WO2022166452A1 - 供风设备及其风温控制方法、电子设备和计算机可读介质 - Google Patents

供风设备及其风温控制方法、电子设备和计算机可读介质 Download PDF

Info

Publication number
WO2022166452A1
WO2022166452A1 PCT/CN2021/140375 CN2021140375W WO2022166452A1 WO 2022166452 A1 WO2022166452 A1 WO 2022166452A1 CN 2021140375 W CN2021140375 W CN 2021140375W WO 2022166452 A1 WO2022166452 A1 WO 2022166452A1
Authority
WO
WIPO (PCT)
Prior art keywords
air temperature
air supply
detected
hand drying
filter
Prior art date
Application number
PCT/CN2021/140375
Other languages
English (en)
French (fr)
Inventor
张亚东
Original Assignee
追觅科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110172672.0A external-priority patent/CN112785281A/zh
Priority claimed from CN202110172984.1A external-priority patent/CN112965560A/zh
Priority claimed from CN202110354735.4A external-priority patent/CN113093832B/zh
Application filed by 追觅科技(上海)有限公司 filed Critical 追觅科技(上海)有限公司
Publication of WO2022166452A1 publication Critical patent/WO2022166452A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • A45D20/04Hot-air producers
    • A45D20/08Hot-air producers heated electrically
    • A45D20/10Hand-held drying devices, e.g. air douches
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management

Definitions

  • the present application relates to the technical field of intelligent control, and in particular, to an air supply device and an air temperature control method thereof, an electronic device and a computer-readable medium.
  • the existing method for realizing constant temperature control of the hair dryer mainly performs constant temperature control based on the temperature value of the outlet air collected in real time by the temperature sensor.
  • the constant temperature control method in the prior art has the problem that precise constant temperature control cannot be achieved. Therefore, it is necessary to improve the prior art to overcome the aforementioned defects in the prior art.
  • the purpose of the present invention is to provide an air supply device and its air temperature control method, electronic device and computer readable medium, which can determine the target air outlet temperature value based on the target air inlet temperature value, and fully consider factors such as the environment that changes in real time, thereby Realize precise constant temperature control of air supply equipment.
  • a method for controlling air temperature of air supply equipment comprising:
  • the target outlet air temperature value of the air supply device is determined, and the initial outlet air temperature value of the air supply device is adjusted to the target outlet air temperature value.
  • an air supply device comprising:
  • a processing module configured to obtain an outlet air temperature adjustment value determined based on a target inlet air temperature value of the air supply device, and the processing module is further configured to determine the air supply device according to the outlet air temperature adjustment value The target outlet air temperature value, adjust the initial outlet air temperature value of the air supply device to the target outlet air temperature value.
  • an electronic device comprising a memory, a processor, and a computer program stored in the memory and running on the processor, when the processor executes the computer program, the above-mentioned air supply device is implemented The steps of the air temperature control method.
  • a computer-readable medium on which computer instructions are stored, and when executed by a processor, the computer instructions implement the steps of the above-mentioned method for controlling air temperature of an air supply device.
  • a filter screen replacement prompting method includes:
  • an electronic label is provided on the to-be-detected filter net, and the prompting method further includes:
  • the step of obtaining the working time alarm threshold corresponding to the filter screen to be detected specifically includes:
  • the unique identification number of the to-be-detected filter net is matched with the corresponding relationship, so as to obtain a working time alarm threshold corresponding to the to-be-detected filter net.
  • the prompting method further includes:
  • the cumulative working time of the to-be-detected filter is set to 0.
  • the step of detecting whether the accumulated working duration matches the corresponding working duration alarm threshold specifically includes:
  • the prompting method further includes:
  • a filter screen replacement prompt system is applied to drying equipment, and the prompt system includes:
  • the cumulative duration determination module is used to determine the cumulative working duration of the filter to be detected
  • a threshold acquisition module configured to obtain a working duration alarm threshold corresponding to the filter to be detected, and the filter to be detected corresponds to at least one working duration alarm threshold;
  • the first detection module is configured to detect whether the accumulated working time matches the corresponding working time alarm threshold, and if so, generate prompt information, and the prompt information is used to remind the user to replace the to-be-detected filter.
  • an electronic label is provided on the to-be-detected filter net, and the prompt system further includes an identification module;
  • the identification module is used to identify the electronic label and obtain the unique identification number of the filter screen to be detected, and the unique identification number is stored in the electronic label;
  • the threshold acquisition module specifically includes:
  • a preset unit used to preset the corresponding relationship between the unique identification number of the filter screen and at least one working time alarm threshold
  • the matching unit is configured to match the unique identification number of the filter screen to be detected with the corresponding relationship, so as to obtain an alarm threshold of working time corresponding to the filter screen to be detected.
  • the prompt system further includes a second detection module and a reset module;
  • the second detection module is used to detect whether the filter to be detected is an unused filter according to the unique identification number of the filter to be detected, and if so, call the reset module;
  • the reset module is used to reset the cumulative working time of the filter screen to be detected to 0.
  • the first detection module specifically includes:
  • an expected duration obtaining unit used to obtain the expected usage duration of the filter to be detected
  • a remaining duration determining unit for determining the remaining duration of use of the filter screen to be detected according to the expected duration of use and the cumulative working duration
  • a detection unit configured to detect whether the remaining usage time is lower than the corresponding working time alarm threshold.
  • the prompting system further includes a display module
  • the display module is used for displaying the remaining usage time of the filter screen to be detected.
  • An electronic device comprising a memory, a processor and a computer program stored on the memory and running on the processor, wherein the processor implements the above-mentioned method for prompting filter replacement when the processor executes the computer program.
  • a computer-readable storage medium stores a computer program thereon, and when the program is executed by a processor, the steps of the above-mentioned filter screen replacement prompting method are implemented.
  • a hand drying device comprising:
  • a communication module for receiving control commands
  • control module connected in communication with the communication module, and configured to determine an air outlet mode of the hand drying device according to the control instruction, the air outlet mode corresponds to at least one mode parameter, and the mode parameter includes an outlet air temperature parameter and/or outlet speed parameters.
  • the communication module includes at least one of a wireless communication unit, a key communication unit and a touch communication unit; wherein:
  • the wireless communication unit is configured to receive a wireless control command, the wireless control command is sent by a control device different from the hand drying device and used to determine an air outlet mode of the hand drying device;
  • the key communication unit is used to receive a key control instruction, and the key control instruction is used to determine an air outlet mode of the hand drying device;
  • the touch communication unit is used for receiving a touch control instruction, and the touch control instruction is used for determining an air outlet mode of the hand drying device.
  • the hand drying device further includes an environmental parameter detection module, and the environmental parameter detection module is used to detect environmental parameters;
  • the control module is further configured to determine the air outlet mode of the hand drying device according to the environmental parameters, and/or the communication module is further configured to output the environmental parameters;
  • the hand drying device further includes a user identification module for identifying a user and determining a user attribute of the user;
  • the control module is further configured to determine an air outlet mode of the hand drying device according to the user attribute.
  • the hand drying device further includes a sterilization module, and the sterilization module is used to sterilize the filter screen of the hand drying device;
  • the hand drying device further includes a filter screen identification module, the filter screen identification module is used to identify an identification code of the filter screen of the hand drying device, and the identification code is used to represent the uniqueness of the filter screen.
  • the hand drying device further includes a display module, the display module is used to display at least one of the mode parameters, environmental parameters, time information, filter screen usage information and filter screen replacement prompt information;
  • the control module includes a main control unit and a display screen control unit that are electrically connected; wherein:
  • the main control unit and the display screen control unit are respectively electrically connected to different other modules in the hand drying device.
  • a linkage system comprising a control device and any of the above-mentioned hand drying devices;
  • the control device is connected in communication with the hand drying device, and is used for sending wireless control instructions to the hand drying device;
  • the hand drying device is configured to receive the wireless control instruction and determine an air outlet mode according to the wireless control instruction.
  • the linkage system further comprises an environmental parameter adjustment device and a cloud server respectively connected to the control device in communication;
  • the environmental parameter adjustment device is used to adjust the environmental parameter
  • the cloud server is configured to generate an adjustment instruction according to the received environmental parameter
  • the hand drying device is further configured to send the environmental parameter to the control device;
  • the control device is further configured to send the environment parameter to the cloud server and receive an adjustment instruction fed back by the cloud server, and is further configured to send the adjustment instruction to the environment parameter adjustment device to adjust the environment parameter .
  • a control method of a hand drying device is applied to any of the above-mentioned hand drying devices, and the control method includes:
  • the air outlet mode of the hand drying device is determined according to the control instruction.
  • control method further includes:
  • the control method also includes:
  • An air outlet mode of the hand drying device is determined according to the user attribute.
  • a linkage control method, the linkage control method is applied to a control device, and the linkage control method includes:
  • the adjustment instruction is sent to an environment parameter adjustment device, and the environment parameter adjustment device is configured to adjust the environment parameter according to the adjustment instruction.
  • An electronic device comprising a memory, a processor and a computer program stored on the memory and running on the processor, when the processor executes the computer program, the control method for any of the above-mentioned hand drying devices is implemented, or, The above linkage control method.
  • the present invention has the following beneficial effects:
  • the air supply equipment and its air temperature control method, electronic equipment and computer readable medium provided by this application determine the target air outlet temperature value through the target air inlet temperature value of the air supply equipment, and fully consider the various factors that affect the constant temperature control.
  • the target outlet air temperature of the air supply equipment can be accurately determined, thereby improving the accuracy and efficiency of the constant temperature control of the air supply equipment and realizing intelligent Precise thermostatic adjustment function, thus providing effective protection for air supply equipment;
  • This application automatically judges according to the cumulative working time of the filter and the corresponding alarm threshold of working time, so as to intelligently remind customers to replace the filter in time, and can also add near-field sensing equipment and electronic tags to identify the filter to be detected. ID number, and then it can be judged whether the user has replaced the filter, so that the MCU can reset the timing and perform a new round of filter monitoring.
  • at least one alarm threshold for different filters it can be applied to different application scenarios. and user selection.
  • the application can intelligently replace the filter screen, which improves the efficiency of the filter screen replacement method as a whole;
  • the application can receive control instructions, and can realize the change of the air outlet mode of the hand drying equipment according to the control instructions. Specifically, at least one of the air outlet temperature parameters and the air outlet speed parameters of the hand drying equipment can be controlled. , thereby helping to meet the needs of different user groups, and thus helping to improve the user experience.
  • FIG. 1 is a schematic flowchart of a method for controlling air temperature of an air supply device according to Embodiment 1 of the present application.
  • FIG. 2 is a schematic flowchart of the air temperature control method of the air supply equipment further provided by the first embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an air supply device provided in Embodiment 1 of the present application.
  • FIG. 4 is a schematic diagram of the electrical connection of the air supply equipment provided in the first embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an electronic device for implementing an air temperature control method for an air supply device according to Embodiment 1 of the present application.
  • FIG. 6 is a flowchart of a method for prompting filter screen replacement according to Embodiment 2 of the present invention.
  • FIG. 7 is a flowchart of step 30 in the filter screen replacement prompting method according to the second embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for prompting filter screen replacement according to Embodiment 3 of the present invention.
  • FIG. 9 is a flowchart of step 20 in the filter screen replacement prompting method according to the third embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of a filter screen replacement prompting system according to Embodiment 4 of the present invention.
  • FIG. 11 is a schematic block diagram of a filter screen replacement prompting system according to Embodiment 5 of the present invention.
  • FIG. 12 is a schematic structural diagram of an electronic device according to Embodiment 6 of the present invention.
  • FIG. 13 is a schematic block diagram of a hand drying device according to Embodiment 7 of the present invention.
  • FIG. 14 is a schematic block diagram of a linkage system according to Embodiment 8 of the present invention.
  • FIG. 15 is a flowchart of a linkage control method according to Embodiment 10 of the present invention.
  • FIG. 16 is a schematic structural diagram of an electronic device according to Embodiment 11 of the present invention.
  • the method for controlling air temperature mainly includes the following steps:
  • Step 1011 obtaining the air outlet temperature adjustment value determined based on the target air inlet temperature value of the air supply equipment
  • Step 1012 Determine the target outlet air temperature value of the air supply device according to the adjustment value of the outlet air temperature, and adjust the initial outlet air temperature value of the air supply device to the target outlet air temperature value.
  • the air supply device is an electronic device that can provide an air outlet function
  • the specific air supply device can be a blower or a blower, but the type of the air supply device is not specifically limited, and can be performed according to actual needs. Select and adjust accordingly.
  • the acquired target air inlet temperature value may be the expected air inlet temperature value of the air supply device, the real-time air inlet temperature value of the air supply device, or the historical air inlet temperature value of the air supply device ,
  • the above are only several optional target air inlet temperature values, but do not specifically limit the type of the air supply equipment, and can be selected and adjusted according to actual needs.
  • the target outlet air temperature value can be determined by the target inlet air temperature value of the air supply equipment, taking into account the factors affecting the inlet air temperature value of the constant temperature control, especially when the inlet air temperature value of the air supply equipment is abnormal Under the circumstance, the target outlet air temperature value of the air supply equipment can still be accurately determined, thereby improving the accuracy and efficiency of the constant temperature control of the air supply equipment, realizing the intelligent and precise constant temperature adjustment function, and providing the realization of the air supply equipment. effective protection.
  • the air temperature control method of the air supply equipment further provided in this embodiment may include the following steps:
  • Step 1021 Determine the current operating state of the air supply equipment.
  • the current operating state of the air supply equipment is determined, and corresponding default air temperature control parameters are obtained according to the current operating state of the power supply equipment.
  • the current operating state of the air supply equipment may be the current working gear position of the air supply equipment, and the working gear position may include the air supply gear position and/or the air temperature control gear position of the air supply equipment, or
  • the gears can be adjusted for the power of other actuators of the air supply equipment, and the corresponding selection and adjustment can be made according to the actual needs.
  • the default air temperature control parameters may include default air temperature control parameters corresponding to different operating states.
  • the default air temperature control parameters may include a real-time output air temperature value, and may also include a response to the air temperature.
  • Other parameters to be adjusted such as the test environment temperature value, compensation value and other parameters for air temperature adjustment, can be configured based on the temperature parameters after each execution of the constant temperature control function, or can be configured as a unified default at the factory. Select and adjust accordingly according to actual needs.
  • the method for controlling the air temperature of the air supply equipment includes the step of determining whether the air supply equipment satisfies the condition for updating the adjustment value of the outlet air temperature.
  • the main purpose of performing this step is to detect the validity of the adjustment value of the air temperature according to various conditions affecting the temperature parameters, so as to determine whether the adjustment value of the air temperature needs to be recalculated. For example, the loss of data such as temperature parameters caused by hardware equipment, or considering the timeliness of data such as temperature parameters, or the error factors between different machines, etc.
  • the above-mentioned step of determining that the air supply device satisfies the condition for updating the adjustment value of the outlet air temperature can be specifically implemented through the following steps 1022 and 1023 .
  • Step 1022 determine whether the historical outlet air temperature adjustment value can be obtained, if yes, go to step 1023 , if not, go to step 1024 .
  • step 1023 it is judged whether the historical air outlet temperature adjustment value corresponding to the current operating state of the air supply equipment can be obtained from the above-mentioned default air temperature control parameters and other information or the memory space, that is, the output air temperature used each time the constant temperature control function is executed.
  • the adjustment value of the air temperature (in this embodiment, it can also be regarded as the calibration value of the outlet air temperature, which is denoted as Ts). If the historical adjustment value of the air outlet temperature can be obtained, step 1023 can be executed. If the adjustment value is set, it means that the air temperature adjustment value needs to be recalculated, and step 1024 can be executed.
  • the historical outlet air temperature adjustment value is determined based on the second inlet air temperature value during the historical operation of the air supply equipment, and the second inlet air temperature value may be the inlet air temperature value collected during the current operation of the air supply equipment.
  • the air temperature value, the air inlet temperature value can be obtained by the air inlet temperature sensor set at the position of the air inlet of the power supply device.
  • the historical outlet air temperature adjustment value may be the outlet air temperature adjustment value stored after the last or a certain execution of the constant temperature control function, or may be the outlet air temperature adjustment value automatically configured and stored at the factory. Make corresponding selections and adjustments according to actual needs.
  • Step 1023 Determine whether the historical outlet air temperature adjustment value meets the time requirement, if yes, go to step 1026, if not, go to step 1024.
  • this step in response to the acquisition of the historical outlet air temperature adjustment value, it is further determined whether the historical outlet air temperature adjustment value meets the time requirement, so as to further verify the validity of the data, thereby improving the air temperature control accuracy.
  • step 1026 can be executed, if not, it indicates that the historical outlet air temperature adjustment value If the value fails the validity verification, the historical outlet air temperature adjustment value needs to be discarded, so step 1024 can be executed.
  • the set time threshold is not specifically limited, and can be set accordingly according to actual needs.
  • Step 1024 determine whether the air supply equipment satisfies the stable operation condition, if yes, go to step 1025 , if not, go back to go to step 1021 .
  • step 1025 in response to the need to recalculate the air temperature adjustment value, in order to further ensure the accuracy of the calculated data, it is judged whether the power supply equipment satisfies the stable operation condition. Step 1025 is executed. If not, it indicates that the condition for updating the adjustment value of the outlet air temperature cannot be met. Therefore, step 1021 may be returned to, or the step may be executed again after triggering a preset countdown.
  • this step it is determined whether the temperature change rate of the first outlet air temperature value of the air supply equipment is in a stable state within the first set time, and if so, it means that the condition for updating the outlet air temperature adjustment value can be satisfied. , so step 1025 can be executed. If not, it means that the condition for updating the outlet air temperature adjustment value cannot be met, so the step 1021 can be returned to, or the step can be re-executed after a preset countdown is triggered.
  • the above-mentioned first outlet air temperature value is the currently collected outlet air temperature value of the air supply device, which can be obtained by an outlet air temperature sensor disposed at the position of the air outlet of the air supply device.
  • the heating or cooling speed of the first outlet air temperature value within the first set time is smooth (that is, the heating or cooling speed is less than the set limit value), it indicates that the normal startup standard is met, and the blocking of the air can be effectively eliminated. Abnormal operation.
  • this step it is determined whether the fluctuation range of the first outlet air temperature value of the air supply equipment is in a stable state within the second set time, and if so, it indicates that the condition for updating the outlet air temperature adjustment value can be satisfied. , so step 1025 can be executed. If not, it means that the condition for updating the outlet air temperature adjustment value cannot be met, so the step 1021 can be returned to, or the step can be re-executed after a preset countdown is triggered.
  • the temperature is stable. For example, when the maximum absolute value of the fluctuation of the first air outlet temperature value within 2 seconds is ⁇ 0.6°C, the temperature is considered to be stable.
  • the above two conditions can be satisfied at the same time, or one of the above two conditions can be arbitrarily selected, and corresponding settings can be made according to actual needs.
  • the above-mentioned first set time and the above-mentioned second set time are not specifically limited, and may be the same or different, and may be arbitrarily set independently of each other.
  • Step 1025 Update the outlet air temperature adjustment value according to the first inlet air temperature value and the first outlet air temperature value.
  • the test ambient temperature value obtained in the control parameters determines the adjustment value of the outlet air temperature in the current operating state.
  • the above-mentioned first inlet air temperature value is the current inlet air temperature value of the power supply device acquired in real time.
  • the second inlet air temperature value and the first inlet air temperature value may correspond to the same operating state of the air supply device.
  • the outlet air temperature adjustment value Ts in the current operating state can be calculated according to the following Equation 1.
  • 23 is the preferred test environment temperature value under standard conditions.
  • the test environment temperature value in Equation 1 can be adjusted according to actual needs, and can be replaced with other environment temperature values.
  • Step 1026 Determine the target outlet air temperature value according to the outlet air temperature adjustment value.
  • the temperature compensation value is used as the temperature value for compensating the adjustment value of the outlet air temperature. It can be comprehensively considered and set in combination with factors such as the environment, hardware, foreign objects, and faults that may affect the actual outlet air temperature value, so as to finally determine the target outlet air temperature. value.
  • Equation 2 It is determined that the target outlet air temperature value Tt in the current operating state can be calculated according to Equation 2 below.
  • the temperature compensation value can be determined by combining the target inlet air temperature value, the test environment temperature value, the set heating wire power (denoted as Wf) and the heating wire power of the current air supply device (denoted as Wn).
  • the temperature compensation value f can be calculated according to Equation 3 below.
  • the coefficients a, b, and c can be set correspondingly according to actual needs, or all of them can be 0.
  • Step 1027 Perform constant temperature control according to the target outlet air temperature value.
  • step 1026 the target outlet air temperature value calculated in step 1026 and the collected current outlet air temperature value are compared in real time, and real-time outlet air temperature control is performed, thereby realizing an effective constant temperature control function.
  • the heating mechanism of the air supply equipment is controlled to reduce the outlet air temperature value, for example, by reducing the heat generation
  • the target outlet air temperature value is less than the current outlet air temperature value minus the value of the set temperature constant, it indicates that the air temperature needs to be increased, so control the heating mechanism of the air supply equipment to increase the outlet air temperature value, for example This can be achieved by increasing the power of the heating wire.
  • the above-mentioned set temperature constant is used to form the target outlet air temperature value range based on the target outlet air temperature value to avoid the error of the heating mechanism caused by the error.
  • the above-mentioned set temperature constant it does not specifically limit the above-mentioned set temperature constant, it can also be 0, and can be set according to actual needs.
  • the air temperature control method of the air supply equipment provided in this embodiment is based on an effective constant temperature parameter estimation mechanism, and the target air temperature value is determined mainly through the target air inlet temperature value of the air supply equipment, fully considering the environment that affects the constant temperature control, Various factors such as the air inlet temperature value can control the temperature at least 10 cm at the air outlet within a precise range, especially when the air inlet temperature value of the air supply equipment is abnormal (for example, the air inlet is blocked by foreign objects) etc.), the target outlet air temperature value of the air supply equipment can still be accurately determined, and the temperature sensor error between different equipment can be eliminated without the need for targeted calibration at the production end, thereby improving the accuracy of the air supply.
  • the accuracy and efficiency of the device's constant temperature control realizes the intelligent and precise constant temperature adjustment function, thereby providing an effective guarantee for the air supply equipment.
  • an air supply device is also provided, and the air supply device mainly uses the air temperature control method of the air supply device as described above.
  • the air supply device may be a blower or a blower, but the type of the air supply device is not specifically limited, and can be selected and adjusted according to actual needs.
  • the air supply equipment mainly includes a processing module 21 , an inlet air temperature sensor 221 , an outlet air temperature sensor 231 , a motor control module 24 and a heating mechanism control
  • the module 25 , the processing module 21 is respectively connected in communication with the inlet air temperature sensor 221 , the outlet air temperature sensor 231 , the motor control module 24 and the heating mechanism control module 25 .
  • the processing module 21 may preferably use an MCU (Micro Processing Unit) to realize its functions, but this embodiment does not specifically limit the type of the processing module 21, and can be selected and adjusted according to actual needs.
  • MCU Micro Processing Unit
  • the inlet air temperature sensor 221 is disposed at the position of the air inlet 222 of the air supply equipment, and is configured to collect the inlet air temperature values at the air inlet 222 under different environments and transmit them to the processing module 21 .
  • the inlet air temperature sensor 221 can preferably use a resistor for NTC temperature feedback to realize its function, but this embodiment does not specifically limit the type and the number of the inlet air temperature sensor 221, which can be adjusted according to actual needs. selection and adjustment.
  • the outlet air temperature sensor 231 is disposed at the position of the air outlet 232 of the air supply equipment, and is configured to collect the outlet air temperature values at the air outlet 232 under different environments and transmit them to the processing module 21 .
  • the outlet air temperature sensor 231 can preferably use a resistor for NTC temperature feedback to realize its function, but this embodiment does not specifically limit the type and the number of the outlet air temperature sensor 231, which can be adjusted according to actual needs. selection and adjustment.
  • the motor control module 24 is electrically connected to the motor used for air supply of the air supply equipment, and is configured to generate motor control instructions sent to the motor according to the instructions transmitted by the processing module 21 to control the working state such as the rotation speed of the motor.
  • the heating mechanism control module 25 is electrically connected to the heating mechanism of the power supply device for adjusting the temperature of the outlet air by heating, and is configured to generate a heating control instruction sent to the heating mechanism according to the instructions transmitted by the processing module 21 to control the heating mechanism of the heating mechanism. power and other working conditions.
  • the heating mechanism may be a heating wire or the like, but the type of the heating mechanism is not specifically limited. As long as the corresponding functions can be realized, corresponding selection and adjustment can be made according to actual needs.
  • the processing module 21 is configured to obtain the outlet air temperature adjustment value determined based on the target inlet air temperature value of the air supply device, and the processing module 21 is further configured to determine the target outlet air temperature value of the air supply device according to the outlet air temperature adjustment value, Adjust the initial outlet air temperature value of the air supply device to the target outlet air temperature value.
  • the processing module 21 is further configured to The temperature value and the obtained test ambient temperature value determine the adjustment value of the outlet air temperature.
  • the processing module 21 is further configured to determine that the air supply equipment satisfies the condition for updating the adjustment value of the outlet air temperature before determining the adjustment value of the outlet air temperature.
  • the processing module 21 is further configured to determine whether the air supply equipment satisfies the stable operation condition if the historical outlet air temperature adjustment value cannot be obtained, wherein the historical outlet air temperature adjustment value is based on the second air supply equipment during the historical operation of the air supply equipment. If the inlet air temperature value is determined, the second inlet air temperature value and the first inlet air temperature value correspond to the same operating state of the air supply equipment;
  • the processing module 21 is further configured to, if it is determined that the temperature change speed of the first outlet air temperature value of the air supply equipment within the first set time is in a stable state; and/ Or, it is determined that the fluctuation range of the first air outlet temperature value of the air supply equipment is in a stable state within the second set time period, and it is determined that the air supply equipment satisfies the stable operation condition.
  • processing module 21 is also configured to determine if the historical outlet air temperature adjustment value is obtained, and the difference between the historical operation time and the current time of the air supply equipment corresponding to the historical outlet air temperature adjustment value is greater than the set time threshold, then determine the air supply. The device meets the conditions for updating the air temperature adjustment value.
  • the processing module 21 is further configured to determine the target outlet air temperature value of the air supply device according to the outlet air temperature adjustment value and the temperature compensation value, wherein the temperature compensation value is based on the set heating wire power and the current air supply.
  • the heating wire power of the device is determined.
  • the functions implemented by the processing module 21 may correspond to the steps in the above-mentioned method for controlling the wind temperature of a power supply device, so they will not be described in detail.
  • the air supply equipment provided in this embodiment based on an effective constant temperature parameter estimation mechanism, mainly determines the target outlet air temperature value through the target inlet air temperature value of the air supply equipment, and fully considers the environment that affects the constant temperature control, the inlet air temperature value, etc.
  • Various factors can control the temperature at least 10 cm at the air outlet within a precise range, especially when the air inlet temperature value of the air supply equipment is abnormal (for example, the air inlet is blocked by foreign objects, etc.) , the target outlet air temperature value of the air supply equipment can still be accurately determined, and the temperature sensor error between different equipment can be eliminated without the need for targeted calibration at the production end, thereby improving the constant temperature control of the air supply equipment.
  • Accuracy and efficiency realize intelligent and precise thermostatic adjustment, thus providing effective protection for air supply equipment.
  • FIG. 5 is a schematic structural diagram of an electronic device according to another embodiment of the present application.
  • the electronic device includes a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the program, the air temperature control method of the air supply device in the above embodiment is implemented.
  • the electronic device 30 shown in FIG. 5 is only an example, and should not impose any limitations on the functions and scope of use of the embodiments of the present application.
  • the electronic device 30 may take the form of a general-purpose computing device, for example, it may be a server device.
  • Components of the electronic device 30 may include, but are not limited to, the above-mentioned at least one processor 31 , the above-mentioned at least one memory 32 , and a bus 33 connecting different system components (including the memory 32 and the processor 31 ).
  • the bus 33 includes a data bus, an address bus and a control bus.
  • Memory 32 may include volatile memory, such as random access memory (RAM) 321 and/or cache memory 322 , and may further include read only memory (ROM) 323 .
  • RAM random access memory
  • ROM read only memory
  • the memory 32 may also include a program/utility 325 having a set (at least one) of program modules 324 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, which An implementation of a network environment may be included in each or some combination of the examples.
  • the processor 31 executes various functional applications and data processing by running the computer program stored in the memory 32, such as the air temperature control method of the air supply equipment in the above embodiments of the present application.
  • the electronic device 30 may also communicate with one or more external devices 34 (eg, keyboards, pointing devices, etc.). Such communication may take place through input/output (I/O) interface 35 .
  • the model-generating device 30 may also communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet) through a network adapter 36 . As shown in FIG. 5 , the network adapter 36 communicates with the other modules of the model generation device 30 via the bus 33 .
  • networks eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet
  • model-generated device 30 may be used in conjunction with the model-generated device 30, including but not limited to: microcode, device drivers, redundant processors, external disk drive arrays, RAID (disk) array) systems, tape drives, and data backup storage systems.
  • This embodiment also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps in the air temperature control method for an air supply device in the above embodiment are implemented.
  • the readable storage medium may include, but is not limited to, a portable disk, a hard disk, a random access memory, a read-only memory, an erasable programmable read-only memory, an optical storage device, a magnetic storage device, or any of the above suitable combination.
  • the present application can also be implemented in the form of a program product, which includes program codes.
  • the program product runs on a terminal device, the program code is used to cause the terminal device to execute and implement the provision in the above embodiment.
  • the program code for executing the present application can be written in any combination of one or more programming languages, and the program code can be completely executed on the user equipment, partially executed on the user equipment, as an independent software
  • the package executes, partly on the user device, partly on the remote device, or entirely on the remote device.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a filter screen replacement prompt method as shown in Figure 6, the prompt method includes:
  • Step 10 Determine the cumulative working time of the filter to be detected
  • the cumulative working time can be confirmed by recording the power-on time of the product loaded with the filter to be detected, that is, through the timing module of the product's own MCU (micro-control unit), or by triggering additional settings after the product is powered on
  • the timer works to record the usage time of the filter to be tested.
  • Step 20 Obtain the working duration alarm threshold corresponding to the filter to be detected, and the filter to be detected corresponds to at least one working duration alarm threshold;
  • different types of filters correspond to different working hours alarm thresholds, and the same type of filters can also be set in different environments with different working hours alarm thresholds.
  • the threshold value is the first threshold value
  • the threshold value is transformed into the second threshold value. Therefore, in the present application, the filter screen to be detected corresponds to at least one working time alarm threshold.
  • the working duration alarm threshold corresponding to the filter can be switched by manual setting, or the working duration alarm threshold corresponding to the filter can be switched by automatic detection. For example, when it is determined that humidity and temperature change, determine The working time alarm threshold corresponding to the current humidity and temperature.
  • Step 30 Detect whether the accumulated working duration matches the corresponding working duration alarm threshold, and if so, go to Step 40;
  • the working duration alarm threshold can be the maximum usable duration of the filter to be detected, or the minimum remaining duration of use that the filter to be detected can still be used, which can be set as required, and the present application is not limited to this.
  • Step 40 Generate prompt information, where the prompt information is used to remind the user to replace the filter to be detected.
  • the prompt information may be an indicator light, an alarm sound, a prompt word, etc., which is not limited in this application.
  • different prompt information can be set for different types of filters to show the difference.
  • step 30 specifically includes:
  • Step 301 obtaining the expected use duration of the filter to be detected
  • Step 302 Determine the remaining usage duration of the filter screen to be detected according to the expected usage duration and the accumulated working duration;
  • Step 303 Detect whether the remaining usage time is lower than the corresponding working time alarm threshold, and if so, go to Step 40.
  • the working time alarm threshold is the minimum remaining usage time that the filter to be detected can still be used.
  • the remaining usage time of the filter to be detected first obtain the expected usage duration of the filter to be detected, that is, the maximum usable duration. Then, the remaining use time is obtained according to the difference between the expected use time and the accumulated working time.
  • the prompt method also includes:
  • Step 304 displaying the remaining usage time of the filter to be detected.
  • the display screen can be set to display the specific remaining usage time, or display a percentage corresponding to the remaining usage time, which is not limited in this application.
  • the judgment is made automatically according to the accumulated working time of the filter and the corresponding alarm threshold of the working time, so as to intelligently remind the customer to replace the filter in time.
  • the filter screen replacement prompting method of this embodiment is further improved on the basis of the second embodiment.
  • an electronic label is provided on the filter screen to be detected, as shown in FIG. 8 , the prompting method further includes:
  • Step 11 Identify the electronic label and obtain the unique identification number of the filter to be detected, and the unique identification number is stored in the electronic label; in addition, the unique identification number can also be displayed on the display screen.
  • a near-field sensing device such as RFID is used to identify the electronic tags provided on the filter to be detected, so as to obtain a unique identification number such as an ID number corresponding to the filter to be detected, which is used to distinguish different filters.
  • step 20 specifically includes:
  • Step 201 preset the corresponding relationship between the unique identification number of the filter screen and at least one working time alarm threshold
  • different ID numbers are preset in the MCU of the product loaded with the filter to be detected to correspond to multiple working time alarm thresholds, and each working time alarm threshold corresponds to different application scenarios or application environments or seasons, such as for humid environments. Different thresholds are set corresponding to dry environments, and different thresholds are set for different seasons, which is not limited in this application.
  • Step 202 Match the unique identification number of the filter to be detected with the corresponding relationship, so as to obtain the working time alarm threshold corresponding to the filter to be detected.
  • the working time alarm threshold of the filter to be detected is obtained by matching, and then the current application scenario or application environment or season is comprehensively considered, and then a unique judgment threshold is determined for subsequent judgment.
  • the prompting method further includes:
  • Step 12 Detect whether the filter screen to be detected is an unused filter screen according to the unique identification number of the filter screen to be detected, and if so, perform step 13;
  • the replaced filter is an unused filter. It should be noted that it is assumed that the replacement is already used.
  • the total filter screen can be controlled by the MCU to set the cumulative working time to ensure the accuracy of subsequent monitoring.
  • Step 13 Set the cumulative working time of the filter to be detected to 0.
  • the ID number of the filter to be detected can be identified, and then it can be determined whether the user has replaced the filter, so that the MCU can reset the timing and perform a new round of filter monitoring.
  • a filter screen replacement prompt system as shown in Figure 10, the filter screen replacement prompt system is applied to drying equipment, such as hand dryers, dryers, etc.
  • the prompt system includes:
  • Accumulative time determination module 1 is used to determine the cumulative working time of the filter to be tested; specifically, the cumulative working time can be confirmed by recording the power-on time of the product loaded with the filter to be tested, that is, through the MCU (microcontroller) of the product itself.
  • the timing module of the control unit) is implemented, or, after the product is powered on, an additionally set timer is triggered to work to record the use time of the filter to be detected.
  • Threshold acquisition module 2 is used to obtain the working time alarm threshold corresponding to the filter to be detected, and the filter to be detected corresponds to at least one working time alarm threshold; specifically, different types of filters correspond to different working time alarm thresholds, the same type
  • different working time alarm thresholds can be set accordingly. For example, in the working environment where humidity and temperature are the first conditions, the threshold is the first threshold; when the humidity and temperature are changed to the first In the second condition, the threshold value is transformed into the second threshold value. Therefore, in the present application, the filter screen to be detected corresponds to at least one working time alarm threshold.
  • the working duration alarm threshold corresponding to the filter can be switched by manual setting, or the working duration alarm threshold corresponding to the filter can be switched by automatic detection. For example, when it is determined that humidity and temperature change, determine The working time alarm threshold corresponding to the current humidity and temperature.
  • the first detection module 3 is used to detect whether the accumulated working time matches the corresponding working time alarm threshold, and if so, generate prompt information, and the prompt information is used to remind the user to replace the filter to be detected.
  • the working duration alarm threshold may be the maximum usable duration of the filter to be detected, or the minimum remaining usage duration of the filter to be detected, which can be set as required.
  • the prompt information may be an indicator light, an alarm sound, a prompt word, etc., which is not limited in this application.
  • different prompt information can be set for different types of filters to show the difference.
  • the first detection module 3 specifically includes:
  • the expected duration obtaining unit 31 is used to obtain the expected usage duration of the filter screen to be detected
  • the remaining duration determining unit 32 is used for determining the remaining duration of use of the filter screen to be detected according to the expected duration of use and the accumulated working duration;
  • the detection unit 33 is configured to detect whether the remaining usage time is lower than the corresponding working time alarm threshold.
  • the working time alarm threshold is the minimum remaining usage time that the filter to be detected can still be used.
  • the remaining usage time of the filter to be detected first obtain the expected usage duration of the filter to be detected, that is, the maximum usable duration. Then, the remaining use time is obtained according to the difference between the expected use time and the accumulated working time.
  • the prompting system further includes a display module 4;
  • the display module 4 is used to display the remaining usage time of the filter to be detected.
  • the display screen can be set to display the specific remaining usage time, or display a percentage corresponding to the remaining usage time, which is not limited in this application.
  • the modules involved in data processing in the system may all be located in the MCU of the product, and there is no need to add additional circuits, thereby reducing development costs and improving efficiency.
  • the judgment is made automatically according to the accumulated working time of the filter screen and the corresponding alarm threshold of the working time, so as to intelligently remind the customer to replace the filter screen in time.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the filter screen replacement prompt system of this embodiment is further improved on the basis of the fourth embodiment. As shown in FIG. 11 , an electronic label is provided on the filter screen to be detected, and the prompt system further includes an identification module 5;
  • the identification module 5 is used to identify the electronic label and obtain the unique identification number of the filter to be detected, and the unique identification number is stored in the electronic label; in addition, the unique identification number can also be displayed through the display module 4 .
  • the threshold acquisition module 2 specifically includes:
  • the preset unit 21 is used to preset the corresponding relationship between the unique identification number of the filter screen and at least one working duration alarm threshold; specifically, by presetting different ID numbers corresponding to multiple tasks in the MCU of the product that is loaded with the filter screen to be detected Time alarm threshold, each working time alarm threshold corresponds to different application scenarios or application environments or seasons. For example, different thresholds are set for wet environments and dry environments, and different thresholds are set for different seasons. This application does not limit.
  • the matching unit 22 is configured to match the unique identification number of the filter net to be detected with the corresponding relationship, so as to obtain an alarm threshold of the working time corresponding to the filter net to be detected. Specifically, according to the preset corresponding relationship in the MCU, the working time alarm threshold of the filter to be detected is obtained by matching, and then the current application scenario or application environment or season is comprehensively considered, and then a unique judgment threshold is determined for subsequent judgment.
  • the prompt system also includes a second detection module 6 and a reset module 7;
  • the second detection module 6 is used to detect whether the filter to be detected is an unused filter according to the unique identification number of the filter to be detected, and if so, the reset module 7 is called; , it can be confirmed that the user has replaced the filter, and the replaced filter is an unused filter by default. Set the cumulative working time to ensure the accuracy of subsequent monitoring.
  • the reset module 7 is used to reset the accumulated working time of the filter to be detected to 0. Specifically, after replacing the filter, set the accumulated working time to 0 and restart the monitoring.
  • the ID number of the filter to be detected can be identified, and then it can be determined whether the user has replaced the filter, so that the MCU can reset the timing and perform a new round of filter monitoring.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • An electronic device comprising a memory, a processor, and a computer program stored on the memory and running on the processor, when the processor executes the computer program, the filter replacement prompting method described in Embodiment 1 or 2 is implemented .
  • FIG. 7 is a schematic structural diagram of an electronic device provided in this embodiment.
  • Figure 7 shows a block diagram of an exemplary electronic device 90 suitable for use in implementing embodiments of the present invention.
  • the electronic device 90 shown in FIG. 7 is only an example, and should not impose any limitation on the function and scope of use of the embodiments of the present invention.
  • the electronic device 90 may take the form of a general-purpose computing device, which may be, for example, a server device.
  • Components of the electronic device 90 may include, but are not limited to: at least one processor 91 , at least one memory 92 , a bus 93 connecting different system components (including the memory 92 and the processor 91 ).
  • the bus 93 includes a data bus, an address bus and a control bus.
  • Memory 92 may include volatile memory, such as random access memory (RAM) 921 and/or cache memory 922 , and may further include read only memory (ROM) 923 .
  • RAM random access memory
  • ROM read only memory
  • Memory 92 may also include program tools 925 having a set (at least one) of program modules 924 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, in these examples Each or some combination of these may include an implementation of a network environment.
  • the processor 91 executes various functional applications and data processing by executing computer programs stored in the memory 92 .
  • the electronic device 90 may also communicate with one or more external devices 94 (eg, keyboards, pointing devices, etc.). Such communication may take place through input/output (I/O) interface 95 . Also, the electronic device 90 may communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet) through a network adapter 96 . Network adapter 96 communicates with other modules of electronic device 90 via bus 93 . It should be understood that, although not shown, other hardware and/or software modules may be used in conjunction with electronic device 90, including but not limited to: microcode, device drivers, redundant processors, external disk drive arrays, RAID (array of disks) systems, tape drives, and data backup storage systems.
  • RAID array of disks
  • a computer-readable storage medium having a computer program stored thereon, and when the program is executed by a processor, implements the steps of the filter screen replacement prompting method described in the second or third embodiment.
  • the readable storage medium may include, but is not limited to, a portable disk, a hard disk, a random access memory, a read-only memory, an erasable programmable read-only memory, an optical storage device, a magnetic storage device, or any of the above suitable combination.
  • the present invention can also be implemented in the form of a program product, which includes program codes, when the program product runs on a terminal device, the program code is used to cause the terminal device to execute the implementation The steps of the filter screen replacement prompt method described in the second or third embodiment.
  • the program code for executing the present invention can be written in any combination of one or more programming languages, and the program code can be completely executed on the user equipment, partially executed on the user equipment, as an independent
  • the software package executes on the user's device, partly on the user's device, partly on the remote device, or entirely on the remote device.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • the hand drying device in this embodiment includes:
  • a communication module 101 used for receiving control instructions
  • the control module 102 is connected in communication with the communication module, and is used for determining the air outlet mode of the hand drying device according to the control instruction.
  • the air outlet mode corresponds to at least one mode parameter, and the mode parameter preferably includes an outlet air temperature parameter and/or an outlet air speed parameter.
  • the outlet air temperature parameter may include low temperature, medium temperature and high temperature
  • the outlet air speed parameter It can include low speed, medium speed and high speed.
  • the air outlet mode can correspond to different combinations of air outlet temperature parameters and air outlet speed parameters. For example, it can only include low temperature or low speed, or low temperature and medium speed, etc., which is beneficial to Meet the different needs of different user groups for the air outlet mode.
  • the communication module 101 may include a key communication unit 111, wherein the key communication unit 111 is configured to receive a key control instruction input by the user through keys, and the key control instruction is used to determine the air outlet mode of the hand drying device, for example, The user can select the outlet air temperature parameter and/or the outlet air speed parameter by pressing the keys.
  • the key communication unit 111 is configured to receive a key control instruction input by the user through keys, and the key control instruction is used to determine the air outlet mode of the hand drying device, for example, The user can select the outlet air temperature parameter and/or the outlet air speed parameter by pressing the keys.
  • the communication module 101 may further include a touch communication unit 112, wherein the touch communication unit 112 is configured to receive a touch control command input by the user through the touch panel, and the touch control command is used to determine the hand drying device For example, the user can select the air temperature parameter and/or the air speed parameter through the touch panel.
  • the touch communication unit 112 is configured to receive a touch control command input by the user through the touch panel, and the touch control command is used to determine the hand drying device For example, the user can select the air temperature parameter and/or the air speed parameter through the touch panel.
  • the hand drying device in this embodiment may further include an environmental parameter detection module 103.
  • the environmental parameter detection module 103 is used to detect environmental parameters and may be specifically implemented as a temperature sensor 131, a humidity sensor 132, etc.
  • the environmental parameter detection module 103 is electrically connected with the control module 102, and can realize IIC, serial port, single-wire communication, etc. with the control module 102, so as to send the environmental parameters to the control module 102.
  • the control module 102 can also be used for Determine the air outlet mode of the hand drying device according to the environmental parameters. For example, when the temperature in the current environment is determined to be high according to the environmental parameters, the outlet air temperature parameter is determined to be low temperature, etc. For another example, when the humidity in the current environment is determined according to the environmental parameters, Determine the wind speed parameter as high speed and so on.
  • the hand drying device in this embodiment may further include a user identification module 104.
  • the user identification module 104 is used to identify the user and determine the user attributes of the user. It can be implemented as a biometric identification component 142 such as fingerprint, face, voiceprint, etc., wherein the user attribute is used to represent the user group to which the user belongs, for example, children, young adults, middle-aged and elderly, etc., and for example, male, female, etc.
  • the control module 102 can also be used to determine the air outlet mode of the hand drying device according to the user attribute. For example, when it is determined according to the user attribute that the user group to which the current user belongs is children, the outlet air temperature parameter is determined to be medium temperature, and the outlet air temperature parameter is determined to be medium temperature.
  • the speed parameter is medium speed and so on.
  • the hand drying device in this embodiment may also include a voice for recognizing voice commands. Recognition module, the control module 102 may also be used to determine the air outlet mode of the hand drying device according to the voice command.
  • the hand drying device in this embodiment may further include a gesture recognition module for recognizing gesture commands, and the control module 102 may also It is used to determine the air outlet mode of the hand drying device according to the gesture instruction.
  • the hand drying device in this embodiment may further include a sterilization module 105.
  • the sterilization module 105 is used to sterilize the filter screen of the hand drying device, so as to ensure that the air out of the hand drying device is clean and safe to use.
  • the module 105 can be specifically implemented as a UV sterilization lamp or the like.
  • the hand drying device in this embodiment may further include a filter identification module 106.
  • the filter identification module 106 is used to identify the identification code of the filter of the hand drying device and can be specifically implemented as near-end identification such as NFC, RFID, etc. component, wherein the identification code is used to characterize the uniqueness of the filter, so as to inform the user of the current usage information of the filter, and whether the filter needs to be replaced.
  • the hand drying device in this embodiment may further include a display module 107, which is electrically connected to the control module 102, and can realize serial communication, SPI communication, IIC communication, etc. with the control module 102, and the display module 107 uses It is used to display at least one of mode parameters, environmental parameters, time information, filter usage information and filter replacement prompt information, so as to enrich the information of the hand drying device that the user can obtain, and improve the relationship between the user and the hand drying device.
  • Interactive experience Further, in this embodiment, a control panel may be integrated into the display module 107 to realize a touch display function, and on this basis, the convenience of human-machine operation is improved, thereby improving the experience of human-machine interaction.
  • the hand drying device of this embodiment may further include a proximity detection module 108 , a heating module 109 and a fan module 110 , wherein the heating module 109 is electrically connected to the control module 102 and can be implemented by using a heating wire, and the fan module 110 is connected to the control module 110 .
  • the module 102 is electrically connected and can be driven via a PWM signal
  • the proximity detection module 108 can be implemented using an infrared sensor or the like and is electrically connected to the control module 102 via an ADC for detecting a proximity event, and also for detecting the generation of a proximity event, for example,
  • a start instruction is sent to the control module 102
  • the disappearance of the proximity event is detected, for example, when the user takes his hand out of the hand drying position
  • a stop instruction is sent to the control module 102 .
  • control module 102 is further configured to control the heating module 109 and/or the fan module 110 to start working according to the determined air outlet mode when a start command is received, and is also configured to control the heating module when a stop command is received 109 and the fan module 110 stop working.
  • the hand drying device in this embodiment may further include a distribution network module 111, which is electrically connected to the control module 102 and can implement UART communication with the control module 102 for automatically or passively communicating with an external network Device communication connection.
  • the distribution network module 111 has an external network device corresponding to the encrypted connection. At this time, it can automatically search for network signals in the current environment, and automatically communicate with the external network device when a matching network signal is found.
  • the network distribution module 111 searches for network signals in the current environment, and the user performs operations such as network signal selection and password input on the touch panel or keys to passively establish communication connections with external network devices.
  • the hand drying device in this embodiment can also communicate with an external control device in communication with the external network device.
  • the communication module 101 in this embodiment may further include a wireless communication unit 113 for receiving a wireless control instruction sent by a control device different from the hand drying device, so as to realize wireless control of the hand drying device.
  • the hand drying device in this embodiment can also output the environmental parameters detected by the environmental parameter detection module 103 through the communication module 101, for example, to the control device, so as to realize the linkage control of other external devices, wherein , and other external devices may include, for example, air conditioners and the like.
  • the control module 102 in this embodiment may include a main control unit 121 and a display screen control unit 122 that are electrically connected, wherein the main control unit 121 and the display screen control unit 122 are respectively different from other modules in the hand drying device They are electrically connected to realize different functions of the hand drying device.
  • the touch communication unit 112, the environmental parameter detection module 103, and the display module 107 in this embodiment can all be electrically connected to the display control unit 122, while the key communication unit 111 .
  • the wireless communication unit 113 , the user identification module 104 , the sterilization module 105 , the filter identification module 106 , the proximity detection module 108 , the heating module 109 , the fan module 110 and the distribution network module 111 can all be electrically connected to the main controller 121 .
  • This embodiment can receive a control command, and can realize the change of the air outlet mode of the hand drying device according to the control command. Specifically, at least one of the air outlet temperature parameter and the air outlet speed parameter of the hand drying device can be controlled, Therefore, it is beneficial to meet the needs of different user groups, and further to improve the user experience.
  • this embodiment also has functions such as environment adaptive control, user identification, filter sterilization, filter identification, wireless communication, etc., which is beneficial to further improve user experience.
  • the linkage system in this embodiment includes the control device 2 and the hand drying device provided in the first embodiment.
  • the control device 2 is connected in communication with the hand drying device 1, and is used to send a wireless control instruction to the hand drying device, and the hand drying device 1 is used to receive the wireless control instruction and determine the air outlet mode according to the wireless control instruction, so as to realize the control device 2 Wireless control of the hand dryer 1.
  • the linkage system of this embodiment further includes an environmental parameter adjustment device 3 and a cloud server 4 respectively connected to the control device 2 in communication, wherein the environmental parameter adjustment device 3 is used to adjust the environmental parameters, and the cloud server 4 is used to adjust the environment parameters according to the received The environment parameters to generate adjustment instructions.
  • the hand drying device 1 is used to send the environmental parameters to the control device 2
  • the control device 2 is used to send the environmental parameters to the cloud server 4, and the cloud server 4 generates adjustment instructions according to the received environmental parameters and sends them to the control device 2, and controls the
  • the device 2 receives the adjustment instruction sent by the cloud server 4, and controls the environmental parameters to adjust the operating parameters of the device 3 according to the adjustment instruction, thereby adjusting the environmental parameters of the current environment.
  • the environmental parameters detected and sent by the hand drying device 1 and the environmental parameters adjusted by the environmental parameter adjustment device 3 may be the same or different.
  • the environmental parameter adjustment device 3 may be a humidification device for adjusting the humidity parameter.
  • the environmental parameter adjustment device 3 may be an air conditioner for adjusting the temperature parameter.
  • this embodiment can also realize the linkage between the hand drying device, the control device, the environmental parameter adjustment device, etc., which is beneficial to further improve the user experience.
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • This embodiment provides a control method for a hand drying device.
  • the control method in this embodiment is applied to the hand drying device provided in Embodiment 1.
  • the control method in this embodiment includes the following steps:
  • the air outlet mode corresponds to at least one mode parameter, and the mode parameter preferably includes an outlet air temperature parameter and/or an outlet air speed parameter.
  • the outlet air temperature parameter may include low temperature, medium temperature and high temperature
  • the outlet air speed parameter It can include low speed, medium speed and high speed.
  • the air outlet mode can correspond to different combinations of air outlet temperature parameters and air outlet speed parameters. For example, it can only include low temperature or low speed, or low temperature and medium speed, etc., which is beneficial to Meet the different needs of different user groups for the air outlet mode.
  • control instruction can come from the user's operation on the keys of the hand drying device, the operation on the touch panel, or the user's operation on other devices communicatively connected with the hand drying device, so as to enrich the control method of the hand drying device, And improve the human-computer interaction experience.
  • control instruction can also come from a control device different from the hand drying device, so as to realize the wireless control of the hand drying device by the control device, further enriching the control method of the hand drying device, and further improving the human-computer interaction experience.
  • control method of this embodiment may further include the following steps:
  • determining the air outlet mode of the hand drying device based on the environmental parameters can realize the function of adaptive control of the hand drying device according to the environmental parameters, and outputting the environmental parameters is beneficial to realize the linkage control with other external devices.
  • control method of this embodiment also includes the following steps:
  • the user attribute is used to represent the user group to which the user belongs, so as to realize the function of adaptive control of the hand drying device according to the user group.
  • This embodiment can receive a control command, and can realize the change of the air outlet mode of the hand drying device according to the control command. Specifically, at least one of the air outlet temperature parameter and the air outlet speed parameter of the hand drying device can be controlled, Therefore, it is beneficial to meet the needs of different user groups, and further to improve the user experience.
  • this embodiment also has functions such as environment self-adaptive control and user identification, which is beneficial to further improve the user experience.
  • this embodiment aims to enrich the control methods of the air outlet mode of the hand drying device, and does not intend to limit the control methods to the above examples.
  • the control method of this embodiment can also be based on voice control, Control methods such as gesture control are implemented.
  • This embodiment provides a linkage control method applied to a control device.
  • the linkage control method in this embodiment includes:
  • the hand drying device is provided in the seventh embodiment, and the environmental parameter adjustment device is used to adjust the environmental parameter according to the adjustment instruction. Based on this, the linkage control between the hand drying device and the environmental parameter adjustment device is realized, which enriches the The functional mode of the hand drying device is conducive to improving the human-computer interaction experience.
  • the environmental parameters detected and sent by the hand drying device and the environmental parameters adjusted by the environmental parameter adjustment device may be the same or different.
  • the environmental parameter adjustment device may be a humidification device for adjusting the humidity parameter.
  • the environmental parameter adjustment device may be an air conditioner for adjusting a temperature parameter.
  • this embodiment can also realize the linkage between the hand drying device, the control device, the environmental parameter adjustment device, etc., which is beneficial to further improve the user experience.
  • This embodiment provides an electronic device, which can be expressed in the form of a computing device (for example, a server device), and includes a memory, a processor, and a computer program stored in the memory and running on the processor, wherein the processor When the computer program is executed, the control method for the hand drying device provided in the ninth embodiment, or the linkage control method provided in the tenth embodiment can be implemented.
  • a computing device for example, a server device
  • the control method for the hand drying device provided in the ninth embodiment, or the linkage control method provided in the tenth embodiment can be implemented.
  • FIG. 16 shows a schematic diagram of the hardware structure of this embodiment.
  • the electronic device 9 specifically includes:
  • At least one processor 91 at least one memory 92, and a bus 93 for connecting different system components (including processor 91 and memory 92), wherein:
  • the bus 93 includes a data bus, an address bus and a control bus.
  • Memory 92 includes volatile memory, such as random access memory (RAM) 921 and/or cache memory 922, and may further include read only memory (ROM) 923.
  • RAM random access memory
  • ROM read only memory
  • the memory 92 also includes a program/utility 925 having a set (at least one) of program modules 924 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, examples of which are Each or some combination of these may include an implementation of a network environment.
  • program modules 924 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, examples of which are Each or some combination of these may include an implementation of a network environment.
  • the processor 91 executes various functional applications and data processing by running the computer program stored in the memory 92, such as the control method of the hand dryer provided in Embodiment 3 of the present invention, or the linkage control method provided in Embodiment 4 of the present invention.
  • the electronic device 9 may further communicate with one or more external devices 94 (eg, keyboards, pointing devices, etc.). Such communication may take place through input/output (I/O) interface 95 . Also, the electronic device 9 may communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet) through a network adapter 96 . The network adapter 96 communicates with other modules of the electronic device 9 via the bus 93 .
  • I/O input/output
  • networks eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet
  • the network adapter 96 communicates with other modules of the electronic device 9 via the bus 93 .
  • This embodiment provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps of the control method of the hand drying device provided in the ninth embodiment, or the linkage provided in the tenth embodiment. The steps of the control method.
  • the readable storage medium may include, but is not limited to, a portable disk, a hard disk, a random access memory, a read-only memory, an erasable programmable read-only memory, an optical storage device, a magnetic storage device, or any of the above suitable combination.
  • the present invention can also be implemented in the form of a program product, which includes program codes, when the program product runs on a terminal device, the program code is used to cause the terminal device to execute the implementation
  • the program code for executing the present invention can be written in any combination of one or more programming languages, and the program code can be completely executed on the user equipment, partially executed on the user equipment, as an independent
  • the software package executes on the user's device, partly on the user's device, partly on the remote device, or entirely on the remote device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Automation & Control Theory (AREA)
  • Data Mining & Analysis (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种供风设备及其风温控制方法、电子设备和计算机可读介质,该风温控制方法包括:获取基于供风设备的目标进风温度值确定的出风温度调节值(1011);根据出风温度调节值,确定供风设备的目标出风温度值,将供风设备的初始出风温度值调整至目标出风温度值(1012)。通过供风设备的目标进风温度值确定出目标出风温度值,充分考虑了影响恒温控制的各项因素,从而提升了对供风设备进行恒温控制的精确度和效率,实现了智能精准的恒温调节功能,进而为供风设备提供有效的保障。

Description

供风设备及其风温控制方法、电子设备和计算机可读介质 【技术领域】
本申请涉及智能控制技术领域,尤其涉及一种供风设备及其风温控制方法、电子设备和计算机可读介质。
【背景技术】
随着生活品质的日益提升,吹风机等供风设备已经成为人们日常生活的必需品,家家户户基本上会配置吹风机,因此其功能需求也变得越来越多样化。其中,如何有效地实现吹风机的恒温控制是满足多样化功能需求的根本,也是评价产品性能的重要指标。
目前,现有吹风机实现恒温控制的方式主要为基于温度传感器实时采集到的出风温度值进行恒温控制。但是现有技术中的恒温控制方法存在无法实现精准的恒温控制的问题,因此,有必要对现有技术予以改良以克服现有技术中的所述缺陷。
【发明内容】
本发明的目的在于提供一种供风设备及其风温控制方法、电子设备和计算机可读介质,能够基于目标进风温度值确定目标出风温度值,充分考虑实时变化的环境等因素,从而实现对供风设备的精准恒温控制。
本发明的目的是通过以下技术方案实现:
根据本申请的一个方面,提供一种供风设备的风温控制方法,包括:
获取基于所述供风设备的目标进风温度值确定的出风温度调节值;
根据所述出风温度调节值,确定所述供风设备的目标出风温度值,将所述供风设备的初始出风温度值调整至所述目标出风温度值。
根据本申请的一个方面,还提供一种供风设备,包括:
处理模块,被配置为获取基于所述供风设备的目标进风温度值确定的出风温度调节值,所述处理模块还被配置为根据所述出风温度调节值,确定所述供风设备的目标出风温度值,将所述供风设备的初始出风温度值调 整至所述目标出风温度值。
根据本申请的一个方面,还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行计算机程序时实现如上述的供风设备的风温控制方法的步骤。
根据本申请的一个方面,还提供一种计算机可读介质,其上存储有计算机指令,所述计算机指令在由处理器执行时实现如上述的供风设备的风温控制方法的步骤。
一种过滤网更换提示方法,所述提示方法包括:
确定待检测过滤网的累计工作时长;
获得所述待检测过滤网对应的工作时长报警阈值,所述待检测过滤网与至少一个工作时长报警阈值对应;
检测所述累计工作时长与所述对应的工作时长报警阈值是否匹配,若是,则生成提示信息,所述提示信息用于提醒用户更换所述待检测过滤网。
较佳地,所述待检测过滤网上设有电子标签,所述提示方法还包括:
识别所述电子标签并获取所述待检测过滤网的唯一识别号,所述唯一识别号存储在所述电子标签内;
所述获得所述待检测过滤网对应的工作时长报警阈值的步骤具体包括:
预设过滤网的唯一识别号与至少一个工作时长报警阈值的对应关系;
将所述待检测过滤网的唯一识别号与所述对应关系进行匹配,以得到与所述待检测过滤网对应的工作时长报警阈值。
较佳地,所述识别所述电子标签并获取所述唯一识别号的步骤之后,所述提示方法还包括:
根据所述待检测过滤网的唯一识别号检测所述待检测过滤网是否为未使用过滤网,若是,则将所述待检测过滤网的累计工作时长置0。
较佳地,所述检测所述累计工作时长与所述对应的工作时长报警阈值是否匹配的步骤具体包括:
获取所述待检测过滤网的预期使用时长;
根据所述预期使用时长和所述累计工作时长确定所述待检测过滤网的 剩余使用时长;
检测所述剩余使用时长是否低于所述对应的工作时长报警阈值。
较佳地,所述根据所述预期使用时长和所述累计工作时长确定所述待检测过滤网的剩余使用时长的步骤之后,所述提示方法还包括:
显示所述待检测过滤网的剩余使用时长。
一种过滤网更换提示系统,过滤网更换提示系统应用于干燥设备,所述提示系统包括:
累计时长确定模块,用于确定待检测过滤网的累计工作时长;
阈值获取模块,用于获得所述待检测过滤网对应的工作时长报警阈值,所述待检测过滤网与至少一个工作时长报警阈值对应;
第一检测模块,用于检测所述累计工作时长与所述对应的工作时长报警阈值是否匹配,若是,则生成提示信息,所述提示信息用于提醒用户更换所述待检测过滤网。
较佳地,所述待检测过滤网上设有电子标签,所述提示系统还包括识别模块;
所述识别模块用于识别所述电子标签并获取所述待检测过滤网的唯一识别号,所述唯一识别号存储在所述电子标签内;
所述阈值获取模块具体包括:
预设单元,用于预设过滤网的唯一识别号与至少一个工作时长报警阈值的对应关系;
匹配单元,用于将所述待检测过滤网的唯一识别号与所述对应关系进行匹配,以得到与所述待检测过滤网对应的工作时长报警阈值。
较佳地,所述提示系统还包括第二检测模块和重置模块;
所述第二检测模块用于根据所述待检测过滤网的唯一识别号检测所述待检测过滤网是否为未使用过滤网,若是,则调用所述重置模块;
所述重置模块用于将所述待检测过滤网的累计工作时长置0。
较佳地,所述第一检测模块具体包括:
预期时长获取单元,用于获取所述待检测过滤网的预期使用时长;
剩余时长确定单元,用于根据所述预期使用时长和所述累计工作时长 确定所述待检测过滤网的剩余使用时长;
检测单元,用于检测所述剩余使用时长是否低于所述对应的工作时长报警阈值。
较佳地,所述提示系统还包括显示模块;
所述显示模块用于显示所述待检测过滤网的剩余使用时长。
.一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的过滤网更换提示方法。
一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现上述的过滤网更换提示方法的步骤。
一种干手设备,包括:
通信模块,用于接收控制指令;
控制模块,与所述通信模块通信连接,用于根据所述控制指令确定所述干手设备的出风模式,所述出风模式与至少一个模式参数对应,所述模式参数包括出风温度参数和/或出风速度参数。
较佳地,所述通信模块包括无线通信单元、按键通信单元以及触控通信单元中的至少一种;其中:
所述无线通信单元用于接收无线控制指令,所述无线控制指令由与所述干手设备不同的控制设备发送并且用于确定所述干手设备的出风模式;
所述按键通信单元用于接收按键控制指令,所述按键控制指令用于确定所述干手设备的出风模式;
所述触控通信单元用于接收触控控制指令,所述触控控制指令用于确定所述干手设备的出风模式。
较佳地,所述干手设备还包括环境参数检测模块,所述环境参数检测模块用于检测环境参数;
所述控制模块还用于根据所述环境参数确定所述干手设备的出风模式,和/或,所述通信模块还用于将所述环境参数输出;
和/或,
所述干手设备还包括用户识别模块,所述用户识别模块用于识别用户并确定所述用户的用户属性;
所述控制模块还用于根据所述用户属性确定所述干手设备的出风模式。
较佳地,所述干手设备还包括杀菌模块,所述杀菌模块用于对所述干手设备的过滤网进行杀菌;
和/或,
所述干手设备还包括过滤网识别模块,所述过滤网识别模块用于识别所述干手设备的所述过滤网的标识码,所述标识码用于表征所述过滤网的唯一性。
较佳地,所述干手设备还包括显示模块,所述显示模块用于显示所述模式参数、环境参数、时间信息、过滤网使用信息以及过滤网更换提示信息中的至少一种;
和/或,
所述控制模块包括电连接的主控制单元和显示屏控制单元;其中:
所述主控制单元和所述显示屏控制单元分别与所述干手设备中不同的其它模块电连接。
一种联动系统,包括控制设备与上述任一种干手设备;其中:
所述控制设备与所述干手设备通信连接,用于向所述干手设备发送无线控制指令;
所述干手设备用于接收所述无线控制指令并根据所述无线控制指令确定出风模式。
较佳地,所述联动系统还包括分别与所述控制设备通信连接的环境参数调节设备以及云端服务器;
所述环境参数调节设备用于调节环境参数;
所述云端服务器用于根据接收到的所述环境参数生成调节指令;
所述干手设备还用于向所述控制设备发送所述环境参数;
所述控制设备还用于向所述云端服务器发送所述环境参数并接收所述云端服务器反馈的调节指令,还用于向所述环境参数调节设备发送所述调节指令,以调节所述环境参数。
一种干手设备的控制方法,所述控制方法应用于上述任一种干手设备,所述控制方法包括:
接收控制指令;
根据所述控制指令确定所述干手设备的出风模式。
较佳地,所述控制方法还包括:
检测环境参数;
根据所述环境参数确定所述干手设备的出风模式,和/或,将所述环境参数输出;
和/或,
所述控制方法还包括:
识别用户并确定所述用户的用户属性;
根据所述用户属性确定所述干手设备的出风模式。
一种联动控制方法,所述联动控制方法应用于控制设备,并且所述联动控制方法包括:
接收上述任一种干手设备发送的环境参数;
向云端服务器发送所述环境参数并接收所述云端服务器反馈的调节指令;
向环境参数调节设备发送所述调节指令,所述环境参数调节设备用于根据所述调节指令调节环境参数。
一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述任一种干手设备的控制方法,或,上述联动控制方法。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种干手设备的控制方法的步骤,或,上述联动控制方法的步骤。
与现有技术相比,本发明具有如下有益效果:
1、本申请提供的供风设备及其风温控制方法、电子设备和计算机可读介质,通过供风设备的目标进风温度值确定出目标出风温度值,充分考虑 了影响恒温控制的各项因素,在供风设备进风温度值存在异常的情况下,还能够准确的确定供风设备的目标出风温度,从而提升了对供风设备进行恒温控制的精确度和效率,实现了智能精准的恒温调节功能,进而为供风设备提供有效的保障;
2、本申请根据过滤网的累计工作时长以及对应的工作时长报警阈值自动进行判断,以智能提醒客户及时更换过滤网,还能够通过增设近场感应设备和电子标签,以识别待检测过滤网的ID号,进而可以判断用户是否更换了过滤网,以便MCU重新复位计时,进行新一轮的过滤网监测,另外通过对不同的过滤网对应设置至少一种报警阈值,可以适用于不同的应用场景以及用户选择。本申请能够智能的进行过滤网更换,整体上提高了过滤网更换方法的效率;
3、本申请能够接收控制指令,并能够根据控制指令实现干手设备出风模式的变换,具体地,可以实现对干手设备的出风温度参数与出风速度参数中的至少一种进行控制,从而,有利于满足不同用户群体的需求,进而有利于提升用户体验感。
【附图说明】
在结合以下附图阅读本公开的实施例的详细描述之后,能够更好地理解本申请的所述特征和优点。在附图中,各组件不一定是按比例绘制,并且具有类似的相关特性或特征的组件可能具有相同或相近的附图标记。
图1为本申请实施例一提供的供风设备的风温控制方法的流程示意图。
图2为本申请实施例一还提供的供风设备的风温控制方法的流程示意图。
图3为本申请实施例一提供的供风设备的结构示意图。
图4为本申请实施例一提供的供风设备的电气连接示意图。
图5为本申请实施例一提供的实现供风设备的风温控制方法的电子设备的结构示意图。
图6为本发明实施例二的过滤网更换提示方法的流程图。
图7为本发明实施例二的过滤网更换提示方法中步骤30的流程图。
图8为本发明实施例三的过滤网更换提示方法的流程图。
图9为本发明实施例三的过滤网更换提示方法中步骤20的流程图。
图10为本发明实施例四的过滤网更换提示系统的模块示意图。
图11为本发明实施例五的过滤网更换提示系统的模块示意图。
图12为本发明实施例六的电子设备的结构示意图。
图13为根据本发明实施例七的干手设备的模块示意图。
图14为根据本发明实施例八的联动系统的模块示意图。
图15为根据本发明实施例十的联动控制方法的流程图。
图16为根据本发明实施例十一的电子设备的结构示意图。
【具体实施方式】
下面通过实施例的方式进一步说明本申请,但并不因此将本申请限制在所述的实施例范围之中。
实施例一:
为了克服目前存在的上述缺陷,作为本申请的一实施例,提供一种供风设备的风温控制方法,如图1所示,该风温控制方法主要包括以下步骤:
步骤1011、获取基于供风设备的目标进风温度值确定的出风温度调节值;
步骤1012、根据出风温度调节值,确定供风设备的目标出风温度值,将供风设备的初始出风温度值调整至目标出风温度值。
具体地,在步骤1011中,供风设备为能够提供出风功能的电子设备,具体的该供风设备可以为吹风机或送风机,但并不具体限定该供风设备的类型,可根据实际需求进行相应的选择及调整。
在步骤1011中,获取的目标进风温度值,可以是供风设备的预期进风温度值,也可以是供风设备的实时进风温度值,或者可以是供风设备的历史进风温度值,当然,上述只是几种可选的目标进风温度值,但并不具体限定该供风设备的类型,可根据实际需求进行相应的选择及调整。
在本实施例中,可通过供风设备的目标进风温度值确定出目标出风温度值,考虑了影响恒温控制的进风温度值因素,尤其在供风设备的进风温 度值存在异常的情况下,仍能够准确的确定供风设备的目标出风温度值,从而提升了对供风设备进行恒温控制的精确度和效率,实现了智能精准的恒温调节功能,进而为供风设备实现提供有效的保障。
具体地,作为一可选实施例,如图2所示,本实施例还提供的供风设备的风温控制方法可以包括以下步骤:
步骤1021、确定供风设备当前运行状态。
在本步骤中,响应于启动供风设备或接收到供风设备的恒温控制指令,确定供风设备当前运行状态,并根据供电设备当前运行状态获取相应的默认风温控制参数。
具体地,作为一优选实施例,该供风设备当前运行状态可以为供风设备当前工作档位,该工作档位可包括供风设备的供风档位和/或风温控制档位,也可以为供风设备的其他执行机构功率调节档位等,可根据实际需求进行相应的选择及调整。
在本实施例中,默认风温控制参数可包括各个不同运行状态下对应的默认风温控制参数,具体的,该默认风温控制参数可以包括实时输出的风温值,也可以包括对风温进行调节的其它参数,例如用于风温调节的测试环境温度值、补偿值等参数,可基于每次执行恒温控制功能后的温度参数来配置,也可以在出厂时进行统一默认配置,可根据实际需求进行相应的选择及调整。
执行步骤1021之后,本实施例提供的供风设备的风温控制方法包括确定供风设备是否满足更新出风温度调节值条件的步骤。执行该步骤的主要目的在于根据各种影响温度参数的条件来检测出风温度调节值的有效性,以确定出是否需要重新计算出风温度调节值。例如,硬件设备导致的温度参数等数据的丢失,或者考虑温度参数等数据的时效性因素,或者不同机器之间的误差因素等。作为优选实施例,上述确定供风设备满足更新出风温度调节值条件的步骤可具体通过以下步骤1022和步骤1023来实现。
步骤1022、判断能否获得历史出风温度调节值,若是,可执行步骤1023,若否,可执行步骤1024。
在本步骤中,判断能否从上述默认风温控制参数等信息或内存空间中 获取到供风设备当前运行状态对应的历史出风温度调节值,即每次执行恒温控制功能时利用到的出风温度调节值(本实施例中也可视为出风温度校准值,记为Ts),若能否获取到历史出风温度调节值,则可执行步骤1023,若无法获取到历史出风温度调节值,则表示需要重新计算出风温度调节值,可执行步骤1024。
在本实施例中,该历史出风温度调节值是基于供风设备历史运行时的第二进风温度值确定的,该第二进风温度值可以为供风设备当时运行时采集到的进风温度值,该进风温度值可通过设置于供电设备进风口位置处的进风温度传感器来获取。
在本实施例中,该历史出风温度调节值可以为上一次或某一次执行恒温控制功能后存储的出风温度调节值,也可以为在出厂时自动配置存储的出风温度调节值,可根据实际需求进行相应的选择及调整。
步骤1023、判断历史出风温度调节值是否符合时间要求,若是,可执行步骤1026,若否,可执行步骤1024。
在本步骤中,响应于获取到历史出风温度调节值,进一步判断历史出风温度调节值是否符合时间要求,从而进一步验证数据有效性,进而提升风温控制精确度。
具体地,考虑到与上一次风温控制相距较久而影响到本次风温控制的精确度,因此需要进一步判断历史出风温度调节值对应的供风设备的历史运行时间与当前时间之差是否大于设定时间阈值,若是,则表明该历史出风温度调节值通过有效性验证,可以使用该历史出风温度调节值,因此可执行步骤1026,若否,则表明该历史出风温度调节值未通过有效性验证,需要丢弃该历史出风温度调节值,因此可执行步骤1024。
在本实施例中,并不具体限定设定时间阈值,可根据实际需求进行相应的设定。
步骤1024、判断供风设备是否满足稳定运行条件,若是,可执行步骤1025,若否,可返回执行步骤1021。
在本步骤中,响应于需要重新计算出风温度调节值,为了进一步保证计算数据的精确度,判断供电设备是否满足稳定运行条件,若是,则表明 可以满足更新出风温度调节值条件,因此可执行步骤1025,若否,则表明尚无法满足更新出风温度调节值条件,因此可返回执行步骤1021,或也可触发预设倒计时后重新执行该步骤。
作为一优选实施例,在本步骤中,判断供风设备在第一设定时间内第一出风温度值的温度变化速度是否处于平稳状态,若是,则表明可以满足更新出风温度调节值条件,因此可执行步骤1025,若否,则表明尚无法满足更新出风温度调节值条件,因此可返回执行步骤1021,或也可触发预设倒计时后重新执行该步骤。
上述第一出风温度值为当前采集到的供风设备的出风温度值,可通过设置于供风设备的出风口位置处的出风温度传感器来获取。
具体地,在第一设定时间内第一出风温度值的升温或降温速度平滑(即升温或降温速度小于设定极限值),则表明符合正常开机标准,能够有效地排除掉堵风等异常操作。
作为另一优选实施例,在本步骤中,判断供风设备在第二设定时间内第一出风温度值的波动范围是否处于平稳状态,若是,则表明可以满足更新出风温度调节值条件,因此可执行步骤1025,若否,则表明尚无法满足更新出风温度调节值条件,因此可返回执行步骤1021,或也可触发预设倒计时后重新执行该步骤。
示例性地,在第二设定时间内第一出风温度值的波动最大绝对值小于或等于一设定极限值,则认为温度稳定。例如,第一出风温度值在2秒内的波动最大绝对值≤0.6℃后,则认为温度稳定。
在本实施例中,可同时满足上述两个条件,也可任意选择满足上述两个条件之一,可根据实际需求进行相应的设定。
在本实施例中,并不具体限定上述第一设定时间和上述第二设定时间,可以相同或不同,也可以相互独立进行任意设定。
步骤1025、根据第一进风温度值和第一出风温度值更新出风温度调节值。
在本步骤中,根据供风设备当前运行状态下的第一进风温度值(记为Ti)、供风设备当前运行状态下的第一出风温度值(记为To)以及从默认风 温控制参数中获得的测试环境温度值,确定当前运行状态下的出风温度调节值。
在本实施例中,上述第一进风温度值为实时获取到的供电设备的当前进风温度值。
在本实施例中,上述第二进风温度值与上述第一进风温度值可对应于上述供风设备的同一运行状态。
优选地,确定当前运行状态下的出风温度调节值Ts可根据以下等式1来计算出。
<等式1>
Ts=To-(Ti-23)
其中,23为标准状况下的优选测试环境温度值,当然在等式1中的该测试环境温度值可根据实际需求进行相应的调整,可替换为其他环境温度值。
步骤1026、根据出风温度调节值确定目标出风温度值。
在本步骤中,根据历史出风温度调节值或步骤1025中计算出的出风温度调节值以及温度补偿值(记为f),确定供风设备的目标出风温度值(记为Tt),温度补偿值作为对出风温度调节值进行补偿的温度值,可结合环境、硬件、异物、故障等可影响实际出风温度值的因素进行综合考虑和设定,以最终确定出目标出风温度值。
确定当前运行状态下的目标出风温度值Tt可根据以下等式2来计算出。
<等式2>
Tt=Ts+f
优选地,温度补偿值可结合目标进风温度值、测试环境温度值、设定发热丝功率(记为Wf)以及当前供风设备的发热丝功率(记为Wn)来确定。
其中,温度补偿值f可根据以下等式3来计算出。
<等式3>
f=a(Ti-23)+b+c(Wf-Wn)
其中,系数a、b、c均可根据实际需求进行相应的设定,也可以全部为0。
步骤1027、根据目标出风温度值进行恒温控制。
在本步骤中,实时比较步骤1026中计算出的目标出风温度值和采集到的当前出风温度值并进行实时出风温度控制,从而实现有效的恒温控制功能。
具体地,若目标出风温度值大于当前出风温度值和设定温度常量之和,则表明需要降低风温,因此控制供风设备的发热机构以降低出风温度值,例如可通过降低发热丝功率等方式实现;若目标出风温度值小于当前出风温度值减去设定温度常量的值,则表明需要增加风温,因此控制供风设备的发热机构以增加出风温度值,例如可通过提高发热丝功率等方式实现。
在本实施例中,考虑到实际采集到的当前出风温度值存在波动区间,利用上述设定温度常量形成基于目标出风温度值的目标出风温度值范围以避免由误差导致的对发热机构的频繁控制,但并不具体限定上述设定温度常量,也可以为0,可根据实际需求进行相应的设定。
本实施例提供的供风设备的风温控制方法,基于有效的恒温参数推算机制,主要通过供风设备的目标进风温度值确定出目标出风温度值,充分考虑了影响恒温控制的环境、进风温度值等各项因素,可以将出风口处至少10厘米处的温度可以控制在一个精确的范围内,尤其在供风设备的进风温度值存在异常(例如,进风口被异物堵住等)的情况下,仍能够准确的确定供风设备的目标出风温度值,而且无需在生产端进行针对性校准的条件下,消除不同设备之间的温度传感器误差,从而提升了对供风设备进行恒温控制的精确度和效率,实现了智能精准的恒温调节功能,进而为供风设备提供有效的保障。
为了克服目前存在的上述缺陷,作为本申请的一实施例,还提供一种供风设备,该供风设备主要利用如上述的供风设备的风温控制方法。
优选地,在本实施例中,该供风设备可以为吹风机或送风机,但并不具体限定该供风设备的类型,可根据实际需求进行相应的选择及调整。
具体地,作为一可选实施例,如图4所示,本实施例提供的供风设备主要包括处理模块21、进风温度传感器221、出风温度传感器231、电机控制模块24及发热机构控制模块25,处理模块21分别与进风温度传感器221、出 风温度传感器231、电机控制模块24及发热机构控制模块25通信连接。
当然,本实施例虽然仅示出上述各个模块,但这并不影响根据实际需求添加供风设备的其他模块,而且只要能够实现相应的功能,也可根据实际需求进行替换。
处理模块21可优选采用MCU(微处理单元)来实现其功能,但本实施例并不具体限定处理模块21的类型,可根据实际需求进行相应的选择及调整。
参考图3所示,进风温度传感器221设置于供风设备的进风口222的位置处,并且被配置为采集不同环境下的进风口222处的进风温度值并传输至处理模块21。
在本实施例中,进风温度传感器221可优选采用NTC温度反馈用电阻来实现其功能,但本实施例并不具体限定进风温度传感器221的类型及设置数量,均可根据实际需求进行相应的选择及调整。
参考图3所示,出风温度传感器231设置于供风设备的出风口232的位置处,并且被配置为采集不同环境下的出风口232处的出风温度值并传输至处理模块21。
在本实施例中,出风温度传感器231可优选采用NTC温度反馈用电阻来实现其功能,但本实施例并不具体限定出风温度传感器231的类型及设置数量,均可根据实际需求进行相应的选择及调整。
电机控制模块24与供风设备的用于供风的电机电连接,并且被配置为根据处理模块21传输的指令来生成发送至电机的电机控制指令,以控制电机的转速等工作状态。
发热机构控制模块25与供电设备的用于通过发热调整出风温度的发热机构电连接,并且被配置为根据处理模块21传输的指令来生成发送至发热机构的发热控制指令,以控制发热机构的功率等工作状态。
在本实施例中,该发热机构可以为发热丝等,但并不具体限定发热机构的类型,只要能够实现相应的功能,可根据实际需求进行相应的选择及调整。
处理模块21被配置为获取基于供风设备的目标进风温度值确定的出风 温度调节值,处理模块21还被配置为根据出风温度调节值,确定供风设备的目标出风温度值,将供风设备的初始出风温度值调整至目标出风温度值。
当目标进风温度值为供风设备当前运行状态下的第一进风温度值时,处理模块21还被配置为根据第一进风温度值、供风设备当前运行状态下的第一出风温度值以及获得的测试环境温度值,确定出风温度调节值。
作为一优选实施例,处理模块21还被配置为确定出风温度调节值前,确定供风设备满足更新出风温度调节值条件。
具体地,处理模块21还被配置为若未能获得历史出风温度调节值,则确定供风设备是否满足稳定运行条件,其中历史出风温度调节值是基于供风设备历史运行时的第二进风温度值确定的,第二进风温度值与第一进风温度值对应于所述供风设备的同一运行状态;
若确定供风设备满足稳定运行条件,则确定供风设备满足更新出风温度调节值条件。
进一步地,当确定供风设备满足稳定运行条件时,处理模块21还被配置为,若确定供风设备在第一设定时间内第一出风温度值的温度变化速度处于平稳状态;和/或,确定供风设备在第二设定时间内第一出风温度值的波动范围处于平稳状态,则确定供风设备满足稳定运行条件。
进一步地,处理模块21还被配置为若获得历史出风温度调节值,且历史出风温度调节值对应的供风设备的历史运行时间与当前时间之差大于设定时间阈值,则确定供风设备满足更新出风温度调节值条件。
作为一优选实施例,处理模块21还被配置为根据出风温度调节值以及温度补偿值,确定供风设备的目标出风温度值,其中温度补偿值是根据设定发热丝功率以及当前供风设备的发热丝功率确定的。
在本实施例中,处理模块21所实现的功能可对应参考如上述的供电设备的风温控制方法中的各个步骤,故不再一一赘述。
本实施例提供的供风设备,基于有效的恒温参数推算机制,主要通过供风设备的目标进风温度值确定出目标出风温度值,充分考虑了影响恒温控制的环境、进风温度值等各项因素,可以将出风口处至少10厘米处的温度可以控制在一个精确的范围内,尤其在供风设备的进风温度值存在异常 (例如,进风口被异物堵住等)的情况下,仍能够准确的确定供风设备的目标出风温度值,而且无需在生产端进行针对性校准的条件下,消除不同设备之间的温度传感器误差,从而提升了对供风设备进行恒温控制的精确度和效率,实现了智能精准的恒温调节功能,进而为供风设备提供有效的保障。
图5为根据本申请另一实施例提供的一种电子设备的结构示意图。电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现如上实施例中的供风设备的风温控制方法。图5显示的电子设备30仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图5所示,电子设备30可以以通用计算设备的形式表现,例如其可以为服务器设备。电子设备30的组件可以包括但不限于:上述至少一个处理器31、上述至少一个存储器32、连接不同系统组件(包括存储器32和处理器31)的总线33。
总线33包括数据总线、地址总线和控制总线。
存储器32可以包括易失性存储器,例如随机存取存储器(RAM)321和/或高速缓存存储器322,还可以进一步包括只读存储器(ROM)323。
存储器32还可以包括具有一组(至少一个)程序模块324的程序/实用工具325,这样的程序模块324包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
处理器31通过运行存储在存储器32中的计算机程序,从而执行各种功能应用以及数据处理,例如本申请如上实施例中的供风设备的风温控制方法。
电子设备30也可以与一个或多个外部设备34(例如键盘、指向设备等)通信。这种通信可以通过输入/输出(I/O)接口35进行。并且,模型生成的设备30还可以通过网络适配器36与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图5所示,网络适配器36通过总线33与模型生成的设备30的其它模块通信。应当明白,尽管图中未 示出,可以结合模型生成的设备30使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了电子设备的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本申请的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
本实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,程序被处理器执行时实现如上实施例中的供风设备的风温控制方法中的步骤。
其中,可读存储介质可以采用的更具体可以包括但不限于:便携式盘、硬盘、随机存取存储器、只读存储器、可擦拭可编程只读存储器、光存储器件、磁存储器件或上述的任意合适的组合。
在可能的实施方式中,本申请还可以实现为一种程序产品的形式,其包括程序代码,当程序产品在终端设备上运行时,程序代码用于使终端设备执行实现如上实施例中的供风设备的风温控制方法中的步骤。
其中,可以以一种或多种程序设计语言的任意组合来编写用于执行本申请的程序代码,程序代码可以完全地在用户设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户设备上部分在远程设备上执行或完全在远程设备上执行。
实施例二:
一种过滤网更换提示方法,如图6所示,提示方法包括:
步骤10、确定待检测过滤网的累计工作时长;
具体的,可以通过记录装载有待检测过滤网的产品的上电时间来确认累计工作时长,也即通过产品自身的MCU(微控制单元)的计时模块实现,或者,在产品上电后触发额外设置的计时器工作,以记录待检测过滤网的使用时间。
步骤20、获得待检测过滤网对应的工作时长报警阈值,待检测过滤网与至少一个工作时长报警阈值对应;
具体的,不同类型的过滤网对应不同的工作时长报警阈值,同一类型的过滤网当其设置在不同的环境中也可以对应设置不同的工作时长报警阈值,例如,在湿度、温度为第一条件的工作环境中,阈值为第一阈值;当湿度、温度变换为第二条件时,阈值变换为第二阈值。因此,本申请中,待检测过滤网与至少一个工作时长报警阈值对应。
本实施例中,可以通过手动设置的方式切换过滤网对应的工作时长报警阈值,也可以通过自动检测的方式切换过滤网对应的工作时长报警阈值,例如,在确定湿度、温度发生变化时,确定当前湿度、温度对应的工作时长报警阈值。
步骤30、检测累计工作时长与对应的工作时长报警阈值是否匹配,若是,则执行步骤40;
具体的,工作时长报警阈值可以是待检测过滤网最多能够使用的时长,也可以是待检测过滤网还能够使用的最少的剩余使用时长,可以根据需要进行设定,本申请不限于此。
步骤40、生成提示信息,提示信息用于提醒用户更换待检测过滤网。
具体的,提示信息可以是指示灯、警报声、提示语等,本申请不作限定。另外,对于不同类型的过滤网可以设定不同的提示信息以示区别。
其中,如图7所示,步骤30具体包括:
步骤301、获取待检测过滤网的预期使用时长;
步骤302、根据预期使用时长和累计工作时长确定待检测过滤网的剩余使用时长;
步骤303、检测剩余使用时长是否低于对应的工作时长报警阈值,若是,则执行步骤40。
具体的,工作时长报警阈值为待检测过滤网还能够使用的最少的剩余使用时长,为了确定待检测过滤网的剩余使用时长,先获取待检测过滤网的预期使用时长即最多能够使用的时长,再根据预期使用时长和累计工作时长的差值得到剩余使用时长。
为了方便用户更加直观的了解待检测过滤网使用程度,在获取剩余使用时长之后,提示方法还包括:
步骤304、显示待检测过滤网的剩余使用时长。
具体的,可以通过设置显示屏以显示具体的剩余使用时长,或者显示与剩余使用时长对应的百分比,本申请不做限定。
本实施例中,根据过滤网的累计工作时长以及对应的工作时长报警阈值自动进行判断,以智能提醒客户及时更换过滤网。
实施例三:
本实施例的过滤网更换提示方法是在实施例二的基础上进一步改进,较佳地,待检测过滤网上设有电子标签,如图8所示,提示方法还包括:
步骤11、识别电子标签并获取待检测过滤网的唯一识别号,唯一识别号存储在所述电子标签内;另外,也可以将唯一识别号通过显示屏进行显示。
具体的,使用例如RFID等近场感应设备来识别设在待检测过滤网上的电子标签,以获取待检测过滤网对应的唯一识别号比如ID号,用于区分不同的过滤网。
进一步的,如图9所示,步骤20具体包括:
步骤201、预设过滤网的唯一识别号与至少一个工作时长报警阈值的对应关系;
具体的,通过装载有待检测过滤网的产品自身的MCU中预设不同ID号对应多个工作时长报警阈值,每个工作时长报警阈值分别对应不同的应用场景或应用环境或季节,比如对于潮湿环境和干燥环境对应设置不同的阈值,对于不同季节设定不同的阈值,本申请不作限制。
步骤202、将待检测过滤网的唯一识别号与对应关系进行匹配,以得到与待检测过滤网对应的工作时长报警阈值。
具体的,根据MCU中预设的对应关系,匹配得到待检测过滤网的工作时长报警阈值,再综合考虑当前的应用场景或应用环境或季节,进而确定唯一的判断阈值,进行后续判断。
更进一步的,参见图9,步骤11之后,提示方法还包括:
步骤12、根据待检测过滤网的唯一识别号检测待检测过滤网是否为未使用过滤网,若是,则执行步骤13;
具体的,当检测得到过滤网的ID号更换后,则可以确认用户对过滤网进行了替换,默认替换后的过滤网为未使用的过滤网,需要说明的是,假设有替换的是已经使用共的过滤网,可以通过对MCU进行控制,以对累计工作时长进行设置,以确保后续监测的准确性。
步骤13、将待检测过滤网的累计工作时长置0。
具体的,更换过滤网后,将累计工作时长置0并重新开始监测。
本实施例中,通过增设近场感应设备和带电子标签,识别待检测过滤网的ID号,进而可以判断用户是否更换了过滤网,以便MCU重新复位计时,进行新一轮的过滤网监测。
实施例四:
一种过滤网更换提示系统,如图10所示,过滤网更换提示系统应用于干燥设备,比如干手机、烘干机等,提示系统包括:
累计时长确定模块1,用于确定待检测过滤网的累计工作时长;具体的,可以通过记录装载有待检测过滤网的产品的上电时间来确认累计工作时长,也即通过产品自身的MCU(微控制单元)的计时模块实现,或者,在产品上电后触发额外设置的计时器工作,以记录待检测过滤网的使用时间。
阈值获取模块2,用于获得待检测过滤网对应的工作时长报警阈值,待检测过滤网与至少一个工作时长报警阈值对应;具体的,不同类型的过滤网对应不同的工作时长报警阈值,同一类型的过滤网当其设置在不同的环境中也可以对应设置不同的工作时长报警阈值,例如,在湿度、温度为第一条件的工作环境中,阈值为第一阈值;当湿度、温度变换为第二条件时,阈值变换为第二阈值。因此,本申请中,待检测过滤网与至少一个工作时长报警阈值对应。
本实施例中,可以通过手动设置的方式切换过滤网对应的工作时长报警阈值,也可以通过自动检测的方式切换过滤网对应的工作时长报警阈值, 例如,在确定湿度、温度发生变化时,确定当前湿度、温度对应的工作时长报警阈值。
第一检测模块3,用于检测累计工作时长与对应的工作时长报警阈值是否匹配,若是,则生成提示信息,提示信息用于提醒用户更换待检测过滤网。具体的,工作时长报警阈值可以是待检测过滤网最多能够使用的时长,也可以是待检测过滤网还能够使用的最少的剩余使用时长,可以根据需要进行设定,本申请不限于此,另外,提示信息可以是指示灯、警报声、提示语等,本申请不作限定。另外,对于不同类型的过滤网可以设定不同的提示信息以示区别。
本实施例中,第一检测模块3具体包括:
预期时长获取单元31,用于获取待检测过滤网的预期使用时长;
剩余时长确定单元32,用于根据预期使用时长和累计工作时长确定待检测过滤网的剩余使用时长;
检测单元33,用于检测剩余使用时长是否低于对应的工作时长报警阈值。
具体的,工作时长报警阈值为待检测过滤网还能够使用的最少的剩余使用时长,为了确定待检测过滤网的剩余使用时长,先获取待检测过滤网的预期使用时长即最多能够使用的时长,再根据预期使用时长和累计工作时长的差值得到剩余使用时长。
为了方便用户更加直观的了解待检测过滤网使用程度,提示系统还包括显示模块4;
显示模块4用于显示待检测过滤网的剩余使用时长。
具体的,可以通过设置显示屏以显示具体的剩余使用时长,或者显示与剩余使用时长对应的百分比,本申请不做限定。
另外需要说的是,本实施例中,系统中涉及数据处理的模块可以都设在产品的MCU中,不需要另外增加电路,减少开发成本,提高效率。
本实施例中,根据过滤网的累计工作时长以及对应的工作时长报警阈值自动进行判断,以智能提醒客户及时更换过滤网。
实施例五:
本实施例的过滤网更换提示系统是在实施例四的基础上进一步改进,如图11所示,待检测过滤网上设有电子标签,提示系统还包括识别模块5;
识别模块5用于识别电子标签并获取待检测过滤网的唯一识别号,唯一识别号存储在所述电子标签内;另外,也可以将唯一识别号通过显示模块4进行显示。
阈值获取模块2具体包括:
预设单元21,用于预设过滤网的唯一识别号与至少一个工作时长报警阈值的对应关系;具体的,通过装载有待检测过滤网的产品自身的MCU中预设不同ID号对应多个工作时长报警阈值,每个工作时长报警阈值分别对应不同的应用场景或应用环境或季节,比如对于潮湿环境和干燥环境对应设置不同的阈值,对于不同季节设定不同的阈值,本申请不作限制。
匹配单元22,用于将待检测过滤网的唯一识别号与对应关系进行匹配,以得到与待检测过滤网对应的工作时长报警阈值。具体的,根据MCU中预设的对应关系,匹配得到待检测过滤网的工作时长报警阈值,再综合考虑当前的应用场景或应用环境或季节,进而确定唯一的判断阈值,进行后续判断。
更进一步的,提示系统还包括第二检测模块6和重置模块7;
第二检测模块6用于根据待检测过滤网的唯一识别号检测待检测过滤网是否为未使用过滤网,若是,则调用重置模块7;体的,当检测得到过滤网的ID号更换后,则可以确认用户对过滤网进行了替换,默认替换后的过滤网为未使用的过滤网,需要说明的是,假设有替换的是已经使用共的过滤网,可以通过对MCU进行控制,以对累计工作时长进行设置,以确保后续监测的准确性。
重置模块7用于将待检测过滤网的累计工作时长置0。具体的,更换过滤网后,将累计工作时长置0并重新开始监测。
本实施例中,通过增设近场感应设备和带电子标签,识别待检测过滤网的ID号,进而可以判断用户是否更换了过滤网,以便MCU重新复位计时,进行新一轮的过滤网监测。
实施例六:
一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现实施例1或2所述的过滤网更换提示方法。
图7为本实施例提供的一种电子设备的结构示意图。图7示出了适于用来实现本发明实施方式的示例性电子设备90的框图。图7显示的电子设备90仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图7所示,电子设备90可以以通用计算设备的形式表现,例如其可以为服务器设备。电子设备90的组件可以包括但不限于:至少一个处理器91、至少一个存储器92、连接不同系统组件(包括存储器92和处理器91)的总线93。
总线93包括数据总线、地址总线和控制总线。
存储器92可以包括易失性存储器,例如随机存取存储器(RAM)921和/或高速缓存存储器922,还可以进一步包括只读存储器(ROM)923。
存储器92还可以包括具有一组(至少一个)程序模块924的程序工具925,这样的程序模块924包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
处理器91通过运行存储在存储器92中的计算机程序,从而执行各种功能应用以及数据处理。
电子设备90也可以与一个或多个外部设备94(例如键盘、指向设备等)通信。这种通信可以通过输入/输出(I/O)接口95进行。并且,电子设备90还可以通过网络适配器96与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。网络适配器96通过总线93与电子设备90的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备90使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了电子设备的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本申请的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
实施例6
一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现实施例二或三所述的过滤网更换提示方法的步骤。
其中,可读存储介质可以采用的更具体可以包括但不限于:便携式盘、硬盘、随机存取存储器、只读存储器、可擦拭可编程只读存储器、光存储器件、磁存储器件或上述的任意合适的组合。
在可能的实施方式中,本发明还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行实现实施例二或三所述的过滤网更换提示方法的步骤。
其中,可以以一种或多种程序设计语言的任意组合来编写用于执行本发明的程序代码,所述程序代码可以完全地在用户设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户设备上部分在远程设备上执行或完全在远程设备上执行。
实施例七:
本实施例提供一种干手设备,参照图13,本实施例的干手设备包括:
通信模块101,用于接收控制指令;
控制模块102,与通信模块通信连接,用于根据控制指令确定干手设备的出风模式。
在本实施例中,出风模式与至少一个模式参数对应,模式参数优选包括出风温度参数和/或出风速度参数,例如,出风温度参数可以包括低温、中温与高温,出风速度参数可以包括低速、中速与高速,相应地,出风模式可以对应出风温度参数与出风速度参数的不同组合,例如,可以仅包括低温或者低速,也可以包括低温与中速等,有利于满足不同用户群体对出 风模式的不同需求。
在本实施例中,通信模块101可以包括按键通信单元111,其中,按键通信单元111用于接收用户通过按键输入的按键控制指令,按键控制指令用于确定干手设备的出风模式,例如,用户可以通过按键进行出风温度参数的选择,和/或,进行出风速度参数的选择。
在本实施例中,通信模块101还可以包括触控通信单元112,其中,触控通信单元112用于接收用户通过触控面板输入的触控控制指令,触控控制指令用于确定干手设备的出风模式,例如,用户可以通过触控面板进行出风温度参数的选择,和/或,进行出风速度参数的选择。
参照图13,本实施例中的干手设备还可以包括环境参数检测模块103,环境参数检测模块103用于检测环境参数并且具体可以实现为温度传感器131、湿度传感器132等,在本实施例中,环境参数检测模块103与控制模块102电连接,并且可以与控制模块102实现IIC、串口、单线通信等,以将环境参数发送给控制模块102,在此基础上,控制模块102还可以用于根据环境参数确定干手设备的出风模式,例如,根据环境参数确定当前环境下温度较高时,确定出风温度参数为低温等,又例如,根据环境参数确定当前环境下湿度较高时,确定出风速度参数为高速等。
参照图13,本实施例中的干手设备还可以包括用户识别模块104,用户识别模块104用于识别用户并确定用户的用户属性,具体可以实现为NFC、RFID等近端识别组件141,也可以实现为指纹、人脸、声纹等生物特征识别组件142,其中,用户属性用于表征用户所属的用户群体,例如,儿童、青壮年、中老年等,又例如,男性、女性等,在此基础上,控制模块102还可以用于根据用户属性确定干手设备的出风模式,例如,根据用户属性确定当前用户所属的用户群体为儿童时,确定出风温度参数为中温,确定出风速度参数为中速等。
本实施例旨在丰富干手设备出风模式的控制方式,而并不旨在将控制方式仅局限在上述示例中,例如,本实施例的干手设备还可以包括用于识别语音指令的语音识别模块,控制模块102还可以用于根据语音指令确定干手设备的出风模式,又例如,本实施例的干手设备还可以包括用于识别手 势指令的手势识别模块,控制模块102还可以用于根据手势指令确定干手设备的出风模式。
参照图13,本实施例中的干手设备还可以包括杀菌模块105,杀菌模块105用于对干手设备的过滤网进行杀菌,以确保干手设备出风干净并确保使用安全,其中,杀菌模块105具体可以实现为UV灭菌灯等。
参照图13,本实施例中的干手设备还可以包括过滤网识别模块106,过滤网识别模块106用于识别干手设备的过滤网的标识码并且具体可以实现为NFC、RFID等近端识别组件,其中,标识码用于表征过滤网的唯一性,进而能够告知用户过滤网的当前使用信息,以及,过滤网是否进行更换等。
参照图13,本实施例中的干手设备还可以包括显示模块107,显示模块107与控制模块102电连接,并且可以与控制模块102实现串口通信、SPI通信、IIC通信等,显示模块107用于显示模式参数、环境参数、时间信息、过滤网使用信息以及过滤网更换提示信息中的至少一种,以丰富用户所能获取到的干手设备的信息,提高用户与干手设备之间的交互体验感。进一步地,在本实施例中,显示模块107中可以集成有控制面板,以实现触控显示功能,并在此基础上提高人机操作的便捷性,进而提高人机交互的体验感。
参照图13,本实施例的干手设备还可以包括接近检测模块108、加热模块109以及风机模块110,其中,加热模块109与控制模块102电连接并可以利用发热丝实现,风机模块110与控制模块102电连接并可以经由PWM信号驱动,接近检测模块108可以利用红外传感器等实现并经由ADC与控制模块102电连接,用于检测接近事件,还用于在检测到接近事件产生时,例如,用户将手放入干手设备的干手位置时,向控制模块102发送启动指令,在检测到接近事件消失时,例如,用户将手从干手位置拿出时,向控制模块102发送停止指令。在此基础上,控制模块102还用于在接收到启动指令时,根据确定的出风模式控制加热模块109和/或风机模块110开始工作,还用于在接收到停止指令时,控制加热模块109与风机模块110停止工作。
参照图13,在本实施例的干手设备还可以包括配网模块111,配网模块111与控制模块102电连接并且可以实现与控制模块102的UART通信,用于 自动或被动地与外部网络设备通信连接,例如,配网模块111存在与之对应加密连接的外部网络设备,此时可以自动搜索当前环境下的网络信号,并在搜索到与之匹配对应的网络信号时自动与外部网络设备建立通信连接,又例如,配网模块111搜索当前环境下的网络信号,由用户在触控面板或者按键上进行网络信号选择以及密码输入等操作,以被动地与外部网络设备建立通信连接。
在本实施例的干手设备与外部网络设备通信连接的基础上,本实施例的干手设备还可以和与该外部网络设备通信连接的外部控制设备进行通信。具体地,本实施例中的通信模块101还可以包括无线通信单元113,用于接收与干手设备不同的控制设备发送的无线控制指令,以实现对干手设备的无线控制。此外,在此基础上,本实施例的干手设备还可以通过通信模块101将环境参数检测模块103检测到的环境参数输出,例如输出至控制设备,以实现对其他外部设备的联动控制,其中,其他外部设备例如可以包括空调等。
参照图13,本实施例中的控制模块102可以包括电连接的主控制单元121和显示屏控制单元122,其中,主控制单元121和显示屏控制单元122分别与干手设备中不同的其他模块电连接,以共同实现干手设备的不同功能,例如,本实施例中的触控通信单元112、环境参数检测模块103、显示模块107可以均与显示屏控制单元122电连接,而按键通信单元111、无线通信单元113、用户识别模块104、杀菌模块105、过滤网识别模块106、接近检测模块108、加热模块109、风机模块110以及配网模块111可以均与主控制器121电连接。
本实施例能够接收控制指令,并能够根据控制指令实现干手设备出风模式的变换,具体地,可以实现对干手设备的出风温度参数与出风速度参数中的至少一种进行控制,从而,有利于满足不同用户群体的需求,进而有利于提升用户体验感。此外,本实施例还具有环境自适应控制、用户识别、过滤网杀菌、过滤网识别、无线通信等功能,有利于进一步提升用户体验感。
实施例八
本实施例提供一种联动系统,参照图14,本实施例的联动系统包括控制设备2与实施例1提供的干手设备。其中,控制设备2与干手设备1通信连接,并且用于向干手设备发送无线控制指令,干手设备1用于接收无线控制指令并根据无线控制指令确定出风模式,以实现控制设备2对干手设备1的无线控制。
参照图14,本实施例的联动系统还包括分别与控制设备2通信连接的环境参数调节设备3以及云端服务器4,其中,环境参数调节设备3用于调节环境参数,云端服务器4用于根据接收到的环境参数生成调节指令。
具体地,干手设备1用于向控制设备2发送环境参数,控制设备2用于向云端服务器4发送环境参数,云端服务器4根据接收到的环境参数生成调节指令并发送至控制设备2,控制设备2接收云端服务器4发送的调节指令,并根据调节指令控制环境参数调节设备3的运行参数,进而调节当前环境的环境参数。
进一步地,在本实施例中,干手设备1检测并发送的环境参数与环境参数调节设备3所调节的环境参数,可以相同亦可以不同。例如,干手设备1检测并发送的环境参数是湿度参数时,环境参数调节设备3可以是用于调节湿度参数的加湿设备。又例如,干手设备1检测并发送的环境参数是湿度参数时,环境参数调节设备3可以是用于调节温度参数的空调设备。
本实施例在实施例七的基础上,还能够实现干手设备与控制设备、环境参数调节设备等的联动,有利于进一步提升用户体验感。
实施例九:
本实施例提供一种干手设备的控制方法,本实施例的控制方法应用于实施例1提供的干手设备,本实施例的控制方法包括以下步骤:
接收控制指令;
根据控制指令确定干手设备的出风模式。
在本实施例中,出风模式与至少一个模式参数对应,模式参数优选包括出风温度参数和/或出风速度参数,例如,出风温度参数可以包括低温、 中温与高温,出风速度参数可以包括低速、中速与高速,相应地,出风模式可以对应出风温度参数与出风速度参数的不同组合,例如,可以仅包括低温或者低速,也可以包括低温与中速等,有利于满足不同用户群体对出风模式的不同需求。其中,控制指令可以来自用户对干手设备的按键的操作,对触控面板的操作,也可以来自用户对与干手设备通信连接的其他设备的操作,以丰富对干手设备的控制方式,并提升人机交互体验。此外,控制指令还可以来自与干手设备不同的控制设备,以实现控制设备对干手设备的无线控制,进一步丰富了对干手设备的控制方式,并有利于进一步提升人机交互体验。
进一步地,本实施例的控制方法还可以包括以下步骤:
检测环境参数;
根据环境参数确定干手设备的出风模式,和/或,将环境参数输出。
其中,基于环境参数来确定干手设备的出风模式,能够实现干手设备根据环境参数进行自适应控制的功能,而将环境参数输出,则有利于实现与其他外部设备的联动控制。
进一步地,本实施例的控制方法还包括以下步骤:
识别用户并确定所述用户的用户属性;
根据用户属性确定干手设备的出风模式。
其中,用户属性用于表征用户所属的用户群体,进而能够实现干手设备根据用户群体进行自适应控制的功能。
本实施例能够接收控制指令,并能够根据控制指令实现干手设备出风模式的变换,具体地,可以实现对干手设备的出风温度参数与出风速度参数中的至少一种进行控制,从而,有利于满足不同用户群体的需求,进而有利于提升用户体验感。此外,本实施例还具有环境自适应控制、用户识别等功能,有利于进一步提升用户体验感。但是,应当理解,本实施例旨在丰富干手设备出风模式的控制方式,而并不旨在将控制方式仅局限在上述示例中,例如,本实施例的控制方法还可以基于语音控制、手势控制等控制方式实现。
实施例十
本实施例提供一种应用于控制设备的联动控制方法,参照图15,本实施例的联动控制方法包括:
S401、接收干手设备发送的环境参数;
S402、向云端服务器发送环境参数并接收云端服务器反馈的调节指令;
S403、向环境参数调节设备发送调节指令。
在本实施例中,干手设备如实施例七所提供,环境参数调节设备用于根据所述调节指令调节环境参数,基于此,实现了干手设备与环境参数调节设备的联动控制,丰富了干手设备的功能模式,有利于提升人机交互体验。
进一步地,在本实施例中,干手设备检测并发送的环境参数与环境参数调节设备所调节的环境参数,可以相同亦可以不同。例如,干手设备检测并发送的环境参数是湿度参数时,环境参数调节设备可以是用于调节湿度参数的加湿设备。又例如,干手设备检测并发送的环境参数是湿度参数时,环境参数调节设备可以是用于调节温度参数的空调设备。
本实施例在实施例七的基础上,还能够实现干手设备与控制设备、环境参数调节设备等的联动,有利于进一步提升用户体验感。
实施例十一
本实施例提供一种电子设备,电子设备可以通过计算设备的形式表现(例如可以为服务器设备),包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中处理器执行计算机程序时可以实现实施例九提供的干手设备的控制方法,或者实施例十提供的联动控制方法。
图16示出了本实施例的硬件结构示意图,如图16所示,电子设备9具体包括:
至少一个处理器91、至少一个存储器92以及用于连接不同系统组件(包括处理器91和存储器92)的总线93,其中:
总线93包括数据总线、地址总线和控制总线。
存储器92包括易失性存储器,例如随机存取存储器(RAM)921和/或 高速缓存存储器922,还可以进一步包括只读存储器(ROM)923。
存储器92还包括具有一组(至少一个)程序模块924的程序/实用工具925,这样的程序模块924包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
处理器91通过运行存储在存储器92中的计算机程序,从而执行各种功能应用以及数据处理,例如本发明实施例3提供的干手设备的控制方法,或者实施例4提供的联动控制方法。
电子设备9进一步可以与一个或多个外部设备94(例如键盘、指向设备等)通信。这种通信可以通过输入/输出(I/O)接口95进行。并且,电子设备9还可以通过网络适配器96与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。网络适配器96通过总线93与电子设备9的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备9使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)系统、磁带驱动器以及数据备份存储系统等。
应当注意,尽管在上文详细描述中提及了电子设备的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本申请的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
实施例十二
本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现实施例九提供的干手设备的控制方法的步骤,或者实施例十提供的联动控制方法的步骤。
其中,可读存储介质可以采用的更具体可以包括但不限于:便携式盘、硬盘、随机存取存储器、只读存储器、可擦拭可编程只读存储器、光存储器件、磁存储器件或上述的任意合适的组合。
在可能的实施方式中,本发明还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行实现实施例九提供的干手设备的控制方法的步骤,或者实施例十提供的联动控制方法的步骤。
其中,可以以一种或多种程序设计语言的任意组合来编写用于执行本发明的程序代码,所述程序代码可以完全地在用户设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户设备上部分在远程设备上执行或完全在远程设备上执行。
虽然以上描述了本申请的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本申请的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本申请的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本申请的保护范围。

Claims (32)

  1. 一种供风设备的风温控制方法,其特征在于,包括:
    获取基于所述供风设备的目标进风温度值确定的出风温度调节值;
    根据所述出风温度调节值,确定所述供风设备的目标出风温度值,将所述供风设备的初始出风温度值调整至所述目标出风温度值。
  2. 如权利要求1所述的方法,其特征在于,所述目标进风温度值为所述供风设备当前运行状态下的第一进风温度值;
    所述获取基于所述供风设备的目标进风温度值确定的出风温度调节值,包括:
    根据所述第一进风温度值、所述供风设备当前运行状态下的第一出风温度值以及获得的测试环境温度值,确定所述出风温度调节值。
  3. 如权利要求2所述的方法,其特征在于,所述根据所述第一进风温度值、所述供风设备当前运行状态下的第一出风温度值以及获得的测试环境温度值,确定所述出风温度调节值前,还包括:
    确定所述供风设备满足更新所述出风温度调节值条件。
  4. 如权利要求3所述的方法,其特征在于,所述确定所述供风设备满足更新所述出风温度调节值条件,包括:
    若未能获得历史出风温度调节值,则确定所述供风设备是否满足稳定运行条件,其中所述历史出风温度调节值是基于所述供风设备历史运行时的第二进风温度值确定的,所述第二进风温度值与所述第一进风温度值对应于所述供风设备的同一运行状态;
    若确定所述供风设备满足所述稳定运行条件,则确定所述供风设备满足更新所述出风温度调节值条件。
  5. 如权利要求4所述的方法,其特征在于,所述确定所述供风设备是否满足稳定运行条件,包括:
    若确定所述供风设备在第一设定时间内所述第一出风温度值的温度变化速度处于平稳状态;和/或,确定所述供风设备在第二设定时间内所述第一出风温度值的波动范围处于平稳状态,则确定所述供风设备满足稳定运行条件。
  6. 如权利要求4所述的方法,其特征在于,所述确定所述供风设备满足 更新所述出风温度调节值条件,还包括:
    若获得所述历史出风温度调节值,且所述历史出风温度调节值对应的所述供风设备的历史运行时间与当前时间之差大于设定时间阈值,则确定所述供风设备满足更新所述出风温度调节值条件。
  7. 如权利要求1所述的方法,其特征在于,所述根据所述出风温度调节值,确定所述供风设备的目标出风温度值,包括:
    根据所述出风温度调节值以及温度补偿值,确定所述供风设备的目标出风温度值,其中所述温度补偿值是根据设定发热丝功率以及当前所述供风设备的发热丝功率确定的。
  8. 一种供风设备,其特征在于,包括:
    处理模块,被配置为获取基于所述供风设备的目标进风温度值确定的出风温度调节值,所述处理模块还被配置为根据所述出风温度调节值,确定所述供风设备的目标出风温度值,将所述供风设备的初始出风温度值调整至所述目标出风温度值。
  9. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行计算机程序时实现如权利要求1~7中任意一项所述的供风设备的风温控制方法的步骤。
  10. 一种计算机可读介质,其上存储有计算机指令,其特征在于,所述计算机指令在由处理器执行时实现如权利要求1~7中任意一项所述的供风设备的风温控制方法的步骤。
  11. 一种过滤网更换提示方法,其特征在于,所述提示方法包括:
    确定待检测过滤网的累计工作时长;
    获得所述待检测过滤网对应的工作时长报警阈值,所述待检测过滤网与至少一个工作时长报警阈值对应;
    检测所述累计工作时长与所述对应的工作时长报警阈值是否匹配,若是,则生成提示信息,所述提示信息用于提醒用户更换所述待检测过滤网。
  12. 如权利要求11所述的过滤网更换提示方法,其特征在于,所述待检测过滤网上设有电子标签,所述提示方法还包括:
    识别所述电子标签并获取所述待检测过滤网的唯一识别号,所述唯一 识别号存储在所述电子标签内;
    所述获得所述待检测过滤网对应的工作时长报警阈值的步骤具体包括:
    预设过滤网的唯一识别号与至少一个工作时长报警阈值的对应关系;
    将所述待检测过滤网的唯一识别号与所述对应关系进行匹配,以得到与所述待检测过滤网对应的工作时长报警阈值。
  13. 根据权利要求12所述的过滤网更换提示方法,其特征在于,所述识别所述电子标签并获取所述唯一识别号的步骤之后,所述提示方法还包括:
    根据所述待检测过滤网的唯一识别号检测所述待检测过滤网是否为未使用过滤网,若是,则将所述待检测过滤网的累计工作时长置0。
  14. 如权利要求11所述的过滤网更换提示方法,其特征在于,所述检测所述累计工作时长与所述对应的工作时长报警阈值是否匹配的步骤具体包括:
    获取所述待检测过滤网的预期使用时长;
    根据所述预期使用时长和所述累计工作时长确定所述待检测过滤网的剩余使用时长;
    检测所述剩余使用时长是否低于所述对应的工作时长报警阈值。
  15. 如权利要求14所述的过滤网更换提示方法,其特征在于,所述根据所述预期使用时长和所述累计工作时长确定所述待检测过滤网的剩余使用时长的步骤之后,所述提示方法还包括:
    显示所述待检测过滤网的剩余使用时长。
  16. 一种过滤网更换提示系统,其特征在于,过滤网更换提示系统应用于干燥设备,所述提示系统包括:
    累计时长确定模块,用于确定待检测过滤网的累计工作时长;
    阈值获取模块,用于获得所述待检测过滤网对应的工作时长报警阈值,所述待检测过滤网与至少一个工作时长报警阈值对应;
    第一检测模块,用于检测所述累计工作时长与所述对应的工作时长报警阈值是否匹配,若是,则生成提示信息,所述提示信息用于提醒用户更换所述待检测过滤网。
  17. 如权利要求16所述的过滤网更换提示系统,其特征在于,所述待检 测过滤网上设有电子标签,所述提示系统还包括识别模块;
    所述识别模块用于识别所述电子标签并获取所述待检测过滤网的唯一识别号,所述唯一识别号存储在所述电子标签内;
    所述阈值获取模块具体包括:
    预设单元,用于预设过滤网的唯一识别号与至少一个工作时长报警阈值的对应关系;
    匹配单元,用于将所述待检测过滤网的唯一识别号与所述对应关系进行匹配,以得到与所述待检测过滤网对应的工作时长报警阈值。
  18. 根据权利要求17所述的过滤网更换提示系统,其特征在于,所述提示系统还包括第二检测模块和重置模块;
    所述第二检测模块用于根据所述待检测过滤网的唯一识别号检测所述待检测过滤网是否为未使用过滤网,若是,则调用所述重置模块;
    所述重置模块用于将所述待检测过滤网的累计工作时长置0。
  19. 如权利要求16所述的过滤网更换提示系统,其特征在于,所述第一检测模块具体包括:
    预期时长获取单元,用于获取所述待检测过滤网的预期使用时长;
    剩余时长确定单元,用于根据所述预期使用时长和所述累计工作时长确定所述待检测过滤网的剩余使用时长;
    检测单元,用于检测所述剩余使用时长是否低于所述对应的工作时长报警阈值。
  20. 如权利要求14所述的过滤网更换提示系统,其特征在于,所述提示系统还包括显示模块;
    所述显示模块用于显示所述待检测过滤网的剩余使用时长。
  21. 一种干手设备,其特征在于,包括:
    通信模块,用于接收控制指令;
    控制模块,与所述通信模块通信连接,用于根据所述控制指令确定所述干手设备的出风模式,所述出风模式与至少一个模式参数对应,所述模式参数包括出风温度参数和/或出风速度参数。
  22. 如权利要求21所述的干手设备,其特征在于,所述通信模块包括无 线通信单元、按键通信单元以及触控通信单元中的至少一种;其中:
    所述无线通信单元用于接收无线控制指令,所述无线控制指令由与所述干手设备不同的控制设备发送并且用于确定所述干手设备的出风模式;
    所述按键通信单元用于接收按键控制指令,所述按键控制指令用于确定所述干手设备的出风模式;
    所述触控通信单元用于接收触控控制指令,所述触控控制指令用于确定所述干手设备的出风模式。
  23. 如权利要求21所述的干手设备,其特征在于,所述干手设备还包括环境参数检测模块,所述环境参数检测模块用于检测环境参数;
    所述控制模块还用于根据所述环境参数确定所述干手设备的出风模式,和/或,所述通信模块还用于将所述环境参数输出;
    和/或,
    所述干手设备还包括用户识别模块,所述用户识别模块用于识别用户并确定所述用户的用户属性;
    所述控制模块还用于根据所述用户属性确定所述干手设备的出风模式。
  24. 如权利要求21所述的干手设备,其特征在于,所述干手设备还包括杀菌模块,所述杀菌模块用于对所述干手设备的过滤网进行杀菌;
    和/或,
    所述干手设备还包括过滤网识别模块,所述过滤网识别模块用于识别所述干手设备的所述过滤网的标识码,所述标识码用于表征所述过滤网的唯一性。
  25. 如权利要求21所述的干手设备,其特征在于,所述干手设备还包括显示模块,所述显示模块用于显示所述模式参数、环境参数、时间信息、过滤网使用信息以及过滤网更换提示信息中的至少一种;
    和/或,
    所述控制模块包括电连接的主控制单元和显示屏控制单元;其中:
    所述主控制单元和所述显示屏控制单元分别与所述干手设备中不同的其它模块电连接。
  26. 一种联动系统,其特征在于,包括控制设备与如权利要求1-5中任一 项所述的干手设备;其中:
    所述控制设备与所述干手设备通信连接,用于向所述干手设备发送无线控制指令;
    所述干手设备用于接收所述无线控制指令并根据所述无线控制指令确定出风模式。
  27. 如权利要求26所述的联动系统,其特征在于,所述联动系统还包括分别与所述控制设备通信连接的环境参数调节设备以及云端服务器;
    所述环境参数调节设备用于调节环境参数;
    所述云端服务器用于根据接收到的所述环境参数生成调节指令;
    所述干手设备还用于向所述控制设备发送所述环境参数;
    所述控制设备还用于向所述云端服务器发送所述环境参数并接收所述云端服务器反馈的调节指令,还用于向所述环境参数调节设备发送所述调节指令,以调节所述环境参数。
  28. 一种干手设备的控制方法,其特征在于,所述控制方法应用于如权利要求21-25中任一项所述的干手设备,所述控制方法包括:
    接收控制指令;
    根据所述控制指令确定所述干手设备的出风模式。
  29. 如权利要求28所述的干手设备的控制方法,其特征在于,所述控制方法还包括:
    检测环境参数;
    根据所述环境参数确定所述干手设备的出风模式,和/或,将所述环境参数输出;
    和/或,
    所述控制方法还包括:
    识别用户并确定所述用户的用户属性;
    根据所述用户属性确定所述干手设备的出风模式。
  30. 一种联动控制方法,其特征在于,所述联动控制方法应用于控制设备,并且所述联动控制方法包括:
    接收如权利要求21-25中任一项所述的干手设备发送的环境参数;
    向云端服务器发送所述环境参数并接收所述云端服务器反馈的调节指令;
    向环境参数调节设备发送所述调节指令,所述环境参数调节设备用于根据所述调节指令调节环境参数。
  31. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求28或29所述的干手设备的控制方法,或,如权利要求30所述的联动控制方法。
  32. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求28或29所述的干手设备的控制方法的步骤,或,如权利要求30所述的联动控制方法的步骤。
PCT/CN2021/140375 2021-02-08 2021-12-22 供风设备及其风温控制方法、电子设备和计算机可读介质 WO2022166452A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110172984.1 2021-02-08
CN202110172672.0A CN112785281A (zh) 2021-02-08 2021-02-08 过滤网更换提示方法及系统
CN202110172672.0 2021-02-08
CN202110172984.1A CN112965560A (zh) 2021-02-08 2021-02-08 干手设备、联动系统及控制方法
CN202110354735.4A CN113093832B (zh) 2021-03-31 2021-03-31 供风设备及其风温控制方法、电子设备和计算机可读介质
CN202110354735.4 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022166452A1 true WO2022166452A1 (zh) 2022-08-11

Family

ID=82740838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140375 WO2022166452A1 (zh) 2021-02-08 2021-12-22 供风设备及其风温控制方法、电子设备和计算机可读介质

Country Status (1)

Country Link
WO (1) WO2022166452A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116402257A (zh) * 2023-04-14 2023-07-07 创正电气股份有限公司 一种防爆行程开关的生产监测方法及系统
CN116820197A (zh) * 2023-06-27 2023-09-29 深圳小非牛科技有限公司 一种基于大数据互联的软件测试技术平台
CN117806891A (zh) * 2024-02-28 2024-04-02 苏州元脑智能科技有限公司 一种基于服务器的测试系统、方法、装置、设备及介质

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031915A1 (en) * 1994-05-20 1995-11-30 Pifco Limited A hairdryer
US20020062221A1 (en) * 2000-11-21 2002-05-23 Seibert Roy E. Distribution and notification system and method for filter replacement cartridges
CN202630308U (zh) * 2012-04-20 2012-12-26 上海理工大学 一种恒温恒湿空调器
CN104361218A (zh) * 2014-10-29 2015-02-18 小米科技有限责任公司 滤芯更换的方法及装置
US20150216372A1 (en) * 2012-08-30 2015-08-06 Syed AHMED Hand drier
CN105686738A (zh) * 2016-03-11 2016-06-22 台州迪奥电器有限公司 具备影音下载播放和干身干发功能的干手器及其控制方法
CN105864976A (zh) * 2016-04-18 2016-08-17 广东美的环境电器制造有限公司 家电设备的联动控制方法和系统、服务器
CN107228461A (zh) * 2017-06-29 2017-10-03 广东美的环境电器制造有限公司 净化器中滤网的检测方法、系统和净化器
CN107514750A (zh) * 2017-08-23 2017-12-26 绵阳美菱软件技术有限公司 一种滤网更换提醒方法、装置及系统
CN111142591A (zh) * 2019-12-24 2020-05-12 追觅科技(上海)有限公司 温度突变检测方法、装置及存储介质
CN111713835A (zh) * 2019-03-19 2020-09-29 中山市瑞驰泰克电子有限公司 一种根据季节输出不同温度热风的吹风机
CN112785281A (zh) * 2021-02-08 2021-05-11 追觅科技(上海)有限公司 过滤网更换提示方法及系统
CN112965560A (zh) * 2021-02-08 2021-06-15 追觅科技(上海)有限公司 干手设备、联动系统及控制方法
CN113093832A (zh) * 2021-03-31 2021-07-09 追觅科技(上海)有限公司 供风设备及其风温控制方法、电子设备和计算机可读介质

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031915A1 (en) * 1994-05-20 1995-11-30 Pifco Limited A hairdryer
US20020062221A1 (en) * 2000-11-21 2002-05-23 Seibert Roy E. Distribution and notification system and method for filter replacement cartridges
CN202630308U (zh) * 2012-04-20 2012-12-26 上海理工大学 一种恒温恒湿空调器
US20150216372A1 (en) * 2012-08-30 2015-08-06 Syed AHMED Hand drier
CN104361218A (zh) * 2014-10-29 2015-02-18 小米科技有限责任公司 滤芯更换的方法及装置
CN105686738A (zh) * 2016-03-11 2016-06-22 台州迪奥电器有限公司 具备影音下载播放和干身干发功能的干手器及其控制方法
CN105864976A (zh) * 2016-04-18 2016-08-17 广东美的环境电器制造有限公司 家电设备的联动控制方法和系统、服务器
CN107228461A (zh) * 2017-06-29 2017-10-03 广东美的环境电器制造有限公司 净化器中滤网的检测方法、系统和净化器
CN107514750A (zh) * 2017-08-23 2017-12-26 绵阳美菱软件技术有限公司 一种滤网更换提醒方法、装置及系统
CN111713835A (zh) * 2019-03-19 2020-09-29 中山市瑞驰泰克电子有限公司 一种根据季节输出不同温度热风的吹风机
CN111142591A (zh) * 2019-12-24 2020-05-12 追觅科技(上海)有限公司 温度突变检测方法、装置及存储介质
CN112785281A (zh) * 2021-02-08 2021-05-11 追觅科技(上海)有限公司 过滤网更换提示方法及系统
CN112965560A (zh) * 2021-02-08 2021-06-15 追觅科技(上海)有限公司 干手设备、联动系统及控制方法
CN113093832A (zh) * 2021-03-31 2021-07-09 追觅科技(上海)有限公司 供风设备及其风温控制方法、电子设备和计算机可读介质

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116402257A (zh) * 2023-04-14 2023-07-07 创正电气股份有限公司 一种防爆行程开关的生产监测方法及系统
CN116402257B (zh) * 2023-04-14 2023-08-29 创正电气股份有限公司 一种防爆行程开关的生产监测方法及系统
CN116820197A (zh) * 2023-06-27 2023-09-29 深圳小非牛科技有限公司 一种基于大数据互联的软件测试技术平台
CN116820197B (zh) * 2023-06-27 2024-04-12 深圳小非牛科技有限公司 一种基于大数据互联的软件测试技术平台
CN117806891A (zh) * 2024-02-28 2024-04-02 苏州元脑智能科技有限公司 一种基于服务器的测试系统、方法、装置、设备及介质
CN117806891B (zh) * 2024-02-28 2024-05-17 苏州元脑智能科技有限公司 一种基于服务器的测试系统、方法、装置、设备及介质

Similar Documents

Publication Publication Date Title
WO2022166452A1 (zh) 供风设备及其风温控制方法、电子设备和计算机可读介质
US9910577B2 (en) Prospective determination of processor wake-up conditions in energy buffered HVAC control unit having a preconditioning feature
US10452083B2 (en) Power management in single circuit HVAC systems and in multiple circuit HVAC systems
US10191727B2 (en) Installation of thermostat powered by rechargeable battery
US9470430B2 (en) Preconditioning controls and methods for an environmental control system
JP5989820B2 (ja) 制御ユニットおよび制御ユニットが不在状態機能を有効にすることを許可する方法
CN109974235B (zh) 控制家电设备的方法、装置和家电设备
US9435559B2 (en) Power management in energy buffered building control unit
CN103123159A (zh) 一种基于云计算技术的空调器睡眠功能控制方法
CA2885867A1 (en) Preconditioning controls and methods for an environmental control system
CN113093832B (zh) 供风设备及其风温控制方法、电子设备和计算机可读介质
JP7313158B2 (ja) 空気調和機制御装置、空気調和機制御方法およびプログラム
CN112965560A (zh) 干手设备、联动系统及控制方法
CN104075412A (zh) 空调器的控制方法及控制系统
CN115731684A (zh) 无线按键开关设备的控制方法和装置
CN111124434A (zh) 空调功能定制上报方法和装置
CN106765935B (zh) 节能数据获取方法及装置
WO2023245796A1 (zh) 空调器的控制方法、装置、空调器及存储介质
CN115793817A (zh) 一种服务器风扇调控方法、系统、装置及可读存储介质
CN115933498A (zh) 一种单热型空调控制系统及控制方法
CN116465088A (zh) 热水器及其控制方法、系统、电子设备和存储介质
CN116558125A (zh) 基于水流发电的热水器控制方法、系统、设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924445

Country of ref document: EP

Kind code of ref document: A1