WO2022166287A1 - 一种电气控制箱及供电系统 - Google Patents

一种电气控制箱及供电系统 Download PDF

Info

Publication number
WO2022166287A1
WO2022166287A1 PCT/CN2021/129012 CN2021129012W WO2022166287A1 WO 2022166287 A1 WO2022166287 A1 WO 2022166287A1 CN 2021129012 W CN2021129012 W CN 2021129012W WO 2022166287 A1 WO2022166287 A1 WO 2022166287A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical control
control box
power supply
main circuit
internet
Prior art date
Application number
PCT/CN2021/129012
Other languages
English (en)
French (fr)
Inventor
宫芳涛
Original Assignee
隆基乐叶光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基乐叶光伏科技有限公司 filed Critical 隆基乐叶光伏科技有限公司
Publication of WO2022166287A1 publication Critical patent/WO2022166287A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/26Casings; Parts thereof or accessories therefor
    • H02B1/46Boxes; Parts thereof or accessories therefor
    • H02B1/48Mounting of devices therein
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Definitions

  • the present disclosure relates to the technical field of solar photovoltaic, in particular to an electrical control box and a power supply system.
  • Solar power generation is one of the main forms of new energy power generation at present. With the continuous reduction of system costs, it has been widely promoted and applied on the user side. Photovoltaic power generation systems have also been widely used, especially in the case of large fluctuations in electricity prices. country or region.
  • the photovoltaic power generation system is composed of photovoltaic modules, brackets, grid-connected inverters, grid-connected boxes, cables, etc.
  • the power generated by the photovoltaic modules is provided to household loads through the grid-connected boxes and distribution boxes.
  • the electricity is returned to the power grid to realize self-generated and self-consumption, and the surplus power can be connected to the grid.
  • the inside of the conventional grid-connected box is mainly composed of knife switches, circuit breakers, lightning protection devices, etc., which mainly realize the safe access of simple photovoltaic power generation systems and line on-off control.
  • the current photovoltaic power generation system is relatively simple, and it is difficult to meet the control requirements of the increasingly popular intelligent electrical equipment, which reduces its application scope.
  • the present disclosure provides an electrical control box and a power supply system, aiming at solving the problem that the existing photovoltaic power supply system cannot meet the control requirements of the increasingly popular intelligent electrical equipment, and reduces its application scope.
  • An embodiment of the present disclosure provides an electrical control box for controlling a load device, including:
  • a box body with an input end and an output end, and a main circuit switch device, a branch circuit switch device, an electric meter, a power network router and an Internet of Things control device arranged in the box body;
  • the main circuit switch device is arranged between the input end and the output end to form a main circuit
  • the electricity meter and the branch switch device are arranged on the main circuit in parallel, and the branch switch device is also connected to the power network router and the Internet of Things control device respectively, and the power network router is used for connecting with the main circuit.
  • Ethernet connection the Internet of Things control device is used to collect and process the data of the load equipment; the Internet of Things control device is used to connect with the inverter of the power supply system, and the electricity meter is used to connect with the power supply system current transformer connections.
  • the IoT control device includes:
  • switches are used for connecting with the load devices and collecting data of the load devices, and the switches are also used for connecting with the inverters.
  • the IoT control device further includes: a switching power supply; the switching power supply is provided between the switch, the IoT controller and the branch switch device, and the switching power supply is used to provide all The switch and the IoT controller are powered.
  • the IoT controller includes one or more of a serial communication interface, a network communication interface, and a general input/output interface.
  • serial port communication interface the network communication interface, and the universal input/output interface are arranged on the outer surface of the box.
  • the input end of the box body includes: one or more of an AC input terminal, a current transformer access terminal, and a universal serial bus access terminal disposed on the outer surface of the box;
  • the output end of the box body includes: an AC output terminal arranged on the outer surface of the box body.
  • the main circuit switch device includes: a main circuit breaker and a first protection switch connected to each other;
  • the branch circuit breaker includes a branch circuit breaker and a second protection switch connected to each other.
  • the embodiment of the present disclosure also provides a power supply system, which is characterized by comprising: a photovoltaic module, an inverter, an electrical control box, a distribution box, a current transformer, and a two-way electricity meter;
  • the photovoltaic module, the inverter, the electrical control box, the power distribution box, the current transformer, and the two-way electricity meter are connected in series in sequence, and the two-way electricity meter is used for connecting to the power grid;
  • the electrical control box is also connected with load equipment and the current transformer.
  • the power supply system further includes an energy storage device, and the energy storage device is connected to the inverter for storing and releasing electricity.
  • the load equipment includes charging equipment and smart home equipment.
  • a box body with an input end and an output end, and a main circuit switch device, a branch circuit switch device, an electric meter, a power network router and an Internet of Things control device are arranged in the box body; the main circuit switch device is arranged at the input end.
  • the main circuit is formed between the terminal and the output terminal; the electric meter and the branch switch device are arranged in parallel on the main circuit, and the branch switch device is also connected to the power network router and the Internet of Things control device respectively, and the power network router is used for connecting with Ethernet , the Internet of Things control device is used to collect and process the data of the load equipment; the Internet of Things control device is used to connect with the inverter of the power supply system, and the electricity meter is used to connect with the current transformer of the power supply system.
  • the electrical control box provided by the present disclosure provides the functions of connecting to the Ethernet through the power network router, and connecting and controlling the load equipment through the Internet of Things control device, so as to realize the control of the intelligent load equipment, and through the power network router, realize The communication between the electrical control box and the Ethernet network is improved, and the applicable scene of the electrical control box is improved.
  • FIG. 1 shows a structural block diagram of an electrical control box in an embodiment of the present disclosure
  • FIG. 2 shows a schematic structural diagram of an electrical control box in an embodiment of the present disclosure
  • FIG. 3 shows a communication architecture diagram of an electrical control box in an embodiment of the present disclosure
  • FIG. 4 shows an internal system schematic diagram of an electrical control box in an embodiment of the present disclosure
  • FIG. 5 shows an architecture diagram of a power supply system in an embodiment of the present disclosure.
  • FIG. 1 shows a structural block diagram of an electrical control box in an embodiment of the present disclosure.
  • the electrical control box includes: a box body 10 having an input end and an output end, and a main circuit switch arranged in the box body 10 Device 11, branch switch device 12, electricity meter 13, power network router 14 and Internet of Things control device 15; main circuit switch device 11 is arranged between the input end and the output end to form the main circuit; electricity meter 13 and branch circuit switch device 12 It is arranged in parallel on the main circuit, and the branch switch device 12 is also connected to the power network router 14 and the Internet of Things control device 15 respectively.
  • the power network router 14 is used for connecting with the Ethernet, and the Internet of Things control device 15 is used to collect the data of the load equipment. and processing; the IoT control device 15 is used for connecting with the inverter of the power supply system, and the electricity meter is used for connecting with the current transformer (CT, Current transformer) of the power supply system.
  • CT Current transformer
  • FIG. 2 shows a schematic structural diagram of an electrical control box in the embodiment of the present disclosure
  • the main circuit switch device 11 the branch circuit switch device 12 , the electricity meter 13 , and the power network router 14
  • the Internet of Things control device 15 can be arranged inside the box 10, wherein the main circuit switch device and the branch circuit switch device are used to realize the safety protection of the main circuit and the branch circuit in the entire electrical control box, and the electricity meter connected in parallel with the main circuit
  • the power consumption of all load devices connected to the electrical control box can be monitored.
  • the electric meter can determine the corresponding relationship between the total power generation of the power generation terminal in the photovoltaic power supply system and the power consumption of the load equipment through the signal collected by the current transformer, and control the distribution of the power consumption of the load equipment according to this corresponding relationship.
  • a power network router can be set up, and the power network router can realize power carrier communication and can be connected to Ethernet, so as to provide Ethernet services for the entire power supply system to which the electrical control box belongs;
  • an IoT control device can be set up, and the IoT control device can communicate with external load equipment (such as charging piles, smart home equipment, etc.), and the IoT control device can collect the data generated by the operation of the load equipment. , and analyze and process the data to generate corresponding control instructions, and finally send the control instructions to the load equipment to achieve the purpose of controlling the load equipment.
  • the IoT control device can also upload the data generated by the operation of the load equipment to the Ethernet platform, so as to achieve real-time monitoring of the operation of the load equipment on the Ethernet network platform.
  • this embodiment includes: a box with an input end and an output end, and a main circuit switch device, a branch circuit switch device, an electric meter, a power network router, and an Internet of Things control device arranged in the box; the main circuit The switch device is arranged between the input end and the output end to form the main circuit; the electric meter and the branch switch device are arranged in parallel on the main circuit, and the branch switch device is also connected with the power network router and the Internet of Things control device respectively.
  • the IoT control device is used to collect and process the data of the load equipment; the IoT control device is used to connect with the inverter of the power supply system, and the electricity meter is used to connect with the current transformer of the power supply system.
  • the electrical control box provided by the present disclosure provides the functions of connecting to the Ethernet through the power network router, and connecting and controlling the load equipment through the Internet of Things control device, so as to realize the control of the intelligent load equipment, and through the power network router, realize The communication between the electrical control box and the Ethernet network is improved, and the applicable scene of the electrical control box is improved.
  • the IoT control device 15 includes a switch 151 and an IoT controller 152 that are connected to each other.
  • the switch 151 is used to connect with the load device and collect data of the load device, and the switch 151 is also used to connect with the inverse device. Transformer connection.
  • FIG. 3 shows a communication architecture diagram of an electrical control box in an embodiment of the present disclosure, and the switch can communicate with load devices (such as charging piles, smart home devices, etc.) and the inverse of the power supply system.
  • the inverter inverter is a converter that converts DC power into fixed-frequency constant-voltage or frequency-modulated and voltage-regulated AC power
  • the IoT controller can Corresponding control instructions are generated, and finally the control instructions are sent to the load equipment to achieve the purpose of controlling the load equipment.
  • the IoT control device 15 further includes: a switching power supply 153 ; a switching power supply 153 is provided between the switch 151 , the IoT controller 152 and the branch switch device 12 , and the switching power supply 153 is used to provide the switch 151 .
  • the IoT controller 152 supplies power.
  • the switch 151 and the IoT controller 152 may each have built-in power supplies for power supply.
  • the switch 151 and the IoT controller 152 may be connected with a switching power supply 153 , and the switching power supply 153 realizes the power supply to the switch 151 and the IoT controller 152 . Power to the networked controller 152 .
  • the load devices may include: charging piles, smart homes and other smart electrical equipment, and the smart meter can collect current through current transformers signal, and based on the inverter communication 1 signal, the monitoring of power consumption is realized.
  • the switch can collect the operating data of these load devices by connecting to charging piles, smart homes and other smart electrical equipment, and send the collected data to the IoT controller for the IoT controller to generate corresponding control commands. Finally, the control command is sent to the load device to achieve the purpose of controlling the load device.
  • the power network router can realize power carrier communication and can connect to Ethernet, so as to provide Ethernet services for the entire power supply system to which the electrical control box belongs.
  • the IoT controller includes a communication interface 154, and the communication interface 154 includes one or more of a serial communication interface, a network communication interface, and a general input/output interface.
  • the serial port communication interface, the network communication interface, and the universal input/output interface are arranged on the outer surface of the box body 10 .
  • the IoT controller has a serial port communication interface, a network communication interface, a general input/output port, a CPU, a memory, etc., which can collect and control different data, and the switch can expand the network communication interface.
  • the communication interfaces included in the IoT controller can be designed on the outside of the box, and the plug-and-play interface is adopted, so that the connection of the interface does not depend on special tools, and the wiring is convenient, which greatly shortens the installation time.
  • the input end of the box body includes: one or more of an AC input terminal, a current transformer access terminal, and a universal serial bus access terminal disposed on the outer surface of the box body; the output end of the box body includes : The AC output terminal installed on the outer surface of the box.
  • the AC input/output terminal is used to realize the AC input and output of the electrical control box, and the current transformer access terminal is used to connect the CT.
  • the CT is based on the principle of electromagnetic induction to convert the large current on the primary side into a small current on the secondary side.
  • the measuring instrument, CT is composed of a closed iron core and windings, and is set in the circuit that needs to measure the current.
  • the electric meter can detect the current signal through the CT.
  • the Universal Serial Bus (USB, Universal Serial Bus) access terminal can be connected to an external device using a USB interface.
  • the main circuit switch device 11 includes: a main circuit breaker 111 and a first protection switch 112 connected to each other; the branch circuit switch device 12 includes: a branch circuit breaker 121 and a second protection switch connected to each other 122.
  • the interconnected main circuit breaker 111 and the first protection switch 112 can be used for power-off protection of the main circuit in the electrical control box, and the interconnected branch circuit breaker 121 and the second protection switch 122 can be used Power-off protection for branch circuits in electrical control boxes.
  • a power supply system including: a photovoltaic module 20 , an inverter 30 , an electrical control box 10 , a distribution box 40 , a current transformer 50 , and a two-way electricity meter 60 ; the photovoltaic module 20 , an inverter The inverter 30, the electrical control box 10, the distribution box 40, the current transformer 50, and the two-way electricity meter 60 are connected in series in sequence, and the two-way electricity meter 60 is used to connect to the power grid 70; the electrical control box 10 is also connected to the load equipment and the current transformer ( CT)50 connection.
  • CT current transformer
  • the power supply system further includes an energy storage device 31, and the energy storage device 31 is connected to the inverter 30 for storing and releasing electricity.
  • the load equipment includes charging equipment and smart home equipment.
  • the photovoltaic module 20, the inverter 30, the electrical control box 10, the power distribution box 40, the current transformer 50, and the two-way electricity meter 60 are connected in series in sequence, and finally connected to the grid 70 for grid connection, and the inverter 30 is simultaneously connected to the energy storage device.
  • the modules 31 are connected to store and release electricity, and the electrical control box 10 is connected to the inverter 30, charging pile, smart home, and CT to collect the relevant operation data of each module, and to process the collected data. Control of on-grid electricity.
  • this embodiment includes: a box with an input end and an output end, and a main circuit switch device, a branch circuit switch device, an electric meter, a power network router, and an Internet of Things control device arranged in the box; the main circuit The switch device is arranged between the input end and the output end to form the main circuit; the electric meter and the branch switch device are arranged in parallel on the main circuit, and the branch switch device is also connected with the power network router and the Internet of Things control device respectively.
  • the IoT control device is used to collect and process the data of the load equipment; the IoT control device is used to connect with the inverter of the power supply system, and the electricity meter is used to connect with the current transformer of the power supply system.
  • the electrical control box provided by the present disclosure provides the functions of connecting to the Ethernet through the power network router, and connecting and controlling the load equipment through the Internet of Things control device, so as to realize the control of the intelligent load equipment, and through the power network router, realize The communication between the electrical control box and the Ethernet network is improved, and the applicable scene of the electrical control box is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本公开提供了一种电气控制箱及供电系统,涉及太阳能光伏技术领域,包括:具有输入端和输出端的箱体,以及设置在箱体内的主回路开关装置、支路开关装置、电表、电力网络路由器和物联网控制装置;主回路开关装置设置在输入端和输出端之间,形成主回路;电表和支路开关装置并联设置在主回路上,支路开关装置还分别与电力网络路由器和物联网控制装置连接。本公开提供的电气控制箱,提供了通过电力网络路由器接入以太网,以及通过物联网控制装置接入并控制负载设备的功能,实现了对智能负载设备的控制,并且通过电力网络路由器,实现了电气控制箱与以太网络的通信,提高了电气控制箱的适用场景。

Description

一种电气控制箱及供电系统
相关申请的交叉引用
本申请要求在2021年2月3日提交中国专利局、申请号为202120311287.5、名称为“一种电气控制箱及供电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及太阳能光伏技术领域,特别是涉及一种电气控制箱及供电系统。
背景技术
太阳能发电是目前主要的新能源发电形式之一,随着系统成本不断下降,在用户侧得到了大规模的推广和应用,光伏发电系统也得到了广泛的应用,尤其是在电价波动较大的国家或区域。
现有技术中,光伏发电系统由光伏组件、支架、并网逆变器、并网箱、线缆等组成,光伏组件所发电量通过并网箱、配电箱提供给家用负载使用,多余的电量返送到电网,实现自发自用、余电上网。另外,常规的并网箱内部主要由刀开关、断路器、防雷保护器等组成,主要实现简单的光伏发电系统的安全接入和线路通断控制。
但是,目前的光伏发电系统较为简单,难以满足对日益流行的智能用电设备的控制的需求,降低了其应用范围。
概述
本公开提供一种电气控制箱及供电系统,旨在解决现有的光伏供电系统难以满足对日益流行的智能用电设备的控制的需求,降低了其应用范围。
本公开实施例提供了一种电气控制箱,用于对负载设备进行控制,包括:
具有输入端和输出端的箱体,以及设置在所述箱体内的主回路开关装置、支路开关装置、电表、电力网络路由器和物联网控制装置;
所述主回路开关装置设置在所述输入端和所述输出端之间,形成主回路;
所述电表和所述支路开关装置并联设置在所述主回路上,所述支路开关 装置还分别与所述电力网络路由器和所述物联网控制装置连接,所述电力网络路由器用于与以太网连接,所述物联网控制装置用于采集所述负载设备的数据并进行处理;所述物联网控制装置用于与供电系统的逆变器连接,所述电表用于与所述供电系统的电流互感器连接。
可选地,所述物联网控制装置包括:
相互连接的交换机、物联网控制器,所述交换机用于与所述负载设备连接,并采集所述负载设备的数据,所述交换机还用于与所述逆变器连接。
可选地,所述物联网控制装置还包括:开关电源;所述交换机、所述物联网控制器与所述支路开关装置之间设置有所述开关电源,所述开关电源用于向所述交换机、所述物联网控制器供电。
可选地,所述物联网控制器包括:串口通信接口、网络通信接口、通用输入/输出接口中的一种或多种。
可选地,所述串口通信接口、所述网络通信接口、所述通用输入/输出接口设置于所述箱体外表面。
可选地,所述箱体的输入端包括:设置于所述箱体外表面的交流输入端子、电流互感器接入端子、通用串行总线接入端子中的一种或多种;
所述箱体的输出端包括:设置于所述箱体外表面的交流输出端子。
可选地,所述主回路开关装置包括:相互连接的主回路断路器和第一保护开关;
支路开关装置包括:相互连接的支路断路器和第二保护开关。
本公开实施例还提供了一种供电系统,其特征在于,包括:光伏组件、逆变器、电气控制箱、配电箱、电流互感器、双向电表;
所述光伏组件、所述逆变器、所述电气控制箱、所述配电箱、所述电流互感器、所述双向电表依次串联连接,所述双向电表用于接入电网;
所述电气控制箱还与负载设备和所述电流互感器连接。
可选地,所述供电系统还包括储能装置,所述储能装置与所述逆变器连接,用于进行电量的存储和释放。
可选地,所述负载设备包括充电设备、智能家居设备。
在本公开实施例中,具有输入端和输出端的箱体,以及设置在箱体内的 主回路开关装置、支路开关装置、电表、电力网络路由器和物联网控制装置;主回路开关装置设置在输入端和输出端之间,形成主回路;电表和支路开关装置并联设置在主回路上,支路开关装置还分别与电力网络路由器和物联网控制装置连接,电力网络路由器用于与以太网连接,物联网控制装置用于采集负载设备的数据并进行处理;物联网控制装置用于与供电系统的逆变器连接,电表用于与供电系统的电流互感器连接。本公开提供的电气控制箱,提供了通过电力网络路由器接入以太网,以及通过物联网控制装置接入并控制负载设备的功能,实现了对智能负载设备的控制,并且通过电力网络路由器,实现了电气控制箱与以太网络的通信,提高了电气控制箱的适用场景。
附图简述
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本公开实施例中的一种电气控制箱的结构框图;
图2示出了本公开实施例中的一种电气控制箱的结构示意图;
图3示出了本公开实施例中的一种电气控制箱的通信架构图;
图4示出了本公开实施例中的一种电气控制箱的内部系统原理图;
图5示出了本公开实施例中的一种供电系统的架构图。
详细描述
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参照图1,图1示出了本公开实施例中的一种电气控制箱的结构框图,电气控制箱包括:具有输入端和输出端的箱体10,以及设置在箱体10内的主回路开关装置11、支路开关装置12、电表13、电力网络路由器14和物联 网控制装置15;主回路开关装置11设置在输入端和输出端之间,形成主回路;电表13和支路开关装置12并联设置在主回路上,支路开关装置12还分别与电力网络路由器14和物联网控制装置15连接,电力网络路由器14用于与以太网连接,物联网控制装置15用于采集负载设备的数据并进行处理;物联网控制装置15用于与供电系统的逆变器连接,电表用于与所述供电系统的电流互感器(CT,Current transformer)连接。
在本公开实施例中,参照图2,图2示出了本公开实施例中的一种电气控制箱的结构示意图,主回路开关装置11、支路开关装置12、电表13、电力网络路由器14和物联网控制装置15可以设置于箱体10内部,其中,主回路开关装置、支路开关装置用于实现整个电气控制箱中主回路和支路的安全保护,并联于主回路上的电表则可以对连接于电气控制箱的所有负载设备的用电量进行监控。另外,电表可以通过电流互感器采集的信号,确定光伏供电系统中发电端的总发电量与负载设备用电量之间的对应关系,并根据这种对应关系来控制对负载设备用电量的分配。
进一步的,在电气控制箱的一个支路上,可以设置电力网络路由器,电力网络路由器可以实现电力载波通信,能够连接以太网,从而为电气控制箱所属的整个供电系统提供以太网服务;在电气控制箱的另一个支路上,可以设置物联网控制装置,物联网控制装置可以与外部的负载设备(如充电桩、智能家居设备等)实现通信连接,物联网控制装置可以采集负载设备运行产生的数据,并对该数据进行分析处理,产生相应的控制指令,最后将控制指令下发至负载设备,以达到控制负载设备的目的。另外,物联网控制装置还可以将负载设备运行产生的数据上传至以太网平台,以达到在以太网络平台上对负载设备运行的实时监控。
综上所述,本实施例中,包括:具有输入端和输出端的箱体,以及设置在箱体内的主回路开关装置、支路开关装置、电表、电力网络路由器和物联网控制装置;主回路开关装置设置在输入端和输出端之间,形成主回路;电表和支路开关装置并联设置在主回路上,支路开关装置还分别与电力网络路由器和物联网控制装置连接,电力网络路由器用于与以太网连接,物联网控制装置用于采集负载设备的数据并进行处理;物联网控制装置用于与供电系 统的逆变器连接,电表用于与供电系统的电流互感器连接。本公开提供的电气控制箱,提供了通过电力网络路由器接入以太网,以及通过物联网控制装置接入并控制负载设备的功能,实现了对智能负载设备的控制,并且通过电力网络路由器,实现了电气控制箱与以太网络的通信,提高了电气控制箱的适用场景。
可选地,参照图1,物联网控制装置15包括:相互连接的交换机151、物联网控制器152,交换机151用于与负载设备连接,并采集负载设备的数据,交换机151还用于与逆变器连接。
具体的,进一步参照图3,图3示出了本公开实施例中的一种电气控制箱的通信架构图,交换机则可以与负载设备(如充电桩,智能家居设备等)以及供电系统的逆变器(逆变器是把直流电能转变成定频定压或调频调压交流电的转换器)连接,采集负载设备和逆变器运行所产生的数据,物联网控制器则可以根据该数据,产生相应的控制指令,最后将控制指令下发至负载设备,以达到控制负载设备的目的。
可选地,参照图1,物联网控制装置15还包括:开关电源153;交换机151、物联网控制器152与支路开关装置12之间设置有开关电源153,开关电源153用于向交换机151、物联网控制器152供电。在本公开实施例中,交换机151、物联网控制器152各自可以内置电源以进行供电,另外,交换机151、物联网控制器152可以连接有开关电源153,由开关电源153实现对交换机151、物联网控制器152的供电。
进一步参照图4,其示出了一种电气控制箱的内部系统原理图,图4中,负载设备可以包括:充电桩、智能家居及其他智能用电设备,智能电表可以通过电流互感器采集电流信号,并基于逆变器通信1信号,实现对用电量的监控。交换机则可以通过接入充电桩、智能家居及其他智能用电设备,实现对这些负载设备运行数据的采集,将采集的数据发送至物联网控制器,以供物联网控制器产生相应的控制指令,最后将控制指令下发至负载设备,以达到控制负载设备的目的。电力网络路由器可以实现电力载波通信,能够连接以太网,从而为电气控制箱所属的整个供电系统提供以太网服务。
可选地,参照图2,物联网控制器包括通信接口154,通信接口154包 括:串口通信接口、网络通信接口、通用输入/输出接口中的一种或多种。
可选地,参照图2,串口通信接口、所述网络通信接口、所述通用输入/输出接口设置于所述箱体10外表面。本实施例中,物联网控制器具有串口通信接口、网络通信接口、通用输入/输出口、CPU、存储器等,可进行不同数据的采集和控制,交换机则可以对网络通信接口进行扩展。另外,物联网控制器包括的通信接口均可以设计在箱体外侧,采用即插即用接口,使得接口的连接可以不依赖于专门工具,接线方便,大大缩短了安装时间。
可选地,箱体的输入端包括:设置于箱体外表面的交流输入端子、电流互感器接入端子、通用串行总线接入端子中的一种或多种;箱体的输出端包括:设置于箱体外表面的交流输出端子。
其中,交流输入/输出端子用于实现电气控制箱的交流电输入输出,电流互感器接入端子则用于接入CT,CT是依据电磁感应原理将一次侧大电流转换成二次侧小电流来测量的仪器,CT是由闭合的铁心和绕组组成,设置在需要进行测量电流的线路中,电表可以通过CT来检测电流信号。通用串行总线(USB,Universal Serial Bus)接入端子则可以外接采用了USB接口的外接设备。
可选地,参照图1,主回路开关装置11包括:相互连接的主回路断路器111和第一保护开关112;支路开关装置12包括:相互连接的支路断路器121和第二保护开关122。本公开实施例中,相互连接的主回路断路器111和第一保护开关112可以用于电气控制箱中主回路的断电保护,相互连接的支路断路器121和第二保护开关122可以用于电气控制箱中支路的断电保护。
参照图5,本实施例中还提供一种供电系统,包括:光伏组件20、逆变器30、电气控制箱10、配电箱40、电流互感器50、双向电表60;光伏组件20、逆变器30、电气控制箱10、配电箱40、电流互感器50、双向电表60依次串联连接,双向电60表用于接入电网70;电气控制箱10还与负载设备和电流互感器(CT)50连接。
可选地,所述供电系统还包括储能装置31,所述储能装置31与所述逆变器30连接,用于进行电量的存储和释放。
可选地,所述负载设备包括充电设备、智能家居设备。
其中,光伏组件20、逆变器30、电气控制箱10、配电箱40、电流互感器50、双向电表60依次串联连接,最终接入电网70进行并网,逆变器30同时与储能模块31相连接,进行电量的存储和释放,电气控制箱10与逆变器30、充电桩、智能家居、CT相连接,用于采集各模块的相关运行数据,对采集到的数据进行处理实现对上网电量的控制。
综上所述,本实施例中,包括:具有输入端和输出端的箱体,以及设置在箱体内的主回路开关装置、支路开关装置、电表、电力网络路由器和物联网控制装置;主回路开关装置设置在输入端和输出端之间,形成主回路;电表和支路开关装置并联设置在主回路上,支路开关装置还分别与电力网络路由器和物联网控制装置连接,电力网络路由器用于与以太网连接,物联网控制装置用于采集负载设备的数据并进行处理;物联网控制装置用于与供电系统的逆变器连接,电表用于与供电系统的电流互感器连接。本公开提供的电气控制箱,提供了通过电力网络路由器接入以太网,以及通过物联网控制装置接入并控制负载设备的功能,实现了对智能负载设备的控制,并且通过电力网络路由器,实现了电气控制箱与以太网络的通信,提高了电气控制箱的适用场景。
要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本公开的保护之内。

Claims (10)

  1. 一种电气控制箱,用于对负载设备进行控制,其特征在于,包括:
    具有输入端和输出端的箱体,以及设置在所述箱体内的主回路开关装置、支路开关装置、电表、电力网络路由器和物联网控制装置;
    所述主回路开关装置设置在所述输入端和所述输出端之间,形成主回路;
    所述电表和所述支路开关装置并联设置在所述主回路上,所述支路开关装置还分别与所述电力网络路由器和所述物联网控制装置连接,所述电力网络路由器用于与以太网连接,所述物联网控制装置用于采集所述负载设备的数据并进行处理;所述物联网控制装置用于与供电系统的逆变器连接,所述电表用于与所述供电系统的电流互感器连接。
  2. 根据权利要求1所述的电气控制箱,其特征在于,所述物联网控制装置包括:
    相互连接的交换机、物联网控制器,所述交换机用于与所述负载设备连接,并采集所述负载设备的数据,所述交换机还用于与所述逆变器连接。
  3. 根据权利要求2所述的电气控制箱,其特征在于,所述物联网控制装置还包括:开关电源;所述交换机、所述物联网控制器与所述支路开关装置之间设置有所述开关电源,所述开关电源用于向所述交换机、所述物联网控制器供电。
  4. 根据权利要求2所述的电气控制箱,其特征在于,所述物联网控制器包括:串口通信接口、网络通信接口、通用输入/输出接口中的一种或多种。
  5. 根据权利要求4所述的电气控制箱,其特征在于,所述串口通信接口、所述网络通信接口、所述通用输入/输出接口设置于所述箱体外表面。
  6. 根据权利要求1所述的电气控制箱,其特征在于,所述箱体的输入端包括:设置于所述箱体外表面的交流输入端子、电流互感器接入端子、通用串行总线接入端子中的一种或多种;
    所述箱体的输出端包括:设置于所述箱体外表面的交流输出端子。
  7. 根据权利要求1所述的电气控制箱,其特征在于,所述主回路开关装置包括:相互连接的主回路断路器和第一保护开关;
    支路开关装置包括:相互连接的支路断路器和第二保护开关。
  8. 一种供电系统,其特征在于,包括:光伏组件、逆变器、如权利要 求1至7任一项所述的电气控制箱、配电箱、电流互感器、双向电表;
    所述光伏组件、所述逆变器、所述电气控制箱、所述配电箱、所述电流互感器、所述双向电表依次串联连接,所述双向电表用于接入电网;
    所述电气控制箱还与负载设备和所述电流互感器连接。
  9. 根据权利要求8所述的供电系统,其特征在于,所述供电系统还包括储能装置,所述储能装置与所述逆变器连接,用于进行电量的存储和释放。
  10. 根据权利要求8所述的供电系统,其特征在于,所述负载设备包括充电设备、智能家居设备。
PCT/CN2021/129012 2021-02-03 2021-11-05 一种电气控制箱及供电系统 WO2022166287A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202120311287.5U CN214337264U (zh) 2021-02-03 2021-02-03 一种电气控制箱及供电系统
CN202120311287.5 2021-02-03

Publications (1)

Publication Number Publication Date
WO2022166287A1 true WO2022166287A1 (zh) 2022-08-11

Family

ID=77907984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129012 WO2022166287A1 (zh) 2021-02-03 2021-11-05 一种电气控制箱及供电系统

Country Status (2)

Country Link
CN (1) CN214337264U (zh)
WO (1) WO2022166287A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214337264U (zh) * 2021-02-03 2021-10-01 西安隆基绿能建筑科技有限公司 一种电气控制箱及供电系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140247539A1 (en) * 2013-03-04 2014-09-04 Eaton Corporation Enclosure for electrical distribution equipment and electrical distribution apparatus employing the same
CN203871873U (zh) * 2014-05-16 2014-10-08 深圳市拓邦自动化技术有限公司 一种家用光伏智能并网箱
CN204333979U (zh) * 2015-01-06 2015-05-13 上海捷谛电力科技有限公司 户用光伏发电系统并网集成电气箱
CN214337264U (zh) * 2021-02-03 2021-10-01 西安隆基绿能建筑科技有限公司 一种电气控制箱及供电系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140247539A1 (en) * 2013-03-04 2014-09-04 Eaton Corporation Enclosure for electrical distribution equipment and electrical distribution apparatus employing the same
CN203871873U (zh) * 2014-05-16 2014-10-08 深圳市拓邦自动化技术有限公司 一种家用光伏智能并网箱
CN204333979U (zh) * 2015-01-06 2015-05-13 上海捷谛电力科技有限公司 户用光伏发电系统并网集成电气箱
CN214337264U (zh) * 2021-02-03 2021-10-01 西安隆基绿能建筑科技有限公司 一种电气控制箱及供电系统

Also Published As

Publication number Publication date
CN214337264U (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN102570455B (zh) 智能微电网供电系统
Boroyevich et al. Future electronic power distribution systems a contemplative view
Kakigano et al. Low-voltage bipolar-type DC microgrid for super high quality distribution
CN107171361A (zh) 基于网源荷储协调控制的智能配电站和网源荷储协调控制系统
Diaz et al. Intelligent dc microgrid living laboratories-a chinese-danish cooperation project
TWI671971B (zh) 整合式供電系統
CN104009452A (zh) 一种用于直流配电系统短路故障的保护方案
CN110970922A (zh) 一种交直流混合分布式可再生能源系统
CN103545926B (zh) 一种分布式电源并网接口装置
CN103607032A (zh) 可再生能源发电、输变电和电网接入一体化系统
CN104333036B (zh) 一种多源协调控制系统
CN109786866B (zh) 一种即插即用电池模块及电池储能系统
CN202550532U (zh) 智能微电网供电系统
WO2022166287A1 (zh) 一种电气控制箱及供电系统
Martirano et al. Implementation of SCADA systems for a real microgrid lab testbed
CN106356905A (zh) 一种交直流双母线可控输电系统
CN116581735B (zh) 一种建立光储直柔系统架构的方法
Kester et al. A smart MV/LV-station that improves power quality, reliability and substation load profile
Wlas et al. The Ethernet POWERLINK Protocol for smart grids elements integration
CN102208825A (zh) 具有能量组网功能的太阳能光伏发电系统
Xu et al. Energy management and control strategy for DC micro-grid in data center
CN202076961U (zh) 一种具有能量组网功能的太阳能光伏发电系统
Zheng et al. Research on DC Micro-grid system of photovoltaic power generation
Shah et al. Multilevel LVDC distribution system with voltage unbalancing and disturbance rejection control topology
Li et al. The realization of flexible photovoltaic power grid-connection μ-synthesis robust control in microgrid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924283

Country of ref document: EP

Kind code of ref document: A1