WO2022166594A1 - 一种照明装置 - Google Patents

一种照明装置 Download PDF

Info

Publication number
WO2022166594A1
WO2022166594A1 PCT/CN2022/072849 CN2022072849W WO2022166594A1 WO 2022166594 A1 WO2022166594 A1 WO 2022166594A1 CN 2022072849 W CN2022072849 W CN 2022072849W WO 2022166594 A1 WO2022166594 A1 WO 2022166594A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength band
optical path
optical system
light source
Prior art date
Application number
PCT/CN2022/072849
Other languages
English (en)
French (fr)
Inventor
万民
Original Assignee
万民
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110177015.5A external-priority patent/CN112797374A/zh
Priority claimed from CN202120350960.6U external-priority patent/CN214198524U/zh
Application filed by 万民 filed Critical 万民
Publication of WO2022166594A1 publication Critical patent/WO2022166594A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/14Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing polarised light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material

Definitions

  • the invention belongs to the field of lighting, in particular to the field of solid-state light source lighting.
  • the lighting device provided by the present invention can be applied to systems requiring high light intensity and small etendue, such as entertainment lighting systems, projection systems, automotive lighting systems, medical lighting systems, search lighting systems, field work lighting systems, Nautical lighting systems, portable lighting systems, etc.
  • laser has the advantages of small etendue, long life and no mercury. Using it as a light source, exciting fluorescent materials can get colored light or white light. At the same time, with the use of optical components, an ideal laser with a small amount of light can be obtained. Etendue lighting device.
  • FIG. 1 is a schematic structural diagram of a conventional polarization beam splitting type lighting device.
  • the existing lighting device includes a light source 101, a quarter-wave plate 102, a polarizing beam splitter 103, a lens group 104 (including a lens 104a and a lens 104b), a wavelength conversion device 105 (including a reflective layer 105a and a A wavelength conversion layer 105b), a quarter wave plate 106, a lens group 107 (including a lens 107a and a lens 107b), a reflective diffuser plate 108, and a focusing lens 109.
  • the light source 101 includes a plurality of lasers 101a and a plurality of collimating lenses 101b corresponding to the plurality of lasers 101a one-to-one, and the lasers 101a emit blue light of S-polarized light.
  • the polarizing beam splitter 103 has a characteristic of reflecting blue light of S-polarized light and transmitting blue light of P-polarized light, while the polarizing beam splitter 103 also transmits yellow light.
  • the blue light of the S-polarized light emitted by the light source 101 is transmitted through the quarter-wave plate 102 , converted into blue light obtained by mixing the S-polarized light component and the P-polarized light component in a predetermined ratio, and then incident on the polarization beam splitter 103 .
  • the polarizing beam splitter 103 separates the blue light of the S-polarized light and the blue light of the P-polarized light, and reflects the blue light of the S-polarized light therein and transmits the blue light of the P-polarized light therein.
  • the blue light of the S-polarized light reflected by the polarizing beam splitter 103 is directed to the lens group 104 , and the blue light of the P-polarized light transmitted through the polarizing beam splitter 103 is directed to the quarter-wave plate 106 .
  • the lens group 104 condenses the blue light of the S-polarized light toward the wavelength conversion device 105 .
  • the wavelength conversion device 105 is reflective, and includes a reflective layer 105a and a wavelength conversion layer 105b (eg, a yellow phosphor layer) disposed on the reflective layer 105a.
  • the wavelength conversion device 105 converts the blue light of the S-polarized light into yellow light and sends it to the lens group 104 .
  • the yellow light is collected by the lens group 104 and then sent to the polarization beam splitter 103 , and the polarization beam splitter 103 transmits the yellow light.
  • the blue light of the P-polarized light is transmitted through the quarter-wave plate 106 and then converted into blue light of circularly polarized light.
  • the lens group 107 makes the blue light of the circularly polarized light converge toward the reflective scattering plate 108, and the blue light of the circularly polarized light is reflectively scattered.
  • the plate 108 is reflected and directed to the lens group 107 , and then collected by the lens group 107 and then directed to the quarter-wave plate 106 .
  • the blue light of the circularly polarized light is transmitted through the quarter-wave plate 106 and then converted into blue light of the S-polarized light, and the blue light of the S-polarized light is directed to the polarization beam splitter 103, and the polarization beam splitter 103 reflects the blue light of the S-polarized light.
  • the yellow light transmitted through the polarization beam splitter 103 and the blue light of the S-polarized light reflected by the polarization beam splitter 103 are combined into one mixed light, and the mixed light of the yellow light and the blue light is white light.
  • the focusing lens 109 condenses the white light and exits the lighting device.
  • the purpose of the present invention is to achieve higher luminous flux output without increasing etendue.
  • a technical solution of the present invention is to provide a lighting device, which is characterized in that it includes a first light source, a second light source, a first optical path adjustment device, a second optical path adjustment device, a wavelength conversion device, and a first light source.
  • Scattering optics where:
  • the first light source is used for emitting light of the first wavelength band
  • the second light source is used for emitting light in a second wavelength band, and the second wavelength band is the same as or different from the first wavelength band;
  • the first optical path adjusting device receives the light of the first wavelength band emitted from the first light source, so that it is at least partially transmitted or at least partially reflected;
  • the first optical path adjusting device When the first optical path adjusting device at least partially transmits the light of the first wavelength band emitted by the first light source, the first optical path adjusting device receives the second wavelength band from the second optical path adjusting device
  • the wavelength conversion device receives the light of the first wavelength band transmitted through the first optical path adjustment device and the light of the second wavelength band reflected by the first optical path adjustment device, and converts the The light of the first wavelength band is converted into a first received laser light and the wavelength band of the first received laser light is different from the first wavelength band, and the light of the second wavelength band is converted into a second received laser light and the second received laser light is The wavelength band of the laser light is different from the second wavelength band; the first optical path adjusting device reflects the first received laser light and the second received laser light from the wavelength conversion device, and the first received laser light and the second received laser light are 2.
  • the laser beam is directed to the second optical path adjusting device;
  • the first optical path adjustment device receives the second wavelength band from the second optical path adjustment device
  • the wavelength conversion device receives the light of the first wavelength band reflected by the first optical path adjustment device and the light of the second wavelength band transmitted through the first optical path adjustment device, and converts the The light of the first wavelength band is converted into a first received laser light and the wavelength band of the first received laser light is different from the first wavelength band, and the light of the second wavelength band is converted into a second received laser light and the second received laser light is The wavelength band of the laser light is different from the second wavelength band; the first optical path adjustment device transmits the first received laser light and the second received laser light from the wavelength conversion device, and the first received laser light and the second received laser light are transmitted from the wavelength conversion device.
  • the second received laser light is directed to the second optical path adjusting device;
  • the second optical path adjusting device receives the light of the second wavelength band emitted from the second light source, makes it partially transmitted and partially reflected and then exits from different optical paths, and the first optical path adjusting device receives light from one of the optical paths.
  • the light of the second wavelength band, the first scattering optical system receives the light of the second wavelength band emitted from another optical path, reflects it and forms scattered light of the second wavelength band;
  • the second The optical path adjustment device combines the first received laser light and the second received laser light from the first optical path adjustment device with at least part of the photosynthetic light of the second wavelength band from the first scattering optical system from the same optical path. out.
  • the wavelength conversion device is reflective, which can be static or dynamic:
  • the static wavelength conversion device includes a reflection layer and a wavelength conversion layer arranged on the reflection layer, wherein the wavelength conversion layer absorbs the incident light of the first wavelength band and emits the first laser light after being excited, and absorbs the incident light of the second wavelength band And after being excited, a second received laser light is emitted.
  • the dynamic wavelength conversion device is a rotatable fluorescent wheel, which includes a reflection layer and a wavelength conversion layer arranged on the reflection layer, wherein the wavelength conversion layer absorbs the incident light of the first wavelength band and emits the first received laser light after being excited.
  • the incident light of the second wavelength band is absorbed and excited, and then a second received laser light is emitted.
  • each wavelength conversion layer absorbs the incident light of the first wavelength band and emits different wavelength bands after being excited.
  • the combined light of these different wavelength bands should be regarded as the first received laser light; similarly, each wavelength conversion layer absorbs the incident light of the second wavelength band and will emit different wavelength bands after being excited At this time, the combined light of these different wavelength bands of received laser light should also be regarded as the second received laser light.
  • the first optical path adjusting device is a first polarizing beam splitter
  • the first polarizing beam splitter has the following first characteristics with respect to the incident light of the first wavelength band and the second wavelength band: reflecting the first wavelength the S-polarized light of the wavelength band and the second wavelength band and transmit the P-polarized light of the first wavelength band and the second wavelength band;
  • the laser light has a second characteristic of transmitting or reflecting the first received laser light and the second received laser light.
  • the first polarization beam splitter is a plate type polarization beam splitter or a cube type polarization beam splitter.
  • the second optical path adjustment device is a second polarization beam splitter
  • the second polarization beam splitter has the following first characteristics with respect to the incident light of the second wavelength band: reflecting the S-polarized light of the second wavelength band and transmitting the P-polarized light of the second wavelength band;
  • the second polarization beam splitter has the following second characteristics with respect to the first received light and the second received light: allowing the first received light and the first received light Two by laser transmission or reflection.
  • the second polarizing beam splitter is a plate-type polarizing beam splitter or a cube-type polarizing beam splitter.
  • a first quarter-wave plate is also included, and the first quarter-wave plate is located on the optical path between the second optical path adjusting device and the first scattering optical system.
  • a half-wave plate is also included, and the half-wave plate is located on the optical path between the first optical path adjustment device and the second optical path adjustment device.
  • the first light source includes N first lasers and N first collimating elements corresponding to the N first lasers, N ⁇ 1, where:
  • the first laser is used for emitting light in the first wavelength band
  • the first collimating element is integrated in the first laser or disposed outside the first laser, and is used for collimating the light of the first wavelength band emitted by the first laser.
  • the first collimating element can be integrated inside the first laser, and when the first laser used is not integrated with the first collimating element, the first collimating element can also be added outside the first laser (eg: collimating lens), used for collimating the light emitted by the first laser.
  • the first light source may also contain other optical elements (such as a mirror), and these optical elements can be used to collect the light emitted from the first laser, and finally A first wavelength band of light emitted by the first light source is formed.
  • the second light source includes M second lasers and M second collimating elements corresponding to the M second lasers one-to-one, where M ⁇ 1, where:
  • the second laser is used for emitting light in the second wavelength band
  • the second collimating element is integrated in the second laser or disposed outside the second laser, and is used for collimating the light of the second wavelength band emitted by the second laser.
  • the second collimating element can be integrated inside the second laser, and when the second laser used is not integrated with the second collimating element, a second collimating element can also be added outside the second laser (eg: collimating lens), used for collimating the light emitted by the second laser.
  • a second collimating element can also be added outside the second laser (eg: collimating lens), used for collimating the light emitted by the second laser.
  • the second light source may also contain other optical elements (such as: mirrors), and these optical elements can be used to collect the light emitted from the second laser, and finally A second wavelength band of light emitted by the second light source is formed.
  • optical elements such as: mirrors
  • the light of the second wavelength band emitted by the second laser is linearly polarized light, wherein:
  • the light-emitting directions of all the second lasers are the same, and the initial polarization directions of the emitted light of all the second lasers are also the same. Taking the light-emitting direction of the second lasers as the axis, rotate the part in the second light source axially. For the second laser, the polarization direction of the light in the second wavelength band emitted by this part of the second laser is changed, so that the light in the second wavelength band emitted by the second light source is incident on the second optical path for adjustment When the device is installed, it contains S-polarized light components and P-polarized light components;
  • the light-emitting direction and polarization direction of all the second lasers are the same, and the second light source is axially rotated with the light-emitting direction of the second laser as the axis, so that the second wavelength band emitted by the second light source is When the light is incident on the second optical path adjusting device, it contains S-polarized light components and P-polarized light components;
  • the light exit directions of all the second lasers are the same, and the polarization directions of the exit lights of all the second lasers are also the same, a wave plate is arranged in the second light source, and the second light source is changed by the wave plate the polarization direction or polarization state of all or part of the light in the second wavelength band emitted by the second laser, so that the light in the second wavelength band emitted by the second light source is incident on the second optical path adjusting device When , it contains S-polarized light components and P-polarized light components;
  • the characteristic of the polarization selection element is to reflect the S-polarized light of the second wavelength band and transmit the P-polarized light of the second wavelength band, and at least one of the first and second light sources in the second light source
  • the second laser is used to emit the S-polarized light of the second wavelength band to form the incident light 1
  • the remaining second lasers in the second light source are used to emit the P-polarized light of the second wavelength band to form the incident light 2, which is composed of
  • the polarization selection element combines the incident light 1 and the incident light 2 into a single light and then emits it, so that when the light of the second wavelength band emitted by the second light source is incident on the second optical path adjusting device, it includes: There are S-polarized light components and P-polarized light components.
  • the first scattering optical system is composed of a first reflective scattering plate, or a first transmissive scattering plate and a first reflecting mirror.
  • the first reflective diffuser plate may be static or a dynamic rotatable first reflective diffuser plate.
  • the first collection optical system is located on the optical path between the first optical path adjustment device and the wavelength conversion device, and is used to make the light from the first optical path adjustment device
  • the light of the first wavelength band and the light of the second wavelength band are converged toward the wavelength conversion device, and at the same time used to collect the first received light and the second received light from the wavelength conversion device and make them to the first optical path adjusting device.
  • the first collection optical system may be composed of a lens, a lens group, a compound parabolic concentrator or a tapered light guide column alone, or may be composed of any combination of the above-mentioned optical elements.
  • the second collection optical system is located on the optical path between the second optical path adjustment device and the first scattering optical system, and is used to adjust the optical path from the second optical path.
  • the light of the second wavelength band of the device is converged toward the first scattering optical system, and at the same time, the light of the second wavelength band from the first scattering optical system is collected and directed to the second optical path adjustment device.
  • the second collection optical system may be composed of a lens, a lens group, a compound parabolic concentrator or a tapered light guide column alone, or may be composed of any combination of the above-mentioned optical elements.
  • the first uniform light optical system is located on the optical path from the first light source to the first light path adjustment device, and is used for uniformly emitted light from the first light source. the light of the first wavelength band.
  • the first uniform light optical system may be composed of a diffuser, an optical integrator or at least one fly-eye lens array, wherein the optical integrator may be solid or hollow.
  • the diffusing sheet will diffuse the light of the first wavelength band emitted by the first light source, one can be arranged on the optical path from the first light source to the diffusing sheet or on the optical path from the diffusing sheet to the first optical path adjusting device
  • the positive lens is used for converging the light of the first wavelength band emitted from the first light source to the wavelength conversion system.
  • the second uniform light optical system is located on the optical path from the second light source to the second light path adjustment device, and is used for uniformly emitted light from the second light source. light of the second wavelength band.
  • the second uniform light optical system may be composed of a diffuser, an optical integrator or at least one fly-eye lens array, wherein the optical integrator may be solid or hollow.
  • the diffusing sheet since the use of the diffusing sheet will diffuse the light of the second wavelength band emitted by the second light source, a light path from the second light source to the diffusing sheet or on the optical path from the diffusing sheet to the second optical path adjusting device can be arranged
  • the positive lens is used for converging the light of the second wavelength band emitted from the second light source to the optical path adjusting system.
  • a condensing optical system is further included for condensing the light emitted from the second optical path adjusting device.
  • the condensing optical system may be composed of one or more lenses.
  • the first lens group is located on the optical path from the first light source to the first optical path adjusting device, and is used for reducing the first light source emitted by the first light source.
  • a beam of light in a wavelength band is used for reducing the first light source emitted by the first light source.
  • the second lens group is located on the light path from the second light source to the second light path adjusting device, for reducing the second light source emitted by the second light source A beam of light in a wavelength band.
  • a reflective element is further included, the reflective element is located on the optical path between the second light source and the second optical path adjusting device, the reflective element has a transmission area and a reflection area, the transmission area allows the The light of the second wavelength band passes through or is transmitted, and the reflection area is used for reflecting the light of the second wavelength band from the second optical path adjusting device, and at least part of the light is reflected back to the second optical path adjusting device .
  • the reflective element may be planar or non-planar.
  • the transmission area of the reflective element may be a light-transmitting hole or a light-transmitting structure composed of a light-transmitting material.
  • the reflective element can also be a transmissive diffuser plate coated with a reflective film on a part of the area, wherein the area on the transmissive diffuser plate that is not coated with the reflective film is the transmissive area, and the area on the transmissive diffuser plate with the reflective film is the reflective area .
  • the light guide optical system is located on the light path from the second light source to the second light path adjusting device, and is used to guide the light emitted from the second light source at least in part.
  • the light of the second wavelength band passes through or is transmitted through the transmission area of the reflective element and then enters the second optical path adjusting device.
  • the light guiding optical system can be composed of a lens, a compound parabolic concentrator or a light guiding column alone, or can be composed of any combination of the above-mentioned optical elements.
  • the number of lenses, compound parabolic concentrators, and light guide rods can be determined as required, which may be one, or two or more.
  • the light guide rod may be solid or hollow, and the end face of the light guide rod may be flat or non-planar.
  • the first optical path adjusting device allows the light of the first wavelength band emitted by the first light source to be partially transmitted and partially reflected and then emitted from different optical paths
  • the wavelength conversion device Receiving the light of the first wavelength band emitted from one of the optical paths, the second scattering optical system receives the light of the first wavelength band emitted from the other optical path, and reflects it to form a scattered light of the first wavelength band.
  • the first optical path adjusting device combines the first received laser light and the second received laser light from the wavelength conversion device with at least part of the photosynthetic light of the first wavelength band from the second scattering optical system Then, it is directed to the second optical path adjustment device, and the second optical path adjustment device adjusts the difference between the first received laser light, the second received laser light and the light of the first wavelength band from the first optical path adjustment device.
  • the combined light is combined with at least part of the light of the second wavelength band from the first scattering optical system and then exits from the same optical path.
  • the second scattering optical system is composed of a second reflective scattering plate, or a second transmissive scattering plate and a second reflecting mirror.
  • the second reflective diffuser plate may be static or a dynamic rotatable second reflective diffuser plate.
  • the third collection optical system is located on the optical path between the first optical path adjustment device and the second scattering optical system, and is used to adjust the optical path from the first optical path.
  • the light of the first wavelength band of the device is converged toward the second scattering optical system, and at the same time, the light of the first wavelength band from the second scattering optical system is collected and directed to the first optical path adjustment device.
  • the third collection optical system may be composed of a lens, a lens group, a compound parabolic concentrator or a tapered light guide column alone, or may be composed of any combination of the above-mentioned optical elements.
  • a second quarter-wave plate is also included, and the second quarter-wave plate is located on the optical path between the first optical path adjusting device and the second scattering optical system.
  • Another technical solution of the present invention is to provide a lighting device, which is characterized by comprising a first light source, a second light source, a first optical path adjustment device, a third optical path adjustment device, a wavelength conversion device, and a first scattering optical system, in:
  • the first light source is used for emitting light of the first wavelength band
  • the second light source is used for emitting light in a second wavelength band, and the second wavelength band is the same as or different from the first wavelength band;
  • the third optical path adjusting device receives the light of the second wavelength band emitted from the second light source, makes it partially transmitted and partially reflected and then exits from different optical paths, and the wavelength conversion device receives all the light emitted from one of the optical paths. and converting the light of the second wavelength band into a second received laser light having a wavelength band different from the second wavelength band, the first scattering optical system receives the second light emitted from another optical path The light of the second wavelength band is reflected and scattered to form the light of the second wavelength band; the third optical path adjusting device also receives the light of the first wavelength band from the first optical path adjusting device to transmit or reflect it and then received by the wavelength conversion device, the wavelength conversion device converts it into a first received laser light and the wavelength band of the first received laser light is different from the first wavelength band; the third optical path adjustment device will The first received laser light and the second received laser light of the wavelength conversion device are combined with at least part of the light of the second wavelength band from the first scattering optical system, and then exit the same optical path
  • the first optical path adjusting device receives the light of the first wavelength band emitted from the first light source, so that it is at least partially transmitted or at least partially reflected;
  • the first optical path adjustment device When the light of the first wavelength band emitted by the first light source is at least partially transmitted by the first optical path adjustment device, the light of the first wavelength band transmitted through the first optical path adjustment device is directed to the first wavelength band.
  • the first optical path adjustment device receives and reflects the combined light of the first received laser light, the second received laser light and the light of the second wavelength band from the third optical path adjustment device ;
  • the first optical path adjustment device When the light of the first wavelength band emitted by the first light source is at least partially reflected by the first optical path adjustment device, the light of the first wavelength band reflected by the first optical path adjustment device is directed toward the first wavelength band.
  • the first optical path adjustment device receives and transmits the combined light of the first received laser light, the second received laser light and the light of the second wavelength band from the third optical path adjustment device .
  • the wavelength conversion device is reflective, which can be static or dynamic:
  • the static wavelength conversion device includes a reflection layer and a wavelength conversion layer arranged on the reflection layer, wherein the wavelength conversion layer absorbs the incident light of the first wavelength band and emits the first laser light after being excited, and absorbs the incident light of the second wavelength band And after being excited, a second received laser light is emitted.
  • the dynamic wavelength conversion device is a rotatable fluorescent wheel, which includes a reflection layer and a wavelength conversion layer arranged on the reflection layer, wherein the wavelength conversion layer absorbs the incident light of the first wavelength band and emits the first received laser light after being excited.
  • the incident light of the second wavelength band is absorbed and excited, and then a second received laser light is emitted.
  • each wavelength conversion layer absorbs the incident light of the first wavelength band and emits different wavelength bands after being excited.
  • the combined light of these different wavelength bands should be regarded as the first received laser light; similarly, each wavelength conversion layer absorbs the incident light of the second wavelength band and will emit different wavelength bands after being excited At this time, the combined light of these different wavelength bands of received laser light should also be regarded as the second received laser light.
  • the first optical path adjustment device is a first polarization beam splitter
  • the first polarization beam splitter has the following first characteristics with respect to the incident light of the first wavelength band and the second wavelength band: reflecting the first wavelength the S-polarized light of the wavelength band and the second wavelength band and transmit the P-polarized light of the first wavelength band and the second wavelength band;
  • the laser light has a second characteristic of transmitting or reflecting the first received laser light and the second received laser light.
  • the first polarization beam splitter is a plate type polarization beam splitter or a cube type polarization beam splitter.
  • the third optical path adjustment device is a third polarization beam splitter
  • the third polarization beam splitter has the following first characteristics with respect to the incident light of the first wavelength band and the second wavelength band: reflecting the first wavelength the S-polarized light of the first wavelength band and the second wavelength band and transmit the P-polarized light of the first wavelength band and the second wavelength band;
  • the laser light has a second characteristic of transmitting or reflecting the first received laser light and the second received laser light.
  • the third polarizing beam splitter is a plate-type polarizing beam splitter or a cube-type polarizing beam splitter.
  • a first quarter-wave plate is also included, and the first quarter-wave plate is located on the optical path between the third optical path adjusting device and the first scattering optical system.
  • a half-wave plate is also included, and the half-wave plate is located on the optical path between the first optical path adjustment device and the third optical path adjustment device.
  • the first light source includes N first lasers and N first collimating elements corresponding to the N first lasers, N ⁇ 1, where:
  • the first laser is used for emitting light in the first wavelength band
  • the first collimating element is integrated in the first laser or disposed outside the first laser, and is used for collimating the light of the first wavelength band emitted by the first laser.
  • the first collimating element can be integrated inside the first laser, and when the first laser used is not integrated with the first collimating element, the first collimating element can also be added outside the first laser (eg: collimating lens), used for collimating the light emitted by the first laser.
  • the first light source may also contain other optical elements (such as a mirror), and these optical elements can be used to collect the light emitted from the first laser, and finally A first wavelength band of light emitted by the first light source is formed.
  • the second light source includes M second lasers and M second collimating elements corresponding to the M second lasers one-to-one, where M ⁇ 1, where:
  • the second laser is used for emitting light in the second wavelength band
  • the second collimating element is integrated in the second laser or disposed outside the second laser, and is used for collimating the light of the second wavelength band emitted by the second laser.
  • the second collimating element can be integrated inside the second laser, and when the second laser used is not integrated with the second collimating element, a second collimating element can also be added outside the second laser (eg: collimating lens), used for collimating the light emitted by the second laser.
  • a second collimating element can also be added outside the second laser (eg: collimating lens), used for collimating the light emitted by the second laser.
  • the second light source may also contain other optical elements (such as: mirrors), and these optical elements can be used to collect the light emitted from the second laser, and finally A second wavelength band of light emitted by the second light source is formed.
  • optical elements such as: mirrors
  • the light of the second wavelength band emitted by the second laser is linearly polarized light, wherein:
  • the light-emitting directions of all the second lasers are the same, and the initial polarization directions of the emitted light of all the second lasers are also the same. Taking the light-emitting direction of the second lasers as the axis, rotate the part in the second light source axially. For the second laser, the polarization direction of the light in the second wavelength band emitted by this part of the second laser is changed, so that the light in the second wavelength band emitted by the second light source is incident on the third optical path for adjustment When the device is installed, it contains S-polarized light components and P-polarized light components;
  • the light-emitting directions of all the second lasers are the same, and the polarization directions of the emitted lights of all the second lasers are also the same. Taking the light-emitting direction of the second lasers as the axis, rotate the second light source axially, so that When the light of the second wavelength band emitted by the second light source is incident on the third optical path adjusting device, it contains S-polarized light components and P-polarized light components;
  • all the second lasers have the same light-emitting direction
  • a wave plate is arranged in the second light source, and the wave plate is used to change all or part of the second laser in the second light source.
  • the polarization direction or polarization state of the light of the second wavelength band when the light of the second wavelength band emitted by the second light source is incident on the third optical path adjusting device, it contains an S-polarized light component and a P-polarized light component;
  • the characteristic of the polarization selection element is to reflect the S-polarized light of the second wavelength band and transmit the P-polarized light of the second wavelength band, and at least one of the first and second light sources in the second light source
  • the second laser is used to emit the S-polarized light of the second wavelength band to form the incident light 1
  • the remaining second lasers in the second light source are used to emit the P-polarized light of the second wavelength band to form the incident light 2, which is composed of
  • the polarization selection element combines the incident light 1 and the incident light 2 into one light and emits it, so that when the light of the second wavelength band emitted by the second light source is incident on the third optical path adjusting device, it includes: There are S-polarized light components and P-polarized light components.
  • the first scattering optical system is composed of a first reflective scattering plate, or a first transmissive scattering plate and a first reflecting mirror.
  • the first reflective diffuser plate may be static or a dynamic rotatable first reflective diffuser plate.
  • the first collection optical system is located on the optical path between the third optical path adjustment device and the wavelength conversion device, and is used to make the light from the third optical path adjustment device
  • the light of the first wavelength band and the light of the second wavelength band are converged toward the wavelength conversion device, and at the same time used to collect the first received light and the second received light from the wavelength conversion device and make them to the third optical path adjusting device.
  • the first collection optical system may be composed of a lens, a lens group, a compound parabolic concentrator or a tapered light guide column alone, or may be composed of any combination of the above-mentioned optical elements.
  • it also includes a second collection optical system, the second collection optical system is located on the optical path between the third optical path adjustment device and the first scattering optical system, for adjusting the optical path from the third optical path
  • the light of the second wavelength band of the device is converged toward the first scattering optical system, and at the same time is used to collect the light of the second wavelength band from the first scattering optical system and send it to the third optical path adjustment device.
  • the second collection optical system may be composed of a lens, a lens group, a compound parabolic concentrator or a tapered light guide column alone, or may be composed of any combination of the above-mentioned optical elements.
  • the first uniform light optical system is located on the optical path from the first light source to the first light path adjustment device, and is used for uniformly emitted light from the first light source. the light of the first wavelength band.
  • the first uniform light optical system may be composed of a diffuser, an optical integrator or at least one fly-eye lens array, wherein the optical integrator may be solid or hollow.
  • the diffusing sheet will diffuse the light of the first wavelength band emitted by the first light source, one can be arranged on the optical path from the first light source to the diffusing sheet or on the optical path from the diffusing sheet to the first optical path adjusting device
  • the positive lens is used for converging the light of the first wavelength band emitted from the first light source to the wavelength conversion system.
  • the second uniform light optical system is located on the optical path from the second light source to the third light path adjustment device, and is used for uniformly emitted light from the second light source. light of the second wavelength band.
  • the second uniform light optical system may be composed of a diffuser, an optical integrator or at least one fly-eye lens array, wherein the optical integrator may be solid or hollow.
  • the diffusing sheet since the use of the diffusing sheet will diffuse the light of the second wavelength band emitted by the second light source, a light path from the second light source to the diffusing sheet or the light path from the diffusing sheet to the third optical path adjusting device can be arranged
  • the positive lens is used for converging the light of the second wavelength band emitted from the second light source to the optical path adjusting system.
  • a condensing optical system is also included for condensing the light emitted from the first optical path adjusting device.
  • the condensing optical system may be composed of one or more lenses.
  • the first lens group is located on the optical path from the first light source to the first optical path adjusting device, and is used for reducing the first light source emitted by the first light source.
  • a beam of light in a wavelength band is used for reducing the first light source emitted by the first light source.
  • the second lens group is located on the light path from the second light source to the third light path adjusting device, and is used to reduce the second light source emitted by the second light source.
  • a beam of light in a wavelength band is used to reduce the second light source emitted by the second light source.
  • a reflective element is further included, the reflective element is located on the optical path between the second light source and the third optical path adjusting device, the reflective element has a transmission area and a reflection area, the transmission area allows the The light of the second wavelength band passes through or is transmitted, and the reflection area is used for reflecting the light of the second wavelength band from the third optical path adjusting device, and at least part of the light is reflected back to the third optical path adjusting device .
  • the reflective element may be planar or non-planar.
  • the transmission area of the reflective element may be a light-transmitting hole or a light-transmitting structure composed of a light-transmitting material.
  • the reflective element can also be a transmissive diffuser plate coated with a reflective film on a part of the area, wherein the area on the transmissive diffuser plate that is not coated with the reflective film is the transmissive area, and the area on the transmissive diffuser plate with the reflective film is the reflective area .
  • a light guide optical system is also included, the light guide optical system is located on the light path from the second light source to the third light path adjusting device, and is used to guide the light emitted from the second light source at least in part.
  • the light of the second wavelength band passes through or transmits through the transmission area of the reflective element and then enters the third optical path adjusting device.
  • the light guiding optical system may be constituted by a lens, a compound parabolic concentrator or a light guiding column alone, or may be constituted by any combination of the above-mentioned optical elements.
  • the number of lenses, compound parabolic concentrators, and light guide rods can be determined as required, which may be one, or two or more.
  • the light guide rod may be solid or hollow, and the end face of the light guide rod may be flat or non-planar.
  • the first optical path adjusting device allows the light of the first wavelength band emitted by the first light source to be partially transmitted and partially reflected and then emitted from different optical paths, and the third optical path
  • the adjusting device receives the light of the first wavelength band emitted from one of the optical paths
  • the second scattering optical system receives the light of the first wavelength band emitted from the other optical path, reflects it and forms the scattered first wavelength the light of the wavelength band
  • the first optical path adjustment device combines the combined light of the first received laser light, the second received laser light and the light of the second wavelength band from the third optical path adjustment device with at least part of the light from the light of the second wavelength band.
  • the photosynthetic light of the first wavelength band of the second scattering optical system is emitted from the same optical path.
  • the second scattering optical system is composed of a second reflective scattering plate, or a second transmissive scattering plate and a second reflecting mirror.
  • the second reflective diffuser plate may be static or a dynamic rotatable second reflective diffuser plate.
  • the third collection optical system is located on the optical path between the first optical path adjustment device and the second scattering optical system, and is used to adjust the optical path from the first optical path.
  • the light of the first wavelength band of the device is converged toward the second scattering optical system, and at the same time, the light of the first wavelength band from the second scattering optical system is collected and directed to the first optical path adjustment device.
  • the third collection optical system may be composed of a lens, a lens group, a compound parabolic concentrator or a tapered light guide column alone, or may be composed of any combination of the above-mentioned optical elements.
  • a second quarter-wave plate is also included, and the second quarter-wave plate is located on the optical path between the first optical path adjusting device and the second scattering optical system.
  • Those skilled in the art can also set a heat sink for heat dissipation of the first light source and/or the second light source and/or the wavelength conversion device as required.
  • the provided lighting device can achieve higher luminous flux output without increasing etendue.
  • the lighting device of the invention has the characteristics of high brightness, small etendue, high color rendering index, long working life, etc., and can be applied to systems requiring high light intensity and small etendue, such as entertainment lighting systems, projection systems, automobiles, etc.
  • Lighting system medical lighting system, search lighting system, field operation lighting system, marine lighting system, portable lighting system, etc.
  • FIG. 1 is a schematic structural diagram of an existing polarization beam splitting lighting device
  • FIG. 2 is a schematic structural diagram of a first light source used in the embodiment
  • FIG. 10 is a schematic structural diagram of a static wavelength conversion device
  • Fig. 11 is the schematic diagram of the first structural form of the dynamic wavelength conversion device
  • FIG. 13 is a schematic structural diagram of a lighting device disclosed in Embodiment 1;
  • FIG. 14 is a schematic structural diagram of a lighting device disclosed in Embodiment 2;
  • FIG. 15 is a schematic structural diagram of a lighting device disclosed in Embodiment 3.
  • FIG. 16 is a schematic structural diagram of a lighting device disclosed in Embodiment 4.
  • FIG. 17 is a schematic structural diagram of a lighting device disclosed in Embodiment 5.
  • FIG. 18 is a schematic structural diagram of a lighting device disclosed in Embodiment 6;
  • Embodiment 19 is a schematic structural diagram of a lighting device disclosed in Embodiment 7.
  • FIG. 20 is a schematic structural diagram of a lighting device disclosed in Embodiment 8.
  • FIG. 21 is a schematic structural diagram of a lighting device disclosed in Embodiment 9;
  • FIG. 22 is a schematic structural diagram of a lighting device disclosed in Embodiment 10.
  • FIG. 23 is a schematic structural diagram of a lighting device disclosed in Embodiment 11;
  • Embodiment 24 is a schematic structural diagram of a lighting device disclosed in Embodiment 12.
  • FIG. 25 is a schematic structural diagram of a lighting device disclosed in Embodiment 13;
  • FIG. 26 is a schematic structural diagram of a lighting device disclosed in Embodiment 14.
  • FIG. 27 is a schematic structural diagram of a lighting device disclosed in Embodiment 15;
  • FIG. 28 is a schematic structural diagram of a lighting device disclosed in Embodiment 16.
  • FIG. 29 is a schematic structural diagram of a lighting device disclosed in Embodiment 17.
  • FIG. 30 is a schematic structural diagram of a lighting device disclosed in Embodiment 18.
  • FIG. 31 is a schematic structural diagram of a lighting device disclosed in Embodiment 19;
  • FIG. 32 is a schematic structural diagram of a lighting device disclosed in Embodiment 20.
  • FIG. 32 is a schematic structural diagram of a lighting device disclosed in Embodiment 20.
  • any of the lighting devices disclosed in all the following embodiments can use the first light source shown in FIG. 2 .
  • the first light source 201 includes N lasers 201 a and N collimating elements 201 b corresponding to the N lasers 201 a one-to-one, and N ⁇ 1. All lasers 201a emit radially polarized light.
  • any of the lighting devices disclosed in all the following embodiments can use the second light source as shown in FIG. 3 , 4 , 5 , 6 , 7 , 8 or 9 .
  • FIG. 3 is a schematic structural diagram of the second light source of the first solution.
  • the second light source 301 includes M lasers 301 a and M collimating elements 301 b corresponding to the M lasers 301 a one-to-one, where M ⁇ 2. All the lasers 301a output linearly polarized light, and the linearly polarized light emitted by all the lasers 301a has the same polarization direction, and all the lasers 301a have the same light output direction.
  • One or more half-wave plates 301c are arranged in front of the m lasers 301a, 1 ⁇ m ⁇ M, for changing the polarization direction of the linearly polarized light emitted by the m lasers 301a.
  • the light emitted by the second light source 301 can be incident on the second light path adjusting device or the third light path adjusting device of any lighting device in all the following embodiments, which contains the S-polarized light component and the P-polarized light component. Polarized light components.
  • FIG. 4 is a schematic structural diagram of the second light source of the second scheme.
  • the second light source 401 includes M lasers 401 a and M collimating elements 401 b corresponding to the M lasers 401 a one-to-one, where M ⁇ 1. All the lasers 401a output linearly polarized light, and the linearly polarized light emitted by all the lasers 401a has the same polarization direction, and all the lasers 401a have the same light output direction.
  • a quarter wave plate 401c is placed in front of all lasers 401a.
  • the light emitted by the second light source 401 can be incident on the second light path adjusting device or the third light path adjusting device of any one of the following embodiments of the lighting device, which contains the S-polarized light component and the P-polarized light component. Polarized light components.
  • FIG. 5 is a schematic structural diagram of the second light source of the third solution.
  • the second light source 501 includes M lasers 501a and M collimating elements 501b corresponding to the M lasers 501a one-to-one, M ⁇ 2. All lasers 501a emit linearly polarized light, and the linearly polarized light emitted by all lasers 501a has the same initial polarization direction, and all lasers 501a have the same light-emitting direction.
  • the m lasers 501a of the M lasers 501a are rotated axially, 1 ⁇ m ⁇ M, to change the polarization direction of the linearly polarized light emitted by the m lasers 5011 (for example, from S-polarized light to change from S-polarized light). for P-polarized light, or from P-polarized light to S-polarized light).
  • the light emitted by the second light source 501 can be incident on the second light path adjusting device or the third light path adjusting device of any lighting device in all the following embodiments, which contains the S-polarized light component and the P-polarized light component. Polarized light components.
  • FIG. 6 and 7 are schematic structural diagrams of the second light source of the fourth solution, wherein FIG. 6 is a front view, and FIG. 7 is a side view.
  • the second light source 601 includes M lasers 601a and M collimating elements 601b corresponding to the M lasers 601a one-to-one, M ⁇ 1. All the lasers 601a output linearly polarized light, and the linearly polarized light emitted by all the lasers 601a has the same polarization direction, and all the lasers 601a have the same light output direction. Taking the light-emitting direction of the laser 601a as the axis, the second light source 601 is axially rotated by a certain angle ⁇ .
  • the light emitted by the second light source 601 can be incident on the second or third light path adjusting device of any lighting device in any of the following embodiments, which contains S-polarized light. components and P-polarized light components.
  • FIG. 8 is a schematic structural diagram of the second light source of the fifth solution.
  • the second light source 801 includes J lasers 801a for emitting P-polarized light, J collimating elements 801b corresponding to the J lasers 801a one-to-one, K lasers 801c for emitting S-polarized light, and K lasers 801c for emitting S-polarized light.
  • the K collimation elements 801d and the polarization selection elements 801e corresponding to the lasers 801c one-to-one, J ⁇ 1, K ⁇ 1.
  • the P-polarized light emitted from the J lasers 801a is incident on one side of the polarization selection element 801e
  • the S-polarized light emitted from the K lasers 801c is incident on the other side of the polarization selection element 801e.
  • the characteristic of the polarization selection element 801e is to reflect the S-polarized light and transmit the P-polarized light.
  • the P-polarized light emitted by the J lasers 801a and the S-polarized light emitted by the K lasers 801c are combined into one light by the polarization selection element 801e.
  • the light emitted by the second light source 801 can be incident on the second optical path adjusting device or the third optical path adjusting device of any one of the following embodiments of the lighting device, which contains the S-polarized light component and the P-polarized light component. Polarized light components.
  • FIG. 9 is a schematic structural diagram of the second light source of the sixth solution.
  • the second light source 901 includes J lasers 901a for emitting P-polarized light, J collimating elements 901b corresponding to the J lasers 901a one-to-one, K lasers 901c for emitting S-polarized light, and K lasers 901c for emitting S-polarized light.
  • the K collimating elements 901d, the polarization selecting elements 901e and the reflecting mirrors 901f corresponding to the lasers 901c one-to-one, J ⁇ 1, K ⁇ 1.
  • the P-polarized light emitted by the J lasers 901a is reflected by the mirror 901f and then incident on one side of the polarization selection element 901e, and the S-polarized light emitted by the K lasers 901c is incident on the other side of the polarization selection element 901e.
  • the characteristic of the polarization selection element 901e is to reflect the S-polarized light and transmit the P-polarized light.
  • the P-polarized light emitted by the J lasers 901a and the S-polarized light emitted by the K lasers 901c are combined into one light by the polarization selection element 901e.
  • the light emitted by the second light source 901 can be incident on the second light path adjusting device or the third light path adjusting device of any one of the following embodiments of the lighting device, which contains the S-polarized light component and the P-polarized light component. Polarized light components.
  • the structure of the static wavelength conversion device used in the following embodiments may be as shown in FIG. 10 .
  • the dynamic wavelength conversion device used in the following embodiments may be the dynamic wavelength conversion device as shown in FIG. 11 or the dynamic wavelength conversion device as shown in FIG. 12 .
  • a static wavelength conversion device 1001 includes a reflective layer 1001a and a wavelength conversion layer 1001b disposed on the reflective layer 1001a, wherein the wavelength conversion layer 1001b is made of a yellow fluorescent material (such as: yellow fluorescent powder or yellow fluorescent Ceramic), which converts incident blue light into yellow light, and the reflective layer 1001a is a reflective substrate.
  • a yellow fluorescent material such as: yellow fluorescent powder or yellow fluorescent Ceramic
  • a dynamic wavelength conversion device is a rotatable fluorescent wheel 1101, which includes a reflective layer and a wavelength conversion layer Y disposed on the reflective layer.
  • the wavelength conversion layer Y is composed of a yellow fluorescent material (eg, yellow fluorescent powder or yellow fluorescent ceramic), which converts incident blue light into yellow light.
  • the wavelength conversion layer G is composed of a green fluorescent material (eg, green fluorescent powder or green fluorescent ceramic), which converts incident blue light into green light.
  • the wavelength conversion layer R is composed of a red fluorescent material (eg, red fluorescent powder or red fluorescent ceramic), which converts incident blue light into red light.
  • a lighting device disclosed in this embodiment includes a first light source 1301, a second light source 1302, a first optical path adjustment device, a first collection optical system, a wavelength conversion device 1305, a second optical path adjustment device, four One-wave plate 1307, a second collection optical system, a first scattering optical system, and a condensing optical system.
  • the first optical path adjusting device is a flat-plate polarizing beam splitter 1303 .
  • the first collection optical system consists of a lens group 1304 including a lens 1304a and a lens 1304b.
  • the wavelength conversion device 1305 includes a reflective layer 1305a and a wavelength conversion layer 1305b provided on the reflective layer 1305a.
  • the second optical path adjusting device is a flat-plate polarizing beam splitter 1306 .
  • the second collection optical system consists of a lens group 1308 including a lens 1308a and a lens 1308b.
  • the first scattering optical system is constituted by a reflective scattering plate 1309 .
  • the collection optical system consists of a focusing lens 1310.
  • the characteristics of the flat-type polarizing beam splitter 1303 in this embodiment are to reflect the blue light of the S-polarized light and transmit the blue light of the P-polarized light, and at the same time, the flat-type polarizing beam splitter 1303 also reflects the yellow light.
  • the characteristics of the flat-type polarizing beam splitter 1306 in this embodiment are to reflect the blue light of the S-polarized light and transmit the blue light of the P-polarized light, and at the same time, the flat-type polarizing beam splitter 1306 also transmits the yellow light.
  • the first light source 1301 emits P-polarized blue light and the blue light is incident on the flat polarizing beam splitter 1303 , which transmits it to the lens group 1304 , and the lens group 1304 converges it toward the wavelength conversion device 1305 .
  • the wavelength conversion device 1305 converts the incident blue light into the first received laser light (yellow light) and sends it to the lens group 1304 .
  • the first received laser light (yellow light) is collected by the lens group 1304 and then directed to the flat-plate polarizing beam splitter 1303 .
  • the flat-type polarizing beam splitter 1303 reflects the first received laser light (yellow light) and sends it to the flat-type polarizing beam splitter 1306, and the flat-type polarizing beam splitter 1306 transmits it.
  • the second light source 1302 emits blue light containing S-polarized light components and P-polarized light components, and the blue light is incident on the flat-type polarizing beam splitter 1306, which splits it into S-polarized light blue light and P-polarized light blue light, and the blue light of the S-polarized light therein is reflected and the blue light of the P-polarized light thereof is transmitted.
  • the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 1306 is directed to the flat-type polarizing beam splitter 1303
  • the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 1306 is directed to the quarter-wave plate 1307 .
  • the flat-plate polarizing beam splitter 1303 reflects the blue light of the S-polarized light from the flat-plate polarizing beam splitter 1306 to the lens group 1304 , and the lens group 1304 makes it converge toward the wavelength conversion device 1305 .
  • the wavelength conversion device 1305 converts the incident blue light into a second received laser light (yellow light) and sends it to the lens group 1304 .
  • the second received laser light (yellow light) is collected by the lens group 1304 and then directed to the flat-plate polarizing beam splitter 1303 .
  • the flat-type polarizing beam splitter 1303 reflects the second received laser light (yellow light) to the flat-type polarizing beam splitter 1306, and the flat-type polarizing beam splitter 1306 transmits it.
  • the blue light of the P-polarized light transmitted through the flat-plate polarizing beam splitter 1306 is converted into the blue light of circularly polarized light after being transmitted through the quarter-wave plate 1307 .
  • the lens group 1308 condenses the blue light of the circularly polarized light toward the reflective diffusing plate 1309 .
  • the circularly polarized blue light is reflected by the reflective diffusing plate 1309 and then directed to the lens group 1308 , and then collected by the lens group 1308 and directed to the quarter-wave plate 1307 .
  • the blue light of the circularly polarized light is transmitted through the quarter wave plate 1307 and converted into blue light of the S-polarized light, and the blue light of the S-polarized light is directed to the flat-type polarization beam splitter 1306, and the plate-type polarization beam splitter 1306 reflects it.
  • the first received laser light (yellow light) and the second received laser light (yellow light) transmitted through the flat-type polarizing beam splitter 1306 and the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 1306 can be combined into one mixed light and directed toward the Focusing lens 1310, and the mixed light of yellow light and blue light is white light. Finally, the focusing lens 1310 condenses the white light and exits the lighting device.
  • a lighting device disclosed in this embodiment includes a first light source 1401, a second light source 1402, a first optical path adjustment device (consisting of a flat-plate polarizing beam splitter 1403), and a first collection optical system (consisting of A lens group 1404 including a lens 1404a and a lens 1404b), a wavelength conversion device 1405 (including a reflective layer 1405a and a wavelength conversion layer 1405b disposed on the reflective layer 1405a), a second optical path adjustment device (consisting of a flat polarizing beam splitter 1406 composition), a quarter wave plate 1407, a second collection optical system (consisting of a lens group 1408 including a lens 1408a and a lens 1408b), a first scattering optical system (consisting of a reflective diffusing plate 1409), condensing optics A system (consisting of a focusing lens 1410 ), a first lens group 1411 and a second lens group 1412 .
  • the first difference between this embodiment and Embodiment 1 is that a first lens group 1411 is provided on the optical path from the first light source 1401 to the flat-plate polarizing beam splitter 1403 .
  • the first lens group 1411 is composed of a positive lens 1411a and a negative lens 1411b, and is used for reducing the light beam formed by the blue light emitted by the first light source 1401.
  • the second difference between this embodiment and Embodiment 1 is that a second lens group 1412 is provided on the optical path from the second light source 1402 to the flat-plate polarizing beam splitter 1406.
  • the second lens group 1412 is composed of a positive lens 1412a and a negative lens 1412b for reducing the light beam formed by the blue light emitted from the second light source 1402 .
  • a lighting device disclosed in this embodiment includes a first light source 1501, a second light source 1502, a first optical path adjustment device (consisting of a flat-plate polarizing beam splitter 1503), and a first collection optical system (consisting of A lens group 1504 including a lens 1504a and a lens 1504b), a wavelength conversion device 1505 (including a reflective layer 1505a and a wavelength conversion layer 1505b disposed on the reflective layer 1505a), a second optical path adjustment device, a quarter-wave plate 1507, The second collecting optical system (consisting of a lens group 1508 including a lens 1508a and a lens 1508b), the first scattering optical system (consisting of a reflective diffusing plate 1509), the condensing optical system (consisting of a focusing lens 1510), the A uniform light optical system and a second uniform light optical system.
  • the first difference between this embodiment and Embodiment 1 is that the second optical path adjusting device in this embodiment is composed of a cube-type polarizing beam splitter 1506 instead of a plate-type polarizing beam splitter.
  • the second difference between this embodiment and Embodiment 1 is that a first uniform light optical system is provided on the optical path from the first light source 1501 to the flat-plate polarizing beam splitter 1503 .
  • the first uniform light optical system is composed of a transmissive diffuser 1513 , which is used to uniformize the blue light emitted by the first light source 1501 .
  • the third difference between this embodiment and Embodiment 1 is that a second uniform light optical system is provided on the optical path from the second light source 1502 to the cube-type polarizing beam splitter 1506 .
  • the second homogenizing optical system is composed of a transmissive diffuser 1514 , which is used for uniformizing the blue light emitted by the second light source 1502 .
  • an illuminating device disclosed in this embodiment includes a first light source 1601, a second light source 1602, a first optical path adjusting device (consisting of a flat-plate polarizing beam splitter 1603), and a first collecting optical system (consisting of A lens group 1604 including a lens 1604a and a lens 1604b), a wavelength conversion device, a second optical path adjustment device (consisting of a flat-plate polarizing beam splitter 1606), a quarter-wave plate 1607, a second collection optical system (consisting of a A lens 1608a and a lens group 1608 of a lens 1608b), a first scattering optical system, and a condensing optical system (composed of a focusing lens 1610).
  • the first difference between this embodiment and Embodiment 1 is that the wavelength conversion device in this embodiment is a rotatable fluorescent wheel 1605 .
  • the second difference between this embodiment and Embodiment 1 is that the first scattering optical system in this embodiment is a rotatable reflective scattering plate 1609 .
  • an illuminating device disclosed in this embodiment includes a first light source 1701, a second light source 1702, a first optical path adjusting device (consisting of a flat-plate polarizing beam splitter 1703), and a first collecting optical system (consisting of a lens group 1704 including a lens 1704a and a lens 1704b), a wavelength conversion device (including a reflective layer 1705a and a wavelength conversion layer 1705b disposed on the reflective layer 1705a), a second optical path adjustment device (composed of a flat-plate polarizing beam splitter 1706) ), a quarter wave plate 1707, a second collecting optical system (consisting of a lens group 1708 including a lens 1708a and a lens 1708b), a first scattering optical system 1709, and a condensing optical system (consisting of a focusing lens 1710).
  • the first scattering optical system 1709 in this embodiment is composed of a transmissive scattering plate 1709a and a reflecting mirror 1709b.
  • a lighting device disclosed in this embodiment includes a first light source 1801, a second light source 1802, a first optical path adjusting device (consisting of a flat-plate polarizing beam splitter 1803), and a first collecting optical system (consisting of a lens group 1804 including a lens 1804a and a lens 1804b), a wavelength conversion device (including a reflective layer 1805a and a wavelength conversion layer 1805b disposed on the reflective layer 1805a), a second optical path adjustment device (composed of a flat-plate polarizing beam splitter 1806) ), a quarter-wave plate 1807, a second collecting optical system (consisting of a lens group 1808 including a lens 1808a and a lens 1808b), a first scattering optical system 1809 (consisting of a focusing lens 1810), a condensing optical system ( It consists of a focusing lens 1810), a light guide optical system 1815 and a reflective element 1816.
  • a light guiding optical system 1815 and a reflective element 1816 are provided on the optical path from the second light source 1802 to the flat-plate polarizing beam splitter 1806 .
  • the light guide optical system 1815 is composed of a positive lens 1815a and a positive lens 1815b, the transmission area of the reflective element 1816 is a light hole 1816a and the positive lens 1815b is located at the light hole 1816a.
  • the second light source 1802 emits blue light containing S-polarized light components and P-polarized light components, and the blue light is guided by the light guide optical system 1815 to the flat-type polarization beam splitter 1806, which splits it into S-polarized light Blue light and blue light of P-polarized light, and blue light of S-polarized light therein is reflected and blue light of P-polarized light therein is transmitted.
  • the traveling optical path of the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 1806 is the same as the traveling optical path of the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 1306 in Example 1;
  • the blue light of the P-polarized light of the beam splitter 1806 is directed to the quarter wave plate 1807 .
  • the blue light of P-polarized light is converted into blue light of circularly polarized light after being transmitted through the quarter-wave plate 1807 .
  • the lens group 1808 condenses the blue light of the circularly polarized light toward the reflective diffusion plate 1809 .
  • the reflective diffusion plate 1809 reflects the incident circularly polarized blue light.
  • the blue light is collected by the lens group 1808 and then directed to the quarter-wave plate 1807 , and then transmitted through the quarter-wave plate 1807 and incident on the flat-plate polarizing beam splitter 1806 .
  • the blue light of the circularly polarized light is transmitted through the quarter-wave plate 1807 and then converted into blue light of the S-polarized light, and the blue light of the S-polarized light is reflected by the flat-plate polarizing beam splitter 1806 .
  • the non-polarized blue light is separated into S-polarized blue light and P-polarized blue light by the flat-type polarizing beam splitter 1806, wherein the S-polarized blue light is reflected by the flat-type polarizing beam splitter 1806, and the P-polarized blue light is reflected by the flat-type polarizing beam splitter 1806.
  • Blue light is transmitted through plate polarizing beam splitter 1806 and directed towards reflective element 1816.
  • the reflective element 1816 reflects most of the blue light of the P-polarized light from the flat-plate polarizing beamsplitter 1806 and sends it back to the flat-plate polarizing beamsplitter 1806, and then these P-polarized blue light is transmitted through the flat-plate polarizing beamsplitter 1806 and then re-emitted. To the quarter wave plate 1807.
  • a lighting device disclosed in this embodiment includes a first light source 1901, a second light source 1902, a first optical path adjusting device (consisting of a flat-plate polarizing beam splitter 1903), and a first collecting optical system (consisting of A lens group 1904 including a lens 1904a and a lens 1904b), a wavelength conversion device 1905 (including a reflective layer 1905a and a wavelength conversion layer 1905b disposed on the reflective layer 1905a), a second optical path adjustment device (consisting of a flat polarizing beam splitter 1906 composition), quarter wave plate 1907, second collection optical system (composed of lens group 1908 including lens 1908a and lens 1908b), first scattering optical system (composed of a reflective scattering plate 1909), condensing optics The system (consisting of a focusing lens 1910), a quarter wave plate 1917, a third collecting optical system and a second scattering optical system.
  • the third collection optical system consists of a lens group 1918 including a
  • the first light source 1901 emits blue light containing S-polarized light components and P-polarized light components, and the blue light is incident on the flat-type polarizing beam splitter 1903, which separates it The blue light of the S-polarized light and the blue light of the P-polarized light are formed, and the blue light of the S-polarized light thereof is reflected and the blue light of the P-polarized light thereof is transmitted.
  • the traveling optical path of the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 1903 is the same as the traveling optical path of the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 1303 in Example 1;
  • the blue light of the S-polarized light reflected by the filter 1903 is directed to the quarter wave plate 1917 .
  • the blue light of S polarized light is converted into blue light of circular polarized light after being transmitted through the quarter wave plate 1917 .
  • the lens group 1918 condenses the blue light of the circularly polarized light toward the reflective diffusing plate 1919 .
  • the reflective diffusion plate 1919 reflects the incident circularly polarized blue light.
  • the blue light of the circularly polarized light reflected by the reflective diffusing plate 1919 is collected by the lens group 1918 and then directed to the quarter-wave plate 1917 .
  • the blue light of circularly polarized light is converted into blue light of P polarized light after being transmitted through the quarter wave plate 1917, and the blue light of these P polarized light is directed to the flat-type polarizing beam splitter 1903, and the flat-type polarizing beam splitter 1903 transmits it and then emits it.
  • the flat-type polarizing beam splitter 1906 transmits it.
  • a lighting device disclosed in this embodiment includes a first light source 2001, a second light source 2002, a first optical path adjusting device (consisting of a flat-plate polarizing beam splitter 2003), and a first collecting optical system (consisting of A lens group 2004 including a lens 2004a and a lens 2004b), a wavelength conversion device 2005 (including a reflective layer 2005a and a wavelength conversion layer 2005b disposed on the reflective layer 2005a), a second optical path adjustment device (consisting of a flat polarizing beam splitter 2006 composition), a quarter-wave plate 2007, a second collecting optical system (consisting of a lens group 2008 including a lens 2008a and a lens 2008b), a first scattering optical system (consisting of a reflective diffusing plate 2009), and condensing optics system (consisting of a focusing lens 2010).
  • a first optical path adjusting device consististing of a flat-plate polarizing beam splitter 2003
  • a first collecting optical system consististing of A lens group 2004 including a
  • the characteristics of the flat-type polarizing beam splitter 2003 in this embodiment are to reflect the blue light of the S-polarized light and transmit the blue light of the P-polarized light, and at the same time, the flat-type polarizing beam splitter 2003 also transmits the yellow light.
  • the characteristics of the flat-type polarizing beam splitter 2006 in this embodiment are to reflect the blue light of the S-polarized light and transmit the blue light of the P-polarized light, and at the same time, the flat-type polarizing beam splitter 2006 also reflects the yellow light.
  • the first light source 2001 emits blue light of S-polarized light and the blue light is incident on the flat-type polarizing beam splitter 2003, which is reflected by the flat-type polarizing beam splitter 2003 and then directed to the lens group 2004, and the lens group 2004 makes it converge toward the wavelength conversion device 2005,
  • the wavelength conversion device 2005 converts the incident blue light into the first received laser light (yellow light) and sends it to the lens group 2004 .
  • the first received laser light (yellow light) is collected by the lens group 2004 and then directed to the flat-plate polarizing beam splitter 2003 .
  • the flat-type polarizing beam splitter 2003 transmits the first received laser light (yellow light) and then emits it to the flat-type polarizing beam splitter 2006, and the flat-type polarizing beam splitter 2006 reflects it.
  • the second light source 2002 emits blue light containing S-polarized light components and P-polarized light components, and the blue light is incident on a flat-type polarizing beam splitter 2006, which splits it into S-polarized blue light and P-polarized light. blue light, and the blue light of the S-polarized light therein is reflected and the blue light of the P-polarized light thereof is transmitted.
  • the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 2006 is directed to the flat-type polarizing beam splitter 2003
  • the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 2006 is directed to the quarter-wave plate 2007 .
  • the flat-plate polarizing beam splitter 2003 transmits the blue light of the P-polarized light from the flat-plate polarizing beam splitter 2006 to the lens group 2004 , and the lens group 2004 makes it converge toward the wavelength conversion device 2005 .
  • the wavelength conversion device 2005 converts the incident blue light into a second received laser light (yellow light) and sends it to the lens group 2004 .
  • the second received laser light (yellow light) is collected by the lens group 2004 and then directed to the flat-plate polarizing beam splitter 2003 .
  • the flat-type polarizing beam splitter 2003 transmits the second received laser light (yellow light) to the flat-type polarizing beam splitter 2006, and the flat-type polarizing beam splitter 2006 reflects it.
  • the blue light of the S-polarized light reflected by the flat-plate polarizing beam splitter 2006 is converted into the blue light of circularly polarized light after being transmitted through the quarter-wave plate 2007 .
  • the lens group 2008 condenses the blue light of the circularly polarized light toward the reflective diffusion plate 2009 .
  • the circularly polarized blue light is reflected by the reflective diffuser plate 2009 and then directed to the lens group 2008 , and then collected by the lens group 2008 and directed to the quarter-wave plate 2007 .
  • the blue light of circularly polarized light is transmitted through the quarter wave plate 2007 and then converted into blue light of P-polarized light, and the blue light of the P-polarized light is directed to the flat-type polarizing beam splitter 2006, and the flat-type polarizing beam splitter 2006 transmits it.
  • the first received laser light (yellow light) and the second received laser light (yellow light) reflected by the flat-type polarizing beam splitter 2006 and the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 2006 can be combined into one mixed light and directed toward the Focusing lens 2010, and the mixed light of yellow light and blue light is white light. Finally, the focusing lens 2010 condenses the white light and exits the lighting device.
  • a lighting device disclosed in this embodiment includes a first light source 2101, a second light source 2102, a first optical path adjusting device (consisting of a flat-plate polarizing beam splitter 2103), and a first collecting optical system (consisting of A lens group 2104 including a lens 2104a and a lens 2104b), a wavelength conversion device 2105 (including a reflective layer 2105a and a wavelength conversion layer 2105b disposed on the reflective layer 2105a), a second optical path adjustment device (consisting of a flat polarizing beam splitter 2106 composition), quarter wave plate 2107, second collection optical system (composed of lens group 2108 including lens 2108a and lens 2108b), first scattering optical system (composed of one reflective scattering plate 2109), condensing optics System (consisting of a focusing lens 2110) and a half-wave plate 2120.
  • a lens group 2104 including a lens 2104a and a lens 2104b
  • a wavelength conversion device 2105 including a reflective layer
  • the characteristics of the flat-type polarizing beam splitter 2103 in this embodiment are to reflect the blue light of the S-polarized light and transmit the blue light of the P-polarized light, and at the same time, the flat-type polarizing beam splitter 2103 also transmits the yellow light.
  • the characteristics of the flat-type polarizing beam splitter 2106 in this embodiment are to reflect the blue light of the S-polarized light and transmit the blue light of the P-polarized light, and at the same time, the flat-type polarizing beam splitter 2106 also transmits the yellow light.
  • the first light source 2101 emits S-polarized blue light and the blue light is incident on the flat-plate polarizing beam splitter 2103 , which reflects the blue light toward the lens group 2104 , and the lens group 2104 converges it toward the wavelength conversion device 2105 .
  • the wavelength conversion device 2105 converts the incident blue light into the first received laser light (yellow light) and sends it to the lens group 2104 .
  • the first received laser light (yellow light) is collected by the lens group 2104 and then directed to the flat-plate polarizing beam splitter 2103 .
  • the flat-plate polarizing beam splitter 2103 transmits the first received laser light (yellow light) and then sends it to the half-wave plate 2120 .
  • the first received laser light (yellow light) is transmitted through the half-wave plate 2120 and then continues to be emitted to the flat-plate polarizing beam splitter 2106, and the flat-plate polarizing beam splitter 2106 transmits it.
  • the second light source 2102 emits blue light containing S-polarized light components and P-polarized light components, and the blue light is incident on the flat-type polarization beam splitter 2106, which splits it into S-polarized blue light and P-polarized light. blue light, and the blue light of the S-polarized light therein is reflected and the blue light of the P-polarized light thereof is transmitted.
  • the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 2106 is directed to the half-wave plate 2120
  • the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 2106 is directed to the quarter-wave plate 2107 .
  • the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 2106 is converted into the blue light of P-polarized light after being transmitted through the half-wave plate 2120, and the blue light of these P-polarized light continues to be directed to the flat-type polarizing beam splitter 2103, and the flat-type polarizing beam splitter 2103 transmits it to the lens group 2104 , and the lens group 2104 makes it converge toward the wavelength conversion device 2105 .
  • the wavelength conversion device 2105 converts the incident blue light into a second received laser light (yellow light) and sends it to the lens group 2104 .
  • the second received laser light (yellow light) is collected by the lens group 2104 and then directed to the flat-plate polarizing beam splitter 2103 .
  • the flat-plate polarizing beam splitter 2103 transmits the second received laser light (yellow light) to the half-wave plate 2120 .
  • the second received laser light (yellow light) is transmitted through the half-wave plate 2120 and then continues to be emitted to the flat-plate polarizing beam splitter 2106, and the flat-plate polarizing beam splitter 2106 transmits it.
  • the blue light of P-polarized light transmitted through the flat-plate polarizing beam splitter 2106 is converted into blue light of circularly polarized light after being transmitted through the quarter-wave plate 2107 .
  • the lens group 2108 condenses the blue light of the circularly polarized light toward the reflective diffusion plate 2109.
  • the circularly polarized blue light is reflected by the reflective diffusing plate 2109 and then directed to the lens group 2108 , and then collected by the lens group 2108 and then directed to the quarter-wave plate 2107 .
  • the blue light of the circularly polarized light is transmitted through the quarter wave plate 2107 and then converted into blue light of the S-polarized light, and the blue light of the S-polarized light is directed to the flat-type polarizing beam splitter 2106, and the flat-type polarizing beam splitter 2106 reflects it.
  • the first received laser light (yellow light) and the second received laser light (yellow light) transmitted through the flat-type polarizing beam splitter 2106 and the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 2106 can be combined into one mixed light and directed toward the Focusing lens 2110, and the mixed light of yellow light and blue light is white light. Finally, the focusing lens 2110 condenses the white light and exits the lighting device.
  • a lighting device disclosed in this embodiment includes a first light source 2201, a second light source 2202, a first optical path adjustment device (consisting of a flat-plate polarizing beam splitter 2203), and a first collection optical system (consisting of A lens group 2204 including a lens 2204a and a lens 2204b), a wavelength conversion device 2205 (including a reflective layer 2205a and a wavelength conversion layer 2205b disposed on the reflective layer 2205a), a second optical path adjustment device (consisting of a flat polarizing beam splitter 2206 composition), a quarter wave plate 2207, a second collection optical system (consisting of a lens group 2208 including a lens 2208a and a lens 2208b), a first scattering optical system (consisting of a reflective diffusing plate 2209), condensing optics system (consisting of a focusing lens 2210) and a half-wave plate 2220.
  • a lens group 2204 including a lens 2204a and a lens 2204b
  • the characteristics of the flat-type polarizing beam splitter 2203 in this embodiment are to reflect the blue light of the S-polarized light and transmit the blue light of the P-polarized light, and at the same time, the flat-type polarizing beam splitter 2203 also reflects the yellow light.
  • the characteristics of the flat-type polarizing beam splitter 2206 in this embodiment are to reflect the blue light of the S-polarized light and transmit the blue light of the P-polarized light, and at the same time, the flat-type polarizing beam splitter 2206 also reflects the yellow light.
  • the first light source 2201 emits P-polarized blue light and the blue light is incident on the flat-plate polarizing beam splitter 2203, which transmits it to the lens group 2204, and the lens group 2204 converges it toward the wavelength conversion device 2205.
  • the wavelength conversion device 2205 converts the incident blue light into the first received laser light (yellow light) and sends it to the lens group 2204 .
  • the first received laser light (yellow light) is collected by the lens group 2204 and then directed to the flat-plate polarizing beam splitter 2203 .
  • the flat-plate polarizing beam splitter 2203 reflects the first received laser light (yellow light) and sends it to the half-wave plate 2220 .
  • the first received laser light (yellow light) is transmitted through the half-wave plate 2220 and then continues to be emitted to the flat-plate polarizing beam splitter 2206, and the flat-plate polarizing beam splitter 2206 reflects it.
  • the second light source 2202 emits blue light containing S-polarized light components and P-polarized light components, and the blue light is incident on the flat-type polarizing beam splitter 2206, which splits it into S-polarized light blue light and P-polarized light blue light, and the blue light of the S-polarized light therein is reflected and the blue light of the P-polarized light thereof is transmitted.
  • the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 2206 is directed to the half-wave plate 2220
  • the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 2206 is directed to the quarter-wave plate 2207 .
  • the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 2206 is converted into the blue light of the S-polarized light after being transmitted through the half-wave plate 2220, and the blue light of these S-polarized light continues to be directed to the flat-type polarizing beam splitter 2203, and the flat-type polarizing beam splitter 2203 makes it reflect and then shoots toward the lens group 2204, which converges it toward the wavelength conversion device 2205.
  • the wavelength conversion device 2205 converts the incident blue light into the second received laser light (yellow light) and sends it to the lens group 2204 .
  • the second received laser light (yellow light) is collected by the lens group 2204 and then directed to the flat-plate polarizing beam splitter 2203 .
  • the flat-plate polarizing beam splitter 2203 reflects the second received laser light (yellow light) to the half-wave plate 2220 .
  • the second received laser light (yellow light) is transmitted through the half-wave plate 2220 and then continues to be emitted to the flat-plate polarizing beam splitter 2206, which is reflected by the flat-plate polarizing beam splitter 2206.
  • the blue light of the S-polarized light reflected by the flat-plate polarizing beam splitter 2206 is converted into the blue light of circularly polarized light after being transmitted through the quarter-wave plate 2207 .
  • the lens group 2208 condenses the circularly polarized blue light toward the reflective diffuser plate 2209, and the circularly polarized blue light is reflected by the reflective diffuser plate 2209 and then directed to the lens group 2208, and then collected by the lens group 2208 and directed to a quarter wave Sheet 2207.
  • the blue light of the circularly polarized light is transmitted through the quarter wave plate 2207 and then converted into blue light of the P-polarized light, and the blue light of the P-polarized light is directed to the plate-type polarization beam splitter 2206, and the plate-type polarization beam splitter 2206 transmits it.
  • the first received laser light (yellow light) and the second received laser light (yellow light) reflected by the flat-type polarizing beam splitter 2206 and the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 2206 can be combined into one mixed light and directed toward the Focusing lens 2210, and the mixed light of yellow light and blue light is white light. Finally, the focusing lens 2210 condenses the white light and exits the lighting device.
  • a lighting device disclosed in this embodiment includes a first light source 2301, a second light source 2302, a first optical path adjustment device, a first collection optical system, a wavelength conversion device 2305, a third optical path adjustment device, four One-wave plate 2307, a second collection optical system, a first scattering optical system, and a condensing optical system.
  • the first optical path adjusting device is a flat-plate polarizing beam splitter 2303 .
  • the first collection optical system consists of a lens group 2304 including a lens 2304a and a lens 2304b.
  • the wavelength conversion device 2305 includes a reflective layer 2305a and a wavelength conversion layer 2305b provided on the reflective layer 2305a.
  • the third optical path adjusting device is a flat-plate polarizing beam splitter 2306 .
  • the second collection optical system consists of a lens group 2308 including a lens 2308a and a lens 2308b.
  • the first scattering optical system is constituted by a reflective scattering plate 2309 .
  • the collection optical system consists of a focusing lens 2310.
  • the characteristics of the flat-type polarizing beam splitter 2303 in this embodiment are to reflect the blue light of the S-polarized light and transmit the blue light of the P-polarized light, while the flat-type polarizing beam splitter 2303 also transmits the yellow light.
  • the characteristics of the flat-type polarizing beam splitter 2306 in this embodiment are to reflect the blue light of the S-polarized light and transmit the blue light of the P-polarized light, and at the same time, the flat-type polarizing beam splitter 2306 also reflects the yellow light.
  • the first light source 2301 emits blue light of S-polarized light, and the blue light is incident on the flat-type polarizing beam splitter 2303, which reflects it to the flat-type polarizing beam splitter 2306, and the flat-type polarizing beam splitter 2306 reflects it
  • the rear is directed towards the lens group 2304 which converges it towards the wavelength conversion device 2305 .
  • the wavelength conversion device 2305 converts the incident blue light into the first received laser light (yellow light) and sends it to the lens group 2304 .
  • the first received laser light (yellow light) is collected by the lens group 2304 and then directed to the flat-plate polarizing beam splitter 2306 .
  • the flat-type polarizing beam splitter 2306 reflects the first received laser light (yellow light) and sends it to the flat-type polarizing beam splitter 2303, and the flat-type polarizing beam splitter 2303 transmits it.
  • the second light source 2302 emits blue light containing S-polarized light components and P-polarized light components and the blue light is incident on the flat-type polarizing beam splitter 2306, which splits it into S-polarized light blue light and P-polarized light blue light, and the blue light of the S-polarized light therein is reflected and the blue light of the P-polarized light thereof is transmitted.
  • the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 2306 is directed to the lens group 2304 , and the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 2306 is directed to the quarter-wave plate 2307 .
  • the lens group 2304 converges the blue light of the P-polarized light transmitted through the flat-plate polarizing beam splitter 2306 toward the wavelength conversion device 2305 .
  • the wavelength conversion device 2305 converts the incident blue light into a second received laser light (yellow light) and sends it to the lens group 2304 .
  • the second received laser light (yellow light) is collected by the lens group 2304 and then directed to the flat-plate polarizing beam splitter 2306 .
  • the flat-type polarizing beam splitter 2306 reflects the second received laser light (yellow light) to the flat-type polarizing beam splitter 2303, and the flat-type polarizing beam splitter 2303 transmits it.
  • the blue light of the S-polarized light reflected by the flat-plate polarizing beam splitter 2306 is converted into the blue light of circularly polarized light after being transmitted through the quarter-wave plate 2307 .
  • the lens group 2308 condenses the blue light of the circularly polarized light toward the reflective diffusion plate 2309 .
  • the circularly polarized blue light is reflected by the reflective diffusing plate 2309 and then directed to the lens group 2308, and then collected by the lens group 2308 and directed to the quarter-wave plate 2307.
  • the blue light of circularly polarized light is converted into blue light of P-polarized light after being transmitted through the quarter-wave plate 2307 , and the blue light of the P-polarized light is directed to the flat-plate polarizing beam splitter 2306 .
  • the flat-type polarizing beam splitter 2306 transmits the blue light of the P-polarized light to the flat-type polarizing beam splitter 2303, and the flat-type polarizing beam splitter 2303 transmits the blue light.
  • the first received laser light (yellow light), the second received laser light (yellow light), and the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 2303 are combined into one mixed light and directed to the focusing lens 2310, while the yellow and blue light
  • the mixed light is white light.
  • the focusing lens 2310 condenses the white light and exits the lighting device.
  • a lighting device disclosed in this embodiment includes a first light source 2401, a second light source 2402, a first optical path adjusting device (consisting of a flat-plate polarizing beam splitter 2403), and a first collecting optical system (consisting of A lens group 2404 including a lens 2404a and a lens 2404b), a wavelength conversion device 2405 (including a reflective layer 2405a and a wavelength conversion layer 2405b disposed on the reflective layer 2405a), a third optical path adjustment device (consisting of a flat polarizing beam splitter 2406 composition), quarter wave plate 2407, second collection optical system (composed of lens group 2408 including lens 2408a and lens 2408b), first scattering optical system (composed of a reflective scattering plate 2409), condensing optics A system (consisting of a focusing lens 2410), a first lens group 2411 and a second lens group 2412.
  • the first difference between this embodiment and Embodiment 11 is that a first lens group 2411 is provided on the optical path from the first light source 2401 to the flat-plate polarizing beam splitter 2403 .
  • the first lens group 2411 is composed of a positive lens 2411a and a negative lens 2411b, and is used for reducing the light beam formed by the blue light emitted from the first light source 2401.
  • the second difference between this embodiment and Embodiment 11 is that a second lens group 2412 is provided on the optical path from the second light source 2402 to the flat-plate polarizing beam splitter 2406 .
  • the second lens group 2412 is composed of a positive lens 2412a and a negative lens 2412b, and is used for reducing the light beam formed by the blue light emitted from the second light source 2402.
  • a lighting device disclosed in this embodiment includes a first light source 2501, a second light source 2502, a first optical path adjustment device, and a first collection optical system (composed of a lens group 2504 including a lens 2504a and a lens 2504b).
  • a wavelength conversion device 2505 including a reflective layer 2505a and a wavelength conversion layer 2505b disposed on the reflective layer 2505a
  • a third optical path adjustment device comprising of a flat-plate polarizing beam splitter 2506), a quarter-wave plate 2507
  • the second collecting optical system consististing of a lens group 2508 including a lens 2508a and a lens 2508b
  • the first scattering optical system consististing of a reflective diffusing plate 2509
  • the condensing optical system consististing of a focusing lens 2510
  • the first difference between this embodiment and Embodiment 11 is that the first optical path adjusting device in this embodiment is composed of a cube-type polarizing beam splitter 2503 instead of a plate-type polarizing beam splitter.
  • the second difference between this embodiment and Embodiment 11 is that a first uniform light optical system is provided on the optical path from the first light source 2501 to the cube-type polarizing beam splitter 2503 .
  • the first uniform light optical system is composed of a transmissive diffuser 2513 , which is used to uniformize the blue light emitted by the first light source 2501 .
  • the third difference between this embodiment and Embodiment 11 is that a second uniform light optical system is provided on the optical path from the second light source 2502 to the flat-plate polarizing beam splitter 2506 .
  • the second homogenizing optical system is composed of a transmissive diffuser 2514 , which is used for uniformizing the blue light emitted by the second light source 2502 .
  • a lighting device disclosed in this embodiment includes a first light source 2601, a second light source 2602, a first optical path adjustment device (consisting of a flat-plate polarizing beam splitter 2603), and a first collection optical system (consisting of A lens group 2604 including a lens 2604a and a lens 2604b), a wavelength conversion device, a third optical path adjustment device (consisting of a flat-plate polarizing beam splitter 2606), a quarter-wave plate 2607, a second collection optical system (consisting of a A lens 2608a and a lens group 2608 of a lens 2608b), a first scattering optical system, and a condensing optical system (composed of a focusing lens 2610).
  • the first difference between this embodiment and Embodiment 11 is that the wavelength conversion device in this embodiment is a rotatable fluorescent wheel 2605 .
  • the second difference between this embodiment and Embodiment 11 is that the first scattering optical system in this embodiment is a rotatable reflective scattering plate 2609 .
  • a lighting device disclosed in this embodiment includes a first light source 2701, a second light source 2702, a first optical path adjusting device (consisting of a flat-plate polarizing beam splitter 2703), and a first collecting optical system (consisting of a lens group 2704 including a lens 2704a and a lens 2704b), a wavelength conversion device (including a reflective layer 2705a and a wavelength conversion layer 2705b disposed on the reflective layer 2705a), a third optical path adjustment device (composed of a flat-plate polarizing beam splitter 2706) ), a quarter wave plate 2707, a second collecting optical system (consisting of a lens group 2708 including a lens 2708a and a lens 2708b), a first scattering optical system 2709, and a condensing optical system (consisting of a focusing lens 2710).
  • a first optical path adjusting device consisting of a flat-plate polarizing beam splitter 2703
  • a first collecting optical system consist
  • the first scattering optical system 2709 in this embodiment is composed of a transmissive scattering plate 2709a and a reflecting mirror 2709b.
  • a lighting device disclosed in this embodiment includes a first light source 2801, a second light source 2802, a first optical path adjusting device (consisting of a flat-plate polarizing beam splitter 2803), and a first collecting optical system (consisting of a lens group 2804 including a lens 2804a and a lens 2804b), a wavelength conversion device (including a reflective layer 2805a and a wavelength conversion layer 2805b disposed on the reflective layer 2805a), a third optical path adjustment device (composed of a flat-plate polarizing beam splitter 2806) ), a quarter-wave plate 2807, a second collecting optical system (consisting of a lens group 2808 including a lens 2808a and a lens 2808b), a first scattering optical system 2809 (consisting of a focusing lens 2810), a condensing optical system ( It consists of a focusing lens 2810), a light guide optical system 2815 and a reflective element 2816.
  • a light guiding optical system 2815 and a reflective element 2816 are provided on the optical path from the second light source 2802 to the flat-plate polarizing beam splitter 2806 .
  • the light guiding optical system 2815 is composed of a positive lens 2815a and a positive lens 2815b, the transmission area of the reflective element 2816 is a light-passing hole 2816a and the positive lens 2815b is located at the light-passing hole 2816a.
  • the second light source 2802 emits blue light containing S-polarized light components and P-polarized light components, and the blue light is guided by the light guiding optical system 2815 to the flat-type polarization beam splitter 2806, which splits it into S-polarized light Blue light and blue light of P-polarized light, and blue light of S-polarized light therein is reflected and blue light of P-polarized light therein is transmitted.
  • the traveling optical path of the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 2806 is the same as the traveling optical path of the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 2306 in Example 11;
  • the blue light of the S-polarized light reflected by the filter 2806 is directed to the quarter wave plate 2807.
  • the blue light of S-polarized light is converted into blue light of circularly polarized light after being transmitted through the quarter-wave plate 2807 .
  • the lens group 2808 condenses the blue light of the circularly polarized light toward the reflective diffusion plate 2809 .
  • the reflective diffusing plate 2809 reflects the blue light of the incident circularly polarized light.
  • the blue light is collected by the lens group 2808 and then directed to the quarter-wave plate 2807 , and then transmitted through the quarter-wave plate 2807 and incident on the flat-plate polarizing beam splitter 2806 .
  • the blue light of circularly polarized light is converted into blue light of P polarized light after being transmitted through the quarter wave plate 2807 , and these blue light of P polarized light can be transmitted through the flat-plate polarizing beam splitter 2806 .
  • the non-polarized blue light is separated into S-polarized blue light and P-polarized blue light by the flat-type polarizing beam splitter 2806, and the P-polarized blue light is transmitted through the flat-type polarizing beam splitter 2806, wherein the S-polarized light is transmitted through the flat-type polarizing beam splitter 2806.
  • the blue light is reflected by the flat-plate polarizing beam splitter 2806 and then directed to the reflective element 2816 .
  • the reflective element 2816 reflects most of the blue light of the S-polarized light from the flat-type polarizing beam splitter 2806 and sends it back to the flat-type polarizing beam-splitter 2806, and then these S-polarized blue light is reflected by the flat-type polarizing beam splitter 2806 and then radiates again. To the quarter wave plate 2807.
  • a lighting device disclosed in this embodiment includes a first light source 2901, a second light source 2902, a first optical path adjusting device (consisting of a flat-plate polarizing beam splitter 2903), and a first collecting optical system (consisting of A lens group 2904 including a lens 2904a and a lens 2904b), a wavelength conversion device 2905 (including a reflective layer 2905a and a wavelength conversion layer 2905b disposed on the reflective layer 2905a), a third optical path adjustment device (consisting of a flat polarizing beam splitter 2906 composition), quarter wave plate 2907, second collection optical system (consisting of lens group 2908 including lens 2908a and lens 2908b), first scattering optical system (consisting of a reflective diffusing plate 2909), condensing optics The system (consisting of a focusing lens 2910), a quarter wave plate 2917, a third collecting optical system and a second scattering optical system.
  • the third collection optical system consists of a
  • the first light source 2901 emits blue light containing S-polarized light components and P-polarized light components, and the blue light is incident on the flat-type polarizing beam splitter 2903, which separates it The blue light of the S-polarized light and the blue light of the P-polarized light are formed, and the blue light of the S-polarized light therein is reflected and the blue light of the P-polarized light thereof is transmitted.
  • the traveling optical path of the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 2903 is the same as the traveling optical path of the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 2303 in Example 11;
  • the blue light of the P-polarized light of the beam splitter 2903 is directed to the quarter wave plate 2917 .
  • the blue light of P-polarized light is converted into blue light of circularly polarized light after being transmitted through the quarter-wave plate 2917 .
  • the lens group 2918 condenses the blue light of the circularly polarized light toward the reflective diffusion plate 2919 .
  • the reflective diffusing plate 2919 reflects the incident circularly polarized blue light.
  • the blue light of the circularly polarized light reflected by the reflective diffuser plate 2919 is collected by the lens group 2918 and then directed to the quarter-wave plate 2917 .
  • the blue light of the circularly polarized light is transmitted through the quarter wave plate 2917 and then converted into blue light of the S-polarized light, and the blue light of the S-polarized light is directed to the plate-type polarization beam splitter 2903, and the plate-type polarization beam splitter 2903 reflects it.
  • a lighting device disclosed in this embodiment includes a first light source 3001, a second light source 3002, a first optical path adjustment device (consisting of a flat-plate polarizing beam splitter 3003), and a first collection optical system (consisting of A lens group 3004 including a lens 3004a and a lens 3004b), a wavelength conversion device 3005 (including a reflective layer 3005a and a wavelength conversion layer 3005b disposed on the reflective layer 3005a), a third optical path adjustment device (consisting of a flat polarizing beam splitter 3006 composition), a quarter wave plate 3007, a second collecting optical system (consisting of a lens group 3008 including a lens 3008a and a lens 3008b), a first scattering optical system (consisting of a reflective diffusing plate 3009), and condensing optics system (consisting of a focusing lens 3010).
  • a first light source 3001 includes a lens 3004a and a lens 3004b
  • the characteristics of the flat-type polarizing beam splitter 3003 in this embodiment are to reflect the blue light of the S-polarized light and transmit the blue light of the P-polarized light, and at the same time, the flat-type polarizing beam splitter 3003 also reflects the yellow light.
  • the characteristics of the flat-type polarizing beam splitter 3006 in this embodiment are to reflect the blue light of the S-polarized light and transmit the blue light of the P-polarized light, and at the same time, the flat-type polarizing beam splitter 3006 also transmits the yellow light.
  • the first light source 3001 emits blue light of P-polarized light and the blue light is incident on the flat polarizing beam splitter 3003, which transmits it to the flat polarizing beam splitter 3006, and the flat polarizing beam splitter 3006 transmits it.
  • the rear is directed towards the lens group 3004 , which converges it towards the wavelength conversion device 3005 .
  • the wavelength conversion device 3005 converts the incident blue light into the first received laser light (yellow light) and sends it to the lens group 3004 .
  • the first received laser light (yellow light) is collected by the lens group 3004 and then directed to the flat-plate polarizing beam splitter 3006 .
  • the flat-type polarizing beam splitter 3006 transmits the first received laser light (yellow light) to the flat-type polarizing beam splitter 3003, and the flat-type polarizing beam splitter 3003 reflects it.
  • the second light source 3002 emits blue light containing S-polarized light components and P-polarized light components and the blue light is incident on the flat-type polarizing beam splitter 3006, which splits it into S-polarized light blue light and P-polarized light blue light, and the blue light of the S-polarized light therein is reflected and the blue light of the P-polarized light thereof is transmitted.
  • the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 3006 is directed to the lens group 3004
  • the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 3006 is directed to the quarter-wave plate 3007 .
  • the lens group 3004 converges the blue light of the S-polarized light from the flat-plate polarizing beam splitter 3006 toward the wavelength conversion device 3005 .
  • the wavelength conversion device 3005 converts the incident blue light into a second received laser light (yellow light) and sends it to the lens group 3004 .
  • the second received laser light (yellow light) is collected by the lens group 3004 and then directed to the flat-plate polarizing beam splitter 3006.
  • the flat-type polarizing beam splitter 3006 transmits the second received laser light (yellow light) to the flat-type polarizing beam splitter 3003, and the flat-type polarizing beam splitter 3003 reflects it.
  • the blue light of the P-polarized light transmitted through the flat-plate polarizing beam splitter 3006 is converted into the blue light of circularly polarized light after being transmitted through the quarter-wave plate 3007 .
  • the lens group 3008 condenses the blue light of the circularly polarized light toward the reflective diffusing plate 3009 .
  • the circularly polarized blue light is reflected by the reflective diffuser plate 3009 and then directed to the lens group 3008 , and then collected by the lens group 3008 and directed to the quarter-wave plate 3007 .
  • the blue light of the circularly polarized light is transmitted through the quarter-wave plate 3007 and then converted into blue light of the S-polarized light, and the blue light of the S-polarized light is directed to the flat-plate polarization beam splitter 3006 .
  • the flat-type polarizing beam splitter 3006 reflects the blue light of the S-polarized light to the flat-type polarizing beam splitter 3003, and the flat-type polarizing beam splitter 3003 reflects it.
  • the first received laser light (yellow light), the second received laser light (yellow light), and the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 3003 can be combined into one mixed light and directed to the focusing lens 3010, while the yellow and blue light
  • the mixed light is white light.
  • the focusing lens 3010 condenses the white light and exits the lighting device.
  • a lighting device disclosed in this embodiment includes a first light source 3101, a second light source 3102, a first optical path adjustment device (consisting of a flat-plate polarizing beam splitter 3103), and a first collecting optical system (consisting of A lens group 3104 including a lens 3104a and a lens 3104b), a wavelength conversion device 3105 (including a reflective layer 3105a and a wavelength conversion layer 3105b disposed on the reflective layer 3105a), a third optical path adjustment device (consisting of a flat polarizing beam splitter 3106 composition), quarter wave plate 3107, second collection optical system (consisting of lens group 3108 including lens 3108a and lens 3108b), first scattering optical system (consisting of a reflective diffusing plate 3109), condensing optics System (consisting of a focusing lens 3110) and a half-wave plate 3120.
  • a lens group 3104 including a lens 3104a and a lens 3104b
  • a wavelength conversion device 3105 including a
  • the characteristics of the flat-type polarizing beam splitter 3103 in this embodiment are to reflect the blue light of the S-polarized light and transmit the blue light of the P-polarized light, and at the same time, the flat-type polarizing beam splitter 3103 also transmits the yellow light.
  • the characteristics of the flat-type polarizing beam splitter 3106 in this embodiment are to reflect the blue light of the S-polarized light and transmit the blue light of the P-polarized light, and at the same time, the flat-type polarizing beam splitter 3106 also transmits the yellow light.
  • the first light source 3101 emits blue light of S-polarized light, and the blue light is incident on the flat-type polarizing beam splitter 3103 , and the flat-type polarizing beam splitter 3103 reflects the blue light toward the half-wave plate 3120 .
  • the blue light of the S-polarized light is transmitted through the half-wave plate 3120 and then converted into blue light of the P-polarized light.
  • the blue light of the P-polarized light continues to be emitted to the flat-type polarizing beam splitter 3106, and the flat-type polarizing beam splitter 3106 transmits it to the lens group after transmission 3104, the lens group 3104 converges it towards the wavelength conversion device 3105.
  • the wavelength conversion device 3105 converts the incident blue light into the first received laser light (yellow light) and sends it to the lens group 3104 .
  • the first received laser light (yellow light) is collected by the lens group 3104 and then directed to the flat-plate polarizing beam splitter 3106 .
  • the flat-plate polarizing beam splitter 3106 transmits the first received laser light (yellow light) and then transmits it to the half-wave plate 3120 .
  • the first received laser light (yellow light) is transmitted through the half-wave plate 3120 and then continues to be emitted to the flat-plate polarizing beam splitter 3103, and the flat-plate polarizing beam splitter 3103 transmits it.
  • the second light source 3102 emits blue light containing S-polarized light components and P-polarized light components, and the blue light is incident on the flat-type polarizing beam splitter 3106, which splits it into S-polarized light blue light and P-polarized light blue light, and the blue light of the S-polarized light therein is reflected and the blue light of the P-polarized light thereof is transmitted.
  • the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 3106 is directed to the lens group 3104
  • the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 3106 is directed to the quarter-wave plate 3107 .
  • the lens group 3104 converges the blue light of the S-polarized light from the flat-plate polarizing beam splitter 3106 toward the wavelength conversion device 3105 .
  • the wavelength conversion device 3105 converts the incident blue light into a second received laser light (yellow light) and sends it to the lens group 3104 .
  • the second received laser light (yellow light) is collected by the lens group 3104 and then directed to the flat-plate polarizing beam splitter 3106 .
  • the flat-plate polarizing beam splitter 3106 transmits the second received laser light (yellow light) to the half-wave plate 3120 .
  • the second received laser light (yellow light) is transmitted through the half-wave plate 3120 and then continues to be emitted to the flat-plate polarizing beam splitter 3103, and the flat-plate polarizing beam splitter 3103 transmits it.
  • the blue light of P-polarized light transmitted through the flat-plate polarizing beam splitter 3106 is converted into blue light of circularly polarized light after being transmitted through the quarter-wave plate 3107 .
  • the lens group 3108 condenses the blue light of the circularly polarized light toward the reflective diffusion plate 3109 .
  • the circularly polarized blue light is reflected by the reflective diffusing plate 3109 and then directed to the lens group 3108 , and then collected by the lens group 3108 and directed to the quarter-wave plate 3107 .
  • the blue light of circularly polarized light is transmitted through the quarter-wave plate 3107 and then converted into blue light of S-polarized light.
  • the blue light of S-polarized light is directed to the flat-type polarizing beam splitter 3106, and the flat-type polarizing beam splitter 3106 makes it reflected and then emitted.
  • the blue light of the S-polarized light is transmitted through the half-wave plate 3120 and then converted into blue light of the P-polarized light.
  • the blue light of the P-polarized light continues to be emitted to the flat-type polarizing beam splitter 3103, and the flat-type polarizing beam splitter 3103 transmits it.
  • the first received laser light (yellow light), the second received laser light (yellow light), and the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 3103 are combined into one mixed light and directed to the focusing lens 3110, while the yellow and blue light
  • the mixed light is white light.
  • the focusing lens 3110 condenses the white light and exits the lighting device.
  • a lighting device disclosed in this embodiment includes a first light source 3201, a second light source 3202, a first optical path adjusting device (consisting of a flat-plate polarizing beam splitter 3203), and a first collecting optical system (consisting of A lens group 3204 including a lens 3204a and a lens 3204b), a wavelength conversion device 3205 (including a reflective layer 3205a and a wavelength conversion layer 3205b disposed on the reflective layer 3205a), a third optical path adjustment device (consisting of a flat-type polarizing beam splitter 3206 composition), quarter wave plate 3207, second collection optical system (composed of lens group 3208 including lens 3208a and lens 3208b), first scattering optical system (composed of a reflective scattering plate 3209), condensing optics system (consisting of a focusing lens 3210) and a half-wave plate 3220.
  • a lens group 3204 including a lens 3204a and a lens 3204b
  • a wavelength conversion device 3205 including
  • the characteristics of the flat-type polarizing beam splitter 3203 in this embodiment are to reflect the blue light of the S-polarized light and transmit the blue light of the P-polarized light, and at the same time, the flat-type polarizing beam splitter 3203 also reflects the yellow light.
  • the characteristics of the flat-type polarizing beam splitter 3206 in this embodiment are to reflect the blue light of the S-polarized light and transmit the blue light of the P-polarized light, and at the same time, the flat-type polarizing beam splitter 3206 also reflects the yellow light.
  • the first light source 3201 emits blue light of P-polarized light, and the blue light is incident on the flat-type polarizing beam splitter 3203 , and the flat-type polarizing beam splitter 3203 transmits the blue light to the half-wave plate 3220 .
  • the blue light of the P-polarized light is transmitted through the half-wave plate 3220 and then converted into blue light of the S-polarized light.
  • the blue light of the S-polarized light continues to be emitted to the flat-type polarizing beam splitter 3206, and the flat-type polarizing beam splitter 3206 makes it reflected and then directed to the lens group 3204, the lens group 3204 converges it towards the wavelength conversion device 3205.
  • the wavelength conversion device 3205 converts the incident blue light into the first received laser light (yellow light) and sends it to the lens group 3204 .
  • the first received laser light (yellow light) is collected by the lens group 3204 and then directed to the flat-plate polarizing beam splitter 3206 .
  • the flat-plate polarizing beam splitter 3206 reflects the first received laser light (yellow light) to the half-wave plate 3220 .
  • the first received laser light (yellow light) is transmitted through the half-wave plate 3220 and then continues to be emitted to the flat-plate polarizing beam splitter 3203, and the flat-plate polarizing beam splitter 3203 reflects it.
  • the second light source 3202 emits blue light containing S-polarized light components and P-polarized light components, and the blue light is incident on the flat-type polarization beam splitter 3206, which splits it into S-polarized blue light and P-polarized light. blue light, and the blue light of the S-polarized light therein is reflected and the blue light of the P-polarized light thereof is transmitted.
  • the blue light of the P-polarized light transmitted through the flat-type polarizing beam splitter 3206 is directed to the lens group 3204 , and the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 3206 is directed to the quarter-wave plate 3207 .
  • the lens group 3204 converges the blue light of the P-polarized light from the flat-plate polarizing beam splitter 3206 toward the wavelength conversion device 3205 .
  • the wavelength conversion device 3205 converts the incident blue light into the second received laser light (yellow light) and sends it to the lens group 3204.
  • the second received laser light (yellow light) is collected by the lens group 3204 and then directed to the flat-plate polarizing beam splitter 3206 .
  • the flat-plate polarizing beam splitter 3206 reflects the second received laser light (yellow light) to the half-wave plate 3220 .
  • the second received laser light (yellow light) is transmitted through the half-wave plate 3220 and then continues to be emitted to the flat-plate polarizing beam splitter 3203, and the flat-plate polarizing beam splitter 3203 reflects it.
  • the blue light of S-polarized light reflected by the flat-plate polarizing beam splitter 3206 is converted into blue light of circularly polarized light after being transmitted through the quarter-wave plate 3207 .
  • the lens group 3208 condenses the blue light of the circularly polarized light toward the reflective diffusion plate 3209 .
  • the circularly polarized blue light is reflected by the reflective diffusing plate 3209 and then directed to the lens group 3208 , and then collected by the lens group 3208 and then directed to the quarter-wave plate 3207 .
  • the blue light of circularly polarized light is converted into blue light of P-polarized light after being transmitted through the quarter wave plate 3207, and the blue light of the P-polarized light is directed to the flat-type polarizing beam splitter 3206, and the flat-type polarizing beam splitter 3206 transmits it and then emits it.
  • the blue light of the P-polarized light is transmitted through the half-wave plate 3220 and then converted into blue light of the S-polarized light.
  • the blue light of the S-polarized light continues to be emitted to the flat-type polarizing beam splitter 3203, and the flat-type polarizing beam splitter 3203 reflects it.
  • the first received laser light (yellow light), the second received laser light (yellow light), and the blue light of the S-polarized light reflected by the flat-type polarizing beam splitter 3203 can be combined into one mixed light and directed to the focusing lens 3210, while the yellow and blue light
  • the mixed light is white light.
  • the focusing lens 3210 condenses the white light and exits the lighting device.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种照明装置,包括第一光源(1301)、第二光源(1302)、第一光路调节装置(平板式偏振分光器1303)、第二光路调节装置(平板式偏振分光器1306)、波长转换装置(1305)以及第一散射光学系统(反射式散射板1309)。第一光源(1301)出射的光有至少部分用于激发波长转换装置(1305),第二光源(1302)出射的光也有部分用于激发波长转换装置(1305),因此,照明装置可以在不增加光学扩展量的情况下实现更高光通量的输出。

Description

一种照明装置 技术领域
本发明属于照明领域,尤其属于固态光源照明领域。本发明提供的一种照明装置可适用于需要高光照强度和小光学扩展量的系统中,比如娱乐照明系统、投影系统、汽车照明系统、医疗照明系统、探照照明系统、野外作业照明系统、航海照明系统、便携式照明系统等。
背景技术
激光作为理想的点光源,具有光学扩展量小、寿命长且不含汞等优点,由它作为光源,激发荧光材料可以得到彩光或者白光,同时配合使用光学元件,可以得到理想的具有较小光学扩展量的照明装置。
图1是现有的偏振分光式照明装置的结构示意图。如图1所示,现有的照明装置包括光源101、四分之一波片102、偏振分光器103、透镜组104(包括透镜104a和透镜104b)、波长转换装置105(包括反射层105a和波长转换层105b)、四分之一波片106、透镜组107(包括透镜107a和透镜107b)、反射式散射板108以及聚焦透镜109。其中,光源101内包含有若干个激光器101a及与若干个激光器101a一一对应的若干个准直透镜101b,激光器101a出射S偏振光的蓝光。
偏振分光器103的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时偏振分光器103还使黄光透射。光源101出射的S偏振光的蓝光透射过四分之一波片102后被转换成由S偏振光成分和P偏振光成分按照规定的比例混合而成的蓝光,然后入射至偏振分光器103。偏振分光器103将其分离成S偏振光的蓝光和P偏振光的蓝光,并且反射其中的S偏振光的蓝光且使其中的P偏振光的蓝光透射。其中,经偏振分光器103反射的S偏振光的蓝光射向透镜组104,透射过偏振分光器103的P偏振光的蓝光射向四分之一波片106。透镜组104使S偏振光的蓝光朝向波长转换装置105会聚。波长转换装置105是反射式的,包括反射层105a和设于反射层105a上的波长转换层105b(比如:黄色荧光粉层)。波长转换装置105将S偏振光的蓝光转换成黄光并使其射向透镜组104,黄光经透镜组104收集后射向偏振分光器103,偏振分光器103使黄光透射。P偏振光 的蓝光透射过四分之一波片106后被转换为圆偏振光的蓝光,透镜组107使圆偏振光的蓝光朝向反射式散射板108会聚,圆偏振光的蓝光经反射式散射板108反射后射向透镜组107,然后经透镜组107收集后射向四分之一波片106。圆偏振光的蓝光透射过四分之一波片106后被转换为S偏振光的蓝光,这些S偏振光的蓝光射向偏振分光器103,偏振分光器103反射S偏振光的蓝光。透射过偏振分光器103的黄光和经偏振分光器103反射的S偏振光的蓝光合为一路混合光,而黄光和蓝光的混合光即为白光。最后,聚焦透镜109使这些白光会聚并从照明装置出射。
在图1所示的方案中,如需显著提升照明装置的光通量的输出,就需要在光源101中增加激光器101a的数量,但这样就会使整个照明装置的光学扩展量变大,从而无法满足一些需要小光学扩展量的应用领域,比如:娱乐照明系统、投影系统等。
发明内容
本发明的目的是:在不增加光学扩展量的情况下实现更高光通量的输出。
为了达到上述目的,本发明的一个技术方案是提供了一种照明装置,其特征在于,包括第一光源、第二光源、第一光路调节装置、第二光路调节装置、波长转换装置以及第一散射光学系统,其中:
所述第一光源用于出射第一波段的光;
所述第二光源用于出射第二波段的光且所述第二波段与所述第一波段相同或不同;
所述第一光路调节装置接收自所述第一光源出射的所述第一波段的光,使其至少部分透射或至少部分反射;
当所述第一光路调节装置使所述第一光源出射的所述第一波段的光至少部分透射时,所述第一光路调节装置接收来自所述第二光路调节装置的所述第二波段的光并使其反射,所述波长转换装置接收透射过所述第一光路调节装置的所述第一波段的光和经所述第一光路调节装置反射的所述第二波段的光,将所述第一波段的光转换成第一受激光且所述第一受激光的波段不同于所述第一波段,将所述第二波段的光转换成第二受激光且所述第二受激光的波段不同于所述第二波 段;所述第一光路调节装置反射来自所述波长转换装置的所述第一受激光和所述第二受激光,所述第一受激光和所述第二受激光射向所述第二光路调节装置;
当所述第一光路调节装置使所述第一光源出射的所述第一波段的光至少部分反射时,所述第一光路调节装置接收来自所述第二光路调节装置的所述第二波段的光并使其透射,所述波长转换装置接收经所述第一光路调节装置反射的所述第一波段的光和透射过所述第一光路调节装置的所述第二波段的光,将所述第一波段的光转换成第一受激光且所述第一受激光的波段不同于所述第一波段,将所述第二波段的光转换成第二受激光且所述第二受激光的波段不同于所述第二波段;所述第一光路调节装置使来自所述波长转换装置的所述第一受激光和所述第二受激光透射,所述第一受激光和所述第二受激光射向所述第二光路调节装置;
所述第二光路调节装置接收自所述第二光源出射的所述第二波段的光,使其部分透射且部分反射后从不同光路出射,所述第一光路调节装置接收从其中一个光路出射的所述第二波段的光,所述第一散射光学系统接收从另一个光路出射的所述第二波段的光,将其反射并形成散射的所述第二波段的光;所述第二光路调节装置将来自所述第一光路调节装置的所述第一受激光和所述第二受激光与至少部分来自所述第一散射光学系统的所述第二波段的光合光后从同一光路出射。
在上述技术方案中,波长转换装置是反射式的,它可以是静态的,也可以是动态的:
静态的波长转换装置包括反射层和设于反射层上的波长转换层,其中,波长转换层吸收入射的第一波段的光并且受激发后出射第一受激光、吸收入射的第二波段的光并且受激发后出射第二受激光。
动态的波长转换装置为可旋转的荧光轮,它包括反射层和设于反射层上的波长转换层,其中,波长转换层吸收入射的第一波段的光并且受激发后出射第一受激光、吸收入射的第二波段的光并且受激发后出射第二受激光。
应当注意的是:如荧光轮的不同扇区的反射层上设有两种或两种以上不同的波长转换层,各波长转换层吸收入射的第一波段的光并且受激发后会出射不同波段的受激光,此时,应将这些不同波段的受激光的合光看作是第一受激光;同样地,各波长转换层吸收入射的第二波段的光并且受激发后也会出射不同波段的受激光,此时,也应将这些不同波段的受激光的合光看作是第二受激光。
优选地,所述第一光路调节装置为第一偏振分光器,所述第一偏振分光器关于所述第一波段和所述第二波段的入射光具有以下第一特性:反射所述第一波段和所述第二波段的S偏振光且使所述第一波段和所述第二波段的P偏振光透射;所述第一偏振分光器关于所述第一受激光和所述第二受激光具有以下第二特性:使所述第一受激光和所述第二受激光透射或反射。
在上述技术方案中,第一偏振分光器为平板式偏振分光器或立方体式偏振分光器。
优选地,所述第二光路调节装置为第二偏振分光器,所述第二偏振分光器关于所述第二波段的入射光具有以下第一特性:反射所述第二波段的S偏振光且使所述第二波段的P偏振光透射;所述第二偏振分光器关于所述第一受激光和所述第二受激光具有以下第二特性:使所述第一受激光和所述第二受激光透射或反射。
在上述技术方案中,第二偏振分光器为平板式偏振分光器或立方体式偏振分光器。
优选地,还包括第一四分之一波片,所述第一四分之一波片位于所述第二光路调节装置和所述第一散射光学系统之间的光路上。
优选地,还包括半波片,所述半波片位于所述第一光路调节装置和所述第二光路调节装置之间的光路上。
优选地,所述第一光源内包含N个第一激光器以及与N个所述第一激光器一一对应的N个第一准直元件,N≥1,其中:
所述第一激光器用于出射所述第一波段的光;
所述第一准直元件集成于所述第一激光器内或设于所述第一激光器外,用于准直所述第一激光器出射的所述第一波段的光。
在上述技术方案中,第一准直元件可以集成于第一激光器内部,当所采用的第一激光器内部未集成所述第一准直元件时,也可以在第一激光器外增设第一准直元件(比如:准直透镜),用于准直第一激光器出射的光。
除上述技术方案指出的第一激光器和第一准直元件外,第一光源内部也可以包含其它光学元件(比如:反射镜),这些光学元件可以用来收集从第一激光器出射的光,最终形成由第一光源出射的第一波段的光。
优选地,所述第二光源内包含M个第二激光器以及与M个所述第二激光器 一一对应的M个第二准直元件,M≥1,其中:
所述第二激光器用于出射所述第二波段的光;
所述第二准直元件集成于所述第二激光器内或设于所述第二激光器外,用于准直所述第二激光器出射的所述第二波段的光。
在上述技术方案中,第二准直元件可以集成于第二激光器内部,当所采用的第二激光器内部未集成所述第二准直元件时,也可以在第二激光器外增设第二准直元件(比如:准直透镜),用于准直第二激光器出射的光。
除上述技术方案指出的第二激光器和第二准直元件外,第二光源内部也可以包含其它光学元件(比如:反射镜),这些光学元件可以用来收集从第二激光器出射的光,最终形成由第二光源出射的第二波段的光。
优选地,所述第二激光器出射的所述第二波段的光为线偏振光,其中:
所有所述第二激光器的出光方向相同,所有所述第二激光器的出射光的初始偏振方向也相同,以所述第二激光器的出光方向为轴,轴向旋转所述第二光源内的部分所述第二激光器,改变这部分所述第二激光器出射的所述第二波段的光的偏振方向,使所述第二光源出射的所述第二波段的光入射至所述第二光路调节装置时,其中包含有S偏振光成分和P偏振光成分;
或者,所有所述第二激光器的出光方向和偏振方向相同,以所述第二激光器的出光方向为轴,轴向旋转所述第二光源,使所述第二光源出射的所述第二波段的光入射至所述第二光路调节装置时,其中包含有S偏振光成分和P偏振光成分;
或者,所有所述第二激光器的出光方向相同,所有所述第二激光器的出射光的偏振方向也相同,在所述第二光源内设置波片,通过所述波片改变所述第二光源内的全部或部分所述第二激光器出射的所述第二波段的光的偏振方向或偏振状态,使所述第二光源出射的所述第二波段的光入射至所述第二光路调节装置时,其中包含有S偏振光成分和P偏振光成分;
或者还包含偏振选择元件,所述偏振选择元件的特性为反射所述第二波段的S偏振光且使所述第二波段的P偏振光透射,所述第二光源内的至少一个所述第二激光器用于出射所述第二波段的S偏振光,形成入射光一,所述第二光源内剩余的所述第二激光器用于出射所述第二波段的P偏振光,形成入射光二,由所述 偏振选择元件将所述入射光一和所述入射光二合并为一路光后出射,使所述第二光源出射的所述第二波段的光入射至所述第二光路调节装置时,其中包含有S偏振光成分和P偏振光成分。
优选地,所述第一散射光学系统由第一反射式散射板构成,或由第一透射式散射板和第一反射镜构成。
在上述技术方案中,第一反射式散射板可以是静态的,也可以是动态的可旋转的第一反射式散射板。
优选地,还包括第一收集光学系统,所述第一收集光学系统位于所述第一光路调节装置和所述波长转换装置之间的光路上,用于使来自所述第一光路调节装置的所述第一波段的光和所述第二波段的光朝向所述波长转换装置会聚,同时用于收集来自所述波长转换装置的所述第一受激光和所述第二受激光并使其射向所述第一光路调节装置。
在上述技术方案中,第一收集光学系统可以由透镜、透镜组、复合抛物面聚光器或锥形导光柱单独构成,也可以由上述提到的光学元件之间的任意组合构成。
优选地,还包括第二收集光学系统,所述第二收集光学系统位于所述第二光路调节装置和所述第一散射光学系统之间的光路上,用于使来自所述第二光路调节装置的所述第二波段的光朝向所述第一散射光学系统会聚,同时用于收集来自所述第一散射光学系统的所述第二波段的光并使其射向所述第二光路调节装置。
在上述技术方案中,第二收集光学系统可以由透镜、透镜组、复合抛物面聚光器或锥形导光柱单独构成,也可以由上述提到的光学元件之间的任意组合构成。
优选地,还包括第一匀光光学系统,所述第一匀光光学系统位于从所述第一光源到所述第一光路调节装置的光路上,用于均匀由所述第一光源出射的所述第一波段的光。
在上述技术方案中,第一匀光光学系统可以由扩散片、光学积分棒或至少一个复眼透镜阵列构成,其中,光学积分棒可以是实心的,也可以是空心的。此外,由于使用扩散片会使第一光源发出的第一波段的光有所扩散,因此可以在从第一光源到扩散片的光路上或从扩散片到第一光路调节装置的光路上设置一个正透镜,用于收敛自第一光源射向波长转换系统的第一波段的光。
优选地,还包括第二匀光光学系统,所述第二匀光光学系统位于从所述第二 光源到所述第二光路调节装置的光路上,用于均匀由所述第二光源出射的所述第二波段的光。
在上述技术方案中,第二匀光光学系统可以由扩散片、光学积分棒或至少一个复眼透镜阵列构成,其中,光学积分棒可以是实心的,也可以是空心的。此外,由于使用扩散片会使第二光源发出的第二波段的光有所扩散,因此可以在从第二光源到扩散片的光路上或从扩散片到第二光路调节装置的光路上设置一个正透镜,用于收敛自第二光源射向光路调节系统的第二波段的光。
优选地,还包括聚光光学系统,用于使自所述第二光路调节装置出射的光会聚。
在上述技术方案中,聚光光学系统可以由一个或多个透镜构成。
优选地,还包括第一透镜组,所述第一透镜组位于从所述第一光源到所述第一光路调节装置的光路上,用于缩小由所述第一光源出射的所述第一波段的光所形成的光束。
优选地,还包括第二透镜组,所述第二透镜组位于从所述第二光源到所述第二光路调节装置的光路上,用于缩小由所述第二光源出射的所述第二波段的光所形成的光束。
优选地,还包括反射元件,所述反射元件位于所述第二光源和所述第二光路调节装置之间的光路上,所述反射元件具有透射区和反射区,所述透射区允许所述第二波段的光通过或透射过,所述反射区用于反射来自所述第二光路调节装置的所述第二波段的光,并使其中的至少部分光射回所述第二光路调节装置。
在上述技术方案中,反射元件可以是平面的或非平面的。反射元件的透射区可以是一个通光孔,也可以是由透光材料构成的透光结构。反射元件还可以是部分区域上镀有反射膜的透射式扩散板,其中,透射式扩散板上未镀有反射膜的区域为透射区,透射式扩散板上镀有反射膜的区域为反射区。
优选地,还包括导光光学系统,所述导光光学系统位于从所述第二光源到所述第二光路调节装置的光路上,用于引导至少部分由所述第二光源出射的所述第二波段的光通过或透射过所述反射元件的所述透射区后入射至所述第二光路调节装置。
在上述技术方案中,导光光学系统可以由透镜、复合抛物面聚光器或导光柱 单独构成,也可以由上述提到的光学元件之间的任意组合构成。并且透镜、复合抛物面聚光器、导光柱的数量根据需要确定,可以是1个,也可以是2个或2个以上。其中,导光柱可以是实心的,也可以是空心的,导光柱的端面可以为平面或非平面。
优选地,还包括第二散射光学系统,所述第一光路调节装置使由所述第一光源出射的所述第一波段的光部分透射且部分反射后从不同光路出射,所述波长转换装置接收从其中一个光路出射的所述第一波段的光,所述第二散射光学系统接收从另一个光路出射的所述第一波段的光,将其反射并形成散射的所述第一波段的光;所述第一光路调节装置将来自所述波长转换装置的所述第一受激光和所述第二受激光与至少部分来自所述第二散射光学系统的所述第一波段的光合光后射向所述第二光路调节装置,所述第二光路调节装置将来自所述第一光路调节装置的所述第一受激光、所述第二受激光和所述第一波段的光的合光与至少部分来自所述第一散射光学系统的所述第二波段的光合光后从同一光路出射。
优选地,所述第二散射光学系统由第二反射式散射板构成,或由第二透射式散射板和第二反射镜构成。
在上述技术方案中,第二反射式散射板可以是静态的,也可以是动态的可旋转的第二反射式散射板。
优选地,还包括第三收集光学系统,所述第三收集光学系统位于所述第一光路调节装置和所述第二散射光学系统之间的光路上,用于使来自所述第一光路调节装置的所述第一波段的光朝向所述第二散射光学系统会聚,同时用于收集来自所述第二散射光学系统的所述第一波段的光并使其射向所述第一光路调节装置。
在上述技术方案中,第三收集光学系统可以由透镜、透镜组、复合抛物面聚光器或锥形导光柱单独构成,也可以由上述提到的光学元件之间的任意组合构成。
优选地,还包括第二四分之一波片,所述第二四分之一波片位于所述第一光路调节装置和所述第二散射光学系统之间的光路上。
本发明的另一个技术方案是提供了一种照明装置,其特征在于,包括第一光源、第二光源、第一光路调节装置、第三光路调节装置、波长转换装置以及第一散射光学系统,其中:
所述第一光源用于出射第一波段的光;
所述第二光源用于出射第二波段的光且所述第二波段与所述第一波段相同或不同;
所述第三光路调节装置接收自所述第二光源出射的所述第二波段的光,使其部分透射且部分反射后从不同光路出射,所述波长转换装置接收从其中一个光路出射的所述第二波段的光,将其转换成第二受激光且所述第二受激光的波段不同于所述第二波段,所述第一散射光学系统接收从另一个光路出射的所述第二波段的光,将其反射并形成散射的所述第二波段的光;所述第三光路调节装置还接收来自所述第一光路调节装置的所述第一波段的光,使其透射或反射后由所述波长转换装置接收,所述波长转换装置将其转换成第一受激光且所述第一受激光的波段不同于所述第一波段;所述第三光路调节装置将来自所述波长转换装置的所述第一受激光和所述第二受激光与至少部分来自所述第一散射光学系统的所述第二波段的光合光后从同一光路出射,该合光射向所述第一光路调节装置;
所述第一光路调节装置接收自所述第一光源出射的所述第一波段的光,使其至少部分透射或至少部分反射;
当所述第一光路调节装置使所述第一光源出射的所述第一波段的光至少部分透射时,透射过所述第一光路调节装置的所述第一波段的光射向所述第三光路调节装置;所述第一光路调节装置接收来自所述第三光路调节装置的所述第一受激光、所述第二受激光和所述第二波段的光的合光并使其反射;
当所述第一光路调节装置使所述第一光源出射的所述第一波段的光至少部分反射时,经所述第一光路调节装置反射的所述第一波段的光射向所述第三光路调节装置;所述第一光路调节装置接收来自所述第三光路调节装置的所述第一受激光、所述第二受激光和所述第二波段的光的合光并使其透射。
在上述技术方案中,波长转换装置是反射式的,它可以是静态的,也可以是动态的:
静态的波长转换装置包括反射层和设于反射层上的波长转换层,其中,波长转换层吸收入射的第一波段的光并且受激发后出射第一受激光、吸收入射的第二波段的光并且受激发后出射第二受激光。
动态的波长转换装置为可旋转的荧光轮,它包括反射层和设于反射层上的波长转换层,其中,波长转换层吸收入射的第一波段的光并且受激发后出射第一受 激光、吸收入射的第二波段的光并且受激发后出射第二受激光。
应当注意的是:如荧光轮的不同扇区的反射层上设有两种或两种以上不同的波长转换层,各波长转换层吸收入射的第一波段的光并且受激发后会出射不同波段的受激光,此时,应将这些不同波段的受激光的合光看作是第一受激光;同样地,各波长转换层吸收入射的第二波段的光并且受激发后也会出射不同波段的受激光,此时,也应将这些不同波段的受激光的合光看作是第二受激光。
优选地,所述第一光路调节装置为第一偏振分光器,所述第一偏振分光器关于所述第一波段和所述第二波段的入射光具有以下第一特性:反射所述第一波段和所述第二波段的S偏振光且使所述第一波段和所述第二波段的P偏振光透射;所述第一偏振分光器关于所述第一受激光和所述第二受激光具有以下第二特性:使所述第一受激光和所述第二受激光透射或反射。
在上述技术方案中,第一偏振分光器为平板式偏振分光器或立方体式偏振分光器。
优选地,所述第三光路调节装置为第三偏振分光器,所述第三偏振分光器关于所述第一波段和所述第二波段的入射光具有以下第一特性:反射所述第一波段和所述第二波段的S偏振光且使所述第一波段和所述第二波段的P偏振光透射;所述第三偏振分光器关于所述第一受激光和所述第二受激光具有以下第二特性:使所述第一受激光和所述第二受激光透射或反射。
在上述技术方案中,第三偏振分光器为平板式偏振分光器或立方体式偏振分光器。
优选地,还包括第一四分之一波片,所述第一四分之一波片位于所述第三光路调节装置和所述第一散射光学系统之间的光路上。
优选地,还包括半波片,所述半波片位于所述第一光路调节装置和所述第三光路调节装置之间的光路上。
优选地,所述第一光源内包含N个第一激光器以及与N个所述第一激光器一一对应的N个第一准直元件,N≥1,其中:
所述第一激光器用于出射所述第一波段的光;
所述第一准直元件集成于所述第一激光器内或设于所述第一激光器外,用于准直所述第一激光器出射的所述第一波段的光。
在上述技术方案中,第一准直元件可以集成于第一激光器内部,当所采用的第一激光器内部未集成所述第一准直元件时,也可以在第一激光器外增设第一准直元件(比如:准直透镜),用于准直第一激光器出射的光。
除上述技术方案指出的第一激光器和第一准直元件外,第一光源内部也可以包含其它光学元件(比如:反射镜),这些光学元件可以用来收集从第一激光器出射的光,最终形成由第一光源出射的第一波段的光。
优选地,所述第二光源内包含M个第二激光器以及与M个所述第二激光器一一对应的M个第二准直元件,M≥1,其中:
所述第二激光器用于出射所述第二波段的光;
所述第二准直元件集成于所述第二激光器内或设于所述第二激光器外,用于准直所述第二激光器出射的所述第二波段的光。
在上述技术方案中,第二准直元件可以集成于第二激光器内部,当所采用的第二激光器内部未集成所述第二准直元件时,也可以在第二激光器外增设第二准直元件(比如:准直透镜),用于准直第二激光器出射的光。
除上述技术方案指出的第二激光器和第二准直元件外,第二光源内部也可以包含其它光学元件(比如:反射镜),这些光学元件可以用来收集从第二激光器出射的光,最终形成由第二光源出射的第二波段的光。
优选地,所述第二激光器出射的所述第二波段的光为线偏振光,其中:
所有所述第二激光器的出光方向相同,所有所述第二激光器的出射光的初始偏振方向也相同,以所述第二激光器的出光方向为轴,轴向旋转所述第二光源内的部分所述第二激光器,改变这部分所述第二激光器出射的所述第二波段的光的偏振方向,使所述第二光源出射的所述第二波段的光入射至所述第三光路调节装置时,其中包含有S偏振光成分和P偏振光成分;
或者,所有所述第二激光器的出光方向相同,所有所述第二激光器的出射光的偏振方向也相同,以所述第二激光器的出光方向为轴,轴向旋转所述第二光源,使所述第二光源出射的所述第二波段的光入射至所述第三光路调节装置时,其中包含有S偏振光成分和P偏振光成分;
或者,所有所述第二激光器的出光方向相同,在所述第二光源内设置波片,通过所述波片改变所述第二光源内的全部或部分所述第二激光器出射的所述第 二波段的光的偏振方向或偏振状态,使所述第二光源出射的所述第二波段的光入射至所述第三光路调节装置时,其中包含有S偏振光成分和P偏振光成分;
或者还包含偏振选择元件,所述偏振选择元件的特性为反射所述第二波段的S偏振光且使所述第二波段的P偏振光透射,所述第二光源内的至少一个所述第二激光器用于出射所述第二波段的S偏振光,形成入射光一,所述第二光源内剩余的所述第二激光器用于出射所述第二波段的P偏振光,形成入射光二,由所述偏振选择元件将所述入射光一和所述入射光二合并为一路光后出射,使所述第二光源出射的所述第二波段的光入射至所述第三光路调节装置时,其中包含有S偏振光成分和P偏振光成分。
优选地,所述第一散射光学系统由第一反射式散射板构成,或由第一透射式散射板和第一反射镜构成。
在上述技术方案中,第一反射式散射板可以是静态的,也可以是动态的可旋转的第一反射式散射板。
优选地,还包括第一收集光学系统,所述第一收集光学系统位于所述第三光路调节装置和所述波长转换装置之间的光路上,用于使来自所述第三光路调节装置的所述第一波段的光和所述第二波段的光朝向所述波长转换装置会聚,同时用于收集来自所述波长转换装置的所述第一受激光和所述第二受激光并使其射向所述第三光路调节装置。
在上述技术方案中,第一收集光学系统可以由透镜、透镜组、复合抛物面聚光器或锥形导光柱单独构成,也可以由上述提到的光学元件之间的任意组合构成。
优选地,还包括第二收集光学系统,所述第二收集光学系统位于所述第三光路调节装置和所述第一散射光学系统之间的光路上,用于使来自所述第三光路调节装置的所述第二波段的光朝向所述第一散射光学系统会聚,同时用于收集来自所述第一散射光学系统的所述第二波段的光并使其射向所述第三光路调节装置。
在上述技术方案中,第二收集光学系统可以由透镜、透镜组、复合抛物面聚光器或锥形导光柱单独构成,也可以由上述提到的光学元件之间的任意组合构成。
优选地,还包括第一匀光光学系统,所述第一匀光光学系统位于从所述第一光源到所述第一光路调节装置的光路上,用于均匀由所述第一光源出射的所述第一波段的光。
在上述技术方案中,第一匀光光学系统可以由扩散片、光学积分棒或至少一个复眼透镜阵列构成,其中,光学积分棒可以是实心的,也可以是空心的。此外,由于使用扩散片会使第一光源发出的第一波段的光有所扩散,因此可以在从第一光源到扩散片的光路上或从扩散片到第一光路调节装置的光路上设置一个正透镜,用于收敛自第一光源射向波长转换系统的第一波段的光。
优选地,还包括第二匀光光学系统,所述第二匀光光学系统位于从所述第二光源到所述第三光路调节装置的光路上,用于均匀由所述第二光源出射的所述第二波段的光。
在上述技术方案中,第二匀光光学系统可以由扩散片、光学积分棒或至少一个复眼透镜阵列构成,其中,光学积分棒可以是实心的,也可以是空心的。此外,由于使用扩散片会使第二光源发出的第二波段的光有所扩散,因此可以在从第二光源到扩散片的光路上或从扩散片到第三光路调节装置的光路上设置一个正透镜,用于收敛自第二光源射向光路调节系统的第二波段的光。
优选地,还包括聚光光学系统,用于使自所述第一光路调节装置出射的光会聚。
在上述技术方案中,聚光光学系统可以由一个或多个透镜构成。
优选地,还包括第一透镜组,所述第一透镜组位于从所述第一光源到所述第一光路调节装置的光路上,用于缩小由所述第一光源出射的所述第一波段的光所形成的光束。
优选地,还包括第二透镜组,所述第二透镜组位于从所述第二光源到所述第三光路调节装置的光路上,用于缩小由所述第二光源出射的所述第二波段的光所形成的光束。
优选地,还包括反射元件,所述反射元件位于所述第二光源和所述第三光路调节装置之间的光路上,所述反射元件具有透射区和反射区,所述透射区允许所述第二波段的光通过或透射过,所述反射区用于反射来自所述第三光路调节装置的所述第二波段的光,并使其中的至少部分光射回所述第三光路调节装置。
在上述技术方案中,反射元件可以是平面的或非平面的。反射元件的透射区可以是一个通光孔,也可以是由透光材料构成的透光结构。反射元件还可以是部分区域上镀有反射膜的透射式扩散板,其中,透射式扩散板上未镀有反射膜的区 域为透射区,透射式扩散板上镀有反射膜的区域为反射区。
优选地,还包括导光光学系统,所述导光光学系统位于从所述第二光源到所述第三光路调节装置的光路上,用于引导至少部分由所述第二光源出射的所述第二波段的光通过或透射过所述反射元件的所述透射区后入射至所述第三光路调节装置。
在上述技术方案中,导光光学系统可以由透镜、复合抛物面聚光器或导光柱单独构成,也可以由上述提到的光学元件之间的任意组合构成。并且透镜、复合抛物面聚光器、导光柱的数量根据需要确定,可以是1个,也可以是2个或2个以上。其中,导光柱可以是实心的,也可以是空心的,导光柱的端面可以为平面或非平面。
优选地,还包括第二散射光学系统,所述第一光路调节装置使由所述第一光源出射的所述第一波段的光部分透射且部分反射后从不同光路出射,所述第三光路调节装置接收从其中一个光路出射的所述第一波段的光,所述第二散射光学系统接收从另一个光路出射的所述第一波段的光,将其反射并形成散射的所述第一波段的光;所述第一光路调节装置将来自所述第三光路调节装置的所述第一受激光、所述第二受激光和所述第二波段的光的合光与至少部分来自所述第二散射光学系统的所述第一波段的光合光后从同一光路出射。
优选地,所述第二散射光学系统由第二反射式散射板构成,或由第二透射式散射板和第二反射镜构成。
在上述技术方案中,第二反射式散射板可以是静态的,也可以是动态的可旋转的第二反射式散射板。
优选地,还包括第三收集光学系统,所述第三收集光学系统位于所述第一光路调节装置和所述第二散射光学系统之间的光路上,用于使来自所述第一光路调节装置的所述第一波段的光朝向所述第二散射光学系统会聚,同时用于收集来自所述第二散射光学系统的所述第一波段的光并使其射向所述第一光路调节装置。
在上述技术方案中,第三收集光学系统可以由透镜、透镜组、复合抛物面聚光器或锥形导光柱单独构成,也可以由上述提到的光学元件之间的任意组合构成。
优选地,还包括第二四分之一波片,所述第二四分之一波片位于所述第一光路调节装置和所述第二散射光学系统之间的光路上。
本领域技术人员还可以根据需要设置用于第一光源和/或第二光源和/或波长转换装置散热的散热器。
在本发明中,第一光源出射的光有至少部分用于激发波长转换装置,第二光源出射的光也有部分用于激发波长转换装置,因此,相比于现有技术方案,本发明中所提供的照明装置可以在不增加光学扩展量的情况下实现更高光通量的输出。
本发明的照明装置具有亮度高、光学扩展量小、显色指数高、工作寿命长等特点,可适用于需要高光照强度和小光学扩展量的系统中,比如娱乐照明系统、投影系统、汽车照明系统、医疗照明系统、探照照明系统、野外作业照明系统、航海照明系统、便携式照明系统等。
附图说明
图1为现有的偏振分光式照明装置的结构示意图;
图2为实施例中所使用的一种第一光源的结构示意图;
图3至图9示意出了几种不同结构形式的第二光源;
图10为静态的波长转换装置的结构示意图;
图11为动态的波长转换装置的第一种结构形式的示意图;
图12为动态的波长转换装置的第二种结构形式的示意图;
图13为实施例1公开的一种照明装置的结构示意图;
图14为实施例2公开的一种照明装置的结构示意图;
图15为实施例3公开的一种照明装置的结构示意图;
图16为实施例4公开的一种照明装置的结构示意图;
图17为实施例5公开的一种照明装置的结构示意图;
图18为实施例6公开的一种照明装置的结构示意图;
图19为实施例7公开的一种照明装置的结构示意图;
图20为实施例8公开的一种照明装置的结构示意图;
图21为实施例9公开的一种照明装置的结构示意图;
图22为实施例10公开的一种照明装置的结构示意图;
图23为实施例11公开的一种照明装置的结构示意图;
图24为实施例12公开的一种照明装置的结构示意图;
图25为实施例13公开的一种照明装置的结构示意图;
图26为实施例14公开的一种照明装置的结构示意图;
图27为实施例15公开的一种照明装置的结构示意图;
图28为实施例16公开的一种照明装置的结构示意图;
图29为实施例17公开的一种照明装置的结构示意图;
图30为实施例18公开的一种照明装置的结构示意图;
图31为实施例19公开的一种照明装置的结构示意图;
图32为实施例20公开的一种照明装置的结构示意图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
以下所有实施例中公开的任意一种照明装置均可以采用如图2所示的第一光源。
如图2所示的第一光源201内包含N个激光器201a以及与N个激光器201a一一对应的N个准直元件201b,N≥1。所有激光器201a均出射线偏振光。
以下所有实施例中公开的任意一种照明装置均可以采用如图3、4、5、6、7、8或9所示的第二光源。
图3为第一种方案的第二光源的结构示意图。如图3所示,第二光源301内包含M个激光器301a以及与M个激光器301a一一对应的M个准直元件301b,M≥2。所有激光器301a均出射线偏振光且所有激光器301a出射的线偏振光的偏振方向相同,所有激光器301a的出光方向也相同。在m个激光器301a前设置一个或多个半波片301c,1≤m<M,用于改变m个激光器301a所出射的线偏振光的偏振方向。采用图3所示结构就可以使第二光源301出射的光入射至以下所有实施例中任一照明装置的第二光路调节装置或第三光路调节装置时,其中包含有S偏振光成分和P偏振光成分。
图4为第二种方案的第二光源的结构示意图。如图4所示,第二光源401内包含M个激光器401a以及与M个激光器401a一一对应的M个准直元件401b,M≥1。所有激光器401a均出射线偏振光且所有激光器401a出射的线偏振光的偏振方向相同,所有激光器401a的出光方向也相同。在所有激光器401a前设置一个四分之一波片401c。采用图4所示结构就可以使第二光源401出射的光入射至以下所有实施例中任一照明装置的第二光路调节装置或第三光路调节装置时,其中包含有S偏振光成分和P偏振光成分。
图5为第三种方案的第二光源的结构示意图。如图5所示,第二光源501内包含M个激光器501a以及与M个激光器501a一一对应的M个准直元件501b,M≥2。所有激光器501a均出射线偏振光且所有激光器501a出射的线偏振光的初始偏振方向相同,所有激光器501a的出光方向也相同。以激光器501a的出光方向为轴,轴向旋转M个激光器501a中m个激光器501a,1≤m<M,用于改变m个激光器5011出射的线偏振光的偏振方向(比如由S偏振光变为P偏振光,或者由P偏振光变为S偏振光)。采用图5所示结构就可以使第二光源501出射的光入射至以下所有实施例中任一照明装置的第二光路调节装置或第三光路调节装置时,其中包含有S偏振光成分和P偏振光成分。
图6及图7为第四种方案的第二光源的结构示意图,其中,图6为正视图,图7为侧视图。如图6所示,第二光源601内包含M个激光器601a以及与M个激光器601a一一对应的M个准直元件601b,M≥1。所有激光器601a均出射线偏振光且所有激光器601a出射的线偏振光的偏振方向相同,所有激光器601a的出光方向也相同。以激光器601a的出光方向为轴,轴向旋转第二光源601一定角度α。采用图6和图7所示结构就可以使第二光源601出射的光入射至以下所有实施例中任一照明装置的第二光路调节装置或第三光路调节装置时,其中包含有S偏振光成分和P偏振光成分。
图8为第五种方案的第二光源的结构示意图。如图8所示,第二光源801内包含J个出射P偏振光的激光器801a和与J个激光器801a一一对应的J个准直元件801b、K个出射S偏振光的激光器801c和与K个激光器801c一一对应的K个准直元件801d以及偏振选择元件801e,J≥1,K≥1。J个激光器801a出射的P偏振光入射至偏振选择元件801e的一侧,K个激光器801c出射的S偏 振光入射至偏振选择元件801e的另一侧。偏振选择元件801e的特性为反射S偏振光且使P偏振光透过,最终J个激光器801a出射的P偏振光和K个激光器801c出射的S偏振光由偏振选择元件801e合为一路光。采用图8所示结构就可以使第二光源801出射的光入射至以下所有实施例中任一照明装置的第二光路调节装置或第三光路调节装置时,其中包含有S偏振光成分和P偏振光成分。
图9为第六种方案的第二光源的结构示意图。如图9所示,第二光源901内包含J个出射P偏振光的激光器901a和与J个激光器901a一一对应的J个准直元件901b、K个出射S偏振光的激光器901c和与K个激光器901c一一对应的K个准直元件901d、偏振选择元件901e以及反射镜901f,J≥1,K≥1。J个激光器901a出射的P偏振光经反射镜901f反射后入射至偏振选择元件901e的一侧,K个激光器901c出射的S偏振光入射至偏振选择元件901e的另一侧。偏振选择元件901e的特性为反射S偏振光且使P偏振光透过,最终J个激光器901a出射的P偏振光和K个激光器901c出射的S偏振光由偏振选择元件901e合为一路光。采用图9所示结构就可以使第二光源901出射的光入射至以下所有实施例中任一照明装置的第二光路调节装置或第三光路调节装置时,其中包含有S偏振光成分和P偏振光成分。
以下实施例中所使用到的静态的波长转换装置的结构可以如图10所示。以下实施例中所使用到的动态的波长转换装置可以是如图11所示的动态的波长转换装置,也可以是如图12所示的动态的波长转换装置。
如图10所示的一种静态的波长转换装置1001,包括反射层1001a和设于反射层1001a上的波长转换层1001b,其中波长转换层1001b由黄色荧光材料(比如:黄色荧光粉或黄色荧光陶瓷)构成,它将入射的蓝光转换为黄光,反射层1001a为反射衬底。
如图11所示的一种动态的波长转换装置,为可旋转的荧光轮1101,它包括反射层和设于反射层上的波长转换层Y。波长转换层Y由黄色荧光材料(比如:黄色荧光粉或黄色荧光陶瓷)构成,它将入射的蓝光转换为黄光。
如图12所示的另一种动态的波长转换装置,为可旋转的荧光轮1201,它包括反射层和设于荧光轮1201的不同扇区的反射层上的两种不同的波长转换层,它们分别为波长转换层G和波长转换层R。波长转换层G由绿色荧光材料(比 如:绿色荧光粉或绿色荧光陶瓷)构成,它将入射的蓝光转换为绿光。波长转换层R由红色荧光材料(比如:红色荧光粉或红色荧光陶瓷)构成,它将入射的蓝光转换为红光。
实施例1
如图13所示,本实施例公开的一种照明装置包括第一光源1301、第二光源1302、第一光路调节装置、第一收集光学系统、波长转换装置1305、第二光路调节装置、四分之一波片1307、第二收集光学系统、第一散射光学系统以及聚光光学系统。第一光路调节装置为平板式偏振分光器1303。第一收集光学系统由包含透镜1304a和透镜1304b的透镜组1304构成。波长转换装置1305包括反射层1305a和设于反射层1305a上的波长转换层1305b。第二光路调节装置为平板式偏振分光器1306。第二收集光学系统由包含透镜1308a和透镜1308b的透镜组1308构成。第一散射光学系统由一个反射式散射板1309构成。收集光学系统由一个聚焦透镜1310构成。
本实施例中的平板式偏振分光器1303的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时平板式偏振分光器1303还使黄光反射。本实施例中的平板式偏振分光器1306的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时平板式偏振分光器1306还使黄光透射。
第一光源1301出射P偏振光的蓝光并且该蓝光入射至平板式偏振分光器1303,平板式偏振分光器1303使其透射后射向透镜组1304,透镜组1304使其朝向波长转换装置1305会聚。波长转换装置1305将入射的蓝光转换成第一受激光(黄光)并使其射向透镜组1304。第一受激光(黄光)经透镜组1304收集后射向平板式偏振分光器1303。平板式偏振分光器1303使第一受激光(黄光)反射后射向平板式偏振分光器1306,平板式偏振分光器1306使其透射。
第二光源1302出射包含有S偏振光成分和P偏振光成分的蓝光并且该蓝光入射至平板式偏振分光器1306,平板式偏振分光器1306将其分离成S偏振光的蓝光和P偏振光的蓝光,并且反射其中的S偏振光的蓝光且使其中的P偏振光的蓝光透射。其中,经平板式偏振分光器1306反射的S偏振光的蓝光射向平板式偏振分光器1303,透射过平板式偏振分光器1306的P偏振光的蓝光射向四分之一波片1307。
平板式偏振分光器1303使来自平板式偏振分光器1306的S偏振光的蓝光反射后射向透镜组1304,透镜组1304使其朝向波长转换装置1305会聚。波长转换装置1305将入射的蓝光转换成第二受激光(黄光)并使其射向透镜组1304。第二受激光(黄光)经透镜组1304收集后射向平板式偏振分光器1303。平板式偏振分光器1303使第二受激光(黄光)反射后射向平板式偏振分光器1306,平板式偏振分光器1306使其透射。
透射过平板式偏振分光器1306的P偏振光的蓝光透射过四分之一波片1307后被转换为圆偏振光的蓝光。透镜组1308使圆偏振光的蓝光朝向反射式散射板1309会聚。圆偏振光的蓝光经反射式散射板1309反射后射向透镜组1308,然后经透镜组1308收集后射向四分之一波片1307。圆偏振光的蓝光透射过四分之一波片1307后被转换为S偏振光的蓝光,这些S偏振光的蓝光射向平板式偏振分光器1306,平板式偏振分光器1306使其反射。
透射过平板式偏振分光器1306的第一受激光(黄光)和第二受激光(黄光)与经平板式偏振分光器1306反射的S偏振光的蓝光得以合为一路混合光并射向聚焦透镜1310,而黄光和蓝光的混合光即为白光。最后,聚焦透镜1310使白光会聚并从照明装置出射。
实施例2
如图14所示,本实施例公开的一种照明装置包括第一光源1401、第二光源1402、第一光路调节装置(由一个平板式偏振分光器1403构成)、第一收集光学系统(由包含透镜1404a和透镜1404b的透镜组1404构成)、波长转换装置1405(包括反射层1405a和设于反射层1405a上的波长转换层1405b)、第二光路调节装置(由一个平板式偏振分光器1406构成)、四分之一波片1407、第二收集光学系统(由包含透镜1408a和透镜1408b的透镜组1408构成)、第一散射光学系统(由一个反射式散射板1409构成)、聚光光学系统(由一个聚焦透镜1410构成)、第一透镜组1411以及第二透镜组1412。
本实施例与实施例1的第一个区别在于:在从第一光源1401到平板式偏振分光器1403的光路上设有第一透镜组1411。第一透镜组1411由一个正透镜1411a和一个负透镜1411b构成,用于缩小由第一光源1401出射的蓝光所形成的光束。
本实施例与实施例1的第二个区别在于:在从第二光源1402到平板式偏振 分光器1406的光路上设有第二透镜组1412。第二透镜组1412由一个正透镜1412a和一个负透镜1412b构成,用于缩小由第二光源1402出射的蓝光所形成的光束。
实施例3
如图15所示,本实施例公开的一种照明装置包括第一光源1501、第二光源1502、第一光路调节装置(由一个平板式偏振分光器1503构成)、第一收集光学系统(由包含透镜1504a和透镜1504b的透镜组1504构成)、波长转换装置1505(包括反射层1505a和设于反射层1505a上的波长转换层1505b)、第二光路调节装置、四分之一波片1507、第二收集光学系统(由包含透镜1508a和透镜1508b的透镜组1508构成)、第一散射光学系统(由一个反射式散射板1509构成)、聚光光学系统(由一个聚焦透镜1510构成)、第一匀光光学系统以及第二匀光光学系统。
本实施例与实施例1的第一个区别在于:本实施例中的第二光路调节装置是由立方体式偏振分光器1506而非平板式偏振分光器构成。
本实施例与实施例1的第二个区别在于:在从第一光源1501到平板式偏振分光器1503的光路上设有第一匀光光学系统。第一匀光光学系统由一个透射式扩散片1513构成,用于均匀由第一光源1501出射的蓝光。
本实施例与实施例1的第三个区别在于:在从第二光源1502到立方体式偏振分光器1506的光路上设有第二匀光光学系统。第二匀光光学系统由一个透射式扩散片1514构成,用于均匀由第二光源1502出射的蓝光。
实施例4
如图16所示,本实施例公开的一种照明装置包括第一光源1601、第二光源1602、第一光路调节装置(由一个平板式偏振分光器1603构成)、第一收集光学系统(由包含透镜1604a和透镜1604b的透镜组1604构成)、波长转换装置、第二光路调节装置(由一个平板式偏振分光器1606构成)、四分之一波片1607、第二收集光学系统(由包含透镜1608a和透镜1608b的透镜组1608构成)、第一散射光学系统以及聚光光学系统(由一个聚焦透镜1610构成)。
本实施例与实施例1的第一个区别在于:本实施例中的波长转换装置为可旋转的荧光轮1605。
本实施例与实施例1的第二个区别在于:本实施例中的第一散射光学系统为可旋转的反射式散射板1609。
实施例5
如图17所示,本实施例公开的一种照明装置包括第一光源1701、第二光源1702、第一光路调节装置(由一个平板式偏振分光器1703构成)、第一收集光学系统(由包含透镜1704a和透镜1704b的透镜组1704构成)、波长转换装置(包括反射层1705a和设于反射层1705a上的波长转换层1705b)、第二光路调节装置(由一个平板式偏振分光器1706构成)、四分之一波片1707、第二收集光学系统(由包含透镜1708a和透镜1708b的透镜组1708构成)、第一散射光学系统1709以及聚光光学系统(由一个聚焦透镜1710构成)。
本实施例与实施例1的区别在于:本实施例中的第一散射光学系统1709由一个透射式散射板1709a和一个反射镜1709b构成。
实施例6
如图18所示,本实施例公开的一种照明装置包括第一光源1801、第二光源1802、第一光路调节装置(由一个平板式偏振分光器1803构成)、第一收集光学系统(由包含透镜1804a和透镜1804b的透镜组1804构成)、波长转换装置(包括反射层1805a和设于反射层1805a上的波长转换层1805b)、第二光路调节装置(由一个平板式偏振分光器1806构成)、四分之一波片1807、第二收集光学系统(由包含透镜1808a和透镜1808b的透镜组1808构成)、第一散射光学系统1809(由一个聚焦透镜1810构成)、聚光光学系统(由一个聚焦透镜1810构成)、导光光学系统1815以及反射元件1816。
本实施例与实施例1的区别在于:在从第二光源1802到平板式偏振分光器1806的光路上设有导光光学系统1815和反射元件1816。其中,导光光学系统1815由正透镜1815a和正透镜1815b构成,反射元件1816的透射区为一个通光孔1816a且正透镜1815b位于该通光孔1816a处。第二光源1802出射包含有S偏振光成分和P偏振光成分的蓝光并且该蓝光由导光光学系统1815引导至平板式偏振分光器1806,平板式偏振分光器1806将其分离成S偏振光的蓝光和P偏振光的蓝光,并且反射其中的S偏振光的蓝光且使其中的P偏振光的蓝光透射。其中:经平板式偏振分光器1806反射的S偏振光的蓝光的之后的行进光路和实 施例1中经平板式偏振分光器1306反射的S偏振光的蓝光的行进光路相同;透射过平板式偏振分光器1806的P偏振光的蓝光射向四分之一波片1807。P偏振光的蓝光透射过四分之一波片1807后被转换为圆偏振光的蓝光。透镜组1808使圆偏振光的蓝光朝向反射式散射板1809会聚。反射式散射板1809将入射的圆偏振光的蓝光反射。经反射式散射板1809反射后的蓝光中有部分光变为了非偏振光的蓝光,其余的光仍为圆偏振光的蓝光。蓝光经透镜组1808收集后射向四分之一波片1807,然后透射过四分之一波片1807并入射至平板式偏振分光器1806。圆偏振光的蓝光透射过四分之一波片1807后被转换为S偏振光的蓝光,这些S偏振光的蓝光被平板式偏振分光器1806反射。而非偏振光的蓝光则被平板式偏振分光器1806分离成S偏振光的蓝光和P偏振光的蓝光,其中的S偏振光的蓝光被平板式偏振分光器1806反射,其中的P偏振光的蓝光透射过平板式偏振分光器1806并射向反射元件1816。反射元件1816将大部分来自平板式偏振分光器1806的P偏振光的蓝光反射后使其射回平板式偏振分光器1806,然后这些P偏振光的蓝光透射过平板式偏振分光器1806后再次射向四分之一波片1807。
实施例7
如图19所示,本实施例公开的一种照明装置包括第一光源1901、第二光源1902、第一光路调节装置(由一个平板式偏振分光器1903构成)、第一收集光学系统(由包含透镜1904a和透镜1904b的透镜组1904构成)、波长转换装置1905(包括反射层1905a和设于反射层1905a上的波长转换层1905b)、第二光路调节装置(由一个平板式偏振分光器1906构成)、四分之一波片1907、第二收集光学系统(由包含透镜1908a和透镜1908b的透镜组1908构成)、第一散射光学系统(由一个反射式散射板1909构成)、聚光光学系统(由一个聚焦透镜1910构成)、四分之一波片1917、第三收集光学系统以及第二散射光学系统。第三收集光学系统由包含透镜1918a和透镜1918b的透镜组1918构成。第二散射光学系统由一个反射式散射板1919构成。
本实施例与实施例1的区别在于:第一光源1901出射包含有S偏振光成分和P偏振光成分的蓝光并且该蓝光入射至平板式偏振分光器1903,平板式偏振分光器1903将其分离成S偏振光的蓝光和P偏振光的蓝光,并且反射其中的S 偏振光的蓝光且使其中的P偏振光的蓝光透射。其中:透射过平板式偏振分光器1903的P偏振光的蓝光的之后的行进光路和实施例1中透射过平板式偏振分光器1303的P偏振光的蓝光的行进光路相同;经平板式偏振分光器1903反射的S偏振光的蓝光射向四分之一波片1917。S偏振光的蓝光透射过四分之一波片1917后被转换为圆偏振光的蓝光。透镜组1918使圆偏振光的蓝光朝向反射式散射板1919会聚。反射式散射板1919将入射的圆偏振光的蓝光反射。经反射式散射板1919反射的圆偏振光的蓝光由透镜组1918收集后射向四分之一波片1917。圆偏振光的蓝光透射过四分之一波片1917后被转换为P偏振光的蓝光,这些P偏振光的蓝光射向平板式偏振分光器1903,平板式偏振分光器1903使其透射后射向平板式偏振分光器1906,平板式偏振分光器1906使其透射。
实施例8
如图20所示,本实施例公开的一种照明装置包括第一光源2001、第二光源2002、第一光路调节装置(由一个平板式偏振分光器2003构成)、第一收集光学系统(由包含透镜2004a和透镜2004b的透镜组2004构成)、波长转换装置2005(包括反射层2005a和设于反射层2005a上的波长转换层2005b)、第二光路调节装置(由一个平板式偏振分光器2006构成)、四分之一波片2007、第二收集光学系统(由包含透镜2008a和透镜2008b的透镜组2008构成)、第一散射光学系统(由一个反射式散射板2009构成)以及聚光光学系统(由一个聚焦透镜2010构成)。
本实施例中的平板式偏振分光器2003的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时平板式偏振分光器2003还使黄光透射。本实施例中的平板式偏振分光器2006的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时平板式偏振分光器2006还使黄光反射。
第一光源2001出射S偏振光的蓝光并且该蓝光入射至平板式偏振分光器2003,平板式偏振分光器2003使其反射后射向透镜组2004,透镜组2004使其朝向波长转换装置2005会聚,波长转换装置2005将入射的蓝光转换成第一受激光(黄光)并使其射向透镜组2004。第一受激光(黄光)经透镜组2004收集后射向平板式偏振分光器2003。平板式偏振分光器2003使第一受激光(黄光)透射后射向平板式偏振分光器2006,平板式偏振分光器2006使其反射。
第二光源2002出射包含有S偏振光成分和P偏振光成分的蓝光并且该蓝光入射至平板式偏振分光器2006,平板式偏振分光器2006将其分离成S偏振光的蓝光和P偏振光的蓝光,并且反射其中的S偏振光的蓝光且使其中的P偏振光的蓝光透射。其中,透射过平板式偏振分光器2006的P偏振光的蓝光射向平板式偏振分光器2003,经平板式偏振分光器2006反射的S偏振光的蓝光射向四分之一波片2007。
平板式偏振分光器2003使来自平板式偏振分光器2006的P偏振光的蓝光透射后射向透镜组2004,透镜组2004使其朝向波长转换装置2005会聚。波长转换装置2005将入射的蓝光转换成第二受激光(黄光)并使其射向透镜组2004。第二受激光(黄光)经透镜组2004收集后射向平板式偏振分光器2003。平板式偏振分光器2003使第二受激光(黄光)透射后射向平板式偏振分光器2006,平板式偏振分光器2006使其反射。
经平板式偏振分光器2006反射的S偏振光的蓝光透射过四分之一波片2007后被转换为圆偏振光的蓝光。透镜组2008使圆偏振光的蓝光朝向反射式散射板2009会聚。圆偏振光的蓝光经反射式散射板2009反射后射向透镜组2008,然后经透镜组2008收集后射向四分之一波片2007。圆偏振光的蓝光透射过四分之一波片2007后被转换为P偏振光的蓝光,这些P偏振光的蓝光射向平板式偏振分光器2006,平板式偏振分光器2006使其透射。
经平板式偏振分光器2006反射的第一受激光(黄光)和第二受激光(黄光)与透射过平板式偏振分光器2006的P偏振光的蓝光得以合为一路混合光并射向聚焦透镜2010,而黄光和蓝光的混合光即为白光。最后,聚焦透镜2010使白光会聚并从照明装置出射。
实施例9
如图21所示,本实施例公开的一种照明装置包括第一光源2101、第二光源2102、第一光路调节装置(由一个平板式偏振分光器2103构成)、第一收集光学系统(由包含透镜2104a和透镜2104b的透镜组2104构成)、波长转换装置2105(包括反射层2105a和设于反射层2105a上的波长转换层2105b)、第二光路调节装置(由一个平板式偏振分光器2106构成)、四分之一波片2107、第二收集光学系统(由包含透镜2108a和透镜2108b的透镜组2108构成)、第一散射光学 系统(由一个反射式散射板2109构成)、聚光光学系统(由一个聚焦透镜2110构成)以及半波片2120。
本实施例中的平板式偏振分光器2103的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时平板式偏振分光器2103还使黄光透射。本实施例中的平板式偏振分光器2106的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时平板式偏振分光器2106还使黄光透射。
第一光源2101出射S偏振光的蓝光并且该蓝光入射至平板式偏振分光器2103,平板式偏振分光器2103使其反射后射向透镜组2104,透镜组2104使其朝向波长转换装置2105会聚。波长转换装置2105将入射的蓝光转换成第一受激光(黄光)并使其射向透镜组2104。第一受激光(黄光)经透镜组2104收集后射向平板式偏振分光器2103。平板式偏振分光器2103使第一受激光(黄光)透射后射向半波片2120。第一受激光(黄光)透射过半波片2120后继续射向平板式偏振分光器2106,平板式偏振分光器2106使其透射。
第二光源2102出射包含有S偏振光成分和P偏振光成分的蓝光并且该蓝光入射至平板式偏振分光器2106,平板式偏振分光器2106将其分离成S偏振光的蓝光和P偏振光的蓝光,并且反射其中的S偏振光的蓝光且使其中的P偏振光的蓝光透射。其中,经平板式偏振分光器2106反射的S偏振光的蓝光射向半波片2120,透射过平板式偏振分光器2106的P偏振光的蓝光射向四分之一波片2107。
经平板式偏振分光器2106反射的S偏振光的蓝光透射过半波片2120后被转换为P偏振光的蓝光,这些P偏振光的蓝光继续射向平板式偏振分光器2103,平板式偏振分光器2103使其透射后射向透镜组2104,透镜组2104使其朝向波长转换装置2105会聚。波长转换装置2105将入射的蓝光转换成第二受激光(黄光)并使其射向透镜组2104。第二受激光(黄光)经透镜组2104收集后射向平板式偏振分光器2103。平板式偏振分光器2103使第二受激光(黄光)透射后射向半波片2120。第二受激光(黄光)透射过半波片2120后继续射向平板式偏振分光器2106,平板式偏振分光器2106使其透射。
透射过平板式偏振分光器2106的P偏振光的蓝光透射过四分之一波片2107后被转换为圆偏振光的蓝光。透镜组2108使圆偏振光的蓝光朝向反射式散射板 2109会聚。圆偏振光的蓝光经反射式散射板2109反射后射向透镜组2108,然后经透镜组2108收集后射向四分之一波片2107。圆偏振光的蓝光透射过四分之一波片2107后被转换为S偏振光的蓝光,这些S偏振光的蓝光射向平板式偏振分光器2106,平板式偏振分光器2106使其反射。
透射过平板式偏振分光器2106的第一受激光(黄光)和第二受激光(黄光)与经平板式偏振分光器2106反射的S偏振光的蓝光得以合为一路混合光并射向聚焦透镜2110,而黄光和蓝光的混合光即为白光。最后,聚焦透镜2110使白光会聚并从照明装置出射。
实施例10
如图22所示,本实施例公开的一种照明装置包括第一光源2201、第二光源2202、第一光路调节装置(由一个平板式偏振分光器2203构成)、第一收集光学系统(由包含透镜2204a和透镜2204b的透镜组2204构成)、波长转换装置2205(包括反射层2205a和设于反射层2205a上的波长转换层2205b)、第二光路调节装置(由一个平板式偏振分光器2206构成)、四分之一波片2207、第二收集光学系统(由包含透镜2208a和透镜2208b的透镜组2208构成)、第一散射光学系统(由一个反射式散射板2209构成)、聚光光学系统(由一个聚焦透镜2210构成)以及半波片2220。
本实施例中的平板式偏振分光器2203的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时平板式偏振分光器2203还使黄光反射。本实施例中的平板式偏振分光器2206的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时平板式偏振分光器2206还使黄光反射。
第一光源2201出射P偏振光的蓝光并且该蓝光入射至平板式偏振分光器2203,平板式偏振分光器2203使其透射后射向透镜组2204,透镜组2204使其朝向波长转换装置2205会聚。波长转换装置2205将入射的蓝光转换成第一受激光(黄光)并使其射向透镜组2204。第一受激光(黄光)经透镜组2204收集后射向平板式偏振分光器2203。平板式偏振分光器2203使第一受激光(黄光)反射后射向半波片2220。第一受激光(黄光)透射过半波片2220后继续射向平板式偏振分光器2206,平板式偏振分光器2206使其反射。
第二光源2202出射包含有S偏振光成分和P偏振光成分的蓝光并且该蓝光 入射至平板式偏振分光器2206,平板式偏振分光器2206将其分离成S偏振光的蓝光和P偏振光的蓝光,并且反射其中的S偏振光的蓝光且使其中的P偏振光的蓝光透射。其中,透射过平板式偏振分光器2206的P偏振光的蓝光射向半波片2220,经平板式偏振分光器2206反射的S偏振光的蓝光射向四分之一波片2207。
透射过平板式偏振分光器2206的P偏振光的蓝光透射过半波片2220后被转换为S偏振光的蓝光,这些S偏振光的蓝光继续射向平板式偏振分光器2203,平板式偏振分光器2203使其反射后射向透镜组2204,透镜组2204使其朝向波长转换装置2205会聚。波长转换装置2205将入射的蓝光转换成第二受激光(黄光)并使其射向透镜组2204。第二受激光(黄光)经透镜组2204收集后射向平板式偏振分光器2203。平板式偏振分光器2203使第二受激光(黄光)反射后射向半波片2220。第二受激光(黄光)透射过半波片2220后继续射向平板式偏振分光器2206,平板式偏振分光器2206使其反射。
经平板式偏振分光器2206反射的S偏振光的蓝光透射过四分之一波片2207后被转换为圆偏振光的蓝光。透镜组2208使圆偏振光的蓝光朝向反射式散射板2209会聚,圆偏振光的蓝光经反射式散射板2209反射后射向透镜组2208,然后经透镜组2208收集后射向四分之一波片2207。圆偏振光的蓝光透射过四分之一波片2207后被转换为P偏振光的蓝光,这些P偏振光的蓝光射向平板式偏振分光器2206,平板式偏振分光器2206使其透射。
经平板式偏振分光器2206反射的第一受激光(黄光)和第二受激光(黄光)与透射过平板式偏振分光器2206的P偏振光的蓝光得以合为一路混合光并射向聚焦透镜2210,而黄光和蓝光的混合光即为白光。最后,聚焦透镜2210使白光会聚并从照明装置出射。
实施例11
如图23所示,本实施例公开的一种照明装置包括第一光源2301、第二光源2302、第一光路调节装置、第一收集光学系统、波长转换装置2305、第三光路调节装置、四分之一波片2307、第二收集光学系统、第一散射光学系统以及聚光光学系统。第一光路调节装置为平板式偏振分光器2303。第一收集光学系统由包含透镜2304a和透镜2304b的透镜组2304构成。波长转换装置2305包括反 射层2305a和设于反射层2305a上的波长转换层2305b。第三光路调节装置为平板式偏振分光器2306。第二收集光学系统由包含透镜2308a和透镜2308b的透镜组2308构成。第一散射光学系统由一个反射式散射板2309构成。收集光学系统由一个聚焦透镜2310构成。
本实施例中的平板式偏振分光器2303的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时平板式偏振分光器2303还使黄光透射。本实施例中的平板式偏振分光器2306的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时平板式偏振分光器2306还使黄光反射。
第一光源2301出射S偏振光的蓝光并且该蓝光入射至平板式偏振分光器2303,平板式偏振分光器2303使其反射后射向平板式偏振分光器2306,平板式偏振分光器2306使其反射后射向透镜组2304,透镜组2304使其朝向波长转换装置2305会聚。波长转换装置2305将入射的蓝光转换成第一受激光(黄光)并使其射向透镜组2304。第一受激光(黄光)经透镜组2304收集后射向平板式偏振分光器2306。平板式偏振分光器2306使第一受激光(黄光)反射后射向平板式偏振分光器2303,平板式偏振分光器2303使其透射。
第二光源2302出射包含有S偏振光成分和P偏振光成分的蓝光并且该蓝光入射至平板式偏振分光器2306,平板式偏振分光器2306将其分离成S偏振光的蓝光和P偏振光的蓝光,并且反射其中的S偏振光的蓝光且使其中的P偏振光的蓝光透射。其中,透射过平板式偏振分光器2306的P偏振光的蓝光射向透镜组2304,经平板式偏振分光器2306反射的S偏振光的蓝光射向四分之一波片2307。
透镜组2304使透射过平板式偏振分光器2306的P偏振光的蓝光朝向波长转换装置2305会聚。波长转换装置2305将入射的蓝光转换成第二受激光(黄光)并使其射向透镜组2304。第二受激光(黄光)经透镜组2304收集后射向平板式偏振分光器2306。平板式偏振分光器2306使第二受激光(黄光)反射后射向平板式偏振分光器2303,平板式偏振分光器2303使其透射。
经平板式偏振分光器2306反射的S偏振光的蓝光透射过四分之一波片2307后被转换为圆偏振光的蓝光。透镜组2308使圆偏振光的蓝光朝向反射式散射板2309会聚。圆偏振光的蓝光经反射式散射板2309反射后射向透镜组2308,然后 经透镜组2308收集后射向四分之一波片2307。圆偏振光的蓝光透射过四分之一波片2307后被转换为P偏振光的蓝光,这些P偏振光的蓝光射向平板式偏振分光器2306。平板式偏振分光器2306使P偏振光的蓝光透射后射向平板式偏振分光器2303,平板式偏振分光器2303使其透射。
透射过平板式偏振分光器2303的第一受激光(黄光)、第二受激光(黄光)和P偏振光的蓝光得以合为一路混合光并射向聚焦透镜2310,而黄光和蓝光的混合光即为白光。最后,聚焦透镜2310使白光会聚并从照明装置出射。
实施例12
如图24所示,本实施例公开的一种照明装置包括第一光源2401、第二光源2402、第一光路调节装置(由一个平板式偏振分光器2403构成)、第一收集光学系统(由包含透镜2404a和透镜2404b的透镜组2404构成)、波长转换装置2405(包括反射层2405a和设于反射层2405a上的波长转换层2405b)、第三光路调节装置(由一个平板式偏振分光器2406构成)、四分之一波片2407、第二收集光学系统(由包含透镜2408a和透镜2408b的透镜组2408构成)、第一散射光学系统(由一个反射式散射板2409构成)、聚光光学系统(由一个聚焦透镜2410构成)、第一透镜组2411以及第二透镜组2412。
本实施例与实施例11的第一个区别在于:在从第一光源2401到平板式偏振分光器2403的光路上设有第一透镜组2411。第一透镜组2411由一个正透镜2411a和一个负透镜2411b构成,用于缩小由第一光源2401出射的蓝光所形成的光束。
本实施例与实施例11的第二个区别在于:在从第二光源2402到平板式偏振分光器2406的光路上设有第二透镜组2412。第二透镜组2412由一个正透镜2412a和一个负透镜2412b构成,用于缩小由第二光源2402出射的蓝光所形成的光束。
实施例13
如图25所示,本实施例公开的一种照明装置包括第一光源2501、第二光源2502、第一光路调节装置、第一收集光学系统(由包含透镜2504a和透镜2504b的透镜组2504构成)、波长转换装置2505(包括反射层2505a和设于反射层2505a上的波长转换层2505b)、第三光路调节装置(由一个平板式偏振分光器2506构成)、四分之一波片2507、第二收集光学系统(由包含透镜2508a和透镜2508b 的透镜组2508构成)、第一散射光学系统(由一个反射式散射板2509构成)、聚光光学系统(由一个聚焦透镜2510构成)、第一匀光光学系统以及第二匀光光学系统。
本实施例与实施例11的第一个区别在于:本实施例中的第一光路调节装置是由立方体式偏振分光器2503而非平板式偏振分光器构成。
本实施例与实施例11的第二个区别在于:在从第一光源2501到立方体式偏振分光器2503的光路上设有第一匀光光学系统。第一匀光光学系统由一个透射式扩散片2513构成,用于均匀由第一光源2501出射的蓝光。
本实施例与实施例11的第三个区别在于:在从第二光源2502到平板式偏振分光器2506的光路上设有第二匀光光学系统。第二匀光光学系统由一个透射式扩散片2514构成,用于均匀由第二光源2502出射的蓝光。
实施例14
如图26所示,本实施例公开的一种照明装置包括第一光源2601、第二光源2602、第一光路调节装置(由一个平板式偏振分光器2603构成)、第一收集光学系统(由包含透镜2604a和透镜2604b的透镜组2604构成)、波长转换装置、第三光路调节装置(由一个平板式偏振分光器2606构成)、四分之一波片2607、第二收集光学系统(由包含透镜2608a和透镜2608b的透镜组2608构成)、第一散射光学系统以及聚光光学系统(由一个聚焦透镜2610构成)。
本实施例与实施例11的第一个区别在于:本实施例中的波长转换装置为可旋转的荧光轮2605。
本实施例与实施例11的第二个区别在于:本实施例中的第一散射光学系统为可旋转的反射式散射板2609。
实施例15
如图27所示,本实施例公开的一种照明装置包括第一光源2701、第二光源2702、第一光路调节装置(由一个平板式偏振分光器2703构成)、第一收集光学系统(由包含透镜2704a和透镜2704b的透镜组2704构成)、波长转换装置(包括反射层2705a和设于反射层2705a上的波长转换层2705b)、第三光路调节装置(由一个平板式偏振分光器2706构成)、四分之一波片2707、第二收集光学系统(由包含透镜2708a和透镜2708b的透镜组2708构成)、第一散射光学系统 2709以及聚光光学系统(由一个聚焦透镜2710构成)。
本实施例与实施例11的区别在于:本实施例中的第一散射光学系统2709由一个透射式散射板2709a和一个反射镜2709b构成。
实施例16
如图28所示,本实施例公开的一种照明装置包括第一光源2801、第二光源2802、第一光路调节装置(由一个平板式偏振分光器2803构成)、第一收集光学系统(由包含透镜2804a和透镜2804b的透镜组2804构成)、波长转换装置(包括反射层2805a和设于反射层2805a上的波长转换层2805b)、第三光路调节装置(由一个平板式偏振分光器2806构成)、四分之一波片2807、第二收集光学系统(由包含透镜2808a和透镜2808b的透镜组2808构成)、第一散射光学系统2809(由一个聚焦透镜2810构成)、聚光光学系统(由一个聚焦透镜2810构成)、导光光学系统2815以及反射元件2816。
本实施例与实施例11的区别在于:在从第二光源2802到平板式偏振分光器2806的光路上设有导光光学系统2815和反射元件2816。其中,导光光学系统2815由正透镜2815a和正透镜2815b构成,反射元件2816的透射区为一个通光孔2816a且正透镜2815b位于该通光孔2816a处。第二光源2802出射包含有S偏振光成分和P偏振光成分的蓝光并且该蓝光由导光光学系统2815引导至平板式偏振分光器2806,平板式偏振分光器2806将其分离成S偏振光的蓝光和P偏振光的蓝光,并且反射其中的S偏振光的蓝光且使其中的P偏振光的蓝光透射。其中:透射过平板式偏振分光器2806的P偏振光的蓝光的之后的行进光路和实施例11中透射过平板式偏振分光器2306的P偏振光的蓝光的行进光路相同;经平板式偏振分光器2806反射的S偏振光的蓝光射向四分之一波片2807。S偏振光的蓝光透射过四分之一波片2807后被转换为圆偏振光的蓝光。透镜组2808使圆偏振光的蓝光朝向反射式散射板2809会聚。反射式散射板2809将入射的圆偏振光的蓝光反射。经反射式散射板2809反射后的蓝光中有部分光变为了非偏振光的蓝光,其余的光仍为圆偏振光的蓝光。蓝光经透镜组2808收集后射向四分之一波片2807,然后透射过四分之一波片2807并入射至平板式偏振分光器2806。圆偏振光的蓝光透射过四分之一波片2807后被转换为P偏振光的蓝光,这些P偏振光的蓝光得以透射过平板式偏振分光器2806。而非偏振光的蓝光则 被平板式偏振分光器2806分离成S偏振光的蓝光和P偏振光的蓝光,其中的P偏振光的蓝光得以透射过平板式偏振分光器2806,其中的S偏振光的蓝光经平板式偏振分光器2806反射后射向反射元件2816。反射元件2816将大部分来自平板式偏振分光器2806的S偏振光的蓝光反射后使其射回平板式偏振分光器2806,然后这些S偏振光的蓝光经平板式偏振分光器2806反射后再次射向四分之一波片2807。
实施例17
如图29所示,本实施例公开的一种照明装置包括第一光源2901、第二光源2902、第一光路调节装置(由一个平板式偏振分光器2903构成)、第一收集光学系统(由包含透镜2904a和透镜2904b的透镜组2904构成)、波长转换装置2905(包括反射层2905a和设于反射层2905a上的波长转换层2905b)、第三光路调节装置(由一个平板式偏振分光器2906构成)、四分之一波片2907、第二收集光学系统(由包含透镜2908a和透镜2908b的透镜组2908构成)、第一散射光学系统(由一个反射式散射板2909构成)、聚光光学系统(由一个聚焦透镜2910构成)、四分之一波片2917、第三收集光学系统以及第二散射光学系统。第三收集光学系统由包含透镜2918a和透镜2918b的透镜组2918构成。第二散射光学系统由一个反射式散射板2919构成。
本实施例与实施例11的区别在于:第一光源2901出射包含有S偏振光成分和P偏振光成分的蓝光并且该蓝光入射至平板式偏振分光器2903,平板式偏振分光器2903将其分离成S偏振光的蓝光和P偏振光的蓝光,并且反射其中的S偏振光的蓝光且使其中的P偏振光的蓝光透射。其中:经平板式偏振分光器2903反射的S偏振光的蓝光的之后的行进光路和实施例11中经平板式偏振分光器2303反射的S偏振光的蓝光的行进光路相同;透射过平板式偏振分光器2903的P偏振光的蓝光射向四分之一波片2917。P偏振光的蓝光透射过四分之一波片2917后被转换为圆偏振光的蓝光。透镜组2918使圆偏振光的蓝光朝向反射式散射板2919会聚。反射式散射板2919将入射的圆偏振光的蓝光反射。经反射式散射板2919反射的圆偏振光的蓝光由透镜组2918收集后射向四分之一波片2917。圆偏振光的蓝光透射过四分之一波片2917后被转换为S偏振光的蓝光,这些S偏振光的蓝光射向平板式偏振分光器2903,平板式偏振分光器2903使其反射。
实施例18
如图30所示,本实施例公开的一种照明装置包括第一光源3001、第二光源3002、第一光路调节装置(由一个平板式偏振分光器3003构成)、第一收集光学系统(由包含透镜3004a和透镜3004b的透镜组3004构成)、波长转换装置3005(包括反射层3005a和设于反射层3005a上的波长转换层3005b)、第三光路调节装置(由一个平板式偏振分光器3006构成)、四分之一波片3007、第二收集光学系统(由包含透镜3008a和透镜3008b的透镜组3008构成)、第一散射光学系统(由一个反射式散射板3009构成)以及聚光光学系统(由一个聚焦透镜3010构成)。
本实施例中的平板式偏振分光器3003的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时平板式偏振分光器3003还使黄光反射。本实施例中的平板式偏振分光器3006的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时平板式偏振分光器3006还使黄光透射。
第一光源3001出射P偏振光的蓝光并且该蓝光入射至平板式偏振分光器3003,平板式偏振分光器3003使其透射后射向平板式偏振分光器3006,平板式偏振分光器3006使其透射后射向透镜组3004,透镜组3004使其朝向波长转换装置3005会聚。波长转换装置3005将入射的蓝光转换成第一受激光(黄光)并使其射向透镜组3004。第一受激光(黄光)经透镜组3004收集后射向平板式偏振分光器3006。平板式偏振分光器3006使第一受激光(黄光)透射后射向平板式偏振分光器3003,平板式偏振分光器3003使其反射。
第二光源3002出射包含有S偏振光成分和P偏振光成分的蓝光并且该蓝光入射至平板式偏振分光器3006,平板式偏振分光器3006将其分离成S偏振光的蓝光和P偏振光的蓝光,并且反射其中的S偏振光的蓝光且使其中的P偏振光的蓝光透射。其中,经平板式偏振分光器3006反射的S偏振光的蓝光射向透镜组3004,透射过平板式偏振分光器3006的P偏振光的蓝光射向四分之一波片3007。
透镜组3004使来自平板式偏振分光器3006的S偏振光的蓝光朝向波长转换装置3005会聚。波长转换装置3005将入射的蓝光转换成第二受激光(黄光)并使其射向透镜组3004。第二受激光(黄光)经透镜组3004收集后射向平板式偏 振分光器3006。平板式偏振分光器3006使第二受激光(黄光)透射后射向平板式偏振分光器3003,平板式偏振分光器3003使其反射。
透射过平板式偏振分光器3006的P偏振光的蓝光透射过四分之一波片3007后被转换为圆偏振光的蓝光。透镜组3008使圆偏振光的蓝光朝向反射式散射板3009会聚。圆偏振光的蓝光经反射式散射板3009反射后射向透镜组3008,然后经透镜组3008收集后射向四分之一波片3007。圆偏振光的蓝光透射过四分之一波片3007后被转换为S偏振光的蓝光,这些S偏振光的蓝光射向平板式偏振分光器3006。平板式偏振分光器3006使S偏振光的蓝光反射后射向平板式偏振分光器3003,平板式偏振分光器3003使其反射。
经平板式偏振分光器3003反射的第一受激光(黄光)、第二受激光(黄光)和S偏振光的蓝光得以合为一路混合光并射向聚焦透镜3010,而黄光和蓝光的混合光即为白光。最后,聚焦透镜3010使白光会聚并从照明装置出射。
实施例19
如图31所示,本实施例公开的一种照明装置包括第一光源3101、第二光源3102、第一光路调节装置(由一个平板式偏振分光器3103构成)、第一收集光学系统(由包含透镜3104a和透镜3104b的透镜组3104构成)、波长转换装置3105(包括反射层3105a和设于反射层3105a上的波长转换层3105b)、第三光路调节装置(由一个平板式偏振分光器3106构成)、四分之一波片3107、第二收集光学系统(由包含透镜3108a和透镜3108b的透镜组3108构成)、第一散射光学系统(由一个反射式散射板3109构成)、聚光光学系统(由一个聚焦透镜3110构成)以及半波片3120。
本实施例中的平板式偏振分光器3103的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时平板式偏振分光器3103还使黄光透射。本实施例中的平板式偏振分光器3106的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时平板式偏振分光器3106还使黄光透射。
第一光源3101出射S偏振光的蓝光并且该蓝光入射至平板式偏振分光器3103,平板式偏振分光器3103使其反射后射向半波片3120。S偏振光的蓝光透射过半波片3120后被转换为P偏振光的蓝光,这些P偏振光的蓝光继续射向平板式偏振分光器3106,平板式偏振分光器3106使其透射后射向透镜组3104,透 镜组3104使其朝向波长转换装置3105会聚。波长转换装置3105将入射的蓝光转换成第一受激光(黄光)并使其射向透镜组3104。第一受激光(黄光)经透镜组3104收集后射向平板式偏振分光器3106。平板式偏振分光器3106使第一受激光(黄光)透射后射向半波片3120。第一受激光(黄光)透射过半波片3120后继续射向平板式偏振分光器3103,平板式偏振分光器3103使其透射。
第二光源3102出射包含有S偏振光成分和P偏振光成分的蓝光并且该蓝光入射至平板式偏振分光器3106,平板式偏振分光器3106将其分离成S偏振光的蓝光和P偏振光的蓝光,并且反射其中的S偏振光的蓝光且使其中的P偏振光的蓝光透射。其中,经平板式偏振分光器3106反射的S偏振光的蓝光射向透镜组3104,透射过平板式偏振分光器3106的P偏振光的蓝光射向四分之一波片3107。
透镜组3104使来自平板式偏振分光器3106的S偏振光的蓝光朝向波长转换装置3105会聚。波长转换装置3105将入射的蓝光转换成第二受激光(黄光)并使其射向透镜组3104。第二受激光(黄光)经透镜组3104收集后射向平板式偏振分光器3106。平板式偏振分光器3106使第二受激光(黄光)透射后射向半波片3120。第二受激光(黄光)透射过半波片3120后继续射向平板式偏振分光器3103,平板式偏振分光器3103使其透射。
透射过平板式偏振分光器3106的P偏振光的蓝光透射过四分之一波片3107后被转换为圆偏振光的蓝光。透镜组3108使圆偏振光的蓝光朝向反射式散射板3109会聚。圆偏振光的蓝光经反射式散射板3109反射后射向透镜组3108,然后经透镜组3108收集后射向四分之一波片3107。圆偏振光的蓝光透射过四分之一波片3107后被转换为S偏振光的蓝光,这些S偏振光的蓝光射向平板式偏振分光器3106,平板式偏振分光器3106使其反射后射向半波片3120。S偏振光的蓝光透射过半波片3120后被转换为P偏振光的蓝光,这些P偏振光的蓝光继续射向平板式偏振分光器3103,平板式偏振分光器3103使其透射。
透射过平板式偏振分光器3103的第一受激光(黄光)、第二受激光(黄光)和P偏振光的蓝光得以合为一路混合光并射向聚焦透镜3110,而黄光和蓝光的混合光即为白光。最后,聚焦透镜3110使白光会聚并从照明装置出射。
实施例20
如图32所示,本实施例公开的一种照明装置包括第一光源3201、第二光源3202、第一光路调节装置(由一个平板式偏振分光器3203构成)、第一收集光学系统(由包含透镜3204a和透镜3204b的透镜组3204构成)、波长转换装置3205(包括反射层3205a和设于反射层3205a上的波长转换层3205b)、第三光路调节装置(由一个平板式偏振分光器3206构成)、四分之一波片3207、第二收集光学系统(由包含透镜3208a和透镜3208b的透镜组3208构成)、第一散射光学系统(由一个反射式散射板3209构成)、聚光光学系统(由一个聚焦透镜3210构成)以及半波片3220。
本实施例中的平板式偏振分光器3203的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时平板式偏振分光器3203还使黄光反射。本实施例中的平板式偏振分光器3206的特性为反射S偏振光的蓝光且使P偏振光的蓝光透射,同时平板式偏振分光器3206还使黄光反射。
第一光源3201出射P偏振光的蓝光并且该蓝光入射至平板式偏振分光器3203,平板式偏振分光器3203使其透射后射向半波片3220。P偏振光的蓝光透射过半波片3220后被转换为S偏振光的蓝光,这些S偏振光的蓝光继续射向平板式偏振分光器3206,平板式偏振分光器3206使其反射后射向透镜组3204,透镜组3204使其朝向波长转换装置3205会聚。波长转换装置3205将入射的蓝光转换成第一受激光(黄光)并使其射向透镜组3204。第一受激光(黄光)经透镜组3204收集后射向平板式偏振分光器3206。平板式偏振分光器3206使第一受激光(黄光)反射后射向半波片3220。第一受激光(黄光)透射过半波片3220后继续射向平板式偏振分光器3203,平板式偏振分光器3203使其反射。
第二光源3202出射包含有S偏振光成分和P偏振光成分的蓝光并且该蓝光入射至平板式偏振分光器3206,平板式偏振分光器3206将其分离成S偏振光的蓝光和P偏振光的蓝光,并且反射其中的S偏振光的蓝光且使其中的P偏振光的蓝光透射。其中,透射过平板式偏振分光器3206的P偏振光的蓝光射向透镜组3204,经平板式偏振分光器3206反射的S偏振光的蓝光射向四分之一波片3207。
透镜组3204使来自平板式偏振分光器3206的P偏振光的蓝光朝向波长转换装置3205会聚。波长转换装置3205将入射的蓝光转换成第二受激光(黄光)并 使其射向透镜组3204。第二受激光(黄光)经透镜组3204收集后射向平板式偏振分光器3206。平板式偏振分光器3206使第二受激光(黄光)反射后射向半波片3220。第二受激光(黄光)透射过半波片3220后继续射向平板式偏振分光器3203,平板式偏振分光器3203使其反射。
经平板式偏振分光器3206反射的S偏振光的蓝光透射过四分之一波片3207后被转换为圆偏振光的蓝光。透镜组3208使圆偏振光的蓝光朝向反射式散射板3209会聚。圆偏振光的蓝光经反射式散射板3209反射后射向透镜组3208,然后经透镜组3208收集后射向四分之一波片3207。圆偏振光的蓝光透射过四分之一波片3207后被转换为P偏振光的蓝光,这些P偏振光的蓝光射向平板式偏振分光器3206,平板式偏振分光器3206使其透射后射向半波片3220。P偏振光的蓝光透射过半波片3220后被转换为S偏振光的蓝光,这些S偏振光的蓝光继续射向平板式偏振分光器3203,平板式偏振分光器3203使其反射。
经平板式偏振分光器3203反射的第一受激光(黄光)、第二受激光(黄光)和S偏振光的蓝光得以合为一路混合光并射向聚焦透镜3210,而黄光和蓝光的混合光即为白光。最后,聚焦透镜3210使白光会聚并从照明装置出射。

Claims (44)

  1. 一种照明装置,其特征在于,包括第一光源、第二光源、第一光路调节装置、第二光路调节装置、波长转换装置以及第一散射光学系统,其中:
    所述第一光源用于出射第一波段的光;
    所述第二光源用于出射第二波段的光且所述第二波段与所述第一波段相同或不同;
    所述第一光路调节装置接收自所述第一光源出射的所述第一波段的光,使其至少部分透射或至少部分反射;
    当所述第一光路调节装置使所述第一光源出射的所述第一波段的光至少部分透射时,所述第一光路调节装置接收来自所述第二光路调节装置的所述第二波段的光并使其反射,所述波长转换装置接收透射过所述第一光路调节装置的所述第一波段的光和经所述第一光路调节装置反射的所述第二波段的光,将所述第一波段的光转换成第一受激光且所述第一受激光的波段不同于所述第一波段,将所述第二波段的光转换成第二受激光且所述第二受激光的波段不同于所述第二波段;所述第一光路调节装置反射来自所述波长转换装置的所述第一受激光和所述第二受激光,所述第一受激光和所述第二受激光射向所述第二光路调节装置;
    当所述第一光路调节装置使所述第一光源出射的所述第一波段的光至少部分反射时,所述第一光路调节装置接收来自所述第二光路调节装置的所述第二波段的光并使其透射,所述波长转换装置接收经所述第一光路调节装置反射的所述第一波段的光和透射过所述第一光路调节装置的所述第二波段的光,将所述第一波段的光转换成第一受激光且所述第一受激光的波段不同于所述第一波段,将所述第二波段的光转换成第二受激光且所述第二受激光的波段不同于所述第二波段;所述第一光路调节装置使来自所述波长转换装置的所述第一受激光和所述第二受激光透射,所述第一受激光和所述第二受激光射向所述第二光路调节装置;
    所述第二光路调节装置接收自所述第二光源出射的所述第二波段的光,使其部分透射且部分反射后从不同光路出射,所述第一光路调节装置接收从其中一个光路出射的所述第二波段的光,所述第一散射光学系统接收从另一个光路出射的所述第二波段的光,将其反射并形成散射的所述第二波段的光;所述第二光路调节装置将来自所述第一光路调节装置的所述第一受激光和所述第二受激光与至 少部分来自所述第一散射光学系统的所述第二波段的光合光后从同一光路出射。
  2. 根据权利要求1所述的一种照明装置,其特征在于,所述第一光路调节装置为第一偏振分光器,所述第一偏振分光器关于所述第一波段和所述第二波段的入射光具有以下第一特性:反射所述第一波段和所述第二波段的S偏振光且使所述第一波段和所述第二波段的P偏振光透射;所述第一偏振分光器关于所述第一受激光和所述第二受激光具有以下第二特性:使所述第一受激光和所述第二受激光透射或反射。
  3. 根据权利要求1所述的一种照明装置,其特征在于,所述第二光路调节装置为第二偏振分光器,所述第二偏振分光器关于所述第二波段的入射光具有以下第一特性:反射所述第二波段的S偏振光且使所述第二波段的P偏振光透射;所述第二偏振分光器关于所述第一受激光和所述第二受激光具有以下第二特性:使所述第一受激光和所述第二受激光透射或反射。
  4. 根据权利要求1所述的一种照明装置,其特征在于,还包括第一四分之一波片,所述第一四分之一波片位于所述第二光路调节装置和所述第一散射光学系统之间的光路上。
  5. 根据权利要求1所述的一种照明装置,其特征在于,还包括半波片,所述半波片位于所述第一光路调节装置和所述第二光路调节装置之间的光路上。
  6. 根据权利要求1所述的一种照明装置,其特征在于,所述第一光源内包含N个第一激光器以及与N个所述第一激光器一一对应的N个第一准直元件,N≥1,其中:
    所述第一激光器用于出射所述第一波段的光;
    所述第一准直元件集成于所述第一激光器内或设于所述第一激光器外,用于准直所述第一激光器出射的所述第一波段的光。
  7. 根据权利要求1所述的一种照明装置,其特征在于,所述第二光源内包含M个第二激光器以及与M个所述第二激光器一一对应的M个第二准直元件,M≥1,其中:
    所述第二激光器用于出射所述第二波段的光;
    所述第二准直元件集成于所述第二激光器内或设于所述第二激光器外,用于准直所述第二激光器出射的所述第二波段的光。
  8. 根据权利要求7所述的一种照明装置,其特征在于,所述第二激光器出射的所述第二波段的光为线偏振光,其中:
    所有所述第二激光器的出光方向相同,所有所述第二激光器的出射光的初始偏振方向也相同,以所述第二激光器的出光方向为轴,轴向旋转所述第二光源内的部分所述第二激光器,改变这部分所述第二激光器出射的所述第二波段的光的偏振方向,使所述第二光源出射的所述第二波段的光入射至所述第二光路调节装置时,其中包含有S偏振光成分和P偏振光成分;
    或者,所有所述第二激光器的出光方向相同,所有所述第二激光器的出射光的偏振方向也相同,以所述第二激光器的出光方向为轴,轴向旋转所述第二光源,使所述第二光源出射的所述第二波段的光入射至所述第二光路调节装置时,其中包含有S偏振光成分和P偏振光成分;
    或者,所有所述第二激光器的出光方向相同,在所述第二光源内设置波片,通过所述波片改变所述第二光源内的全部或部分所述第二激光器出射的所述第二波段的光的偏振方向或偏振状态,使所述第二光源出射的所述第二波段的光入射至所述第二光路调节装置时,其中包含有S偏振光成分和P偏振光成分;
    或者还包含偏振选择元件,所述偏振选择元件的特性为反射所述第二波段的S偏振光且使所述第二波段的P偏振光透射,所述第二光源内的至少一个所述第二激光器用于出射所述第二波段的S偏振光,形成入射光一,所述第二光源内剩余的所述第二激光器用于出射所述第二波段的P偏振光,形成入射光二,由所述偏振选择元件将所述入射光一和所述入射光二合并为一路光后出射,使所述第二光源出射的所述第二波段的光入射至所述第二光路调节装置时,其中包含有S偏振光成分和P偏振光成分。
  9. 根据权利要求1所述的一种照明装置,其特征在于,所述第一散射光学系统由第一反射式散射板构成,或由第一透射式散射板和第一反射镜构成。
  10. 根据权利要求1所述的一种照明装置,其特征在于,还包括第一收集光学系统,所述第一收集光学系统位于所述第一光路调节装置和所述波长转换装置之间的光路上,用于使来自所述第一光路调节装置的所述第一波段的光和所述第二波段的光朝向所述波长转换装置会聚,同时用于收集来自所述波长转换装置的所述第一受激光和所述第二受激光并使其射向所述第一光路调节装置。
  11. 根据权利要求1所述的一种照明装置,其特征在于,还包括第二收集光学系统,所述第二收集光学系统位于所述第二光路调节装置和所述第一散射光学系统之间的光路上,用于使来自所述第二光路调节装置的所述第二波段的光朝向所述第一散射光学系统会聚,同时用于收集来自所述第一散射光学系统的所述第二波段的光并使其射向所述第二光路调节装置。
  12. 根据权利要求1所述的一种照明装置,其特征在于,还包括第一匀光光学系统,所述第一匀光光学系统位于从所述第一光源到所述第一光路调节装置的光路上,用于均匀由所述第一光源出射的所述第一波段的光。
  13. 根据权利要求1所述的一种照明装置,其特征在于,还包括第二匀光光学系统,所述第二匀光光学系统位于从所述第二光源到所述第二光路调节装置的光路上,用于均匀由所述第二光源出射的所述第二波段的光。
  14. 根据权利要求1所述的一种照明装置,其特征在于,还包括聚光光学系统,用于使自所述第二光路调节装置出射的光会聚。
  15. 根据权利要求1所述的一种照明装置,其特征在于,还包括第一透镜组,所述第一透镜组位于从所述第一光源到所述第一光路调节装置的光路上,用于缩小由所述第一光源出射的所述第一波段的光所形成的光束。
  16. 根据权利要求1所述的一种照明装置,其特征在于,还包括第二透镜组,所述第二透镜组位于从所述第二光源到所述第二光路调节装置的光路上,用于缩小由所述第二光源出射的所述第二波段的光所形成的光束。
  17. 根据权利要求1所述的一种照明装置,其特征在于,还包括反射元件,所述反射元件位于所述第二光源和所述第二光路调节装置之间的光路上,所述反射元件具有透射区和反射区,所述透射区允许所述第二波段的光通过或透射过,所述反射区用于反射来自所述第二光路调节装置的所述第二波段的光,并使其中的至少部分光射回所述第二光路调节装置。
  18. 根据权利要求17所述的一种照明装置,其特征在于,还包括导光光学系统,所述导光光学系统位于从所述第二光源到所述第二光路调节装置的光路上,用于引导至少部分由所述第二光源出射的所述第二波段的光通过或透射过所述反射元件的所述透射区后入射至所述第二光路调节装置。
  19. 根据权利要求1所述的一种照明装置,其特征在于,还包括第二散射光学系 统,所述第一光路调节装置使由所述第一光源出射的所述第一波段的光部分透射且部分反射后从不同光路出射,所述波长转换装置接收从其中一个光路出射的所述第一波段的光,所述第二散射光学系统接收从另一个光路出射的所述第一波段的光,将其反射并形成散射的所述第一波段的光;所述第一光路调节装置将来自所述波长转换装置的所述第一受激光和所述第二受激光与至少部分来自所述第二散射光学系统的所述第一波段的光合光后射向所述第二光路调节装置,所述第二光路调节装置将来自所述第一光路调节装置的所述第一受激光、所述第二受激光和所述第一波段的光的合光与至少部分来自所述第一散射光学系统的所述第二波段的光合光后从同一光路出射。
  20. 根据权利要求19所述的一种照明装置,其特征在于,所述第二散射光学系统由第二反射式散射板构成,或由第二透射式散射板和第二反射镜构成。
  21. 根据权利要求19所述的一种照明装置,其特征在于,还包括第三收集光学系统,所述第三收集光学系统位于所述第一光路调节装置和所述第二散射光学系统之间的光路上,用于使来自所述第一光路调节装置的所述第一波段的光朝向所述第二散射光学系统会聚,同时用于收集来自所述第二散射光学系统的所述第一波段的光并使其射向所述第一光路调节装置。
  22. 根据权利要求19所述的一种照明装置,其特征在于,还包括第二四分之一波片,所述第二四分之一波片位于所述第一光路调节装置和所述第二散射光学系统之间的光路上。
  23. 一种照明装置,其特征在于,包括第一光源、第二光源、第一光路调节装置、第三光路调节装置、波长转换装置以及第一散射光学系统,其中:
    所述第一光源用于出射第一波段的光;
    所述第二光源用于出射第二波段的光且所述第二波段与所述第一波段相同或不同;
    所述第三光路调节装置接收自所述第二光源出射的所述第二波段的光,使其部分透射且部分反射后从不同光路出射,所述波长转换装置接收从其中一个光路出射的所述第二波段的光,将其转换成第二受激光且所述第二受激光的波段不同于所述第二波段,所述第一散射光学系统接收从另一个光路出射的所述第二波段的光,将其反射并形成散射的所述第二波段的光;所述第三光路调节装置还接收 来自所述第一光路调节装置的所述第一波段的光,使其透射或反射后由所述波长转换装置接收,所述波长转换装置将其转换成第一受激光且所述第一受激光的波段不同于所述第一波段;所述第三光路调节装置将来自所述波长转换装置的所述第一受激光和所述第二受激光与至少部分来自所述第一散射光学系统的所述第二波段的光合光后从同一光路出射,该合光射向所述第一光路调节装置;
    所述第一光路调节装置接收自所述第一光源出射的所述第一波段的光,使其至少部分透射或至少部分反射;
    当所述第一光路调节装置使所述第一光源出射的所述第一波段的光至少部分透射时,透射过所述第一光路调节装置的所述第一波段的光射向所述第三光路调节装置;所述第一光路调节装置接收来自所述第三光路调节装置的所述第一受激光、所述第二受激光和所述第二波段的光的合光并使其反射;
    当所述第一光路调节装置使所述第一光源出射的所述第一波段的光至少部分反射时,经所述第一光路调节装置反射的所述第一波段的光射向所述第三光路调节装置;所述第一光路调节装置接收来自所述第三光路调节装置的所述第一受激光、所述第二受激光和所述第二波段的光的合光并使其透射。
  24. 根据权利要求23所述的一种照明装置,其特征在于,所述第一光路调节装置为第一偏振分光器,所述第一偏振分光器关于所述第一波段和所述第二波段的入射光具有以下第一特性:反射所述第一波段和所述第二波段的S偏振光且使所述第一波段和所述第二波段的P偏振光透射;所述第一偏振分光器关于所述第一受激光和所述第二受激光具有以下第二特性:使所述第一受激光和所述第二受激光透射或反射。
  25. 根据权利要求23所述的一种照明装置,其特征在于,所述第三光路调节装置为第三偏振分光器,所述第三偏振分光器关于所述第一波段和所述第二波段的入射光具有以下第一特性:反射所述第一波段和所述第二波段的S偏振光且使所述第一波段和所述第二波段的P偏振光透射;所述第三偏振分光器关于所述第一受激光和所述第二受激光具有以下第二特性:使所述第一受激光和所述第二受激光透射或反射。
  26. 根据权利要求23所述的一种照明装置,其特征在于,还包括第一四分之一波片,所述第一四分之一波片位于所述第三光路调节装置和所述第一散射光学系 统之间的光路上。
  27. 根据权利要求23所述的一种照明装置,其特征在于,还包括半波片,所述半波片位于所述第一光路调节装置和所述第三光路调节装置之间的光路上。
  28. 根据权利要求23所述的一种照明装置,其特征在于,所述第一光源内包含N个第一激光器以及与N个所述第一激光器一一对应的N个第一准直元件,N≥1,其中:
    所述第一激光器用于出射所述第一波段的光;
    所述第一准直元件集成于所述第一激光器内或设于所述第一激光器外,用于准直所述第一激光器出射的所述第一波段的光。
  29. 根据权利要求23所述的一种照明装置,其特征在于,所述第二光源内包含M个第二激光器以及与M个所述第二激光器一一对应的M个第二准直元件,M≥1,其中:
    所述第二激光器用于出射所述第二波段的光;
    所述第二准直元件集成于所述第二激光器内或设于所述第二激光器外,用于准直所述第二激光器出射的所述第二波段的光。
  30. 根据权利要求29所述的一种照明装置,其特征在于,所述第二激光器出射的所述第二波段的光为线偏振光,其中:
    所有所述第二激光器的出光方向相同,所有所述第二激光器的出射光的初始偏振方向也相同,以所述第二激光器的出光方向为轴,轴向旋转所述第二光源内的部分所述第二激光器,改变这部分所述第二激光器出射的所述第二波段的光的偏振方向,使所述第二光源出射的所述第二波段的光入射至所述第三光路调节装置时,其中包含有S偏振光成分和P偏振光成分;
    或者,所有所述第二激光器的出光方向相同,所有所述第二激光器的出射光的偏振方向也相同,以所述第二激光器的出光方向为轴,轴向旋转所述第二光源,使所述第二光源出射的所述第二波段的光入射至所述第三光路调节装置时,其中包含有S偏振光成分和P偏振光成分;
    或者,所有所述第二激光器的出光方向相同,在所述第二光源内设置波片,通过所述波片改变所述第二光源内的全部或部分所述第二激光器出射的所述第二波段的光的偏振方向或偏振状态,使所述第二光源出射的所述第二波段的光入 射至所述第三光路调节装置时,其中包含有S偏振光成分和P偏振光成分;
    或者还包含偏振选择元件,所述偏振选择元件的特性为反射所述第二波段的S偏振光且使所述第二波段的P偏振光透射,所述第二光源内的至少一个所述第二激光器用于出射所述第二波段的S偏振光,形成入射光一,所述第二光源内剩余的所述第二激光器用于出射所述第二波段的P偏振光,形成入射光二,由所述偏振选择元件将所述入射光一和所述入射光二合并为一路光后出射,使所述第二光源出射的所述第二波段的光入射至所述第三光路调节装置时,其中包含有S偏振光成分和P偏振光成分。
  31. 根据权利要求23所述的一种照明装置,其特征在于,所述第一散射光学系统由第一反射式散射板构成,或由第一透射式散射板和第一反射镜构成。
  32. 根据权利要求23所述的一种照明装置,其特征在于,还包括第一收集光学系统,所述第一收集光学系统位于所述第三光路调节装置和所述波长转换装置之间的光路上,用于使来自所述第三光路调节装置的所述第一波段的光和所述第二波段的光朝向所述波长转换装置会聚,同时用于收集来自所述波长转换装置的所述第一受激光和所述第二受激光并使其射向所述第三光路调节装置。
  33. 根据权利要求23所述的一种照明装置,其特征在于,还包括第二收集光学系统,所述第二收集光学系统位于所述第三光路调节装置和所述第一散射光学系统之间的光路上,用于使来自所述第三光路调节装置的所述第二波段的光朝向所述第一散射光学系统会聚,同时用于收集来自所述第一散射光学系统的所述第二波段的光并使其射向所述第三光路调节装置。
  34. 根据权利要求23所述的一种照明装置,其特征在于,还包括第一匀光光学系统,所述第一匀光光学系统位于从所述第一光源到所述第一光路调节装置的光路上,用于均匀由所述第一光源出射的所述第一波段的光。
  35. 根据权利要求23所述的一种照明装置,其特征在于,还包括第二匀光光学系统,所述第二匀光光学系统位于从所述第二光源到所述第三光路调节装置的光路上,用于均匀由所述第二光源出射的所述第二波段的光。
  36. 根据权利要求23所述的一种照明装置,其特征在于,还包括聚光光学系统,用于使自所述第一光路调节装置出射的光会聚。
  37. 根据权利要求23所述的一种照明装置,其特征在于,还包括第一透镜组, 所述第一透镜组位于从所述第一光源到所述第一光路调节装置的光路上,用于缩小由所述第一光源出射的所述第一波段的光所形成的光束。
  38. 根据权利要求23所述的一种照明装置,其特征在于,还包括第二透镜组,所述第二透镜组位于从所述第二光源到所述第三光路调节装置的光路上,用于缩小由所述第二光源出射的所述第二波段的光所形成的光束。
  39. 根据权利要求23所述的一种照明装置,其特征在于,还包括反射元件,所述反射元件位于所述第二光源和所述第三光路调节装置之间的光路上,所述反射元件具有透射区和反射区,所述透射区允许所述第二波段的光通过或透射过,所述反射区用于反射来自所述第三光路调节装置的所述第二波段的光,并使其中的至少部分光射回所述第三光路调节装置。
  40. 根据权利要求39所述的一种照明装置,其特征在于,还包括导光光学系统,所述导光光学系统位于从所述第二光源到所述第三光路调节装置的光路上,用于引导至少部分由所述第二光源出射的所述第二波段的光通过或透射过所述反射元件的所述透射区后入射至所述第三光路调节装置。
  41. 根据权利要求23所述的一种照明装置,其特征在于,还包括第二散射光学系统,所述第一光路调节装置使由所述第一光源出射的所述第一波段的光部分透射且部分反射后从不同光路出射,所述第三光路调节装置接收从其中一个光路出射的所述第一波段的光,所述第二散射光学系统接收从另一个光路出射的所述第一波段的光,将其反射并形成散射的所述第一波段的光;所述第一光路调节装置将来自所述第三光路调节装置的所述第一受激光、所述第二受激光和所述第二波段的光的合光与至少部分来自所述第二散射光学系统的所述第一波段的光合光后从同一光路出射。
  42. 根据权利要求41所述的一种照明装置,其特征在于,所述第二散射光学系统由第二反射式散射板构成,或由第二透射式散射板和第二反射镜构成。
  43. 根据权利要求41所述的一种照明装置,其特征在于,还包括第三收集光学系统,所述第三收集光学系统位于所述第一光路调节装置和所述第二散射光学系统之间的光路上,用于使来自所述第一光路调节装置的所述第一波段的光朝向所述第二散射光学系统会聚,同时用于收集来自所述第二散射光学系统的所述第一波段的光并使其射向所述第一光路调节装置。
  44. 根据权利要求41所述的一种照明装置,其特征在于,还包括第二四分之一波片,所述第二四分之一波片位于所述第一光路调节装置和所述第二散射光学系统之间的光路上。
PCT/CN2022/072849 2021-02-07 2022-01-20 一种照明装置 WO2022166594A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110177015.5A CN112797374A (zh) 2021-02-07 2021-02-07 一种照明装置
CN202110177015.5 2021-02-07
CN202120350960.6U CN214198524U (zh) 2021-02-07 2021-02-07 照明装置
CN202120350960.6 2021-02-07

Publications (1)

Publication Number Publication Date
WO2022166594A1 true WO2022166594A1 (zh) 2022-08-11

Family

ID=82741891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072849 WO2022166594A1 (zh) 2021-02-07 2022-01-20 一种照明装置

Country Status (1)

Country Link
WO (1) WO2022166594A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7482282B1 (ja) 2022-11-22 2024-05-13 株式会社ライトショー・テクノロジー 投射型表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108027550A (zh) * 2015-09-24 2018-05-11 精工爱普生株式会社 光源装置、光源单元和投影仪
CN111399241A (zh) * 2020-03-07 2020-07-10 赫尔曼·友瀚·范·贝赫库姆 一种发光装置
US20200285138A1 (en) * 2017-11-29 2020-09-10 Canon Kabushiki Kaisha Light source apparatus and projection type display apparatus using the same
CN112283610A (zh) * 2020-09-30 2021-01-29 赫尔曼·友瀚·范·贝赫库姆 一种光源装置
CN212480896U (zh) * 2020-05-07 2021-02-05 赫尔曼·友瀚·范·贝赫库姆 固态光源发光装置
CN112797374A (zh) * 2021-02-07 2021-05-14 万民 一种照明装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108027550A (zh) * 2015-09-24 2018-05-11 精工爱普生株式会社 光源装置、光源单元和投影仪
US20200285138A1 (en) * 2017-11-29 2020-09-10 Canon Kabushiki Kaisha Light source apparatus and projection type display apparatus using the same
CN111399241A (zh) * 2020-03-07 2020-07-10 赫尔曼·友瀚·范·贝赫库姆 一种发光装置
CN212480896U (zh) * 2020-05-07 2021-02-05 赫尔曼·友瀚·范·贝赫库姆 固态光源发光装置
CN112283610A (zh) * 2020-09-30 2021-01-29 赫尔曼·友瀚·范·贝赫库姆 一种光源装置
CN112797374A (zh) * 2021-02-07 2021-05-14 万民 一种照明装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7482282B1 (ja) 2022-11-22 2024-05-13 株式会社ライトショー・テクノロジー 投射型表示装置

Similar Documents

Publication Publication Date Title
WO2022143318A1 (zh) 一种发光设备
US10365552B2 (en) Light source employing a wavelength conversion device with a light introducing device and a light collecting device
CN103189794B (zh) 照明设备以及使用其的投影型显示设备
US9778553B2 (en) Light-emitting apparatus and a related projection system
CN104020632B (zh) 发光装置及相关投影系统
JP5605047B2 (ja) 光源装置およびそれを用いた投写型表示装置
TWI493273B (zh) 利用一或多光源光管增加亮度之光回收系統、方法及投影機
US10073330B2 (en) Illumination apparatus and projection type display apparatus
US20120327374A1 (en) Illumination apparatus and projection display apparatus
CN107272311B (zh) 发光装置及相关投影系统与照明系统
JPWO2014196015A1 (ja) 照明光学系及びプロジェクタ
JP7118711B2 (ja) 光源装置および画像投射装置
JP6371439B1 (ja) 光源装置および投射型表示装置
JP2007537486A (ja) 異なる色チャネル用の分離光路を有する照明システム
CN112283610B (zh) 一种光源装置
CN107436526B (zh) 一种光源装置以及投影显示装置
CN107272313B (zh) 发光装置及相关投影系统与照明系统
WO2022166594A1 (zh) 一种照明装置
CN107272310B (zh) 发光装置及相关投影系统与照明系统
TWI720144B (zh) 光源裝置
JP2020079820A (ja) 光源装置およびこれを用いた画像投射装置
CN109426050A (zh) 波长转换元件、光源装置和投影仪
US9874805B2 (en) Light source apparatus and projection display apparatus
CN112797374A (zh) 一种照明装置
CN205880483U (zh) 发光装置及相关投影系统与照明系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22748873

Country of ref document: EP

Kind code of ref document: A1