substrate 102, reaching the water-absorbing pad 103 (FIG. 7a). The sample overflowing into the non-absorbing region 104 is sucked into the water-absorbing pad 103 by the suction force based on the capillary action of the water-absorbing pad 103 (Fig. 7b).
 この後さらにサンプルを滴下した場合も、吸水パッド103の吸水容量を超えない範囲であれば、余剰サンプルは再び吸水パッド103に吸引され、サンプル導入口106には一定量のサンプルが残留する。これにより、サンプル導入口106に残留するサンプル量は、周辺環境が一定であれば滴下したサンプル量に依らず一定となる。 Even if more sample is dropped after this, as long as the water absorption capacity of the water absorption pad 103 is not exceeded, the surplus sample will be sucked into the water absorption pad 103 again, and a certain amount of sample will remain in the sample inlet 106. As a result, the amount of sample remaining in the sample introduction port 106 is constant regardless of the amount of dropped sample if the ambient environment is constant.
 このように、実施例1に係る核酸増幅反応用デバイス101によれば、導入するサンプル液量をより精密に制御することができる。 Thus, according to the nucleic acid amplification reaction device 101 according to Example 1, it is possible to more precisely control the amount of sample liquid to be introduced.
 滴下動作を終了し、吸水パッド103によるサンプルの吸引が停止した後、シリンジポンプ205の吸引動作により、サンプル導入口106に残留したサンプルをサンプル導入流路107に引き込み(図7c)、核酸増幅反応部108の第2温度領域114まで送液する(図7d)。 After the dripping operation is finished and the suction of the sample by the water absorption pad 103 is stopped, the sample remaining in the sample introduction port 106 is drawn into the sample introduction channel 107 by the suction operation of the syringe pump 205 (Fig. 7c), and the nucleic acid amplification reaction is started. Pump up to the second temperature zone 114 of the part 108 (Fig. 7d).
 次に、核酸増幅反応のためのサンプル往復動作のフローを説明する。はじめの導入動作(図7d)によりサンプルを第2温度領域114まで移動させた後、一定時間(本実施例では15秒)待機し、サンプルの温度を上昇させる(図7e)。 Next, the flow of sample reciprocation for nucleic acid amplification reaction will be explained. After the sample is moved to the second temperature region 114 by the initial introduction operation (Fig. 7d), the sample is waited for a certain period of time (15 seconds in this embodiment) to raise the temperature of the sample (Fig. 7e).
 その後、シリンジポンプ205の吐出動作により、流路内に圧力を印加し、サンプルを第1温度領域113まで移動させる(図7f)。第1温度領域113で一定時間(本実施例では7秒)サンプルを保持することで、アニーリングおよび伸長反応を行う(図7g)。 After that, the discharge operation of the syringe pump 205 applies pressure in the flow channel to move the sample to the first temperature region 113 (Fig. 7f). Annealing and elongation reactions are performed by holding the sample in the first temperature region 113 for a certain period of time (7 seconds in this example) (FIG. 7g).
 その後、シリンジポンプ205の吸引動作により、サンプルを第2温度領域114まで移動させる(図7h)。第1温度領域113と第2温度領域114の間に備える検出部112(図1)をサンプルが通過するとき、核酸増幅に由来する蛍光を、蛍光検出部209(図2)で検出する。蛍光検出部209で検出した蛍光強度を、信号検出用回路211で電気信号に変換し解析することで、増幅した核酸量を測定する。 After that, the suction operation of the syringe pump 205 moves the sample to the second temperature region 114 (Fig. 7h). When the sample passes through the detection unit 112 (FIG. 1) provided between the first temperature region 113 and the second temperature region 114, fluorescence derived from nucleic acid amplification is detected by the fluorescence detection unit 209 (FIG. 2). The fluorescence intensity detected by the fluorescence detection unit 209 is converted into an electric signal by the signal detection circuit 211 and analyzed to measure the amount of amplified nucleic acid.
 その後、第2温度領域114で一定時間(本実施例では3秒)サンプルを保持することで、変性反応を行う(図7i)。前記図7fから図7iまでの動作を所定回数(本実施例では40回)繰り返すことにより、検出対象のDNAの特定領域を増幅する。これにより、約8分でリアルタイムPCRを実施できる。 After that, the denaturation reaction is performed by holding the sample in the second temperature region 114 for a certain period of time (3 seconds in this example) (Fig. 7i). By repeating the operation from FIG. 7f to FIG. 7i a predetermined number of times (40 times in this embodiment), a specific region of DNA to be detected is amplified. This allows real-time PCR to be performed in about 8 minutes.
 核酸検出方法は、上記実施例1では、蛍光色素を含む試薬を用いて核酸増幅をサイクル毎に逐次検出するリアルタイムPCR方式であるが、これに限らない。核酸増幅反応終了後の最終核酸量を検出するエンドポイント検出系を構成することもできる。 In Example 1 above, the nucleic acid detection method is a real-time PCR method in which nucleic acid amplification is sequentially detected in each cycle using a reagent containing a fluorescent dye, but the method is not limited to this. It is also possible to construct an endpoint detection system that detects the final amount of nucleic acid after the nucleic acid amplification reaction is completed.
 エンドポイント検出系を用いる場合には、核酸増幅反応装置201の構成は、蛍光検出部209、励起光照射部214、ダイクロイックミラー215、光検出器216、信号検出用回路211を備えない点が実施例1と異なる。 When an endpoint detection system is used, the configuration of the nucleic acid amplification reaction device 201 does not include the fluorescence detection unit 209, the excitation light irradiation unit 214, the dichroic mirror 215, the photodetector 216, and the signal detection circuit 211. Different from Example 1.
 図8に、エンドポイント検出系を用いる場合の、サンプル導入から目的遺伝子検出までの動作フローを示した。サンプル滴下(図8a)からサンプルの温度を上昇させる(図8e)までは、実施例1の動作フロー(図7)と同様である。 Fig. 8 shows the operation flow from sample introduction to target gene detection when using the endpoint detection system. The operation flow from the dropping of the sample (FIG. 8a) to the temperature rise of the sample (FIG. 8e) is the same as that of the first embodiment (FIG. 7).
 その後、シリンジポンプ205の吐出動作により、流路内に圧力を印加し、サンプルを第1温度領域113まで移動させる(図8f)。第1温度領域113で一定時間(本実施例では7秒)サンプルを保持することで、アニーリングおよび伸長反応を行う(図8g)。シリンジポンプ205の吸引動作により、サンプルを第2温度領域114まで移動させる(図8h)。第2温度領域114で一定時間(本実施例では3秒)サンプルを保持することで、変性反応を行う(図8i)。 After that, the discharge operation of the syringe pump 205 applies pressure in the flow channel to move the sample to the first temperature region 113 (Fig. 8f). Annealing and elongation reactions are performed by holding the sample in the first temperature region 113 for a certain period of time (7 seconds in this example) (FIG. 8g). The suction action of the syringe pump 205 moves the sample to the second temperature zone 114 (Fig. 8h). A denaturation reaction is performed by holding the sample in the second temperature region 114 for a certain period of time (3 seconds in this example) (Fig. 8i).
 前記(f)から(i)の動作を所定回数(本実施例では40回)繰り返すことにより、検出対象のDNAの特定領域を増幅する。その後、シリンジポンプ205の吐出動作により、サンプルをサンプル導入口106まで移動させる(図8j)。サンプル導入口に戻ったサンプルを回収し、電気泳動やハイブリダイゼーション等で、増幅した核酸を検出する(図8k)。これにより、約8分で核酸増幅反応を実施でき、反応後サンプルを任意の方法で測定できる。 By repeating the operations from (f) to (i) a predetermined number of times (40 times in this embodiment), the specific region of the DNA to be detected is amplified. Thereafter, the sample is moved to the sample introduction port 106 by the discharge operation of the syringe pump 205 (Fig. 8j). The sample returned to the sample inlet is recovered, and the amplified nucleic acid is detected by electrophoresis, hybridization, or the like (Fig. 8k). Thereby, the nucleic acid amplification reaction can be performed in about 8 minutes, and the post-reaction sample can be measured by any method.
 上述のように、実施例1によれば、核酸増幅反応用デバイスに導入するサンプル液量をより精密に制御することができる。 As described above, according to Example 1, the amount of sample liquid to be introduced into the device for nucleic acid amplification reaction can be controlled more precisely.
 本発明の実施例2について、以下に説明する。なお、実施例1と共通する部分については説明を省略する場合がある。 Example 2 of the present invention will be described below. It should be noted that descriptions of parts common to the first embodiment may be omitted.
 図9は、サンプル滴下位置を簡易に定めるためのガイド機構を備えた核酸増幅反応装置201の外観図である。デバイス引出部217は、核酸増幅反応用デバイス101を一定位置に保持する保持部と、滴下ガイド218を備え、核酸増幅反応装置201から一定距離引き出すことができる。 FIG. 9 is an external view of a nucleic acid amplification reaction device 201 equipped with a guide mechanism for easily determining the sample dropping position. The device pullout part 217 has a holding part that holds the nucleic acid amplification reaction device 101 at a fixed position and a dropping guide 218, and can be pulled out from the nucleic acid amplification reaction apparatus 201 by a fixed distance.
 滴下ガイド218は、サンプル導入口106にサンプルが滴下されることを導くためのガイド部として機能する。滴下ガイド218は、たとえばサンプル導入口106上部に設けられる。滴下ガイド218は、本実施例では円形の開口であり、サンプル導入口106と同軸となる位置に移動できるよう配置される。 The dropping guide 218 functions as a guide part for guiding the dropping of the sample into the sample introduction port 106 . Drop guide 218 is provided, for example, above sample inlet 106 . The drip guide 218 is a circular opening in this embodiment and is arranged to be movable to a position coaxial with the sample inlet 106 .
 引出ボタン219を1度押下すると、デバイス引出部217が自動で引き出され、滴下ガイド218にサンプル滴下用スポイトを設置できる位置で停止する。滴下ガイド218は、サンプル滴下時にサンプル導入口106に対してサンプル滴下用スポイトを固定できるように構成される。次に、デバイス引出部217に核酸増幅反応用デバイス101を設置し、滴下ガイド218にサンプル滴下用スポイトを置いて、サンプルを滴下する。 When the pull-out button 219 is pressed once, the device pull-out portion 217 is automatically pulled out, and the drop guide 218 stops at a position where the dropper for sample dropping can be installed. The dropping guide 218 is configured so that the dropper for sample dropping can be fixed to the sample introduction port 106 when dropping the sample. Next, the nucleic acid amplification reaction device 101 is installed in the device drawer 217, and the dropper for sample dropping is placed on the dropping guide 218 to drop the sample.
 滴下動作終了後、再び引出ボタン219を押下すると、デバイス引出部217は核酸増幅反応装置201内部に引き戻され、デバイス保持部202上に核酸増幅反応用デバイス101が設置される。これにより、サンプルはサンプル導入口106からずれることなく滴下できる。 When the withdrawal button 219 is pressed again after the dropping operation is completed, the device withdrawal section 217 is pulled back into the nucleic acid amplification reaction apparatus 201 and the nucleic acid amplification reaction device 101 is installed on the device holding section 202 . As a result, the sample can be dropped from the sample introduction port 106 without deviating.
 サンプル滴下動作は、核酸増幅反応装置201の外部で実施することも可能である。図10は、実施例2において、核酸増幅反応装置201の外部で核酸増幅反応用デバイス101にサンプルを導入し、その後に核酸増幅反応用デバイス101を核酸増幅反応装置201に設置する場合の、核酸増幅反応装置201の構成図である。 The sample dropping operation can also be performed outside the nucleic acid amplification reaction device 201. FIG. 10 shows the nucleic acid when a sample is introduced into the nucleic acid amplification reaction device 101 outside the nucleic acid amplification reaction device 201 and then the nucleic acid amplification reaction device 101 is installed in the nucleic acid amplification reaction device 201 in Example 2. 1 is a configuration diagram of an amplification reaction device 201. FIG.
 図1に示した構成に対して、バルブ212が設けられている点において異なる。バルブ212は、送液装置213と核酸増幅反応用デバイス101との間に設けられる。バルブ212は大気開放可能である。 It differs from the configuration shown in FIG. 1 in that a valve 212 is provided. A valve 212 is provided between the liquid transfer device 213 and the nucleic acid amplification reaction device 101 . Valve 212 can be open to the atmosphere.
 サンプルを導入する際に吸水パッド103およびサンプル導入口106が大きく傾斜していると、重力の影響で秤量特性が変わる恐れがあるため、核酸増幅反応用デバイス101をできるだけ水平にしてサンプル導入を実施するのが好ましい。 If the water absorption pad 103 and the sample introduction port 106 are greatly inclined when introducing the sample, the weighing characteristics may change due to the influence of gravity. preferably.
 核酸増幅反応用デバイス101の設置は、流路内の空気がサンプル導入口106に排出されてサンプル中に気泡が入ることを防ぐため、バルブ212を大気開放した状態で行う。カバー203を閉めて核酸増幅反応用デバイス101を固定し、サンプル導入流路107へサンプルを吸引する前にバルブ212を閉じれば、送液を開始できる。 The installation of the nucleic acid amplification reaction device 101 is performed with the valve 212 open to the atmosphere in order to prevent the air in the channel from being discharged to the sample introduction port 106 and air bubbles from entering the sample. If the cover 203 is closed to fix the device 101 for nucleic acid amplification reaction, and the valve 212 is closed before the sample is sucked into the sample introduction channel 107, liquid transfer can be started.
 本発明の実施例3について、以下に説明する。なお、実施例1または2と共通する部分については説明を省略する場合がある。 Example 3 of the present invention will be described below. Note that the description of the parts common to the first or second embodiment may be omitted.
 本発明の実施例3として、流路デバイス内で検体由来の核酸抽出液とPCR試薬とを混和させることが可能な核酸増幅反応用デバイス101について説明する。図11に、実施例3に係る核酸増幅反応用デバイス101のサンプル導入口106付近の構成図を示す。図11に現れない部分は、たとえば実施例1と同様とすることができる。 As Example 3 of the present invention, a nucleic acid amplification reaction device 101 capable of mixing a sample-derived nucleic acid extract and a PCR reagent in a channel device will be described. FIG. 11 shows a configuration diagram of the vicinity of the sample introduction port 106 of the device 101 for nucleic acid amplification reaction according to Example 3. As shown in FIG. Parts that do not appear in FIG. 11 can be the same as those in the first embodiment, for example.
 核酸増幅反応用デバイス101は、PCRに必要な試薬116(たとえば反応試薬)を、流路内に格納する。試薬116は、標的DNAに特異的に反応するプライマ、蛍光色素、耐熱性酵素および4種類のデオキシリボヌクレオシド三リン酸(dATP、dCTP、dGTP、dTTP)、等を含む。 The nucleic acid amplification reaction device 101 stores reagents 116 (for example, reaction reagents) required for PCR in the channel. The reagent 116 includes a primer that specifically reacts with the target DNA, a fluorescent dye, a thermostable enzyme, four types of deoxyribonucleoside triphosphates (dATP, dCTP, dGTP, dTTP), and the like.
 核酸増幅反応用デバイス101のサンプル導入流路107の末端に、幅0.8mm、長さ1.5mm、深さ1.5mmの試薬格納部117を作製し、試薬格納部117内に試薬116を固装化した。試薬格納部117は、核酸増幅反応用の試薬を設置するための試薬設置部として機能する。 A reagent storage section 117 having a width of 0.8 mm, a length of 1.5 mm, and a depth of 1.5 mm was prepared at the end of the sample introduction channel 107 of the device for nucleic acid amplification reaction 101, and a reagent 116 was placed in the reagent storage section 117. solidified. The reagent storage section 117 functions as a reagent installation section for installing a reagent for nucleic acid amplification reaction.
 試薬116は固体またはゲルで、図11のようにビーズ状に成型して配置してもよいし、流路壁面に塗布してもよい。溶液成分であるサンプルに対して、速やかに溶け混和しやすい構成が好ましい。 The reagent 116 is solid or gel, and may be molded into a bead shape as shown in FIG. It is preferable to use a composition that is readily soluble and easily mixed with a sample that is a solution component.
 本実施例でサンプル導入口106に滴下するサンプルは、検体(鼻汁など)の核酸抽出液とした。実施例1と同様の原理で滴下したサンプルから一定量のサンプルを秤取した後、秤取したサンプルをサンプル導入流路107に引き込んだ。サンプルを核酸増幅反応部へ移動させるステップの中途で試薬格納部117を通過するとき、試薬116が溶解し、サンプル内で試薬成分が拡散する。このように、試薬格納部117は、サンプルと試薬とを混和させる試薬混合部としても機能する。 The sample dropped into the sample introduction port 106 in this embodiment was a nucleic acid extract of a specimen (nasal discharge, etc.). A certain amount of the sample was weighed out from the dropped sample based on the same principle as in Example 1, and then the weighed sample was introduced into the sample introduction channel 107 . When the sample passes through the reagent storage section 117 in the middle of the step of moving the sample to the nucleic acid amplification reaction section, the reagent 116 dissolves and the reagent components diffuse within the sample. Thus, the reagent storage section 117 also functions as a reagent mixing section that mixes the sample and the reagent.
 その後、図7d~iのフロー、または図8d~kのフローで核酸増幅および検出を実施する。これにより、滴下するサンプルにPCR試薬を混合する前処理の必要なく核酸増幅反応を達成できると同時に、試薬の使用を最小限に抑えることができる。 Then, nucleic acid amplification and detection are performed according to the flow of Figures 7d-i or the flow of Figures 8d-k. As a result, a nucleic acid amplification reaction can be achieved without the need for a pretreatment of mixing PCR reagents with the sample to be dropped, and at the same time, the use of reagents can be minimized.
 PCRのサイクル開始前に、試薬格納部117近傍または第1温度領域113または第2温度領域114で、シリンジポンプ205の吸引および加圧動作によりサンプルを数回往復運動させ、試薬成分を混和させるステップを追加してもよい。 A step of reciprocating the sample several times by suction and pressure operation of the syringe pump 205 in the vicinity of the reagent storage unit 117 or in the first temperature region 113 or the second temperature region 114 before starting the PCR cycle to mix the reagent components. may be added.
 実施例3では、上述のように、単一の試薬格納部117が、核酸増幅反応用の試薬を設置するための試薬設置部として機能するとともに、サンプルと試薬とを混和させる試薬混合部としても機能する。変形例として、これらをそれぞれ別々の構成としてもよい。たとえば、試薬設置部と試薬混合部とを異なる空間として設けてもよい。 In Example 3, as described above, the single reagent storage unit 117 functions as a reagent installation unit for installing reagents for nucleic acid amplification reactions, and also as a reagent mixing unit for mixing samples and reagents. Function. Alternatively, they may be configured separately. For example, the reagent installing section and the reagent mixing section may be provided as different spaces.
 実施例4について、以下に説明する。なお、実施例1~3と共通する部分については説明を省略する場合がある。 The fourth embodiment will be explained below. Note that descriptions of parts common to the first to third embodiments may be omitted.
 本発明の実施例4として、検出対象の核酸の逆転写(RT)反応を含む核酸増幅反応用デバイス101および核酸増幅反応装置201について説明する。図12(a)に核酸の逆転写反応領域を備えた核酸増幅反応用デバイス101を示す。図12(b)に核酸増幅反応用デバイス101を核酸増幅反応装置201に設置したときの断面図(図12(a)のA-A線によるもの)を示す。 As Example 4 of the present invention, a nucleic acid amplification reaction device 101 and a nucleic acid amplification reaction apparatus 201 including a reverse transcription (RT) reaction of a nucleic acid to be detected will be described. FIG. 12(a) shows a nucleic acid amplification reaction device 101 having a nucleic acid reverse transcription reaction region. FIG. 12(b) shows a cross-sectional view (taken along line AA in FIG. 12(a)) when the nucleic acid amplification reaction device 101 is installed in the nucleic acid amplification reaction apparatus 201. As shown in FIG.
 実施例1~3の核酸増幅反応用デバイス101と比較して、サンプル導入流路107と第1温度領域113の間に第3温度領域118を備え、核酸増幅反応装置201においても、第3温度領域118に対応する外部熱源220を備える点で異なる。第3温度領域118は、外部熱源220によりRT温度(本実施例では45℃)に保たれている。 Compared to the nucleic acid amplification reaction device 101 of Examples 1 to 3, the third temperature region 118 is provided between the sample introduction channel 107 and the first temperature region 113, and the nucleic acid amplification reaction device 201 also has the third temperature It differs in that an external heat source 220 corresponding to the region 118 is provided. The third temperature region 118 is kept at the RT temperature (45° C. in this embodiment) by the external heat source 220 .
 本実施例では、サンプルは、検出対象である一種類のDNAと、標的DNAに特異的に反応するプライマと、耐熱性酵素と、4種類のデオキシリボヌクレオシド三リン酸(dATP、dCTP、dGTP、dTTP)とを含み、さらに逆転写酵素を含む。このサンプルを用いてRT-PCR反応系を構築した。 In this example, the sample consisted of one type of DNA to be detected, a primer that specifically reacts with the target DNA, a thermostable enzyme, and four types of deoxyribonucleoside triphosphates (dATP, dCTP, dGTP, dTTP ) and further including reverse transcriptase. An RT-PCR reaction system was constructed using this sample.
 まず、図7a~cと同様のフローで、サンプルを核酸増幅反応用デバイス101内に導入する。導入したサンプルを第3温度領域118に移動させ、一定時間(本実施例では60秒)停止させる。これにより、検出対象の核酸がRNAであっても逆転写されてDNAとなるので、その後は実施例1と同様に、図8d~kのフローにより、核酸増幅および検出を実施できる。 First, a sample is introduced into the nucleic acid amplification reaction device 101 in the same flow as in FIGS. 7a to 7c. The introduced sample is moved to the third temperature region 118 and stopped for a certain period of time (60 seconds in this embodiment). As a result, even if the nucleic acid to be detected is RNA, it is reverse transcribed into DNA, so nucleic acid amplification and detection can be carried out according to the flow of FIGS.
 また、図1のように検出部112を設け、蛍光色素を含む試薬系を用い、図2のように核酸増幅反応装置201に蛍光検出部209を設けてリアルタイム蛍光検出系を備えた構造とすれば、RT反応後は図7d~iのフローで、増幅した核酸を検出することが可能である。 Moreover, as shown in FIG. 1, a detection unit 112 is provided, a reagent system containing a fluorescent dye is used, and a nucleic acid amplification reaction apparatus 201 is provided with a fluorescence detection unit 209 as shown in FIG. 2 to provide a real-time fluorescence detection system. For example, after the RT reaction, the amplified nucleic acid can be detected according to the flow of FIGS. 7d to 7i.
 第3温度領域118は、第1温度領域113と第2温度領域114の間に配置されてもよいし、第2温度領域114とフィルタ111の間に配置されてもよい。 The third temperature region 118 may be arranged between the first temperature region 113 and the second temperature region 114 or may be arranged between the second temperature region 114 and the filter 111 .
 本発明の実施例5について、以下に説明する。なお、実施例1~4と共通する部分については説明を省略する場合がある。 Example 5 of the present invention will be described below. Note that descriptions of parts common to the first to fourth embodiments may be omitted.
 本発明の実施例5として、LAMP等温増幅法による核酸増幅反応用デバイス101および核酸増幅反応装置201について説明する。図13(a)に等温増幅法による核酸増幅反応用デバイス101を示し、図13(b)に核酸増幅反応用デバイス101を核酸増幅反応装置201に設置したときの断面図(図13(a)のA-A線断面図)を示す。 As Example 5 of the present invention, a nucleic acid amplification reaction device 101 and a nucleic acid amplification reaction apparatus 201 based on the LAMP isothermal amplification method will be described. FIG. 13(a) shows a nucleic acid amplification reaction device 101 based on the isothermal amplification method, and FIG. 13(b) is a sectional view when the nucleic acid amplification reaction device 101 is installed in the nucleic acid amplification reaction apparatus 201 (FIG. 13(a)). AA line sectional view).
 実施例1~4の核酸増幅反応用デバイス101と比較して、温度制御領域および外部熱源を1対のみ備える点で異なる。  Compared to the nucleic acid amplification reaction device 101 of Examples 1 to 4, it differs in that only one pair of the temperature control region and the external heat source is provided.
 本実施例では、サンプルは、検出対象である一種類のDNAと、標的DNAに特異的に反応する4種のプライマと、耐熱性酵素と、4種類のデオキシリボヌクレオシド三リン酸(dATP、dCTP、dGTP、dTTP)とを混合した反応液である。 In this example, the sample consisted of one type of DNA to be detected, four types of primers that specifically react with the target DNA, a thermostable enzyme, and four types of deoxyribonucleoside triphosphates (dATP, dCTP, dGTP, dTTP) are mixed.
 第1温度領域113は、外部熱源206により等温増幅反応温度(本実施例では65℃)に保たれている。まず、図7a~cと同様のフローで、サンプルを核酸増幅反応用デバイス101内に導入する。導入したサンプルを第1温度領域113に移動させ、一定時間(例えば10分)停止させる。これにより、標的DNAにプライマがアニーリングし、2本鎖が解離して新たな2本鎖を伸長する増幅反応が進行する。 The first temperature region 113 is kept at the isothermal amplification reaction temperature (65° C. in this embodiment) by the external heat source 206 . First, a sample is introduced into the nucleic acid amplification reaction device 101 in the same flow as in FIGS. 7a to 7c. The introduced sample is moved to the first temperature region 113 and stopped for a certain period of time (for example, 10 minutes). As a result, the primers are annealed to the target DNA, the double strands dissociate, and an amplification reaction progresses in which new double strands are extended.
 その後、図8jおよびkのフローでサンプルの回収および核酸検出を実施できる。また、核酸増幅反応装置201において蛍光検出部209などリアルタイム蛍光検出系を備えた構造とすれば、核酸増幅反応中に、増幅した核酸を検出することが可能である。 After that, sample collection and nucleic acid detection can be performed according to the flow of Figures 8j and k. Further, if the nucleic acid amplification reaction apparatus 201 is configured to have a real-time fluorescence detection system such as the fluorescence detection unit 209, it is possible to detect the amplified nucleic acid during the nucleic acid amplification reaction.
 なお、実施例1~4に示した核酸増幅反応用デバイス101および核酸増幅反応装置201を用いる場合であっても、第1温度領域113と第2温度領域114(および、実施例4の構成の場合は第3温度領域118)をすべて等温(例えば65℃)とすれば、本実施例と同様に、等温増幅法による核酸増幅反応を実施できる。 Even when the nucleic acid amplification reaction device 101 and the nucleic acid amplification reaction apparatus 201 shown in Examples 1 to 4 are used, the first temperature region 113 and the second temperature region 114 (and the configuration of Example 4) In this case, if the third temperature region 118) is all isothermal (for example, 65° C.), the nucleic acid amplification reaction can be carried out by the isothermal amplification method as in the present embodiment.
 本発明の実施例6は、実施例1~5におけるサンプル秤量機構の具体的動作を示すものである。 Example 6 of the present invention shows the specific operation of the sample weighing mechanism in Examples 1-5.
 図14(a)~(d)は、円筒形のサンプル導入口106付近の断面模式図であり、吸水パッド103にサンプル115が接触してから、吸水動作が終了し定常状態となるまでの動作を表す。 14(a) to (d) are schematic cross-sectional views of the vicinity of the cylindrical sample inlet 106, showing the operation from the contact of the sample 115 with the water-absorbing pad 103 to the end of the water-absorbing operation and reaching a steady state. represents
 サンプル115をサンプル導入口106上方から滴下していくと、サンプル導入口106にサンプル115が溜まり、非吸水領域104にも拡がっていく(図14(a))。 When the sample 115 is dripped from above the sample introduction port 106, the sample 115 accumulates in the sample introduction port 106 and spreads to the non-water absorbing region 104 (Fig. 14(a)).
 サンプル115が吸水パッド103に接触すると、その接触部に毛細管力が働き、サンプル115内の分子間力の均衡が崩れ、サンプル115は吸水パッド103に吸収され始める(図14(b))。 When the sample 115 comes into contact with the absorbent pad 103, a capillary force acts on the contact area, the balance of the intermolecular forces within the sample 115 is disrupted, and the sample 115 begins to be absorbed by the absorbent pad 103 (Fig. 14(b)).
 実施例6では、吸水パッド103の上端が、サンプル導入口106の上端以上の高さに存在するので、サンプル導入口106上方に溢れたサンプルのみを効率的に吸収することができる。しかしながら、吸水パッド103の上端をサンプル導入口106の上端より低い高さに配置することも可能である。 In Example 6, the upper end of the water-absorbing pad 103 is at a height higher than the upper end of the sample introduction port 106, so only the sample overflowing above the sample introduction port 106 can be efficiently absorbed. However, it is also possible to arrange the upper end of the absorbent pad 103 at a lower height than the upper end of the sample inlet 106 .
 次第にサンプル115の液面は低下していき、サンプル導入口106の端に液面が接触した瞬間、サンプル導入口106内のサンプル115と、非吸水領域104上のサンプル115とが断裂する(図14(c))。 The liquid surface of the sample 115 gradually decreases, and the moment the liquid surface contacts the end of the sample inlet 106, the sample 115 in the sample inlet 106 and the sample 115 on the non-water-absorbing region 104 rupture (Fig. 14(c)).
 その後、サンプル115が断裂した時点で非吸水領域104上に存在していたサンプル115は、速やかに吸水パッド103に吸収され、サンプル導入口106には一定量のサンプル115が残留する(図14(d))。 After that, the sample 115 that was present on the non-absorbing region 104 when the sample 115 was torn is quickly absorbed by the water absorbing pad 103, and a certain amount of the sample 115 remains in the sample inlet 106 (Fig. 14 ( d)).
 さらにサンプル115を滴下し続けた場合、吸水パッド103のサンプル保持力が十分にある限りは、図14(a)~(d)の現象が繰り返し発生する。このように、サンプル導入口106近傍にあるサンプル115が一定量以上となると吸水パッド103によるサンプル回収が行われ、サンプル導入口106に残留する液量は常にサンプル導入口106の容積程度となる。なお、目標秤量液量の変更は、単にサンプル導入口106の容積を変えることによって、容易に達成できる。 If the sample 115 is continued to drop further, the phenomena shown in FIGS. 14(a) to 14(d) will occur repeatedly as long as the water absorbing pad 103 has sufficient sample retention force. Thus, when the sample 115 in the vicinity of the sample inlet 106 reaches a certain amount or more, the sample is collected by the water absorption pad 103, and the amount of liquid remaining in the sample inlet 106 is always about the volume of the sample inlet 106. It should be noted that changing the target weighing liquid volume can be easily achieved by simply changing the volume of the sample inlet 106 .
 吸水パッド103に接触するまでにサンプル導入口106および非吸水領域104上に留まるサンプル115の液量は、吸水パッド103までの距離、非吸水領域104の材料の濡れ性、サンプル115の表面張力、等に依存する。サンプル導入口106から吸水パッド103までの距離が小さいほど、吸水開始までに滴下する必要のあるサンプル115の量と、一度吸水が完了した後にサンプル導入口106に残留するサンプル液量が再度目標液量となるまでに必要なサンプル115の量とは少なくなる。 The amount of sample 115 remaining on sample inlet 106 and non-absorbing region 104 until contacting water-absorbing pad 103 depends on the distance to water-absorbing pad 103, the wettability of the material of non-absorbing region 104, the surface tension of sample 115, etc. The smaller the distance from the sample inlet 106 to the water absorption pad 103, the more the amount of the sample 115 that needs to be dropped before the start of water absorption and the amount of the sample liquid remaining in the sample inlet 106 after the water absorption is complete. The amount of sample 115 required to reach volume is less.
 このように、サンプル導入口106から吸水パッド103までの距離を変えることで、吸水開始までの滴下液量を調節することができる。 By changing the distance from the sample introduction port 106 to the water absorption pad 103 in this way, the amount of the dripping liquid until the start of water absorption can be adjusted.
 図15は、本発明の秤量が失敗する場合のサンプル滴下終了時のサンプル導入口106付近の断面模式図の一例である。このように、滴下したサンプル115が吸水パッド103に接触しない状態で滴下動作を終了すると、秤量目標より多いサンプル115が残留することになる。 FIG. 15 is an example of a cross-sectional schematic diagram of the vicinity of the sample introduction port 106 at the end of sample dropping when the weighing of the present invention fails. In this way, if the dropping operation is terminated without the dropped sample 115 coming into contact with the water absorbent pad 103, more sample 115 than the weighing target will remain.
 これを防ぐため、1回目以降の滴下液量は、サンプルが吸水パッド103に触れる量(図14(a))以上とすることが望ましい。また、2回目以降の滴下液量は、吸水パッド103に触れた瞬間の液量(図14(a))と目標液量(図14(d))との差分よりも大きいことが望ましい。 In order to prevent this, it is desirable that the amount of liquid dropped from the first time onwards is greater than or equal to the amount that the sample touches the absorbent pad 103 (Fig. 14(a)). In addition, it is desirable that the amount of liquid dropped from the second time onwards is larger than the difference between the amount of liquid at the moment when the absorbent pad 103 is touched (FIG. 14(a)) and the target amount of liquid (FIG. 14(d)).
 サンプル導入口106に残留する液量は、サンプル導入口106の容積でおよそ決定されるが、サンプル導入口106の濡れ性によっても影響をうける。図16に示す変形例について、サンプル導入口の形状と、吸水パッドでの吸水が完了したとき(図14(d))にサンプル導入口106に残留するサンプル容積の関係について説明する。 The amount of liquid remaining in the sample introduction port 106 is approximately determined by the volume of the sample introduction port 106, but is also affected by the wettability of the sample introduction port 106. Regarding the modification shown in FIG. 16, the relationship between the shape of the sample inlet and the volume of the sample remaining in the sample inlet 106 after water absorption by the water absorbent pad is completed (FIG. 14(d)) will be described.
 非吸水領域104(より厳密にはその表面)とサンプル導入口106の側壁面とがなす角度をφとする(図16中の角度φ)。いずれかの面が局面(たとえば円筒面または円錐面)である場合には、図16に示すように鉛直方向の断面に表れる線がなす角度をφとすることができる。 Let φ be the angle formed by the non-water-absorbing region 104 (more precisely, its surface) and the side wall surface of the sample inlet 106 (angle φ in FIG. 16). If one of the surfaces is a curved surface (for example, a cylindrical surface or a conical surface), the angle formed by the lines appearing in the vertical cross section can be φ, as shown in FIG.
 サンプル導入口106内に残留するサンプルの液面は、サンプル導入口106の側壁面に対して、ある接触角をなす。この接触角が、(180°-φ)より小さい場合には、サンプル液面は下に凸となり、(180°-φ)より大きい場合には、サンプル液面は上に凸になる。 The liquid surface of the sample remaining in the sample introduction port 106 makes a certain contact angle with the side wall surface of the sample introduction port 106 . When this contact angle is smaller than (180°-φ), the sample liquid surface is convex downward, and when it is larger than (180°-φ), the sample liquid surface is convex upward.
 例えば、実施例1に示したような一般的なポリカーボネート(PC)製で円筒形のサンプル導入口106を用いる場合、φは90°となる。一方、滴下するサンプルを純水とする場合、サンプル導入口106側壁面の接触角は95°程度となるため、吸水完了時のサンプル液面は水平に近いやや上凸形になる。 For example, when using a general polycarbonate (PC) cylindrical sample introduction port 106 as shown in Example 1, φ is 90°. On the other hand, when the sample to be dropped is pure water, the contact angle of the side wall surface of the sample inlet 106 is about 95°, so that the sample liquid surface becomes nearly horizontal and slightly convex when the water absorption is completed.
 このような液面形状を考慮に入れ、φが大きい場合、サンプル導入口106が疎水性の大きい材質の場合、または、サンプルの表面張力が大きい場合には、サンプル導入口106の容積は核酸増幅反応部に導入するサンプル容積以下となるように設計することで、秤取するサンプル液量を高精度に制御できる。逆に、φが小さい場合、サンプル導入口106が親水性の大きい材質の場合(例えば表面をプラズマ処理したPCなど)、または、サンプルの表面張力が小さい場合には、サンプル導入口106の容積は核酸増幅反応部に導入するサンプル容積以上となるよう設計することで、秤取するサンプル液量を高精度に制御できる。 Taking such a liquid surface shape into consideration, when φ is large, when the sample inlet 106 is made of a highly hydrophobic material, or when the surface tension of the sample is large, the volume of the sample inlet 106 is reduced by the amount of nucleic acid amplification. By designing the sample volume to be equal to or less than the volume of the sample introduced into the reaction section, the volume of the sample liquid to be weighed can be controlled with high accuracy. Conversely, when φ is small, when the sample inlet 106 is made of a highly hydrophilic material (for example, PC whose surface is plasma-treated), or when the surface tension of the sample is small, the volume of the sample inlet 106 is By designing the volume of the sample to be introduced into the nucleic acid amplification reaction part or more, the volume of the sample liquid to be weighed can be controlled with high accuracy.
 すなわち、図16に示すように、サンプルの液面がサンプル導入口106の側壁面に対してなす接触角が(180°-φ)以下である場合には、サンプル導入口106の容積を核酸増幅反応部108に導入するサンプル容積以上とすると好適である。同様に、サンプルの液面がサンプル導入口106の側壁面に対してなす接触角が(180°-φ)以上である場合には、サンプル導入口106の容積を核酸増幅反応部108に導入するサンプル容積以下とすると好適である。 That is, as shown in FIG. 16, when the contact angle between the liquid surface of the sample and the side wall surface of the sample introduction port 106 is (180°−φ) or less, the volume of the sample introduction port 106 is used for nucleic acid amplification. It is preferable that the sample volume be equal to or larger than the volume of the sample introduced into the reaction section 108 . Similarly, when the contact angle between the liquid surface of the sample and the side wall surface of the sample introduction port 106 is (180°−φ) or more, the volume of the sample introduction port 106 is introduced into the nucleic acid amplification reaction section 108. A sample volume or less is preferable.
 非吸水領域104が濡れ性の大きい材質である場合、あるいはサンプル115の表面張力が小さい場合には、非吸水領域104での液の接触角が小さくなるため、吸水開始までの滴下液量は少なくなる。ただし、サンプル導入口106に残留する液量は、サンプル導入口106から吸水パッド103までの距離が一定以上離れている条件下では、これらによらず一定となる。そのため、非吸水領域104の表面状態やサンプル115の表面張力などの物理特性に対し、ロバスト性の高い秤量が可能である。 When the non-water-absorbing region 104 is made of a material with high wettability, or when the surface tension of the sample 115 is small, the contact angle of the liquid on the non-water-absorbing region 104 becomes small, so the amount of dripping liquid until the start of water absorption is small. Become. However, under the condition that the distance from the sample inlet 106 to the absorbent pad 103 is more than a certain distance, the amount of liquid remaining in the sample inlet 106 is constant regardless of these conditions. Therefore, highly robust weighing is possible with respect to physical properties such as the surface state of the non-water absorbing region 104 and the surface tension of the sample 115 .
 参考例として、サンプル導入口106のような凹部構造を設けず、基板平面上にサンプル滴下部を決め、サンプル滴下部から一定の距離に吸水パッドを設置した場合にも、類似した吸水現象が生じる。しかし、滴下液量に対してサンプル滴下部に残留する液量は、凹部構造を持つ場合と比較して少なくなるため、吸水パッド103に触れるまでの滴下液量と目標液量の差は大きくなりやすい。また、基板上に残留する液量は、基板の濡れ性または吸水パッドの距離によってのみ決定されるため、設計自由度は低い。一方、実施例1~6のようなサンプル導入口106を有する構造であれば、上述のとおり、基板102の材質、サンプル導入口106の形状などはより自由に選択でき、目標秤量液量もより自由に設定できる。 As a reference example, a similar water absorption phenomenon occurs when a sample drop portion is determined on the substrate plane without providing a recessed structure like the sample inlet 106, and a water absorption pad is placed at a certain distance from the sample drop portion. . However, since the amount of liquid remaining in the sample dripping portion is smaller than the amount of dripped liquid compared to the case of having a concave structure, the difference between the amount of dripped liquid until it touches the water absorbing pad 103 and the target liquid amount becomes large. Cheap. In addition, since the amount of liquid remaining on the substrate is determined only by the wettability of the substrate or the distance of the absorbent pad, the degree of freedom in design is low. On the other hand, with the structure having the sample introduction port 106 as in Examples 1 to 6, as described above, the material of the substrate 102, the shape of the sample introduction port 106, etc. can be selected more freely, and the target liquid volume to be weighed can be increased. Can be set freely.
 本発明の実施例7について、以下に説明する。なお、実施例1~6と共通する部分については説明を省略する場合がある。 Example 7 of the present invention will be described below. Note that descriptions of parts common to the first to sixth embodiments may be omitted.
 実施例7では、図17(a)に示すように、基板102に吸水パッド103を設置する溝119が存在し、吸水パッド103の底面がサンプル導入口106上端よりも低い位置にある。溝119の幅(径方向寸法)は、吸水パッド103の幅(径方向寸法)以上であればよい。 In Example 7, as shown in FIG. 17( a ), the substrate 102 has a groove 119 for installing the water absorbing pad 103 , and the bottom surface of the water absorbing pad 103 is positioned lower than the upper end of the sample inlet 106 . The width (radial dimension) of the groove 119 may be equal to or greater than the width (radial dimension) of the water absorbent pad 103 .
 また、非吸水領域104は、サンプル導入口106上端周辺のみではなく、一部はサンプル導入口106上端よりも下方(溝119の底部)にも存在する。 In addition, the non-water-absorbing region 104 exists not only around the upper end of the sample introduction port 106 but also partially below the upper end of the sample introduction port 106 (the bottom of the groove 119).
 図16記載のサンプル秤量機構は、吸水パッド103の少なくとも一部が、サンプル導入口106の最も高い端以上の位置に存在すれば成立する。そのため、吸水パッド103の下面は、図17(a)のようにサンプル導入口106の上端より低い位置や高い位置にあってもよい。  The sample weighing mechanism shown in FIG. Therefore, the lower surface of the water absorbing pad 103 may be positioned lower or higher than the upper end of the sample inlet 106 as shown in FIG. 17(a).
 図17(a)の構成により、核酸増幅反応装置201の設計上の都合などで核酸増幅反応用デバイス101の厚み(吸水パッド103の軸方向寸法)を小さくする必要がある場合や、基板102上における吸水パッド103の設置可能面積が限られる場合であっても、滴下されたサンプルを十分に吸水できる保水力を有する吸水パッド103を設置可能となる。また、溝119は、吸水パッド103を設置する際の位置決めガイドの役割を果たし、容易に核酸増幅反応用デバイス101を製造できる。 With the configuration of FIG. 17( a ), when the thickness of the nucleic acid amplification reaction device 101 (the axial dimension of the water absorption pad 103 ) needs to be reduced due to the convenience of designing the nucleic acid amplification reaction device 201 , Even if the area where the water absorbing pad 103 can be installed is limited, it is possible to install the water absorbing pad 103 having a water retention capacity capable of sufficiently absorbing the dropped sample. In addition, the groove 119 serves as a positioning guide when installing the water absorbing pad 103, and the nucleic acid amplification reaction device 101 can be easily manufactured.
 図17(a)では、サンプル導入口106と同じ厚みの基板102に溝119が形成されているが、変形例として、サンプル導入口106および非吸水領域104が厚さ方向に突出しており、その周辺の基板102が薄くなっている形状としてもよい。これにより、サンプル導入口106、非吸水領域104、吸水パッド103以外の基板102を薄くすることができ、核酸増幅反応用デバイス101を小型および/または軽量化できる。 In FIG. 17A, the groove 119 is formed in the substrate 102 having the same thickness as the sample introduction port 106, but as a modification, the sample introduction port 106 and the non-water absorbing region 104 protrude in the thickness direction. A shape in which the peripheral substrate 102 is thin may be used. As a result, the thickness of the substrate 102 other than the sample inlet 106, non-water-absorbing region 104, and water-absorbing pad 103 can be reduced, and the size and/or weight of the nucleic acid amplification reaction device 101 can be reduced.
 図17(b)は、サンプル導入口106の側壁の一部が円錐面状に加工されており、非吸水領域104が斜面となった実施形態を示している。非吸水領域104は、サンプル導入口106の上端と吸水パッド103の間に一定幅以上設けられていればよい。また、非吸水領域104は水平面でなくてもよい。図17(b)のような実施形態によれば、非吸水領域104をより低い位置に配置できるので、同じ幅を有する非吸水領域104を水平に備えた形態と比較して、少ない滴下液量で本発明の秤量を実施可能となる。 FIG. 17(b) shows an embodiment in which a portion of the side wall of the sample inlet 106 is processed into a conical surface, and the non-water-absorbing region 104 is sloped. The non-water-absorbing region 104 may be provided with a certain width or more between the upper end of the sample introduction port 106 and the water-absorbing pad 103 . Also, the non-water absorbing region 104 does not have to be a horizontal surface. According to the embodiment as shown in FIG. 17(b), the non-absorbing area 104 can be arranged at a lower position, so the amount of dripping liquid is smaller than that of the embodiment in which the non-absorbing area 104 having the same width is provided horizontally. , the weighing of the present invention can be carried out.
 本発明の実施例8は、実施例1~7のサンプル秤量機構に係る実験例である。 Example 8 of the present invention is an experimental example related to the sample weighing mechanism of Examples 1-7.
<実験>
 50mm×50mm×厚み3mmの疎水性のポリカーボネート(PC)樹脂の基板中央に、サンプル導入口106に対応する直径3mmの貫通穴(サンプル導入口に対応)を製作した。基板片面に厚み0.1mmのポリオレフィン(PO)製のシールを圧着し、重量を測定した。その後、シールを圧着した面を下にして基板を水平な台上に置き、穴を開けた40mm×40mmの吸水パッド(Attoブロッティングろ紙、CB-20A)を、基板の貫通穴と同心円となるように基板上に静置した。
<Experiment>
A through-hole (corresponding to the sample introduction port) with a diameter of 3 mm corresponding to the sample introduction port 106 was made in the center of a hydrophobic polycarbonate (PC) resin substrate of 50 mm x 50 mm x 3 mm thickness. A polyolefin (PO) seal having a thickness of 0.1 mm was crimped to one side of the substrate, and the weight was measured. After that, the substrate was placed on a horizontal table with the surface to which the seal was crimped down, and a 40 mm × 40 mm water absorption pad (Atto blotting filter paper, CB-20A) with a hole was placed so that it was concentric with the through hole of the substrate. was placed on the substrate for a period of time.
 マイクロピペットを用い、基板の貫通穴の中心に向けて純水を5μLずつ滴下した。吸水パッドによる純水の吸水が開始したら滴下を停止し、吸水開始時までの総滴下液量を記録した。吸水パッドによる純水の吸水が終わり、基板の貫通穴付近の純水の動作が止まることを確認したら、吸水パッドを静かに除去し、シールを貼った基板の重量を測定した。純水滴下前後の重量の差より、貫通穴に残留した液量を算出した。 Using a micropipette, 5 μL of pure water was dropped toward the center of the through-hole of the substrate. Dropping was stopped when pure water absorption by the water-absorbing pad started, and the total amount of dropped liquid until the start of water absorption was recorded. After confirming that pure water absorption by the water-absorbing pad had stopped and that the movement of pure water in the vicinity of the through-hole of the substrate had stopped, the water-absorbing pad was gently removed, and the weight of the substrate with the seal attached was measured. The amount of liquid remaining in the through-hole was calculated from the difference in weight before and after pure water was dropped.
<結果>
 図18に、貫通穴(厳密にはその上端縁)から吸水パッドまでの距離(たとえば貫通穴の内径と吸水パッドに開けた穴の内径との差)と、吸収パッドによる吸水開始までの純水の総滴下液量との関係を示す。
<Results>
FIG. 18 shows the distance from the through-hole (strictly speaking, its upper edge) to the water-absorbing pad (for example, the difference between the inner diameter of the through-hole and the inner diameter of the hole in the water-absorbing pad), and the amount of pure water until the water-absorbing pad starts to absorb water. and the total amount of dripping liquid.
 図18に示すように、貫通穴(厳密にはその上端縁)から吸水パッドまでの距離が遠くなるほど、吸水開始までの総滴下液量は増大し、吸水パッドまでの距離が1mmのとき平均40μL、2mmのとき平均60μL、2.5mmのとき平均100μL程度であった。 As shown in FIG. 18, as the distance from the through hole (strictly speaking, its upper edge) to the absorbent pad increases, the total amount of dripping liquid until the start of water absorption increases, and when the distance to the absorbent pad is 1 mm, the average amount of dripping liquid is 40 μL. , 60 μL on average at 2 mm, and 100 μL on average at 2.5 mm.
 図19に、貫通穴(厳密にはその上端縁)から吸水パッドまでの距離と、貫通穴に残留した液量との関係を示す。吸水パッドまでの距離が1mm以上であると、吸水パッドまでの距離によらず貫通穴に残留する液量はおよそ23μL±1μLであった。この結果から、本発明手法により、安定した核酸増幅反応を実施するのに十分な秤量精度を実現できることがわかる。 Fig. 19 shows the relationship between the distance from the through-hole (strictly speaking, its upper edge) to the absorbent pad and the amount of liquid remaining in the through-hole. When the distance to the water-absorbing pad was 1 mm or more, the amount of liquid remaining in the through-hole was approximately 23 μL±1 μL regardless of the distance to the water-absorbing pad. From these results, it can be seen that the method of the present invention can achieve sufficient weighing accuracy to carry out stable nucleic acid amplification reactions.
 本発明の実施例9は、実施例1~7のサンプル秤量機構に係る実験例である。 Example 9 of the present invention is an experimental example related to the sample weighing mechanism of Examples 1-7.
<実験>
 50mm×50mm×厚み3mmの疎水性のポリカーボネート(PC)樹脂の基板中央に、サンプル導入口106に対応する直径3mmの貫通穴を製作した。基板片面に厚み0.1mmのポリオレフィン(PO)製のシールを圧着し、重量を測定した。その後、シールを圧着した面を下にして基板を水平な台上に置き、直径8mmの穴を開けた15mm×15mmの吸水パッド(Atto ブロッティングろ紙、CB-20A)を、基板の貫通穴と同心円となるように基板上に静置した。
<Experiment>
A through hole with a diameter of 3 mm corresponding to the sample inlet 106 was made in the center of a substrate of hydrophobic polycarbonate (PC) resin of 50 mm×50 mm×thickness of 3 mm. A polyolefin (PO) seal having a thickness of 0.1 mm was crimped to one side of the substrate, and the weight was measured. After that, the substrate was placed on a horizontal table with the crimped side of the seal facing down, and a 15 mm × 15 mm water-absorbing pad (Atto blotting filter paper, CB-20A) with a hole of 8 mm diameter was placed concentrically with the through-hole of the substrate. It was left still on the substrate so as to be
 マイクロピペットを用い、基板の貫通穴の中心に向けて純水を滴下した。基板の貫通穴付近の純水の動作(たとえば液面の変動)が止まることを確認したら、吸水パッドを静かに除去し、シールを貼った基板の重量を測定した。純水滴下前後の重量の差より、貫通穴に残留した液量を算出した。 Using a micropipette, pure water was dropped toward the center of the through-hole of the substrate. After confirming that the movement of the pure water in the vicinity of the through-hole of the substrate stopped (for example, fluctuation of the liquid surface), the water absorption pad was gently removed, and the weight of the substrate with the seal attached was measured. The amount of liquid remaining in the through-hole was calculated from the difference in weight before and after pure water was dropped.
<結果>
 図20に、滴下したサンプル液量と、貫通穴に残留した液量の関係を示す。吸水パッドに到達しない液量であれば、貫通穴に残留する液量は滴下した液量と同値になる。貫通穴の容積を超え、吸水パッドに接触する液量が投入されると、吸水パッドまでの距離によらず貫通穴に残留する液量はおよそ23μL±0.4μLとなった。
<Results>
FIG. 20 shows the relationship between the amount of sample liquid dropped and the amount of liquid remaining in the through-hole. If the amount of liquid does not reach the absorbent pad, the amount of liquid remaining in the through-holes is the same as the amount of liquid dropped. When the amount of liquid that exceeded the volume of the through-hole and contacted the water-absorbing pad was put in, the amount of liquid remaining in the through-hole was approximately 23 μL±0.4 μL regardless of the distance to the water-absorbing pad.
 なお、図20には示さないが、滴下液量が300μL以上となると、吸水パッド下部に吸水しきれなかったサンプルが残留した。この結果から、実施例1~7により、吸水パッドの吸水力が十分にある範囲であれば、滴下液量によらず、安定した核酸増幅反応を実施するのに十分な秤量精度を実現できることがわかる。より多い滴下液量に対しても正確な秤量を実施したい場合は、より吸水力の高い吸水パッドを用いるか、吸水パッドの面積や厚みを増やすことにより対応可能である。 Although not shown in FIG. 20, when the amount of the dripping liquid was 300 μL or more, the sample that could not be fully absorbed remained in the lower part of the water absorbing pad. From this result, according to Examples 1 to 7, as long as the water absorbing power of the water absorbing pad is within a sufficient range, it is possible to achieve sufficient weighing accuracy to carry out a stable nucleic acid amplification reaction regardless of the amount of the dropped liquid. Recognize. If it is desired to accurately weigh a larger amount of dripping liquid, it is possible to use a water absorbing pad with higher water absorption or increase the area and thickness of the water absorbing pad.
 本発明の実施例10は、実施例1~7のサンプル秤量機構に係る実験例である。 Example 10 of the present invention is an experimental example related to the sample weighing mechanism of Examples 1-7.
<実験>
 50mm×50mm×厚み3mmの疎水性のポリカーボネート(PC)樹脂の基板を2枚用意し、それぞれ基板中央に直径3mmの貫通穴(サンプル導入口に対応)を製作した。それぞれの基板について、貫通穴から離れた基板表面に純水を2μL滴下し、接触角計(Surfgauge、ST-1)で基板との接触角を測定した。
<Experiment>
Two hydrophobic polycarbonate (PC) resin substrates of 50 mm×50 mm×thickness 3 mm were prepared, and a through-hole (corresponding to the sample introduction port) of 3 mm in diameter was formed in the center of each substrate. For each substrate, 2 μL of pure water was dropped on the surface of the substrate away from the through hole, and the contact angle with the substrate was measured with a contact angle meter (Surfgauge, ST-1).
 次に、一方の基板の全面に紫外光(エキシマランプ、波長172nm)を6分間照射し、照射後に再度基板表面に純水を2μL滴下し、接触角を測定した。接触角測定後、滴下した純水はただちに除去した。 Next, the entire surface of one of the substrates was irradiated with ultraviolet light (excimer lamp, wavelength 172 nm) for 6 minutes, and after irradiation, 2 μL of pure water was dropped again on the substrate surface, and the contact angle was measured. After measuring the contact angle, the dripped pure water was immediately removed.
 それぞれの基板片面に、厚み0.1mmのポリオレフィン(PO)製のシールを圧着し、重量を測定した。 A polyolefin (PO) seal with a thickness of 0.1 mm was crimped to one side of each substrate, and the weight was measured.
 その後、シールを圧着した面を下にして基板を水平な台上に置き、直径6mmの穴を開けた15mm×15mmの吸水パッド(Atto ブロッティングろ紙、CB-20A)を、基板の貫通穴と同心円となるように基板上に静置した。 After that, the substrate was placed on a horizontal table with the surface to which the seal was crimped downward, and a 15 mm × 15 mm water absorption pad (Atto blotting filter paper, CB-20A) with a hole of 6 mm in diameter was placed in a concentric circle with the through hole of the substrate. It was left still on the substrate so that
 マイクロピペットを用い、それぞれの基板の貫通穴の中心に向けて純水を滴下した。基板の貫通穴付近の純水の動作が止まることを確認したら、吸水パッドを静かに除去し、貫通穴に残留した純水の液面を観察した後、シールを貼った基板の重量を測定した。純水滴下前後の重量の差より、貫通穴に残留した液量を算出した。 Using a micropipette, pure water was dropped toward the center of the through-hole of each substrate. After confirming that the pure water stopped moving near the through-hole of the substrate, the water absorption pad was gently removed, and after observing the surface of the pure water remaining in the through-hole, the weight of the substrate with the seal attached was measured. . The amount of liquid remaining in the through-hole was calculated from the difference in weight before and after pure water was dropped.
<結果>
 紫外光照射前は、いずれの基板とも接触角はおよそ95°であった。一方、紫外光照射を実施した基板の接触角は、およそ60°であった。紫外光照射を実施しなかった基板では、貫通穴に残留した液面はほぼ水平でやや上凸形で、液量はおよそ23μL±0.4μLであった。それに対し、紫外光照射を実施した基板では、貫通穴に残留した液面は下凸形で、液量はおよそ19.5±0.2μLとなった。これらの結果から、同一寸法の貫通穴容積としたとき、基板とサンプルの接触角が大きい場合には貫通穴容積より多い液量、小さい場合には貫通穴容積より少ない液量が残留することがわかる。なお、一定の条件下においては、基板の濡れ性によらず高精度な秤量が可能である。
<Results>
Before irradiation with ultraviolet light, the contact angle was about 95° with any substrate. On the other hand, the contact angle of the substrate irradiated with ultraviolet light was about 60°. In the substrate that was not irradiated with ultraviolet light, the liquid surface remaining in the through-hole was almost horizontal and slightly convex, and the liquid volume was about 23 μL±0.4 μL. On the other hand, in the substrate irradiated with ultraviolet light, the surface of the liquid remaining in the through hole was convex downward, and the amount of liquid was about 19.5±0.2 μL. From these results, when the through-hole volume is the same size, when the contact angle between the substrate and the sample is large, the amount of liquid remaining is larger than the through-hole volume, and when the contact angle is small, the amount of liquid remaining is smaller than the through-hole volume. Recognize. Under certain conditions, highly accurate weighing is possible regardless of the wettability of the substrate.
 実施例1~7に係る核酸増幅反応装置において、核酸増幅反応は、以下のうちから選択することができる。
 ‐ポリメラーゼ連鎖反応(PCR)
 ‐逆転写PCR(RT-PCR)
 ‐マルチプレックスPCR
 ‐マルチプレックスRT-PCR
 ‐リアルタイムPCR
 ‐リアルタイムRT-PCR
 ‐DNA等温増幅法
In the nucleic acid amplification reaction apparatus according to Examples 1 to 7, the nucleic acid amplification reaction can be selected from the following.
- polymerase chain reaction (PCR)
- reverse transcription PCR (RT-PCR)
- Multiplex PCR
- Multiplex RT-PCR
- real-time PCR
- real-time RT-PCR
- DNA isothermal amplification
101 核酸増幅反応用デバイス
102 基板
103 吸水パッド(吸水部)
104 非吸水領域
105 シール材
106 サンプル導入口
107 サンプル導入流路
108 核酸増幅反応部
109 空気流路
110 通気口
111 フィルタ
112 検出部
113 第1温度領域
114 第2温度領域
115 サンプル
116 試薬
117 試薬格納部(試薬設置部、試薬混合部)
118 第3温度領域
119 溝
201 核酸増幅反応装置
202 デバイス保持部
203 カバー
204 ポンプ接続部
205 シリンジポンプ
206 外部熱源(温度制御機構)
207 外部熱源(温度制御機構)
208 温度制御部(温度制御機構)
209 蛍光検出部
210 チューブ
211 信号検出用回路
212 バルブ
213 送液装置(送液制御機構)
214 励起光照射部
215 ダイクロイックミラー
216 光検出器
217 デバイス引出部
218 滴下ガイド(ガイド部)
219 引出ボタン
220 外部熱源
101 Device for nucleic acid amplification reaction 102 Substrate 103 Water absorbing pad (water absorbing portion)
104 Non-water absorbing area 105 Sealing material 106 Sample introduction port 107 Sample introduction channel 108 Nucleic acid amplification reaction section 109 Air channel 110 Vent 111 Filter 112 Detection section 113 First temperature zone 114 Second temperature zone 115 Sample 116 Reagent 117 Reagent storage Section (reagent installation section, reagent mixing section)
118 Third temperature region 119 Groove 201 Nucleic acid amplification reaction device 202 Device holding part 203 Cover 204 Pump connecting part 205 Syringe pump 206 External heat source (temperature control mechanism)
207 external heat source (temperature control mechanism)
208 temperature control unit (temperature control mechanism)
209 fluorescence detection unit 210 tube 211 signal detection circuit 212 valve 213 liquid sending device (liquid sending control mechanism)
214 excitation light irradiation section 215 dichroic mirror 216 photodetector 217 device drawer section 218 dropping guide (guide section)
219 drawer button 220 external heat source

Claims (11)

  1.  サンプルを導入するサンプル導入口と、
     前記サンプル導入口の周囲に設けられた吸水部と、
     前記サンプル導入口と前記吸水部の間の非吸水領域と、
     核酸増幅反応部と、
     前記サンプル導入口から導入される前記サンプルを前記核酸増幅反応部に導く流路と、
    を備えた流路デバイス。
    a sample introduction port for introducing a sample;
    a water absorbing portion provided around the sample inlet;
    a non-water-absorbing region between the sample inlet and the water-absorbing portion;
    a nucleic acid amplification reaction section;
    a channel for guiding the sample introduced from the sample introduction port to the nucleic acid amplification reaction section;
    A flow path device with
  2.  核酸増幅反応用の試薬を設置するための試薬設置部と、
     前記サンプルと前記試薬とを混和させる試薬混合部と、
    をさらに備えることを特徴とする、請求項1に記載の流路デバイス。
    a reagent installation unit for installing a reagent for nucleic acid amplification reaction;
    a reagent mixing unit for mixing the sample and the reagent;
    The flow path device of claim 1, further comprising:
  3.  前記サンプル導入口から前記吸水部までの距離が1mm以上である、請求項1に記載の流路デバイス。 The flow channel device according to claim 1, wherein the distance from the sample introduction port to the water absorption part is 1 mm or more.
  4.  前記吸水部の上端が、前記サンプル導入口の上端以上の高さに存在する、請求項1に記載の流路デバイス。 The flow channel device according to claim 1, wherein the upper end of the water absorbing portion is at a height equal to or higher than the upper end of the sample inlet.
  5.  前記サンプル導入口の上面から見た形状が円形である、請求項1に記載の流路デバイス。 The flow path device according to claim 1, wherein the sample inlet has a circular shape when viewed from above.
  6.  前記非吸水領域と前記サンプル導入口の側壁面とがなす角度をφとするとき、前記サンプルの液面が前記サンプル導入口の側壁面に対してなす接触角が(180°-φ)以下である場合に、前記サンプル導入口の容積が前記核酸増幅反応部に導入するサンプル容積以上である、請求項1に記載の流路デバイス。 The contact angle between the liquid surface of the sample and the side wall surface of the sample inlet is (180°−φ) or less, where φ is the angle formed by the non-water-absorbing region and the side wall surface of the sample inlet. 2. The flow path device according to claim 1, wherein in some cases, the volume of said sample introduction port is equal to or greater than the volume of the sample introduced into said nucleic acid amplification reaction section.
  7.  前記非吸水領域と前記サンプル導入口の側壁面とがなす角度をφとするとき、前記サンプルの液面が前記サンプル導入口の側壁面に対してなす接触角が(180°-φ)以上である場合に、前記サンプル導入口の容積が前記核酸増幅反応部に導入するサンプル容積以下である、請求項1に記載の流路デバイス。 The contact angle between the liquid surface of the sample and the side wall surface of the sample inlet is (180°−φ) or more, where φ is the angle formed by the non-water-absorbing region and the side wall surface of the sample inlet. 2. The flow path device according to claim 1, wherein in some cases, the volume of said sample introduction port is equal to or less than the volume of the sample to be introduced into said nucleic acid amplification reaction section.
  8.  請求項1に記載の流路デバイスを備える、核酸増幅反応装置であって、
     核酸増幅反応に用いる温度帯を形成する温度制御機構と、
     前記流路デバイス内のサンプルを移動させる送液制御機構と、
    を備える核酸増幅反応装置。
    A nucleic acid amplification reaction apparatus comprising the flow path device according to claim 1,
    a temperature control mechanism that forms a temperature zone used for nucleic acid amplification reaction;
    a liquid transfer control mechanism for moving the sample in the channel device;
    A nucleic acid amplification reaction device comprising:
  9.  前記サンプル導入口に前記サンプルが滴下されることを導くためのガイド部を備えた、請求項8に記載の核酸増幅反応装置。 The nucleic acid amplification reaction device according to claim 8, comprising a guide part for guiding the dropping of the sample into the sample introduction port.
  10.  請求項1に記載の流路デバイスを備える、核酸増幅反応装置であって、
     核酸増幅反応が、
     ポリメラーゼ連鎖反応(PCR)、逆転写PCR(RT-PCR)、マルチプレックスPCR、マルチプレックスRT-PCR、リアルタイムPCR、リアルタイムRT-PCR、DNA等温増幅法
    のうちから選択される、核酸増幅反応装置。
    A nucleic acid amplification reaction apparatus comprising the flow path device according to claim 1,
    Nucleic acid amplification reaction
    A nucleic acid amplification reactor selected from polymerase chain reaction (PCR), reverse transcription PCR (RT-PCR), multiplex PCR, multiplex RT-PCR, real-time PCR, real-time RT-PCR, isothermal DNA amplification.
  11.  前記送液制御機構と、前記流路デバイスとの間に、大気開放可能なバルブを備える、請求項8に記載の核酸増幅反応装置。 The nucleic acid amplification reaction apparatus according to claim 8, comprising a valve capable of opening to the atmosphere between the liquid transfer control mechanism and the channel device.
PCT/JP2021/003702 2021-02-02 2021-02-02 Channel device and nucleic acid amplification reactor WO2022168150A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003702 WO2022168150A1 (en) 2021-02-02 2021-02-02 Channel device and nucleic acid amplification reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003702 WO2022168150A1 (en) 2021-02-02 2021-02-02 Channel device and nucleic acid amplification reactor

Publications (1)

Publication Number Publication Date
WO2022168150A1 true WO2022168150A1 (en) 2022-08-11

Family

ID=82741222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003702 WO2022168150A1 (en) 2021-02-02 2021-02-02 Channel device and nucleic acid amplification reactor

Country Status (1)

Country Link
WO (1) WO2022168150A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513978A (en) * 2005-10-26 2009-04-02 ゼネラル・エレクトリック・カンパニイ Method and system for delivering a fluid sample to a sensor array
US20160023209A1 (en) * 2014-07-25 2016-01-28 General Electric Company Sample collection and transfer device
JP2018538124A (en) * 2015-10-16 2018-12-27 オックスフォード ユニヴァーシティ イノヴェーション リミテッド Microfluidic device
US20190126270A1 (en) * 2016-04-19 2019-05-02 Purdue Research Foundation Temperature controlled valves for paper-based microfluidic systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513978A (en) * 2005-10-26 2009-04-02 ゼネラル・エレクトリック・カンパニイ Method and system for delivering a fluid sample to a sensor array
US20160023209A1 (en) * 2014-07-25 2016-01-28 General Electric Company Sample collection and transfer device
JP2018538124A (en) * 2015-10-16 2018-12-27 オックスフォード ユニヴァーシティ イノヴェーション リミテッド Microfluidic device
US20190126270A1 (en) * 2016-04-19 2019-05-02 Purdue Research Foundation Temperature controlled valves for paper-based microfluidic systems

Similar Documents

Publication Publication Date Title
US20210172010A1 (en) Method and device for the detection of molecular interactions
CN108395984B (en) Sealable microfluidic chip for thermal cycling
US7482585B2 (en) Testing chip and micro integrated analysis system
US9267890B2 (en) Nucleic acid analyzer
US20120196280A1 (en) Microfabricated device for metering an analyte
JP2020022519A (en) PCR reaction vessel and PCR device
US7820109B2 (en) Testing chip and micro analysis system
RU2739951C2 (en) Reaction vessel and a reaction apparatus for carrying out a polymerase chain reaction
KR102041217B1 (en) Multi-channel device for downwardly injecting liquid sample, device for extracting nucleic acid comprising the same, and method for extracting nucleic acid using the same
AU2005240757A1 (en) Device and method for detecting molecular interactions
CN215906212U (en) Nucleic acid amplification reactor
EP3495824A1 (en) Analysis cell, analysis device, analysis equipment, and analysis system
JP2009128229A (en) Microchip
EP2676145A1 (en) Flow passage device and method of transporting liquid using the same
US20220193668A1 (en) Integrated microfluidic device with pipette adaptation
JP2007135504A (en) Microreactor used for nucleic acid inspection and holding beads at amplification site
WO2022168150A1 (en) Channel device and nucleic acid amplification reactor
CN112601807A (en) PCR reaction vessel
WO2009129397A2 (en) High throughput dispenser
JP2010213649A (en) Reaction vessel and reaction method for biological specimen
WO2002015949A2 (en) Device for identifying the presence of a nucleotide sequence in a dna sample
CN111500425B (en) Fluid control and processing cartridge
US11944970B2 (en) Microfluidic detection unit and fluid detection method
JP7458379B2 (en) Flow path devices and inspection systems
JP2024034639A (en) Nucleic acid detection system and nucleic acid detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP