WO2022166002A1 - 一种抗射频干扰的计量模块和旋转计数装置 - Google Patents

一种抗射频干扰的计量模块和旋转计数装置 Download PDF

Info

Publication number
WO2022166002A1
WO2022166002A1 PCT/CN2021/089443 CN2021089443W WO2022166002A1 WO 2022166002 A1 WO2022166002 A1 WO 2022166002A1 CN 2021089443 W CN2021089443 W CN 2021089443W WO 2022166002 A1 WO2022166002 A1 WO 2022166002A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
radio frequency
excitation
metering module
frequency interference
Prior art date
Application number
PCT/CN2021/089443
Other languages
English (en)
French (fr)
Inventor
张军虎
Original Assignee
杭州为峰智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州为峰智能科技有限公司 filed Critical 杭州为峰智能科技有限公司
Priority to DE212021000298.6U priority Critical patent/DE212021000298U1/de
Publication of WO2022166002A1 publication Critical patent/WO2022166002A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • G01F15/061Indicating or recording devices for remote indication
    • G01F15/063Indicating or recording devices for remote indication using electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • G01F15/065Indicating or recording devices with transmission devices, e.g. mechanical
    • G01F15/066Indicating or recording devices with transmission devices, e.g. mechanical involving magnetic transmission devices

Definitions

  • the utility model belongs to the technical field of metering, in particular to a metering module and a rotation counting device against radio frequency interference.
  • the current measurement and detection devices are all trapped in the problem of wireless radio frequency interference, especially the common NB-IoT, LoRa and GPRS interference often lead to inaccurate counting, more or less counting, such as the invention with the application number CN200680007522.8
  • the patent, titled Inductive Angular Sensor discloses an inductive angular sensor comprising: a partially metallized disc that rotates around its axis of rotation; and a stator comprising a primary coil and several secondary coils , the secondary coils are arranged in pairs substantially symmetrically with respect to the axis of rotation so as to form one or more pairs of secondary coils, whereby each pair of said secondary coils is on the one hand connected in series with respect to each other and in anti-phase to each other , while on the other hand is connected to the terminals of a measuring device capable of producing an output signal depending on the voltage at the terminals of said pair, having the advantage of being economical and of low installation conditions, but still having disadvantages, the main disadvantage of which is The disadvantage is that it is
  • Another object of the present invention is to provide a rotation counting device in view of the above problems.
  • An anti-radio frequency interference metering module comprising:
  • Excitation circuit for outputting excitation signal
  • the excitation coil is connected to the output end of the excitation circuit, and generates an electromagnetic field according to the excitation signal
  • inductive filter circuits which generate electromotive force after filtering out the radio frequency interference signal according to the electromagnetic field generated by the excitation coil; the use of the inductive filter circuit can prevent the external radio frequency interference signal from being coupled to the metering module through the air, and avoid the interference caused by the radio frequency signal. measurement error;
  • the single-chip microcomputer is connected with the output end of the signal processing circuit and the input end of the excitation circuit, and performs measurement according to the signal output by the signal processing circuit.
  • each induction filter circuit includes an induction coil and a first filter circuit connected in series with each other, and the filter circuit realizes the filtering of the radio frequency interference signal.
  • each signal processing circuit includes a triode, a resistor and a capacitor, the base of the triode is connected to the first filter circuit, and the collector is connected to the single-chip microcomputer, which not only has a common IO port function, but also The AD port with AD sampling function, the two functions are time-division multiplexed, the emitter is connected to the IO port of the single-chip microcomputer, the two ends of the resistor are respectively connected to the base and the ground of the triode, and the two ends of the capacitor are respectively connected at the collector and ground of the triode.
  • the anti-radio frequency interference metering module also includes a drive circuit with an input end and a first output end, the emitters of the transistors in each signal processing circuit are connected to the first output end of the drive circuit, and the The input end of the driving circuit is connected to the IO port of the single-chip microcomputer, so that the emitter of the triode is connected to the IO port of the single-chip microcomputer through the driving circuit.
  • the driving circuit further has a second output terminal, and the second output terminal is connected to the excitation circuit, so that the excitation circuit is connected to the single-chip microcomputer through the driving circuit.
  • the driving circuit includes a pulse width modulation circuit, a logic gate circuit and a negative voltage circuit
  • the single chip microcomputer is connected to the pulse width modulation circuit
  • the end of the pulse width modulation circuit far away from the single chip is connected to the logic circuit.
  • Gate circuit, one end of the logic gate circuit away from the pulse width modulation circuit has two outputs, one of which is connected to the negative voltage circuit, and the first output end is connected to the negative voltage circuit so that the transistors in each signal processing circuit are connected to the The negative voltage circuit is connected to the second output end so that the excitation circuit is connected to the logic gate circuit.
  • the drive circuit While driving the excitation circuit, the drive circuit turns on the transistors in the signal processing circuit, so that the signal processing circuit can receive the signal from the sampling filter circuit.
  • the drive circuit can adjust the number of drives according to the situation. or multiple drives to prevent the capacitor voltage from being too close to the VCC voltage or 0V, and adjust the residual voltage on the capacitor to an intermediate state to offset the device inconsistency or the impact of high and low temperature on the device and improve the system stability.
  • the single-chip microcomputer is connected to an external interface, and the external interface is used for the single-chip microcomputer to connect to an external terminal.
  • the external interface is connected with one or more second filter circuits, so as to be connected to the external terminal through the one or more second filter circuits.
  • the external interface includes a power interface and a signal interface, and the power interface and the signal interface are respectively connected with a second filter circuit.
  • the setting of the second filter circuit can prevent external radio frequency interference from being introduced into the counting device through the power line or various interface signal lines, thereby affecting the normal measurement.
  • a rotation counting device includes a metering module, a rotor and a stator, the rotor is provided with a metal sheet, the stator is provided with a PCB board, and the PCB board is provided with an excitation circuit, an excitation coil and an induction coil.
  • a first filter circuit is set between the induction coil and the single-chip microcomputer, and a second filter circuit is set on the external interface of the single-chip microcomputer, so that the rotation counting device is free from the interference of radio frequency signals and improves the counting accuracy;
  • the drive circuit can adjust the number of drives under the control of the single-chip microcomputer, which can keep the residual voltage on the capacitor in the middle state, prevent the capacitor voltage from being too close to the VCC voltage or 0V, to offset the device inconsistency or the influence of high and low temperature on the device, and improve the system work stability;
  • the electromotive force signal is processed by the signal processing circuit including the triode. Since the triode has the function of signal amplification, the detection sensitivity can be improved;
  • the current sampling at each transistor is directly realized by AD sampling, and sampling can be realized within 10US of one channel, which has the advantages of fast measurement speed and high efficiency;
  • Fig. 1 is the circuit schematic diagram of the metering module in the first embodiment
  • Fig. 2 is the structural representation of the rotation counting device in the second embodiment
  • FIG. 3 is a circuit schematic diagram of the connection between the metering module and the external terminal in the third embodiment.
  • This embodiment discloses a metering module against radio frequency interference, as shown in FIG. 1 , including:
  • An excitation circuit 1 for outputting an excitation signal
  • the excitation coil L0 is connected to the output end of the excitation circuit 1 and generates an electromagnetic field according to the excitation signal
  • the number is the same as that of the induction filter circuit 2, and is connected to the induction filter circuit 2 in one-to-one correspondence, and a number of signal processing circuits 3 for sampling the electromotive force generated by the induction filter circuit 2;
  • a single-chip microcomputer 4 that is connected to the output end of the signal processing circuit 3 and measures according to the signal output by the signal processing circuit;
  • a drive circuit 5 for driving the metering module is provided.
  • each induction filter circuit 2 includes induction coils L1, L2, L3 and first filter circuits U1, U2, U3 connected in series with each other, and the first filter circuits U1, U2, U3 in each induction filter circuit 2 are far away from the induction One ends of the coils L1 , L2 and L3 are connected to the signal processing circuit 3 corresponding to the inductive filter circuit 2 .
  • three inductive filter circuits 2 are provided.
  • more inductive filter circuits 2 may also be provided.
  • each signal processing circuit 3 includes transistors Q1 , Q2 , Q3 , resistors R1 , R2 , R3 and capacitor C1 , C2, C3, the two ends of the resistors R1, R2, R3 are connected to the base and the ground of the transistors Q1, Q2, Q3 respectively, the two ends of the capacitors C1, C2, C3 are connected to the collectors of the transistors Q1, Q2, Q3 respectively Electrodes and ground terminals; the bases of the transistors Q1, Q2, Q3 in each signal processing circuit 3 are connected to the first filter circuits U1, U2, U3 in the corresponding induction filter circuit 2, and the transistors in the three signal processing circuits 3 The collectors of Q1, Q2, and Q3 are respectively connected to the three AD ports of the single-chip microcomputer 4.
  • This port has both the ordinary IO port function and the AD sampling function.
  • the two functions are time-division multiplexed.
  • the emitters of Q2 and Q3 are connected to each other and connected to the first output terminal of the driving circuit 5 together, and the input terminal of the driving circuit 5 is connected to the IO port of the single-chip microcomputer 4 .
  • the driving circuit 5 also has a second output terminal, and the second output terminal is connected to the excitation circuit 1 .
  • the driving circuit 5 includes a pulse width modulation circuit 6 , a logic gate circuit 7 and a negative voltage circuit 8 , the single chip 4 is connected to the pulse width modulation circuit 6 , and the end of the pulse width modulation circuit 6 away from the single chip 4 is connected to the logic gate circuit 7 , one end of the logic gate circuit 7 away from the pulse width modulation circuit 6 has two outputs, one of which is connected to the negative voltage circuit 8, and the first output end is connected to the negative voltage circuit 8 so that the transistors Q1, Q2, Q3 are connected to the negative voltage
  • the circuit 8 is connected to the second output terminal so that the excitation circuit 1 is connected to the logic gate circuit 7 .
  • the drive circuit turns on the transistor in the signal processing circuit while driving the excitation circuit, so that the signal processing circuit can receive the signal from the sampling filter circuit.
  • the drive circuit can be adjusted according to the situation under the control of the single chip microcomputer. Drive times, perform one or more drives to keep the residual voltages on capacitors C1, C2, C3 tend to be in the middle state, prevent the capacitor voltage from being too close to the VCC voltage or 0V, thereby offsetting the device inconsistency or the impact of high and low temperature on the device, improving stability
  • the negative voltage circuit 8 is used to control the conduction of the transistors Q1, Q2 and Q3 in the signal processing circuit 3; the pulse width control circuit 6 is used to control the working time of the circuit, effectively reduce power consumption and reduce external interference; logic gate
  • the circuit 7 is used for synchronous output control of the excitation circuit 1 and the negative voltage circuit 8 according to the output signal of the single-chip microcomputer 4 .
  • this embodiment also includes a power supply circuit for supplying power to the metering module, and the power supply circuit is a linear regulator LDO.
  • the driving circuit 5 and the single-chip microcomputer 4 in the metering module are both connected to the external power supply through the power supply circuit.
  • a linear voltage regulator LDO is set between the modules, which can resist the large fluctuation of the external power supply, so that the system can obtain a stable voltage. .
  • the excitation circuit 1 When this embodiment is working, the excitation circuit 1 outputs periodic excitation pulses to the excitation coil L0, the excitation coil L0 generates a changing electromagnetic field, the three induction coils L1, L2, and L3 generate corresponding induced currents, and the excitation circuit 1 outputs excitation Simultaneously with the pulse, the negative voltage circuit 8 generates a negative voltage to the transistor Q1, the transistor Q2 and the transistor Q3, so that each transistor is in a conducting state.
  • the capacitors C1, C2, and C3 are respectively electrically connected to the AD port of the single-chip microcomputer 4, and the AD port can not only perform AD sampling, but also output the level as a common IO port. Under normal circumstances, the AD port is at a high level.
  • the capacitor C1, the capacitor C2, and the capacitor C3 begin to charge and charge to the power supply voltage.
  • the AD port is switched to the AD sampling function.
  • the transistors Q1, Q2 and Q3 are turned on, and the capacitor C1 , Capacitor C2, Capacitor C3 start to discharge through the connected transistors Q1, Q2, Q3, and then determine the current size of each transistor through the difference of the discharge current, and then measure the fluid flow rate and direction.
  • This scheme directly realizes current sampling at each transistor through AD sampling, and sampling can be realized within 10US of one channel, which has the advantages of fast measurement speed and high efficiency. Moreover, the fast measurement speed means strong anti-interference ability, thus ensuring the measurement accuracy; in addition, in the circuit of this scheme, each signal processing circuit only needs a discharge capacitor instead of a discharge resistor. When using three coils for sampling, only need The three multiplexed AD sampling ports can simplify the circuit structure, lower the resource requirements of the MCU, and reduce the cost on the premise of ensuring the measurement accuracy.
  • the present embodiment provides a rotation counting device based on the metering module in the first embodiment, including the metering module in the first embodiment, a rotor 11 and a stator 12, and the rotor 11 is provided with a metal sheet 13,
  • the stator 12 is provided with a PCB board 14 , and the excitation circuit 1 , the excitation coil L0 and the induction coils L1 , L2 , and L3 are all on the PCB board 14 .
  • the setting method of each coil on the PCB board can be as follows:
  • the induction coils L1, L2, and L3 are arranged on the same layer of PCB, the excitation coil L0 is arranged on a different layer of PCB from the induction coils L1, L2, and L3, and the induction coils L1, L2, and L3 are located along the axis of the PCB on the same layer. Circumferential arrangement, on the projection of the vertical direction, the induction coils L1, L2, L3 are located in the excitation coil L0;
  • the excitation coil L0 and the induction coils L1, L2, and L3 are arranged on the same layer of PCB, and the induction coils L1, L2, and L3 are arranged along the inner circumferential direction of the excitation coil L0;
  • the induction coils L1, L2 and L3 are arranged on different layers.
  • the metal sheet 13 is fan-shaped, which can be at any angle, usually 60 degrees, 90 degrees, 120 degrees, 180 degrees, and 210 degrees.
  • the induced currents generated by the coupling of the three induction coils L1, L2, L3 and the excitation coil L0 will affect the base currents of the triode Q1, the triode Q2 and the triode Q3. Since the currents generated by the coupling of the three induction coils L1, L2, and L3 with the excitation coil L0 during the rotation are different, the currents of the three induction coils L1, L2, and L3 to discharge the capacitors C1, C2, and C3 are also different. The voltage values of the capacitors are also different.
  • the position of the metal sheet 13 can be determined according to the magnitude of the induced current of the induction coil. When the induction coil induces a large current, it can be inferred that the induction coil is far away from the metal sheet. If the induced current of the induction coil is the smallest, it can be inferred that the induction coil is directly above the metal sheet 13 .
  • this embodiment is similar to Embodiment 1, except that the single-chip microcomputer 4 of this embodiment is connected with an external interface 15, and the external interface 15 is used for connecting the single-chip microcomputer 4 to an external terminal 16.
  • the external interface 15 includes Power interface and signal interface, the power interface is VCC and GND.
  • the power supply interface is connected to the power supply circuit, and the power supply circuit is connected to the devices that require electricity such as single-chip microcomputers.
  • the power interface is directly connected to devices that require electricity, such as single-chip microcomputers.
  • the signal interface includes communication interfaces RXD and TXD, and pulse interfaces PULSE+ and PULSE-.
  • the signal interface is used to connect the single-chip microcomputer 4 to realize the communication between the single-chip computer 4 and the external terminal 16 .
  • a second filter circuit 10 is connected to one end of each interface away from the metering module 17 .
  • the second filter circuit 10 is used to prevent the radio frequency signal from interfering with the rotation counting device.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种抗射频干扰的计量模块和旋转计数装置,其中计量模块包括:激励电路(1),用于输出激励信号;激励线圈(L0),与激励电路(1)输出端相连,根据激励信号产生电磁场;感应滤波电路(2),设有若干个,根据激励线圈(L0)产生的电磁场产生滤除射频干扰信号后的电动势;使用感应滤波电路(2),能够避免外部射频干扰信号通过空中耦合到计量模块上,避免射频信号干扰造成的计量误差;信号处理电路(3),设有若干个,并与感应滤波电路(2)一一对应相连,对感应滤波电路(2)产生的电动势进行采样;单片机(4),与信号处理电路(3)输出端及激励电路(1)的输入端相连,根据信号处理电路(3)输出的信号进行计量。

Description

一种抗射频干扰的计量模块和旋转计数装置 技术领域
本实用新型属于计量技术领域,尤其是涉及一种抗射频干扰的计量模块和旋转计数装置。
背景技术
目前流体计量应用中,最常见的方式是基于流体或气体流动带动机械部件转动来检测液体或气体的流速或流量。其中有一种计量检测装置,其用来统计机械部件转动圈数以将流量转化为数字信号。
技术问题
目前的计量检测装置都受困于无线射频干扰问题,特别是常见的NB-IoT、LoRa和GPRS等干扰经常会导致计数不准确,或多计或少计,如申请号为CN200680007522.8的发明专利,名称为感应式角位传感器,其公开了一种感应式角位传感器,包括:部分金属化的圆盘,其绕着它的转轴旋转;以及包括初级线圈和几个次级线圈的定子,所述次级线圈相对于所述转轴基本上对称地成对布置,以便形成一对或多对次级线圈,从而每对所述次级线圈一方面相对于彼此串联并反相地彼此连接,而另一方面连接到测量装置的终端,该测量装置能产生取决于在所述对的终端处的电压的输出信号,具有经济且安装条件低的优点,但是仍然存在不足,其主要的不足之处在于容易被射频干扰,从而容易出现较大计量误差的问题。
技术解决方案
本实用新型的目的是针对上述问题,提供一种抗射频干扰的计量模块;
本实用新型的另一目的是针对上述问题,提供一种旋转计数装置。
为达到上述目的,本实用新型采用了下列技术方案:
一种抗射频干扰的计量模块,包括:
激励电路,用于输出激励信号;
激励线圈,与激励电路输出端相连,根据激励信号产生电磁场;
感应滤波电路,设有若干个,根据激励线圈产生的电磁场产生滤除射频干扰信号后的电动势;使用感应滤波电路,能够避免外部射频干扰信号通过空中耦合到计量模块上,避免射频信号干扰造成的计量误差;
信号处理电路,设有若干个,并与感应滤波电路一一对应相连,对感应滤波电路产生的电动势进行采样;
单片机,与信号处理电路输出端以及激励电路的输入端相连,根据信号处理电路输出的信号进行计量。
在上述的抗射频干扰的计量模块中,每个感应滤波电路均包括相互串联的感应线圈和第一滤波电路,通过滤波电路实现射频干扰信号的滤除。
在上述的抗射频干扰的计量模块中,每个信号处理电路均包括三极管、电阻和电容,所述三极管的基极连接于第一滤波电路,集电极连接于单片机既具有普通IO口功能,又具有AD采样功能的AD端口,两种功能分时复用,发射极连接于单片机的IO端口,所述电阻的两端分别连接于三极管的基极和地端,所述电容的两端分别连接于三极管的集电极和地端。
在上述的抗射频干扰的计量模块中,还包括具有输入端和第一输出端的驱动电路,每个信号处理电路中三极管的发射极均连接于所述的驱动电路的第一输出端,所述驱动电路的输入端连接于单片机的IO端口,以使三极管的发射极通过所述驱动电路连接于单片机的IO端口。
在上述的抗射频干扰的计量模块中,所述的驱动电路还具有第二输出端,所述的第二输出端连接于所述的激励电路,以使激励电路通过驱动电路连接于单片机。
在上述的抗射频干扰的计量模块中,所述驱动电路包括脉宽调制电路、逻辑门电路和负电压电路,所述单片机与脉宽调制电路相连,脉宽调制电路远离单片机的一端连接于逻辑门电路,逻辑门电路远离脉宽调制电路的一端具有两路输出,其中一路连接于负电压电路,所述第一输出端连接于负电压电路以使每个信号处理电路中的三极管均连接于负电压电路,另一路连接于第二输出端以使激励电路连接于逻辑门电路。驱动电路在驱动激励电路的同时,打开信号处理电路中的三极管,以使信号处理电路能够接收来自采样滤波电路的信号,另外,驱动电路在单片机的控制下,可以视情况调节驱动次数,进行一次或多次驱动,以防止电容电压过于接近VCC电压或0V,调节电容上剩余电压趋于中间状态,以抵消器件不一致或高低温对器件的影响,提升系统工作稳定性。
在上述的抗射频干扰的计量模块中,所述的单片机连接于对外接口,且所述的对外接口用于供单片机连接外部终端。
在上述的抗射频干扰的计量模块中,所述对外接口连接有一个或多个第二滤波电路,以通过一个或多个第二滤波电路连接于所述的外部终端。
在上述的抗射频干扰的计量模块中,所述的对外接口包括电源接口和信号接口,且所述的电源接口和信号接口分别连接有第二滤波电路。第二滤波电路的设置能够避免外部射频干扰通过电源线或各种接口信号线引入到计数装置上,进而影响正常计量。
一种旋转计数装置,包括计量模块,以及转子和定子,所述转子上设有金属片,所述定子上设有PCB板,所述PCB板上设有激励电路、激励线圈和感应线圈。
有益效果
1、在感应线圈和单片机之间设有第一滤波电路,在单片机对外接口上设置第二滤波电路,使得旋转计数装置免受射频信号干扰,提高计数准确性;
2、驱动电路在单片机的控制下可以调节驱动次数,这样能够保持电容上剩余电压趋于中间状态,防止电容电压过于接近VCC电压或0V,以抵消器件不一致或高低温对器件的影响,提升系统工作稳定性;
3、通过包含三极管的信号处理电路处理电动势信号,由于三极管具有信号放大作用,所以能够提高检测灵敏度;
4、直接通过AD采样实现各个三极管处的电流采样,一个通道10US以内就可以实现采样,具有测量速度快,效率高等优点;
5、由于测量速度快,所以具有更强的抗干扰能力;
6、由于采用直接AD采样方式,无需放电电阻,在使用三线圈进行采样时,只需要三个复用的AD采样口,能够简化电路结构,对MCU的资源要求低,能够在保证计量精度的前提下降低成本。
附图说明
图1为实施例一中计量模块的电路原理图;
图2为实施例二中旋转计数装置的结构示意图;
图3为实施例三中计量模块与外部终端连接的电路原理图。
附图标记:1-激励电路;2-感应滤波电路;3-信号处理电路;4-单片机;5-驱动电路;6-脉宽调制电路;7-逻辑门电路;8-负电压电路;10-第二滤波电路;11-转子;12-定子;13-金属片;14-PCB板;15-对外接口;16-外部终端;计量模块17。
本发明的最佳实施方式
下面结合附图和具体实施方式对本实用新型做进一步详细的说明。
实施例一
本实施例公开了一种抗射频干扰的计量模块,如图1所示,包括:
用于输出激励信号的激励电路1;
与激励电路1输出端相连,根据激励信号产生电磁场的激励线圈L0;
若干个根据电磁场产生相应滤除射频干扰信号后的电动势的感应滤波电路2;
数量与感应滤波电路2一致,并与感应滤波电路2一一对应相连,对感应滤波电路2产生的电动势进行采样的若干信号处理电路3;
与信号处理电路3输出端相连,根据信号处理电路输出的信号进行计量的单片机4;
用于对计量模块进行驱动的驱动电路5。
具体地,每个感应滤波电路2均包括相互串联的感应线圈L1、L2、L3和第一滤波电路U1、U2、U3,每个感应滤波电路2中第一滤波电路U1、U2、U3远离感应线圈L1、L2、L3的一端连接于与感应滤波电路2相对应的信号处理电路3。本实施例中,设置有三个感应滤波电路2,相应地,感应线圈具有三个,分别为L1、L2和L3,对应的第一滤波电路也具有三个,分别为U1、U2、U3,在具体实现中,也可以设置更多的感应滤波电路2。
具体地,由于本实施例的感应滤波电路2为三个,所以信号处理电路3也为三个,每个信号处理电路3均包括三极管Q1、Q2、Q3,电阻R1、R2、R3和电容C1、C2、C3,电阻R1、R2、R3的两端分别连接于三极管Q1、Q2、Q3的基极和地端,电容C1、C2、C3的两端分别连接于三极管Q1、Q2、Q3的集电极和地端;每个信号处理电路3中的三极管Q1、Q2、Q3的基极连接于对应的感应滤波电路2中的第一滤波电路U1、U2、U3,三个信号处理电路3中三极管Q1、Q2、Q3的集电极分别连接于单片机4的三个AD端口,该端口既具有普通IO口功能又有AD采样功能,两种功能分时复用,三个信号处理电路3中三极管Q1、Q2、Q3的发射极相互连接,并一起连接至驱动电路5的第一输出端,驱动电路5的输入端连接于单片机4的IO端口。
进一步地,驱动电路5还具有第二输出端,第二输出端连接于激励电路1。
具体地,驱动电路5包括脉宽调制电路6、逻辑门电路7和负电压电路8,单片机4与脉宽调制电路6相连,脉宽调制电路6远离单片机4的一端连接于逻辑门电路7相连,逻辑门电路7远离脉宽调制电路6的一端具有两路输出,其中一路连接于负电压电路8,且第一输出端连接于负电压电路8以使三极管Q1、Q2、Q3连接于负电压电路8,另一路连接于第二输出端以使激励电路1连接于逻辑门电路7。
本实施例中,驱动电路在驱动激励电路的同时,打开信号处理电路中的三极管,以使信号处理电路能够接收来自采样滤波电路的信号,另外,驱动电路在单片机的控制下,可以视情况调节驱动次数,进行一次或多次驱动,以保持电容C1、C2、C3上剩余电压趋于中间状态,防止电容电压过于接近VCC电压或0V,从而抵消器件不一致或高低温对器件的影响,提升稳定性;负电压电路8,用于控制信号处理电路3中三极管Q1、Q2、Q3的导通;脉宽控制电路6,用于控制电路的工作时间,有效降低功耗及减少外部干扰;逻辑门电路7用于根据单片机4输出信号对激励电路1和负电压电路8进行同步输出控制。
进一步地,本实施例还包括为计量模块供电的电源电路,且该电源电路为线性稳压器LDO,计量模块中的驱动电路5和单片机4均通过电源电路连接于外部电源,在外部电源和本模块之间设置线性稳压器LDO,能够抵抗外部电源的大幅度波动,以使系统获得稳定的电压。。
本实施例在工作时,激励电路1输出周期性的激励脉冲给激励线圈L0,激励线圈L0产生变化的电电磁场,三个感应线圈L1、L2、L3产生相应的感应电流,激励电路1输出激励脉冲的同时,负电压电路8产生负电压至三极管Q1、三极管Q2和三极管Q3,以使每个三极管均处于导通状态。电容C1、C2、C3分别电连接于单片机4的AD端口,该AD端口既能够进行AD采样,又可作为普通IO口输出电平。正常情况下,AD端口为高电平,此时电容C1、电容C2、电容C3开始充电,充电至电源电压。激励电路1输出激励脉冲的前一刻,该AD端口切换为AD采样功能,当激励电路1输出激励脉冲,且同时负电压电路8产生了负电压时,三极管Q1、Q2、Q3导通,电容C1、电容C2、电容C3通过各自连接的三极管Q1、Q2、Q3开始放电,然后通过放电电流的不同确定每个三极管处的电流大小,进而对流体流速及方向进行计量。本方案直接通过AD采样实现各个三极管处的电流采样,一个通道10US以内就可以实现采样,具有测量速度快,效率高等优点。并且,测量速度快,意味着抗干扰能力强,从而保证计量精度;此外,本方案电路中,每个信号处理电路只需要一个放电电容,无需放电电阻,在使用三线圈进行采样时,只需要三个复用的AD采样口,能够简化电路结构,对MCU的资源要求低,在保证计量精度的前提下能够降低成本。
本发明的实施方式
实施例二
如图2所示,本实施例提供了一种基于实施例一中计量模块的旋转计数装置,包括实施例一中的计量模块,以及转子11和定子12,转子11上设有金属片13,定子12上设有PCB板14,激励电路1、激励线圈L0和感应线圈L1、L2、L3均在PCB板14上。
各线圈在PCB板上的设置方式可以为:
感应线圈L1、L2、L3设置在同一层PCB板上,激励线圈L0设置在与感应线圈L1、L2、L3不同层PCB板上,感应线圈L1、L2、L3在所在层PCB板上沿轴心周向排列,在竖直方向的投影上,感应线圈L1、L2、L3位于激励线圈L0内;
或者,激励线圈L0和感应线圈L1、L2、L3设置在同一层PCB板上,感应线圈L1、L2、L3沿激励线圈L0内部周向排列;
或者,感应线圈L1、L2、L3设置在不同层板上。
具体地,金属片13成扇形,其可为任意角度,通常采用60度,90度,120度、180度、210度等角度。
三个感应线圈L1、L2、L3与激励线圈L0耦合产生的感应电流会影响三极管Q1、三极管Q2和三极管Q3的基极电流。由于三个感应线圈L1、L2、L3在转动过程中与激励线圈L0耦合产生的电流不同,所以三个感应线圈L1、L2、L3对电容C1、C2、C3放电的电流也不同,得到的三个电容电压值也不相同,可以根据感应线圈感应电流的大小来判断金属片13所处的位置,当哪个感应线圈感应的电流大时,则可以推断该感应线圈与金属片距离较远,当感应线圈的感应电流最小则可以推断该感应线圈处于金属片13的正上方。
实施例三
如图3所示,本实施例与实施例一类似,不同之处在于,本实施例的单片机4连接有对外接口15,对外接口15用于供单片机4连接外部终端16,该对外接口15包括电源接口和信号接口,电源接口为VCC和GND,当计量模块17具有电源电路时,电源接口连接于电源电路,电源电路再连接于单片机等需要用电的器件,当计量模块没有电源电路时,电源接口直接连接单片机等需要用电的器件。信号接口有通信接口RXD、TXD,脉冲接口PULSE +、PULSE-,信号接口用于连接单片机4,实现单片机4与外部终端16之间的通信。每个接口远离计量模块17的一端处均连接有一个第二滤波电路10。第二滤波电路10用于防止射频信号对旋转计数装置产生干扰。
本文中所描述的具体实施例仅仅是对本实用新型精神作举例说明。本实用新型所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本实用新型的精神或者超越所附权利要求书所定义的范围。
尽管本文较多地使用了1-激励电路;2-感应滤波电路;3-信号处理电路;4-单片机;5-驱动电路;6-脉宽调制电路;7-逻辑门电路;8-负电压电路;10-第二滤波电路;11-转子;12-定子;13-金属片;14-PCB板;15-对外接口;16-外部终端等术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本实用新型的本质;把它们解释成任何一种附加的限制都是与本实用新型精神相违背的。
 

Claims (10)

  1. 一种抗射频干扰的计量模块,其特征是,包括:
    激励电路(1),用于输出激励信号;
    激励线圈,与激励电路(1)输出端相连,根据激励信号产生电磁场;
    感应滤波电路(2),设有若干个,根据激励线圈产生的电磁场产生滤除射频干扰信号后的电动势;
    信号处理电路(3),设有若干个,并与感应滤波电路(2)一一对应相连,对感应滤波电路(2)产生的电动势进行采样;
    单片机(4),与信号处理电路(3)输出端以及激励电路(1)的输入端相连,根据信号处理电路(3)输出的信号进行计量。
  2. 根据权利要求1所述的一种抗射频干扰的计量模块,其特征在于,每个感应滤波电路(2)均包括相互串联的感应线圈和第一滤波电路。
  3. 根据权利要求2所述的一种抗射频干扰的计量模块,其特征在于,每个信号处理电路(3)均包括三极管、电阻和电容,所述三极管的基极连接于第一滤波电路,集电极连接于单片机(4)既具有普通IO口功能,又具有AD采样功能的AD端口,发射极连接于单片机(4)的IO端口,所述电阻的两端分别连接于三极管的基极和地端,所述电容的两端分别连接于三极管的集电极和地端。
  4. 根据权利要求3所述的一种抗射频干扰的计量模块,其特征在于,还包括具有输入端和第一输出端的驱动电路(5),每个信号处理电路(3)中三极管的发射极均连接于所述的驱动电路(5)的第一输出端,所述驱动电路(5)的输入端连接于单片机(4)的IO端口。
  5. 根据权利要求4所述的一种抗射频干扰的计量模块,其特征在于,所述的驱动电路(5)还具有第二输出端,所述的第二输出端连接于所述的激励电路(1)。
  6. 根据权利要求5所述的一种抗射频干扰的计量模块,其特征在于,所述驱动电路(5)包括脉宽调制电路(6)、逻辑门电路(7)和负电压电路(8),所述单片机(4)与脉宽调制电路(6)相连,脉宽调制电路(6)远离单片机(4)的一端连接于逻辑门电路(7),逻辑门电路(7)远离脉宽调制电路(6)的一端具有两路输出,其中一路连接于负电压电路(8),所述第一输出端连接于负电压电路(8)以使每个信号处理电路(3)中的三极管均连接于负电压电路(8),另一路连接于第二输出端以使激励电路(1)连接于逻辑门电路(7)。
  7. 根据权利要求1所述的一种抗射频干扰的计量模块,其特征在于,所述的单片机(4)连接于对外接口(15),且所述的对外接口(15)用于供单片机(4)连接外部终端(16)。
  8. 根据权利要求7项所述的一种抗射频干扰的计量模块,其特征在于,所述的对外接口(15)连接有一个或多个第二滤波电路(10)。
  9. 根据权利要求8所述的一种抗射频干扰的计量模块,其特征在于,所述的对外接口(15)包括电源接口和信号接口,所述的电源接口和信号接口分别连接有第二滤波电路(10)。
  10. 一种旋转计数装置,其特征在于,包括权利要求1-9任一项所述的计量模块,以及转子(11)和定子(12),所述转子(11)上设有金属片(13),所述定子(12)上设有PCB板(14),所述PCB板(14)上设有激励电路(1)、激励线圈和感应线圈。
PCT/CN2021/089443 2021-02-05 2021-04-23 一种抗射频干扰的计量模块和旋转计数装置 WO2022166002A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212021000298.6U DE212021000298U1 (de) 2021-02-05 2021-04-23 Messmodul und Umdrehungszählvorrichtung gegen Radiofrequenzstörungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202120340213.4 2021-02-05
CN202120340213.4U CN214951597U (zh) 2021-02-05 2021-02-05 一种抗射频干扰的计量模块和旋转计数装置

Publications (1)

Publication Number Publication Date
WO2022166002A1 true WO2022166002A1 (zh) 2022-08-11

Family

ID=79120845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089443 WO2022166002A1 (zh) 2021-02-05 2021-04-23 一种抗射频干扰的计量模块和旋转计数装置

Country Status (3)

Country Link
CN (1) CN214951597U (zh)
DE (1) DE212021000298U1 (zh)
WO (1) WO2022166002A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166535A (en) * 1997-09-05 2000-12-26 Hella Kg Hueck & Co. Inductive angle sensor that adapts an oscillator frequency and phase relationship to that of an interference frequency
US20100052667A1 (en) * 2005-11-07 2010-03-04 Hiroaki Kohama Electromagnetic induction type inspection device and method
CN103490682A (zh) * 2013-10-11 2014-01-01 重庆理工大学 一种交流伺服电机转子位置检测系统及检测方法
CN105203203A (zh) * 2015-09-07 2015-12-30 中国科学院地质与地球物理研究所 一种基于磁场的微振动测量装置及其测量方法
CN107121489A (zh) * 2017-04-12 2017-09-01 南昌航空大学 一种交流电磁场检测仪
US10063097B2 (en) * 2015-10-16 2018-08-28 Kohler Co. Segmented waveform converter on controlled field variable speed generator
CN208780115U (zh) * 2017-08-22 2019-04-23 半导体元件工业有限责任公司 感应位置传感器、谐振感应位置传感器及谐振转子
CN110687313A (zh) * 2019-11-15 2020-01-14 东北林业大学 一种圆环折线转速传感器及其方法
CN111458400A (zh) * 2020-04-09 2020-07-28 中北大学 一种基于电磁感应的金属材料缺陷检测系统
CN211477251U (zh) * 2020-04-13 2020-09-11 成都千嘉科技有限公司 一种线圈无磁式选通感应计量装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166535A (en) * 1997-09-05 2000-12-26 Hella Kg Hueck & Co. Inductive angle sensor that adapts an oscillator frequency and phase relationship to that of an interference frequency
US20100052667A1 (en) * 2005-11-07 2010-03-04 Hiroaki Kohama Electromagnetic induction type inspection device and method
CN103490682A (zh) * 2013-10-11 2014-01-01 重庆理工大学 一种交流伺服电机转子位置检测系统及检测方法
CN105203203A (zh) * 2015-09-07 2015-12-30 中国科学院地质与地球物理研究所 一种基于磁场的微振动测量装置及其测量方法
US10063097B2 (en) * 2015-10-16 2018-08-28 Kohler Co. Segmented waveform converter on controlled field variable speed generator
CN107121489A (zh) * 2017-04-12 2017-09-01 南昌航空大学 一种交流电磁场检测仪
CN208780115U (zh) * 2017-08-22 2019-04-23 半导体元件工业有限责任公司 感应位置传感器、谐振感应位置传感器及谐振转子
CN110687313A (zh) * 2019-11-15 2020-01-14 东北林业大学 一种圆环折线转速传感器及其方法
CN111458400A (zh) * 2020-04-09 2020-07-28 中北大学 一种基于电磁感应的金属材料缺陷检测系统
CN211477251U (zh) * 2020-04-13 2020-09-11 成都千嘉科技有限公司 一种线圈无磁式选通感应计量装置

Also Published As

Publication number Publication date
CN214951597U (zh) 2021-11-30
DE212021000298U1 (de) 2022-09-30

Similar Documents

Publication Publication Date Title
CN103162681B (zh) 用于微机械陀螺的信号检测方法及装置
WO2017000514A1 (zh) 一种基于dsp和fpga的嵌入式控制器的同步印染控制系统
CN103208956A (zh) 电机霍尔位置传感器安装误差自动检测与补偿装置及方法
CN111351534A (zh) 一种流量无磁计量装置
CN104571246A (zh) 一种应用于霍尔传感器的旋转电流电路
WO2022166002A1 (zh) 一种抗射频干扰的计量模块和旋转计数装置
CN203550961U (zh) 一种低成本挠性陀螺力平衡电路
CN105119587A (zh) 一种磁损自动测试平台及其使用的正弦激励信号源
CN104950158A (zh) 一种电流信号的采集电路及其采集系统
CN218156213U (zh) 一种旋转变压器的软件解码电路
CN208140791U (zh) 一种零点检测电路
CN214277084U (zh) 一种多功能计量模块及旋转计量装置
CN202940789U (zh) 一种频率电流隔离转换模块
CN207280369U (zh) 基于磁场偏转的角度测量装置
CN206542349U (zh) 一种具有位置及电流反馈功能的音圈电机驱动系统
CN101609120B (zh) 一种用于检测电磁阀的智能电源
CN202998050U (zh) 一种电流绝对值电路
CN102854367A (zh) 一种用于检测太阳能电池组件电压的传感器
CN202285021U (zh) 轮速测量仪
CN208334489U (zh) 一种数字式直流钳形表的零点调节电路
CN204119096U (zh) 一种无刷直流电机的相位补偿电路
CN106078356A (zh) 一种测量卡盘夹紧力的无线数据收发传感器电路版图结构
CN110426058A (zh) 一种激光陀螺仪标度因数测试系统及测试方法
CN103293330B (zh) 掉电后可回零的步进电机式转速表
CN213585721U (zh) 一种程控滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924010

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21924010

Country of ref document: EP

Kind code of ref document: A1