WO2022166009A1 - 基于单基站的定位方法、基站、电子装置和存储介质 - Google Patents

基于单基站的定位方法、基站、电子装置和存储介质 Download PDF

Info

Publication number
WO2022166009A1
WO2022166009A1 PCT/CN2021/091261 CN2021091261W WO2022166009A1 WO 2022166009 A1 WO2022166009 A1 WO 2022166009A1 CN 2021091261 W CN2021091261 W CN 2021091261W WO 2022166009 A1 WO2022166009 A1 WO 2022166009A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
signal
user terminal
signal power
positioning
Prior art date
Application number
PCT/CN2021/091261
Other languages
English (en)
French (fr)
Inventor
袁勇超
黄传彬
张宏亮
王静
Original Assignee
浙江三维通信科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三维通信科技有限公司 filed Critical 浙江三维通信科技有限公司
Publication of WO2022166009A1 publication Critical patent/WO2022166009A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to the field of positioning technology, and in particular, to a positioning method based on a single base station, a base station, an electronic device and a storage medium.
  • Positioning refers to the process of obtaining the position of the object to be positioned by a certain method or means in a specific reference coordinate system.
  • the positioning based on the user terminal is mainly realized by triangulation.
  • the information obtains the position relationship between the two, and finally the user terminal is positioned according to the relevant positioning algorithm.
  • multiple base stations need to be deployed for user terminal positioning, which leads to high positioning costs.
  • Embodiments of the present application provide a single base station-based positioning method, base station, electronic device, and storage medium, so as to at least solve the problem of high cost of user terminal positioning in a scenario with a narrow and long channel in the related art.
  • an embodiment of the present application provides a positioning method based on a single base station, which is applied to the positioning of a user terminal moving along a channel extending in a single direction, and the method includes:
  • the location of the user terminal at the current moment is located on the path of the channel.
  • the transmission signal includes an uplink signal and/or a downlink signal.
  • determining the straight-line distance between the base station and the user terminal at the current moment according to the signal power of the transmission signal includes:
  • the signal fitting line determine the signal power value of the transmission signal between the base station and the user terminal at the current moment
  • determining the straight-line distance between the base station and the user terminal at the current moment according to the signal power of the transmission signal includes:
  • the method before performing linear fitting on the signal power of the transmitted signal within the historical period, the method further comprises:
  • the method further includes:
  • the moving speed of the user terminal is determined.
  • the signal power of the transmitted signal includes RSRP.
  • the statistics on the signal power of the transmission signal between the base station and the user terminals within the coverage during the historical period include:
  • the user terminal accesses the base station multiple times within a historical period.
  • the base station is further configured to update the TAC value of the base station according to a set period, so that the user terminal accesses the base station multiple times according to the set period.
  • the priority of the user terminal to access the base station is higher than the priority of access to other base stations.
  • the coverage range is a sector with the base station as a sector center, and the included angle of the sector ranges from 5° to 15°.
  • an embodiment of the present application provides a base station, the base station includes a signal processing unit and an antenna unit; the antenna unit is used to form a coverage area of a transmission signal; the signal processing unit is used to perform the above The single base station-based positioning method described in the first aspect.
  • the base station comprises a mobile base station.
  • the antenna units include one or more uplink antenna units and one or more downlink antenna units.
  • the base station is an LTE base station or a 5G base station.
  • the base station further includes a positioning unit for locating the position information of the base station.
  • the base station further includes an input unit for receiving input data, wherein the input data includes: a set period for updating the TAC value of the base station, and/or the location of the base station information.
  • an embodiment of the present application provides an electronic device, including a memory, a processor, and a computer program stored on the memory and executable on the processor, when the processor executes the computer program
  • the single base station-based positioning method as described in the first aspect above is implemented.
  • an embodiment of the present application provides a storage medium on which a computer program is stored, and when the program is executed by a processor, implements the single base station-based positioning method described in the first aspect above.
  • the single base station-based positioning method, base station, electronic device, and storage medium provided by the embodiments of the present application are applied to the positioning of user terminals moving along a channel extending in a single direction, by setting a base station at one end of the channel.
  • FIG. 1 is a flowchart of a positioning method based on a single base station according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a channel according to an embodiment of the present application.
  • FIG. 3 is a flowchart of another positioning method based on a single base station according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a signal fitting curve according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of signaling interaction in a positioning method according to an embodiment of the present application.
  • FIG. 6 is a structural block diagram of a base station according to an embodiment of the present application.
  • FIG. 7 is an internal structural diagram of a computer device according to an embodiment of the present application.
  • Words like "connected,” “connected,” “coupled,” and the like referred to in this application are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect.
  • the “plurality” referred to in this application means greater than or equal to two.
  • “And/or” describes the association relationship between associated objects, indicating that there can be three kinds of relationships. For example, “A and/or B” can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • the terms “first”, “second”, “third”, etc. involved in this application are only to distinguish similar objects, and do not represent a specific order for the objects.
  • FIG. 1 is a single base station-based positioning method according to an embodiment of the present application.
  • the flowchart of the positioning method, as shown in Figure 1, includes the following steps:
  • Step S102 a base station is set at one end of the channel, the location information of the base station is recorded, and the coverage of the base station is configured to cover the other end of the channel in the single direction.
  • the user terminal may be, but not limited to, various personal computers, notebook computers, smart phones, tablet computers and portable wearable devices.
  • the base station can be pre-deployed by the on-site staff in combination with the actual situation, and the specific location of the single base station can be determined, so as to obtain the location information of the single base station.
  • the single base station may be an LTE base station.
  • the LTE base station has the following advantages: stronger Reference Signal Receiving Power (RSRP), better Reference Signal Receiving Quality (RSRQ), more Good Signal to Interference plus Noise Ratio (SINR for short), and higher handover priority. Therefore, selecting the LTE base station as the single base station is beneficial to improve the efficiency and accuracy of user terminal positioning.
  • FIG. 2 is a schematic diagram of a channel according to an embodiment of the present application.
  • the channel is a pre-selected path passing through the coverage of the base station; the preset path is provided with a path for identifying user identities
  • the gate, and the section of the channel where the gate is set is within the coverage of the base station.
  • the antenna of the base station faces the end where the gate is arranged along the channel, the coverage of the antenna is a sector with the base station as the sector center, and the included angle of the sector ranges from 5° to 15°.
  • the base station can be set as a mobile base station.
  • the mobile base station can be set on a mobile device such as a car, and the staff can control the movement of the mobile base station by moving the mobile device.
  • the antenna coverage of the base station can cover the section of the channel where the gate is set.
  • Step S104 count the signal power of the transmission signal between the base station and the user terminal within the coverage during the historical period, and determine the straight-line distance between the base station and the user terminal at the current moment according to the signal power of the transmission signal .
  • the above-mentioned historical period is a period of time that elapses in the process of locating the user terminal.
  • a physical random access channel Physical Random Access Channel, PRACH for short
  • PRACH Physical Random Access Channel
  • the periodic random access behavior of the user terminal achieves uplink access and synchronization with the base station through the uplink PRACH, and uses the random access preamble (Preamble code) on the PRACH channel to access.
  • the Preamble code within the coverage of the base station is 64.
  • the preamble code is generated by a cyclic shift of a ZC sequence with a length of 839, wherein the length of the ZC sequence can also be set to 139 according to the configuration of the base station.
  • ZC sequences have ideal autocorrelation properties and the best cross-correlation properties under this autocorrelation property.
  • the base station configures the format of the PRACH channel and the position in the time domain through the PRACH configuration index (PRACH-ConfigIndex), configures the frequency domain position of the PRACH channel through the PRACH frequency domain offset (PRACH-freqOffset), and configures the PRACH channel through the PRACH zero correlation configuration ( PRACH_zero_correlation) to configure the value of the ZC cyclic shift. Therefore, in the above wireless environment, the user terminal can actively send handover or reselection, and perform continuous signaling interaction with the single base station within a historical period.
  • PRACH-ConfigIndex configures the frequency domain position of the PRACH channel through the PRACH frequency domain offset
  • PRACH_zero_correlation PRACH zero correlation configuration
  • the base station is also configured to update the TAC value of the base station according to the set period, so that the user terminal accesses the base station multiple times according to the set period; frequency, the TAC update period of the base station can be set to 1 minute or less.
  • the user terminal within the coverage area is connected to the base station to perform signaling interaction, and the signal power of the interactive transmission signal between the base station and the user terminal in the historical period is counted.
  • the priority of the user terminal to access the base station is higher than the priority of accessing other base stations, so as to ensure that the user terminal can access the base station in time.
  • the base station performs positioning for the user terminal. Then, the straight-line distance between the base station and the user terminal at the current moment can be calculated based on the loss of the signal power during the transmission process.
  • Step S106 according to the straight-line distance and the position information of the base station, locate the position of the user terminal at the current moment on the path of the channel.
  • the location information of the base station may include information such as the latitude and longitude of the base station. Since in scenarios with narrow and long passages such as security checkpoints, park entrances and exits, the deviation angle between a series of straight-line distances from the user terminal to the base station for a period of time is within the azimuth angle of the base station antenna, so the straight line obtained in the above step S104 is used. By combining the distance with the position information of the single base station, the positioning result of the user terminal on the preset path can be obtained.
  • the straight-line distance between the base station and the user terminal is obtained according to the signal power of the transmission signal between the base station and the user terminal in the historical period, and The position of the user terminal on the path of the channel at the current moment is located according to the straight-line distance and the location information of the base station.
  • the positioning of the user terminal that is applied to the channel extending in a single direction is realized, avoiding the need for multi-base station positioning.
  • the resulting high cost phenomenon thereby solving the problem of high cost of user terminal positioning in a scenario with a narrow and long channel.
  • FIG. 3 is a flowchart of another positioning method based on a single base station according to an embodiment of the present application. As shown in FIG. 3 , the flow includes the following step:
  • Step S302 count the signal power of the transmission signal between the base station and the user terminal within the coverage in the historical period, and perform linear fitting on the signal power of the transmission signal in the historical period to obtain a signal fitting line.
  • the user terminal every time the user terminal accesses the base station, it will report the transmission signal, because the signal power of the transmission signal is susceptible to sudden changes due to environmental influences, such as the occlusion of people or objects, and changes in the way the user terminal is held and worn. Sudden change in signal power.
  • linear fitting can be performed on a set of signal power values reported each time in the historical period to obtain a signal fitting line; it can be understood that the signal fitting line can be a straight line or a curve.
  • the historical period can also be set in advance, for example, can be set to 40s.
  • Step S304 according to the signal fitting line, determine the signal power value of the transmission signal between the base station and the user terminal at the current moment.
  • the signal power value of each point in the historical period is compared with the signal fitting line obtained through the above step S302 in turn. If the signal power value of a certain point is too far from the signal fitting line, it means that the signal power value of this point is If there is a sudden change in the value, the signal power value at this point is eliminated; finally, the remaining signal power value after the elimination is taken as the normal signal power value of the transmission signal.
  • Step S306 according to the signal power value and the preset path attenuation model, determine the straight-line distance between the base station and the user terminal at the current moment, wherein the preset path attenuation model is used to represent the signal power value and the straight-line distance. Correspondence between.
  • Equation 1 The formula applied to the preset path attenuation model is shown in Equation 1:
  • Lr represents the path loss of the signal power value
  • F represents the current frequency, which can be the uplink signal frequency of the base station or the downlink signal frequency of the base station, depending on the actual base station deployment situation
  • D represents the user terminal and the base station.
  • Straight line distance Therefore, the straight-line distance can be obtained by calculation through the preset path attenuation model shown in Formula 1 above.
  • the user terminal positioning is performed based on a single base station and a single antenna; and the repeated acquisition positioning technology of receiving uplink signals within a certain time range, and the interference data filtering technology of fitting a curve to filter data, obtain accurate The user terminal positioning results with high degree of accuracy can be achieved, thereby realizing precise positioning based on a single base station.
  • the single base station-based positioning method further includes the following steps:
  • Step S402 Perform linear fitting on the signal power of each of the transmission signals in the historical period to obtain a plurality of signal fitting lines; then in this case, in actual deployment, the base station deploys multiple signals at different locations. antenna, and receive or transmit multiple transmission signals through multiple antennas respectively.
  • FIG. 4 is a schematic diagram of a signal fitting curve according to an embodiment of the present application, as shown in FIG.
  • the signal power-time curve of the downlink signal, the signal power-time curve of the first uplink signal, and the signal power-time curve of the second uplink signal are obtained, and the above three signal power-time curves are linearly fitted respectively.
  • the signal fitting line of the corresponding downlink signal, the signal fitting line of the first uplink signal, and the signal fitting line of the second uplink signal indicated by the dotted lines in FIG. 4 which are the downlink signals shown in FIG. Fitted Line, First Upward Fitted Line, and Second Upward Fitted Line.
  • Step S404 determine the average signal power value of the transmission signal between the base station and the user terminal at the current moment.
  • a plurality of corresponding groups of normal signal power values at the current moment are determined, and the above-mentioned groups of signal power values are averaged to obtain an average signal power value.
  • Step S406 Determine the straight-line distance between the base station and the user terminal at the current moment according to the average signal power value and the preset attenuation model, wherein the preset path attenuation model is used to characterize the difference between the signal power value and the straight-line distance. Correspondence between.
  • the straight-line distance between the base station and the user terminal can be obtained by substituting the average signal power value obtained in the above step S404 into the preset path attenuation model shown in the above formula 1.
  • outliers refer to one or several values in the signal power value that are significantly different from other values, then the outliers in the signal power can be calculated and removed first based on methods such as standard deviation; Performing linear fitting on the signal power after removing outliers can make the fitted signal fitting line more accurate, thereby effectively improving the accuracy of single base station positioning.
  • the trend of each signal fitting line is that the signal power value increases with time, indicating that the user terminal is moving closer to the base station on the channel at this time; the greater the slope of each signal fitting line, the higher the signal The larger the change trend of the fitting line, the faster the moving speed of the user terminal.
  • the slope of the signal fitting line is smaller, the moving speed of the user terminal is slower.
  • the base station deploys multiple antennas, correspondingly transmits multiple transmission signals, and obtains multiple signal fitting lines by linearly fitting the signal power of each of the transmission signals in the historical period.
  • the average signal power value is determined according to a plurality of the signal fitting lines, and according to the average signal power value and the preset attenuation model, the elimination of common errors based on multiple transmission signals is realized, and the positioning of the user terminal in a single base station is further improved. accuracy.
  • the main positioning error is in a sector coverage area with the base station as the sector center, Since the distance between the user terminal and the base station on the arc edge of the sector coverage area is the same, the positioning error can be eliminated by simultaneous detection by more than two antennas, so as to improve the positioning accuracy of the user terminal.
  • the signal power of the above-mentioned transmission signal includes RSRP
  • the process of counting the signal power of the transmission signal between the base station and the user terminal within the coverage area in the above positioning method in the above-mentioned positioning method further includes the following steps:
  • the above-mentioned transmission signals between the base station and the user terminal include downlink signals and/or uplink signals. If the transmission signal only includes downlink signals, that is, after the user terminal accesses the base station within the historical period, the base station transmits the downlink signal to the user terminal, wherein the user terminal can access the base station multiple times within the historical period . Then, a group of RSRP values of the downlink signal is counted, so as to calculate the straight-line distance between the user terminal and the base station based on the group of RSRP values; wherein, based on the RSRP value of the downlink signal, the calculation formula of the preset path loss model is used As shown in Equation 2:
  • RSRP1 represents the downlink signal
  • P0 represents the transmit power of the base station, and the unit of P0 can be converted into dBm
  • F1 represents the frequency of the downlink signal, in MHz
  • G0 represents the antenna gain of the base station
  • D1 represents the calculated base station and the user terminal the first distance between paths. Then, according to a set of RSRP value data of the downlink signal, the straight-line distance D1 between the user terminal and the base station can be calculated by using the preset path attenuation model shown in Formula 2 above.
  • the base station receives the uplink signal reported by the user terminal, and counts a set of RSRP values of the uplink signal, so as to obtain a set of RSRP values based on the set of RSRP values.
  • the RSRP value is calculated to obtain the straight-line distance between the user terminal and the base station; wherein, based on the RSRP value of the uplink signal, the calculation formula using the preset path loss model is shown in formula 3:
  • RSRP2 represents the uplink signal
  • P1 represents the transmit power of the user terminal, and the unit of P1 can be converted into dBm
  • F2 represents the frequency of the uplink signal, the unit is MHz
  • D2 represents the calculated second between the base station and the user terminal. distance path. Then, according to a set of data of the uplink signal, the straight-line distance D2 between the user terminal and the base station can be calculated by using the path attenuation model.
  • the base station transmits the downlink signal to the user terminal, and receives the uplink signal reported by the user terminal to separately count the A group of RSRP values of the downlink signal, and a group of RSRP values of the uplink signal.
  • the straight-line distance D1 can be obtained based on the RSRP value of the downlink signal, respectively, and the straight-line distance D2 can be obtained based on the RSRP value of the uplink signal.
  • the single base station-based positioning method further includes the step of: in the case that N user terminals are located within the coverage of the base station, receiving in real time the information of the N user terminals through the uplink antenna of the single base station. up signal.
  • each uplink signal is a signal received by a single base station within a certain time range and continuously sent by each corresponding user terminal.
  • the user terminal accesses the base station transmission signal coverage, it will randomly select a code from the 64 preamble codes specified in the coverage according to certain rules, and randomly access at the specified frame and subframe time.
  • the LTE base station will report the collected Preamble code corresponding to the International Mobile Subscriber Identity (IMSI) and the frame number and subframe number of the Preamble code to the server for processing.
  • the server then combines the RSRP and the collection time reported to the single base station when the user terminal accesses, using the differential technology and the preset path attenuation model shown in the above formula 1, according to the N uplink signals, the downlink signals, and the single base station.
  • the base station transmit power is comprehensively calculated, which can match and distinguish the distance and location information of multiple IMSIs collected in the same time period.
  • the uplink signals corresponding to multiple user terminals are obtained, and each positioning result matching each user terminal is obtained by calculation, and the distance between the user terminals is unlimited, that is, the distance can be very short, for example, within 5m Within the range, each positioning result can still be detected, thereby realizing precise positioning of multiple user terminals at the same time.
  • FIG. 4 is a schematic diagram of signaling interaction in a positioning method according to an embodiment of the present application. As shown in FIG.
  • an LTE base station transmits a downlink signal of downlink power P0, and sends the downlink signal of the LTE base station to a mobile phone through an antenna;
  • the downlink signal to the LTE base station, and the uplink signal of the mobile phone is sent through the antenna; wherein, the first uplink antenna receives the first uplink signal of the uplink transmit power P1 of the mobile phone, and the LTE base station receives the first uplink signal through the first uplink antenna,
  • the second uplink antenna receives the second uplink signal of the uplink transmit power P1 of the mobile phone, and the LTE base station receives the second uplink signal through the second uplink antenna, thereby realizing signaling interaction between the LTE base station and the mobile phone.
  • the mobile phone positioning can be obtained according to the location information deployed by the LTE base station and the above signaling interaction.
  • steps in the flowcharts of FIG. 1 and FIG. 3 are shown in sequence according to the arrows, these steps are not necessarily executed in the sequence shown by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order, and these steps may be performed in other orders. Moreover, at least a part of the steps in FIG. 1 and FIG. 3 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times. These sub-steps or The order of execution of the stages is also not necessarily sequential, but may be performed alternately or alternately with other steps or sub-steps of other steps or at least a portion of a stage.
  • FIG. 6 is a structural block diagram of a base station according to an embodiment of the present application.
  • the base station includes a signal processing unit 62 and an antenna unit 64; is used to form the coverage of the transmission signal; the signal processing unit 62 is used to execute any one of the single base station-based positioning methods in the foregoing embodiments.
  • the signal processing unit 62 in the base station obtains the straight line between the base station and the user terminal by processing the signal power of the transmission signal between the user terminal located in the coverage area of the transmission signal formed by the antenna unit 64 and the base station. distance, and locate the position of the user terminal on the path of the channel at the current moment according to the straight-line distance and the location information of the base station. Based on a single base station, the positioning of the user terminal that is applied to the channel extending in a single direction is realized, avoiding the need for The phenomenon of high cost caused by multi-base station positioning, thus solving the problem of high cost of user terminal positioning in a scenario with narrow and long channels.
  • the base station comprises a mobile base station.
  • the mobile base station can move arbitrarily by being set on a movable device such as a car, as long as the antenna coverage of the mobile base station can cover the above-mentioned channels, so that the base station deployment in this application can be more flexible and simple.
  • the antenna unit 64 includes one or more uplink antenna units and one or more downlink antenna units.
  • the base station is an LTE base station or a 5G base station.
  • the base station further includes a positioning unit for locating the position information of the base station.
  • the base station further includes an input unit for receiving input data, wherein the input data includes: a set period for updating the TAC value of the base station, and/or location information of the base station.
  • the TAC value of the base station can be preset and updated to a set period of 1 minute or less, so as to avoid that the user terminal cannot report signals to the base station due to the long TAC period, so that the base station continues to receive the user terminal.
  • the transmission signals of the network can be more dense, so the positioning of a single base station based on the transmission signals can be more accurate.
  • the location information of the base station may also be pre-entered and set after the base station is deployed.
  • FIG. 7 is an internal structural diagram of a computer device according to an embodiment of the present application, as shown in FIG. 7 .
  • the computer device includes a processor, memory, a network interface, and a database connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium, an internal memory.
  • the nonvolatile storage medium stores an operating system, a computer program, and a database.
  • the internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium.
  • the database of the computer equipment is used to store the location information of the base stations.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection.
  • FIG. 7 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
  • This embodiment also provides an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to execute the steps in any of the above method embodiments.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • the above-mentioned processor may be configured to execute the following steps through a computer program:
  • S1 set a base station at one end of the channel, record the location information of the base station, and configure the coverage of the base station to cover the other end of the channel in the single direction.
  • the embodiment of the present application may provide a storage medium for implementation.
  • a computer program is stored on the storage medium; when the computer program is executed by the processor, any one of the single base station-based positioning methods in the foregoing embodiments is implemented.
  • Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种基于单基站的定位方法,应用于沿单一方向延伸的通道移动的用户终端的定位,基于单基站的定位方法包括:在通道的一端设置基站,记录基站的位置信息,并配置基站的覆盖范围在单一方向上能够覆盖到通道的另一端(S102);统计历史时段内基站与覆盖范围内的用户终端之间的传输信号的信号功率,并根据传输信号的信号功率,确定在当前时刻基站与用户终端之间的直线距离(S104);根据直线距离和基站的位置信息,在通道的路径上定位用户终端在当前时刻的位置(S106)。还公开了一种基站,包括信号处理单元(62)和天线单元(64),以及公开了一种电子装置和存储介质,解决了在具有狭长通道的场景下用户终端定位的成本高的问题,实现了基于单基站的用户终端定位。

Description

基于单基站的定位方法、基站、电子装置和存储介质
相关申请
本申请要求2021年2月2日申请的,申请号为202110139591.0,发明名称为“基于单基站的定位方法、基站、电子装置和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及定位技术领域,特别是涉及基于单基站的定位方法、基站、电子装置和存储介质。
背景技术
定位是指在特定的参考坐标系中通过某种方法或手段获得待定位物体位置的过程。在相关技术中,基于用户终端的定位主要是通过三角定位来实现,其基本思想是用户终端接收到来自三个及以上位置已知基站的信号,然后根据其中所包含的与用户终端位置相关的信息获得二者的位置关系,最后根据相关定位算法对用户终端进行定位。由于相关技术中的在例如安检口、园区出入口等具有狭长通道的场景下,用户终端定位需要部署多个基站,因此会导致定位的成本较高。
目前针对相关技术中在具有狭长通道的场景下用户终端定位的成本高的问题,尚未提出有效的解决方案。
发明内容
本申请实施例提供了一种基于单基站的定位方法、基站、电子装置和存储介质,以至少解决相关技术中在具有狭长通道的场景下用户终端定位的成本高的问题。
第一方面,本申请实施例提供了一种基于单基站的定位方法,应用于沿单一方向延伸的通道移动的用户终端的定位,所述方法包括:
在所述通道的一端设置基站,记录所述基站的位置信息,并配置所述基站 的覆盖范围在所述单一方向上能够覆盖到所述通道的另一端;
统计历史时段内所述基站与所述覆盖范围内的用户终端之间的传输信号的信号功率,并根据所述传输信号的信号功率,确定在当前时刻所述基站与所述用户终端之间的直线距离;
根据所述直线距离和所述基站的位置信息,在所述通道的路径上定位所述用户终端在当前时刻的位置。
在其中一些实施例中,所述传输信号包括上行信号和/或下行信号。
在其中一些实施例中,根据所述传输信号的信号功率,确定当前时刻所述基站与所述用户终端之间的直线距离包括:
对所述历史时段内所述传输信号的信号功率进行线性拟合,得到信号拟合线;
根据所述信号拟合线,确定在当前时刻所述基站与所述用户终端之间的传输信号的信号功率值;
根据所述信号功率值和预设路径衰减模型,确定在当前时刻所述基站与所述用户终端之间的直线距离,其中,所述预设路径衰减模型用于表征信号功率值和所述直线距离之间的对应关系。
在其中一些实施例中,在所述传输信号包括多个信号的情况下,根据所述传输信号的信号功率,确定当前时刻所述基站与所述用户终端之间的直线距离包括:
对所述历史时段内每个所述传输信号的信号功率分别进行线性拟合,得到多条信号拟合线;
根据多条所述信号拟合线,确定在当前时刻所述基站与所述用户终端之间的传输信号的平均信号功率值;
根据所述平均信号功率值和预设衰减模型,确定在当前时刻所述基站与所述用户终端之间的直线距离,其中,所述预设路径衰减模型用于表征信号功率值和所述直线距离之间的对应关系。
在其中一些实施例中,在对所述历史时段内传输信号的信号功率进行线性拟合之前,所述方法还包括:
去除所述传输信号的信号功率中的离群值。
在其中一些实施例中,所述方法还包括:
根据所述信号拟合线的斜率,确定所述用户终端的移动速度。
在其中一些实施例中,所述传输信号的信号功率包括RSRP。
在其中一些实施例中,统计历史时段内所述基站与所述覆盖范围内的用户终端之间的传输信号的信号功率包括:
统计历史时段内所述用户终端接入所述基站后上报的下行信号的RSRP值,其中,所述传输信号的信号功率包括所述下行信号的RSRP值;和/或
统计历史时段内所述用户终端接入所述基站时所述基站的上行天线接收到的所述用户终端的上行信号的RSRP值,其中,所述传输信号的信号功率包括所述上行信号的RSRP值。
在其中一些实施例中,在历史时段内所述用户终端多次接入所述基站。
在其中一些实施例中,所述基站还被配置为按照设定周期更新所述基站的TAC值,以使得所述用户终端按照所述设定周期多次接入所述基站。
在其中一些实施例中,在所述用户终端位于所述基站和其他基站的覆盖范围内的情况下,所述用户终端接入所述基站的优先级高于接入其他基站的优先级。
在其中一些实施例中,所述覆盖范围为以所述基站为扇心的扇区,所述扇区的夹角范围为5°至15°。
第二方面,本申请实施例提供了一种基站,所述基站包括信号处理单元和天线单元;所述天线单元,用于形成传输信号的覆盖范围;所述信号处理单元,用于执行如上述第一方面所述的基于单基站的定位方法。
在其中一些实施例中,所述基站包括移动式基站。
在其中一些实施例中,所述天线单元包括一个或多个上行天线单元,以及一个或多个下行天线单元。
在其中一些实施例中,所述基站为LTE基站或5G基站。
在其中一些实施例中,所述基站还包括定位单元,用于定位所述基站的位置信息。
在其中一些实施例中,所述基站还包括输入单元,用于接收输入数据,其中,所述输入数据包括:更新所述基站的TAC值的设定周期,和/或,所述基站的位置信息。
第三方面,本申请实施例提供了一种电子装置,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第一方面所述的基于单基站的定位方法。
第四方面,本申请实施例提供了一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述第一方面所述的基于单基站的定位方法。
相比于相关技术,本申请实施例提供的基于单基站的定位方法、基站、电子装置和存储介质,应用于沿单一方向延伸的通道移动的用户终端的定位,通过在该通道的一端设置基站,记录该基站的位置信息,并配置该基站的覆盖范围在该单一方向上能够覆盖到该通道的另一端;统计历史时段内该基站与该覆盖范围内的用户终端之间的传输信号的信号功率,并根据该传输信号的信号功率,确定在当前时刻该基站与该用户终端之间的直线距离;根据该直线距离和该基站的位置信息,在该通道的路径上定位该用户终端在当前时刻的位置,解决了在具有狭长通道的场景下用户终端定位的成本高的问题,实现了基于单基站的用户终端定位。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例的一种基于单基站的定位方法的流程图;
图2是根据本申请实施例的一种通道的示意图;
图3是根据本申请实施例的另一种基于单基站的定位方法的流程图;
图4是根据本申请实施例的一种信号拟合曲线的示意图;
图5是根据本申请实施例的一种定位方法中信令交互的示意图;
图6是根据本申请实施例的一种基站的结构框图;
图7是根据本申请实施例的一种计算机设备内部的结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行描述和说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。基于本申请提供的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,还可以理解的是,虽然这种开发过程中所作出的努力可能是复杂并且冗长的,然而对于与本申请公开的内容相关的本领域的普通技术人员而言,在本申请揭露的技术内容的基础上进行的一些设计,制造或者生产等变更只是常规的技术手段,不应当理解为本申请公开的内容不充分。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域普通技术人员显式地和隐式地理解的是,本申请所描述的实施例在不冲突的情况下,可以与其它实施例相结合。
除非另作定义,本申请所涉及的技术术语或者科学术语应当为本申请所属技术领域内具有一般技能的人士所理解的通常意义。本申请所涉及的“一”、“一个”、“一种”、“该”等类似词语并不表示数量限制,可表示单数或复数。本申请所涉及的术语“包括”、“包含”、“具有”以及它们任何变形,意图在于覆盖不排他的包含;例如包含了一系列步骤或模块(单元)的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可以还包括没有列出的步骤或单元,或可以还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。本申请所涉及的“连接”、“相连”、“耦接”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电气的连接,不管是直接的还是间接的。本申请所涉及的“多个”是指大于或者等于两个。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本申请所涉及的术语“第一”、“第 二”、“第三”等仅仅是区别类似的对象,不代表针对对象的特定排序。
在本实施例中,提供了一种基于单基站的定位方法,该定位方法应用于沿单一方向延伸的通道移动的用户终端的定位,图1是根据本申请实施例的一种基于单基站的定位方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,在通道的一端设置基站,记录该基站的位置信息,并配置该基站的覆盖范围在该单一方向上能够覆盖到该通道的另一端。
其中,上述用户终端始终沿通道移动。需要说明的是,该用户终端可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备。该基站可以由现场工作人员结合实际情况预先进行部署,并且确定该单基站的具体位置,从而获取到该单基站的位置信息。需要说明的是,该单基站可以为LTE基站。该LTE基站相比于公网基站有以下优势:更强的参考信号接收功率(Reference Signal Receiving Power,简称为RSRP)、更好的参考信号接收质量(Reference Signal Receiving Quality,简称为RSRQ)、更好的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,简称为SINR),以及更高的切换优先级。因此,选取LTE基站为该单基站,有利于提高用户终端定位的效率和准确性。
具体地,图2是根据本申请实施例的一种通道的示意图,如图2所示,该通道为预先选取的通过基站的覆盖范围的一条路径;该预设路径上设置有用于识别用户身份的闸门,且设置有该闸门的这一段通道在该基站的覆盖范围内。其中,该基站的天线朝向沿该通道设置有该闸门的一端,该天线的覆盖范围为以该基站为扇心的扇区,该扇区的夹角范围为5°至15°。需要说明的是,该基站可以设置为移动式基站,例如,该移动式基站可以设置在小车等可移动设备上,工作人员通过移动该可移动设备进而控制该移动式基站移动,只要该移动式基站的天线覆盖范围能够覆盖设置有闸门的这段通道。
步骤S104,统计历史时段内该基站与该覆盖范围内的用户终端之间的传输信号的信号功率,并根据该传输信号的信号功率,确定在当前时刻该基站与该用户终端之间的直线距离。
其中,上述历史时段为定位用户终端过程中历经的时间段。具体地,利用 物理随机接入信道(Physical Random Access Channel,简称为PRACH)机制,该基站向无线环境中发射射频信号,当该用户终端在该通道上移动并进入到该覆盖范围内时,该基站将与该用户终端发生实时信令交互。
用户终端周期性的随机接入行为,通过上行PRACH达到与基站之间的上行接入和同步,使用PRACH信道上的随机接入前导码(Preamble码)接入,基站覆盖范围内的Preamble码为64个。Preamble码是由一个长度为839的ZC序列循环移位产生,其中,根据基站的配置也可以设置ZC序列长度为139。ZC序列具有理想的自相关特性,以及在此自相关特性下的最佳互相关特性。基站通过PRACH配置索引(PRACH-ConfigIndex)来配置PRACH信道的格式和在时域的位置,通过PRACH频域偏移(PRACH-freqOffset)来配置PRACH信道的频域位置,以及通过PRACH零相关配置(PRACH_zero_correlation)来配置ZC循环移位的值。因此,在上述无线环境下该用户终端可以主动发送切换或重选,并在历史时段内与该单基站进行持续信令交互。
需要说明的是,基站还被配置为按照设定周期更新所述基站的TAC值,以使得所述用户终端按照该设定周期多次接入该基站;其中,为了提高用户终端接入基站的频率,可以将基站的TAC更新周期设置为1分钟或者更短。
通过上述步骤将处于覆盖范围内的用户终端接入基站进行信令交互,并统计历史时段内的该基站和该用户终端之间的交互的传输信号的信号功率。其中,在该用户终端位于该基站和其他基站的覆盖范围内的情况下,该用户终端接入该基站的优先级高于接入其他基站的优先级,以确保该用户终端可以及时接入该基站并进行针对该用户终端的定位。然后可以基于该信号功率在传输过程中的损耗计算出当前时刻该基站和该用户终端之间的直线距离。
步骤S106,根据该直线距离和该基站的位置信息,在该通道的路径上定位该用户终端在当前时刻的位置。
其中,该基站的位置信息可以包括该基站的经纬度等信息。由于在安检口、园区出入口等具有狭长通道的场景中,一段时间内用户终端到基站的一系列直线距离之间的偏差角度在该基站天线的方位角内,因此将上述步骤S104中得到的直线距离与该单基站的位置信息相结合就可以获取到该用户终端的在该 预设路径上的定位结果。
通过上述步骤S102至步骤S106,通过记录设置在通道一端的基站的位置信息,根据历史时段内基站与用户终端之间的传输信号的信号功率获取该基站和该用户终端之间的直线距离,并根据该直线距离和该基站的位置信息定位当前时刻该用户终端在通道的路径上的位置,基于单基站实现了应用于在单一方向延伸的通道上移动的用户终端的定位,避免了多基站定位导致的高成本现象,从而解决了在具有狭长通道的场景下用户终端定位的成本高的问题。
在其中一些实施例中,提供了一种基于单基站的定位方法,图3是根据本申请实施例的另一种基于单基站的定位方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,统计历史时段内该基站与该覆盖范围内的用户终端之间的传输信号的信号功率,并对该历史时段内该传输信号的信号功率进行线性拟合,得到信号拟合线。
其中,用户终端每一次接入基站时,都会上报传输信号,由于该传输信号的信号功率容易受环境影响而突变,例如人或物的遮挡,以及变化用户终端握持方式、佩戴方式等导致的信号功率的突变。为了消除上述突变,可以针对在历史时段内的每一次上报的一组信号功率值进行线性拟合,得到信号拟合线;可以理解的是,该信号拟合线可以为直线或曲线。其中,该历史时段也可以预先进行设置,例如可以设置为40s。
步骤S304,根据该信号拟合线,确定在当前时刻该基站与该用户终端之间的传输信号的信号功率值。
其中,将在历史时段内的各点的信号功率值,依次与通过上述步骤S302获取的信号拟合线进行比较,若某点信号功率值距离该信号拟合线过远,说明该点信号功率值发生了突变,则剔除该点信号功率值;最后将剔除后剩余的信号功率值作为该传输信号的正常的信号功率值。
步骤S306,根据该信号功率值和预设路径衰减模型,确定在当前时刻该基站与该用户终端之间的直线距离,其中,该预设路径衰减模型用于表征信号功率值和该直线距离之间的对应关系。
该预设路径衰减模型所应用的公式如公式1所示:
Lr=20lgD+20lgF+32.4          公式1
其中,Lr表示信号功率值的路径损耗;F表示当前频率,可以为基站的上行信号频率,也可以为基站的下行信号频率,视实际基站部署情况决定;D表示用户终端与该基站之间的直线距离。因此,通过上述公式1所示的预设路径衰减模型可以计算得到该直线距离。
通过上述步骤S302至步骤S308,基于单基站单天线进行用户终端定位;并且,利用在一定时间范围内接收上行信号的重复采集定位技术,以及拟合曲线以筛选数据的干扰数据过滤技术,得到准确度高的用户终端定位结果,从而实现了基于单基站的精确定位。
在其中一些实施例中,在该传输信号包括多个信号的情况下,该基于单基站的定位方法还包括如下步骤:
步骤S402,对该历史时段内每个该传输信号的信号功率分别进行线性拟合,得到多条信号拟合线;则这种情况下,在实际部署中,该基站不同位置处部署了多个天线,并通过多个天线分别接收或者发射多个传输信号。
其中,以上述多个传输信号包括下行信号、第一上行信号和第二上行信号为例,图4是根据本申请实施例的一种信号拟合曲线的示意图,如图4所示,分别示出了下行信号的信号功率-时间曲线、第一上行信号的信号功率-时间曲线,以及第二上行信号的信号功率-时间曲线,并对上述三种信号功率-时间曲线分别进行了线性拟合,从而得到图4中各虚线表示的相对应的下行信号的信号拟合线、第一上行信号的信号拟合线、以及第二上行信号的信号拟合线,分别为图4所示的下行拟合线、第一上行拟合线和第二上行拟合线。
步骤S404,根据多条该信号拟合线,确定在当前时刻该基站与该用户终端之间的传输信号的平均信号功率值。
其中,基于上述多条信号拟合线,确定当前时刻下相应多组正常的信号功率值,并对上述多组信号功率值取平均,得到平均信号功率值。
步骤S406,根据该平均信号功率值和预设衰减模型,确定在当前时刻该基站与该用户终端之间的直线距离,其中,该预设路径衰减模型用于表征信号 功率值和该直线距离之间的对应关系。
其中,将上述步骤S404得到的平均信号功率值代入上述公式1所示的预设路径衰减模型,即可得到基站与用户终端之间的直线距离。
需要说明的是,如图4所示,在对该历史时段内传输信号的信号功率进行线性拟合之前,还包括去除该传输信号的信号功率中的离群值。本申请中离群值是指在信号功率值中有一个或几个数值与其他数值相比差异较大,则可以基于标准偏差等方法首先将信号功率中的离群值计算得到并去除;利用去除离群值之后的信号功率进行线性拟合,可以使得拟合出来的信号拟合线更加准确,从而有效提高单基站定位的准确性。
并且还包括:根据该信号拟合线的斜率,确定该用户终端的移动速度。其中,参阅图4,各信号拟合线趋势为随时间越长信号功率值越大,说明此时该用户终端在通道上向基站靠近移动;各信号拟合线的斜率越大,说明各信号拟合线变化趋势越大,即该用户终端的移动速度越快。相反,若信号拟合线的斜率越小,则该用户终端的移动速度越慢。
通过上述步骤S402至步骤S406,基站部署了多个天线,对应传输多个传输信号,通过对所述历史时段内每个所述传输信号的信号功率分别进行线性拟合得到多条信号拟合线,根据多条所述信号拟合线确定平均信号功率值,根据所述平均信号功率值和预设衰减模型,从而实现了基于多个传输信号消除共同误差,进一步提高了单基站中定位用户终端的精确度。需要说明的是,在基站盖区域内,由于本申请实施例采用基站的天线方位角足够小,例如5°或10°,主要的定位误差就在以基站为扇心的一个扇面覆盖区域上,由于在这个扇面覆盖区域的圆弧边上的用户终端到基站的距离是一样的,因此通过两个以上的多个天线可以同时检测来消除定位误差,以提高用户终端定位的精确度。
在其中一些实施例中,上述传输信号的信号功率包括RSRP,上述定位方法中统计历史时段内该基站与该覆盖范围内的用户终端之间的传输信号的信号功率的流程还包括如下步骤:
统计历史时段内该用户终端接入该基站后上报的下行信号的RSRP值,其中,该传输信号的信号功率包括该下行信号的RSRP值;和/或,统计历史时段 内该用户终端接入该基站时该基站的上行天线接收到的该用户终端的上行信号的RSRP值,其中,该传输信号的信号功率包括该上行信号的RSRP值。
具体地,上述基站和用户终端之间的传输信号包括下行信号和/或上行信号。若该传输信号仅包括下行信号,即在历史时段内该用户终端接入该基站后,该基站向该用户终端发射该下行信号,其中,在历史时段内该用户终端可以多次接入该基站。然后统计该下行信号的一组RSRP值,以便基于该组RSRP值计算得到该用户终端和该基站之间的直线距离;其中,基于该下行信号的RSRP值,利用预设路径损耗模型的计算公式如公式2所示:
RSRP1=P0+G0-32.4-20lgD1-20lgF1            公式2
公式2中,RSRP1表示下行信号;P0表示基站发射功率,P0的单位可转化为dBm;F1表示下行信号频率,单位是MHz;G0表示基站天线增益;D1表示计算得到的该基站和该用户终端之间的第一距离路径。则根据该下行信号的一组RSRP值数据,用上述公式2所示的预设路径衰减模型可以计算得到该用户终端和该基站之间的直线距离D1。
若该传输信号仅包括上行信号,即在历史时段内该用户终端接入该基站后,该基站接收该用户终端上报的该上行信号,并统计该上行信号的一组RSRP值,以便基于该组RSRP值计算得到该用户终端和该基站之间的直线距离;其中,基于该上行信号的RSRP值,利用预设路径损耗模型的计算公式如公式3所示:
RSRP2=P1-32.4-20lgD2-20lgF2            公式3
公式3中,RSRP2表示上行信号;P1表示用户终端发射功率,P1的单位可转化为dBm;F2表示上行信号频率,单位是MHz;D2表示计算得到的该基站和该用户终端之间的第二距离路径。则根据该上行信号的一组数据,利用该路径衰减模型可以计算得到该用户终端和该基站之间的直线距离D2。
若该传输信号包括下行信号和上行信号,即在历史时段内该用户终端接入该基站后,该基站向该用户终端发射该下行信号,并接收该用户终端上报的该上行信号,以分别统计该下行信号的一组RSRP值,以及该上行信号的一组RSRP值。其中,通过上述公式2和上述公式3,可以分别基于下行信号的RSRP 值得到直线距离D1,基于上行信号的RSRP值得到直线距离D2,通过将上述直线距离D1以及直线距离D2取平均,可以得到更精确的该用户终端和该基站之间的最终的直线距离。
在其中一些实施例中,该基于单基站的定位方法还包括如下步骤:在有N个该用户终端位于基站的覆盖范围内的情况下,通过单基站的上行天线实时接收N个该用户终端的上行信号。需要说明的是,各上行信号是单基站在一定时间范围内接收到的,相对应的各用户终端持续发送的信号。
需要说明的是,当用户终端在接入基站传输信号覆盖范围时,会在这个覆盖范围内规定的64个Preamble码中按一定规则随机选择一个码,在规定的帧和子帧时刻随机接入。LTE基站会把采集到的国际移动用户识别码(International Mobile Subscriber Identity,简称为IMSI)对应的Preamble码和Preamble码出现的帧号和子帧号上报到服务器处理。服务器再结合用户终端接入时上报给单基站的RSRP、采集时间,利用差分技术和上述公式1所示的预设路径衰减模型,根据该N个上行信号、该下行信号、以及该单基站的基站发射功率进行综合计算,可以匹配区分同时间段内采集到的多个IMSI的距离和位置信息。
通过上述实施例,通过获取多个用户终端对应的上行信号,进而计算得到和各用户终端相匹配的各定位结果,且各用户终端之间的距离无限制,即距离可以很短,例如在5m范围内,仍然能够检测到各定位结果,从而实现了同时对多个用户终端进行精确定位。
下面结合实际应用场景对本申请的实施例进行详细说明,在该应用场景中单基站选取为LTE基站,用户终端选取为手机。图4是根据本申请实施例的一种定位方法中信令交互的示意图,如图4所示,LTE基站发射下行功率P0的下行信号,并通过天线将LTE基站下行信号发送给手机;手机接收到该LTE基站下行信号,并通过天线发送手机的上行信号;其中,第一上行天线接收到手机上行发射功率P1的第一上行信号,LTE基站通过该第一上行天线接收该第一上行信号,第二上行天线接收到手机上行发射功率P1的第二上行信号,LTE基站通过该第二上行天线接收该第二上行信号,进而实现该LTE基站和该 手机之间的信令交互。利用预设路径损耗模型,根据LTE基站部署的位置信息,以及上述信令交互,从而能够得到手机定位。
应该理解的是,虽然图1和图3的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1和图3中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
本实施例还提供了一种基站,图6是根据本申请实施例的一种基站的结构框图,如图6所示,该基站包括信号处理单元62和天线单元64;该天线单元64,用于形成传输信号的覆盖范围;该信号处理单元62,用于执行上述实施例中的任意一种基于单基站的定位方法。
通过上述实施例,基站中信号处理单元62通过处理位于天线单元64形成的传输信号的覆盖范围的用户终端,与该基站之间的传输信号的信号功率获取该基站和该用户终端之间的直线距离,并根据该直线距离和该基站的位置信息定位当前时刻该用户终端在通道的路径上的位置,基于单基站实现了应用于在单一方向延伸的通道上移动的用户终端的定位,避免了多基站定位导致的高成本现象,从而解决了在具有狭长通道的场景下用户终端定位的成本高的问题。
在其中一些实施例中,该基站包括移动式基站。其中,该移动式基站可以通过设置在小车等可移动设备上任意移动,只要该移动式基站的天线覆盖范围能够覆盖上述通道,从而使得本申请中的基站部署可以更加灵活简便。
在其中一些实施例中,该天线单元64包括一个或多个上行天线单元,以及一个或多个下行天线单元。
在其中一些实施例中,该基站为LTE基站或5G基站。
在其中一些实施例中,该基站还包括定位单元,用于定位该基站的位置信息。
在其中一些实施例中,该基站还包括输入单元,用于接收输入数据,其中,该输入数据包括:更新该基站的TAC值的设定周期,和/或,该基站的位置信息。需要补充说明的是,该基站的TAC值可以预先设置更新为设定周期1分钟或者更短的时间,避免由于TAC周期过长造成用户终端无法向基站上报信号,使得基站持续接收到的用户终端的传输信号可以更为密集,因此基于传输信号实现的单基站定位能够更加精确。并且,该基站的位置信息也可以在部署基站后预先输入设置。
本实施例还提供了一种计算机设备,该计算机设备可以是服务器,图7是根据本申请实施例的一种计算机设备内部的结构图,如图7所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储基站的位置信息。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现上述基于单基站的定位方法。
本领域技术人员可以理解,图7中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
本实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S1,在该通道的一端设置基站,记录该基站的位置信息,并配置该基站的 覆盖范围在该单一方向上能够覆盖到该通道的另一端。
S2,统计历史时段内该基站与该覆盖范围内的用户终端之间的传输信号的信号功率,并根据该传输信号的信号功率,确定在当前时刻该基站与该用户终端之间的直线距离。
S3,根据该直线距离和该基站的位置信息,在该通道的路径上定位该用户终端在当前时刻的位置。
需要说明的是,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
另外,结合上述实施例中的基于单基站的定位方法,本申请实施例可提供一种存储介质来实现。该存储介质上存储有计算机程序;该计算机程序被处理器执行时实现上述实施例中的任意一种基于单基站的定位方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
本领域的技术人员应该明白,以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种基于单基站的定位方法,应用于沿单一方向延伸的通道移动的用户终端的定位,其特征在于,所述方法包括:
    在所述通道的一端设置基站,记录所述基站的位置信息,并配置所述基站的覆盖范围在所述单一方向上能够覆盖到所述通道的另一端;
    统计历史时段内所述基站与所述覆盖范围内的用户终端之间的传输信号的信号功率,并根据所述传输信号的信号功率,确定在当前时刻所述基站与所述用户终端之间的直线距离;
    根据所述直线距离和所述基站的位置信息,在所述通道的路径上定位所述用户终端在当前时刻的位置。
  2. 根据权利要求1所述的方法,其中,所述传输信号包括上行信号和/或下行信号。
  3. 根据权利要求1所述的方法,其中,根据所述传输信号的信号功率,确定当前时刻所述基站与所述用户终端之间的直线距离包括:
    对所述历史时段内所述传输信号的信号功率进行线性拟合,得到信号拟合线;
    根据所述信号拟合线,确定在当前时刻所述基站与所述用户终端之间的传输信号的信号功率值;
    根据所述信号功率值和预设路径衰减模型,确定在当前时刻所述基站与所述用户终端之间的直线距离,其中,所述预设路径衰减模型用于表征信号功率值和所述直线距离之间的对应关系。
  4. 根据权利要求1所述的方法,其中,在所述传输信号包括多个信号的情况下,根据所述传输信号的信号功率,确定当前时刻所述基站与所述用户终端之间的直线距离包括:
    对所述历史时段内每个所述传输信号的信号功率分别进行线性拟合,得到 多条信号拟合线;
    根据多条所述信号拟合线,确定在当前时刻所述基站与所述用户终端之间的传输信号的平均信号功率值;
    根据所述平均信号功率值和预设衰减模型,确定在当前时刻所述基站与所述用户终端之间的直线距离,其中,所述预设路径衰减模型用于表征信号功率值和所述直线距离之间的对应关系。
  5. 根据权利要求4所述的方法,其中,在对所述历史时段内传输信号的信号功率进行线性拟合之前,所述方法还包括:
    去除所述传输信号的信号功率中的离群值。
  6. 根据权利要求4所述的方法,其中,所述方法还包括:
    根据所述信号拟合线的斜率,确定所述用户终端的移动速度。
  7. 根据权利要求1所述的方法,其中,所述传输信号的信号功率包括RSRP。
  8. 根据权利要求1所述的方法,其中,统计历史时段内所述基站与所述覆盖范围内的用户终端之间的传输信号的信号功率包括:
    统计历史时段内所述用户终端接入所述基站后上报的下行信号的RSRP值,其中,所述传输信号的信号功率包括所述下行信号的RSRP值;和/或,
    统计历史时段内所述用户终端接入所述基站时所述基站的上行天线接收到的所述用户终端的上行信号的RSRP值,其中,所述传输信号的信号功率包括所述上行信号的RSRP值。
  9. 根据权利要求8所述的方法,其中,在历史时段内所述用户终端多次接入所述基站。
  10. 根据权利要求8所述的方法,其中,所述基站还被配置为按照设定周期更新所述基站的TAC值,以使得所述用户终端按照所述设定周期多次接入所述基站。
  11. 根据权利要求8所述的方法,其中,在所述用户终端位于所述基站和其他基站的覆盖范围内的情况下,所述用户终端接入所述基站的优先级高于接入其他基站的优先级。
  12. 根据权利要求1至11中任一项所述的方法,其中,所述覆盖范围为以所述基站为扇心的扇区,所述扇区的夹角范围为5°至15°。
  13. 一种基站,其特征在于,所述基站包括信号处理单元和天线单元;所述天线单元,用于形成传输信号的覆盖范围;所述信号处理单元,用于执行如权利要求1至12中任一项所述的基于单基站的定位方法。
  14. 根据权利要求13所述的基站,其中,所述基站包括移动式基站。
  15. 根据权利要求13所述的基站,其中,所述天线单元包括一个或多个上行天线单元,以及一个或多个下行天线单元。
  16. 根据权利要求13所述的基站,其中,所述基站为LTE基站或5G基站。
  17. 根据权利要求13所述的基站,其中,所述基站还包括定位单元,用于定位所述基站的位置信息。
  18. 根据权利要求13所述的基站,其中,所述基站还包括输入单元,用于接收输入数据,其中,所述输入数据包括:更新所述基站的TAC值的设定周期,和/或,所述基站的位置信息。
  19. 一种电子装置,包括存储器和处理器,其特征在于,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行权利要求1至12中任一项所述的基于单基站的定位方法。
  20. 一种存储介质,其特征在于,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行权利要求1至12中任一项所述的基于单基站的定位方法。
PCT/CN2021/091261 2021-02-02 2021-04-30 基于单基站的定位方法、基站、电子装置和存储介质 WO2022166009A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110139591.0 2021-02-02
CN202110139591.0A CN112462354B (zh) 2021-02-02 2021-02-02 基于单基站的定位方法、基站、电子装置和存储介质

Publications (1)

Publication Number Publication Date
WO2022166009A1 true WO2022166009A1 (zh) 2022-08-11

Family

ID=74802408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091261 WO2022166009A1 (zh) 2021-02-02 2021-04-30 基于单基站的定位方法、基站、电子装置和存储介质

Country Status (2)

Country Link
CN (1) CN112462354B (zh)
WO (1) WO2022166009A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116866825A (zh) * 2023-01-10 2023-10-10 广州世炬网络科技有限公司 基于单基站和内置传感单元的定位方法及装置
CN118474744A (zh) * 2024-07-12 2024-08-09 前海联大(深圳)技术有限公司 一种物联网卡核验方法、装置和系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462354B (zh) * 2021-02-02 2021-04-23 浙江三维通信科技有限公司 基于单基站的定位方法、基站、电子装置和存储介质
CN113225677B (zh) * 2021-06-04 2022-11-22 中国联合网络通信集团有限公司 直放站干扰源的定位方法和装置
CN113747350A (zh) * 2021-08-18 2021-12-03 浙江三维通信科技有限公司 位置信息的获取方法、装置、存储介质和电子装置
CN116437289A (zh) * 2021-12-29 2023-07-14 哈尔滨商业大学 一种含探针信号的快递驿站信息数据收集方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062108A2 (en) * 2008-11-26 2010-06-03 Samsung Electronics Co., Ltd. Method and apparatus for positioning mobile terminal's location
CN102036374A (zh) * 2010-12-07 2011-04-27 百度在线网络技术(北京)有限公司 单基站移动终端定位方法及装置
US20130244689A1 (en) * 2012-03-13 2013-09-19 Empire Technology Development Llc Determining the position of a mobile device in an indoor environment
CN104144493A (zh) * 2013-05-10 2014-11-12 中国电信股份有限公司 定位方法、定位系统以及基站定位平台
CN105939298A (zh) * 2015-12-30 2016-09-14 北京锐安科技有限公司 一种测量移动终端距离的方法及装置
CN107367711A (zh) * 2017-02-28 2017-11-21 淮阴师范学院 一种井下人员定位算法的仿真实验方法
CN109387809A (zh) * 2017-08-02 2019-02-26 中国移动通信有限公司研究院 一种对定位终端进行定位的方法和定位终端
CN110636516A (zh) * 2019-09-03 2019-12-31 中国联合网络通信集团有限公司 信号传播模型的确定方法及装置
CN111707987A (zh) * 2020-06-23 2020-09-25 杭州中芯微电子有限公司 一种基于单基站的定位系统及其方法
CN112462354A (zh) * 2021-02-02 2021-03-09 浙江三维通信科技有限公司 基于单基站的定位方法、基站、电子装置和存储介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062108A2 (en) * 2008-11-26 2010-06-03 Samsung Electronics Co., Ltd. Method and apparatus for positioning mobile terminal's location
CN102036374A (zh) * 2010-12-07 2011-04-27 百度在线网络技术(北京)有限公司 单基站移动终端定位方法及装置
US20130244689A1 (en) * 2012-03-13 2013-09-19 Empire Technology Development Llc Determining the position of a mobile device in an indoor environment
CN104144493A (zh) * 2013-05-10 2014-11-12 中国电信股份有限公司 定位方法、定位系统以及基站定位平台
CN105939298A (zh) * 2015-12-30 2016-09-14 北京锐安科技有限公司 一种测量移动终端距离的方法及装置
CN107367711A (zh) * 2017-02-28 2017-11-21 淮阴师范学院 一种井下人员定位算法的仿真实验方法
CN109387809A (zh) * 2017-08-02 2019-02-26 中国移动通信有限公司研究院 一种对定位终端进行定位的方法和定位终端
CN110636516A (zh) * 2019-09-03 2019-12-31 中国联合网络通信集团有限公司 信号传播模型的确定方法及装置
CN111707987A (zh) * 2020-06-23 2020-09-25 杭州中芯微电子有限公司 一种基于单基站的定位系统及其方法
CN112462354A (zh) * 2021-02-02 2021-03-09 浙江三维通信科技有限公司 基于单基站的定位方法、基站、电子装置和存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116866825A (zh) * 2023-01-10 2023-10-10 广州世炬网络科技有限公司 基于单基站和内置传感单元的定位方法及装置
CN118474744A (zh) * 2024-07-12 2024-08-09 前海联大(深圳)技术有限公司 一种物联网卡核验方法、装置和系统

Also Published As

Publication number Publication date
CN112462354B (zh) 2021-04-23
CN112462354A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
WO2022166009A1 (zh) 基于单基站的定位方法、基站、电子装置和存储介质
CN111586831B (zh) 信号传输方法与装置
Pecoraro et al. CSI-based fingerprinting for indoor localization using LTE signals
US10305561B2 (en) Communication method and apparatus using beamforming
JP6949943B2 (ja) ビーム測定方法、端末及びネットワーク装置
US20220022072A1 (en) Ssb-based measurement method and apparatus
JP7300997B2 (ja) 物理ブロードキャストチャネルペイロード中で同期信号ブロックインデックスを通信するための技法
CN114902588B (zh) 用于交叉链路干扰测量的资源配置
WO2021017728A1 (zh) 资源选择方法及终端设备
JP7382487B2 (ja) オンデマンド位置決め関連アプリケーションデータのための方法及びデバイス
JP2024523431A (ja) 通信検知方法、装置及びネットワーク機器
WO2017113926A1 (zh) 一种判断终端所处环境的方法、装置和设备
US10333635B2 (en) Performing and reporting relative radio measurements
JP2002509240A (ja) Cdma移動通信システムにおいて、移動ターミナルの位置を決定するための方法およびシステム
EP4021065A1 (en) Measurement reporting method and apparatus
US20230006795A1 (en) Method of fast beam refinement and tracking for high mobility wireless communication device
CN115039350A (zh) 一种数据传输方法及装置
Turkka et al. Performance evaluation of LTE radio fingerprinting using field measurements
Denis et al. Cooperative and heterogeneous indoor localization experiments
US20220039051A1 (en) Method and system for tracking position of one or more wi-fi devices
EP4429315A1 (en) Method for transmitting information, and communication apparatus
CN117354930A (zh) 波束管理装置
Pecoraro et al. LTE signal fingerprinting device-free passive localization robust to environment changes
CN100512534C (zh) 一种小区标识定位方法
CN117099426A (zh) 用于指示无线通信系统中的定位信息的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924017

Country of ref document: EP

Kind code of ref document: A1