WO2022166535A1 - 快速组装且防冲刷的组合式海上风电基础及方法 - Google Patents

快速组装且防冲刷的组合式海上风电基础及方法 Download PDF

Info

Publication number
WO2022166535A1
WO2022166535A1 PCT/CN2022/071169 CN2022071169W WO2022166535A1 WO 2022166535 A1 WO2022166535 A1 WO 2022166535A1 CN 2022071169 W CN2022071169 W CN 2022071169W WO 2022166535 A1 WO2022166535 A1 WO 2022166535A1
Authority
WO
WIPO (PCT)
Prior art keywords
scour
tank
bottom plate
tank body
filter
Prior art date
Application number
PCT/CN2022/071169
Other languages
English (en)
French (fr)
Inventor
向欣
牛玉龙
李晶华
张丽
戴凌全
Original Assignee
中国长江三峡集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202120316502.0U external-priority patent/CN214657185U/zh
Priority claimed from CN202110153064.5A external-priority patent/CN112942405B/zh
Application filed by 中国长江三峡集团有限公司 filed Critical 中国长江三峡集团有限公司
Publication of WO2022166535A1 publication Critical patent/WO2022166535A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/24Foundations constructed by making use of diving-bells
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation

Definitions

  • the invention belongs to the technical field of offshore wind power, and relates to a combined offshore wind power foundation and method capable of rapid assembly and anti-scour.
  • the fixed support structures and foundation foundations used by offshore wind turbines are mostly monopile foundations, gravity foundations, jacket foundations, multipod foundations, and suction cylinder foundations.
  • the above-mentioned offshore wind power foundation has high structural rigidity and good overall stability, its construction period is long, the structure is complex, the transportation cost is high, and it is sensitive to seabed scouring. influences.
  • the commonly used preventive and buffer brushing measures in engineering mainly include throwing and filling, geotextile compaction, and bionic aquatic weed management.
  • Throwing and filling method is currently the most widely used method, mainly including throwing and filling sand bags, throwing and filling stones, etc., but its construction accuracy is poor, the loss is large, the protective layer forming effect is poor, and the maintenance is large.
  • Geotextiles are mainly covered by sand or interlocking rows. However, there is a risk of loss of sand under the repeated scouring of waves, and there is currently no long-term reliable use case verification.
  • the technical problem to be solved by the present invention is to provide a combined offshore wind power foundation and method that can be quickly assembled and anti-scour.
  • the structure is simple. Connection, the single pile is connected with the cover plate at the upper end of the foundation main body, the oblique steel cable at the bottom of the anti-scour filter is connected with the bottom plate, and the two ends of the connecting piece are respectively connected with the buckle at the top of the anti-scour filter and the earring on the single pile to disturb the flow.
  • the device is connected to the node of the conical anti-scour filter in a taut state and hangs in the anti-scour filter.
  • the main body of the foundation sinks into the bottom of the rock hole in the seabed and contacts the bottom of the hole. It has high structural strength, good stability, good protection performance, and can be quickly Assembly, short construction period, simple and convenient operation, low maintenance cost.
  • a combined offshore wind power foundation with rapid assembly and anti-scour which includes a foundation body, an anti-scour filter screen, a spoiler device and a connecting piece; the connecting piece The lock at one end is hooked to the buckle of the anti-scour filter, the bottom plate of the anti-scour filter is connected to the legs of the base body, and a plurality of turbulence devices are connected to the anti-scour filter; the base body is located in the anti-scour filter, The spoiler device is suspended in the anti-scour filter in the anti-scour filter.
  • the basic body is a hollow tank structure with an open upper end, a mesh sponge body is located outside the tank, a plurality of inclined legs are located at the bottom of the tank, a filler is located inside the tank, and a cover plate is located at the open end of the tank .
  • the diameter of the upper end of the tank body is smaller than the diameter of the bottom of the tank body, a concave arc tank neck is arranged in the middle of the tank body, and the mesh sponge body is wrapped between the open end of the tank body and the bottom of the tank body.
  • the mesh sponge body is a cylindrical structure with openings at both ends, the inner wall of the cylinder and the outer wall of the cylinder are both arc-shaped protrusions, the arc-shaped protrusions of the inner wall of the cylinder are in contact with the tank neck of the tank body, and the arc-shaped protrusions of the outer wall of the cylinder are in contact with the tank neck of the tank body.
  • the rising portion is tangent to the open end of the can body and the bottom of the can body.
  • One end of the outrigger is connected with an outrigger plate, and the fastener passes through the outrigger plate to connect with the bottom of the tank body; through holes are arranged on the edge of the cover plate, and the fastener passes through the through hole to connect with the open end of the tank body; the outrigger is connected to the tank body.
  • the outrigger holes of the bottom plate are connected; the center of the bottom plate is provided with a supporting hole.
  • the anti-scour filter screen is a hollow conical net interwoven with annular steel cables and oblique steel cables, and the oblique steel cables located at the larger bottom of the hollow conical net section are connected with the cable holes on the edge of the bottom plate, located in the hollow conical net section. Small top edge with clasp.
  • the turbulent device is connected at the node where the annular steel cable and the oblique steel cable of the anti-scour filter screen are interwoven.
  • the spoiler device includes a suspension cable connected with the filter bowl and a spoiler belt connected at the bottom of the filter bowl, and the other end of the suspension cable is connected with the node of the anti-scour filter.
  • the connecting piece includes a lock connected with both ends of the screw rod, and a nut fixed in the middle of the screw rod, and the thread directions at the two ends of the screw rod are opposite.
  • the anchoring method for the quick-assembled and anti-scour combined offshore wind power foundation as mentioned above includes the following steps:
  • filling pour the filler into the tank of the foundation body, and then fill with quick-setting concrete;
  • the filler is concrete, lead block, rock, or a mixture of concrete, lead block, and rock;
  • a quick-assembled and anti-scour combined offshore wind power foundation which includes a foundation body, an anti-scour filter, a spoiler device and a connecting piece;
  • the bottom plate of the filter screen is connected with the legs of the foundation main body, and a plurality of turbulence devices are connected with the anti-scour filter screen;
  • the structure is simple. By covering the base body with an anti-scour filter, the legs of the base body are connected to the bottom plate of the anti-scour filter, the single pile is connected to the cover plate at the upper end of the base body, and the oblique steel cable at the bottom of the anti-scour filter is connected to the bottom plate.
  • connection is made by connecting the two ends of the connecting piece with the buckle on the upper end of the anti-scour filter and the earring on the single pile, respectively.
  • the main body sinks into the bottom of the rock hole in the seabed and contacts the bottom of the hole, with high structural strength, good stability, good protection performance, quick assembly, short construction period, simple and convenient operation, and low maintenance cost.
  • the base body is a hollow tank structure with an open upper end, a mesh sponge body is wrapped outside the tank, a plurality of inclined legs are located at the bottom of the tank, fillers are located inside the tank, and a filler is located in the opening of the tank.
  • the structure is simple.
  • the mesh sponge body outside the tank absorbs the floating sand carried by the ocean current and deposits around the main body of the foundation.
  • the outriggers are connected to the bottom plate to support the tank body.
  • the filler is used to increase the overall quality of the foundation main body.
  • the cover plate is connected with the tank mouth of the tank body, and the single pile is connected with the cover plate to form an integral structure.
  • the diameter of the upper end of the tank is smaller than the diameter of the bottom of the tank, a concave arc-shaped tank neck is arranged in the middle of the tank, and the mesh sponge is wrapped between the open end of the tank and the bottom of the tank.
  • the structure is simple. When in use, the mesh sponge body wraps the tank body. Under the impact of the suspended matter, the mesh sponge body is beneficial to slow down the impact force, so that the tank body can be effectively protected.
  • the mesh sponge body is a cylindrical structure with both ends open, the inner wall of the cylinder and the outer wall of the cylinder are arc-shaped protrusions, the arc-shaped protrusions of the inner wall of the cylinder are in contact with the tank neck of the tank body, and the outer wall of the cylinder is in contact with the tank neck of the tank body.
  • the arc-shaped protrusion is tangent to the open end of the tank body and the bottom of the tank body.
  • the inner and outer walls of the mesh sponge of the cylindrical structure are arc-shaped protrusions, and the arc-shaped protrusions of the inner wall are in contact with the tank neck of the tank body to prevent the mesh sponge body from floating upward and out of the tank.
  • the arc-shaped convex part of the outer wall forms a streamline structure, which is conducive to reducing the resistance of the ocean current, reducing the force on the main body of the foundation and improving the stability.
  • one end of the outrigger is connected with a outrigger plate, and the fastener passes through the outrigger plate to connect with the bottom of the tank body; the edge of the cover plate is provided with a through hole, and the fastener passes through the through hole to connect with the open end of the tank body ;
  • the outrigger is connected with the outrigger hole of the bottom plate; the center of the bottom plate is provided with a supporting hole.
  • the structure is simple. When in use, fasteners are used to connect and fix the bottom of the tank body of the base body through the outrigger plate. The installation is convenient and quick.
  • the center of the bottom plate is provided with a support hole to cooperate with the support frame. .
  • the support frame includes a support column vertically connected to the support base, and a support plate matched with the support column.
  • the support column passes through a support hole in the center of the base plate, the support plate contacts the base plate, and the upper end of the support column is in contact with the base body. The bottom of the tank contacts.
  • the anti-scour filter screen is made of a hollow conical mesh interwoven with annular steel cables and oblique steel cables, and the oblique steel cables at the bottom of the larger section of the hollow conical mesh are connected to the cable holes on the edge of the bottom plate, located in the hollowed-out conical mesh.
  • the top edge of the tapered mesh with the smaller cross-section is provided with a retaining ring.
  • the structure is simple. When in use, the oblique steel cable of the anti-scour filter is bound to the cable hole of the bottom plate, and the locks at both ends of the connector are hooked with the buckle and the earrings on the single pile to form an anti-scour filter with a conical structure. , the larger end of the anti-scour filter section is facing down.
  • the turbulence device is connected at the node where the annular steel cable and the oblique steel cable of the anti-scour filter mesh interweave.
  • the structure is simple. When in use, the smaller end of the anti-scour filter screen of the conical structure is located at the upper part, and the turbulent device is connected at the node to hang in the anti-scour filter screen.
  • the annular wire rope and the diagonal wire rope are soft ropes.
  • the spoiler device includes a suspension cable connected to the filter bowl and a spoiler belt connected to the bottom of the filter bowl, and the other end of the suspension cable is connected to the node of the anti-scour filter.
  • the structure is simple. During installation, the suspension cable is connected to the node of the anti-scour filter screen, so that the filter bowl is suspended in the anti-scour filter screen. The disturbance can effectively reduce the local water flow velocity of the foundation and gather the floating sand carried in the water flow.
  • the connecting piece includes a lock connected to both ends of the screw rod, and a nut fixed in the middle of the screw rod, and the thread directions of the two ends of the screw rod are opposite.
  • the structure is simple. When in use, the threads in opposite directions at both ends of the screw are matched with the lock. After the lock is hooked with the earrings of the monopile and the buckle of the anti-scour filter, the knob force of the nut is applied to drive the locks at both ends of the screw to each other. Approach, and tighten the diagonal wire rope of the anti-scour filter, so that the anti-scour filter is in a taut state.
  • the anchoring method for the quick-assembled and anti-scour combined offshore wind power foundation which includes the following steps:
  • filling pour the filler into the tank of the foundation body, and then fill with quick-setting concrete;
  • the filler is concrete, lead block, rock, or a mixture of concrete, lead block, and rock;
  • a combined offshore wind power foundation and method for quick assembly and anti-scour which includes a base body, an anti-scour filter, a spoiler device and a connecting piece.
  • the bottom plate of the scour filter is connected, the single pile is connected to the cover plate at the upper end of the foundation main body, the oblique steel cable at the bottom of the anti-scour filter is connected to the bottom plate, and the two ends of the connecting piece are respectively connected with the buckle at the top of the anti-scour filter and the single pile.
  • the earrings are connected, the spoiler device is connected with the node of the conical anti-scour filter in the taut state and hangs in the anti-scour filter, and the bottom plate of the bottom of the hole in the seabed rock is sunk through the foundation body to contact with the bottom of the hole.
  • the invention overcomes the problems of low protection performance and stability of the original wind power single pile foundation, long construction period and high cost, and has the advantages of simple structure, high structural strength, good stability, good protection performance, quick assembly, and short construction period. Simple and convenient operation and low maintenance cost.
  • FIG. 1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a schematic structural diagram of the basic body of the present invention.
  • FIG. 3 is a schematic structural diagram of the connection between the connector of the present invention, the monopile and the anti-scour filter screen.
  • FIG. 4 is a cross-sectional view of the mesh sponge of the present invention.
  • FIG. 5 is a schematic top view of the anti-scour filter screen of the present invention.
  • FIG. 6 is a schematic structural diagram of the turbulence device of the present invention.
  • FIG. 7 is a schematic diagram of the exploded structure of the connection between the outrigger and the bottom of the basic main body tank according to the present invention.
  • FIG. 8 is a schematic structural diagram of the connector of the present invention.
  • FIG. 9 is a state view of the support frame supporting the base body and the bottom plate according to the present invention.
  • Figure 10 is a state diagram of the use of the present invention.
  • base body 1 mesh sponge 11, legs 12, filler 13, cover 14, anti-scour filter 2, bottom plate 21, buckle 22, spoiler 3, filter bowl 31, suspension cable 32, spoiler belt 33, connector 4, screw 41, lock 42, nut 43.
  • the combined offshore wind power foundation with quick assembly and anti-scour includes a base body 1, an anti-scour filter screen 2, a spoiler device 3 and a connector 4; a lock at one end of the connector 4 42 is hooked to the buckle 22 of the anti-scour filter 2, the bottom plate 21 of the anti-scour filter 2 is connected to the legs 12 of the basic body 1, and a plurality of spoiler devices 3 are connected to the anti-scour filter 2; the basic body 1 is located at Inside the anti-scour filter 2 , the spoiler device 3 is suspended in the anti-scour filter 2 .
  • the structure is simple.
  • the legs 12 of the base body 1 are connected to the bottom plate 21 of the anti-scour filter screen 2, and the single pile is connected to the cover plate 14 at the upper end of the base body 1.
  • the oblique steel cable at the bottom is connected with the bottom plate 21, and the two ends of the connecting piece 4 are respectively connected with the buckle 22 on the upper end of the anti-scour filter screen 2 and the earring on the single pile.
  • the nodes of the filter screen 2 are connected and suspended in the anti-scour filter screen 2, and the bottom plate 21 is sunk into the seabed rock hole through the foundation body 1 to contact the bottom of the hole, with high structural strength, good stability, good protection performance, quick assembly, and construction period. Short, simple and convenient operation, low maintenance cost.
  • the base body 1 is a hollow tank structure with an open upper end, a mesh sponge 11 is wrapped outside the tank, a plurality of inclined legs 12 are located at the bottom of the tank, and a filler 13 is located inside the tank , and a cover plate 14 is arranged at the open end of the tank body.
  • the structure is simple.
  • the mesh sponge body 11 located outside the tank body absorbs the floating sand carried in the ocean current and deposits around the base body 1, the legs 12 are connected to the bottom plate 21 to support the tank body, and the filler 13 is used to increase the base body.
  • the overall quality of 1 is improved, and the stability is improved.
  • the cover plate 14 is connected with the tank mouth of the tank body, and the single pile is connected with the cover plate 14 to form an integral structure.
  • the diameter of the upper end of the tank is smaller than the diameter of the bottom of the tank, a concave arc tank neck is arranged in the middle of the tank, and the mesh sponge 11 is wrapped between the open end of the tank and the bottom of the tank.
  • the structure is simple. When in use, the mesh sponge body 11 wraps the tank body. Under the impact of the suspended matter, the mesh sponge body 11 is beneficial to slow down the impact force, so that the tank body can be effectively protected.
  • the mesh sponge 11 is a cylindrical structure with openings at both ends, the inner wall of the cylinder and the outer wall of the cylinder are both arc-shaped protrusions, and the arc-shaped protrusions of the inner wall of the cylinder are in contact with the tank neck of the tank body, The arc-shaped convex part of the outer wall of the cylinder is tangent to the open end of the tank body and the bottom of the tank body.
  • the structure is simple.
  • the inner and outer walls of the mesh sponge body 11 of the cylindrical structure are arc-shaped protrusions, and the arc-shaped protrusions of the inner wall are in contact with the tank neck of the tank body to prevent the mesh sponge body 11 from floating upward.
  • the arc-shaped convex part of the outer wall forms a streamline structure, which is beneficial to reduce the resistance of the ocean current, reduce the force on the foundation main body 1, and improve the stability.
  • one end of the outrigger 12 is connected with a outrigger plate, and the fastener passes through the outrigger plate and is connected to the bottom of the tank body; the edge of the cover plate 14 is provided with a through hole, and the fastener passes through the through hole and is connected to the tank body
  • the open end is connected; the outrigger 12 is connected with the outrigger hole of the bottom plate 21 ; the center of the bottom plate 21 is provided with a support hole.
  • the structure is simple. When in use, fasteners are used to connect and fix the bottom of the tank body of the base body 1 through the outrigger plate. The installation is convenient and quick.
  • the center of the bottom plate 21 is provided with a support hole to cooperate with the support frame. and base body 1.
  • the support frame includes a support column vertically connected to the support bottom plate, and a support plate matched with the support column.
  • the support column passes through the support hole in the center of the bottom plate 21, the support plate contacts the bottom plate 21, and the upper end of the support column is connected to the foundation.
  • the bottom of the tank of the main body 1 is in contact.
  • the anti-scour filter screen 2 is made of a hollow conical mesh interwoven with annular steel cables and oblique steel cables, and the oblique steel cables at the bottom of the larger section of the hollow conical mesh are connected to the cable holes on the edge of the bottom plate 21 , and a retaining ring 22 is arranged on the top edge of the hollow conical mesh with a smaller cross-section.
  • the structure is simple. When in use, the oblique steel cables of the anti-scour filter 2 are bound to the cable holes of the bottom plate 21, and the locks 42 at both ends of the connector 4 are hooked to the buckle 22 and the earrings on the monopile to form a conical structure. of the anti-scour filter 2, the larger end of the anti-scour filter 2 is facing downward.
  • the turbulence device 3 is connected at the node where the annular steel cable and the oblique steel cable of the anti-scour filter screen 2 are interwoven.
  • the structure is simple. When in use, the smaller end of the anti-scour filter screen 2 of the conical structure is located at the upper part, and the turbulent device 3 is connected to the anti-scour filter screen 2 at the node.
  • the annular wire rope and the diagonal wire rope are soft ropes.
  • the spoiler device 3 includes a suspension cable 32 connected to the filter bowl 31 and a spoiler belt 33 connected to the bottom of the filter bowl 31 , and the other end of the suspension cable 32 is connected to a node of the anti-scour filter 2 connect.
  • the structure is simple. During installation, the suspension cable 32 is connected to the node of the anti-scour filter screen 2, so that the filter bowl 31 is suspended from the anti-scour filter screen 2.
  • the spoiler belt 33 Disturbing the ocean current with the seawater drift, effectively reducing the local water flow speed of the foundation, and gathering the floating sand carried in the water flow.
  • the connector 4 includes a lock 42 connected to both ends of the screw rod 41 , and a nut 43 fixed in the middle of the screw rod 41 , and the thread directions at both ends of the screw rod 41 are opposite.
  • the structure is simple. When in use, the opposite threads of the two ends of the screw rod 41 are matched with the lock buckle 42. After the lock buckle 42 is hooked with the earring of the monopile and the buckle ring 22 of the anti-scour filter screen 2, the knob force of the nut 43 is applied to drive it.
  • the locks 42 at both ends of the screw rod 41 are close to each other, and the oblique wire ropes of the anti-scour filter screen 2 are tightened, so that the anti-scour filter screen 2 is in a taut state.
  • the fast-assembled and scour-resistant combined offshore wind power foundation anchoring method includes the following steps:
  • the filler 13 is concrete, lead, rock, or a mixture of concrete, lead, and rock;
  • the foundation body 1 is covered with an anti-scour filter screen 2, and the legs 12 of the base body 1 are connected with the bottom plate 21 of the anti-scour filter screen 2 , the single pile is connected to the cover plate 14 on the upper end of the foundation main body 1, the oblique steel cable at the bottom of the anti-scour filter 2 is connected to the bottom plate 21, and the two ends of the connecting piece 4 are respectively connected with the buckle 22 on the upper end of the anti-scour filter 2 and the single pile
  • the earrings on the top are connected, the spoiler 3 is connected to the node of the conical anti-scour filter 2 in the tight state and hangs in the anti-scour filter 2, and the base body 1 is sunk into the bottom of the bottom of the rock hole in the seabed 21 and contacts the bottom of the hole, the structural strength is High, good stability, good protection performance, quick assembly, short construction period, simple and convenient operation, and low maintenance cost.
  • the mesh sponge body 11 located outside the tank body absorbs the floating sand carried in the ocean current and is deposited around the foundation body 1 , the legs 12 are connected to the bottom plate 21 to support the tank body, and the filler 13 is used to increase the overall body of the foundation body 1 .
  • the cover plate 14 is connected with the tank mouth of the tank body, and the single pile is connected with the cover plate 14 to form an integral structure.
  • the mesh sponge body 11 When in use, the mesh sponge body 11 wraps the tank body. Under the impact of the suspended matter, the mesh sponge body 11 is beneficial to slow down the impact force, so that the tank body can be effectively protected.
  • the inner and outer walls of the mesh sponge body 11 of the cylindrical structure are arc-shaped protrusions, and the arc-shaped protrusions of the inner wall are in contact with the tank neck of the tank body, preventing the mesh sponge body 11 from floating upward and out of the tank body.
  • the arc-shaped convex part of the outer wall forms a streamline structure, which is beneficial to reduce the resistance of the ocean current, reduce the force on the base body 1, and improve the stability.
  • the center of the bottom plate 21 is provided with a support hole to cooperate with the support frame. During installation, the base plate 21 and the base body are supported by the support frame. 1.
  • the oblique steel cable of the anti-scour filter 2 is bound to the cable hole of the bottom plate 21, and the locks 42 at both ends of the connector 4 are hooked to the buckle 22 and the earrings on the monopile to form an anti-scour of conical structure.
  • Filter 2 the larger end of the anti-scour filter 2 is facing down.
  • the smaller end of the anti-scour filter screen 2 of the conical structure is located at the upper part, and the spoiler 3 is connected to the anti-scour filter screen 2 at the node.
  • the suspension cable 32 is connected to the node of the anti-scour filter 2, so that the filter bowl 31 is suspended in the anti-scour filter 2.
  • the spoiler belt 33 follows the sea water. Fluttering disturbs the ocean current, effectively reducing the local water flow speed of the foundation, and gathering the floating sand carried in the water flow.
  • the threads in opposite directions at both ends of the screw rod 41 are matched with the lock buckle 42.
  • the lock buckle 42 is hooked with the earring of the monopile and the buckle ring 22 of the anti-scour filter screen 2
  • the knob force of the nut 43 is applied to drive the screw rod 41.
  • the locking buckles 42 at the ends are close to each other, and the oblique steel cables of the anti-scour filter screen 2 are tightened, so that the anti-scour filter screen 2 is in a taut state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Foundations (AREA)

Abstract

一种快速组装且防冲刷的组合式海上风电基础及方法,它包括基础主体(1)、防冲刷滤网(2)、扰流装置(3)和连接件(4),通过在基础主体(1)外套设防冲刷滤网(2),基础主体(1)的支腿(12)与防冲刷滤网(2)的底板(21)连接,单桩与基础主体(1)上端的盖板(14)连接,防冲刷滤网(2)底部的斜向钢索与底板(21)连接,通过连接件(4)两端分别与防冲刷滤网(2)上端的扣环(22)和单桩上的耳环连接,扰流装置(3)与绷紧状态锥形防冲刷滤网(2)的节点连接悬垂于防冲刷滤网(2)内,通过基础主体(1)沉入海底岩石孔内底板(21)与孔底接触。

Description

快速组装且防冲刷的组合式海上风电基础及方法 技术领域
本发明属于海上风电技术领域,涉及一种快速组装且防冲刷的组合式海上风电基础及方法。
背景技术
20世纪70年代石油危机以后,开始了风能利用的新时代。在一些地理位置不错的陆地上,风能的开发具有一定的经济价值,与此同时人们发现海上风力发电的经济性也相当不错,由于没有障碍物的影响,海上风速比陆上风速要高出20%-100%,发电效率也会相应提升。海上风电是可再生能源发展的重要领域,是近年来全球风力发电的重要方向之一。海上风电具有资源丰富、发电利用小时数高、不占用土地、不消耗水资源和适宜大规模开发的特点,同时我国不仅拥有漫长的浅水海岸线,而且重要城市相对靠近海岸,基于上述原因海上风力发电的前景被广泛看好。虽然海上风电具有很多优点,但它的缺点也应引起足够的重视,主要表现在海上风电基础施工过程复杂、周期长、成本高等方面。
目前海上风电机组所使用的固定式支撑结构及地基基础多为单桩基础、重力式基础、导管架基础、多脚架基础、吸力筒基础等。上述海上风电基础虽然结构刚度较大、整体稳定性好,但是其施工周期较长,结构复杂,运输成本较高同时对海床冲刷较为敏感需要采取相应的措施来预防和减缓冲刷对基础安全的影响。目前工程中常用的预防和减缓冲刷措施主要有抛填、土工布压实、仿生水草治理等。
抛填法是目前采用最广泛的方法,主要有抛填砂袋、抛填石块等,但其施工精度差,流失量大,防护层成型效果差,维护量大。
土工布法主要由砂被覆盖或连锁排覆盖。但砂被在波流的反复冲刷下存在流失风险,目前无长期可靠使用的实例验证。
仿生水草治理时一些海底流速较快,沙粒粒径较小,无法形成有效沉积覆盖的仿生草区域且成本较高。
发明内容
本发明所要解决的技术问题是提供一种快速组装且防冲刷的组合式海上风电基础及方法,结构简单,采用在基础主体外套设防冲刷滤网,基础主体的支腿与防冲刷滤网的底板连接,单桩与基础主体上端的盖板连接,防冲刷滤网底部的斜向钢索与底板连接,连接件两端分别与防冲刷滤网上端的扣环和单桩上的耳环连接,扰流装置与绷紧状态锥形防冲刷滤网的节点连接悬垂于防冲刷滤网内,基础主体沉入海底岩石孔内底板与孔底接触,结构强度高,稳定性好,防护性能好,可快速组装,施工周期短,操作简单方便,维护成本低。
为解决上述技术问题,本发明所采用的技术方案是:一种快速组装且防冲刷的组合式海上风电基础,它包括基础主体、防冲刷滤网、扰流装置和连接件;所述连接件一端的锁扣与防冲刷滤网的扣环钩连,防冲刷滤网的底板与基础主体的支腿连接,多个扰流装置与防冲刷滤网连接;基础主体位于防冲刷滤网内,扰流装置悬垂于防冲刷滤网内防冲刷滤 网内。
所述基础主体为上端开口的中空罐体结构,位于罐体外包裹网孔海绵体,位于罐体底部设置多个倾斜的支腿,位于罐体内部设置填充物,位于罐体开口端设置盖板。
所述罐体上端直径小于罐体底部直径,位于罐体中部设置内凹的弧形罐颈,网孔海绵体包裹在罐体开口端至罐体底部之间。
所述网孔海绵体为两端开口的筒状结构,筒内壁和筒外壁均为弧形凸起部,筒内壁的弧形凸起部与罐体的罐颈接触,筒外壁的弧形凸起部与罐体开口端和罐体底部相切。
所述支腿的一端连接有支腿板,紧固件穿过支腿板与罐体底部连接;盖板边沿设置通孔,紧固件穿过通孔与罐体开口端连接;支腿与底板的支腿孔连接;底板中心设置支撑孔。
所述防冲刷滤网由环形钢索和斜向钢索交织的镂空锥形网,位于镂空锥形网截面较大底部的斜向钢索与底板边沿的索孔连接,位于镂空锥形网截面较小的顶部边沿设置扣环。
所述防冲刷滤网的环形钢索和斜向钢索交织的节点处与扰流装置连接。
所述扰流装置包括与滤网碗连接的悬索和位于滤网碗底部连接的扰流带,悬索的另一端与防冲刷滤网的节点连接。
所述连接件包括与螺杆两端连接的锁扣,以及位于螺杆中部固定的螺母,螺杆两端的螺纹方向相反。
如上所述的快速组装且防冲刷的组合式海上风电基础的锚固方法,它包括如下步骤:
S1,安装支腿和底板,采用支撑架支撑底板和基础主体的罐体,底板上的支撑孔与支撑架的支撑柱配合,由支撑板支撑底板,罐体底部与支撑柱上端接触;
S2,安装支腿和底板,将支腿下端与底板的支腿孔配合,支腿与基础主体的罐体底部螺栓连接;再将支腿下端与底板的支腿孔满焊;
S3,填充,将填充物灌注到基础主体的罐体内,再填充速凝混凝土;填充物为混凝土、铅块、岩石,或混凝土、铅块、岩石的混合物;
S4,安装盖板,将盖板与基础主体的罐体上端的罐口配合,紧固件穿过盖板与罐口连接固定;
S5,安装防冲刷滤网,将防冲刷滤网套设在基础主体外,截面较大的底部朝下,防冲刷滤网底部的斜向钢索穿过底板上的索孔与其捆绑连接;
S6,吊装,采用起吊设备将基础主体缓慢沉入预先钻好的海底岩石孔内,底板与岩石孔底部接触;
或者,将单桩与盖板焊接;连接件两端的锁扣分别与扣环和单桩上的耳环钩连,旋转螺杆使防冲刷滤网处于绷紧状态;将扰流装置的悬索与防冲刷滤网的节点连接后,再将基础主体缓慢沉入预先钻好的海底岩石孔内,底板与岩石孔底部接触。
一种快速组装且防冲刷的组合式海上风电基础,它包括基础主体、防冲刷滤网、扰流装置和连接件;连接件一端的锁扣与防冲刷滤网的扣环钩连,防冲刷滤网的底板与基础主体的支腿连接,多个扰流装置与防冲刷滤网连接;基础主体位于防冲刷滤网内,扰流装置悬垂于防冲刷滤网内防冲刷滤网内。结构简单,通过在基础主体外套设防冲刷滤网,基础主 体的支腿与防冲刷滤网的底板连接,单桩与基础主体上端的盖板连接,防冲刷滤网底部的斜向钢索与底板连接,通过连接件两端分别与防冲刷滤网上端的扣环和单桩上的耳环连接,扰流装置与绷紧状态锥形防冲刷滤网的节点连接悬垂于防冲刷滤网内,通过基础主体沉入海底岩石孔内底板与孔底接触,结构强度高,稳定性好,防护性能好,可快速组装,施工周期短,操作简单方便,维护成本低。
在优选的方案中,基础主体为上端开口的中空罐体结构,位于罐体外包裹网孔海绵体,位于罐体底部设置多个倾斜的支腿,位于罐体内部设置填充物,位于罐体开口端设置盖板。结构简单,使用时,位于罐体外包覆的网孔海绵体吸附海流中携带的浮砂沉积在基础主体周围,支腿与底板连接支撑罐体,填充物用于增加基础主体的整体质量,提高稳定性,盖板在与罐体的罐口连接,单桩与盖板连接形成整体结构。
在优选的方案中,罐体上端直径小于罐体底部直径,位于罐体中部设置内凹的弧形罐颈,网孔海绵体包裹在罐体开口端至罐体底部之间。结构简单,使用时,网孔海绵体包裹罐体,在受到悬浮物冲击下,网孔海绵体有利于减缓冲击力,使罐体得到有效保护。
在优选的方案中,网孔海绵体为两端开口的筒状结构,筒内壁和筒外壁均为弧形凸起部,筒内壁的弧形凸起部与罐体的罐颈接触,筒外壁的弧形凸起部与罐体开口端和罐体底部相切。结构简单,使用时,筒状结构的网孔海绵体内壁和外壁均为弧形凸起部,内壁的弧形凸起部与罐体的罐颈配合接触,阻挡网孔海绵体向上浮动脱出罐体,外壁的弧形凸起部形成流线结构,有利于减小海流的阻力,使基础主体受力减小,提高稳定性。
在优选的方案中,支腿的一端连接有支腿板,紧固件穿过支腿板与罐体底部连接;盖板边沿设置通孔,紧固件穿过通孔与罐体开口端连接;支腿与底板的支腿孔连接;底板中心设置支撑孔。结构简单,使用时,采用紧固件穿过支腿板与基础主体的罐体底部连接固定,安装方便快捷,底板中心设置支撑孔与支撑架配合,安装时,由支撑架支撑底板和基础主体。
优选地,支撑架包括支撑底板竖直连接的支撑柱,以及与支撑柱配合的支撑板,安装时,支撑柱穿过底板中心的支撑孔,支撑板与底板接触,支撑柱上端与基础主体的罐体底部接触。
在优选的方案中,防冲刷滤网由环形钢索和斜向钢索交织的镂空锥形网,位于镂空锥形网截面较大底部的斜向钢索与底板边沿的索孔连接,位于镂空锥形网截面较小的顶部边沿设置扣环。结构简单,使用时,防冲刷滤网的斜向钢索与底板的索孔绑定,连接件两端的锁扣与扣环和单桩上的耳环钩连,形成锥形结构的防冲刷滤网,防冲刷滤网截面较大的一端朝下。
在优选的方案中,防冲刷滤网的环形钢索和斜向钢索交织的节点处与扰流装置连接。结构简单,使用时,锥形结构的防冲刷滤网截面较小的一端位于上部,位于节点处连接扰流装置悬垂于防冲刷滤网内。
优选地,环形钢索和斜向钢索为软索。
在优选的方案中,扰流装置包括与滤网碗连接的悬索和位于滤网碗底部连接的扰流带,悬索的另一端与防冲刷滤网的节点连接。结构简单,安装时,悬索与防冲刷滤网的节点连接,使滤网碗悬垂与防冲刷滤网内,使用时,当海流流经防冲刷滤网时,扰流带随海水飘动对海流进行扰动,有效的减小基础局部的水流速度,将水流中携带的浮沙聚集。
在优选的方案中,连接件包括与螺杆两端连接的锁扣,以及位于螺杆中部固定的螺母,螺杆两端的螺纹方向相反。结构简单,使用时,螺杆两端方向相反的螺纹与锁扣配合,在锁扣与单桩的耳环和防冲刷滤网的扣环钩连后,施加螺母的旋钮力驱动螺杆两端的锁扣相互靠近,拉紧述防冲刷滤网的斜向钢索,使防冲刷滤网处于绷紧状态。
在优选的方案中,如上快速组装且防冲刷的组合式海上风电基础的锚固方法,它包括如下步骤:
S1,安装支腿和底板,采用支撑架支撑底板和基础主体的罐体,底板上的支撑孔与支撑架的支撑柱配合,由支撑板支撑底板,罐体底部与支撑柱上端接触;
S2,安装支腿和底板,将支腿下端与底板的支腿孔配合,支腿与基础主体的罐体底部螺栓连接;再将支腿下端与底板的支腿孔满焊;
S3,填充,将填充物灌注到基础主体的罐体内,再填充速凝混凝土;填充物为混凝土、铅块、岩石,或混凝土、铅块、岩石的混合物;
S4,安装盖板,将盖板与基础主体的罐体上端的罐口配合,紧固件穿过盖板与罐口连接固定;
S5,安装防冲刷滤网,将防冲刷滤网套设在基础主体外,截面较大的底部朝下,防冲刷滤网底部的斜向钢索穿过底板上的索孔与其捆绑连接;
S6,吊装,采用起吊设备将基础主体缓慢沉入预先钻好的海底岩石孔内,底板与岩石孔底部接触;
或者,将单桩与盖板焊接;连接件两端的锁扣分别与扣环和单桩上的耳环钩连,旋转螺杆使防冲刷滤网处于绷紧状态;将扰流装置的悬索与防冲刷滤网的节点连接后,再将基础主体缓慢沉入预先钻好的海底岩石孔内,底板与岩石孔底部接触。
一种快速组装且防冲刷的组合式海上风电基础及方法,它包括基础主体、防冲刷滤网、扰流装置和连接件,通过在基础主体外套设防冲刷滤网,基础主体的支腿与防冲刷滤网的底板连接,单桩与基础主体上端的盖板连接,防冲刷滤网底部的斜向钢索与底板连接,通过连接件两端分别与防冲刷滤网上端的扣环和单桩上的耳环连接,扰流装置与绷紧状态锥形防冲刷滤网的节点连接悬垂于防冲刷滤网内,通过基础主体沉入海底岩石孔内底板与孔底接触。本发明克服了原风电单桩基础防护性能和稳定性较低,施工周期长,成本高的问题,具有结构简单,结构强度高,稳定性好,防护性能好,可快速组装,施工周期短,操作简单方便,维护成本低的特点。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1为本发明的结构示意图。
图2为本发明基础主体的结构示意图。
图3为本发明连接件与单桩和防冲刷滤网连接的结构示意图。
图4为本发明网孔海绵体的剖面图。
图5为本发明防冲刷滤网的俯视示意图。
图6为本发明扰流装置的结构示意图。
图7为本发明支腿与基础主体罐体底部连接分解结构示意图。
图8为本发明连接件的结构示意图。
图9为本发明支撑架支撑基础主体和底板的状态图。
图10为本发明使用状态图。
图中:基础主体1,网孔海绵体11,支腿12,填充物13,盖板14,防冲刷滤网2,底板21,扣环22,扰流装置3,滤网碗31,悬索32,扰流带33,连接件4,螺杆41,锁扣42,螺母43。
具体实施方式
如图1~图10中,快速组装且防冲刷的组合式海上风电基础,它包括基础主体1、防冲刷滤网2、扰流装置3和连接件4;所述连接件4一端的锁扣42与防冲刷滤网2的扣环22钩连,防冲刷滤网2的底板21与基础主体1的支腿12连接,多个扰流装置3与防冲刷滤网2连接;基础主体1位于防冲刷滤网2内,扰流装置3悬垂于防冲刷滤网2内。结构简单,通过在基础主体1外套设防冲刷滤网2,基础主体1的支腿12与防冲刷滤网2的底板21连接,单桩与基础主体1上端的盖板14连接,防冲刷滤网2底部的斜向钢索与底板21连接,通过连接件4两端分别与防冲刷滤网2上端的扣环22和单桩上的耳环连接,扰流装置3与绷紧状态锥形防冲刷滤网2的节点连接悬垂于防冲刷滤网2内,通过基础主体1沉入海底岩石孔内底板21与孔底接触,结构强度高,稳定性好,防护性能好,可快速组装,施工周期短,操作简单方便,维护成本低。
优选的方案中,所述基础主体1为上端开口的中空罐体结构,位于罐体外包裹网孔海绵体11,位于罐体底部设置多个倾斜的支腿12,位于罐体内部设置填充物13,位于罐体开口端设置盖板14。结构简单,使用时,位于罐体外包覆的网孔海绵体11吸附海流中携带的浮砂沉积在基础主体1周围,支腿12与底板21连接支撑罐体,填充物13用于增加基础主体1的整体质量,提高稳定性,盖板14在与罐体的罐口连接,单桩与盖板14连接形成整体结构。
优选的方案中,所述罐体上端直径小于罐体底部直径,位于罐体中部设置内凹的弧形罐颈,网孔海绵体11包裹在罐体开口端至罐体底部之间。结构简单,使用时,网孔海绵体11包裹罐体,在受到悬浮物冲击下,网孔海绵体11有利于减缓冲击力,使罐体得到有效保护。
优选的方案中,所述网孔海绵体11为两端开口的筒状结构,筒内壁和筒外壁均为弧形凸起部,筒内壁的弧形凸起部与罐体的罐颈接触,筒外壁的弧形凸起部与罐体开口端和罐体底部相切。结构简单,使用时,筒状结构的网孔海绵体11内壁和外壁均为弧形凸起部,内壁的弧形凸起部与罐体的罐颈配合接触,阻挡网孔海绵体11向上浮动脱出罐体,外壁的弧形凸起部形成流线结构,有利于减小海流的阻力,使基础主体1受力减小,提高稳定性。
优选的方案中,所述支腿12的一端连接有支腿板,紧固件穿过支腿板与罐体底部连接;盖板14边沿设置通孔,紧固件穿过通孔与罐体开口端连接;支腿12与底板21的支腿孔连接;底板21中心设置支撑孔。结构简单,使用时,采用紧固件穿过支腿板与基础主体1的罐体底部连接固定,安装方便快捷,底板21中心设置支撑孔与支撑架配合,安装时,由支撑架支撑底板21和基础主体1。
优选地,支撑架包括支撑底板竖直连接的支撑柱,以及与支撑柱配合的支撑板,安装时,支撑柱穿过底板21中心的支撑孔,支撑板与底板21接触,支撑柱上端与基础主体1的罐体底部接触。
优选的方案中,所述防冲刷滤网2由环形钢索和斜向钢索交织的镂空锥形网,位于 镂空锥形网截面较大底部的斜向钢索与底板21边沿的索孔连接,位于镂空锥形网截面较小的顶部边沿设置扣环22。结构简单,使用时,防冲刷滤网2的斜向钢索与底板21的索孔绑定,连接件4两端的锁扣42与扣环22和单桩上的耳环钩连,形成锥形结构的防冲刷滤网2,防冲刷滤网2截面较大的一端朝下。
优选的方案中,所述防冲刷滤网2的环形钢索和斜向钢索交织的节点处与扰流装置3连接。结构简单,使用时,锥形结构的防冲刷滤网2截面较小的一端位于上部,位于节点处连接扰流装置3悬垂于防冲刷滤网2内。
优选地,环形钢索和斜向钢索为软索。
优选的方案中,所述扰流装置3包括与滤网碗31连接的悬索32和位于滤网碗31底部连接的扰流带33,悬索32的另一端与防冲刷滤网2的节点连接。结构简单,安装时,悬索32与防冲刷滤网2的节点连接,使滤网碗31悬垂与防冲刷滤网2内,使用时,当海流流经防冲刷滤网2时,扰流带33随海水飘动对海流进行扰动,有效的减小基础局部的水流速度,将水流中携带的浮沙聚集。
优选的方案中,所述连接件4包括与螺杆41两端连接的锁扣42,以及位于螺杆41中部固定的螺母43,螺杆41两端的螺纹方向相反。结构简单,使用时,螺杆41两端方向相反的螺纹与锁扣42配合,在锁扣42与单桩的耳环和防冲刷滤网2的扣环22钩连后,施加螺母43的旋钮力驱动螺杆41两端的锁扣42相互靠近,拉紧述防冲刷滤网2的斜向钢索,使防冲刷滤网2处于绷紧状态。
优选的方案中,如上所述的快速组装且防冲刷的组合式海上风电基础的锚固方法,它包括如下步骤:
S1,安装支腿和底板,采用支撑架支撑底板21和基础主体1的罐体,底板21上的支撑孔与支撑架的支撑柱配合,由支撑板支撑底板21,罐体底部与支撑柱上端接触;
S2,安装支腿和底板,将支腿12下端与底板21的支腿孔配合,支腿12与基础主体1的罐体底部螺栓连接;再将支腿12下端与底板21的支腿孔满焊;
S3,填充,将填充物13灌注到基础主体1的罐体内,再填充速凝混凝土;填充物13为混凝土、铅块、岩石,或混凝土、铅块、岩石的混合物;
S4,安装盖板,将盖板14与基础主体1的罐体上端的罐口配合,紧固件穿过盖板14与罐口连接固定;
S5,安装防冲刷滤网,将防冲刷滤网2套设在基础主体1外,截面较大的底部朝下,防冲刷滤网2底部的斜向钢索穿过底板21上的索孔与其捆绑连接;
S6,吊装,采用起吊设备将基础主体1缓慢沉入预先钻好的海底岩石孔内,底板21与岩石孔底部接触;
或者,将单桩与盖板14焊接;连接件4两端的锁扣42分别与扣环22和单桩上的耳环钩连,旋转螺杆41使防冲刷滤网2处于绷紧状态;将扰流装置3的悬索32与防冲刷滤网2的节点连接后,再将基础主体1缓慢沉入预先钻好的海底岩石孔内,底板21与岩石孔底部接触。
如上所述的快速组装且防冲刷的组合式海上风电基础及方法,安装使用时,在基础主体1外套设防冲刷滤网2,基础主体1的支腿12与防冲刷滤网2的底板21连接,单桩与基础主体1上端的盖板14连接,防冲刷滤网2底部的斜向钢索与底板21连接,连接件4两端分别与防冲刷滤网2上端的扣环22和单桩上的耳环连接,扰流装置3与绷紧状态锥形防冲刷滤网 2的节点连接悬垂于防冲刷滤网2内,基础主体1沉入海底岩石孔内底板21与孔底接触,结构强度高,稳定性好,防护性能好,可快速组装,施工周期短,操作简单方便,维护成本低。
使用时,位于罐体外包覆的网孔海绵体11吸附海流中携带的浮砂沉积在基础主体1周围,支腿12与底板21连接支撑罐体,填充物13用于增加基础主体1的整体质量,提高稳定性,盖板14在与罐体的罐口连接,单桩与盖板14连接形成整体结构。
使用时,网孔海绵体11包裹罐体,在受到悬浮物冲击下,网孔海绵体11有利于减缓冲击力,使罐体得到有效保护。
使用时,筒状结构的网孔海绵体11内壁和外壁均为弧形凸起部,内壁的弧形凸起部与罐体的罐颈配合接触,阻挡网孔海绵体11向上浮动脱出罐体,外壁的弧形凸起部形成流线结构,有利于减小海流的阻力,使基础主体1受力减小,提高稳定性。
使用时,采用紧固件穿过支腿板与基础主体1的罐体底部连接固定,安装方便快捷,底板21中心设置支撑孔与支撑架配合,安装时,由支撑架支撑底板21和基础主体1。
使用时,防冲刷滤网2的斜向钢索与底板21的索孔绑定,连接件4两端的锁扣42与扣环22和单桩上的耳环钩连,形成锥形结构的防冲刷滤网2,防冲刷滤网2截面较大的一端朝下。
使用时,锥形结构的防冲刷滤网2截面较小的一端位于上部,位于节点处连接扰流装置3悬垂于防冲刷滤网2内。
安装时,悬索32与防冲刷滤网2的节点连接,使滤网碗31悬垂与防冲刷滤网2内,使用时,当海流流经防冲刷滤网2时,扰流带33随海水飘动对海流进行扰动,有效的减小基础局部的水流速度,将水流中携带的浮沙聚集。
使用时,螺杆41两端方向相反的螺纹与锁扣42配合,在锁扣42与单桩的耳环和防冲刷滤网2的扣环22钩连后,施加螺母43的旋钮力驱动螺杆41两端的锁扣42相互靠近,拉紧述防冲刷滤网2的斜向钢索,使防冲刷滤网2处于绷紧状态。
上述的实施例仅为本发明的优选技术方案,而不应视为对于本发明的限制,本申请中的实施例及实施例中的特征在不冲突的情况下,可以相互任意组合。本发明的保护范围应以权利要求记载的技术方案,包括权利要求记载的技术方案中技术特征的等同替换方案为保护范围。即在此范围内的等同替换改进,也在本发明的保护范围之内。

Claims (10)

  1. 一种快速组装且防冲刷的组合式海上风电基础,其特征是:它包括基础主体(1)、防冲刷滤网(2)、扰流装置(3)和连接件(4);所述连接件(4)一端的锁扣(42)与防冲刷滤网(2)的扣环(22)钩连,防冲刷滤网(2)的底板(21)与基础主体(1)的支腿(12)连接,多个扰流装置(3)与防冲刷滤网(2)连接;基础主体(1)位于防冲刷滤网(2)内,扰流装置(3)悬垂于防冲刷滤网(2)内。
  2. 根据权利要求1所述的快速组装且防冲刷的组合式海上风电基础,其特征是:所述基础主体(1)为上端开口的中空罐体结构,位于罐体外包裹网孔海绵体(11),位于罐体底部设置多个倾斜的支腿(12),位于罐体内部设置填充物(13),位于罐体开口端设置盖板(14)。
  3. 根据权利要求2所述的快速组装且防冲刷的组合式海上风电基础,其特征是:所述罐体上端直径小于罐体底部直径,位于罐体中部设置内凹的弧形罐颈,网孔海绵体(11)包裹在罐体开口端至罐体底部之间。
  4. 根据权利要求2所述的快速组装且防冲刷的组合式海上风电基础,其特征是:所述网孔海绵体(11)为两端开口的筒状结构,筒内壁和筒外壁均为弧形凸起部,筒内壁的弧形凸起部与罐体的罐颈接触,筒外壁的弧形凸起部与罐体开口端和罐体底部相切。
  5. 根据权利要求2所述的快速组装且防冲刷的组合式海上风电基础,其特征是:所述支腿(12)的一端连接有支腿板,紧固件穿过支腿板与罐体底部连接;盖板(14)边沿设置通孔,紧固件穿过通孔与罐体开口端连接;支腿(12)与底板(21)的支腿孔连接;底板(21)中心设置支撑孔。
  6. 根据权利要求1所述的快速组装且防冲刷的组合式海上风电基础,其特征是:所述防冲刷滤网(2)由环形钢索和斜向钢索交织的镂空锥形网,位于镂空锥形网截面较大底部的斜向钢索与底板(21)边沿的索孔连接,位于镂空锥形网截面较小的顶部边沿设置扣环(22)。
  7. 根据权利要求5所述的快速组装且防冲刷的组合式海上风电基础,其特征是:所述防冲刷滤网(2)的环形钢索和斜向钢索交织的节点处与扰流装置(3)连接。
  8. 根据权利要求1所述的快速组装且防冲刷的组合式海上风电基础,其特征是:所述扰流装置(3)包括与滤网碗(31)连接的悬索(32)和位于滤网碗(31)底部连接的扰流带(33),悬索(32)的另一端与防冲刷滤网(2)的节点连接。
  9. 根据权利要求1所述的快速组装且防冲刷的组合式海上风电基础,其特征是:所述连接件(4)包括与螺杆(41)两端连接的锁扣(42),以及位于螺杆(41)中部固定的螺母(43),螺杆(41)两端的螺纹方向相反。
  10. 根据权利要求1~9任一项所述的快速组装且防冲刷的组合式海上风电基础的锚固方法,其特征是,它包括如下步骤:
    S1,安装支腿和底板,采用支撑架支撑底板(21)和基础主体(1)的罐体,底板(21)上的支撑孔与支撑架的支撑柱配合,由支撑板支撑底板(21),罐体底部与支撑柱上端接触;
    S2,安装支腿和底板,将支腿(12)下端与底板(21)的支腿孔配合,支腿(12)与基础主体(1)的罐体底部螺栓连接;再将支腿(12)下端与底板(21)的支腿孔满焊;
    S3,填充,将填充物(13)灌注到基础主体(1)的罐体内,再填充速凝混凝土;填充物(13)为混凝土、铅块、岩石,或混凝土、铅块、岩石的混合物;
    S4,安装盖板,将盖板(14)与基础主体(1)的罐体上端的罐口配合,紧固件穿过盖板 (14)与罐口连接固定;
    S5,安装防冲刷滤网,将防冲刷滤网(2)套设在基础主体(1)外,截面较大的底部朝下,防冲刷滤网(2)底部的斜向钢索穿过底板(21)上的索孔与其捆绑连接;
    S6,吊装,采用起吊设备将基础主体(1)缓慢沉入预先钻好的海底岩石孔内,底板(21)与岩石孔底部接触;
    或者,将单桩与盖板(14)焊接;连接件(4)两端的锁扣(42)分别与扣环(22)和单桩上的耳环钩连,旋转螺杆(41)使防冲刷滤网(2)处于绷紧状态;将扰流装置(3)的悬索(32)与防冲刷滤网(2)的节点连接后,再将基础主体(1)缓慢沉入预先钻好的海底岩石孔内,底板(21)与岩石孔底部接触。
PCT/CN2022/071169 2021-02-04 2022-01-11 快速组装且防冲刷的组合式海上风电基础及方法 WO2022166535A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202120316502.0U CN214657185U (zh) 2021-02-04 2021-02-04 快速组装且防冲刷的组合式海上风电基础
CN202110153064.5 2021-02-04
CN202120316502.0 2021-02-04
CN202110153064.5A CN112942405B (zh) 2021-02-04 2021-02-04 快速组装且防冲刷的组合式海上风电基础及方法

Publications (1)

Publication Number Publication Date
WO2022166535A1 true WO2022166535A1 (zh) 2022-08-11

Family

ID=82740841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071169 WO2022166535A1 (zh) 2021-02-04 2022-01-11 快速组装且防冲刷的组合式海上风电基础及方法

Country Status (1)

Country Link
WO (1) WO2022166535A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117344801A (zh) * 2023-10-19 2024-01-05 中国海洋大学 一种海上风电桩周柔性防冲刷结构
CN117926935A (zh) * 2024-02-02 2024-04-26 重庆大学 一种海上风电结构的多级耗能区段

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3228754A1 (en) * 2016-04-05 2017-10-11 SPT Equipment BV Scour protection for suction pile, e.g. pile lowering operated
CN110761313A (zh) * 2019-10-22 2020-02-07 广东华蕴新能源有限公司 一种海上风电桩基础防冲刷伞状装置及安装方法
CN111493006A (zh) * 2020-04-22 2020-08-07 浙江大学 一种利用海上风电牧场渔网进行基础防冲刷的装置
CN111851601A (zh) * 2020-07-22 2020-10-30 浙江大学 一种与海上养殖业相结合的海上风电防冲刷方法
CN112942405A (zh) * 2021-02-04 2021-06-11 中国长江三峡集团有限公司 快速组装且防冲刷的组合式海上风电基础及方法
CN214657185U (zh) * 2021-02-04 2021-11-09 中国长江三峡集团有限公司 快速组装且防冲刷的组合式海上风电基础

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3228754A1 (en) * 2016-04-05 2017-10-11 SPT Equipment BV Scour protection for suction pile, e.g. pile lowering operated
CN110761313A (zh) * 2019-10-22 2020-02-07 广东华蕴新能源有限公司 一种海上风电桩基础防冲刷伞状装置及安装方法
CN111493006A (zh) * 2020-04-22 2020-08-07 浙江大学 一种利用海上风电牧场渔网进行基础防冲刷的装置
CN111851601A (zh) * 2020-07-22 2020-10-30 浙江大学 一种与海上养殖业相结合的海上风电防冲刷方法
CN112942405A (zh) * 2021-02-04 2021-06-11 中国长江三峡集团有限公司 快速组装且防冲刷的组合式海上风电基础及方法
CN214657185U (zh) * 2021-02-04 2021-11-09 中国长江三峡集团有限公司 快速组装且防冲刷的组合式海上风电基础

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117344801A (zh) * 2023-10-19 2024-01-05 中国海洋大学 一种海上风电桩周柔性防冲刷结构
CN117926935A (zh) * 2024-02-02 2024-04-26 重庆大学 一种海上风电结构的多级耗能区段

Similar Documents

Publication Publication Date Title
CN112942405B (zh) 快速组装且防冲刷的组合式海上风电基础及方法
WO2022166535A1 (zh) 快速组装且防冲刷的组合式海上风电基础及方法
CN214657185U (zh) 快速组装且防冲刷的组合式海上风电基础
CN110016930A (zh) 海上风机单桩-吸力筒组合基础及其施工方法
CN110886325A (zh) 一种多孔扰流海上风电基础防冲刷装置及其安装方法
CN201538971U (zh) 高桩承台式海上风力发电机基础结构
CN110886326A (zh) 一种海上风电桩基础的防冲刷保护装置及安装方法
CN204040050U (zh) 混合型海上风电基础结构
CN111493006A (zh) 一种利用海上风电牧场渔网进行基础防冲刷的装置
CN108385708B (zh) 一种具有双重抗摇摆机制的海上风机浮式基础结构体系
KR100900500B1 (ko) 넓은 분산 부유 구조물을 가진 해상 부유 풍력 발전 장치
CN216839222U (zh) 一种海上风电单桩基础柔性消能防冲刷装置
CN216194425U (zh) 一种水利坝体的抗冲击加固结构
CN208763050U (zh) 海上风力发电机组重力式沉箱基础
CN107372263A (zh) 一种深水网箱的近岛礁单点系泊系统
CN204849811U (zh) 用于沿海潮间带的风力发电机基础防冲刷结构
CN106014873A (zh) 海上风力发电机组塔架基础的防护装置
JP3242212U (ja) 海上風力発電単杭基礎の延命服役装置
CN205653810U (zh) 用于海上风电软基加固的振冲系泊桩及其施工设备
CN204491567U (zh) 预制钢管桩风力发电平台
CN206204870U (zh) 一种半潜式消浪装置
CN214245805U (zh) 一种潮间带地区海上测风塔基础系统
CN104695411B (zh) 预制组合结构钢管桩风力发电平台
CN209493962U (zh) 一种适用于深水复杂海域的长短桩筒型基础
CN207419513U (zh) 一种用于集成式套笼的内平台装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22748814

Country of ref document: EP

Kind code of ref document: A1