WO2022164307A1 - Method for obtaining electrodes with nanospaces from suspended nanofibres of glassy carbon - Google Patents

Method for obtaining electrodes with nanospaces from suspended nanofibres of glassy carbon Download PDF

Info

Publication number
WO2022164307A1
WO2022164307A1 PCT/MX2022/050004 MX2022050004W WO2022164307A1 WO 2022164307 A1 WO2022164307 A1 WO 2022164307A1 MX 2022050004 W MX2022050004 W MX 2022050004W WO 2022164307 A1 WO2022164307 A1 WO 2022164307A1
Authority
WO
WIPO (PCT)
Prior art keywords
suspended
nanofibers
further characterized
nanospaces
carbon
Prior art date
Application number
PCT/MX2022/050004
Other languages
Spanish (es)
French (fr)
Inventor
Sergio Omar Martínez Chapa
Arnoldo SALAZAR SOTO
Marc Josef MADOU
Alejandro MONTESINOS CASTELLANOS
Original Assignee
Instituto Tecnológico y de Estudios Superiores de Monterrey
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Tecnológico y de Estudios Superiores de Monterrey filed Critical Instituto Tecnológico y de Estudios Superiores de Monterrey
Publication of WO2022164307A1 publication Critical patent/WO2022164307A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention is related to the application of nanotechnology to obtain electrodes with nanospaces, more specifically with a method for obtaining electrodes with nanospaces from suspended vitreous carbon nanofibers.
  • Nanogap electrodes Electrodes separated by a nanometric distance (nanogaps), known as nanogap electrodes, have been widely applied in the fundamental study of electrical properties, and the manipulation of submicron particles and molecules. To meet both objectives, a nanogap electrode must have a separation distance comparable to the size of the manipulated object. Nanogap electrodes with 20 nm nanogaps, matching the size of the nanogap to the length of the target DNA strands, have been proposed to study the electrical conductivity of individual bases. In view of the potential applications, various investigations have been carried out for the manufacture of nanogap electrodes. have proposed methods such as mechanical break joint (MBJ), focused electron beam (FBI), electromigration, photolithography, among others. Unfortunately, these techniques still face technical challenges and suffer from poor performance, poor scalability, complex processing protocols, and/or high equipment cost.
  • MJ mechanical break joint
  • FBI focused electron beam
  • nanostructured carbon which has advantages in terms of resistance to electromigration, better stability at or above room temperature, and easier binding to a greater variety of molecules for biosensing applications.
  • Fabrication of nanogapped electrodes from carbon for molecular-scale sensing applications is typically achieved by temperature-activated electrical decomposition of carbon nanotubes (CNTs), graphene sheets, or glassy carbon nanofibers (GCNFs).
  • CNTs carbon nanotubes
  • GCNFs glassy carbon nanofibers
  • a common method for the synthesis of glassy carbon nanofibers is to obtain them from a polymer through a two-part process consisting of: electrospinning, to produce the polymeric nanofibers, and pyrolysis, where the nanofibers are carbonized with an appropriate polymeric carbon precursor. .
  • a limitation of the conventional methods for the manufacture of nanogap electrodes from nanostructured carbon nanofibers lies in the fact that they necessarily need nanofibers of small lengths, with values less than 2 pm, since if longer lengths are used, the space exceeds the nanometer order. However, obtaining nanofibers with lengths less than 2 pm is complicated.
  • Another object of the present invention relates to a method for obtaining electrodes with nanospaces from suspended glassy carbon nanofibers with a length greater than 2 pm.
  • an additional object of the present invention refers to a nanosensor comprising electrodes with nanospaces obtained from suspended glassy carbon nanofibers with a length greater than 2 pm.
  • a first aspect of the present invention refers to an electrode with nanospace, where the nanospace has a length between 4 and 17 nm, which is obtained from suspended glassy carbon nanofibers with a length greater than 2 pm.
  • a second aspect of the present invention refers to a method for obtaining electrodes with nanospaces between 4 and 17 nm, which comprises a step of sublimating a suspended glassy carbon nanofiber with a length greater than 2 pm under reduced pressure conditions.
  • a third aspect of the present invention refers to a nanosensor comprising at least one electrode with nanospaces between 4 and 17 nm obtained from suspended glassy carbon nanofibers with a length greater than 2 pm.
  • Figure 1 illustrates the process of thinning and decomposition of a suspended glassy carbon nanofiber.
  • Figure 2 illustrates the resistance evolution for the thinning and degradation process under different conditions, where A is dry air at atmospheric pressure, B is CO2 at atmospheric pressure, C is high vacuum after purging the chamber with dry air. , and D is high vacuum after purging the chamber with CO2.
  • Figure 3 illustrates SEM micrographs showing the smooth and rough surfaces of suspended glassy carbon nanofibers broken under different conditions, where A is dry air at atmospheric pressure, B is CO2 at atmospheric pressure, C is high vacuum in a chamber containing was previously purged with dry air, and D is high vacuum after purging the chamber with CO2.
  • the present invention exhibits certain advantages over the state of the art, among which it can be mentioned that the electrodes with nanospaces between 4 and 17 nm are obtained from suspended vitreous carbon nanofibers with a length greater than 2 pm, which result stable at room temperature and compatible with various materials due to the characteristics of the material used in its manufacture. Likewise, the methodology used is fast, simple and scalable.
  • the present invention refers firstly to an electrode with a nanogap, where the nanogap has a length between 4 and 17 nm, which is obtained from suspended glassy carbon nanofibers with a length greater than 2 pm.
  • the nanogaps are less than 10 nm in length.
  • a second aspect of the present invention refers to a method for obtaining electrodes with nanospaces between 4 and 17 nm, which comprises a step of sublimating a suspended glassy carbon nanofiber with a length greater than 2 pm under reduced pressure conditions.
  • the reduced pressure is between 0.001 and 0.003 Pa.
  • the step of sublimating a suspended vitreous carbon nanofiber with a length greater than 2 pm is carried out with an increase in the resistance of the nanofiber greater than 0.05%.
  • the increase in resistance greater than 0.05% can be achieved by applying a voltage in a range between 0.2 and 3.8 V, with increments of 0.2 V.
  • Suspended glassy carbon nanofibers with a length greater than 2 pm are preferably obtained according to the following steps: (i) coating a base with a layer of a polymeric carbon precursor with a thickness between 10 and 30 pm; (ii) heating the coated base until the solvent is removed from the polymeric precursor; (iii) selectively exposing the base to UV rays; (iv) depositing the obtained nanofibers on an electrospinning platform, which is adjusted to a distance from the needle to the collector of at least 1 mm and to a voltage to suspend them; and (v) heating the suspended nanofibers.
  • the step of (i) coating a base with a layer of a carbon polymeric precursor includes centrifugation between 3000 to 4000 rpm for between 25 to 30 s.
  • the thickness of the polymeric carbon precursor is 20 pm.
  • the polymeric carbon precursor is negative photoresist based on eight epoxy groups.
  • the stage of (ii) heating the coated base until the solvent is eliminated from the polymeric precursor is achieved at a temperature between 90 and 100 °C for between 4.5 and 5.5 minutes.
  • the stage of (i ⁇ ) selectively exposing the base to UV rays is achieved in a time between 3 to 5 s.
  • the stage of (iv) deposing the nanofibers to suspend them is achieved at a voltage between 100 to 200 V.
  • the stage of (v) heating the suspended nanofibers is achieved at a temperature between 800 and 1000 °C under an inert N2 atmosphere. for at least 1 hour.
  • a third aspect of the present invention refers to a nanosensor comprising at least one electrode with nanospaces between 4 and 17 nm obtained from suspended glassy carbon nanofibers with a length greater than 2 pm.
  • This example describes the process for the production of suspended vitreous carbon nanofibers, where the first step was to deposit a thin layer of a polymeric carbon precursor, photoresist negative SU-8 2025 with a thickness of 20 pm on a type of silicon. N wafer (100 mm) with a 1 pm thermal oxide layer by spin coating at a speed of 4000 rpm for 30 s. The coated surface was baked for 5 minutes at 95°C on a hot plate (HS61) in order to remove the solvent. The pattern was then defined by selective exposure to ultraviolet rays (UV light) for 4 s. Unexposed segments were removed by immersing the wafer in a developer solution, leaving behind a six-walled device.
  • UV light ultraviolet rays
  • the second step involved the deposition of the fiber obtained by SU-8 2025, where Electromechanical Spinning (EMS) was used on a Newport uFab electrospinning platform tailored to the platform. By setting the needle-to-collector distance to approximately 1 mm and the voltage to 400 V, high control of the position of a single polymer fiber on the supporting walls was achieved. Finally, the entire device, including the wall support and suspended fibers, was placed inside a PEO 601 oven for pyrolysis. During this process, the structures were heated up to 900 °C in an inert N2 environment, which resulted in the loss of non-carbon atoms from SU-8 and producing glassy carbon structures.
  • EMS Electromechanical Spinning
  • the glassy carbon nanofibers were obtained, they were subjected together with the support to various experimental conditions to obtain electrodes with nanospaces. Conditions were controlled via a 3 L chamber connected to a Pfeiffer HiPace 80 vacuum turbopump with electrical feed connections and gas inlet lines. In the following examples, the tests carried out under four different conditions are shown: (i) in a chamber filled with pressurized dry air atmosphere, (ii) in a chamber filled with CO2 at atmospheric pressure, (iii) under high vacuum in a chamber that was previously purged with dry air, and (iv) under high vacuum in a chamber previously purged with CO2.
  • an electrode with nanogaps through the method of the present invention is described, using a program for the application of voltage that executes a loop controlled by feedback and monitors the changes of electrical resistance (AR) in the nanofiber. fiber.
  • AR electrical resistance
  • a negative AR indicates a decrease in electrical resistance as the fiber is heated, as expected from carbon's negative coefficient of resistance.
  • a positive AR represents mass loss leading to thinning and eventual breakage of the nanofibers.
  • the voltage application process was started by applying a low voltage of 0.2 V and the resistance was measured.
  • Vmax the value to which the tension could be increased
  • FIG. 1 shows the process of thinning and decomposition of a suspended glassy carbon nanofiber, where A represents a fiber of 44.5 pm length and 1.4 pm diameter that thinned to a nanoconstriction of 351 nm represented by B.
  • the carbon can lose mass on heating by two main mechanisms: (i) an oxidation reaction with O2 or CO2 and ( ⁇ i) sublimation at high temperatures, estimated at approximately 4000 K at atmospheric pressure and 3000 K in high vacuum.
  • Oxidation which is due to the presence of O2 in the chamber, is an expected process because the autoignition temperature of carbon is approximately 973 K. This observation suggests that, even at temperatures below the sublimation temperature of carbon, the fiber could be thinned by burning.
  • the temperature reaches the sublimation temperature of carbon, which is estimated to be about 4000 K under atmospheric pressure, the thinning mechanism switches from an oxidation-driven reaction to a sublimation, producing a rapid and abrupt jump in electrical resistance, making it difficult to breaking control.
  • nanogaps with a mean size of 154 nm with a standard deviation of 43.3 nm were obtained.
  • the thinning/decomposition of suspended glassy carbon nanofibers under atmospheric pressure depends on the reactions of C with O2 or CO2, as well as the sublimation process.
  • these oxidation reactions accelerate the breakage process, whereas in the absence of reactive gases such as O2 or CO2, only sublimation is expected to influence the breakage process. Therefore, the voltage application method exhibits excellent performance under high vacuum conditions, resulting in small nanogaps.
  • sublimation of the nanofibers could occur at lower temperatures (approximately 3000 K) under these conditions. When even smaller nanogap sizes are reached, it can be expected that as the constrictions in the nanofibers become thinner, the process becomes more difficult to control.
  • the use of the reported voltage application procedure under high vacuum in a chamber previously purged with CO2 provided a good approach for the fabrication of nanogaps of less than 10 nm in suspended glassy carbon nanofibers. without the need for fibers that are less than 2 pm long.
  • the sublimation temperature for an air-filled chamber is expected to be lower than that for a chamber at atmospheric pressure (approximately 3000 K), and the process would be driven primarily by sublimation of the nanofiber.
  • a further reduction in the size of the nanogap can be achieved by considering the trace particles that remain in the chamber after vacuum conditions are reached.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Molecular Biology (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

The present invention relates to electrodes with nanospaces between 4 and 17 nm obtained from suspended nanofibres of glassy carbon with a length greater than 2 μm, designed for application in the area of nanotechnology in the manufacture of nanosensors.

Description

MÉTODO PARA LA OBTENCIÓN DE ELECTRODOS CON NANOESPACIOS A PARTIR DE NANOFIBRAS SUSPENDIDAS DE CARBONO VÍTREO METHOD FOR OBTAINING ELECTRODES WITH NANOSPACE FROM SUSPENDED GLASS CARBON NANOFIBERS
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención está relacionada a la aplicación de la nanotecnología para la obtención de electrodos con nanoespacios, más específicamente con un método para la obtención de electrodos con nanoespacios a partir de nanofibras suspendidas de carbono vitreo. The present invention is related to the application of nanotechnology to obtain electrodes with nanospaces, more specifically with a method for obtaining electrodes with nanospaces from suspended vitreous carbon nanofibers.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Los electrodos separados por una distancia nanométrica (nanoespacios), conocidos como electrodos nanogap se han aplicado ampliamente en el estudio fundamental de las propiedades eléctricas, y la manipulación de partículas y moléculas submicrométricas. Para cumplir con ambos objetivos un electrodo nanogap debe tener una distancia de separación comparable al tamaño del objeto manipulado. Se han propuesto electrodos nanogap con nanoespacios de 20 nm, haciendo coincidir el tamaño del nanoespacio con la longitud de las cadenas de ADN objetivo para estudiar la conductividad eléctrica de bases individuales. En vista de las potenciales aplicaciones, se han llevado a cabo diversas investigaciones para la fabricación de electrodos nanogap
Figure imgf000003_0001
han propuesto métodos como la unión de rotura mecánica (MBJ), el haz de electrones enfocado (FBI), la electromigración, la fotolitografía, ente otros. Desafortunadamente, estas técnicas aún enfrentan desafíos técnicos y adolecen de bajo rendimiento, escasa escalabilidad, protocolos de procesamiento complejos y/o un alto costo de equipo.
Electrodes separated by a nanometric distance (nanogaps), known as nanogap electrodes, have been widely applied in the fundamental study of electrical properties, and the manipulation of submicron particles and molecules. To meet both objectives, a nanogap electrode must have a separation distance comparable to the size of the manipulated object. Nanogap electrodes with 20 nm nanogaps, matching the size of the nanogap to the length of the target DNA strands, have been proposed to study the electrical conductivity of individual bases. In view of the potential applications, various investigations have been carried out for the manufacture of nanogap electrodes.
Figure imgf000003_0001
have proposed methods such as mechanical break joint (MBJ), focused electron beam (FBI), electromigration, photolithography, among others. Unfortunately, these techniques still face technical challenges and suffer from poor performance, poor scalability, complex processing protocols, and/or high equipment cost.
Uno de los materiales más utilizados en la fabricación de electrodos nanogap ha sido el oro. Sin embargo, se ha descrito que el oro presenta diversos inconvenientes para la construcción de nanoespacios, de entre los cuales se mencionan la falta de estabilidad, dilatación del nanoespacio, energía superficial y alta movilidad del material. Con el propósito de evitar los problemas presentados con el uso del oro, se han buscado diversos materiales con potenciales aplicaciones en la construcción de electrodos con nanoespacios. Un ejemplo, es el carbono nanoestructurado que presenta ventajas en términos de resistencia a la electromigración, mejor estabilidad a temperatura ambiente o por encima de ella, y unión más fácil a una mayor variedad de moléculas para aplicaciones de biodetección. La fabricación de electrodos con nanoespacios a partir de carbono para aplicaciones de detección a escala molecular, generalmente se logra mediante la descomposición eléctrica activada por temperatura de nanotubos de carbono (CNT), láminas de grafeno o nanofibras de carbono vitreo (GCNF). En diversos estudios, se encontró que el mecanismo de descomposición eléctrica de estos dispositivos de carbono está relacionado tanto con el transporte de electrones en la muestra como con las condiciones experimentales. One of the most used materials in the manufacture of nanogap electrodes has been gold. However, it has been described that gold has various drawbacks for the construction of nanospaces, among which the lack of stability, expansion of the nanospace, surface energy and high mobility of the material are mentioned. In order to avoid the problems presented with the use of gold, various materials with potential applications in the construction of electrodes with nanospaces have been sought. One example is nanostructured carbon, which has advantages in terms of resistance to electromigration, better stability at or above room temperature, and easier binding to a greater variety of molecules for biosensing applications. Fabrication of nanogapped electrodes from carbon for molecular-scale sensing applications is typically achieved by temperature-activated electrical decomposition of carbon nanotubes (CNTs), graphene sheets, or glassy carbon nanofibers (GCNFs). In various studies, it was found that the electrical decay mechanism of these carbon devices is related to both the electron transport in the sample and the experimental conditions.
Los nanotubos de carbono y láminas de grafeno exhiben conductividades eléctricas y térmicas más altas que las exhibidas por las nanofibras de carbono vitreo, siendo por consecuencia los dos primeros objeto de un mayor número de estudios. No obstante, las nanofibras de carbono vitreo exhiben una buena resistencia a los ataques químicos, estabilidad térmica, biocompatibilidad y una mayor simplicidad en su producción. Convirtiéndolas en una alternativa atractiva para la fabricación de nanodispositivos estables basados en carbono. Un método común para la síntesis de nanofibras de carbono vitreo es obtenerlas a partir de un polímero mediante un proceso de dos partes que consiste en: electrohilado, para producir las nanofibras poliméricas y pirólisis, donde las nanofibras se carbonizan con un precursor polimérico de carbono apropiado. Una limitante de los métodos convencionales para la fabricación de electrodos nanogap a partir de nanofibras de carbono nanoestructurado recae en que éstos necesitan forzosamente de nanofibras de longitudes pequeñas, con valores menores a los 2 pm, ya que si se utilizan longitudes mayores el espacio sobrepasa el orden de los nanómetros. No obstante, obtener nanofibras de longitudes menores a los 2 pm es complicado. Carbon nanotubes and graphene sheets exhibit higher electrical and thermal conductivities than those exhibited by glassy carbon nanofibers, consequently the first two are the subject of a greater number of studies. However, glassy carbon nanofibers exhibit good resistance to chemical attack, thermal stability, biocompatibility and greater simplicity in their production. Making them an attractive alternative for the manufacture of stable carbon-based nanodevices. A common method for the synthesis of glassy carbon nanofibers is to obtain them from a polymer through a two-part process consisting of: electrospinning, to produce the polymeric nanofibers, and pyrolysis, where the nanofibers are carbonized with an appropriate polymeric carbon precursor. . A limitation of the conventional methods for the manufacture of nanogap electrodes from nanostructured carbon nanofibers lies in the fact that they necessarily need nanofibers of small lengths, with values less than 2 pm, since if longer lengths are used, the space exceeds the nanometer order. However, obtaining nanofibers with lengths less than 2 pm is complicated.
Por lo tanto, existe la necesidad de desarrollar un método para la obtención electrodos con nanoespacios que pueda partir de nanofibras suspendidas de carbono vitreo con longitudes mayores a 2 pm, para su aplicación en el estudio de las propiedades eléctricas de partículas y moléculas, en donde los electrodos con nanoespacios cuenten una mayor estabilidad que evite su dilatación posterior a su almacenamiento. Therefore, there is a need to develop a method for obtaining electrodes with nanospaces that can start from suspended glassy carbon nanofibers with lengths greater than 2 pm, for its application in the study of the electrical properties of particles and molecules, where electrodes with nanospaces have greater stability that prevents their dilation after storage.
OBJETOS DE LA INVENCIÓN OBJECTS OF THE INVENTION
Teniendo en cuenta los defectos de la técnica anterior, es un objeto de la presente invención proporcionar electrodos con nanoespacios obtenidos a partir de nanofibras suspendidas de carbono vitreo con una longitud mayor a 2 pm. Taking into account the shortcomings of the prior art, it is an object of the present invention to provide electrodes with nanogaps obtained from suspended glassy carbon nanofibers with a length greater than 2 pm.
Otro objeto de la presente invención se refiere a un método para la obtención de electrodos con nanoespacios a partir de nanofibras suspendidas de carbono vitreo con una longitud mayor a 2 pm. Another object of the present invention relates to a method for obtaining electrodes with nanospaces from suspended glassy carbon nanofibers with a length greater than 2 pm.
Por último, un objeto adicional de la presente invención se refiere a un nanosensor que comprende electrodos con nanoespacios obtenidos a partir de nanofibras suspendidas de carbono vitreo con una longitud mayor a 2 pm. Finally, an additional object of the present invention refers to a nanosensor comprising electrodes with nanospaces obtained from suspended glassy carbon nanofibers with a length greater than 2 pm.
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
Para ello, un primer aspecto de la presente invención se refiere a un electrodo con nanoespacio, donde el nanoespacio tiene una longitud entre 4 y 17 nm el cual es obtenido a partir de nanofibras suspendidas de carbono vitreo con una longitud mayor a 2 pm. For this, a first aspect of the present invention refers to an electrode with nanospace, where the nanospace has a length between 4 and 17 nm, which is obtained from suspended glassy carbon nanofibers with a length greater than 2 pm.
Un segundo aspecto de la presente invención se refiere a un método para la obtención de electrodos con nanoespacios entre 4 y 17 nm, que comprende una etapa de sublimar una nanofibra suspendida de carbono vitreo con una longitud mayor a 2 pm en condiciones de presión reducida. A second aspect of the present invention refers to a method for obtaining electrodes with nanospaces between 4 and 17 nm, which comprises a step of sublimating a suspended glassy carbon nanofiber with a length greater than 2 pm under reduced pressure conditions.
Un tercer aspecto de la presente invención se refiere a un nanosensor que comprende por lo menos un electrodo con nanoespacios entre 4 y 17 nm obtenido a partir de nanofibras suspendidas de carbono vitreo con una longitud mayor a 2 pm. A third aspect of the present invention refers to a nanosensor comprising at least one electrode with nanospaces between 4 and 17 nm obtained from suspended glassy carbon nanofibers with a length greater than 2 pm.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Los aspectos novedosos que se consideran característicos de la presente invención se establecerán con particularidad en las reivindicaciones anexas. Sin embargo, las características y ventajas de la misma se comprenderán mejor en los ejemplos, cuando se lean en relación con las figuras anexas, en donde: The novel aspects that are considered characteristic of the present invention will be set forth with particularity in the appended claims. However, the features and benefits of the same will be better understood in the examples, when read in relation to the attached figures, where:
La figura 1 ¡lustra el proceso de adelgazamiento y descomposición de una nanofibra suspendida de carbono vitreo. Figure 1 illustrates the process of thinning and decomposition of a suspended glassy carbon nanofiber.
La figura 2 ¡lustra la evolución de la resistencia para el proceso de adelgazamiento y degradación en diferentes condiciones, en donde A es aire seco a presión atmosférica, B es CO2 a presión atmosférica, C es alto vacío después de purgar la cámara con aire seco, y D es alto vacío después de purgar la cámara con CO2. Figure 2 illustrates the resistance evolution for the thinning and degradation process under different conditions, where A is dry air at atmospheric pressure, B is CO2 at atmospheric pressure, C is high vacuum after purging the chamber with dry air. , and D is high vacuum after purging the chamber with CO2.
La figura 3 ¡lustra micrografías SEM que muestran las superficies lisas y rugosas de nanofibras suspendidas de carbono vitreo rotas bajo diferentes condiciones, en donde A es aire seco a presión atmosférica, B es CO2 a presión atmosférica, C es alto vacío en una cámara que fue purgada previamente con aire seco, y D es alto vacío después de purgar la cámara con CO2. Figure 3 illustrates SEM micrographs showing the smooth and rough surfaces of suspended glassy carbon nanofibers broken under different conditions, where A is dry air at atmospheric pressure, B is CO2 at atmospheric pressure, C is high vacuum in a chamber containing was previously purged with dry air, and D is high vacuum after purging the chamber with CO2.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La presente invención exhibe ciertas ventajas sobre el estado de la técnica, de entre las cuales se puede mencionar que los electrodos con nanoespacios entre 4 y 17 nm son obtenidos a partir de nanofibras suspendidas de carbono vitreo con una longitud mayor a 2 pm, que resultan estables a temperatura ambiente y compatibles con diversos materiales por las características del material empleado en su fabricación. Asimismo, la metodología empleada es rápida, sencilla y escalable. The present invention exhibits certain advantages over the state of the art, among which it can be mentioned that the electrodes with nanospaces between 4 and 17 nm are obtained from suspended vitreous carbon nanofibers with a length greater than 2 pm, which result stable at room temperature and compatible with various materials due to the characteristics of the material used in its manufacture. Likewise, the methodology used is fast, simple and scalable.
Por lo tanto, la presente invención se refiere en primer lugar a un electrodo con nanoespacio, donde el nanoespacio tiene una longitud entre 4 y 17 nm el cual es obtenido a partir de nanofibras suspendidas de carbono vitreo con una longitud mayor a 2 pm. Preferiblemente los nanoespacios tienen una longitud menor a 10 nm. Therefore, the present invention refers firstly to an electrode with a nanogap, where the nanogap has a length between 4 and 17 nm, which is obtained from suspended glassy carbon nanofibers with a length greater than 2 pm. Preferably the nanogaps are less than 10 nm in length.
Un segundo aspecto de la presente invención se refiere a un método para la obtención de electrodos con nanoespacios entre 4 y 17 nm, que comprende una etapa de sublimar una nanofibra suspendida de carbono vitreo con una longitud mayor a 2 pm en condiciones de presión reducida. A second aspect of the present invention refers to a method for obtaining electrodes with nanospaces between 4 and 17 nm, which comprises a step of sublimating a suspended glassy carbon nanofiber with a length greater than 2 pm under reduced pressure conditions.
En una modalidad preferida de la presente invención, la presión reducida es de entre 0.001 y 0.003 Pa. In a preferred embodiment of the present invention, the reduced pressure is between 0.001 and 0.003 Pa.
En otra modalidad preferida de la presente invención, la etapa de sublimar una nanofibra suspendida de carbono vitreo con una longitud mayor a 2 pm se lleva a cabo con un incremento en la resistencia de la nanofibra mayor a 0.05%. El incremento en la resistencia mayor a 0.05% se puede lograr mediante la aplicación de un voltaje en un intervalo entre 0.2 y 3.8 V, con incrementos de 0.2 V. In another preferred embodiment of the present invention, the step of sublimating a suspended vitreous carbon nanofiber with a length greater than 2 pm is carried out with an increase in the resistance of the nanofiber greater than 0.05%. The increase in resistance greater than 0.05% can be achieved by applying a voltage in a range between 0.2 and 3.8 V, with increments of 0.2 V.
Las nanofibras suspendidas de carbono vitreo con una longitud mayor a 2 pm se obtienen preferiblemente de acuerdo con las siguientes etapas: (i) recubrir una base con una capa de un precursor polimérico de carbono con un espesor de entre 10 y 30 pm; (¡i) calentar la base recubierta hasta eliminar el solvente del precursor polimérico; (i¡¡) exponer selectivamente la base a rayos UV; (iv) deponer las nanofibras obtenidas en una plataforma de electrohilado, que es ajustada a una distancia de la aguja al colector de al menos 1 mm y a un voltaje para suspenderlas; y (v) calentar las nanofibras suspendidas. Más preferiblemente, la etapa de (i) recubrir una base con una capa de un precursor polimérico de carbono incluye una centrifugación de entre 3000 a 4000 rpm durante entre 25 a 30 s. El espesor del precursor polimérico de carbono es de 20 pm. El precursor polimérico de carbono es negativo fotorresistente a base de ocho grupos epoxi. La etapa de (¡i) calentar la base recubierta hasta eliminar el solvente del precursor polimérico se logra a una temperatura de entre 90 a 100 °C durante entre 4.5 a 5.5 minutos. La etapa de (i¡¡) exponer selectivamente la base a rayos UV se logra en un tiempo de entre 3 a 5 s. La etapa de (iv) deponer las nanofibras para suspenderlas se logra a un voltaje de entre 100 a 200 V. La etapa de (v) calentar las nanofibras suspendidas se logra a una temperatura entre 800 y 1000 °C bajo una atmósfera inerte de N2 durante al menos 1 hora. Suspended glassy carbon nanofibers with a length greater than 2 pm are preferably obtained according to the following steps: (i) coating a base with a layer of a polymeric carbon precursor with a thickness between 10 and 30 pm; (ii) heating the coated base until the solvent is removed from the polymeric precursor; (iii) selectively exposing the base to UV rays; (iv) depositing the obtained nanofibers on an electrospinning platform, which is adjusted to a distance from the needle to the collector of at least 1 mm and to a voltage to suspend them; and (v) heating the suspended nanofibers. More preferably, the step of (i) coating a base with a layer of a carbon polymeric precursor includes centrifugation between 3000 to 4000 rpm for between 25 to 30 s. The thickness of the polymeric carbon precursor is 20 pm. The polymeric carbon precursor is negative photoresist based on eight epoxy groups. The stage of (ii) heating the coated base until the solvent is eliminated from the polymeric precursor is achieved at a temperature between 90 and 100 °C for between 4.5 and 5.5 minutes. The stage of (i¡¡) selectively exposing the base to UV rays is achieved in a time between 3 to 5 s. The stage of (iv) deposing the nanofibers to suspend them is achieved at a voltage between 100 to 200 V. The stage of (v) heating the suspended nanofibers is achieved at a temperature between 800 and 1000 °C under an inert N2 atmosphere. for at least 1 hour.
Un tercer aspecto de la presente invención se refiere a un nanosensor que comprende por lo menos un electrodo con nanoespacios entre 4 y 17 nm obtenido a partir de nanofibras suspendidas de carbono vitreo con una longitud mayor a 2 pm. A third aspect of the present invention refers to a nanosensor comprising at least one electrode with nanospaces between 4 and 17 nm obtained from suspended glassy carbon nanofibers with a length greater than 2 pm.
Las ventajas de la presente invención serán mejor entendidas a partir de los siguientes ejemplos, los cuales se presentan únicamente con fines ilustrativos para permitir la comprensión cabal de las modalidades no ¡lustradas que puedan llevarse a la práctica con base en la descripción detallada arriba realizada. The advantages of the present invention will be better understood from the following examples, which are presented solely for illustrative purposes to allow a full understanding of the non-illustrated modalities that can be put into practice based on the detailed description made above.
EJEMPLO 1 EXAMPLE 1
En este ejemplo se describe el proceso para la elaboración de nanofibras suspendidas de carbono vitreo, en donde el primer paso fue depositar una fina capa de un precursor polimérico de carbono, negativo fotorresistente SU-8 2025 con un espesor de 20 pm en un silicio tipo N oblea (100 mm) con una capa de óxido térmico de 1 pm mediante recubrimiento por centrifugación a una velocidad de 4000 rpm durante 30 s. La superficie revestida se horneó durante 5 minutos a 95 °C en una placa caliente (HS61) con el propósito de eliminar el disolvente. Después, el patrón se definió por la exposición selectiva a los rayos ultravioleta (Luz UV) durante 4 s. Se eliminaron los segmentos no expuestos sumergiendo la oblea en una solución reveladora, dejando atrás un dispositivo de seis paredes. This example describes the process for the production of suspended vitreous carbon nanofibers, where the first step was to deposit a thin layer of a polymeric carbon precursor, photoresist negative SU-8 2025 with a thickness of 20 pm on a type of silicon. N wafer (100 mm) with a 1 pm thermal oxide layer by spin coating at a speed of 4000 rpm for 30 s. The coated surface was baked for 5 minutes at 95°C on a hot plate (HS61) in order to remove the solvent. The pattern was then defined by selective exposure to ultraviolet rays (UV light) for 4 s. Unexposed segments were removed by immersing the wafer in a developer solution, leaving behind a six-walled device.
El segundo paso comprendió en la deposición de la fibra obtenida por SU-8 2025, en donde se utilizó el Spinning Electromecánico (EMS) en una plataforma de electrohilado Newport uFab hecho a la medida de la plataforma. Ajustando la distancia de la aguja al colector a aproximadamente 1 mm y el voltaje a 400 V, se logró un alto control de la posición de una sola fibra de polímero en las paredes de soporte. Finalmente, el dispositivo completo, incluido el soporte de paredes y las fibras suspendidas, se colocó dentro de un horno PEO 601 para pirólisis. Durante este proceso, las estructuras fueron calentadas hasta 900 °C en un ambiente inerte de N2, lo que resultó en la pérdida de átomos sin carbono de SU-8 y produciendo estructuras de carbono vitreo. The second step involved the deposition of the fiber obtained by SU-8 2025, where Electromechanical Spinning (EMS) was used on a Newport uFab electrospinning platform tailored to the platform. By setting the needle-to-collector distance to approximately 1 mm and the voltage to 400 V, high control of the position of a single polymer fiber on the supporting walls was achieved. Finally, the entire device, including the wall support and suspended fibers, was placed inside a PEO 601 oven for pyrolysis. During this process, the structures were heated up to 900 °C in an inert N2 environment, which resulted in the loss of non-carbon atoms from SU-8 and producing glassy carbon structures.
Una vez obtenidas las nanofibras de carbono vitreo, se sometieron junto con el soporte a diversas condiciones experimentales para obtener electrodos con nanoespacios. Las condiciones se controlaron a través de una cámara de 3 L conectada a una turbobomba de vacío Pfeiffer HiPace 80 con conexiones de alimentación eléctrica y líneas de entrada de gas. En los siguientes ejemplos, se muestran los ensayos realizados a cuatro diferentes condiciones: (i) en una cámara llena de aire seco a presión atmosférica, (¡i) en una cámara llena de CO2 a presión atmosférica, (iii) en alto vacío en una cámara que fue previamente purgada con aire seco, y (iv) en alto vacío en una cámara previamente purgada con CO2. Once the glassy carbon nanofibers were obtained, they were subjected together with the support to various experimental conditions to obtain electrodes with nanospaces. Conditions were controlled via a 3 L chamber connected to a Pfeiffer HiPace 80 vacuum turbopump with electrical feed connections and gas inlet lines. In the following examples, the tests carried out under four different conditions are shown: (i) in a chamber filled with pressurized dry air atmosphere, (ii) in a chamber filled with CO2 at atmospheric pressure, (iii) under high vacuum in a chamber that was previously purged with dry air, and (iv) under high vacuum in a chamber previously purged with CO2.
EJEMPLO 2 EXAMPLE 2
En este ensayo, se describe la formación de un electrodo con nanoespacios a través del método de la presente invención, utilizando un programa para la aplicación de voltaje que ejecuta un bucle controlado por retroalimentación y monitorea los cambios de resistencia eléctrica (AR) en la nanofibra fibra. Una indicación de los efectos causados por el calentamiento de las nanofibras a partir de este valor de AR cuando la nanofibra se estimula eléctricamente. Por lo tanto, el parámetro AR se seleccionó como el principal indicador de los cambios que ocurren en las nanofibras. Un AR negativo indica una disminución en la resistencia eléctrica a medida que se calienta la fibra, como se esperaba del coeficiente negativo de resistencia del carbono. Un AR positivo representa la pérdida de masa que conduce al adelgazamiento y eventual ruptura de las nanofibras. El proceso de aplicación de voltaje se inició aplicando un voltaje bajo de 0.2 V y se midió la resistencia. Posteriormente, el voltaje se aumentó en incrementos de 0.1 a 0.2 V hasta que se observó un valor límite AR, por encima del cual comenzó a producirse una reducción en el área de la sección transversal de la fibra. Para evitar un proceso de avería incontrolado, se evitaron cambios abruptos en AR. A partir de los ensayos, se encontró que un cambio de resistencia eléctrica positivo mayor que AR= 0.05% es adecuado para permitir que el sistema alcance la temperatura de activación necesaria para formar una constricción, al tiempo que evita que el proceso de ruptura tenga lugar de manera descontrolada. In this essay, the formation of an electrode with nanogaps through the method of the present invention is described, using a program for the application of voltage that executes a loop controlled by feedback and monitors the changes of electrical resistance (AR) in the nanofiber. fiber. An indication of the effects caused by heating the nanofibers from this AR value when the nanofiber is electrically stimulated. Therefore, the AR parameter was selected as the main indicator of the changes that occur in the nanofibers. A negative AR indicates a decrease in electrical resistance as the fiber is heated, as expected from carbon's negative coefficient of resistance. A positive AR represents mass loss leading to thinning and eventual breakage of the nanofibers. The voltage application process was started by applying a low voltage of 0.2 V and the resistance was measured. Subsequently, the voltage was increased in 0.1 to 0.2 V increments until a limiting value AR was observed, above which a reduction in fiber cross-sectional area began to occur. To avoid an uncontrolled breakdown process, abrupt changes in AR were avoided. From the tests, it was found that a positive electrical resistance change greater than AR = 0.05% is adequate to allow the system to reach the activation temperature necessary to form a constriction, while preventing the rupture process from taking place. in an uncontrolled way.
Se implemento una medida adicional para evitar la ruptura incontrolada de las nanofibras limitando el valor al que se podría aumentar la tensión (Vmax). Antes del inicio del programa, se seleccionó una Vmax inicial basada en experimentos previos con fibras de diámetros y longitudes similares. El programa de aplicación de voltaje ajustó automáticamente el tiempo en cada paso de voltaje entre 1 y 4 s para controlar aún más la energía impartida en la fibra. Una vez que AR excedió el valor limite, se interrumpió la estimulación eléctrica y comenzó un nuevo ciclo de aplicación de voltaje. El proceso se repitió hasta que se detectó un circuito abierto, indicativo de la formación de un nanoespacio. Basado en la suposición de que a medida que las nanofibras se redujeron gradualmente, la condición en la que se alcanzó AR> 0.05% ocurrió a un voltaje limite más bajo (Vth), el voltaje máximo se redujo en cada ciclo de aplicación de voltaje, tal como Vmax = Vth -0.2, para seguir esta condición. Por lo tanto, en cualquier punto dado durante el experimento la fibra adelgazada que en una iteración anterior hizo que se cumpliera la condición >R> 0.05%, la alimentación de voltaje se interrumpió. En la figura 1 se muestra el proceso de adelgazamiento y descomposición de una nanofibra suspendida de carbono vitreo, en donde A representa una fibra de 44.5 pm de longitud y 1.4 pm de diámetro que se adelgazó hasta una nanoconstricción de 351 nm representada por B. Posteriormente, se aplicó voltaje hasta que se detectó un circuito abierto, con la producción concomitante de un nanoespacio de 20 nm, como se exhibe en C. Además de la aplicación de voltaje, otro factor importante para la fabricación de nanoespacios de menos de 10 nm es la elección de las condiciones experimentales para la ruptura de la fibra. El carbono puede perder masa al calentarse por dos mecanismos principales: (i) una reacción de oxidación con O2 o CO2 y (¡i) sublimación a altas temperaturas, estimadas en aproximadamente 4000 K a presión atmosférica y 3000 K en alto vacío. An additional measure was implemented to avoid the uncontrolled rupture of the nanofibers by limiting the value to which the tension could be increased (Vmax). Before the start of the program, an initial Vmax was selected based on previous experiments with fibers of similar diameters and lengths. The voltage application program automatically adjusted the time in each voltage step between 1 and 4 s to further control the energy imparted on the fiber. Once AR exceeded the threshold value, electrical stimulation was interrupted and a new cycle of voltage application began. The process was repeated until an open circuit was detected, indicative of the formation of a nanogap. Based on the assumption that as the nanofibers were gradually reduced, the condition in which AR > 0.05% was reached occurred at a lower limit voltage (Vth), the maximum voltage was reduced in each cycle of voltage application, such as Vmax = Vth -0.2, to follow this condition. Therefore, at any given point during the experiment the thinned fiber that in a previous iteration caused the >R> 0.05% condition to be met, the voltage feed was cut off. Figure 1 shows the process of thinning and decomposition of a suspended glassy carbon nanofiber, where A represents a fiber of 44.5 pm length and 1.4 pm diameter that thinned to a nanoconstriction of 351 nm represented by B. Later , voltage was applied until an open circuit was detected, with the concomitant production of a 20-nm nanogap, as exhibited in C. In addition to the voltage application, another important factor for the fabrication of nanogaps smaller than 10 nm is the choice of experimental conditions for fiber rupture. The carbon can lose mass on heating by two main mechanisms: (i) an oxidation reaction with O2 or CO2 and (¡i) sublimation at high temperatures, estimated at approximately 4000 K at atmospheric pressure and 3000 K in high vacuum.
EJEMPLO 3 EXAMPLE 3
En el presente ensayo se establecieron condiciones para la formación de un electrodo con nanoespacios en una cámara a presión atmosférica en presencia de aire seco y CO2, utilizando el procedimiento de aplicación de voltaje descrito en el ejemplo anterior. In the present test, conditions were established for the formation of an electrode with nanogaps in a chamber at atmospheric pressure in the presence of dry air and CO2, using the voltage application procedure described in the previous example.
El voltaje se incrementó de 0.2 a Vmax = 3.8 V, con incrementos de 0.2 V, y la resistencia primero disminuyó de 18 a 10 kQ y luego aumentó al final de este rango de voltaje. Una vez que se detectó la condición AR> 0.05%, se interrumpió la aplicación de voltaje, se redujo Vmax a 3.6 V y se repitió el proceso. De 500 a 1750 s, se registró un aumento lento y gradual de la resistencia eléctrica a 3.6 V, seguido de un aumento abrupto de la resistencia al final de este período. En la figura 2, letra A se muestra la evolución de la resistencia para el proceso de adelgazamiento de las nanofibras en estas condiciones. The voltage was increased from 0.2 to Vmax = 3.8 V, with 0.2 V increments, and the resistance first decreased from 18 to 10 kQ and then increased at the end of this voltage range. Once the AR > 0.05% condition was detected, the voltage application was stopped, Vmax was reduced to 3.6 V, and the process was repeated. From 500 to 1750 s, a slow and gradual increase in electrical resistance to 3.6 V was recorded, followed by an abrupt increase in resistance at the end of this period. Figure 2, letter A shows the evolution of the resistance for the thinning process of the nanofibers under these conditions.
Este comportamiento siempre se observó para experimentos en aire a presión atmosférica y podría explicarse en términos de los dos factores principales que consumen las nanofibras suspendidas de carbono vitreo: oxidación y sublimación. La oxidación, que se debe a la presencia de O2 en la cámara, es un proceso esperado porque la temperatura de autoignición del carbono es de aproximadamente 973 K. Esta observación sugiere que, incluso a temperaturas inferiores a la temperatura de sublimación del carbono, la fibra podría adelgazarse al quemarse. Cuando la temperatura alcanza la temperatura de sublimación del carbono, que se estima en aproximadamente 4000 K bajo presión atmosférica, el mecanismo de adelgazamiento cambia una reacción impulsa por oxidación a una sublimación, produciendo un salto rápido y abrupto en la resistencia eléctrica, lo que dificulta el control del rompimiento. Utilizando el método descrito anteriormente para diez nanofibras suspendidas de carbono vitreo de una longitud media de 43.3 pm en estas condiciones, se obtuvieron nanoespacios con un tamaño medio de 154 nm con una desviación estándar de 43.3 nm. This behavior was always observed for experiments in air at atmospheric pressure and could be explained in terms of the two main factors that consume suspended glassy carbon nanofibers: oxidation and sublimation. Oxidation, which is due to the presence of O2 in the chamber, is an expected process because the autoignition temperature of carbon is approximately 973 K. This observation suggests that, even at temperatures below the sublimation temperature of carbon, the fiber could be thinned by burning. When the temperature reaches the sublimation temperature of carbon, which is estimated to be about 4000 K under atmospheric pressure, the thinning mechanism switches from an oxidation-driven reaction to a sublimation, producing a rapid and abrupt jump in electrical resistance, making it difficult to breaking control. Using the method described above for ten suspended glassy carbon nanofibers with a mean length of 43.3 pm under these conditions, nanogaps with a mean size of 154 nm with a standard deviation of 43.3 nm were obtained.
Para evitar reacciones debido a la presencia de O2 en la configuración experimental, las pruebas también se realizaron a presión atmosférica en una cámara llena de CO2. En la figura 2, letra B se muestra un gráfico típico para nanofibras suspendidas de carbono vitreo tratadas en estas condiciones, con un Vmax inicial = 4.8 V, de 0 a 500 s. Se realizaron dos ciclos de aplicación de voltaje, para evitar la ruptura rápida de la nanofibra. Luego, aproximadamente a 650 s, con el voltaje máximo establecido en 4.4 V, se observó un aumento de la resistencia eléctrica mucho más rápido que el ensayo realizado en presencia de aire seco. En este caso, las reacciones fueron promovidas no por la presencia de O2 sino por CO2. De la comparación de las pendientes de resistencia de la figura 2, letras A y B se puede inferir inmediatamente que la fibra se consumió a una tasa mayor en CO2 que en presencia de aire seco. Lo más probable es que esto se deba a que la reacción en la cámara llena de CO2 (100% de contenido de CO2) (es decir, C + CO2 => 2CO) se favoreció termodinámicamente a temperaturas superiores a aproximadamente 1600 K y la velocidad de reacción fue alta en comparación con la velocidad de reacción en el aire. (21% de contenido de O2) (es decir, 2C + O2 => 2CO). To avoid reactions due to the presence of O2 in the experimental setup, the tests were also performed at atmospheric pressure in a chamber filled with CO2. Figure 2, letter B shows a typical graph for suspended glassy carbon nanofibers treated under these conditions, with an initial Vmax = 4.8 V, from 0 to 500 s. Two cycles of voltage application were performed to avoid rapid rupture of the nanofiber. Then, at approximately 650 s, with the maximum voltage set to 4.4 V, a much faster increase in electrical resistance was observed than the test performed in the presence of dry air. In this case, the reactions were promoted not by the presence of O2 but by CO2. From the comparison of the resistance slopes of figure 2, letters A and B it can be immediately inferred that the fiber was consumed at a higher rate in CO2 than in the presence of dry air. This is most likely because the reaction in the chamber filled with CO2 (100% CO2 content) (i.e. C + CO2 => 2CO) was thermodynamically favored at temperatures above about 1600 K and the reaction rate was high compared to the reaction rate in air. (21% O2 content) (ie 2C + O2 => 2CO).
Al igual que en el caso de la reacción en el aire, en presencia de CO2 se observó un aumento brusco e inesperado de la resistencia eléctrica a los 1400 s, lo que indica que la sublimación se activó debido a la alta temperatura, lo que provocó la rotura de la fibra. Diez nanofibras suspendidas de carbono vitreo con una longitud promedio de 50 pm se adelgazaron y se rompieron, lo que resultó en espacios con un tamaño promedio de aproximadamente 144 nm y una desviación estándar de 13.5 nm. As in the case of the reaction in air, in the presence of CO2 a sharp and unexpected increase in electrical resistance was observed at 1400 s, indicating that sublimation was activated due to the high temperature, which caused fiber breakage. Ten suspended glassy carbon nanofibers with an average length of 50 pm were thinned and broken, resulting in gaps with an average size of approximately 144 nm and a standard deviation of 13.5 nm.
EJEMPLO 4 EXAMPLE 4
En el presente ensayo se establecieron condiciones para la formación de un electrodo con nanoespacios en una cámara de alto vacío en presencia de aire seco y CO2, utilizando el procedimiento de aplicación de voltaje descrito en el ejemplo 2. In the present test, conditions were established for the formation of an electrode with nanogaps in a high vacuum chamber in the presence of dry air and CO2, using the voltage application procedure described in example 2.
Con el objetivo de reducir aún más el tamaño del nanoespacio, se utilizó un método de aplicación de voltaje a las nanofibras suspendidas de carbono vitreo en alto vacío (2xio-5 mbar). La figura 2, letra C muestra un gráfico típico del voltaje aplicado y la evolución de la resistencia de una nanofibra suspendida de carbono vitreo durante la estimulación de voltaje. Como se observó, el proceso se desarrolló durante 10 ciclos sin experimentar la imprevisibilidad que se observó a presión atmosférica. Al realizar los experimentos en condiciones de vacío, se obtuvieron diez fibras de 45 pm de longitud con un tamaño medio de nanoespacio de 102 nm y una desviación estándar de 52.7 nm. En este escenario, el adelgazamiento de la fibra se relaciona principalmente con la sublimación, lo que facilita el control del proceso. Por el contrario, el adelgazamiento/descomposición de las nanofibras suspendidas de carbono vitreo bajo presión atmosférica depende de las reacciones del C con O2 o CO2, así como del proceso de sublimación. Al acercarse la rotura de la fibra, estas reacciones de oxidación aceleran el proceso de rotura, mientras que en ausencia de gases reactivos como O2 o CO2, solo se espera que la sublimación influya en el proceso de rotura. Por lo tanto, el método de aplicación de voltaje presenta un rendimiento excelente en condiciones de alto vacío, lo que da como resultado pequeños nanoespacios. Además, la sublimación de las nanofibras podría ocurrir a temperaturas más bajas (aproximadamente 3000 K) en estas condiciones. Cuando se alcanzan tamaños de nanoespacio incluso más pequeños, se puede esperar que a medida que las constricciones en las nanofibras se vuelven más delgadas, el proceso se vuelve más difícil de controlar. Como se abordó en los ejemplos anteriores, la presencia de O2 o CO2 puede conducir a reacciones que promuevan la quema de las nanofibras. En un alto vacío de aproximadamente 2xio-5 mbar, aunque la velocidad de las reacciones de oxidación se reduce, todavía puede haber trazas de CO2 y O2, que pueden tener un efecto en el mecanismo de reducción/ruptura de las nanofibras. In order to further reduce the size of the nanogap, a method of applying voltage to suspended glassy carbon nanofibers in high vacuum (2xio -5 mbar) was used. Figure 2, letter C shows a typical graph of the applied voltage and resistance evolution of a suspended glassy carbon nanofiber during voltage stimulation. As noted, the process ran for 10 cycles without experiencing the unpredictability seen at atmospheric pressure. When performing the experiments under vacuum conditions, ten fibers of 45 pm length with a mean nanospace size of 102 nm and a standard deviation of 52.7 nm were obtained. In this scenario, fiber thinning is primarily related to sublimation, which makes it easier to control the process. In contrast, the thinning/decomposition of suspended glassy carbon nanofibers under atmospheric pressure depends on the reactions of C with O2 or CO2, as well as the sublimation process. As fiber breakage approaches, these oxidation reactions accelerate the breakage process, whereas in the absence of reactive gases such as O2 or CO2, only sublimation is expected to influence the breakage process. Therefore, the voltage application method exhibits excellent performance under high vacuum conditions, resulting in small nanogaps. Furthermore, sublimation of the nanofibers could occur at lower temperatures (approximately 3000 K) under these conditions. When even smaller nanogap sizes are reached, it can be expected that as the constrictions in the nanofibers become thinner, the process becomes more difficult to control. As discussed in the previous examples, the presence of O2 or CO2 can lead to reactions that promote burning of the nanofibers. In a high vacuum of about 2xio -5 mbar, although the speed of the oxidation reactions is reduced, there may still be traces of CO2 and O2, which may have an effect on the reduction/breakdown mechanism of the nanofibers.
Para eliminar cualquier remanente de oxígeno, se propuso purgar la cámara en donde se depositaron las nanofibras con CO2 antes de realizar los experimentos de alto vacío. Como se muestra en la figura 2, letras C y D, la respuesta de resistencia fue similar en ambos procesos de alto vacío (con o sin purga de CO2). Sin embargo, los nanoespacios producidos después de purgar la cámara con CO2 fueron significativamente más pequeños, con un tamaño promedio de 9.8 nm y una desviación estándar de 7.4 nm para diez nanofibras suspendidas de carbono vitreo con una longitud promedio de 52 pm. Considerando un espacio riguroso de 10 nm o menos como la separación objetivo, se logró un rendimiento del 50% para las diez nanofibras rotas a alto vacío después de la purga de CO2; sin embargo, todas las fibras estaban por debajo de 20 nm. La estabilidad de los nanoespacios de carbono se probó realizando un análisis SEM de varias muestras después de que se almacenaron a temperatura ambiente durante aproximadamente 6 meses. No muestran ningún cambio en la forma o separación de nanoespacio, lo que demuestra la buena estabilidad de estas estructuras. To remove any remaining oxygen, it was proposed to purge the chamber where the nanofibers were deposited with CO2 before performing the high vacuum experiments. As shown in figure 2, letters C and D, the resistance response was similar in both high vacuum processes (with or without CO2 purge). However, the nanogaps produced after purging the chamber with CO2 were significantly smaller, with an average size of 9.8 nm and a standard deviation of 7.4 nm for ten suspended glassy carbon nanofibers with an average length of 52 pm. Considering a stringent gap of 10 nm or less as the target separation, a 50% yield was achieved for the ten nanofibers broken under high vacuum after CO2 purging; however, all fibers were below 20 nm. The stability of carbon nanogaps was tested by performing SEM analysis of several samples after they were stored at room temperature for approximately 6 months. They do not show any shape change or nanospace separation, demonstrating the good stability of these structures.
A partir de estos resultados, se puede concluir que el uso del procedimiento de aplicación de voltaje informado bajo alto vacío en una cámara previamente purgada con CO2 proporcionó un buen enfoque para la fabricación de nanoespacios de menos de 10 nm en nanofibras suspendidas de carbono vitreo, sin la necesidad de fibras que tienen menos de 2 pm de largo. En el caso de condiciones de alto vacío, se espera que la temperatura de sublimación para una cámara llena de aire sea más baja que la de una cámara a presión atmosférica (aproximadamente 3000 K), y el proceso sería impulsado principalmente por la sublimación de la nanofibra. Se puede lograr una mayor reducción en el tamaño del nanoespacio considerando las trazas de partículas que permanecen en la cámara después de que se alcanzan las condiciones de vacío. En el caso del aire, la presencia de pequeñas cantidades de O2 puede provocar reacciones exotérmicas que liberan energía en el sistema, lo que hace que la nanofibra continúe ardiendo incluso después de que se detenga la estimulación eléctrica. Por el contrario, para el CO2, las partículas restantes sufren una reacción endotérmica que consume energía del sistema, contribuyendo así a un mejor control sobre la rotura de la fibra, con la producción concomitante de nanoespacios de menos de 10 nm. From these results, it can be concluded that the use of the reported voltage application procedure under high vacuum in a chamber previously purged with CO2 provided a good approach for the fabrication of nanogaps of less than 10 nm in suspended glassy carbon nanofibers. without the need for fibers that are less than 2 pm long. In the case of high vacuum conditions, the sublimation temperature for an air-filled chamber is expected to be lower than that for a chamber at atmospheric pressure (approximately 3000 K), and the process would be driven primarily by sublimation of the nanofiber. A further reduction in the size of the nanogap can be achieved by considering the trace particles that remain in the chamber after vacuum conditions are reached. In the case of air, the presence of small amounts of O2 can cause exothermic reactions that release energy in the system, causing the nanofiber to continue burning even after the electrical stimulation stops. On the contrary, for CO2, the remaining particles undergo an endothermic reaction that consumes energy from the system, thus contributing to a better control over fiber breakage, with the concomitant production of nanogaps of less than 10 nm.
Adicionalmente, se analizó la superficie de las nanofibras suspendidas de carbono vitreo resultantes después de los procesos de adelgazamiento y descomposición. En la figura 3, se presentan las imágenes SEM de cuatro fibras diferentes. Se puede observar claramente que los experimentos realizados bajo presión atmosférica de aire y CO2 (letras A y B, respectivamente) dieron como resultado una superficie lisa, casi pulida. Este efecto se puede atribuir a las reacciones que impulsan la combustión de la fibra antes de la sublimación, ya que la oxidación de las fibras en el aire e incluso en el CO2 ha sido previamente reportada y utilizada para tratar la superficie de las nanofibras de carbono. Por otro lado, en los casos de alto vacío, el proceso impulsado por sublimación puede considerarse responsable de la ruptura de los enlaces en las nanofibras suspendidas de carbono vitreo desordenado, lo que conduce a las superficies muy rugosas observadas en la figura 3, letras C y D. Additionally, the surface of the resulting suspended glassy carbon nanofibers after the thinning and decomposition processes was analyzed. In Figure 3, the SEM images of four different fibers are presented. It can be clearly seen that experiments performed under atmospheric pressure of air and CO2 (letters A and B, respectively) resulted in a smooth, almost polished surface. This effect can be attributed to the reactions that drive fiber combustion before sublimation, since the oxidation of fibers in air and even in CO2 has been previously reported and used to treat the surface of carbon nanofibers. . On the other hand, in high vacuum cases, the sublimation-driven process can be considered responsible for breaking bonds in suspended disordered glassy carbon nanofibers, leading to the very rough surfaces seen in Figure 3, letters C. and d.
De conformidad con lo anteriormente descrito, se podrá observar que el método para la obtención de electrodos con nanoespacios a partir de nanofibras suspendidas de carbono vitreo con una longitud mayor a 2 pm ha sido ideado para su aplicación en el área de la nanotecnología, específicamente, en la fabricación de nanosensores, y será evidente para cualquier experto en la materia que las modalidades de la invención según se describió anteriormente e ¡lustro en los dibujos que se acompañan, son únicamente ilustrativas más no limitativas de la presente invención, ya que son posibles numerosos cambios de consideración en sus detalles sin apartarse del alcance la invención. Por ejemplo, es posible utilizar diferentes precursores poliméricos de carbono para obtener nanofibras suspendidas de carbono vitreo y seguir el mismo método aquí descrito para la fabricación de electrodos con nanoespacios. In accordance with the above, it can be seen that the method for obtaining electrodes with nanospaces from suspended vitreous carbon nanofibers with a length greater than 2 pm has been designed for application in the area of nanotechnology, specifically, in the manufacture of nanosensors, and it will be evident to any person skilled in the art that the modalities of the invention as described above and illustrated in the accompanying drawings, are only illustrative and not limiting of the present invention, since they are possible numerous major changes in its details without departing from the scope of the invention. For example, it is possible to use different polymeric carbon precursors to obtain suspended nanofibers of glassy carbon and follow the same method described here for the fabrication of electrodes with nanogaps.
Por lo tanto, la presente invención no deberá considerarse como restringida excepto por lo que exija la técnica anterior y por el alcance de las reivindicaciones anexas. Therefore, the present invention should not be considered as restricted except as required by the prior art and by the scope of the appended claims.

Claims

REIVINDICACIONES NOVEDAD DE LA INVENCIÓN CLAIMS NOVELTY OF THE INVENTION
1. Un electrodo con nanoespacio, caracterizado porque el nanoespacio tiene una longitud entre 4 y 17 nm el cual es obtenido a partir de nanofibras suspendidas de carbono vitreo con una longitud mayor a 2 pm. 1. An electrode with nanospace, characterized in that the nanospace has a length between 4 and 17 nm, which is obtained from suspended glassy carbon nanofibers with a length greater than 2 pm.
2. El electrodo con nanoespacios de conformidad con la reivindicación 1, caracterizado además porque los nanoespacios tienen una longitud menor a 10 nm. 2. The electrode with nanospaces according to claim 1, further characterized in that the nanospaces have a length of less than 10 nm.
3. Un método para la obtención de electrodos con nanoespacios entre 4 y 17 nm, caracterizado porque comprende una etapa de sublimar una nanofibra suspendida de carbono vitreo con una longitud mayor a 2 pm en condiciones de presión reducida. 3. A method for obtaining electrodes with nanospaces between 4 and 17 nm, characterized in that it comprises a step of sublimating a suspended glassy carbon nanofiber with a length greater than 2 pm under reduced pressure conditions.
4. El método de conformidad con la reivindicación 3, caracterizado además porque la presión reducida es de entre 0.001 y 0.003 Pa. 4. The method according to claim 3, further characterized in that the reduced pressure is between 0.001 and 0.003 Pa.
5. El método de conformidad con la reivindicación 3, caracterizado además porque la etapa de sublimar una nanofibra suspendida de carbono vitreo con una longitud mayor a 2 pm se lleva a cabo con un incremento en la resistencia de la nanofibra mayor a 0.05%. 5. The method according to claim 3, further characterized in that the step of sublimating a suspended vitreous carbon nanofiber with a length greater than 2 pm is carried out with an increase in the resistance of the nanofiber greater than 0.05%.
6. El método de conformidad con la reivindicación 5, caracterizado además porque el incremento en la resistencia mayor a 0.05% se logra mediante la aplicación de un voltaje en un intervalo entre 0.2 y 3.8 V con incrementos de 0.2 V. 6. The method according to claim 5, further characterized in that the increase in resistance greater than 0.05% is achieved by applying a voltage in a range between 0.2 and 3.8 V with increments of 0.2 V.
7. El método de conformidad con la reivindicación 4, caracterizado además porque las nanofibras suspendidas de carbono vitreo con una longitud mayor a 2 pm se obtienen de acuerdo con las siguientes etapas: (i) recubrir una base con una capa de un precursor polimérico de carbono con un espesor de entre 10 y 30 pm; (¡i) calentar la base recubierta hasta eliminar el solvente del precursor polimérico; (i¡¡) exponer selectivamente la base a rayos UV; (iv) deponer las nanofibras obtenidas en una plataforma de electrohilado, que es ajustada a una distancia de la aguja al colector de al menos 1 mm y a un voltaje para suspenderlas; y (v) calentar las nanofibras suspendidas. 7. The method according to claim 4, further characterized in that the suspended vitreous carbon nanofibers with a length greater than 2 pm are obtained according to the following steps: (i) coating a base with a layer of a polymeric precursor of carbon with a thickness between 10 and 30 pm; (ii) heating the coated base until the solvent is removed from the polymeric precursor; (iii) selectively exposing the base to UV rays; (iv) depositing the obtained nanofibers on an electrospinning platform, which is adjusted to a distance from the needle to the collector of at least 1 mm and to a voltage to suspend them; and (v) heating the suspended nanofibers.
8. El método de conformidad con la reivindicación 7, caracterizado además porque la etapa de (i) recubrir una base con una capa de un precursor polimérico de carbono incluye una centrifugación de entre 3000 a 4000 rpm durante entre 25 a 30 s. 8. The method according to claim 7, further characterized in that the step of (i) coating a base with a layer of a polymeric carbon precursor includes a centrifugation of between 3000 to 4000 rpm for between 25 to 30 s.
9. El método de conformidad con la reivindicación 7, caracterizado además porque el espesor del precursor polimérico de carbono es de 20 pm. 9. The method according to claim 7, further characterized in that the thickness of the polymeric carbon precursor is 20 pm.
10. El método de conformidad con la reivindicación 7, caracterizado además porque el precursor polimérico de carbono es negativo fotorresistente a base de ocho grupos epoxi. 10. The method according to claim 7, further characterized in that the carbon polymeric precursor is negative photoresist based on eight epoxy groups.
11. El método de conformidad con la reivindicación 7, caracterizado además porque la etapa de (¡i) calentar la base recubierta hasta eliminar el solvente del precursor polimérico se logra a una temperatura de entre 90 a 100 °C durante entre 4.5 a 5.5 minutos. 11. The method according to claim 7, further characterized in that the step of (¡i) heating the coated base until the solvent of the polymeric precursor is eliminated is achieved at a temperature of between 90 to 100 °C for between 4.5 to 5.5 minutes .
12. El método de conformidad con la reivindicación 7, caracterizado además porque la etapa de (i¡¡) exponer selectivamente la base a rayos UV se logra en un tiempo de entre 3 a 5 s. 12. The method according to claim 7, further characterized in that the step of (i¡¡) selectively exposing the base to UV rays is achieved in a time of between 3 to 5 s.
13. El método de conformidad con la reivindicación 7, caracterizado además porque la etapa de (iv) deponer las nanofibras para suspenderlas se logra a un voltaje de entre 100 a 200 V. 13. The method according to claim 7, further characterized in that step (iv) deposing the nanofibers to suspend them is achieved at a voltage of between 100 to 200 V.
14. El método de conformidad con la reivindicación 7, caracterizado además porque la etapa de (v) calentar las nanofibras suspendidas se logra a una temperatura de entre 800 y 1000 °C bajo una atmósfera inerte de N2 durante al menos 1 hora. 14. The method according to claim 7, further characterized in that the step of (v) heating the suspended nanofibers is achieved at a temperature between 800 and 1000 °C under an inert N2 atmosphere for at least 1 hour.
15. Un nanosensor caracterizado porque comprende por lo menos un electrodo con nanoespacios entre 4 y 17 nm obtenido a partir de nanofibras suspendidas de carbono vitreo con una longitud mayor a 2 pm. 15. A nanosensor characterized in that it comprises at least one electrode with nanospaces between 4 and 17 nm obtained from suspended glassy carbon nanofibers with a length greater than 2 pm.
PCT/MX2022/050004 2021-01-27 2022-01-12 Method for obtaining electrodes with nanospaces from suspended nanofibres of glassy carbon WO2022164307A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2021001079A MX2021001079A (en) 2021-01-27 2021-01-27 Method for obtaining electrodes with nano space from suspended glass carbon nanofibers.
MXMX/A/2021/001079 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022164307A1 true WO2022164307A1 (en) 2022-08-04

Family

ID=82654861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2022/050004 WO2022164307A1 (en) 2021-01-27 2022-01-12 Method for obtaining electrodes with nanospaces from suspended nanofibres of glassy carbon

Country Status (2)

Country Link
MX (1) MX2021001079A (en)
WO (1) WO2022164307A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140193589A1 (en) * 2008-09-11 2014-07-10 The Ohio State University Research Foundation Electro-spun fibers and applications therefore
WO2020113138A1 (en) * 2018-11-29 2020-06-04 Universal Sequencing Technology A system for sequencing biopolymers
US20200407880A1 (en) * 2019-06-28 2020-12-31 The Regents Of The University Of California Systems and methods for producing carbon nanostructures and ultrathin aligned carbon wires with multilayer turbostratic graphene structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140193589A1 (en) * 2008-09-11 2014-07-10 The Ohio State University Research Foundation Electro-spun fibers and applications therefore
WO2020113138A1 (en) * 2018-11-29 2020-06-04 Universal Sequencing Technology A system for sequencing biopolymers
US20200407880A1 (en) * 2019-06-28 2020-12-31 The Regents Of The University Of California Systems and methods for producing carbon nanostructures and ultrathin aligned carbon wires with multilayer turbostratic graphene structure

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CANTON, G. ET AL.: "Improved conductivity of suspended carbon fibers through integration of C-MEMS and Electro-Mechanical Spinning technologies", CARBON, vol. 71, May 2014 (2014-05-01), pages 338 - 342, XP028661621, DOI: https://doi.Org/10.1016/j. carbon. 2014.01.00 9 *
FERRER-ARGEMI L ET AL.: "Size-dependent electrical and thermal conductivities of electro-mechanically-spun glassy carbon wires", CARBON, vol. 130, 2018, pages 87 - 93, XP085346220, DOI: https://dol.Org/10.1016/j.carbon.2017.12.113 *
LIPOMI DARREN J., MARTINEZ RAMSES V., WHITESIDES GEORGE M.: "Use of Thin Sectioning (Nanoskiving) to Fabricate Nanostructures for Electronic and Optical Applications", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, VERLAG CHEMIE, vol. 50, no. 37, 5 September 2011 (2011-09-05), pages 8566 - 8583, XP055960362, ISSN: 1433-7851, DOI: 10.1002/anie.201101024 *
SALAZAR ARNOLDO, HOSSEINI SAMIRA, SANCHEZ-DOMÍNGUEZ MARGARITA, MADOU MARC. J., MONTESINOS-CASTELLANOS ALEJANDRO, MARTINEZ-CHAPA SE: "Sub-10 nm nanogap fabrication on suspended glassy carbon nanofibers", MICROSYSTEMS & NANOENGINEERING, vol. 6, no. 1, 1 December 2020 (2020-12-01), XP055960358, DOI: 10.1038/s41378-019-0120-z *
SALAZAR, A. ET AL.: "Nanogap fabrication by Joule heating of electromechanically spun suspended carbon nanofibers", CARBON, vol. 115, 2017, pages 811 - 818, XP029924164, DOI: https://doi.0rg/10.1016/j. carbon. 2017.01.06 6 *
WANG, C. ET AL.: "From MEMS to NEMS with carbon", BIOSENSORS AND BIOELECTRONIC S, vol. 20, 2005, pages 2181 - 2187, XP004769162, DOI: 10.1016/j. bies. 2004.09.03 4 *

Also Published As

Publication number Publication date
MX2021001079A (en) 2022-07-28

Similar Documents

Publication Publication Date Title
Schrlau et al. Carbon nanopipettes for cell probes and intracellular injection
Hua et al. Helical graphene oxide fibers as a stretchable sensor and an electrocapillary sucker
TWI307330B (en) Methods of making non-woven fabric of carbon nanotubes and article
US9052283B2 (en) Nanodevices for generating power from molecules and batteryless sensing
Golshadi et al. Effects of synthesis parameters on carbon nanotubes manufactured by template-based chemical vapor deposition
Vashisth et al. Mechanical size effects of amorphous polymer-derived ceramics at the nanoscale: experiments and ReaxFF simulations
US8431189B2 (en) Carbon nanotube-nanofiber composite structure
Lekawa-Raus et al. Influence of atmospheric water vapour on electrical performance of carbon nanotube fibres
US11005046B2 (en) Carbon nanotube array, material, electronic device, process for producing carbon nanotube array, and process for producing field effect transistor
US20080160866A1 (en) Method for manufacturing field emission cathode
JP2010025719A (en) Chemical substance sensing element, chemical substance sensing device and manufacturing method of chemical substance sensing element
WO2022164307A1 (en) Method for obtaining electrodes with nanospaces from suspended nanofibres of glassy carbon
Adilakshmi et al. Electron beam evaporated nanostructure WO3 films for gas sensor application
JP2010139269A (en) Chemical substance sensing element, gas analyzer, and method for detecting ethanol concentration using the chemical substance sensing element
Li et al. Efficient purification of single-walled carbon nanotube fibers by instantaneous current injection and acid washing
US9879362B2 (en) Method for producing nanofibers capable of storing and transferring nitric oxide and nanofibers capable of storing and transferring nitric oxide produced thereby
Aramesh et al. Surface modification of porous anodic alumina for medical and biological applications
Zhu et al. Construction of a graphene/polypyrrole composite electrode as an electrochemically controlled release system
Kharlamova et al. Adsorption of proteins in channels of carbon nanotubes: Effect of surface chemistry
JP5515293B2 (en) Method for opening wall surface of carbon nanomaterial and method for introducing oxygen-containing group into hole of carbon nanomaterial
Burghard Asymmetric end‐functionalization of carbon nanotubes
Li et al. Mechanical and NH3 sensing properties of long multi-walled carbon nanotube ropes
Karthigeyan et al. Highly sensitive, room-temperature gas sensors prepared from cellulose derivative assisted dispersions of single-wall carbon nanotubes
Hauptmann et al. Electrical annealing and temperature dependent transversal conduction in multilayer reduced graphene oxide films for solid-state molecular devices
Kalkan et al. Biomedical/analytical applications of deposited nanostructured Si films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22746330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22746330

Country of ref document: EP

Kind code of ref document: A1